
1 
 

Estimating gene conversion tract length and rate from PacBio HiFi data 1 

 2 

Authors: Anders Poulsen Charmouh1, Peter Porsborg Sørud1, Lasse Thorup Hansen2, Søren 3 

Besenbacher3, Sofia Boeg Winge4, Kristian Almstrup4, Asger Hobolth2, Thomas Bataillon1, 4 

Mikkel Heide Schierup1.  5 

 6 

1Bioinformatics Research Centre Aarhus University, University City 81, building 1872, 3rd 7 

floor. DK-8000 Aarhus C, Denmark. 2Department of Mathematics, Aarhus University, 8 

Aarhus, Denmark. 3Department of Molecular Medicine (MOMA), Brendstrupgårdsvej 21A, 9 

8200 Aarhus N, Denmark. 4Copenhagen University Hospital, Inge Lehmanns Vej 7, 2100 10 

Copenhagen, Denmark.  11 

 12 

 13 

Keywords: Gene conversion, genome evolution, recombination, genomics methods, non-14 

crossover. 15 

 16 

 17 

 18 

 19 

 20 

 21 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2024. ; https://doi.org/10.1101/2024.07.05.601865doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.601865
http://creativecommons.org/licenses/by-nd/4.0/


2 
 

Abstract 22 

Gene conversions are broadly defined as the transfer of genetic material from a 'donor' to an 23 

'acceptor' sequence and can happen both in meiosis and mitosis. They are a subset of non-24 

crossover events and, like crossover events, gene conversion can generate new combinations 25 

of alleles and counteract mutation load by reverting germline mutations through GC-biased 26 

gene conversion. Estimating gene conversion rate and the distribution of gene conversion 27 

tract lengths remains challenging. We present a new method for estimating tract length, rate 28 

and detection probability of non-crossover events directly in HiFi PacBio long read data. The 29 

method can be used to make inference from sequencing of gametes from a single individual. 30 

The method is unbiased even under low single nucleotide variant (SNV) densities and does 31 

not necessitate any demographic or evolutionary assumptions. We test the accuracy and 32 

robustness of our method using simulated datasets where we vary length of tracts, number of 33 

tracts, the genomic SNV density and levels of correlation between SNV density and NCO 34 

event position. Our simulations show that under low SNV densities, like those found in 35 

humans, only a minute fraction (~2%) of NCO events are expected to become visible as gene 36 

conversions by moving at least one SNV. We finally illustrate our method by applying it to 37 

PacBio sequencing data from human sperm. 38 

 39 

 40 

 41 
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Introduction 45 

Recombination between chromosomes during meiosis is initiated by a double-strand 46 

break (DSB) of the chromosome, after which a single strand from the homologous 47 

chromosome can invade the broken double strand (strand invasion) to form a heteroduplex of 48 

DNA from different chromosomes (Jasin and Rothstein 2013). Depending on how the 49 

heteroduplex is resolved, strand invasion can result in either a crossover (CO) event or a non-50 

crossover (NCO) event (Cole et al. 2010). A crossover event results in large segments of 51 

homologous chromosomes being swapped, whereas an NCO occurs when the DSB is 52 

repaired, using the homologous chromosome as a template, through the synthesis-dependent 53 

strand annealing pathway or the double Holliday junction pathway (Holliday 1964; Resnick 54 

1976; Chen et al. 2007; McMahill et al. 2007). A subset of NCOs is observable as gene 55 

conversions, which occur when one or more SNVs are transferred non-reciprocally from one 56 

haplotype/chromosomal segment to another (Mansai et al. 2011; Lorenz and Mpaulo 2022). 57 

Gene conversions have several evolutionary consequences. For example, GC-biased gene 58 

conversion might serve to revert new germline mutations by opposing the AT mutation bias 59 

(Bengtsson 1985; Arbeithuber et al. 2015; Clessin et al. 2024), which has recently been 60 

shown to be potentially biasing the distribution of fitness effects of new mutations towards 61 

more beneficial mutations (Joseph 2024).  62 

     NCO events can be hard to detect. Firstly, an NCO event is only visible in genomic 63 

data as a new haplotype when it overlaps and converts at least one SNV from one donor 64 

haplotype to an acceptor haplotype. Because humans have low heterozygosity (approximately 65 

one site in 1500 are heterozygous), NCOs are hard to detect unless the number of bases 66 

affected by a single event is also more than 1000 bps. This seems to not be the case 67 

(Haldorsson et al. 2016; Arndt et al. 2023). Human NCO tract length, which is the length of 68 

double-stranded DNA converted in an NCO event, has been reported to be in the range 3-69 
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2086 bp, with a frequently cited estimate being 55-290 bp (Jeffreys & May 2004), making it 70 

less likely that any one NCO event will overlap and convert at least one SNV, hence 71 

becoming a (visible) gene conversion (Bosch et al. 2004; Jeffreys and May 2004; Hallast et 72 

al. 2013; Harpak et al. 2017; Hardarson et al. 2023). A related problem is that finding gene 73 

conversion events requires extensive sequencing if the gene conversion rate is low. Estimates 74 

of NCO rates in human span 5.9 ∙ 10−6 to 8.75 ∙ 10−6 NCO per base pair per generation, 75 

where this rate can be defined as the probability per generation that a base pair lies within an 76 

NCO tract (Williams et al. 2015; Halldorsson et al. 2016; Narasimhan et al. 2017). 77 

Furthermore, the sequence of both haplotypes needs to be known to determine which SNVs 78 

have been converted. Flanking unconverted SNVs on either side of the gene conversion event 79 

are typically necessary to distinguish a gene conversion event from a crossover event 80 

(Halldorsson et al. 2016; Hardarson et al. 2023).  81 

Recombination events, including NCOs have often been studied by sequencing 82 

individuals in a pedigree spanning several generations or by using trios where the genome of 83 

mother, father and offspring is sequenced (Halldorsson et al. 2016; Porubsky et al. 2024; 84 

Prentout et al. 2024). While the idea of studying recombination events by sequencing 85 

gametes directly is old (sperm typing, e.g. Arnheim et al. 1991), recent studies are beginning 86 

to leverage new sequencing methods to directly study recombination events (Dréau et al. 87 

2019; Carioscia & Weaver et al. 2022; Porsborg et al. 2024; Schweiger et al. 2024). The 88 

sequencing of highly accurate long reads from sperm samples offers a new way to identify 89 

gene conversion events. Specifically, if enough gametes from a single individual are 90 

sequenced, both parental haplotypes can be inferred such that gene conversions between two 91 

haplotypes at heterozygous sites can be directly observed (Porsborg et al. 2024; Schweiger et 92 

al. 2024). Furthermore, flanking SNVs on either side of the gene conversion event will 93 

typically be present such that the gene conversion event can be called. This is because HiFI 94 
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PacBio long-read sequencing results in very long reads, usually with a mean read length 95 

above 10kb (Hon et al. 2020; Marx 2023) which greatly exceeds the expected size of 96 

conversion tracts.  97 

Here, we build a model suitable for estimating NCO rate, tract length and detection 98 

probability directly from HiFi PacBio long read data (Figure 1). We use data simulations with 99 

varying levels of SNV density and correlations between SNV density and NCO intensity to 100 

study the statistical accuracy and robustness of our model. We then illustrate our approach 101 

with a recently obtained dataset (Porsborg et al 2024).  102 

 103 

Results 104 

The Model  105 

We count the number of gene conversion events where a single SNV has been converted and 106 

compare it to the number of gene conversion events where multiple SNVs have been 107 

converted. The ratio of these two counts provides information about the distributions of gene 108 

conversion tract lengths. This can be understood intuitively by realising that if single SNV 109 

conversions are far more common than multi-SNV conversion events, this indicates that tract 110 

lengths are typically quite short since it is unlikely for a short tract to convert multiple SNVs. 111 

This verbal expectation can be formalised as the expected probability of observing a single 112 

SNV conversion relative to the probability of observing a multi-SNV conversion.  113 

We first derive this expected ratio of single to multi SNV conversions in the 114 

idealised case where all bases have the same probability of being SNVs (i.e. where the 115 

distribution of SNV positions is uniform along the genome). We then show that using the 116 

relative occurrence of single to multi-SNV conversions to estimate gene conversion tract 117 

length, rate, and detection probability can be generalised to any scenario wherein SNVs are 118 
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clustered, as they are in real genomes. We do this by using simulations to obtain the 119 

conversion probabilities and then use the relative numbers of single and multi-SNV 120 

conversions in a maximum likelihood framework to obtain estimates for the mean tract 121 

length, rate and detection probability of gene conversion.  122 

The model – idealised case of uniform SNV distribution 123 

Consider an NCO event with a tract length L base pairs (bp). For each bp, we assume that the 124 

probability of the gene tract terminating is s such that the probability of the gene conversion 125 

tract extending is 1 − 𝑠. Given this, the distribution of NCO tract lengths L follows a 126 

geometric distribution with parameter s. We initially assume a uniform SNV distribution such 127 

that for any base pair, the probability of observing a SNV is p and the probability of not 128 

observing a SNV is 1 − 𝑝. We initially assume that all SNVs overlapping the conversion 129 

event will be converted (this assumption can be relaxed, see Supporting Information S1). 130 

We ask, given an NCO tract of length m, what is the probability, P(#SNV=1 | L=m) , of 131 

converting a single SNV? In the idealised case where the SNV distribution is uniform (all 132 

positions in the tract have a probability p of containing an SNV), this probability is given by 133 

the binomial distribution, 134 

𝑃(#𝑆𝑁𝑉 = 1 | 𝐿 = 𝑚) = (
𝑚

𝑚 − 1
) 𝑝(1 − 𝑝)𝑚−1 = 𝑚𝑝(1 − 𝑝)𝑚−1.                                               135 

The joint probability of 𝐿 = 𝑚 and #𝑆𝑁𝑉 = 1 is then 136 

𝑃(#𝑆𝑁𝑉 = 1, 𝐿 = 𝑚) = 𝑚(1 − 𝑝)𝑚−1𝑝(1 − 𝑠)𝑚−1𝑠                                                             (1) 137 

because tracts follow a geometric distribution, so we weight the probability of converting a 138 

single tract by the probability of sampling a tract of length m from a geometric distribution 139 

with mean 1/𝑠. 140 

Similarly, the joint probability of converting more than one SNVs given a tract of length m, 141 
P(#SNV > 1, L=m), is 142 
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 𝑃(#𝑆𝑁𝑉 > 1, 𝐿 = 𝑚) = (1 − 𝑠)𝑚−1𝑠(1 − (1 − 𝑝)𝑚 − 𝑚(1 − 𝑝)𝑚−1𝑝).                           (2) 143 

We now calculate P(#SNV=1) and P(#SNV > 1) by summing the probabilities over all 144 

possible values of m. This yields 145 

𝑃(#𝑆𝑁𝑉 = 1 ) = ∑ 𝑃(#𝑆𝑁𝑉 = 1, 𝐿 = 𝑚)

∞

𝑚=1

 146 

                                         = ∑ 𝑚𝑝(1 − 𝑝)𝑚−1(1 − 𝑠)𝑚−1𝑠

∞

𝑚=1

 148 

 147 

                                                                         = 𝑠𝑝/(1 − (1 − 𝑠)(1 − 𝑝))2.                                    (3) 149 

and 150 

𝑃(#𝑆𝑁𝑉 > 1 ) = ∑ 𝑃(#𝑆𝑁𝑉 > 1, 𝐿 = 𝑚)

∞

𝑚=2

            151 

                                                               = ∑ (1 − 𝑠)𝑚−1𝑠(1 − (1 − 𝑝)𝑚 − 𝑚(1 − 𝑝)𝑚−1𝑝)

∞

𝑚=2

 152 

                                                            =       (𝑝2(1 − 𝑠))/(1 − (1 − 𝑝)(1 − 𝑠)                      (4).  153 

Notice that the sum in eq. (4) begins at m=2, because a tract length of at least 2 bp is 154 

necessary before the conversion of more than one SNV is possible. 155 

The ratio of single to multi-SNV gene conversion events which we would expect to observe 156 

in the data, is now given as  157 

𝑅(𝑝, 𝑠) =
𝑃(#𝑆𝑁𝑉 = 1 )

𝑃(#𝑆𝑁𝑉 > 1 )
 =

∑ 𝑚𝑝(1 − 𝑝)𝑚−1(1 − 𝑠)𝑚−1𝑠∞
𝑚=1

∑ (1 − 𝑠)𝑚−1𝑠(1 − (1 − 𝑝)𝑚 − 𝑚(1 − 𝑝)𝑚−1𝑝)∞
𝑚=2

                158 

                                                        =   𝑠/(𝑝(1 − 𝑠)) .                                                                         (5) 159 

Notice that since the numerator and denominator of R(p,s) is the probability of converting 160 

one or more SNVs, respectively, we can also calculate the proportion of “silent” NCO events 161 

𝑆(𝑝, 𝑠), which we define as the proportion of NCOs converting no SNVs (i.e. the probability 162 

that an NCO does not become a gene conversion), 163 
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𝑆(𝑝, 𝑠) = 𝑃(#𝑆𝑁𝑉 =  0)  =  ∑ (1 − 𝑝)𝑚𝑠(1 − 𝑠)𝑚−1

∞

𝑚=1

                                              164 

                                                       = 𝑠(1 − 𝑝)/(1 − (1 − 𝑝)(1 − 𝑠)).                                  (6) 165 

Since we know the proportion of NCOs which fail to convert a SNV relative to the proportion 166 

of NCOs resulting in observable gene conversions, we can now write an expression for the 167 

total number of expected NCOs in the whole genome DE, based on the observed number of 168 

gene conversions, Do 169 

                    𝐷𝐸 =
𝑆(𝑝,𝑠)

1−𝑆(𝑝,𝑠)
𝐷𝑜 + 𝐷𝑜 =

1

1−𝑆(𝑝,𝑠)
𝐷𝑜 =

1

𝑃(#𝑆𝑁𝑉 ≥1)
𝐷𝑜 .                     (7) 170 

 171 

The total NCO rate, defined as the probability that a base is involved in an NCO event, is 172 

then simply 𝐷𝐸  divided by the number of base pairs in the genome of interest, multiplied by 173 

the mean number of base pairs affected by an NCO event (i.e. the mean tract length). Note 174 

that to accurately estimate the NCO rate, S(p,s) was estimated by considering the distribution 175 

of reads length in our sample (see Supporting Information S2) for details.  176 

Estimating SNV conversion probabilities using the empirical SNV distribution  177 

Different regions have very different coalescent histories. Times to the most recent common 178 

ancestor vary and accordingly modulate the SNV density, ranging from regions harbouring 179 

runs of homozygosity (recent coalescent event) to regions with a high density of SNVs (deep 180 

coalescent events) (Wiuf 2000b; Arndt et al. 2023). Additionally, variation in the mutation 181 

rate across the genome further contributes to a non-uniform SNV distribution (Oman et al. 182 

2022; Barroso and Dutheil 2023). Because the assumption of SNVs placed uniformly is 183 

typically violated in genomes, and since this affects the accuracy of inference of the idealised 184 

model (see Supporting Information S3), we first estimated the probability of different 185 

conversion events (e.g. single, double, triple conversion etc) contingent on the exact SNV 186 

distribution. To estimate the probability of the different conversion events, we calculated (via 187 
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simulation) the probability of converting 1, 2, ..., n SNVs contingent on the SNV distribution 188 

in the genome of the sampled genome, using sequence data from Porsborg et al. (2024). We 189 

then calculated the proportion of different conversion events as a function of different values 190 

of s (see methods for details).  191 

Generalising to an arbitrary SNV distribution 192 

Using a maximum likelihood framework, the idea that the relative numbers of single and 193 

multi-SNV conversion contain information about the tract length, rate and detection 194 

probability of gene conversion can be generalised to the case where SNVs are not uniformly 195 

distributed. We assume that a called set of gene conversion events is available from HiFi 196 

PacBio sequence data (e.g., Table 1). Out of these k gene conversion events, a certain number 197 

of events d1, d2, … ,dn resulted in converting 1, 2,…, n SNVs, respectively (Fig 1A). We also 198 

assume that the distribution of SNVs in the genome of the sampled individual is known, the 199 

probabilities of converting 1, 2,…,n SNVs contingent on the SNV distribution (see methods) 200 

and given a mean tract length of 1/s (𝑃1(𝑠), 𝑃2(𝑠), … , 𝑃𝑛(𝑠)) can be found (Figure 1B).  201 

Under these assumptions, the likelihood L(s) of s given the data d1, d2, … ,dn can now be 202 

calculated as 203 

                           𝐿(𝑠|𝑑1,  𝑑2,  …  , 𝑑𝑛) = (
𝑘

𝑑1, 𝑑2, … , 𝑑𝑛 
) ∏ 𝑝𝑖(𝑠)𝑑𝑖 .

𝑛

𝑖=1

                      (8) 204 

Finding the value 𝑠∗ which maximises L(s) yields a maximum likelihood estimate (MLE) of s 205 

given the data d1, d2, … ,dn (Figure 1C). 206 
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 207 

Figure 1: A method for estimating NCO tract length, rate and detection probability. A) The 208 
data. HiFi long reads were screened by Porsborg et al. (2024) for gene conversion, and read 209 
data is summarised via the counts of the number of reads where 1, 2,…, n SNVs are 210 
converted (conversion counts). B) The simulations. Using the SNV distribution along the 211 
sequenced sample genome, simulations are conducted with varying mean tract length and the 212 
probability of converting 1, 2,…,n SNVs (terms in eq. (5)) are estimated contingent on the 213 
SNV density and tract length distribution (conversion probabilities). C) The estimates. Using 214 
the conversion probabilities which take the non-uniform SNV distribution into account, the 215 
mean tract length which maximises the likelihood of the data (the conversion counts) is 216 
estimated using eq.(8).   217 
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We develop an analytical model which can be used to infer a parameter which describes the 218 

mean gene conversion tract length, the variance of gene conversion tract lengths, the NCO 219 

rate and the NCO detection probability based on the SNV density and the observed ratio of 220 

single to multi-SNV conversions (Figure 2). We tested the model by comparing analytical 221 

predictions of eq. (5) to simulations wherein gene conversion events were simulated across a 222 

genomic fragment of 30 Mb (see Methods for details). When the placement of a SNV 223 

position is uniform, we find that the analytical results are consistent with the simulation 224 

results, which means that the method allows for unbiased inference of gene conversion tract 225 

length, rate, and detection probability even when using data from populations with very low 226 

SNV density such as humans, i.e. populations wherein less than 1/1000 positions in the 227 

genome harbours heterozygous site (e.g. Zhao et al. 2003). This makes it suitable for 228 

inferring the mean NCO tract length for species with low levels of genetic diversity, such as 229 

humans (Figure 2). 230 

 231 

Figure 2: Analytical predictions of the ratio model (full lines) compared to simulation results 232 
(points denote means of 25 replicates) with 95% confidence intervals under different SNV 233 
densities, using approximately half the human SNV density as a proxy for the typical number 234 
of heterozygous sites (0.00083/2 SNVs/bp, e.g. Zhoa et al. 2003), human SNV density 235 
(0.00083 SNVs/bp) and five times the human SNV density (0.00083 ∙ 5 SNVs/bp). The results 236 
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show that in the idealised case where all positions in the genome have some probability of 237 
being an SNV, using the ratio of single to multi-SNV conversions can yield unbiased 238 
estimates despite very low SNV densities, such as those observed in populations of humans. 239 
(A). Eq. (5): Ratio of single to multi-SNV conversions as a function of mean tract length for 240 
three different SNV densities. (B) Detection probability as 1-S(p,s) (see eq.(6)) of all gene 241 
conversion events as a function of mean tract length for three different SNV densities. 242 

 243 

In the HiFi long reads obtained from a human sperm sample (Porsborg et al. 2024), we 244 

observed a total of 182 gene conversions with between one and four SNVs converted per 245 

event (Table 1). Using the conversion counts, the maximum likelihood model presented 246 

(eq.8), the SNV distribution and the gene conversion events called by Porsborg et al. (2024), 247 

we estimate the mean tract length in a human sperm sample. We estimate the mean tract 248 

length to be 46 bp ([CI 95%: 24, 84], Figure 3A). In Porsborg et al. (2024) we present 249 

estimates from this and many additional samples using the method described here. 250 

Table 1: Conversion counts obtained from a human sperm sample as reported in Porsborg et 251 
al. (2024) obtained by calling gene conversions in HiFi long reads. In this sample, 167 single 252 
SNV conversions, 12 double SNV conversions, 2 triple SNV conversion and 1 quadruple SNV 253 
conversion was observed. 254 

 1-SNV 

conversion 

2-SNV 

conversion 

3-SNV 

conversion 

4-SNV 

conversion 

#reads 167 12 2 1 

 255 

 We further find that given the MLE, the conversion counts (i.e. 167, 12, 2, 1) do not differ 256 

significantly (p=0.71) from the expected conversion counts when we assume tracts are 257 

sampled from a single geometric distribution parametrized with the MLE s (see Supporting 258 

Information S4). 259 

The model also yields MLEs of the proportion of detected (and undetected) NCO 260 

events, that is, the proportion of NCO events which can be observed in data because they 261 

convert at least one SNV. We find that, on average, 2.31% of NCO events convert one or 262 
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more SNVs, which means that most NCOs are ‘invisible’ because they happen to only 263 

convert identical sequences (Figure 3B). Dividing eq. (7) with the coverage and genome size, 264 

the MLE of s implies an NCO rate of 4.5810-6. Dividing eq. (7) with the coverage of the 265 

sample genome, we estimate that each male human gamete is expected to harbour, on 266 

average, 310 NCO events, of which approximately 7 are expected to become visible as gene 267 

conversions. 268 

 269 

Figure 3: MLEs of mean gene conversion tract lengths, rate and detection probability 270 
inferred from gene conversion events called directly from HiFi PacBio data of sperm sample 271 
as obtained by Porsborg et al. (2024). A) Likelihood profile for mean tract length. Each point 272 
shows the log likelihood of the data (counts of single, double, triple,…,n-tuple gene 273 
conversion events for the sampled individual) conditional on the SNV distribution and density 274 
of the individual, i.e. eq. (8). Dotted vertical line represents the MLE and the vertical dashed 275 
lines show the 95% confidence interval. The results suggest that human gene conversion 276 
tracts are typically quite short (mean tract length of 46 bp). B). MLE of NCO detection 277 
probability (probability that an NCO becomes a gene conversion) and total NCO rate 278 
(including gene conversions) Bars denote the 95% confidence interval. The results indicate 279 
that most NCO events fail to convert at least one SNV meaning that these are not observable 280 
as gene conversions. Each MLE is based on 103 simulations using the SNV distribution along 281 
the genome in the sample data. 282 

Ascertainment bias and the effect of finite read lengths 283 

 We note that our pipeline for calling gene conversion events (Porsborg et al. 2024) 284 

requires that unconverted SNVs are present at the end of each read, such that it is possible to 285 
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ascertain whether a read represents a potential crossover or gene conversion event. This 286 

leaves open the possibility of a slight ascertainment bias because some gene conversion 287 

events (e.g. those converting more than one SNV) might be indistinguishable from crossovers 288 

when occurring at the edge of a read. This ascertainment bias is very weak, since the average 289 

read length of HiFi PacBio reads typically greatly exceeds a typical NCO tract length. In the 290 

case of the data we analysed here, the average length of reads was 16.36 kb (see methods for 291 

details). We checked that simulating under the same read distribution as the sample (rather 292 

than assuming much longer reads) yields virtually the same probability of the different 293 

conversion events and, hence, almost the same MLEs (see Supporting Information S2). 294 

Robustness of MLEs under strong correlation between NCO positions and SNV density 295 

The simulation approach to obtaining conversion probabilities assumes that all 296 

positions within the genome have the same probability of NCO events. However, if NCO 297 

events correlate (positively or negatively) with SNV density, our estimates of conversion 298 

probabilities could be inaccurate. We tested whether any positive or negative correlation 299 

between SNV density and NCO events existed by calculating SNV densities at double-strand 300 

breaks throughout the sample genome and comparing it to the overall SNV density. We 301 

found little to no correlation between double-strand breaks (DSB) (where NCO events are 302 

thought to be more likely to occur) and SNV density (CORR =-0.0012, P = 0.8225, see 303 

Supporting information S5).  304 

While there is no evidence for a correlation between SNV density and NCO position 305 

in the data analysed here, this is not necessarily the case for all datasets. Furthermore, it is 306 

important to point out that the absence of correlation between DSBs and SNV density does 307 

not prove an absence of correlation between NCO and SNV density because a DSB can occur 308 

spontaneously (without being catalysed by recombination enzymes binding a DSB site) and 309 
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then be repaired using sister chromatid. Because of this, we also tested the robustness of our 310 

model using simulations with different degrees of correlation between SNV density and NCO 311 

position. We found that strong positive or negative correlations between the position of NCO 312 

events and SNVs (see methods for details) result in only slight bias to the MLE obtained 313 

(Figure 4A). Specifically, if NCO positions show a strong positive correlation with SNVs, the 314 

MLE becomes slightly biased downwards since multi-SNV conversions become more 315 

probable, such that multi-SNV conversions (Table 1) can now be explained with a shorter 316 

mean tract length. 317 

Conversely, a strong negative correlation between NCO position and SNVs results in 318 

a slight upward bias, since multi-SNV conversions become more unlikely, meaning that a 319 

longer mean tract length is required to explain the data (Table 1). Overall, we get MLE of 320 

tract length changing by up to -12bp under a strong positive correlation and +2 bp under a 321 

strong negative correlation. Specifically, compared to the case with no correlation between 322 

SNVs and NCO events, a strong positive correlation results in 26% underestimation, while a 323 

strong negative correlation results in a 4% overestimation of the mean tract length. This 324 

suggests that the model is robust even under strong positive or negative correlation, 325 

indicating that the model is applicable even when the assumption of a uniform distribution of 326 

NCO positions is strongly violated (Figure 4A).  327 

Similarly, while strong positive or negative correlation between NCO events and 328 

SNVs affects the estimates of NCO rates (Figure 4B), these estimates (2.8610-6 and 1.0210-5) 329 

for strong positive and negative correlation, respectively) remain close to previous estimates 330 

(5.910-6 to 8.7510-6, e.g. Williams et al. 2015; Halldorsson et al. 2016; Narasimhan et al. 331 

2017), and this tendency is reflected in the detection probabilities wherein negative 332 

correlation means fewer NCOs can be observed and positive correlations mean more NCOs 333 

can be observed as gene conversions (Figure 4B). This effect is amplified as tracts become 334 
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larger (Figure 4C). Specifically, NCO detectability increases when NCOs only occur in the 335 

most SNV-rich regions of the genome, and NCO detectability decreases when NCOs only 336 

occur in regions with low diversity. This also means that a negative correlation results in a 337 

higher estimate of the NCO rate since a low detectability implies many unseen NCOs. 338 

Conversely, positive correlation reduces the estimated NCO rate since the 339 

detectability is increased. Detection probability increases when NCOs occur in SNV-rich 340 

regions since more NCOs will become gene conversions as the chance of converting at least 341 

one SNV increases. Similarly, detection probability decreases when NCOs occur in low-342 

diversity regions since fewer NCOs will convert at least one SNV. Despite the MLE being 343 

robust to correlation, it is important to point out that the correlation between SNV density and 344 

NCO events has a much greater effect on NCO rate estimates than NCO tract length 345 

estimates. The same applies to NCO detection probability, where positive or negative 346 

correlation can result in a ~2-fold difference in the estimated detection probability.  347 
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348 
Figure 4: Comparison of MLEs under strong positive correlation between NCO position and 349 
SNV density (red), strong negative correlation between NCO position and SNV density (blue) 350 
and no correlation between NCO position and SNV density (black). (A) The MLE of tract 351 
length changes by -12 bp under strong positive correlation and +2 under strong negative 352 
correlation, suggesting the model is robust to correlation between NCO events and SNV 353 
density and overall heterogeneity of NCO positions along the genome. (B) Strong positive 354 
correlation between SNVs and NCO events can result in underestimation of the NCO rate 355 
whereas strong negative correlation can result in overestimation. (C.) Strong positive 356 
correlation between SNVs and NCOs can result in overestimation of the detection probability 357 
whereas strong negative correlation can result in underestimation. This is especially the case 358 
when tracts are long. 359 

We also investigated the accuracy of inference of the idealised model (under uniform SNV 360 

distribution) and the maximum likelihood model (under the SNV distribution of the sample 361 

genome). Both models were tested under varying tract lengths and varying amounts of data 362 

i.e. observed gene conversion tracts (for details, see methods). We found that both models are 363 

unbiased as the estimated mean coincided with the true mean across tract lengths (Figure 5). 364 

The sampling variance of estimates increases under both models when the sample size (i.e. 365 

the number of observed tracts) is low, and when the average tract length is short (cf. Figure 366 
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5A-B, Figure. 5E-F). At low mean tract length, individual estimates vary more because 367 

changes in the ratio have a large effect on mean tract length when tracts are short (Fig S2.2). 368 

However, when NCO tracts are short, the variance in the number of single to multi-SNV 369 

tracts is also expected to be the lowest (this is because the variance of the binomial 370 

distribution is 𝑛𝑞(1 − 𝑞) where 𝑞 is the probability of a single SNV tract, and 𝑛 is the 371 

number of observed tracts). This former effect seems to be dampened by the latter, such that 372 

even when the true mean tract length is short (such as we estimate in this study, i.e. a mean 373 

tract length ~50 bp), the estimated mean coincides with the true mean and the majority of all 374 

individual estimates are with +/- 25 bp of the true tract length, even with nearly 4 times less 375 

data that used in the present study (Figure 5). This suggests accurate estimates can be 376 

obtained even when coverage (and hence the number of observed tracts) is 3-4 times lower 377 

than in our data example (mean coverage of 26; see methods for details). The same is true for 378 

the idealised model (Figure 5; See also Supporting Information S6). 379 

380 
Figure 5: Accuracy of inference under (A, C, E) the idealised model (uniform SNV 381 
distribution) and (B, D, F) the maximum likelihood model (used to perform inference 382 
genomic data). Accuracy of inference is shown under different sample sizes (i.e. different 383 
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number of identified tracts): 182 tracts, as used in this study (A-B), 100 tracts (C-D), and 50 384 
tracts (E-F). Dashed line show perfect accuracy (estimate tract length / true tract length) = 385 
1. Each boxplot contains 100 replicates (see Methods for details).  386 

Discussion 387 

We developed a method for estimating the rate and length distribution of NCO events. We 388 

showed that this method is unbiased even for organisms with low SNV densities, such as 389 

humans, and that sufficient input data for the method can be obtained from sequencing 390 

gametes from a single individual and then calling gene conversion events directly from HiFi 391 

PacBio sequencing data. 392 

We apply our method to a data set from humans (Porsborg et al. 2024) which 393 

estimates consistent with previous studies. While the dataset analysed here is limited to a 394 

single individual, and inter-person variation in gene conversion tract length and rate is 395 

certainly possible, we note that the confidence intervals of the estimate we obtain overlap 396 

with the confidence intervals of several previous estimates obtained from human data 397 

(Jeffreys & May 2004; Halldorsson et al. 2023, Schweiger et al. 2024. See also Supporting 398 

information S7).  399 

 While we use HiFi PacBio data obtained by sperm sequencing for illustration here, 400 

inference of NCO rate, tract length and detection probability could easily be done with a 401 

different type of data and different organisms – all that is required is the number of gene 402 

conversion events counts (i.e. counts of NCO events resulting in single, double, triple, etc. 403 

SNVs conversions) and the background SNV distribution of the sample where NCOs were 404 

called. Because of this, our method could also be used to obtain estimates by using gene 405 

conversions called in trio data (Halldorsson et al. 2016), in hybrid cross experiments (Li et al. 406 

2019) and in pollen or sperm-typing (Lien et al. 2000; Jeffreys and May 2004; Tiemann-407 

Boege et al. 2006). However, comparing estimates obtained from very different data types is 408 

not necessarily straightforward since different ways of obtaining data can lead to different 409 
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ascertainment biases of NCO events. For example, trio data makes it in principle possible to 410 

observe NCOs inducing gene conversion tracts of an arbitrary length whereas the finite read 411 

length constrains HiFi PacBio long read data. On the other hand, when all individuals within 412 

a trio are heterozygous at a specific position, phasing may be incomplete (Miller and Piccolo 413 

2021). A more detailed investigation of the extent to which different types of datasets might 414 

bias the estimates of NCO rate and tract lengths upwards or downwards would be a 415 

worthwhile aim for future work. 416 

We exploit the fact that multi-SNV conversion becomes more common as the tract 417 

length increases, a finding that has also been made in early simulation studies (Gay et al. 418 

2007). More recently, Li et al. (2019) proposed a method which assumes an exponential 419 

distribution of gene conversion tracts and uses information about the co-conversion of SNVs. 420 

Rather than using the ratio of single to multi-marker conversion events, the method of Li et 421 

al. (2019) creates a composite likelihood function by taking all consecutive pairs of SNVs 422 

adjacent to or within gene conversion tracts and considering whether these were part of the 423 

same conversion tract or not, as a function of the distance between the SNVs. While the 424 

method also takes the distance between potentially co-converted SNVs into account, it results 425 

in a composite likelihood (pseudolikelihood) because SNVs within the same conversion tract 426 

are assumed to be independent, which is not the case. Considering the ratio of single to all 427 

multi-SNV events (as in our model) has the advantage that it grants analytical solutions for 428 

the probability of an unobserved NCO (i.e. ‘invisible’ gene conversion) and the total NCO 429 

rate in the idealised case. Combining these methods, such that the distances between 430 

converted markers are also considered, could result in more precise predictions. Exploring 431 

this could be fertile grounds for future work. 432 

Gene conversion tract length and the geometric distribution 433 
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Our method assumes that tract length follows a geometric distribution. We consider 434 

this assumption to be reasonable since several studies have found the geometric distribution 435 

(or the continuous version of the distribution, the exponential distribution) to fit well with 436 

data (Hilliker et al. 1994; Taghian and Nickoloff 1997; Li et al. 2019) and this was also the 437 

case here when considering the conversion counts (see supporting results S4). This makes 438 

sense because the transfer of SNVs from one sequence to another via gene conversion is, at 439 

the core, the result of a polymerase moving along a sequence, which is being repaired using 440 

some donor sequence as the template (Jasin and Rothstein 2013). If the polymerase has a 441 

certain probability of stopping at each base and the remaining probability of extending the 442 

tract at each base, this will result in a geometric distribution of tract lengths (Wiuf 2000a; 443 

Frisse et al. 2001; Padhukasahasram and Rannala 2011; Setter et al. 2022). A recent study 444 

found that a mixture of two negative binomial distributions fitted datasets on gene conversion 445 

tract lengths better than a geometric distribution (Hardarson et al. 2023). We have compared 446 

estimates from different studies and methods directly on the same data and commented on 447 

some relevant differences (Supporting Information S7). 448 

In some studies, a small subset of the observed gene conversion tracts seems 449 

incompatible with viewing all tracts as coming from a single geometric distribution with a 450 

low mean. Several recent studies have pointed out that while the majority of gene conversion 451 

tracts appear to fit a geometric distribution, the distribution of gene conversion tracts as a 452 

whole does not, since a very small fraction of tracts are much larger than expected under a 453 

single geometric distribution (Halldorsson et al. 2016; Wall et al. 2022; Versoza et al. 2023). 454 

In a study of olive baboons (Papio anubis), Wall et al. (2022) found >99% of all gene 455 

conversion tracts to be short, whereas a few tracts were very long (mean length 47.58kb).  456 

Similar results have been found in a study of rhesus macaques (Macaca mulatta) where two 457 

very long tracts were observed, the mean length of which was 5.166 kb (Versoza et al. 2023). 458 
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In human data, Halldorsson et al. (2016) also reported a minority of very long NCO tracts, 459 

the mode of which was 30 kb.  460 

Since the distribution of gene conversion tract lengths appears to be bimodal, this 461 

suggests (as proposed by Hardorsson et al. 2023) that two distinct processes might give rise 462 

to gene conversions – one which is responsible for nearly all tract and results in short tracts, 463 

and one which is very rare, but results in long tracts. While fitting a mixture distribution 464 

improves model likelihood (Hardarsson et al. 2023; Schweiger et al. 2024), doing so requires 465 

far more data since long tracts are rare. Specifically, the current dataset from Porsborg et al. 466 

(2024) comprises 182 tracts, but if ~1% of all tracts are long, a sample of 182 tracts would 467 

likely only include 1-2 long tracts, which is insufficient information to describe a whole 468 

distribution. Thus, while a mixture distribution is likely a more accurate representation of all 469 

NCO events, a mixture model requires far more data and, given the additional complexity of 470 

the model, may result in wider confidence intervals around estimates. When using HiFi 471 

PacBio long read data, these rare long NCO events can, in principle, be detected if the 472 

distribution of read lengths overlaps with the distribution of long NCO event lengths (see 473 

Supporting Information S8). Since the short NCO events comprise both the majority of all 474 

NCO events and the majority of all converted SNVs (e.g. Wall et al. 2022; Schweiger et al. 475 

2024), we believe model fitting single distribution is useful, although given additional data, 476 

the approach we described here can easily be extended to a mixture distribution (see 477 

Appendix; see also Supporting Information 9).  478 

Methods 479 

Simulation set-up, initialization, and parameters 480 

 The likelihood function requires conversion probabilities contingent on the SNV 481 

distribution in order to estimate the mean tract length, NCO rate, and NCO detection 482 
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probability. We estimate these conversion probabilities by simulation. In each simulation, 483 

NCOs occurred at 105 positions throughout the genome of the sample. These positions were 484 

chosen from a uniform distribution 𝑈(1, 𝑁) where 𝑁 is the genome size (we also assess the 485 

robustness of the model when the assumption of a uniform distribution of NCO positions is 486 

violated. We find that strong correlation causes only slight changes to the MLE – see results 487 

for details). The tract length of the gene conversion event was sampled from a geometric 488 

distribution with mean 1/s. The proportion of NCOs converting one, two, n SNV under each 489 

value of s (hereafter denoted 𝑃1(𝑠), 𝑃2(𝑠), … , 𝑃𝑛(𝑠)) was calculated. All classes up to n=11 490 

were calculated for each simulation. Integers in the range [5, 200] were used for s in the 491 

simulations. For each value of s, we simulated the entire genome 103 times (i.e 103 simulation 492 

replicates) and mean values of 𝑃1(𝑠), 𝑃2(𝑠), … , 𝑃𝑛(𝑠) were calculated for each s. We note that 493 

when the SNV distribution is non-uniform, eq. (6) cannot be used to estimate NCO detection 494 

probability. Because of this, we the simulation output to estimate NCO detection probability 495 

as 1 − 𝑃0(𝑠) since by definition, this is the proportion of NCOs moving at least one SNV, 496 

hence being detectable. 497 

Simulations were conducted on a slurm cluster (slurm 23.02.5) and the full source 498 

code is available at [https://github.com/r02ap19/GeneConv] along with a ReadMe file 499 

detailing how to change model parameters as well as how to compile and run the code. 500 

Testing model robustness under strong heterogeneity in recombination position  501 

Recombination events, including NCO events, are thought to have a higher probability of 502 

occurring in recombination hotspots. If the positions of NCO are not random with respect to 503 

SNV density, the conversion probabilities estimated under the assumption of a uniform 504 

distribution of NCO positions, and hence the resulting MLE, could be inaccurate. We tested 505 

the robustness of the MLE obtained when the position of NCO correlated strongly 506 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2024. ; https://doi.org/10.1101/2024.07.05.601865doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.05.601865
http://creativecommons.org/licenses/by-nd/4.0/


24 
 

(negatively or positively) with the SNV density. This was done by counting all SNV in 1 Mb 507 

windows of the sample genome. Conversions probabilities and MLE estimates where then 508 

obtained by simulation of data in two different cases: one where NCOs only occurred 509 

randomly within in the top 25% most SNV rich 1 Mb windows of the genome (strongly 510 

positive correlation between NCO position and SNV density) and one where all NCO events 511 

only occurred randomly within the bottom 25% least SNV rich 1 MB windows of the 512 

genome.  513 

We further quantified any positive or negative correlation between SNV density and 514 

NCO position by calculating SNV density around all previously detected double-strand 515 

breaks found in the sample genome (Pratto et al. 2014) compared to the SNV density at 516 

random 20kb positions across the genome (for details, see Supporting Information S5). 517 

Accuracy of inference 518 

We tested the accuracy of inference of the idealised model by running 100 simulation 519 

replicates of a 30 Mb genome fragment with the human SNV density of 0.00083 (e.g. Zhao et 520 

al. 2003) which was exposed to 1000 NCO events at random positions. Note that the chosen 521 

size of the genomic fragment and number of NCO events does not affect accuracy as long as 522 

the genome is sufficiently large to make overlap between NCO events unlikely (as in real 523 

genomes). For more details on the minimum number of observed single/multi-conversion 524 

events necessary to use the idealised model, see Supporting Information S6. The ratio of 525 

single to multi-SNV conversion was then calculated, and eq. (5) was then solved for an 526 

estimate of the mean tract length. This was done for a range of tract lengths in the interval 527 

[25, 200] (Figure 5).  528 

 We also tested the accuracy of inference of the maximum likelihood model. Here, we 529 

calculated (by simulation) the probabilities of converting 1, 2,..., n SNVs (conversion 530 
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probabilities) contingent on the SNV distribution of the sample and given a set of mean tract 531 

lengths in the interval [25, 200]. We then sampled tracts (182, 100, or 50) continuing 1, 2,..., 532 

n SNVs relative to the conversion probabilities. Given the sampled tracts, the mean tract 533 

length which maximised eq. (8) was found, and this was the estimated mean tract length. For 534 

both models, this was replicated 100 times for each tract length. For both the maximum 535 

likelihood model and the idealised model, accuracy was defined as estimate/true value, hence 536 

accuracy = 1 denotes perfect accuracy (Figure 5).  537 

Calling gene conversions in HiFi PacBio data 538 

We used data from Porsborg et al. (2024) which describes a pipeline comprising sample 539 

preparation, sequencing, reads filtering based on quality, calling of gene conversion candidate 540 

reads, and curation of candidate gene conversion reads (Porsborg et al. 2024). In the 541 

following, we give a brief outline of their pipeline.  542 

One human sperm sample (HS25, see Porsborg et al. 2024) was obtained from an 543 

approximately 25 year old anonymous man (because the donor is anonymous, the exact age is 544 

unknown). Purified sperm were used because gametes are thought to undergo more gene 545 

conversion than somatic cells (Porsborg et al. 2024). The sperm from the ejaculate was 546 

purified using a density gradient centrifugation and sequenced at 26X mean coverage using 547 

PacbioHiFI sequencing. This results in a set of consensus reads originating from different 548 

sperm cells present in the ejaculate. The average read length of the consensus reads were 549 

16.36 Kb, and these were used to create a high-quality de novo genome assembly which 550 

spanned >95% of the genome with N50 contig size of 70.7 and with 97.9% of all contigs 551 

being larger than 1Mb. The consensus reads were then mapped back to the de novo assembly 552 

and all high-confidence SNVs were called while SNVs were assigned to haplotypes resulting 553 

in full phasing of all variants. This allowed for gene conversion events to be called as a 554 
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switch back and forth between the two haplotypes on a single read, stemming from the fact 555 

that at least one SNV was transferred unidirectionally from one haplotype to another (see 556 

Porsborg et al. 2024 for more details. See also Schweiger et al. 2024 for a similar approach).  557 

A total of 200 gene conversion candidate reads were called and manually curated 558 

using IGV (Robinson et al. 2011) to remove likely false positives resulting from large indels 559 

or mapping errors. 182 of the candidate gene conversion events were approved following 560 

manual curation and these events were used to obtain estimates of gene conversion tract 561 

length, rate and detect probability. The approved events resulted in the transfer of between 562 

one and four SNVs (Table 1). A full description of this pipeline, along with all the relevant 563 

scripts is given by Porsborg et al. (2024). We note that enough gene conversion events to 564 

obtain accurate estimates can be called with far fewer events than 182, which means that 2-3 565 

times lower coverage would likely have yielded the same accuracy (see Results). Further, 566 

using specifically HiFi PacBio data is not strictly necessary since, our method can be applied 567 

to any dataset wherein SNVs and gene conversion events have been identified and the 568 

number of single and multi-SNV transfers has been counted.  569 
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