

1 Estimating gene conversion tract length and rate from PacBio HiFi data
2
3 Authors: Anders Poulsen Charmouh¹, Peter Porsborg Sørud¹, Lasse Thorup Hansen², Søren
4 Besenbacher³, Sofia Boeg Winge⁴, Kristian Almstrup⁴, Asger Hobolth², Thomas Bataillon¹,
5 Mikkel Heide Schierup¹.

6
7 ¹Bioinformatics Research Centre Aarhus University, University City 81, building 1872, 3rd
8 floor. DK-8000 Aarhus C, Denmark. ²Department of Mathematics, Aarhus University,
9 Aarhus, Denmark. ³Department of Molecular Medicine (MOMA), Brendstrupgårdsvæj 21A,
10 8200 Aarhus N, Denmark. ⁴Copenhagen University Hospital, Inge Lehmanns Vej 7, 2100
11 Copenhagen, Denmark.

12
13
14 Keywords: Gene conversion, genome evolution, recombination, genomics methods, non-
15 crossover.

16
17
18
19
20
21

22 **Abstract**

23 Gene conversions are broadly defined as the transfer of genetic material from a 'donor' to an
24 'acceptor' sequence and can happen both in meiosis and mitosis. They are a subset of non-
25 crossover events and, like crossover events, gene conversion can generate new combinations
26 of alleles and counteract mutation load by reverting germline mutations through GC-biased
27 gene conversion. Estimating gene conversion rate and the distribution of gene conversion
28 tract lengths remains challenging. We present a new method for estimating tract length, rate
29 and detection probability of non-crossover events directly in HiFi PacBio long read data. The
30 method can be used to make inference from sequencing of gametes from a single individual.
31 The method is unbiased even under low single nucleotide variant (SNV) densities and does
32 not necessitate any demographic or evolutionary assumptions. We test the accuracy and
33 robustness of our method using simulated datasets where we vary length of tracts, number of
34 tracts, the genomic SNV density and levels of correlation between SNV density and NCO
35 event position. Our simulations show that under low SNV densities, like those found in
36 humans, only a minute fraction (~2%) of NCO events are expected to become visible as gene
37 conversions by moving at least one SNV. We finally illustrate our method by applying it to
38 PacBio sequencing data from human sperm.

39

40

41

42

43

44

45 Introduction

46 Recombination between chromosomes during meiosis is initiated by a double-strand
47 break (DSB) of the chromosome, after which a single strand from the homologous
48 chromosome can invade the broken double strand (strand invasion) to form a heteroduplex of
49 DNA from different chromosomes (Jasin and Rothstein 2013). Depending on how the
50 heteroduplex is resolved, strand invasion can result in either a crossover (CO) event or a non-
51 crossover (NCO) event (Cole et al. 2010). A crossover event results in large segments of
52 homologous chromosomes being swapped, whereas an NCO occurs when the DSB is
53 repaired, using the homologous chromosome as a template, through the synthesis-dependent
54 strand annealing pathway or the double Holliday junction pathway (Holliday 1964; Resnick
55 1976; Chen et al. 2007; McMahill et al. 2007). A subset of NCOs is observable as gene
56 conversions, which occur when one or more SNVs are transferred non-reciprocally from one
57 haplotype/chromosomal segment to another (Mansai et al. 2011; Lorenz and Mpaulo 2022).
58 Gene conversions have several evolutionary consequences. For example, GC-biased gene
59 conversion might serve to revert new germline mutations by opposing the AT mutation bias
60 (Bengtsson 1985; Arbeithuber et al. 2015; Clessin et al. 2024), which has recently been
61 shown to be potentially biasing the distribution of fitness effects of new mutations towards
62 more beneficial mutations (Joseph 2024).

63 NCO events can be hard to detect. Firstly, an NCO event is only visible in genomic
64 data as a new haplotype when it overlaps and converts at least one SNV from one donor
65 haplotype to an acceptor haplotype. Because humans have low heterozygosity (approximately
66 one site in 1500 are heterozygous), NCOs are hard to detect unless the number of bases
67 affected by a single event is also more than 1000 bps. This seems to not be the case
68 (Haldorsson et al. 2016; Arndt et al. 2023). Human NCO tract length, which is the length of
69 double-stranded DNA converted in an NCO event, has been reported to be in the range 3-

70 2086 bp, with a frequently cited estimate being 55-290 bp (Jeffreys & May 2004), making it
71 less likely that any one NCO event will overlap and convert at least one SNV, hence
72 becoming a (visible) gene conversion (Bosch et al. 2004; Jeffreys and May 2004; Hallast et
73 al. 2013; Harpak et al. 2017; Hardarson et al. 2023). A related problem is that finding gene
74 conversion events requires extensive sequencing if the gene conversion rate is low. Estimates
75 of NCO rates in human span $5.9 \cdot 10^{-6}$ to $8.75 \cdot 10^{-6}$ NCO per base pair per generation,
76 where this rate can be defined as the probability per generation that a base pair lies within an
77 NCO tract (Williams et al. 2015; Halldorsson et al. 2016; Narasimhan et al. 2017).
78 Furthermore, the sequence of both haplotypes needs to be known to determine which SNVs
79 have been converted. Flanking unconverted SNVs on either side of the gene conversion event
80 are typically necessary to distinguish a gene conversion event from a crossover event
81 (Halldorsson et al. 2016; Hardarson et al. 2023).

82 Recombination events, including NCOs have often been studied by sequencing
83 individuals in a pedigree spanning several generations or by using trios where the genome of
84 mother, father and offspring is sequenced (Halldorsson et al. 2016; Porubsky et al. 2024;
85 Prentout et al. 2024). While the idea of studying recombination events by sequencing
86 gametes directly is old (sperm typing, e.g. Arnheim et al. 1991), recent studies are beginning
87 to leverage new sequencing methods to directly study recombination events (Dréau et al.
88 2019; Carioscia & Weaver et al. 2022; Porsborg et al. 2024; Schweiger et al. 2024). The
89 sequencing of highly accurate long reads from sperm samples offers a new way to identify
90 gene conversion events. Specifically, if enough gametes from a single individual are
91 sequenced, both parental haplotypes can be inferred such that gene conversions between two
92 haplotypes at heterozygous sites can be directly observed (Porsborg et al. 2024; Schweiger et
93 al. 2024). Furthermore, flanking SNVs on either side of the gene conversion event will
94 typically be present such that the gene conversion event can be called. This is because HiFi

95 PacBio long-read sequencing results in very long reads, usually with a mean read length
96 above 10kb (Hon et al. 2020; Marx 2023) which greatly exceeds the expected size of
97 conversion tracts.

98 Here, we build a model suitable for estimating NCO rate, tract length and detection
99 probability directly from HiFi PacBio long read data (Figure 1). We use data simulations with
100 varying levels of SNV density and correlations between SNV density and NCO intensity to
101 study the statistical accuracy and robustness of our model. We then illustrate our approach
102 with a recently obtained dataset (Porsborg et al 2024).

103

104 **Results**

105 *The Model*

106 We count the number of gene conversion events where a single SNV has been converted and
107 compare it to the number of gene conversion events where multiple SNVs have been
108 converted. The ratio of these two counts provides information about the distributions of gene
109 conversion tract lengths. This can be understood intuitively by realising that if single SNV
110 conversions are far more common than multi-SNV conversion events, this indicates that tract
111 lengths are typically quite short since it is unlikely for a short tract to convert multiple SNVs.
112 This verbal expectation can be formalised as the expected probability of observing a single
113 SNV conversion relative to the probability of observing a multi-SNV conversion.

114 We first derive this expected ratio of single to multi SNV conversions in the
115 idealised case where all bases have the same probability of being SNVs (i.e. where the
116 distribution of SNV positions is uniform along the genome). We then show that using the
117 relative occurrence of single to multi-SNV conversions to estimate gene conversion tract
118 length, rate, and detection probability can be generalised to any scenario wherein SNVs are

119 clustered, as they are in real genomes. We do this by using simulations to obtain the
120 conversion probabilities and then use the relative numbers of single and multi-SNV
121 conversions in a maximum likelihood framework to obtain estimates for the mean tract
122 length, rate and detection probability of gene conversion.

123 *The model – idealised case of uniform SNV distribution*

124 Consider an NCO event with a tract length L base pairs (bp). For each bp, we assume that the
125 probability of the gene tract terminating is s such that the probability of the gene conversion
126 tract extending is $1 - s$. Given this, the distribution of NCO tract lengths L follows a
127 geometric distribution with parameter s . We initially assume a uniform SNV distribution such
128 that for any base pair, the probability of observing a SNV is p and the probability of not
129 observing a SNV is $1 - p$. We initially assume that all SNVs overlapping the conversion
130 event will be converted (this assumption can be relaxed, see Supporting Information S1).

131 We ask, given an NCO tract of length m , what is the probability, $P(\#SNV=1 | L=m)$, of
132 converting a single SNV? In the idealised case where the SNV distribution is uniform (all
133 positions in the tract have a probability p of containing an SNV), this probability is given by
134 the binomial distribution,

$$135 P(\#SNV = 1 | L = m) = \binom{m}{m-1} p(1-p)^{m-1} = mp(1-p)^{m-1}.$$

136 The joint probability of $L = m$ and $\#SNV = 1$ is then

$$137 P(\#SNV = 1, L = m) = m(1-p)^{m-1}p(1-s)^{m-1}s \quad (1)$$

138 because tracts follow a geometric distribution, so we weight the probability of converting a
139 single tract by the probability of sampling a tract of length m from a geometric distribution
140 with mean $1/s$.

141 Similarly, the joint probability of converting more than one SNVs given a tract of length m ,
142 $P(\#SNV > 1, L=m)$, is

143 $P(\#SNV > 1, L = m) = (1 - s)^{m-1} s (1 - (1 - p)^m - m(1 - p)^{m-1} p).$ (2)

144 We now calculate $P(\#SNV=1)$ and $P(\#SNV > 1)$ by summing the probabilities over all

145 possible values of m . This yields

146
$$P(\#SNV = 1) = \sum_{m=1}^{\infty} P(\#SNV = 1, L = m)$$

148
$$= \sum_{m=1}^{\infty} mp(1 - p)^{m-1}(1 - s)^{m-1}s$$

147

149
$$= sp/(1 - (1 - s)(1 - p))^2.$$
 (3)

150 and

151
$$P(\#SNV > 1) = \sum_{m=2}^{\infty} P(\#SNV > 1, L = m)$$

152
$$= \sum_{m=2}^{\infty} (1 - s)^{m-1}s(1 - (1 - p)^m - m(1 - p)^{m-1}p)$$

153
$$= (p^2(1 - s))/(1 - (1 - p)(1 - s))$$
 (4).

154 Notice that the sum in eq. (4) begins at $m=2$, because a tract length of at least 2 bp is
155 necessary before the conversion of more than one SNV is possible.

156 The ratio of single to multi-SNV gene conversion events which we would expect to observe
157 in the data, is now given as

158
$$R(p, s) = \frac{P(\#SNV = 1)}{P(\#SNV > 1)} = \frac{\sum_{m=1}^{\infty} mp(1 - p)^{m-1}(1 - s)^{m-1}s}{\sum_{m=2}^{\infty} (1 - s)^{m-1}s(1 - (1 - p)^m - m(1 - p)^{m-1}p)}$$

159
$$= s/(p(1 - s)).$$
 (5)

160 Notice that since the numerator and denominator of $R(p, s)$ is the probability of converting
161 one or more SNVs, respectively, we can also calculate the proportion of “silent” NCO events
162 $S(p, s)$, which we define as the proportion of NCOs converting no SNVs (i.e. the probability
163 that an NCO does not become a gene conversion),

164
$$S(p, s) = P(\#SNV = 0) = \sum_{m=1}^{\infty} (1-p)^m s(1-s)^{m-1}$$

165
$$= s(1-p)/(1 - (1-p)(1-s)). \quad (6)$$

166 Since we know the proportion of NCOs which fail to convert a SNV relative to the proportion
167 of NCOs resulting in observable gene conversions, we can now write an expression for the
168 total number of expected NCOs in the whole genome D_E , based on the observed number of
169 gene conversions, D_o

170
$$D_E = \frac{S(p,s)}{1-S(p,s)} D_o + D_o = \frac{1}{1-S(p,s)} D_o = \frac{1}{P(\#SNV \geq 1)} D_o. \quad (7)$$

171
172 The total NCO rate, defined as the probability that a base is involved in an NCO event, is
173 then simply D_E divided by the number of base pairs in the genome of interest, multiplied by
174 the mean number of base pairs affected by an NCO event (i.e. the mean tract length). Note
175 that to accurately estimate the NCO rate, $S(p,s)$ was estimated by considering the distribution
176 of reads length in our sample (see Supporting Information S2) for details.

177 *Estimating SNV conversion probabilities using the empirical SNV distribution*

178 Different regions have very different coalescent histories. Times to the most recent common
179 ancestor vary and accordingly modulate the SNV density, ranging from regions harbouring
180 runs of homozygosity (recent coalescent event) to regions with a high density of SNVs (deep
181 coalescent events) (Wiuf 2000b; Arndt et al. 2023). Additionally, variation in the mutation
182 rate across the genome further contributes to a non-uniform SNV distribution (Oman et al.
183 2022; Barroso and Dutheil 2023). Because the assumption of SNVs placed uniformly is
184 typically violated in genomes, and since this affects the accuracy of inference of the idealised
185 model (see Supporting Information S3), we first estimated the probability of different
186 conversion events (e.g. single, double, triple conversion etc) contingent on the exact SNV
187 distribution. To estimate the probability of the different conversion events, we calculated (via

188 simulation) the probability of converting 1, 2, ..., n SNVs contingent on the SNV distribution
189 in the genome of the sampled genome, using sequence data from Porsborg et al. (2024). We
190 then calculated the proportion of different conversion events as a function of different values
191 of s (see methods for details).

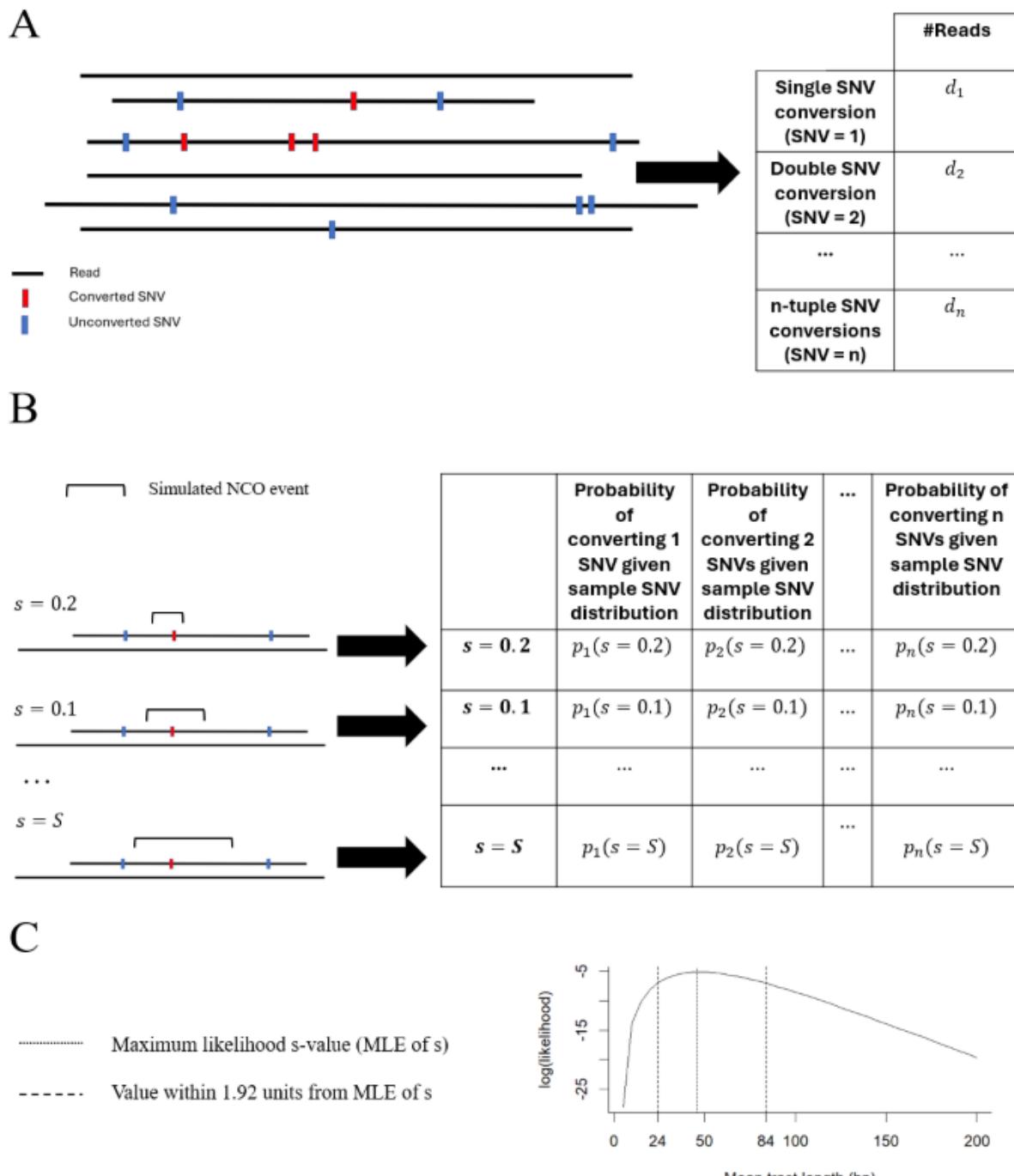
192 *Generalising to an arbitrary SNV distribution*

193 Using a maximum likelihood framework, the idea that the relative numbers of single and
194 multi-SNV conversion contain information about the tract length, rate and detection
195 probability of gene conversion can be generalised to the case where SNVs are not uniformly
196 distributed. We assume that a called set of gene conversion events is available from HiFi
197 PacBio sequence data (e.g., Table 1). Out of these k gene conversion events, a certain number
198 of events d_1, d_2, \dots, d_n resulted in converting 1, 2, ..., n SNVs, respectively (Fig 1A). We also
199 assume that the distribution of SNVs in the genome of the sampled individual is known, the
200 probabilities of converting 1, 2, ..., n SNVs contingent on the SNV distribution (see methods)
201 and given a mean tract length of $1/s$ ($P_1(s), P_2(s), \dots, P_n(s)$) can be found (Figure 1B).

202 Under these assumptions, the likelihood $L(s)$ of s given the data d_1, d_2, \dots, d_n can now be
203 calculated as

$$204 L(s|d_1, d_2, \dots, d_n) = \binom{k}{d_1, d_2, \dots, d_n} \prod_{i=1}^n p_i(s)^{d_i}. \quad (8)$$

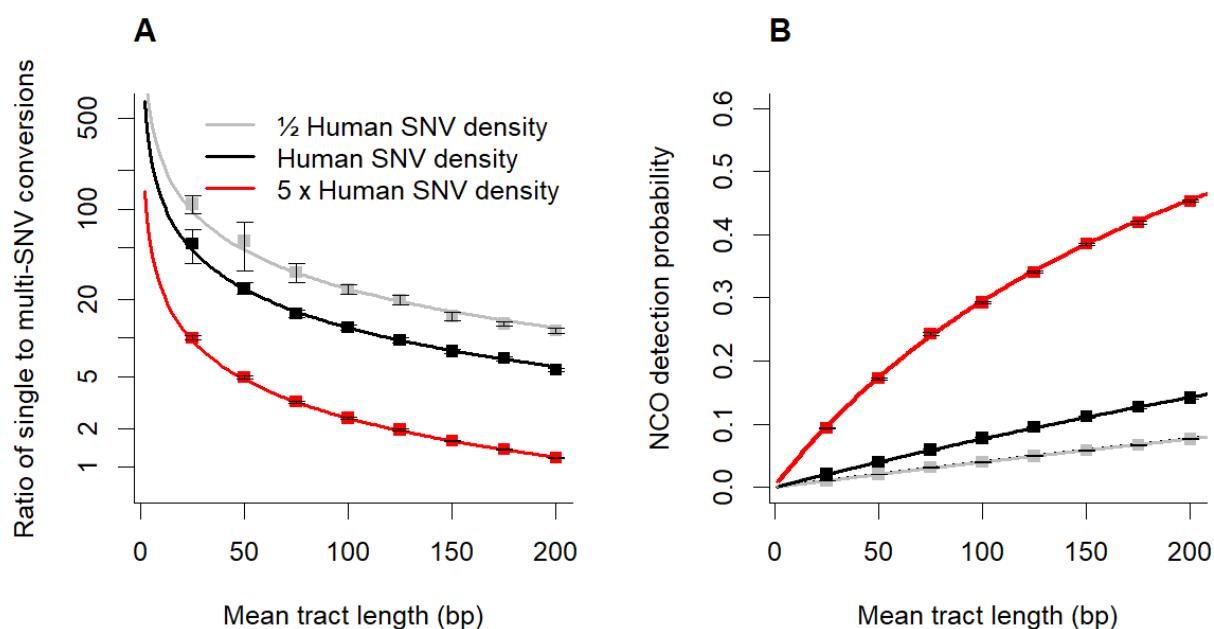
205 Finding the value s^* which maximises $L(s)$ yields a maximum likelihood estimate (MLE) of s
206 given the data d_1, d_2, \dots, d_n (Figure 1C).



207

208 *Figure 1: A method for estimating NCO tract length, rate and detection probability. A) The*
 209 *data. HiFi long reads were screened by Porsborg et al. (2024) for gene conversion, and read*
 210 *data is summarised via the counts of the number of reads where 1, 2, ..., n SNVs are*
 211 *converted (conversion counts). B) The simulations. Using the SNV distribution along the*
 212 *sequenced sample genome, simulations are conducted with varying mean tract length and the*
 213 *probability of converting 1, 2, ..., n SNVs (terms in eq. (5)) are estimated contingent on the*
 214 *SNV density and tract length distribution (conversion probabilities). C) The estimates. Using*
 215 *the conversion probabilities which take the non-uniform SNV distribution into account, the*
 216 *mean tract length which maximises the likelihood of the data (the conversion counts) is*
 217 *estimated using eq.(8).*

218 We develop an analytical model which can be used to infer a parameter which describes the
219 mean gene conversion tract length, the variance of gene conversion tract lengths, the NCO
220 rate and the NCO detection probability based on the SNV density and the observed ratio of
221 single to multi-SNV conversions (Figure 2). We tested the model by comparing analytical
222 predictions of eq. (5) to simulations wherein gene conversion events were simulated across a
223 genomic fragment of 30 Mb (see Methods for details). When the placement of a SNV
224 position is uniform, we find that the analytical results are consistent with the simulation
225 results, which means that the method allows for unbiased inference of gene conversion tract
226 length, rate, and detection probability even when using data from populations with very low
227 SNV density such as humans, i.e. populations wherein less than 1/1000 positions in the
228 genome harbours heterozygous site (e.g. Zhao et al. 2003). This makes it suitable for
229 inferring the mean NCO tract length for species with low levels of genetic diversity, such as
230 humans (Figure 2).



231

232 *Figure 2: Analytical predictions of the ratio model (full lines) compared to simulation results*
233 *(points denote means of 25 replicates) with 95% confidence intervals under different SNV*
234 *densities, using approximately half the human SNV density as a proxy for the typical number*
235 *of heterozygous sites (0.00083/2 SNVs/bp, e.g. Zhao et al. 2003), human SNV density*
236 *(0.00083 SNVs/bp) and five times the human SNV density (0.00083 · 5 SNVs/bp). The results*

237 *show that in the idealised case where all positions in the genome have some probability of*
238 *being an SNV, using the ratio of single to multi-SNV conversions can yield unbiased*
239 *estimates despite very low SNV densities, such as those observed in populations of humans.*
240 *(A) Eq. (5): Ratio of single to multi-SNV conversions as a function of mean tract length for*
241 *three different SNV densities. (B) Detection probability as $1-S(p,s)$ (see eq.(6)) of all gene*
242 *conversion events as a function of mean tract length for three different SNV densities.*

243

244 In the HiFi long reads obtained from a human sperm sample (Porsborg et al. 2024), we
245 observed a total of 182 gene conversions with between one and four SNVs converted per
246 event (Table 1). Using the conversion counts, the maximum likelihood model presented
247 (eq.8), the SNV distribution and the gene conversion events called by Porsborg et al. (2024),
248 we estimate the mean tract length in a human sperm sample. We estimate the mean tract
249 length to be 46 bp ([CI 95%: 24, 84], Figure 3A). In Porsborg et al. (2024) we present
250 estimates from this and many additional samples using the method described here.

251 *Table 1: Conversion counts obtained from a human sperm sample as reported in Porsborg et*
252 *al. (2024) obtained by calling gene conversions in HiFi long reads. In this sample, 167 single*
253 *SNV conversions, 12 double SNV conversions, 2 triple SNV conversion and 1 quadruple SNV*
254 *conversion was observed.*

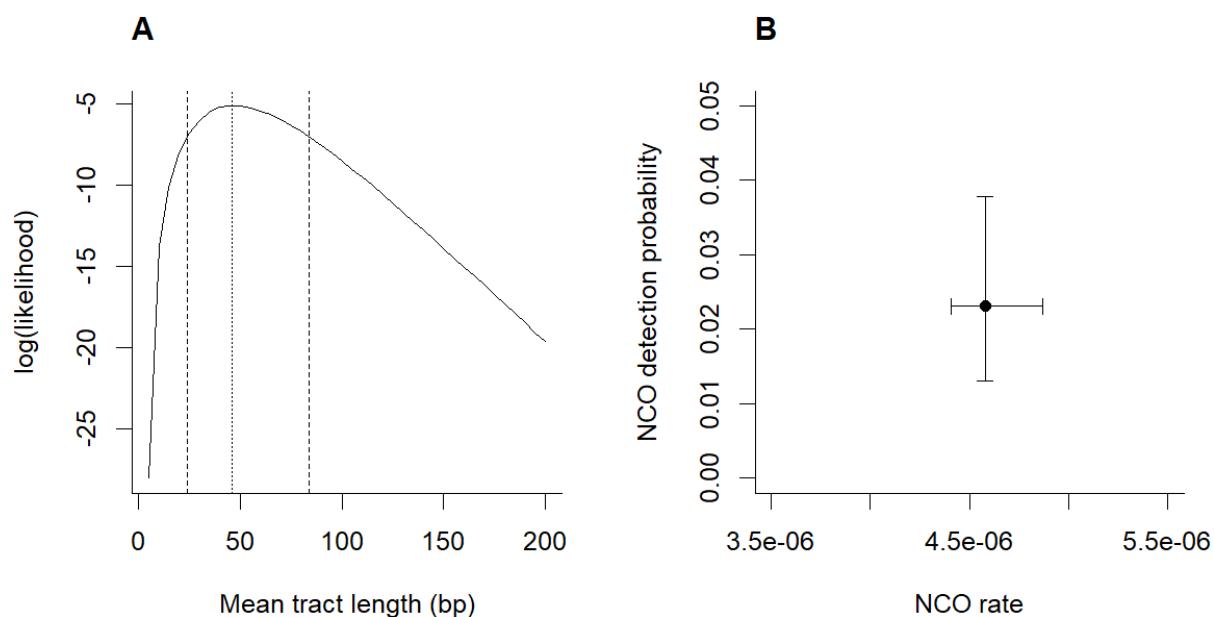
	1-SNV conversion	2-SNV conversion	3-SNV conversion	4-SNV conversion
#reads	167	12	2	1

255

256 We further find that given the MLE, the conversion counts (i.e. 167, 12, 2, 1) do not differ
257 significantly ($p=0.71$) from the expected conversion counts when we assume tracts are
258 sampled from a single geometric distribution parametrized with the MLE s (see Supporting
259 Information S4).

260 The model also yields MLEs of the proportion of detected (and undetected) NCO
261 events, that is, the proportion of NCO events which can be observed in data because they
262 convert at least one SNV. We find that, on average, 2.31% of NCO events convert one or

263 more SNVs, which means that most NCOs are ‘invisible’ because they happen to only
264 convert identical sequences (Figure 3B). Dividing eq. (7) with the coverage and genome size,
265 the MLE of s implies an NCO rate of 4.5810^{-6} . Dividing eq. (7) with the coverage of the
266 sample genome, we estimate that each male human gamete is expected to harbour, on
267 average, 310 NCO events, of which approximately 7 are expected to become visible as gene
268 conversions.



269
270 *Figure 3: MLEs of mean gene conversion tract lengths, rate and detection probability*
271 *inferred from gene conversion events called directly from HiFi PacBio data of sperm sample*
272 *as obtained by Porsborg et al. (2024). A) Likelihood profile for mean tract length. Each point*
273 *shows the log likelihood of the data (counts of single, double, triple, ..., n-tuple gene*
274 *conversion events for the sampled individual) conditional on the SNV distribution and density*
275 *of the individual, i.e. eq. (8). Dotted vertical line represents the MLE and the vertical dashed*
276 *lines show the 95% confidence interval. The results suggest that human gene conversion*
277 *tracts are typically quite short (mean tract length of 46 bp). B). MLE of NCO detection*
278 *probability (probability that an NCO becomes a gene conversion) and total NCO rate*
279 *(including gene conversions) Bars denote the 95% confidence interval. The results indicate*
280 *that most NCO events fail to convert at least one SNV meaning that these are not observable*
281 *as gene conversions. Each MLE is based on 10³ simulations using the SNV distribution along*
282 *the genome in the sample data.*

283 *Ascertainment bias and the effect of finite read lengths*

284 We note that our pipeline for calling gene conversion events (Porsborg et al. 2024)
285 requires that unconverted SNVs are present at the end of each read, such that it is possible to

286 ascertain whether a read represents a potential crossover or gene conversion event. This
287 leaves open the possibility of a slight ascertainment bias because some gene conversion
288 events (e.g. those converting more than one SNV) might be indistinguishable from crossovers
289 when occurring at the edge of a read. This ascertainment bias is very weak, since the average
290 read length of HiFi PacBio reads typically greatly exceeds a typical NCO tract length. In the
291 case of the data we analysed here, the average length of reads was 16.36 kb (see methods for
292 details). We checked that simulating under the same read distribution as the sample (rather
293 than assuming much longer reads) yields virtually the same probability of the different
294 conversion events and, hence, almost the same MLEs (see Supporting Information S2).

295 *Robustness of MLEs under strong correlation between NCO positions and SNV density*

296 The simulation approach to obtaining conversion probabilities assumes that all
297 positions within the genome have the same probability of NCO events. However, if NCO
298 events correlate (positively or negatively) with SNV density, our estimates of conversion
299 probabilities could be inaccurate. We tested whether any positive or negative correlation
300 between SNV density and NCO events existed by calculating SNV densities at double-strand
301 breaks throughout the sample genome and comparing it to the overall SNV density. We
302 found little to no correlation between double-strand breaks (DSB) (where NCO events are
303 thought to be more likely to occur) and SNV density (CORR = -0.0012, P = 0.8225, see
304 Supporting information S5).

305 While there is no evidence for a correlation between SNV density and NCO position
306 in the data analysed here, this is not necessarily the case for all datasets. Furthermore, it is
307 important to point out that the absence of correlation between DSBs and SNV density does
308 not prove an absence of correlation between NCO and SNV density because a DSB can occur
309 spontaneously (without being catalysed by recombination enzymes binding a DSB site) and

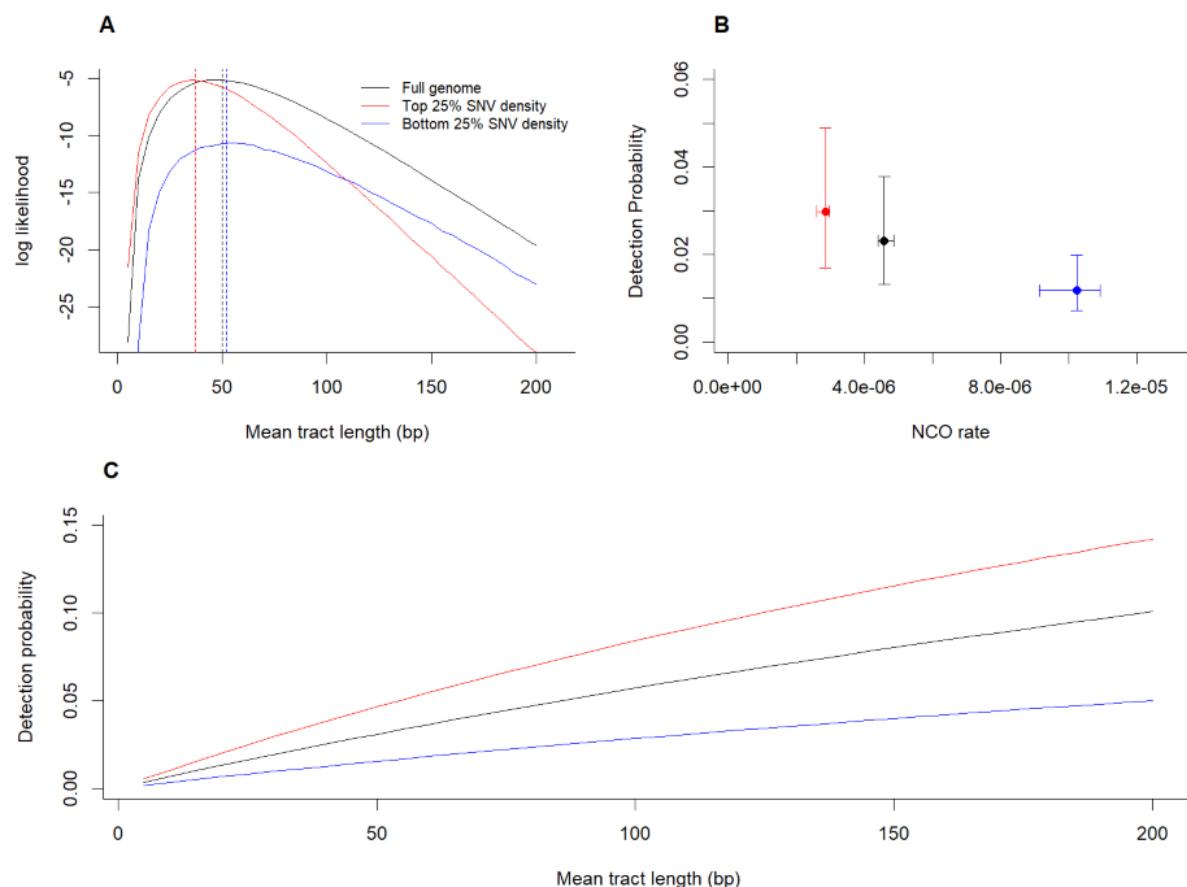
310 then be repaired using sister chromatid. Because of this, we also tested the robustness of our
311 model using simulations with different degrees of correlation between SNV density and NCO
312 position. We found that strong positive or negative correlations between the position of NCO
313 events and SNVs (see methods for details) result in only slight bias to the MLE obtained
314 (Figure 4A). Specifically, if NCO positions show a strong positive correlation with SNVs, the
315 MLE becomes slightly biased downwards since multi-SNV conversions become more
316 probable, such that multi-SNV conversions (Table 1) can now be explained with a shorter
317 mean tract length.

318 Conversely, a strong negative correlation between NCO position and SNVs results in
319 a slight upward bias, since multi-SNV conversions become more unlikely, meaning that a
320 longer mean tract length is required to explain the data (Table 1). Overall, we get MLE of
321 tract length changing by up to -12bp under a strong positive correlation and +2 bp under a
322 strong negative correlation. Specifically, compared to the case with no correlation between
323 SNVs and NCO events, a strong positive correlation results in 26% underestimation, while a
324 strong negative correlation results in a 4% overestimation of the mean tract length. This
325 suggests that the model is robust even under strong positive or negative correlation,
326 indicating that the model is applicable even when the assumption of a uniform distribution of
327 NCO positions is strongly violated (Figure 4A).

328 Similarly, while strong positive or negative correlation between NCO events and
329 SNVs affects the estimates of NCO rates (Figure 4B), these estimates (2.8610^{-6} and 1.0210^{-5})
330 for strong positive and negative correlation, respectively) remain close to previous estimates
331 (5.910^{-6} to 8.7510^{-6} , e.g. Williams et al. 2015; Halldorsson et al. 2016; Narasimhan et al.
332 2017), and this tendency is reflected in the detection probabilities wherein negative
333 correlation means fewer NCOs can be observed and positive correlations mean more NCOs
334 can be observed as gene conversions (Figure 4B). This effect is amplified as tracts become

335 larger (Figure 4C). Specifically, NCO detectability increases when NCOs only occur in the
336 most SNV-rich regions of the genome, and NCO detectability decreases when NCOs only
337 occur in regions with low diversity. This also means that a negative correlation results in a
338 higher estimate of the NCO rate since a low detectability implies many unseen NCOs.

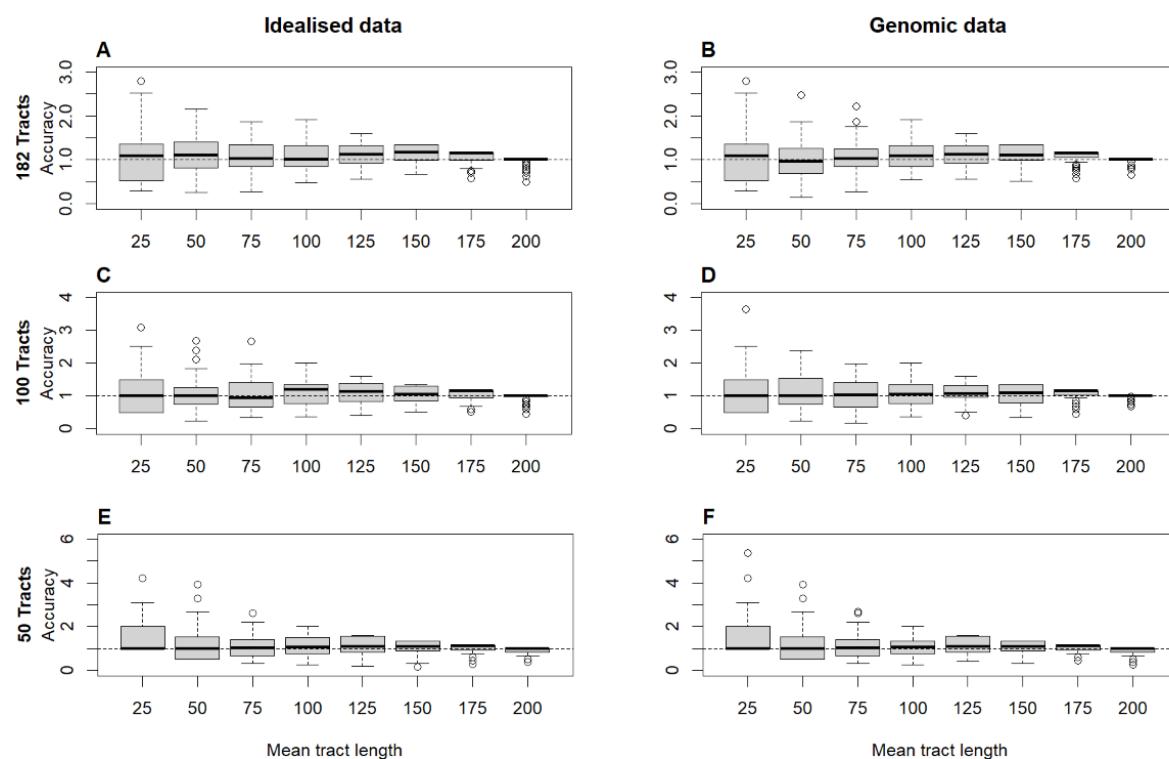
339 Conversely, positive correlation reduces the estimated NCO rate since the
340 detectability is increased. Detection probability increases when NCOs occur in SNV-rich
341 regions since more NCOs will become gene conversions as the chance of converting at least
342 one SNV increases. Similarly, detection probability decreases when NCOs occur in low-
343 diversity regions since fewer NCOs will convert at least one SNV. Despite the MLE being
344 robust to correlation, it is important to point out that the correlation between SNV density and
345 NCO events has a much greater effect on NCO rate estimates than NCO tract length
346 estimates. The same applies to NCO detection probability, where positive or negative
347 correlation can result in a ~2-fold difference in the estimated detection probability.



348
349 *Figure 4: Comparison of MLEs under strong positive correlation between NCO position and*
350 *SNV density (red), strong negative correlation between NCO position and SNV density (blue)*
351 *and no correlation between NCO position and SNV density (black). (A) The MLE of tract*
352 *length changes by -12 bp under strong positive correlation and +2 under strong negative*
353 *correlation, suggesting the model is robust to correlation between NCO events and SNV*
354 *density and overall heterogeneity of NCO positions along the genome. (B) Strong positive*
355 *correlation between SNVs and NCO events can result in underestimation of the NCO rate*
356 *whereas strong negative correlation can result in overestimation. (C.) Strong positive*
357 *correlation between SNVs and NCOs can result in overestimation of the detection probability*
358 *whereas strong negative correlation can result in underestimation. This is especially the case*
359 *when tracts are long.*

360 We also investigated the accuracy of inference of the idealised model (under uniform SNV
361 distribution) and the maximum likelihood model (under the SNV distribution of the sample
362 genome). Both models were tested under varying tract lengths and varying amounts of data
363 i.e. observed gene conversion tracts (for details, see methods). We found that both models are
364 unbiased as the estimated mean coincided with the true mean across tract lengths (Figure 5).
365 The sampling variance of estimates increases under both models when the sample size (i.e.
366 the number of observed tracts) is low, and when the average tract length is short (cf. Figure

367 5A-B, Figure. 5E-F). At low mean tract length, individual estimates vary more because
368 changes in the ratio have a large effect on mean tract length when tracts are short (Fig S2.2).
369 However, when NCO tracts are short, the variance in the number of single to multi-SNV
370 tracts is also expected to be the lowest (this is because the variance of the binomial
371 distribution is $nq(1 - q)$ where q is the probability of a single SNV tract, and n is the
372 number of observed tracts). This former effect seems to be dampened by the latter, such that
373 even when the true mean tract length is short (such as we estimate in this study, i.e. a mean
374 tract length ~50 bp), the estimated mean coincides with the true mean and the majority of all
375 individual estimates are with +/- 25 bp of the true tract length, even with nearly 4 times less
376 data that used in the present study (Figure 5). This suggests accurate estimates can be
377 obtained even when coverage (and hence the number of observed tracts) is 3-4 times lower
378 than in our data example (mean coverage of 26; see methods for details). The same is true for
379 the idealised model (Figure 5; See also Supporting Information S6).



380
381 *Figure 5: Accuracy of inference under (A, C, E) the idealised model (uniform SNV*
382 *distribution) and (B, D, F) the maximum likelihood model (used to perform inference*
383 *genomic data). Accuracy of inference is shown under different sample sizes (i.e. different*

384 *number of identified tracts): 182 tracts, as used in this study (A-B), 100 tracts (C-D), and 50*
385 *tracts (E-F). Dashed line show perfect accuracy (estimate tract length / true tract length) =*
386 *1. Each boxplot contains 100 replicates (see Methods for details).*

387 **Discussion**

388 We developed a method for estimating the rate and length distribution of NCO events. We
389 showed that this method is unbiased even for organisms with low SNV densities, such as
390 humans, and that sufficient input data for the method can be obtained from sequencing
391 gametes from a single individual and then calling gene conversion events directly from HiFi
392 PacBio sequencing data.

393 We apply our method to a data set from humans (Porsborg et al. 2024) which
394 estimates consistent with previous studies. While the dataset analysed here is limited to a
395 single individual, and inter-person variation in gene conversion tract length and rate is
396 certainly possible, we note that the confidence intervals of the estimate we obtain overlap
397 with the confidence intervals of several previous estimates obtained from human data
398 (Jeffreys & May 2004; Halldorsson et al. 2023, Schweiger et al. 2024. See also Supporting
399 information S7).

400 While we use HiFi PacBio data obtained by sperm sequencing for illustration here,
401 inference of NCO rate, tract length and detection probability could easily be done with a
402 different type of data and different organisms – all that is required is the number of gene
403 conversion events counts (i.e. counts of NCO events resulting in single, double, triple, etc.
404 SNVs conversions) and the background SNV distribution of the sample where NCOs were
405 called. Because of this, our method could also be used to obtain estimates by using gene
406 conversions called in trio data (Halldorsson et al. 2016), in hybrid cross experiments (Li et al.
407 2019) and in pollen or sperm-typing (Lien et al. 2000; Jeffreys and May 2004; Tiemann-
408 Boege et al. 2006). However, comparing estimates obtained from very different data types is
409 not necessarily straightforward since different ways of obtaining data can lead to different

410 ascertainment biases of NCO events. For example, trio data makes it in principle possible to
411 observe NCOs inducing gene conversion tracts of an arbitrary length whereas the finite read
412 length constrains HiFi PacBio long read data. On the other hand, when all individuals within
413 a trio are heterozygous at a specific position, phasing may be incomplete (Miller and Piccolo
414 2021). A more detailed investigation of the extent to which different types of datasets might
415 bias the estimates of NCO rate and tract lengths upwards or downwards would be a
416 worthwhile aim for future work.

417 We exploit the fact that multi-SNV conversion becomes more common as the tract
418 length increases, a finding that has also been made in early simulation studies (Gay et al.
419 2007). More recently, Li et al. (2019) proposed a method which assumes an exponential
420 distribution of gene conversion tracts and uses information about the co-conversion of SNVs.
421 Rather than using the ratio of single to multi-marker conversion events, the method of Li et
422 al. (2019) creates a composite likelihood function by taking all consecutive pairs of SNVs
423 adjacent to or within gene conversion tracts and considering whether these were part of the
424 same conversion tract or not, as a function of the distance between the SNVs. While the
425 method also takes the distance between potentially co-converted SNVs into account, it results
426 in a composite likelihood (pseudolikelihood) because SNVs within the same conversion tract
427 are assumed to be independent, which is not the case. Considering the ratio of single to all
428 multi-SNV events (as in our model) has the advantage that it grants analytical solutions for
429 the probability of an unobserved NCO (i.e. ‘invisible’ gene conversion) and the total NCO
430 rate in the idealised case. Combining these methods, such that the distances between
431 converted markers are also considered, could result in more precise predictions. Exploring
432 this could be fertile grounds for future work.

433 *Gene conversion tract length and the geometric distribution*

434 Our method assumes that tract length follows a geometric distribution. We consider
435 this assumption to be reasonable since several studies have found the geometric distribution
436 (or the continuous version of the distribution, the exponential distribution) to fit well with
437 data (Hilliker et al. 1994; Taghian and Nickoloff 1997; Li et al. 2019) and this was also the
438 case here when considering the conversion counts (see supporting results S4). This makes
439 sense because the transfer of SNVs from one sequence to another via gene conversion is, at
440 the core, the result of a polymerase moving along a sequence, which is being repaired using
441 some donor sequence as the template (Jasin and Rothstein 2013). If the polymerase has a
442 certain probability of stopping at each base and the remaining probability of extending the
443 tract at each base, this will result in a geometric distribution of tract lengths (Wiuf 2000a;
444 Frisse et al. 2001; Padhukasahasram and Rannala 2011; Setter et al. 2022). A recent study
445 found that a mixture of two negative binomial distributions fitted datasets on gene conversion
446 tract lengths better than a geometric distribution (Hardarson et al. 2023). We have compared
447 estimates from different studies and methods directly on the same data and commented on
448 some relevant differences (Supporting Information S7).

449 In some studies, a small subset of the observed gene conversion tracts seems
450 incompatible with viewing all tracts as coming from a single geometric distribution with a
451 low mean. Several recent studies have pointed out that while the majority of gene conversion
452 tracts appear to fit a geometric distribution, the distribution of gene conversion tracts as a
453 whole does not, since a very small fraction of tracts are much larger than expected under a
454 single geometric distribution (Halldorsson et al. 2016; Wall et al. 2022; Versoza et al. 2023).
455 In a study of olive baboons (*Papio anubis*), Wall et al. (2022) found >99% of all gene
456 conversion tracts to be short, whereas a few tracts were very long (mean length 47.58kb).
457 Similar results have been found in a study of rhesus macaques (*Macaca mulatta*) where two
458 very long tracts were observed, the mean length of which was 5.166 kb (Versoza et al. 2023).

459 In human data, Halldorsson et al. (2016) also reported a minority of very long NCO tracts,
460 the mode of which was 30 kb.

461 Since the distribution of gene conversion tract lengths appears to be bimodal, this
462 suggests (as proposed by Hardorsson et al. 2023) that two distinct processes might give rise
463 to gene conversions – one which is responsible for nearly all tract and results in short tracts,
464 and one which is very rare, but results in long tracts. While fitting a mixture distribution
465 improves model likelihood (Hardarsson et al. 2023; Schweiger et al. 2024), doing so requires
466 far more data since long tracts are rare. Specifically, the current dataset from Porsborg et al.
467 (2024) comprises 182 tracts, but if ~1% of all tracts are long, a sample of 182 tracts would
468 likely only include 1-2 long tracts, which is insufficient information to describe a whole
469 distribution. Thus, while a mixture distribution is likely a more accurate representation of all
470 NCO events, a mixture model requires far more data and, given the additional complexity of
471 the model, may result in wider confidence intervals around estimates. When using HiFi
472 PacBio long read data, these rare long NCO events can, in principle, be detected if the
473 distribution of read lengths overlaps with the distribution of long NCO event lengths (see
474 Supporting Information S8). Since the short NCO events comprise both the majority of all
475 NCO events and the majority of all converted SNVs (e.g. Wall et al. 2022; Schweiger et al.
476 2024), we believe model fitting single distribution is useful, although given additional data,
477 the approach we described here can easily be extended to a mixture distribution (see
478 Appendix; see also Supporting Information 9).

479 **Methods**

480 *Simulation set-up, initialization, and parameters*

481 The likelihood function requires conversion probabilities contingent on the SNV
482 distribution in order to estimate the mean tract length, NCO rate, and NCO detection

483 probability. We estimate these conversion probabilities by simulation. In each simulation,
484 NCOs occurred at 10^5 positions throughout the genome of the sample. These positions were
485 chosen from a uniform distribution $U(1, N)$ where N is the genome size (we also assess the
486 robustness of the model when the assumption of a uniform distribution of NCO positions is
487 violated. We find that strong correlation causes only slight changes to the MLE – see results
488 for details). The tract length of the gene conversion event was sampled from a geometric
489 distribution with mean $1/s$. The proportion of NCOs converting one, two, n SNV under each
490 value of s (hereafter denoted $P_1(s), P_2(s), \dots, P_n(s)$) was calculated. All classes up to $n=11$
491 were calculated for each simulation. Integers in the range [5, 200] were used for s in the
492 simulations. For each value of s , we simulated the entire genome 10^3 times (i.e 10^3 simulation
493 replicates) and mean values of $P_1(s), P_2(s), \dots, P_n(s)$ were calculated for each s . We note that
494 when the SNV distribution is non-uniform, eq. (6) cannot be used to estimate NCO detection
495 probability. Because of this, we use the simulation output to estimate NCO detection probability
496 as $1 - P_0(s)$ since by definition, this is the proportion of NCOs moving at least one SNV,
497 hence being detectable.

498 Simulations were conducted on a slurm cluster (slurm 23.02.5) and the full source
499 code is available at [<https://github.com/r02ap19/GeneConv>] along with a ReadMe file
500 detailing how to change model parameters as well as how to compile and run the code.

501 *Testing model robustness under strong heterogeneity in recombination position*

502 Recombination events, including NCO events, are thought to have a higher probability of
503 occurring in recombination hotspots. If the positions of NCO are not random with respect to
504 SNV density, the conversion probabilities estimated under the assumption of a uniform
505 distribution of NCO positions, and hence the resulting MLE, could be inaccurate. We tested
506 the robustness of the MLE obtained when the position of NCO correlated strongly

507 (negatively or positively) with the SNV density. This was done by counting all SNV in 1 Mb
508 windows of the sample genome. Conversions probabilities and MLE estimates were then
509 obtained by simulation of data in two different cases: one where NCOs only occurred
510 randomly within the top 25% most SNV rich 1 Mb windows of the genome (strongly
511 positive correlation between NCO position and SNV density) and one where all NCO events
512 only occurred randomly within the bottom 25% least SNV rich 1 MB windows of the
513 genome.

514 We further quantified any positive or negative correlation between SNV density and
515 NCO position by calculating SNV density around all previously detected double-strand
516 breaks found in the sample genome (Pratto et al. 2014) compared to the SNV density at
517 random 20kb positions across the genome (for details, see Supporting Information S5).

518 *Accuracy of inference*

519 We tested the accuracy of inference of the idealised model by running 100 simulation
520 replicates of a 30 Mb genome fragment with the human SNV density of 0.00083 (e.g. Zhao et
521 al. 2003) which was exposed to 1000 NCO events at random positions. Note that the chosen
522 size of the genomic fragment and number of NCO events does not affect accuracy as long as
523 the genome is sufficiently large to make overlap between NCO events unlikely (as in real
524 genomes). For more details on the minimum number of observed single/multi-conversion
525 events necessary to use the idealised model, see Supporting Information S6. The ratio of
526 single to multi-SNV conversion was then calculated, and eq. (5) was then solved for an
527 estimate of the mean tract length. This was done for a range of tract lengths in the interval
528 [25, 200] (Figure 5).

529 We also tested the accuracy of inference of the maximum likelihood model. Here, we
530 calculated (by simulation) the probabilities of converting 1, 2,..., n SNVs (conversion

531 probabilities) contingent on the SNV distribution of the sample and given a set of mean tract
532 lengths in the interval [25, 200]. We then sampled tracts (182, 100, or 50) continuing 1, 2,...,
533 n SNVs relative to the conversion probabilities. Given the sampled tracts, the mean tract
534 length which maximised eq. (8) was found, and this was the estimated mean tract length. For
535 both models, this was replicated 100 times for each tract length. For both the maximum
536 likelihood model and the idealised model, accuracy was defined as estimate/true value, hence
537 accuracy = 1 denotes perfect accuracy (Figure 5).

538 *Calling gene conversions in HiFi PacBio data*

539 We used data from Porsborg et al. (2024) which describes a pipeline comprising sample
540 preparation, sequencing, reads filtering based on quality, calling of gene conversion candidate
541 reads, and curation of candidate gene conversion reads (Porsborg et al. 2024). In the
542 following, we give a brief outline of their pipeline.

543 One human sperm sample (HS25, see Porsborg et al. 2024) was obtained from an
544 approximately 25 year old anonymous man (because the donor is anonymous, the exact age is
545 unknown). Purified sperm were used because gametes are thought to undergo more gene
546 conversion than somatic cells (Porsborg et al. 2024). The sperm from the ejaculate was
547 purified using a density gradient centrifugation and sequenced at 26X mean coverage using
548 PacbioHiFi sequencing. This results in a set of consensus reads originating from different
549 sperm cells present in the ejaculate. The average read length of the consensus reads were
550 16.36 Kb, and these were used to create a high-quality de novo genome assembly which
551 spanned >95% of the genome with N50 contig size of 70.7 and with 97.9% of all contigs
552 being larger than 1Mb. The consensus reads were then mapped back to the de novo assembly
553 and all high-confidence SNVs were called while SNVs were assigned to haplotypes resulting
554 in full phasing of all variants. This allowed for gene conversion events to be called as a

555 switch back and forth between the two haplotypes on a single read, stemming from the fact
556 that at least one SNV was transferred unidirectionally from one haplotype to another (see
557 Porsborg et al. 2024 for more details. See also Schweiger et al. 2024 for a similar approach).

558 A total of 200 gene conversion candidate reads were called and manually curated
559 using IGV (Robinson et al. 2011) to remove likely false positives resulting from large indels
560 or mapping errors. 182 of the candidate gene conversion events were approved following
561 manual curation and these events were used to obtain estimates of gene conversion tract
562 length, rate and detect probability. The approved events resulted in the transfer of between
563 one and four SNVs (Table 1). A full description of this pipeline, along with all the relevant
564 scripts is given by Porsborg et al. (2024). We note that enough gene conversion events to
565 obtain accurate estimates can be called with far fewer events than 182, which means that 2-3
566 times lower coverage would likely have yielded the same accuracy (see Results). Further,
567 using specifically HiFi PacBio data is not strictly necessary since, our method can be applied
568 to any dataset wherein SNVs and gene conversion events have been identified and the
569 number of single and multi-SNV transfers has been counted.

570 **Acknowledgements**

571 We would like to thank Regev Schweiger and Richard Durbin for their insightful comments.
572 Some of the computing for this project was performed on the GenomeDK cluster. We thank
573 GenomeDK and Aarhus University for providing computational resources and support that
574 contributed to these research results. We also thank The Novo Nordisk Foundation, The
575 Independent Research Fund Denmark and The European Research Council for funding (for
576 details, see Funding).

577 **Author contributions:**

578 MHS, TB and APC conceived the study. APC wrote the manuscript with substantial input
579 from MHS, TB, AH, SB and LTH. APC developed the model with substantial input from
580 AH, TB and MHS. APC wrote the simulation software. PSP called SNVs and GC events and
581 curated the HiFi long-read data. APC analysed the data using the simulation-based
582 framework. KA and SBW were responsible for all lab-related handling and processing of the
583 sperm sample. LTH wrote the Appendix with substantial input from AH.

584 **Competing interests statement**

585 None

586 **Corresponding author:** Anders Poulsen Charmouh: apc@birc.au.dk

587 **Funding**

588 This work was supported by The Novo Nordisk Foundation (NNF18OC0031004 to MHS), The
589 Independent Research Fund Denmark, Natural Sciences (6108-00385 to MHS) and an ERC
590 advanced grant (ERC-2021-ADG project Xspect 101054718 to MHS). The funders had no role
591 in study design, data collection and analysis, decision to publish, or preparation of the
592 manuscript.

593 **Data availability statement**

594 All simulation software is available at [<https://github.com/r02ap19/GeneConv>] along with a
595 readme file describing how to compile and run the code. The repository also contains the input
596 data file. Gene conversion counts were obtained from Porsborg et al. 2024
597 (BIORXIV/2024/601967).

598 **References**

599 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment
600 search tool. *J Mol Biol* 215:403–410.

60 Arbeitshuber, B., A. J. Betancourt, T. Ebner, and I. Tiemann-Boege. 2015. Crossovers are
602 associated with mutation and biased gene conversion at recombination hotspots. *Proc Natl
603 Acad Sci U S A* 112:2109–2114. National Academy of Sciences.

604 Arendt, J. D. 2015. Effects of dispersal plasticity on population divergence and speciation.
605 *Heredity (Edinb)* 115:306–311.

606 Arndt, P. F., F. Massip, and M. Sheinman. 2023. An analytical derivation of the distribution of
607 distances between heterozygous sites in diploid species to efficiently infer demographic
608 history. *BioRXiv*.

609 Barroso, G. V., and J. Y. Dutheil. 2023. The landscape of nucleotide diversity in *Drosophila*
610 *melanogaster* is shaped by mutation rate variation. *Peer Community Journal* 3.

611 Baudat, F., J. Buard, C. Grey, A. Fledel-Alon, C. Ober, M. Przeworski, G. Coop, and B. de Massy.
612 2010. PRDM9 Is a Major Determinant of Meiotic Recombination Hotspots in Humans and
613 Mice. *Science* 327:836–840.

614 Bengtsson, B. O. 1986. Biased conversion as the primary function of recombination. *Genet Res*
615 47:77–80.

616 Bosch, E., M. E. Hurles, A. Navarro, and M. A. Jobling. 2004. Dynamics of a Human Interparalog
617 Gene Conversion Hotspot. *Genome Res* 14:835–844.

618 Chen, J. M., D. N. Cooper, N. Chuzhanova, C. Férec, and G. P. Patrinos. 2007. Gene conversion:
619 Mechanisms, evolution and human disease. *Nat Rev Genet* 10:762-75

620 Clessin, A., J. Joseph, and N. Lartillot. 2024. The evolution of GC-biased gene conversion by
621 means of natural selection. *BioRxiv*.

622 Cole, F., S. Keeney, and M. Jasin. 2010. Comprehensive, Fine-Scale Dissection of Homologous
623 Recombination Outcomes at a Hot Spot in Mouse Meiosis. *Mol Cell* 39:700–710.

62 Dréau, A., V. Venu, E. Avdievich, L. Gaspar, and F. C. Jones. 2019. Genome-wide recombination
625 map construction from single individuals using linked-read sequencing. *Nat Commun* 10.

62 Frisse, L., R. R. Hudson, A. Bartoszewicz, J. D. Wall, J. Donfack, and A. Di Rienzo. 2001. Gene
627 Conversion and Different Population Histories May Explain the Contrast between
628 Polymorphism and Linkage Disequilibrium Levels. *Am J Hum Genet.* 69(4): 831–843.

62 Gay, J., S. Myers, and G. McVean. 2007. Estimating meiotic gene conversion rates from
630 population genetic data. *Genetics* 177:881–894.

63 Gergelits, V., E. Parvanov, P. Simecek, and J. Forejt. 2021. Chromosome-wide characterization of
632 meiotic non-crossovers (gene conversions) in mouse hybrids. *Genetics* 217(1):1-14.

63 Hallast, P., P. Balaresque, G. R. Bowden, S. Ballereau, and M. A. Jobling. 2013. Recombination
634 Dynamics of a Human Y-Chromosomal Palindrome: Rapid GC-Biased Gene Conversion,
635 Multi-kilobase Conversion Tracts, and Rare Inversions. *PLoS Genet* 9(7).

63 Halldorsson, B. V., M. T. Hardarson, B. Kehr, U. Styrkarsdottir, A. Gylfason, G. Thorleifsson, F.
637 Zink, A. Jonasdottir, A. Jonasdottir, P. Sulem, G. Masson, U. Thorsteinsdottir, A. Helgason,
638 A. Kong, D. F. Gudbjartsson, and K. Stefansson. 2016. The rate of meiotic gene conversion
639 varies by sex and age. *Nat Genet* 48:1377–1384.

64 Hardarson, M. T., G. Palsson, and B. V Halldorsson. 2023. NCOurd: modelling length
641 distributions of NCO events and gene conversion tracts. *Bioinformatics* 39 (8).

64 Harpak, A., X. Lan, Z. Gao, and J. K. Pritchard. 2017. Frequent nonallelic gene conversion on the
643 human lineage and its effect on the divergence of gene duplicates. *Proc Natl Acad Sci U S A*
644 114:12779–12784.

64 Hilliker, A. J., G. Harauz, A. G. Reaume, M. Gray, S. H. Clark, A. Chovnick, and W. R. Engels.

646 1994. Meiotic gene conversion tract length distribution within the *rosy* locus of *Drosophila*

647 *melanogaster*. *Genetics* 137:1019–1026.

64 Holliday, R. 1964. A mechanism for gene conversion in fungi. *Genet Res* 5:282–304.

649 Hon, T., K. Mars, G. Young, Y. C. Tsai, J. W. Karalius, J. M. Landolin, N. Maurer, D. Kudrna, M.

650 A. Hardigan, C. C. Steiner, S. J. Knapp, D. Ware, B. Shapiro, P. Peluso, and D. R. Rank.

651 2020. Highly accurate long-read HiFi sequencing data for five complex genomes. *Sci Data* 7,

652 399.

651 Innan, H. 2003. A two-locus gene conversion model with selection and its application to the

654 human RHCE and RHD genes. *Proceedings of the National Academy of Sciences* 100:8793–

655 8798.

652 Kasin, M., and R. Rothstein. 2013. Repair of strand breaks by homologous recombination. *Cold*

657 *Spring Harb Perspect Biol* 1;5(11).

653 Jeffreys, A. J., and C. A. May. 2004. Intense and highly localized gene conversion activity in

659 human meiotic crossover hot spots. *Nat Genet* 36:151–156.

660 Joseph, J. 2024. Increased Positive Selection in Highly Recombining Genes Does not Necessarily

661 Reflect an Evolutionary Advantage of Recombination, *Molecular Biology and Evolution*,

662 Volume 41, Issue 6.

663 Ei, R., E. Bitoun, N. Altemose, R. W. Davies, B. Davies, and S. R. Myers. 2019. A high-resolution

664 map of non-crossover events reveals impacts of genetic diversity on mammalian meiotic

665 recombination. *Nat Commun* 10.

666 Eien, S., J. Szyda, B. Schechinger, G. Rappold, and N. Arnheim. 2000. Evidence for

667 Heterogeneity in Recombination in the Human Pseudoautosomal Region: High Resolution

668 Analysis by Sperm Typing and Radiation-Hybrid Mapping. *The American Journal of Human*
669 *Genetics* 66:557–566.

670 Lorenz, A., and S. J. Mpaulo. 2022. Gene conversion: a non-Mendelian process integral to meiotic
671 recombination. *Heredity (Edinb)* 129:56–63.

672 Mansai, S. P., T. Kado, and H. Innan. 2011. The rate and tract length of gene conversion between
673 duplicated genes. *Genes (Basel)* 2:313–331.

674 Marx, V. 2023. Method of the year: long-read sequencing. *Nat Methods* 20, 6–11.

675 McMahill, M. S., C. W. Sham, and D. K. Bishop. 2007. Synthesis-Dependent Strand Annealing in
676 Meiosis. *PLoS Biol* 5(11).

677 Miller, D. B., and S. R. Piccolo. 2021. trioPhaser: using Mendelian inheritance logic to improve
678 genomic phasing of trios. *BMC Bioinformatics* 22;22(1):559.

679 Narasimhan, V. M., R. Rahbari, A. Scally, A. Wuster, D. Mason, Y. Xue, J. Wright, R. C.
680 Trembath, E. R. Maher, D. A. Van Heel, A. Auton, M. E. Hurles, C. Tyler-Smith, and R.
681 Durbin. 2017. Estimating the human mutation rate from autozygous segments reveals
682 population differences in human mutational processes. *Nat Commun* 8, 303.

683 Nurk, S., S. Koren, A. Rhie, M. Rautiainen, A. V. Bzikadze, A. Mikheenko, M. R. Vollger, N.
684 Altemose, L. Uralsky, A. Gershman, S. Aganezov, S. J. Hoyt, M. Diekhans, G. A. Logsdon,
685 M. Alonge, S. E. Antonarakis, M. Borchers, G. G. Bouffard, S. Y. Brooks, G. V. Caldas, N.-
686 C. Chen, H. Cheng, C.-S. Chin, W. Chow, L. G. de Lima, P. C. Dishuck, R. Durbin, T.
687 Dvorkina, I. T. Fiddes, G. Formenti, R. S. Fulton, A. Fungtammasan, E. Garrison, P. G. S.
688 Grady, T. A. Graves-Lindsay, I. M. Hall, N. F. Hansen, G. A. Hartley, M. Haukness, K.
689 Howe, M. W. Hunkapiller, C. Jain, M. Jain, E. D. Jarvis, P. Kerpedjiev, M. Kirsche, M.
690 Kolmogorov, J. Korlach, M. Kremitzki, H. Li, V. V. Maduro, T. Marschall, A. M.

691 McCartney, J. McDaniel, D. E. Miller, J. C. Mullikin, E. W. Myers, N. D. Olson, B. Paten, P.

692 Peluso, P. A. Pevzner, D. Porubsky, T. Potapova, E. I. Rogaev, J. A. Rosenfeld, S. L.

693 Salzberg, V. A. Schneider, F. J. Sedlazeck, K. Shafin, C. J. Shew, A. Shumate, Y. Sims, A. F.

694 A. Smit, D. C. Soto, I. Sović, J. M. Storer, A. Streets, B. A. Sullivan, F. Thibaud-Nissen, J.

695 Torrance, J. Wagner, B. P. Walenz, A. Wenger, J. M. D. Wood, C. Xiao, S. M. Yan, A. C.

696 Young, S. Zarate, U. Surti, R. C. McCoy, M. Y. Dennis, I. A. Alexandrov, J. L. Gerton, R. J.

697 O'Neill, W. Timp, J. M. Zook, M. C. Schatz, E. E. Eichler, K. H. Miga, and A. M. Phillippy.

698 2022. The complete sequence of a human genome. *Science* 376:44–53.

699 Padhukasahasram, B., and B. Rannala. 2011. Bayesian population genomic inference of crossing over and gene conversion. *Genetics* 189:607–619.

700 Pratto, F., K. Brick, P. Khil, F. Smagulova, G. V. Petukhova, and R. D. Camerini-Otero. 2014.

701 Recombination initiation maps of individual human genomes. *Science* Vol 346, Issue 6211.

702 Pramanik, M. Alam, A. Ness, R.W. 2022. How Sequence Context-Dependent Mutability Drives

703 Mutation Rate Variation in the Genome. *Genome Biology and Evolution* 14,3.

704 Borsborg, P. S., A. Poulsen Charmouh, V. Kumar Singh, S. Boeg Winge, C. Hvilsted, M.

705 Pelizzola, S. Laurentino, N. Neuhaus, A. Hobolth, T. Bataillon, K. Almstrup, S. Besenbacher,

706 and M. H. Schierup. 2024. Insights into gene conversion and crossing-over processes from

707 long-read sequencing of human, chimpanzee and gorilla testes and sperm. *BioRxiv*.

708 Resnick, M. A. 1976. The repair of double-strand breaks in DNA: A model involving

709 recombination. *J Theor Biol* 59:97–106.

710 Robinson, J. T., H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz, and J. P.

711 Mesirov. 2011. Integrative genomics viewer. *Nature Biotechnology* volume 29, 24–26.

71 Setter, D., S. Ebdon, B. Jackson, and K. Lohse. 2022. Estimating the rates of crossover and gene
714 conversion from individual genomes. *Genetics* Volume 222, Issue 1.

71 Taghian, D. G., and J. A. Nickoloff. 1997. Chromosomal Double-Strand Breaks Induce Gene
716 Conversion at High Frequency in Mammalian Cells. *Mol Cell Biol* 17:6386–6393.

71 Takahashi, K. K., and H. Innan. 2022. Frequent somatic gene conversion as a mechanism for loss
718 of heterozygosity in tumor suppressor genes. *Genome Res* 32:1017–1025.

71 Tiemann-Boege, I., P. Calabrese, D. M. Cochran, R. Sokol, and N. Arnheim. 2006. High-
720 Resolution Recombination Patterns in a Region of Human Chromosome 21 Measured by
721 Sperm Typing. *PLoS Genet* 2:e70.

72 Versoza, C. J., S. Weiss, R. Johal, B. La Rosa, J. D. Jensen, and S. P. Pfeifer. 2023. Novel insights
723 into the landscape of crossover and non-crossover events in rhesus macaques *Macaca*
724 *mulatta*. *Genome Biol Evol* Volume 16, Issue 1.

72 Wall, J. D., J. A. Robinson, and L. A. Cox. 2022. High-Resolution Estimates of Crossover and
726 Noncrossover Recombination from a Captive Baboon Colony. *Genome Biol Evol* 14(4).

72 Williams, A. L., G. Genovese, T. Dyer, N. Altemose, K. Truax, G. Jun, N. Patterson, S. R. Myers,
728 J. E. Curran, R. Duggirala, J. Blangero, D. Reich, and M. Przeworski. 2015. Non-crossover
729 gene conversions show strong GC bias and unexpected clustering in humans. *Elife* 4.

73 Wiuf, C. 2000a. A coalescence approach to gene conversion. *Theor Popul Biol* 57:357–367.

73 Wiuf, C., and J. Hein. 2000b. The Coalescent With Gene Conversion. *Genetics* 155(1): 451–462.

73 Zhang, J., A. Lindroos, S. Ollila, A. Russell, G. Marra, H. Mueller, P. Peltomaki, M. Plasilova,
733 and K. Heinimann. 2006. Gene conversion is a frequent mechanism of inactivation of the
734 wild-type allele in cancers from MLH1/MSH2 deletion carriers. *Cancer Res* 66:659–664.

73 Zhao, Z., Y.-X. Fu, D. Hewett-Emmett, and E. Boerwinkle. 2003. Investigating single nucleotide
736 polymorphism (SNP) density in the human genome and its implications for molecular
737 evolution. *Gene* 312:207–213.