

1 **Title:**
2 White matter microglia morphological changes with aging in guinea pig offspring born growth
3 restricted.
4
5

6 **Authors:**
7 Timothy B. Nunes¹, Karen L. Nygard², Marc C.J. Courchesne², Shawn N. Whitehead³, Bryan S.
8 Richardson^{1,4}, Timothy R.H. Regnault^{1,4,5}
9
10

11 **Affiliations:**
12 1. Department of Physiology and Pharmacology, Western University, London, ON, Canada
13 2. Biotron Integrated Microscopy Facility, London, ON, Canada
14 3. Department of Anatomy and Cell Biology, Western University, London, ON, Canada
15 4. Department of Obstetrics and Gynecology, Western University, London, ON, Canada
16 5. Children's Health Research Institute, London, ON, Canada
17
18

19 **Corresponding Author:**
20 Timothy R.H. Regnault (ORCID 0000-0003-1930-8358)
21 tim.regnault@uwo.ca
22
23

24 **Category:** “Note” (previously “Brief Report”; 6000-word limit includes references/figures)
25
26

27 **ORCID numbers:**
28 Timothy B. Nunes (ORCID 0000-0002-0608-8985)
29 Karen L. Nygard (ORCID 0000-0002-2203-4530)
30 Marc C.J. Courchesne (ORCID 0000-0002-4380-2981)
31 Shawn N. Whitehead (ORCID 0000-0003-4728-8067)
32 Timothy R.H. Regnault (ORCID 0000-0003-1930-8358)
33 Bryan S. Richardson (ORCID 0000-0002-0067-8298)

34 **Abstract (200 words)**

35 Fetal growth restriction is implicated in the programming of later-life neurodegeneration.
36 We hypothesized that growth restricted offspring would show accelerated changes to microglial
37 white matter morphology, relative to controls.

38 Control guinea pig sows were fed *ad libitum*, while maternal nutrient restriction sows
39 received 70% of control diet switched to 90% from mid-gestation. Offspring were sacrificed at
40 ~26 days (neonate) or ~110 days (adult) postpartum. Coronal brain sections from the frontal cortex
41 were subject to IBA1-staining for microglial detection and analyzed by machine learning software.

42 At birth, total body weight of growth restricted offspring was reduced relative to control
43 ($p<0.0001$) with postnatal catch-up growth observed. Microglial density was reduced in the corpus
44 callosum of control ($p<0.05$) and growth restricted ($p=0.13$) adults, relative to neonates. Adults
45 from both groups showed greater IBA1-positive area in the cingulum and periventricular white
46 matter ($p<0.05$) and increased microglial fractal dimension in the corpus callosum ($p<0.10$) and
47 periventricular white matter ($p<0.05$), relative to neonates.

48 At the timepoints studied, we report age-related changes in white matter microglial
49 morphology. However, maternal nutrient restriction leading to fetal growth restriction in guinea
50 pigs does not appear to exacerbate these white matter microglia morphological changes as a marker
51 for later-life neurodegeneration.

52

53

54 **Keywords:**
55 microglial morphology, white matter, IBA1, maternal nutrient restriction, growth restriction

56 **Introduction**

57 About 5-10% of all live human births are affected by fetal growth restriction (FGR) with
58 maternal nutrient restriction (MNR) a major contributing factor (Fowden et al., 2006; Kamphof
59 et al., 2022). In FGR offspring there is an increased risk of neurodegenerative pathologies in later
60 life and more so in those showing postnatal catch-up growth (Fowden et al., 2006; Miller et al.,
61 2016). Microglia-mediated activation and neuroinflammation appears to be a key driver of these
62 neurological abnormalities in FGR offspring (Zinni et al., 2021). Grey matter microglial activation
63 is traditionally associated with the presentation of dementia and Alzheimer's disease, however
64 recent findings implicate white matter pathology in earlier stages of neurodegeneration (Levit et
65 al., 2019; Raj et al., 2017). Single-cell RNA sequencing has revealed that white matter microglia
66 exhibit a transcriptome signature transitioning towards disease-associated microglia with aging
67 (Safaiyan et al., 2021). These findings were reported in murine models of Alzheimer's disease,
68 and therefore characterization of white matter microglial morphology in FGR models is needed.

69 Ionized calcium-binding adaptor protein-1 (IBA1) is constitutively expressed by microglia
70 and upregulated during activation to facilitate morphological changes observed (Hovens et al.,
71 2014). As microglia transition to an inflammatory ameboid phenotype, cell processes retract and
72 the soma grows. Thus, classical microglial activation may be characterized by an increased cell
73 body to cell size ratio. To characterize subtle morphological changes, fractal dimension analysis
74 provides an index of microglial branching complexity and number of primary processes (Karperien
75 et al., 2013; Morrison et al., 2017).

76 We have previously shown the utility of guinea pigs in modelling MNR-induced FGR with
77 postnatal catch-up growth (Nevin et al., 2018). Furthermore, non-transgenic guinea pigs closely
78 mirror in-utero development and hallmarks of brain aging in humans (Wahl et al., 2022) and are

79 an established model for studying the developmental origins of health and disease—including
80 later-life Alzheimer's (Sharman et al., 2013). Thus, we sought to determine whether MNR-induced
81 FGR in guinea pig offspring would show accelerated changes to microglial morphology with
82 aging. Microglial morphology of neonates and adults was examined for the corpus callosum (CC),
83 cingulum (C), and periventricular white matter (PV). We assessed microglial density, percent area,
84 classical activation, and fractal dimension in these white matter regions of interest. It was
85 hypothesized that FGR would amplify age-related increases in these measures of microglial
86 migration, enhanced phagocytosis, and primary process number.

87 **Methods**

88 *Ethics Statement*

89 Guinea pig brain tissue samples used in this experiment were provided from a previous
90 study (Nevin et al., 2018), which employed an established model of moderate MNR in guinea pigs
91 (Elias et al., 2016). Ethics approval for experimental procedures was obtained from Western
92 University's Animal Care Committee (Animal Use Protocol 2014-027). Continued ethics
93 monitoring was performed in accordance with Western University Policy and Canadian Council
94 on Animal Care guidelines.

95 *Animal feeding, pupping, and necropsies*

96 Forty-one Dunkin-Hartley female guinea pigs (Charles River Laboratories, Sherbrooke,
97 QC) aged 4-6 months were housed in individual enclosures, at a temperature of 25°C, with an
98 automated 12-hour light-dark cycle. After two weeks of acclimation, sows were randomly assigned
99 to a specific feeding protocol for a minimum of 4 weeks prior to mating with control diet boars.
100 Control sows were fed *ad libitum* (Guinea Pig Diet 5025; LabDiet, St. Louis, MO), while MNR
101 sows were fed 70% of what control sows consumed, determined as an average of food intake
102 normalized to total body weight. At mid-pregnancy, from 35 days of gestation and onwards, MNR
103 group food intake was increased to 90% of what control sows consumed. Notably, this dietary
104 regime results in actual food consumption by the MNR animals of ~65-70% of that of the control
105 animals throughout pregnancy (Elias et al., 2016).

106 Pups were born spontaneously at a mean gestational age of 68 days, and birth weights were
107 recorded within 24h of birth. Offspring from control sows with a birth weight greater than 95g
108 were deemed appropriate for gestational age controls (Control n=29), while offspring from MNR
109 sows with a birth weight below 85g were considered FGR (FGR-MNR n=26). These birth weight

110 thresholds extrapolated from our fetal study using moderate MNR (Elias et al., 2016). After
111 weaning, all pups received food *ad libitum*.

112 Twenty-seven neonates were randomly selected for necropsy at a mean of 26 days postnatal
113 to provide the neonatal cohort: male neonate Control (n=7), female neonate Control (n=8), male
114 neonate FGR-MNR (n=6), and female neonate FGR-MNR (n=6). The remaining offspring
115 matured to adulthood and were necropsied at a mean of 110 days postnatal to provide the adult
116 cohort: male adult Control (n=6), female adult Control (n=8), male adult FGR-MNR (n=6), and
117 female adult FGR-MNR (n=8). Offspring were weighed prior to sacrifice and then euthanized with
118 an intraperitoneal injection of 0.3mL pentobarbital sodium (Euthanyl; MTC Pharmaceuticals,
119 Cambridge, ON). Necropsy weights of the brain and liver were recorded; additionally, these organs
120 were fixed in 4% paraformaldehyde for 24 hours, rinsed in phosphate-buffered saline (PBS) three
121 times at 2-hour intervals, and dehydrated in 70% ethanol for 2 weeks. Samples were then blocked
122 in paraffin wax for future histochemical analyses.

123 *IBA1 Immunohistochemistry, Image Acquisition, and Analysis*

124 A rotary microtome was used to cut 5 μ m coronal slices, corresponding to regions #720 to
125 #760 of the *Cavia porcellus* Comparative Mammalian Brain Collection from the University of
126 Wisconsin (Welker et al., 2010). Samples were mounted on 1.5mm Superfrost Plus Slides (VWR
127 Scientific, Westchester, PA). All slides were stained on the same day with the same reagent pool
128 to minimize variation in stain intensity.

129 Samples were deparaffinized with three consecutive 5-minute xylene washes, rehydrated
130 in five progressive ethanol washes for 2 minutes each (100%, 100%, 90%, 90%, 70%), rinsed in
131 running tap water for 5 minutes, and then submerged in reverse osmosis water for 1 minute. Heat-
132 induced epitope retrieval was performed with slides submerged in 10mM sodium citrate at pH 6.0,

133 using the 2100 Antigen Retriever (Aptum Biologics Ltd, Southampton, UK). Slides were gradually
134 cooled to room temperature for 2 hours, rinsed with running tap water for 5 minutes, submerged
135 in reverse osmosis water for 1 minute, and then rinsed with PBS. All PBS rinses were performed
136 twice at 5 minutes intervals, at room temperature. Endogenous peroxidases were quenched with
137 3% hydrogen peroxide dissolved in PBS for 10 minutes. Slides were rinsed with PBS and then
138 blocked with Background Sniper (BS966; Biocare Medical, Pacheco, CA) for 7 minutes. After a
139 PBS rinse, samples were incubated with polyclonal rabbit anti-IBA1 primary antibody (1:3000,
140 #019-19741, Wako Chemicals USA, VA) at 4°C overnight, in a covered humidity chamber. The
141 primary antibody dilution was prepared with Dako antibody diluent (#S0809, Agilent
142 Technologies Inc, Santa Clara, CA). One slide from each condition was incubated with diluent
143 only and one slide from each condition was incubated with Dako rabbit non-immunized
144 immunoglobulin fraction (#X0903, Agilent Technologies Inc, Santa Clara, CA) to serve as
145 negative controls.

146 The next day, slides were rinsed with PBS and incubated for 40 minutes at room
147 temperature with horseradish-peroxidase polymer horse anti-rabbit secondary antibody (MP-6401-
148 15, Vector Laboratories, Burlington, ON) in a covered humidity chamber. Slides were then rinsed
149 with PBS. To visualize bound antibody, samples were incubated with 3,3'-diaminobenzidine
150 chromogen (#980681, MP Biomedicals, Santa Ana, CA) for 2 minutes and rinsed in running tap
151 water for 5 minutes. Samples were counterstained in Mayer's Hematoxylin for 70 seconds and
152 immediately rinsed in running tap water for 5 minutes. Samples were dehydrated in five
153 progressive ethanol washes for 2 minutes each (70%, 90%, 90%, 100%, 100%) and cleared with
154 three consecutive 5-minute xylene washes. Slides were cover slipped with Permount (SP15-100,
155 Fisher Scientific, Waltham, MA).

156 Image acquisition and analysis was performed by a researcher (T.N.) blinded to the
157 experimental groups. Images were acquired for select brain regions of interest: the corpus callosum
158 (CC), cingulum (C), and periventricular (PV) white matter. For each brain region, Z-stacks (9
159 planes over a depth of 4 μ m) for four different images were captured using an Eclipse Ti2-E
160 inverted microscope (Nikon Instruments Inc, Melville, NY) with a 40x objective lens. For each
161 sample the four images within each region were averaged as technical replicates. Z-stacks were
162 then compiled into extended depth-of-focus TIFF files for analysis, to promote re-joining of
163 complex 3D microglial processes with their associated cell bodies. All images were collected with
164 identical illumination settings and an exposure time of 18ms to minimize variation in capturing.

165 Image analysis was performed with Image-Pro Premier 9.2 software (Media Cybernetics
166 Inc, Rockville, MD). Regions of interest were drawn as needed for narrow regions, such as the
167 corpus callosum. Thresholds were established to detect positive IBA1-staining and the same
168 thresholds were applied uniformly across all images. Several images across the brain regions of
169 interest were used to establish a machine learning algorithm with Image-Pro's "smart selection"
170 feature to sort IBA1-positive cell bodies with attached processes, IBA1-positive independent
171 processes, and background (**Supp. Fig. 1**). The machine learning algorithm was then applied
172 across all images with data collected for IBA1-positive cells per mm², percent IBA1-positive
173 stained area, cell body to cell size ratio, and fractal dimension. Cell density and fractal dimension
174 were assessed using IBA1-positive cell bodies with attached processes. Cell body to cell size ratio
175 was calculated on each image as the sum of pixels from IBA1-positive cell bodies divided by the
176 sum of pixels from IBA1-positive cell bodies and IBA1-positive independent processes.

177 *Statistical Analysis*

178 The ARRIVE guidelines stipulate the importance of addressing clustering effects in litter-
179 based data (Sert et al., 2020). To appropriately assess variation between and within litters, we
180 created linear mixed models and conducted estimated marginal means (emmeans) pairwise
181 analysis—with litter identification codes assigned to each offspring as the random effect. These
182 models were used to analyze differences across fixed effects of maternal diet and postnatal age.
183 Sex was also included in the models, but the sample size was insufficient to report differences
184 across sex. Statistical analyses were conducted using R 4.3.1 with several packages: *lme4* to
185 construct the models, *lmerTest* to conduct Type III ANOVA with Satterhwaite's method, and
186 *emmeans* to conduct Tukey's post-hoc pairwise analyses. Hedges' g effect size analyses and
187 correction for small-sample bias were conducted with the *eff_size* function in the *emmeans*
188 package (Hedges, 1981). GraphPad Prism 9.5.1 was used to generate graphics. Results are reported
189 as group emmeans \pm standard error of the mean. For all analyses, $p < 0.05$ with $g > 1$ was considered
190 significant.

191 **Results**

192 *Growth characterization*

193 FGR-MNR total body weights were decreased 32% at birth compared with those of
194 controls (73.60 ± 1.80 g vs 109.46 ± 1.58 g, $p < 0.001$), but were only decreased 17% in the neonatal
195 groups at postnatal day 26 (256.71 ± 11.88 g vs 307.77 ± 10.06 g, $p < 0.01$), and with no difference in
196 the adult groups at postnatal day 110 (688.89 ± 27.06 g vs 688.95 ± 24.51 g, $p = 0.99$) (**Fig. 1A**). Brain
197 and liver weights of offspring were recorded at necropsy and normalized to total body weight.
198 FGR-MNR neonates (1.16 ± 0.05) exhibited marginally greater normalized brain weight, relative
199 to control neonates (1.14 ± 0.05) ($p = 0.61$), but catch-up growth had occurred by adulthood ($p = 0.95$)
200 (**Fig. 1B**). No differences in normalized liver weight were observed in neonates ($p = 0.72$) or adults
201 ($p = 0.96$) (**Fig. 1C**). Brain to liver ratios were calculated based on organ weights at necropsy. While
202 not significant, FGR-MNR neonates (0.29 ± 0.01) exhibited a marginally greater brain to liver ratio,
203 relative to control neonates (0.26 ± 0.01) ($p = 0.50$), with this relationship diminishing by adulthood
204 ($p = 0.7840$) (**Fig. 1D**).

205 *IBA1-positive cell count*

206 Total IBA1-positive cell count per mm^2 was collected for the CC, C, and PV, as a proxy
207 of microglial density. In the CC, control adults exhibited a reduced IBA1-positive cell count
208 relative to control neonates (130.28 ± 12.19 cells/ mm^2 vs 177.42 ± 12.40 cells/ mm^2 , $p < 0.05$). FGR-
209 MNR adults also exhibited a reduced IBA1-positive cell count relative to FGR-MNR neonates in
210 the CC (129.80 ± 13.07 cells/ mm^2 vs 172.82 ± 13.67 cells/ mm^2 , $p = 0.13$, *large g*=1.15), although not
211 significant. No differences in IBA1-positive cell count were observed across maternal diet or
212 postnatal age groupings in the C and PV. (**Fig. 2A**).

213 *Percent IBA1-positive stained area*

214 Percent IBA1-positive stained area was collected for the CC, C, and PV, as a proxy of total
215 microglial volume. Control adults exhibited increased percent IBA1-positive area relative to
216 control neonates in the CC ($5.37 \pm 0.32\%$ vs $4.17 \pm 0.32\%$, $p < 0.1$, *large g*=1.38), the C ($7.14 \pm 0.30\%$
217 vs $5.26 \pm 0.30\%$, $p < 0.001$), and the PV ($7.04 \pm 0.34\%$ vs $4.80 \pm 0.34\%$ $p < 0.001$). Similarly, FGR-
218 MNR adults exhibited increased percent IBA1-positive area relative to FGR-MNR neonates in the
219 C ($7.02 \pm 0.34\%$ vs $5.33 \pm 0.34\%$, $p < 0.01$) and trended towards this increase in the PV ($6.58 \pm 0.39\%$
220 vs $5.34 \pm 0.39\%$, $p = 0.13$, *large g*=1.93). No differences in IBA1-positive area were observed
221 between control and FGR-MNR cohorts at either age point in the white matter regions analyzed.
222 (**Fig. 2B**).

223 *Microglial cell body to cell size ratio*

224 Microglial cell body to cell size ratio was collected for the CC, C, and PV, as an indicator
225 of classical microglial activation. No differences in this ratio were observed within or between
226 control and FGR-MNR cohorts at either age point studied. (**Fig. 2C**).

227 *Microglial fractal dimension*

228 Microglia fractal dimension was collected for the CC, C, and PV, as an index of branching
229 complexity and total process number. In the CC, control adults exhibited increased fractal
230 dimension relative to control neonates ($1.18 \pm 0.01\%$ vs $1.15 \pm 0.01\%$, $p < 0.1$, *large g*=1.09), as did
231 the FGR-MNR adults relative to the FGR-MNR neonates ($1.18 \pm 0.01\%$ vs $1.15 \pm 0.01\%$, $p < 0.1$,
232 *large g*=1.19). Similarly in the PV, control adults exhibited increased fractal dimension relative to
233 control neonates ($1.21 \pm 0.01\%$ vs $1.17 \pm 0.01\%$, $p < 0.001$), as did the FGR-MNR adults relative to
234 the FGR-MNR neonates ($1.20 \pm 0.01\%$ vs $1.17 \pm 0.01\%$, $p < 0.05$). No differences in fractal
235 dimension were observed between control and FGR-MNR cohorts at either age point in the white
236 matter regions analyzed. (**Fig. 2D**).

237 **Discussion**

238 This study sought to determine whether FGR exacerbates microglial morphological
239 changes with aging in white matter regions of interest. Our findings highlight age-related changes
240 in white matter microglial morphology associated with neuroinflammation and neurodegeneration.
241 In the corpus callosum, we report a significant increase in branching complexity and a reduction
242 in microglial density with aging. In the cingulum and periventricular white matter, we have shown
243 significantly increased IBA1-positive percent area with aging, as a proxy of total microglial
244 volume. At the time points examined, FGR by total caloric MNR does not appear to exacerbate
245 microglial morphological changes with aging in the corpus callosum, cingulum, or periventricular
246 white matter.

247 To demonstrate the translatability of our guinea pig model to human FGR-MNR
248 pregnancies, we examined growth characterization data of offspring at birth, neonate, and young
249 adult stages of life. In human pregnancies, maternal malnourishment commonly results in
250 asymmetrically growth restricted newborns (Sharma et al., 2016). Our growth characterization
251 trends are consistent with previous reports that FGR by MNR in guinea pigs produces
252 asymmetrical growth restriction with postnatal catch-up growth—representative of maternal
253 malnourishment in humans (Elias et al., 2016; Kind et al., 2005). FGR-MNR offspring were born
254 with significantly reduced total body weight, relative to control. Our group has previously shown
255 significant increases in brain-liver ratios of FGR-MNR guinea pig fetuses at term, lending support
256 to our asymmetrical growth restriction model (Maki et al., 2019). By postnatal day 26, FGR-MNR
257 neonates were still significantly lighter and tended towards larger normalized brain weights
258 compared to controls. This trend captures asymmetrical brain-sparing known to occur in
259 malnourished human fetuses (Sharma et al., 2016). However, rapid catch-up growth was evident,

260 as FGR-MNR neonates exhibited normalized liver weights within control levels. By postnatal day
261 110, no differences remained in organ weights or total body weights between FGR-MNR and
262 control adults. The rapid postnatal catch-up growth we observed in FGR-MNR offspring is a
263 known risk factor in later-life neurodegenerative disease (Fowden et al., 2006; Miller et al., 2016).

264 The main finding of our study was considerable changes in microglial morphology across
265 the corpus callosum, cingulum, and periventricular white matter with aging. Microglial density
266 was significantly reduced in the corpus callosum of controls adults compared to neonates, and this
267 trend was also observed in FGR-MNR adults. The reduction in microglia within the corpus
268 callosum is likely due to increased microglial migration with aging. Microglia have been shown
269 to migrate via the corpus callosum towards spontaneous cortical microinfarcts associated with
270 neurodegeneration (Lubart et al., 2021). We also report increased percent IBA1-positive area in
271 the cingulum and periventricular white matter with aging, as a proxy of total microglial volume
272 (Kongsui et al., 2014). Interestingly, this increase occurred with no significant changes in
273 microglial cell body to cell size ratio. Thus, a uniform increase in microglial volume occurred,
274 with the cell body and processes growing proportionally. This suggests microglia increased in size
275 without fully transitioning to a classical ameboid inflammatory phenotype (Hovens et al., 2014).
276 Our finding is supported by previous studies reporting enhanced phagocytic activity of microglia
277 with aging in white matter tracts (Raj et al., 2017; Shobin et al., 2017). Lastly, we report increased
278 fractal dimension in the corpus callosum and periventricular white matter with aging. While the
279 number of processes leaving the microglia soma increases with age, the complexity of branching
280 may be unaffected (Karperien et al., 2013). Therefore, our observed age-related increase in
281 microglial fractal dimension can likely be attributed to an increase in primary processes.

282 While previous animal studies have reported white matter microglia-mediated
283 neuroinflammation in FGR offspring, differences in experimental design may explain our results.

284 With a porcine model of spontaneous FGR, microglia-mediated inflammation has been reported
285 in the periventricular white matter at postnatal days 1 and 4 (Wixey et al., 2019). Due to the
286 remarkable plasticity of the perinatal brain, it is possible that acute neuroinflammatory changes
287 present at birth could no longer be captured in microglial morphology at postnatal day 26 in our
288 guinea pig model. For example, upregulation of proinflammatory cytokines in the white matter—
289 such as tumor necrosis factor alpha, interleukin 1 beta, and interleukin 6—exhibited a marked
290 decline by postnatal day 4 in FGR piglets (Wixey et al., 2019). With a rat model of FGR by uterine
291 artery ligation, temporary changes in white matter microglia morphology have also been noted
292 (Olivier et al., 2007). In the cingulum, higher numbers of ameboid microglia were reported in FGR
293 offspring up to postnatal day 14, but this phenomenon diminished by postnatal day 21 (Olivier et
294 al., 2007). When comparing these outcomes to our study, it is important to consider differences in
295 CNS development timing between postnatal developers—such as rats—and prenatal developers—
296 such as guinea pigs and humans (Morrison et al., 2018). Nonetheless, this rat study could indicate
297 that ephemeral postnatal changes in microglial morphology may have been missed by the timing
298 of our neonatal guinea pig collection.

299 Our study has further elucidated white matter microglial morphological changes with aging
300 using modern machine learning analysis techniques. Specifically, our findings highlight age-
301 related increases in microglia migration, enhanced phagocytosis, and primary process number in
302 white matter regions of interest. The scope of our study was limited to select white matter regions
303 in neonates and young adults, and we speculate that microglial white matter pathologies arising
304 from FGR programming may only be observable perinatally and later in life (Gauvrit et al., 2022;
305 Olivier et al., 2007; Wixey et al., 2019). At the time points studied, we have demonstrated that
306 FGR by MNR in guinea pigs—a prenatal developer—does not accelerate changes to microglia
307 morphology in the corpus callosum, cingulum, or periventricular white matter.

308 **Author Statements:**

309

310 **Acknowledgements:**

311 The authors thank Dr. Lannette Friesen-Waldner and Mr. Brian Sutherland for their assistance
312 with animal support services.

313

314 **Competing interests:**

315 The authors declare there are no competing interests.

316

317 **Author Contributions (CRediT roles):**

318	Conceptualization:	BR & TR
319	Data curation:	TN
320	Formal Analysis:	TN
321	Funding acquisition:	BR & TR
322	Investigation:	TN, MC, & KN
323	Methodology:	TN, MC, KN, & SW
324	Project administration:	TR & BR
325	Resources:	BR
326	Software:	KN & TN
327	Supervision:	BR & TR
328	Validation	BR, KN, & TR
329	Visualization	TN
330	Writing – original draft	TN
331	Writing – review & editing	TR, KN, & BR

332

333 **Funding:**

334 This research was supported by the London Health Sciences Centre Women's Development
335 Council and the NeuroDevNet Centre of Excellence.

336

337 **Data availability:**

338 Data generated or analyzed during this study are provided within the published article and its
339 supplementary material.

References

Elias, A.A., Ghaly, A., Matuszewski, B., Regnault, T.R.H., Richardson, B.S., 2016. Maternal Nutrient Restriction in Guinea Pigs as an Animal Model for Inducing Fetal Growth Restriction. *Reprod. Sci.* 23, 219–227. <https://doi.org/10.1177/1933719115602773>

Fowden, A.L., Giussani, D.A., Forhead, A.J., 2006. Intrauterine Programming of Physiological Systems: Causes and Consequences. *Physiology* 21, 29–37. <https://doi.org/10.1152/physiol.00050.2005>

Gauvrit, T., Benderradj, H., Buée, L., Blum, D., Vieau, D., 2022. Early-Life Environment Influence on Late-Onset Alzheimer's Disease. *Front. Cell Dev. Biol.* 10, 834661. <https://doi.org/10.3389/fcell.2022.834661>

Hedges, L.V., 1981. Distribution Theory for Glass's Estimator of Effect size and Related Estimators. *J. Educ. Stat.* 6, 107–128. <https://doi.org/10.3102/10769986006002107>

Hovens, I., Nyakas, C., Schoemaker, R., 2014. A novel method for evaluating microglial activation using ionized calcium-binding adaptor protein-1 staining: cell body to cell size ratio. *Neuroimmunol. Neuroinflammation* 1, 82. <https://doi.org/10.4103/2347-8659.139719>

Kamphof, H.D., Posthuma, S., Gordijn, S.J., Ganzevoort, W., 2022. Fetal Growth Restriction: Mechanisms, Epidemiology, and Management. *Matern.-Fetal Med.* 4, 186. <https://doi.org/10.1097/FM9.0000000000000161>

Karperien, A., Ahamer, H., Jelinek, H.F., 2013. Quantitating the subtleties of microglial morphology with fractal analysis. *Front. Cell. Neurosci.* 7, 3. <https://doi.org/10.3389/fncel.2013.00003>

Kind, K.L., Roberts, C.T., Sohlstrom, A.I., Katsman, A., Clifton, P.M., Robinson, J.S., Owens, J.A., 2005. Chronic maternal feed restriction impairs growth but increases adiposity of the fetal guinea pig. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 288, R119–126. <https://doi.org/10.1152/ajpregu.00360.2004>

Kongsui, R., Beynon, S.B., Johnson, S.J., Walker, F.R., 2014. Quantitative assessment of microglial morphology and density reveals remarkable consistency in the distribution and morphology of cells within the healthy prefrontal cortex of the rat. *J. Neuroinflammation* 11, 182. <https://doi.org/10.1186/s12974-014-0182-7>

Levit, A., Regis, A.M., Gibson, A., Hough, O.H., Maheshwari, S., Agca, Y., Agca, C., Hachinski, V., Allman, B.L., Whitehead, S.N., 2019. Impaired behavioural flexibility related to white matter microgliosis in the TgAPP21 rat model of Alzheimer disease. *Brain. Behav. Immun.* 80, 25–34. <https://doi.org/10.1016/j.bbi.2019.02.013>

Lubart, A., Benbenisty, A., Har-Gil, H., Laufer, H., Gdalyahu, A., Assaf, Y., Blinder, P., 2021. Single Cortical Microinfarcts Lead to Widespread Microglia/Macrophage Migration Along the White Matter. *Cereb. Cortex N. Y. N* 1991 31, 248–266. <https://doi.org/10.1093/cercor/bhaa223>

Maki, Y., Nygard, K., Hammond, R.R., Regnault, T.R.H., Richardson, B.S., 2019. Maternal Undernourishment in Guinea Pigs Leads to Fetal Growth Restriction with Increased Hypoxic Cells and Oxidative Stress in the Brain. *Dev. Neurosci.* 41, 290–299. <https://doi.org/10.1159/000506939>

Miller, S.L., Huppi, P.S., Mallard, C., 2016. The consequences of fetal growth restriction on brain structure and neurodevelopmental outcome. *J. Physiol.* 594, 807–823. <https://doi.org/10.1113/JP271402>

Morrison, H., Young, K., Qureshi, M., Rowe, R.K., Lifshitz, J., 2017. Quantitative microglia analyses reveal diverse morphologic responses in the rat cortex after diffuse brain injury. *Sci. Rep.* 7, 13211. <https://doi.org/10.1038/s41598-017-13581-z>

Morrison, J.L., Botting, K.J., Darby, J.R.T., David, A.L., Dyson, R.M., Gatford, K.L., Gray, C., Herrera, E.A., Hirst, J.J., Kim, B., Kind, K.L., Krause, B.J., Matthews, S.G., Palliser, H.K., Regnault, T.R.H., Richardson, B.S., Sasaki, A., Thompson, L.P., Berry, M.J., 2018. Guinea pig models for translation of the developmental origins of health and disease hypothesis into the clinic. *J. Physiol.* 596, 5535–5569. <https://doi.org/10.1113/JP274948>

Nevin, C.L., Formosa, E., Maki, Y., Matushewski, B., Regnault, T.R.H., Richardson, B.S., 2018. Maternal nutrient restriction in guinea pigs as an animal model for studying growth-restricted offspring with postnatal catch-up growth. *Am. J. Physiol.-Regul. Integr. Comp. Physiol.* 314, R647–R654. <https://doi.org/10.1152/ajpregu.00317.2017>

Olivier, P., Baud, O., Bouslama, M., Evrard, P., Gressens, P., Verney, C., 2007. Moderate growth restriction: deleterious and protective effects on white matter damage. *Neurobiol. Dis.* 26, 253–263. <https://doi.org/10.1016/j.nbd.2007.01.001>

Raj, D., Yin, Z., Breur, M., Doorduin, J., Holtman, I.R., Olah, M., Mantingh-Otter, I.J., Van Dam, D., De Deyn, P.P., den Dunnen, W., Eggen, B.J.L., Amor, S., Boddeke, E., 2017. Increased White Matter Inflammation in Aging- and Alzheimer's Disease Brain. *Front. Mol. Neurosci.* 10, 206. <https://doi.org/10.3389/fnmol.2017.00206>

Safaiyan, S., Besson-Girard, S., Kaya, T., Cantuti-Castelvetri, L., Liu, L., Ji, H., Schifferer, M., Gouna, G., Usifo, F., Kannaiyan, N., Fitzner, D., Xiang, X., Rossner, M.J., Brendel, M., Gokce, O., Simons, M., 2021. White matter aging drives microglial diversity. *Neuron* 109, 1100-1117.e10. <https://doi.org/10.1016/j.neuron.2021.01.027>

Sert, N.P. du, Ahluwalia, A., Alam, S., Avey, M.T., Baker, M., Browne, W.J., Clark, A., Cuthill, I.C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S.T., Howells, D.W., Hurst, V., Karp, N.A., Lazic, S.E., Lidster, K., MacCallum, C.J., Macleod, M., Pearl, E.J., Petersen, O.H., Rawle, F., Reynolds, P., Rooney, K., Sena, E.S., Silberberg, S.D., Steckler, T., Würbel, H., 2020. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. *PLOS Biol.* 18, e3000411. <https://doi.org/10.1371/journal.pbio.3000411>

Sharma, D., Shastri, S., Sharma, P., 2016. Intrauterine Growth Restriction: Antenatal and Postnatal Aspects. *Clin. Med. Insights Pediatr.* 10, 67–83. <https://doi.org/10.4137/CMPed.S40070>

Sharman, M.J., Moussavi Nik, S.H., Chen, M.M., Ong, D., Wijaya, L., Laws, S.M., Taddei, K., Newman, M., Lardelli, M., Martins, R.N., Verdile, G., 2013. The Guinea Pig as a Model for Sporadic Alzheimer's Disease (AD): The Impact of Cholesterol Intake on Expression of AD-Related Genes. *PloS One* 8, e66235. <https://doi.org/10.1371/journal.pone.0066235>

Shobin, E., Bowley, M.P., Estrada, L.I., Heyworth, N.C., Orczykowski, M.E., Eldridge, S.A., Calderazzo, S.M., Mortazavi, F., Moore, T.L., Rosene, D.L., 2017. Microglia activation and phagocytosis: relationship with aging and cognitive impairment in the rhesus monkey. *GeroScience* 39, 199–220. <https://doi.org/10.1007/s11357-017-9965-y>

Wahl, D., Moreno, J.A., Santangelo, K.S., Zhang, Q., Afzali, M.F., Walsh, M.A., Musci, R.V., Cavalier, A.N., Hamilton, K.L., LaRocca, T.J., 2022. Nontransgenic Guinea Pig Strains Exhibit Hallmarks of Human Brain Aging and Alzheimer's Disease. *J. Gerontol. A. Biol. Sci. Med. Sci.* 77, 1766–1774. <https://doi.org/10.1093/gerona/glac073>

Welker, W., Johnson, J.I., Noe, A., 2010. Comparative mammalian brain collections: the domesticated guinea pig brain. *Major Natl. Resour. Study Brain Anat.* 2010.

Wixey, J.A., Lee, K.M., Miller, S.M., Goasdoue, K., Colditz, P.B., Tracey Bjorkman, S., Chand, K.K., 2019. Neuropathology in intrauterine growth restricted newborn piglets is associated with glial activation and proinflammatory status in the brain. *J. Neuroinflammation* 16, 5. <https://doi.org/10.1186/s12974-018-1392-1>

Zinni, M., Pansiot, J., Colella, M., Faivre, V., Delahaye-Duriez, A., Guillonneau, F., Bruce, J., Salnot, V., Mairesse, J., Knoop, M., Possovre, M.-L., Vaiman, D., Baud, O., 2021. Impact of Fetal Growth Restriction on the Neonatal Microglial Proteome in the Rat. *Nutrients* 13, 3719. <https://doi.org/10.3390/nu13113719>

Figures

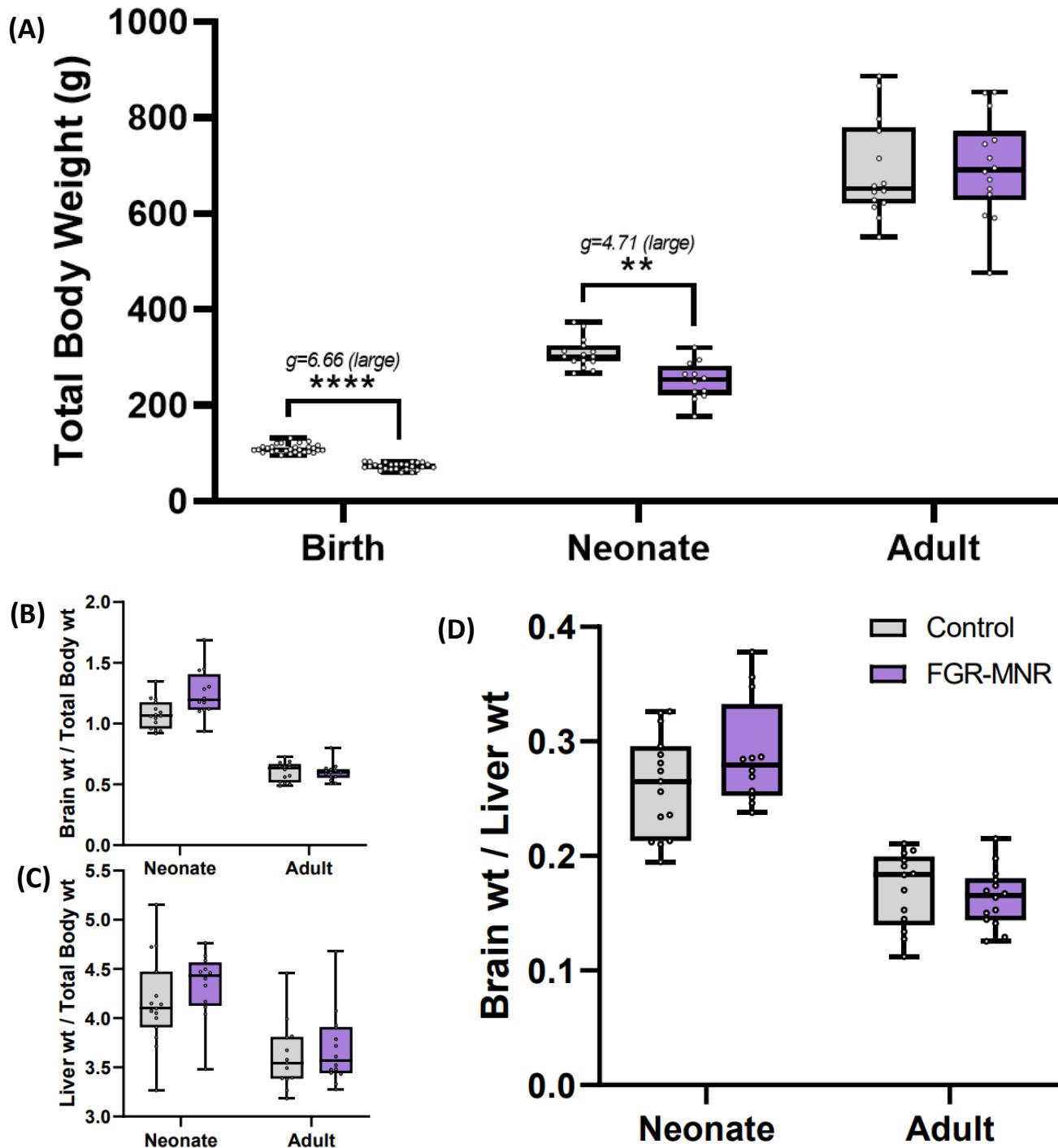
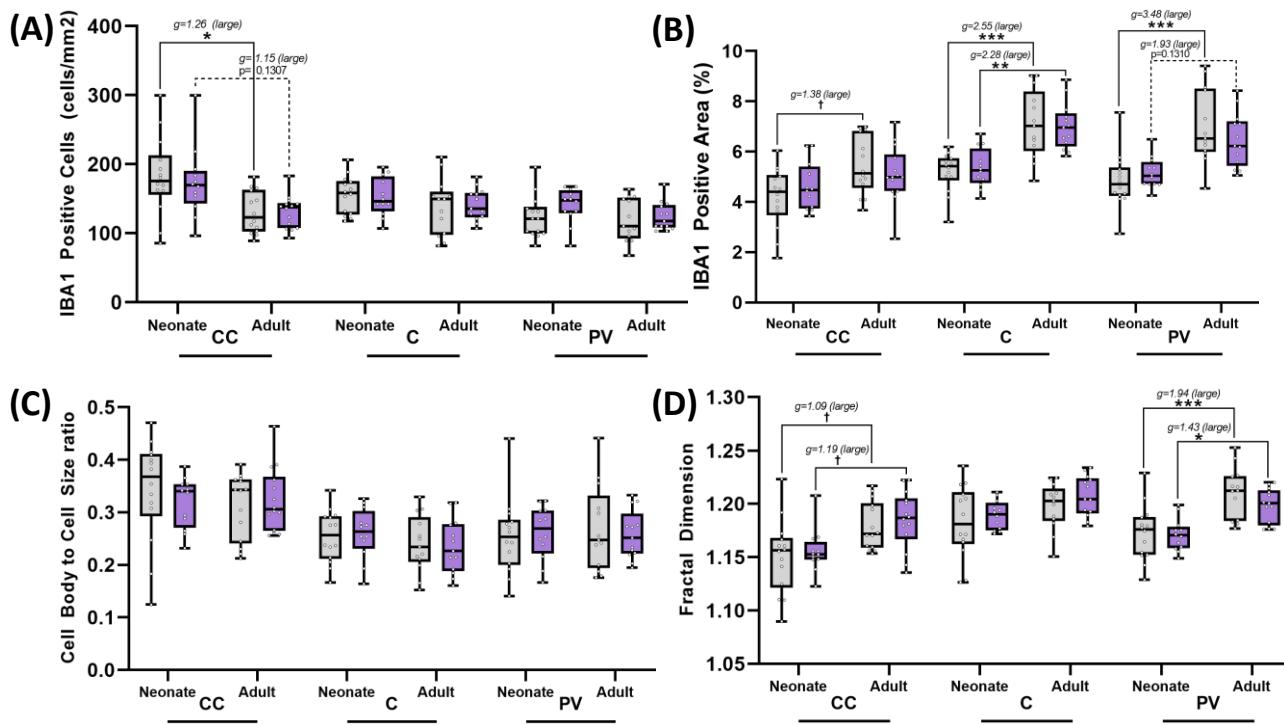



Fig. 1.

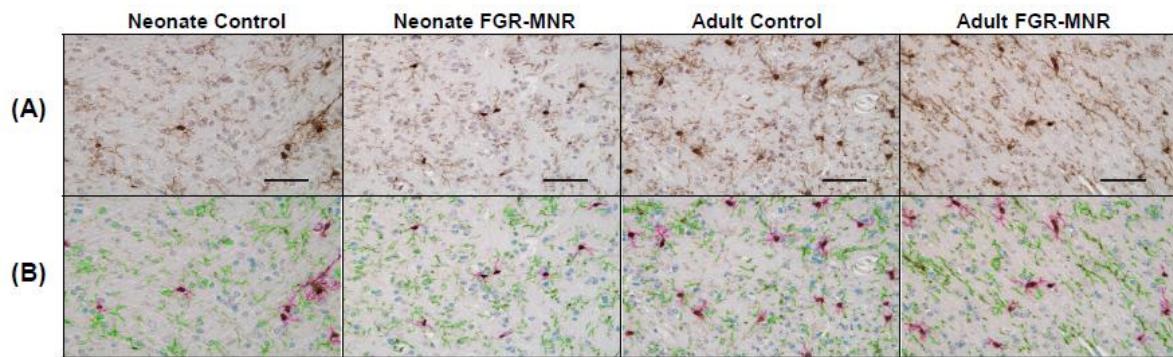

Fig. 2.

Figure Legends

Fig. 1. Maternal nutrient restriction produces asymmetrically growth restricted offspring, which exhibit postnatal catch-up growth. Total body weight (A), normalized brain weight (B), normalized liver weight (C), and brain-liver ratios (D) for control (grey) and maternal nutrient restriction (purple) guinea pig offspring. Data are presented as median, 1st and 3rd quartiles, and extrema. (**p<0.01, ****p<0.0001; Hedge's *g* effect sizes).

Fig. 2. Microglial morphology in the corpus callosum, cingulum, and periventricular white matter is altered with aging, but is not exacerbated by fetal growth restriction. Coronal brain sections were subject to IBA1-staining for microglial detection and analyzed by machine learning software. Normalized IBA1-positive cell count (A), percent IBA1-positive area (B), microglia cell body to cell size ratio (C), and microglia fractal dimension (D) for control (grey) and maternal nutrient restriction (purple) guinea pig offspring. Data are presented as median, 1st and 3rd quartiles, and extrema. CC = corpus callosum. C = cingulum. PV = periventricular white matter. (†p<0.1, *p<0.05, **p<0.01, ***p<0.0001; Hedge's *g* effect sizes).

Supplementary Material

Supp. Fig. 1. Machine learning sorting of microglial features. Coronal brain sections were subject to IBA1-staining for microglial detection and analyzed with ImagePro software. Thresholds were established to detect positive IBA1-staining and a machine learning algorithm was applied prior to quantification to sort microglial cell bodies with attached processes (pink), independent microglial processes (green), and background nuclei (cyan). Sorting methods were applied uniformly across all brain regions analyzed, with representative raw (A) and sorted (B) cingulum micrographs shown. Scale bar = 100 μ m.