

== REVIEW COMMONS MANUSCRIPT ==

IMPORTANT:

- Manuscripts submitted to Review Commons are peer reviewed in a journal-agnostic way.
- Upon transfer of the peer reviewed preprint to a journal, the referee reports will be available in full to the handling editor.
- The identity of the referees will NOT be communicated to the authors unless the reviewers choose to sign their report.
- The identity of the referee will be confidentially disclosed to any affiliate journals to which the manuscript is transferred.

GUIDELINES:

- For reviewers: <https://www.reviewcommons.org/reviewers>
- For authors: <https://www.reviewcommons.org/authors>

CONTACT:

The Review Commons office can be contacted directly at: office@reviewcommons.org

1 **Transcriptional landscapes underlying Notch-induced lineage**

2 **conversion and plasticity of mammary basal cells**

3
4 Candice Merle¹, Calvin Rodrigues¹, Atefeh Pourkhalili Langeroudi¹, Robin Journot¹, Fabian
5 Rost², Yiteng Dang^{2,3,4}, Steffen Rulands⁵, Silvia Fre¹

6
7 Corresponding author and lead contact: silvia.fre@curie.fr

9 **Affiliations**

10 ¹Institut Curie, Laboratory of Genetics and Developmental Biology, INSERM U934, CNRS
11 UMR3215, PSL Université Paris, Paris, France

12 ²Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany.

13 ³Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany

14 ⁴Center for Systems Biology, Dresden, Germany

15 ⁵Ludwig-Maximilians-Universität München, Arnold-Sommerfeld-Center for Theoretical
16 Physics, München, Germany.

18 **Abstract**

19 The mammary epithelium derives from multipotent mammary stem cells (MaSCs) that
20 progressively restrict their potency and engage into lineage commitment during embryonic
21 development. Although postnatal mammary progenitors are lineage-restricted and unipotent,
22 several lines of evidence have documented their extensive plasticity and ability to reactivate
23 multipotency in several non-physiological contexts. We have previously shown that ectopic
24 Notch1 activation in committed mammary basal cells, which never experience Notch activity
25 in homeostatic conditions, triggers a progressive cell fate switch from basal to luminal cell
26 identity in both the pubertal and adult mouse mammary gland. Here, we tested the conservation
27 of this mechanism in other glandular epithelia and found that constitutive Notch1 signaling also
28 induces a basal-to-luminal cell fate switch in adult cells of the lacrimal gland, the salivary gland,
29 and the prostate. Since cells do not undergo lineage transition synchronously and this switch is
30 progressive in time, we performed single cell transcriptomic analysis by SMART-Seq on index-
31 sorted mutant mammary cells at different stages of lineage conversion, to reveal the molecular
32 pathways underlying the fate transition. Combining single cell transcriptomics analyses with
33 assays in organoid cultures, we demonstrate that proliferation of basal mutant cells is

34 indispensable to convert them into luminal progenitors. We thus reveal the molecular
35 mechanisms and individual transcriptional landscapes controlling lineage conversion and
36 cellular plasticity of unipotent committed mammary cells *in vivo* with spatial and temporal
37 resolution. Given the strong implications of Notch signaling in cancer, these results also provide
38 important insights into the mechanisms that drive cellular transformation.

39

40 **Introduction**

41 The adult mammary gland is composed of two epithelial layers featuring two main cell types:
42 basal cells (BCs) in contact with the basement membrane and luminal cells (LCs) facing the
43 ductal lumen, which can be further subdivided in ER α ^{pos}/PR^{pos} cells (also called Luminal
44 Mature or LM) and ER α ^{neg}/PR^{neg} cells (often referred to as Luminal Progenitors or LP). It is
45 now well-established that this tissue is maintained by unipotent lineage-restricted progenitors
46 throughout adult life in homeostatic conditions, but these self-renewing committed cells retain
47 a high degree of plasticity, as they can revert to multipotency in several circumstances.

48 This was first observed in transplantation experiments, when adult unipotent mammary cells
49 displayed multilineage differentiation capacity and could generate a functional mammary gland
50 composed of both BCs and LCs (Rodilla et al., 2015; Shackleton et al., 2006; Stingl et al., 2006;
51 Van Keymeulen et al., 2011). Other experimental procedures involving the dissociation of BCs
52 and LCs, including when they are grown separately in 3D organoid conditions, have shown
53 reactivation of multipotency of BCs, that can also be induced by different types of epithelial
54 injury causing tissue regeneration and, importantly, by oncogene activation (Jamieson et al.,
55 2017; Jardé et al., 2016; Koren et al., 2015; Van Keymeulen et al., 2015). Moreover, recent
56 elegant *in vivo* experiments illustrated the capacity of BCs to generate LCs upon genotoxic
57 stress (Seldin and Macara, 2020) or LCs genetic ablation (Centonze et al., 2020), strongly
58 suggesting that LCs restrict the default multipotency of BCs. We have previously shown that
59 the binary fate choice between basal or luminal commitment is controlled by Notch signaling,
60 a master regulator of cell fate choices in most vertebrate and invertebrate tissues, which is both
61 necessary and sufficient for luminal fate specification in the mammary gland. Importantly, our
62 previous studies uncovered that, besides its essential role in controlling fate decisions of
63 embryonic multipotent mammary stem cells, constitutive and ectopic Notch activation in
64 committed adult BCs, which never experience Notch activity, can also “reprogram” their
65 lineage potential and induce their conversion into ER α ^{neg}/PR^{neg} luminal cells (Lilja et al., 2018).

66 The “reprogramming” capacity of mammary progenitors has important implications for cell
67 differentiation as well as transformation; given that the cell fate switch did not occur in all cells
68 at the same time, we set out to assess if the targeted BCs themselves transdifferentiate into LCs
69 or if they respond to Notch activation by giving rise to luminal daughter cells. To this aim, we
70 investigated the dynamics of the progressive lineage transition from basal to luminal fate to
71 understand how the Notch-imposed cell fate switch is mechanistically achieved and to reveal
72 the changes in transcriptional state of single Notch mutant cells *in vivo*, using two different Cre
73 promoters and single cell RNA sequencing of index-sorted mutant cells at different stages of
74 lineage transition. We found that the transcriptional changes associated with the transition from
75 basal to luminal fate are progressive in time, triggered by the initial decrease in basal markers
76 expression followed by the steady upregulation of luminal genes. Thanks to organoid cultures,
77 we could also establish that proliferation is essential for cell fate conversion to occur, ruling out
78 the possibility of a transdifferentiation event.

79

80 **Results**

81 *Ectopic Notch activation induces a cell fate switch in four different bi-layered epithelia*

82 We have previously shown that constitutive activation of Notch signaling through the ectopic
83 expression of the ligand-independent, intracellular portion of the mouse Notch1 receptor (in
84 R26-N1ICD-ires-nGFP gain-of-function mice) (Murtaugh et al., 2003) in mammary BCs,
85 targeted by two different BC-specific inducible Cre promoters, SMACre^{ERT2} and K5Cre^{ERT2}, is
86 sufficient to trigger a progressive switch in cell fate and eventually forces all mutant cells to
87 acquire a luminal Hormone Receptor^{neg} (HR^{neg}) identity (Lilja et al., 2018).

88 Importantly, the *in vivo* “reprogramming” of the initially targeted BCs to LCs happens
89 progressively over a long period of time (6 weeks), and nuclear GFP+ cells (nGFP^{pos}), reporting
90 Notch pathway activation, appear to transition through a phase resembling embryonic non-
91 committed MaSCs, as revealed by their co-expression of basal (K14) and luminal (K8) markers
92 (**Figure 1A-B**), prior to giving rise exclusively to fully committed luminal cells (**Figure 1A-B**
93 and **Figure S1A**). This cell fate transition happens in unipotent adult BCs, as demonstrated by
94 the exclusive labeling of α -SMA^{pos} BCs in control SMACre^{ERT2}/mTmG mice, tracing the fate
95 of targeted BCs and their progeny (**Figure S1B**).

96 Throughout the observed cell fate transition, hybrid cells co-expressing luminal and basal
97 markers can be scored by flow cytometry analysis as dispersed cells laying between the luminal
98 (EPCAM^{high}/Cd49f^{low}) and the basal (EPCAM^{low}/Cd49^{high}) gates (**Figure S1C, D**). The

99 proportion of cells transiting through this intermediate state is highest mid-way through the
100 lineage transition, around 3-4 weeks after Notch activation. Finally, the intermediate population
101 completely disappears after a 6-week chase, when all mutant nGFP^{pos} cells have become
102 luminal (**Figure 1B, Figure S1D**).

103 The Notch pathway is crucial for stem cell fate decisions in a variety of tissues. To assess the
104 conservation of the role of Notch on binary cell fate choices in other glandular epithelia, we
105 analyzed the plasticity and differentiation state of unipotent adult BCs induced to express
106 N1ICD by the SMACre promoter (SMACre^{ERT2}/N1ICD-nGFP) in the salivary gland and the
107 lacrimal gland, and by the K5Cre promoter (K5Cre^{ERT2}/N1ICD-nGFP) in the prostate.
108 Remarkably, 6 weeks after N1ICD-nGFP ectopic expression, we found that most nGFP^{pos} cells
109 had acquired a luminal identity also in the salivary and lacrimal gland, as well as in the prostate
110 (**Figure 1C-E**), whereas control mGFP^{pos} BCs maintained their unipotency in
111 SMACre^{ERT2}/mTmG mice or K5Cre^{ERT2}/mTmG mice in all examined tissues (**Figure S1E, F**).
112 It is noteworthy that, although the vast majority of the targeted cells indeed switched to a
113 luminal identity, we found a few mutant nGFP^{pos} salivary, lacrimal or prostate cells that
114 maintained a basal phenotype after a 6-week chase, as assessed by their expression of α -SMA
115 or K5. However, we decided not to further investigate the properties of these rare cells and we
116 cannot therefore ascertain if they would also eventually turn into LCs after a longer time.
117 The striking conservation of the phenotype induced by ectopic Notch activation in four adult
118 epithelia derived from different germ layers highlights the essential role of Notch signaling as
119 a broad determinant of luminal cell fate.

120

121 *Intermediate mammary cells feature a hybrid transcriptional signature*

122 The conspicuous robustness of the results we obtained using the same gain-of-function mutant
123 mice in four different adult tissues demonstrates the high degree of plasticity of lineage-
124 committed unipotent basal progenitors, that can readily change fate if homeostasis is perturbed,
125 as previously observed in organoids (Jamieson et al., 2017; Jardé et al., 2016), in transplantation
126 assays (Van Keymeulen et al., 2011) or, more recently, upon genotoxic agents exposure (Seldin
127 and Macara, 2020) and in genetic ablation experiments *in vivo* (Centonze et al., 2020).

128 To gain mechanistic insights into the observed Notch-imposed cell fate switch and reveal the
129 molecular pathways involved, we set out to decipher the properties of individual intermediate
130 mammary cells at single cell level, to capture discrete gene expression states that could
131 represent distinct differentiation trajectories. To this aim, we performed single cell RNA
132 sequencing (scRNAseq) by SMART-SeqV2 on index-sorted mammary BCs, intermediate cells

133 and LCs, both GFP^{neg} and GFP⁺, isolated from pubertal mammary glands of
134 SMACre^{ERT2}/N1ICD and K5Cre^{ERT2}/N1ICD mice, at different timepoints after Notch1
135 activation (1, 3, 4 and 6-week chase) (**Table 1**). Conditional expression of N1ICD was triggered
136 in SMA^{pos} or K5^{pos} BCs, to assess if these two basal-specific Cre drivers would target different
137 BCs characterized by distinct degrees of differentiation or specialization (Prater et al., 2014).
138 Comparison of BCs “reprogramming” with the two Cre lines indicated that any BC can lineage
139 convert to HR^{neg} LCs upon Notch ectopic activation, regardless of their differentiation status or
140 plasticity (**Figure S2A**).

141 After data pre-processing, including quality control to remove cells of low quality, a total of
142 474 cells were subject to further analyses. Unsupervised clustering identified 5 distinct cell
143 clusters that were composed of both mutant nGFP^{pos} and WT (nGFP^{neg}) cells. One cluster was
144 enriched for BCs, as confirmed by their high expression of *Krt5* and *Krt14*, and we called it
145 BAS cluster. Two clusters were enriched for luminal markers: one representing luminal HR^{neg}
146 cells, expressing *Krt8* and *Krt19*, that we termed HR^{neg} cluster, and the second one, mainly
147 composed of WT luminal mature cells, expressing *Esr1* and *Pgr* coding for the Estrogen
148 Receptor- α and Progesterone Receptors, named HR^{pos} (for Hormone Receptor positive) cluster.
149 Interestingly, we identified two distinct clusters, called INT1 and INT2, that represented the
150 intermediate cells that appear upon Notch activation (**Figure 2A-B**, **Figure S2B**).

151 We then calculated a basal and luminal score based on published transcriptomic profiles of adult
152 Mammary Epithelial Cells (MECs) (Kendrick et al., 2008) (**Figure 2C**, **Figure S2C**). As
153 expected, both INT1 and INT2 clusters presented mixed basal and luminal scores, suggesting a
154 hybrid signature characterized by the co-expression of luminal and basal markers.

155 Unsupervised cluster analysis of differentially expressed genes (DEGs) for each cluster (**Figure**
156 **2D**) revealed that the basal markers *Acta2*, *Sparc* and *Krt14* were strongly expressed in the BAS
157 cluster and were progressively reduced in INT1, whereas genes typically associated with
158 luminal identity, such as *Plet1*, *Kit* and *Aldh1a3*, were enriched in the HR^{neg} cluster and reduced
159 in INT2.

160 However, we could not identify genes exclusive of the INT1 cluster and only 7 genes were
161 specific of INT2. Moreover, these genes appeared to be upregulated only in few cells and did
162 not define most of the cells in this cluster. Among these genes, we found *Tacc3*, involved in the
163 stabilization of the mitotic spindle (Ding et al., 2017; Singh et al., 2014) and *Racgap1*, required
164 for cytokinesis (Lekomtsev et al., 2012). Importantly, we also identified a group of cells, mainly
165 belonging to the INT2 cluster, with a highly enriched cell cycle score (**Figure 2E**).

166 We also noticed that, although nGFP⁺ and nGFP⁻ LCs belonged to the same cluster, they
167 appeared segregated based on their GFP status, suggesting that, even if they were scored as LCs
168 by FACS, nGFP^{pos} mutant cells remained somehow different from fully differentiated LCs
169 (**Figure 2A**). Consistent with this, Principal Component Analysis (PCA) confirmed that mutant
170 LPs (GFP^{pos}) at 3 and 4 weeks of chase do not entirely overlap with WT LPs (GFP^{neg}) (**Figure**
171 **S3A**). To reveal the differences between GFP^{neg} and GFP^{pos} LPs, we performed UMAP analysis
172 exclusively within the LP cell cluster, and we could recognize two new clusters. Most GFP^{neg}
173 cells are associated to one cluster, that we named luminal cells, and the other cluster was mainly
174 composed of GFP^{pos} cells, that we called pre-luminal cells (**Figure S3B**). These two clusters
175 are mainly distinguished by the time after N1ICD activation, as cells seem to acquire a pre-
176 luminal identity at 1, 3 and 4 weeks and a more complete luminal identity after 6 weeks (**Figure**
177 **S3C**). Although well-established luminal markers, such as *Krt18* and *Epcam*, were similarly
178 expressed by these two clusters, other luminal genes, like *Trf* and *Clic6*, presented very low
179 levels of expression in the pre-luminal cluster (**Figure S3D**), corroborating the notion that these
180 cells, identified as luminal cells by cell sorting (based on EPCAM^{high} expression), have not yet
181 entirely acquired a luminal identity.

182 Based on our computed basal and luminal scores and on the list of DEGs, the two clusters of
183 intermediate cells expressed a mixed gene set between luminal and basal genes, with INT1
184 more closely related to the BAS cluster and INT2 more luminal, suggesting a progressive
185 transcriptional switch from a basal to a luminal differentiation program.

186 Given that several single cell transcriptomic studies described a population of cells co-
187 expressing basal and luminal markers (often called hybrid cells) in embryonic mammary glands
188 (Giraddi et al., 2018; Pal et al., 2021; Wuidart et al., 2018) or in response to LCs ablation
189 (Centonze et al., 2020), we wondered if the INT clusters we identified in our study reflected the
190 presence of cells that reactivated embryonic or regenerative programs typical of multipotent
191 MaSCs. To interrogate this, we compared our intermediate cells with hybrid cells identified in
192 published datasets using Label Transfer from the Seurat package (Stuart et al., 2019), a variant
193 of integration which allows the transfer of cluster labels from a reference dataset to a query
194 dataset. The scRNAseq profile of mammary cells published by Wuidart and colleagues
195 (Wuidart et al., 2018) comprised adult BCs and LCs, as well as “Embryonic Multipotent
196 Progenitors” (EMPs) (CD49f^{high}/Lgr5-GFP^{high}) isolated from mammary tissue at embryonic
197 day 14 (E14). EMPs co-expressed genes typical of BCs and LCs, but they also presented
198 specific genes that were defined as the EMPs signature. By integrating our dataset with the
199 Wuidart *et al.* dataset, we found, as expected, that the basal cell cluster (BAS) as well as the

200 HR^{neg} and HR^{pos} clusters overlapped with the same adult cell types identified in that study
201 (**Figure S4A**). Of interest, the INT1 and EMPs clusters co-localized in the PCA plots, validating
202 their hybrid signature, whereas INT2 appears as a separate cluster that was not identified by
203 Wuidart and colleagues. Using label transfer with Wuidart *et al.* as a reference and visualizing
204 the transferred labels with an alluvium plot, we found that the INT1 cluster is associated with
205 both the BAS and HR^{neg} clusters whereas INT2 is almost entirely linked to the HR^{neg} cluster
206 and does not resemble to the BAS cluster (**Figure S4B**). To our surprise, however, this
207 comparative analysis indicated that the EMPs signature was not specifically expressed in INT1
208 or INT2 clusters (**Figure S4C**). This comparative analysis indicated that the intermediate cells
209 that we identified in our dataset do not necessarily revert to an embryonic multipotent
210 progenitor state similar to the EMPs sequenced at embryonic day E14 by Wuidart and
211 colleagues.

212 We then integrated our dataset with the sequencing results from Centonze *et al.* (Centonze et
213 al., 2020), who performed scRNAseq of adult BCs and LCs following genetic ablation of a
214 fraction of LCs *in vivo*. This genetic intervention induced reactivation of multipotency in BCs
215 and the appearance of a population of hybrid cells (referred to as “Hybrid”) showing co-
216 expression of basal and luminal markers. PCA of these integrated datasets indicated that our
217 INT1 cluster closely integrates with the Hybrid cells and partially overlaps with the adult BAS
218 cluster, whereas, once again, the INT2 cluster represent a separate cluster that shares lower
219 resemblance with hybrids cells sequenced by Centonze and colleagues (**Figure S4D**). The
220 analysis of the same dataset using the alluvium plot representation confirmed that our INT1
221 cluster is more transcriptionally similar to BAS and Hybrid cells from Centonze *et al.*, whereas
222 INT2 cells appear more closely related to HR^{neg} cells (**Figure S4E**).

223 This comparative *in silico* analysis suggests that the INT1 cluster represents a hybrid
224 transcriptional cell state in between basal and luminal lineages, similarly to the Hybrid cluster
225 reported by Centonze *et al.* On the contrary, the INT2 cluster is uniquely found upon Notch
226 activation and, as such, it may represent a distinctive cluster, possibly more related to committed
227 luminal cells.

228 In conclusion, the integration of our single cell profiles with published datasets indicates that
229 the intermediate cells that appear upon Notch ectopic activation, although featuring a mixed
230 signature, are different from embryonic multipotent MaSCs, and consequently they represent
231 an adult hybrid state, likely denoting a transiting stage between BCs and LCs.

232

233

234 *Transcriptional landscapes underlying the progressive lineage transition from BCs to LCs*

235 To examine the gradual transcriptional changes that occur during the cell fate switch from BCs
236 to LCs, we then performed a slingshot trajectory analysis within the PCA space, denoting the
237 BAS cluster as the origin. Interestingly, we observed a forked pattern presenting 2 separate
238 trajectories (**Figure 3A**). Both trajectories passed through the INT1 and INT2 clusters, but one
239 path terminates in the HR^{neg} cluster (Trajectory 1) while the other ends with the HR^{pos} cluster
240 (Trajectory 2). The divergence of the two trajectories was observed around the INT2 cluster,
241 suggesting that the two luminal identities are specified at the latest intermediate stage.

242 Given that Notch1 activity is restricted to ER α ^{neg}/PR^{neg} luminal cells and that the cell fate
243 switch induced by Notch activation eventually converts the targeted BCs exclusively into
244 ER α ^{neg}/PR^{neg} LCs, we then focused our analysis on trajectory 1 (BAS to HR^{neg}). For this, we
245 used Tradeseq, which performs Generalized Additive Models (GAM) fitting to the gene
246 expression variation along a pseudotime, detecting genes which significantly vary along the
247 pseudotime. During the transition from BAS to HR^{neg} clusters, we observed the previously
248 detected trend of progressive decrease in expression of classical basal markers, such as *Acta2*
249 and *Krt5*, and gradual increase in luminal gene expression, including luminal markers like
250 *Krt18* and *Fcgbp* (**Figure 3B, Figure S5A**). In general, most genes followed a trend of constant
251 increase or decrease of expression during the progressive switch from basal to luminal cell
252 identity. Along pseudotime, we noticed that the first event detectable at the transcriptional level
253 consists in the downregulation of basal genes, as we had previously found in bulk RNAseq
254 experiments (Lilja et al., 2018), and this is associated with cells belonging to the INT1 cluster.
255 Later on along the pseudotime, the expression of luminal markers kicks in, in cells belonging
256 to the INT2 cluster, which present co-expression of several genes typical of either BCs or LCs,
257 such as *Krt19* and *Cldn3*, most likely corresponding to the K14/K8 double positive cells that
258 we observed by immunostaining (**Figure 1A**) (Lilja et al., 2018). Finally, the last step of the
259 transition is characterized by the complete loss of basal genes and the steady increase of
260 expression of luminal lineage genes (**Figure S5A**).

261 The pseudotime analysis we performed clearly indicates the progressive nature of the lineage
262 transition induced by ectopic Notch1 activation, characterized by continuous and gradual
263 transcriptional changes underlying the sequential change in cell identity. We thus conclude that
264 lineage conversion requires a stepwise and asynchronous change in transcriptional programs,
265 with some basal genes downregulated early and others that take a longer time to be repressed.
266 For example, the gene *Hmcn1*, encoding the immunoglobulin superfamily member Hemicentin 1
267 and the smooth muscle myosin heavy chain *Myh11*, a well-described marker of the basal lineage

268 (Prater et al., 2014), are among the earliest basal genes to be downregulated, whereas the typical
269 basal cytokeratins *Krt14* and *Krt5* decrease in expression later (**Figure 3C**). The same is true
270 for acquisition of a luminal identity, with genes such as *Krt19* and *Cldn3* that are upregulated
271 very early during the transition, and others, like *Ltf* and *Thsd4*, whose upregulation is only
272 observed toward the end of the transition in pseudotime (**Figure 3C**).
273 This temporal analysis along the pseudotime indicates that the transition from basal to luminal
274 identity is a long and progressive process, involving the initial repression of basal genes, and
275 subsequently the gradual activation of expression of luminal genes.
276

277 *Gene regulatory network analysis uncovers the molecular signatures of transitioning cells*
278 To further capture the regulatory mechanisms at work during the cell fate switch, and to identify
279 potential transcriptional nodes that could represent general regulators of cell plasticity, we then
280 performed SCENIC analysis on our dataset. The SCENIC algorithm examines the activity of
281 transcription factor regulons, consisting of transcription factors and their targets, within
282 individual cells (Aibar et al., 2017). We used the Regulon Specificity Score (RSS) to identify
283 regulons showing enriched activity in each cell cluster. We observed, as predicted, elevated
284 activity of the Progesterone Receptor (*Pgr*) regulon in HR^{pos} cells and of *Foxc1* in HR^{neg} luminal
285 progenitors, consistent with a previous report (Sizemore et al., 2013) (**Figure 3D**). Among the
286 top 50 regulons enriched in cluster INT1, we could not pinpoint any that was exclusive for this
287 cluster and was not shared with other clusters, and most of these regulons were found in both
288 INT1 and BAS clusters, indicating a strong similarity of INT1 cells with basal cell identity
289 (**Figure 3E**). Likewise, most of the regulons enriched in cluster INT2 were shared with the
290 HR^{neg} cluster. This analysis corroborates our findings indicating that the early steps of lineage
291 switch involve suppression of basal regulons, such as *Trp63* and *Trp73*, followed by the steady
292 and progressive increase of activity of luminal-specific regulons, such as *Jun* or *Stat6* (**Figure**
293 **S5B**). Consistent with our results, when we analyzed DEGs corresponding to each cluster, we
294 could not identify regulons that would be unique INT1 cells. We could however find 3 regulons,
295 *Brcal*, *E2f8* and *E2fl*, which were specific to INT2 cells, and these are all linked to elevated
296 proliferation. Interestingly, these regulons are specifically enriched in highly proliferative cells
297 belonging to the INT1, INT2 and HR^{neg} clusters (**Figure S5C**).

298 This analysis suggests that the lineage conversion involves activation of a proliferative
299 signature, particularly relevant in cells belonging to the INT2 cluster, for mutant cells to
300 complete the fate transition and engage into the transcriptional program characteristic of
301 luminal cells.

302 *Proliferation is indispensable for switching cell identity*

303 The scRNASeq analysis on individual mutant cells undergoing the cell fate transition allowed
304 us to identify a group of cells, mainly belonging to the INT2 cluster, that presents a high cell
305 cycle score and an upregulated activity of regulons linked with active proliferation. In addition,
306 we have triggered Notch activation both at puberty and in adult mice and found that adult
307 mammary cells take much longer to complete the transition from basal to luminal identity.
308 While induction before puberty (at postnatal day P21) results in all mutant nGFP^{pos} cells to
309 become LPs within 6 weeks, in adult mice, where cell divisions are less frequent, the complete
310 switch is achieved in 10 weeks (data not shown). Based on these results, we formulated the
311 hypothesis that the switch in cell identity does not simply represent a transdifferentiation event,
312 bypassing cell division, but rather requires actively proliferating cells that respond to Notch
313 activation by giving rise to luminal daughter cells.

314 In order to experimentally test if proliferation was required for the transition from BCs to LCs
315 induced by ectopic Notch1 activation, we thus implemented the culture of 3D mammary
316 organoids (Charifou et al., 2021; Jardé et al., 2016). First, we established that this *in vitro* system
317 was suitable to study the cell fate switch, by demonstrating that WT cells derived from the adult
318 mammary epithelium maintain their unipotent behavior in the organoid culture conditions
319 (**Figure S6A**). Indeed, lineage tracing of WT BCs in organoids, using SMACre^{ERT2}/mTmG
320 mice (Muzumdar et al., 2007), revealed that exclusively basal daughter cells were derived from
321 the initially labelled BCs and were therefore marked by our lineage tracer membrane mGFP.
322 Importantly, upon *in vitro* Notch1 activation via 4-hydroxitamiflofen (4-OHT) administration to
323 the organoid medium, we could recapitulate the progressive transition of mutant nGFP^{pos} cells
324 from the basal to the luminal lineage, correlated with increased expression of K8 and loss of α -
325 SMA, robustly reflecting the data acquired *in vivo* (**Figure 4A**). Remarkably, a complete cell
326 fate switch in organoids could be achieved within only 6 days after induction of N1ICD
327 expression (**Figure S6B**). Thus, the organoid system allows us to induce a rapid cell fate switch,
328 much faster than *in vivo*, and to target more cells, such that some organoids were exclusively
329 composed of luminal nGFP^{pos} cells 6 days after Cre induction (**Figure 4A**).

330 Our *in vivo* data, corroborated by the single cell transcriptional analysis at different time points
331 after Notch activation, demonstrated that the lineage transition is asynchronous, with some cells
332 switching to a luminal fate more rapidly than others, thus indicating a heterogeneous
333 competence of different targeted BCs to readily respond to Notch activation. Given the fact that
334 resting adult mammary cells take longer to switch than proliferating pubertal cells and that
335 instead organoids take less time, we then investigated the involvement of proliferation in

336 dictating the differential readiness of BCs to transition towards a luminal fate. Validating our
337 hypothesis, pharmacological block of proliferation in organoids, by supplementing the medium
338 with either Aphidicolin, an inhibitor of DNA polymerase, or U0126, an inhibitor of MAPK
339 activation, confirmed by Edu staining (**Figure S6C-D**), resulted in a complete arrest of the cell
340 fate switch (**Figure 4B**), contrary to DMSO-treated control organoids, where the lineage
341 transition of mutant nGFP^{pos} cells was completed within 6 days. To confirm that the observed
342 block of cell fate switch was indeed directly associated with proliferation arrest, we then
343 removed Aphidicolin after 6 days of treatment. Four days after washout, we found that 53% of
344 the nGFP^{pos} cells re-entered the fate transition program and became luminal within 6 days
345 (**Figure 4C, D**). It is noteworthy that the heterogeneous behavior of mutant nGFP^{pos} cells could
346 be observed even within the same organoid, with some mutant cells readily switching to luminal
347 fate upon aphidicolin washout and others more refractory to enter the lineage transition (**Figure**
348 **4C, D**). This experiment demonstrated that the arrest in cell fate switch can be reversed, and
349 that proliferation is an obligatory step for lineage conversion.

350 We then assessed the temporal dynamics of the fate transition in organoids, and for this we used
351 SMACre^{ERT2}/mTmG/N1ICD compound mice, allowing us to track mutant cells following the
352 fluorescence of membrane-tagged GFP (mGFP from the mTmG allele) in real time. In fact, the
353 nGFP expressed with the N1ICD allele is not detectable by live microscopy, as it requires
354 immunostaining with anti-GFP antibodies. In this experimental setting, we could indeed
355 identify and track by time-lapse microscopy mGFP^{pos} cells, initially localized in the basal
356 compartment, that enter cell cycle and subsequently move to a luminal internal position (**Figure**
357 **5A**). Some mGFP^{pos} cells instead remained in the basal compartment after mitosis, undoubtedly
358 representing WT BCs that only floxed the mTmG reporter but not the more refractory N1ICD
359 allele (**Figure 5B**). Given the observed lack of complete overlap between mGFP^{pos} cells (from
360 the neutral mTmG allele) and N1ICD-expressing mutant cells, we performed immunostaining
361 for the Notch1 direct target Hes1 and confirmed that all mGFP^{pos} cells that converted to a
362 luminal identity were indeed mutant, whereas the ones that remained BCs did not present Notch
363 activation, as assessed by Hes1 protein expression (**Figure 5C**).

364 These results demonstrate that the lineage switch induced by Notch1 is achieved through a
365 progressive change in cell identity, whereby mutant cells transit through an intermediate
366 metastable state, that requires their capacity to enter mitosis.

367

368

369 **Discussion**

370 We report here that Notch signaling is a gatekeeper of luminal cell fate and that this critical role
371 of dictating binary cell fate choices is conserved in several tissues, as demonstrated by the fact
372 that ectopic Notch1 activation in committed adult BCs reprograms them toward a luminal
373 identity in four different glandular epithelia. Importantly, we observed both *in vivo* and in
374 organoids that BCs ectopically induced to activate Notch signaling rapidly move towards the
375 ductal lumen, while acquiring luminal characteristics, indicating that intrinsic signals dictate
376 cell fate, leading to positional changes and rearrangements of cells within bi-layered branched
377 epithelia. Future studies will be required to probe if Notch activity directly influence cell
378 position and movements or if other factors act on cell dynamics and contribute to establish the
379 definitive commitment toward a luminal cell fate.

380 We demonstrate here that the transition from basal to luminal state is achieved through a
381 progressive transcriptional switch, triggered by the initial downregulation of basal genes,
382 followed by upregulation of luminal differentiation programs. These two cellular states are not
383 exclusive, as demonstrated by the presence of hybrid cells co-expressing luminal and basal
384 markers (K14^{pos}/K8^{pos} cells). While the presence of hybrid cells has been reported in several
385 contexts and it is believed to reflect the remarkable cellular plasticity of mammary BCs, it was
386 not known that proliferation is a mandatory step to induce this intermediate metastable cell state
387 and to accomplish the lineage switch to LCs. These findings indicate that adult mammary BCs,
388 when forced to activate Notch signaling and change fate, do not undergo transdifferentiation,
389 but rather that they are reprogrammed to a plastic state that, despite their initial unipotency,
390 enables them to give rise to LCs, thus alters their differentiation potential independently of their
391 position within the tissue. Mutant BCs appear to transition through an intermediate transient
392 phase of co-expression of basal and luminal markers before attaining a luminal identity and
393 eventually giving rise exclusively to fully ‘reprogrammed’ LCs. We show that BCs initially
394 reduce the expression of basal genes, and then they enter a state of active proliferation, which
395 results in the generation of luminal daughter cells. This behavior reflects their extensive
396 plasticity and does not necessarily require Notch activity, since WT BCs induced to reactivate
397 bipotency by LCs genetic ablation, also require proliferation to give rise to new luminal
398 daughters, as shown by the fact that decreasing proliferation using a CDK1 inhibitor or by p21
399 overexpression in mammary organoids impaired BCs multipotency (Centonze et al., 2020). The
400 hybrid cell state, characterized by co-expression of basal and luminal genes within the same
401 cell, can also be found in breast cancer and it is often associated to a multipotency state (Van

402 Keymeulen et al., 2015; Koren et al., 2015). However, the continuous expression of active
403 Notch1 in our model prevents the maintenance of multipotent cells since cell differentiation is
404 biased toward a luminal fate and eventually all mutant cells become HR^{neg} progenitors.
405 Differentiation and cell cycle are usually two cellular anti-correlated processes. However, the
406 ectopic activation of Notch1 in differentiated BCs could induce the expression of cytokine-
407 related cell cycle genes, like CDK1 (Ronchini and Capobianco, 2001), and at the same time
408 activate transcription factors related to luminal differentiation, that we observed through the
409 early activation of Jun or Foxi1, or recruit chromatin modifiers that could potentially tilt the
410 balance of activation/repression on bivalent lineage promoters.
411 We report here that ectopic Notch activation results in the reprogramming of BCs into HR^{neg}
412 progenitors. Given that *in vivo* Notch activation in BCs is mosaic, we do not observe an overt
413 phenotype at the tissue level, since WT BCs that escaped tamoxifen induction can compensate
414 for the mutant BCs that are lost to give rise to LCs. However, in organoids we could document
415 the clonal expansion of mutant N1ICD-expressing LCs, that appear to gain a competitive
416 advantage and eventually can form organoids composed exclusively of mutant nGFP^{pos} luminal
417 cells (Fig. 4A, lower raw). Even if these mutant cells cluster close to WT LCs by UMAP
418 analysis (**Figure 2A**), it is well established that Notch gain-of-function mice can form
419 mammary tumours (Bouras et al., 2008; Callahan and Smith, 2000; Diévert et al., 1999). Indeed,
420 deregulated Notch activation has been shown to induce mammary carcinomas (Diévert et al.,
421 1999) and to affect human mammary cell transformation (Stylianou et al., 2006), stem cell
422 maintenance (Harrison et al., 2010) and to be associated with poor outcome in breast cancer
423 patients (Reedijk et al., 2005). Moreover, we found that constitutive Notch1 activation both
424 when targeted to all mammary cells (with MMTV-Cre) and when restricted to HR^{neg} (with
425 N1Cre^{ERT2} mice) results in pregnancy-dependent mammary hyperplasia (our unpublished
426 observations). Of interest, our preliminary analyses suggest that the LPs generated by ectopic
427 Notch1 activation in BCs (with both SMACre^{ERT2} and K5Cre^{ERT2}) are also susceptible to
428 transformation, and they promote the growth of hyperplastic lesions upon successive rounds of
429 lactation and involution. These results carry important implications in breast cancer, revealing
430 that Notch signaling is not only required for specifying luminal progenitor cells in the normal
431 mammary gland, but that sustained and aberrant Notch activation in differentiated and lineage-
432 committed cells has the potential to promote the appearance of mammary tumors, given its
433 paramount role in the control of the delicate equilibrium between differentiation and
434 proliferation that is necessary for healthy tissue homeostasis. These observations reinforce the
435 concept that the mechanistic processes through which stem cells commit to a particular

436 differentiation path mirror those hijacked by oncogenes to trigger cellular transformation across
437 various tissues (Blanpain and Fuchs, 2014). Therefore, unraveling these mechanisms is crucial
438 for better comprehending the genesis of cancer.

439 **Material and Methods**

440

441 *Mice*

442 SMA-Cre^{ERT2} (Wendling et al., 2009) and K5-Cre^{ERT2} (Indra et al., 1999) were crossed with a
443 conditional gain-of-function Notch1 mutant mouse (Rosa-N1ICD-IRES-nGFP) (Murtaugh et
444 al., 2003) or with the double fluorescent reporter Rosa26^{mT/mG} (Muzumdar et al., 2007).
445 Reporter expression was induced by intraperitoneal injection of tamoxifen (1mg/10g of weight)
446 at postnatal day P21.

447

448 *Ethics Statement*

449 All studies and procedures involving animals were in agreement with the recommendations of
450 the European Community (2010/63/UE) for the Protection of Vertebrate Animals used for
451 Experimental and other Scientific Purposes. Approval was provided by the ethics committee of
452 the French Ministry of Research (reference APAFIS #34364-202112151422480). We comply
453 with internationally established principles of replacement, reduction, and refinement in
454 accordance with the Guide for the Care and Use of Laboratory Animals (NRC 2011).
455 Husbandry, supply of animals, as well as maintenance and care in the Animal Facility of Institut
456 Curie (facility license #C75-05-18) before and during experiments fully satisfied the animal's
457 needs and welfare. All mice were housed and bred in a specific-pathogen-free (SPF) barrier
458 facility with a 12:12 hr light-dark cycle and food and water available *ad libitum*. Mice were
459 sacrificed by cervical dislocation.

460

461 *Mammary gland dissociation and cell sorting*

462 Mammary glands were harvested and digested with collagenase (Roche, 57981821, 3mg/ml)
463 and hyaluronidase (Sigma, H3884, 200U/ml) for 90min at 37°C under agitation. Following
464 washes, cells were dissociated with Trypsin for 1min, dispase for 5min (200U/ml) and DNaseI
465 (D4527, Sigma-Aldrich, 200U/ml) and then filtered through a 40µm cell strainer to obtain a
466 single cell preparation. Cells were incubated for 30min with the following antibodies in 1:100
467 concentration: APC anti-mouse CD45 (Biolegend), APC anti-mouse Ter119 (Biolegend), APC
468 anti-mouse CD31 (Biolegend), PE anti-mouse Epcam (Biolegend), APC-Cy7 anti-mouse
469 CD49f (Biolegend). Single cell preparation was resuspended in flow buffer containing PBS,
470 EDTA 5mM, BSA 1%, FBS 1% and DAPI. Dead cells (DAPI^{pos}) and Lin^{pos} non-epithelial cells
471 were excluded before analysis using FACS ARIA flow cytometer (BD). The results were

472 analyzed using FlowJo software. Single sorted cells were deposited in 96-well plates containing
473 SUPERase-In RNase Inhibitor (20U/ μ l, Sigma, AM2694), 10% Triton X-10 and DEPC-treated
474 H₂O to library preparation using Smart-Seq2 protocol.

475

476 *Immunofluorescence on OCT sections*

477 Mammary, salivary and lacrimal glands and prostates were harvested and fixed at room
478 temperature in PFA 4% for 1h. Tissues were incubated for 3 days at 4°C in sucrose 30% and
479 embedded in Optimal Cutting Temperature (OCT). Immunostainings were performed with
480 10 μ m sections. Antibodies used were rabbit anti-GFP (Institut Curie antibody platform,
481 1/300e), rat anti-K8 (TROMA-1, DSHB, 1/300e), chicken anti-K14 (906004, Biolegend,
482 1/500e), anti- α SMA coupled with AF488 (clone 1A4, F3777, Sigma-Aldrich) and chicken anti-
483 K5 (905901, BioLegend). Fluorochrome-conjugated secondary antibodies included Cy5-
484 conjugated anti-rat IgG (A102525, Invitrogen), Cy3-conjugated anti-rabbit IgG (A10520,
485 Invitrogen) AlexaFluor488 anti-chicken IgG (A11039, Invitrogen) and AlexaFluor 488-
486 conjugated anti-rabbit IgG (A21206, Invitrogen).

487

488 *Organoids culture*

489 Primary mammary organoids were prepared from 2 to 3-months-old female mice. Mammary
490 glands were collected, pooled and chopped to approximately 1-mm³ pieces and proceed to
491 enzymatic digestion with 2 mg/mL collagenase A and 2 mg/mL trypsin for 30min at 37°C under
492 agitation. Then, pieces were exposed to five rounds of differential centrifugation at 500g for 15
493 seconds in order to remove stromal cells. The organoids were resuspended in DMEM/F12
494 supplemented with 1 \times insulin–transferrin–selenium supplement, 100 U/mL of penicillin and
495 100 μ g/mL of streptomycin.

496 Organoids were resuspended in Matrigel® (Corning) and plated at 200 organoids for 30 μ l of
497 Matrigel in 24-well plate. Matrigel drops were covered by culture medium and incubated at
498 37°C with 5% CO₂. Activation of N1CD was triggered by 4-OHT (200nM) added to culture
499 medium for 24h. To block proliferation U0126 (5 μ M) or Aphidicolin (0.6 μ M) were added to
500 culture medium for 6 to 10 days. Medium was changed every two days.

501

502 *Organoids staining*

503 For immunostaining, organoids were fixed in 4% PFA for 10 min at room temperature, followed
504 by 1h of permeabilization (1% Triton in PBS) and 2h incubation with blocking buffer (0.25%
505 Triton / 2% BSA / 5% FBS / PBS). Primary antibodies were incubated overnight at 4°C and

506 secondary antibodies and DAPI for 5h at room temperature. Antibodies used were anti-K8
507 (TROMA-1), rabbit anti- α SMA (NB600-531, Novus Biologicals), anti- α -SMA coupled to
508 FITC (clone 1A4, F3777, Sigma-Aldrich), rabbit anti-GFP (Institut Curie antibody platform),
509 rabbit anti-Hes1 (11988, Cell Signaling) and secondary antibodies Cy3-conjugated anti-rabbit
510 IgG (A102520, Invitrogen), Cy5-conjugated anti-rabbit IgG (A10523, Invitrogen) and Cy5-
511 conjugated anti-rat IgG (A10525, Invitrogen).

512

513 *Microscopy and image acquisition*

514 For image acquisition of stained sections, a laser scanning confocal microscope (LSM780 or
515 LSM880, Carl Zeiss) was used equipped with a 40x/1.3 oil DICII PL APO objective. For image
516 acquisition of organoids, we used an inverted spinning disk wide confocal microscope (CSU-
517 W1, Nikon) equipped with a 40x/1.15 CFI APO LWD water objective.

518

519 **Single cell RNA-seq analysis**

520 *Initial mapping, QC and raw counts*

521 3 batches of cells were processed and sequenced using Smart-seq2. FASTQ files were mapped
522 to GRCm38 (mm10) using the STAR aligner (v2.7.7a) (Dobin et al., 2013). Downstream
523 processing was performed using HTSeq (0.13.5) (Anders et al., 2015) to generate the raw gene
524 counts matrices.

525 Single cell Gene counts and metadata were imported and analyzed in R (v4.3.0) using Seurat
526 (4.3.0.1) (Butler et al., 2018; Satija et al., 2015; Stuart et al., 2019). 3 batches of single cell
527 RNA-Seq data were first processed individually, and then integrated. In batch 2, we filtered out
528 cells from plate 5, since these cells were repeated from Batch1. ENSEMBL gene ids were
529 converted to gene symbols using biomart (v2.56.1), using mouse genome annotation GRCm38,
530 using the following settings: (biomart = 'genes', dataset = 'mmusculus_gene_ensembl',version
531 = 102) (Durinck et al., 2009). Further analysis was carried out using Seurat.

532 First, features which were present in >2 cells, and cells having >200 features were selected for
533 analysis. Next, filtering was performed to retain cells with <10%mitochondrial reads, >1400
534 features (genes) & an RNA count of >100000. The dataset was normalized using Log
535 normalization. Gene expression counts were scaled for all genes. Next, principal component
536 analysis (PCA) was performed using the 2000 most highly variable genes. Clustering was
537 performed using the first 30 principal components (PCs), using a resolution of 0.5. UMAP was
538 created using the first 30 PCs, using a spread of 0.4.

539 Next, non-mammary-epithelial cell types were filtered. Stromal and salivary cells (cells with
540 gene counts of Epcam<2, Dcpp1>1, respectively), were filtered out. Data normalization, PCA,
541 clustering and UMAP steps above were repeated after cell filtering.
542 Afterward, integration of all 3 batches was performed using Seurat. During integration, batch 1
543 was used as a reference, since it had a balanced representation of basal, intermediate, and
544 luminal cell types (determined previously using FACS). After integration, dataset was scaled,
545 and PCA, clustering and UMAP steps were carried out once again on the integrated dataset,
546 using a clustering resolution of 0.5 and UMAP spread of 0.4.
547 Selection of this cluster resolution was based on the stability of clusters (using tool clustree)
548 (Zappia and Oshlack, 2018), gene expression patterns after clustering (using Seurat's
549 findMarkers), and FACS cell type labels. 4 clusters were noted. The gene expression markers
550 and FACS labels within clusters were examined. Cluster 1 was composed of basal and
551 intermediate cells (labelled by FACS), hence this cluster was further split (clustering resolution
552 0.6), giving 2 subclusters: one having a more basal gene expression pattern, and another having
553 a less basal, more intermediate gene expression. Based on expression of known cell type
554 markers and FACS labels, we labelled the 5 resulting clusters as BAS, INT1, INT2, LP and ML.
555 Markers for these clusters were determined using Seurat's FindAllMarkers tool, using the
556 settings only.pos=TRUE (selecting positive markers), min.pct=0.40 (only test markers which
557 are expressed in at least 40% of cells), and test.use="roc". Markers were ordered by Log2
558 foldchange and the top 7 markers for each cluster were plotted in a heatmap. To estimate
559 expression of basal and luminal gene signatures in each cell, Seurat's AddModuleScore function
560 was used, using basal and luminal signatures from Kendrick et al. (Kendrick et al., 2008).
561 Additionally, Luminal ER positive and ER negative signatures were combined to give a luminal
562 combined score. Similarly, the cell cycle module scores were calculated using genes from GO
563 and KEGG (GO positive regulation of cell cycle GO0045787, KEGG_CELL_CYCLE.v2023
564 from Msigdb).

565

566 *Integration / label transfer*

567 Comparison of the Smart-N1ICD with other datasets was performed using label transfer in
568 Seurat. This process allows classification of cells in a query dataset, using another dataset as a
569 reference. Corresponding cell type labels from the reference dataset are transferred to the query
570 dataset, as a 'predicted ID'. Original clusters (from the query dataset) and corresponding
571 predicted IDs (from the reference dataset) were compared using alluvial plots, by ggplot

bioRxiv preprint doi: <https://doi.org/10.1101/2024.07.04.602034>; this version posted July 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

572 (<https://ggplot2.tidyverse.org>), `ggalluvial` (v0.12.5) (<http://corybrunson.github.io/ggalluvial/>)

573 (Brunson, 2020).

574

575 *Wuidart dataset*

576 To compare our Smart-N1ICD dataset with the dataset from Wuidart *et al.* (Wuidart et al.,
577 2018), gene counts from Wuidart *et al* were downloaded, and the dataset was re-analyzed and
578 filtered using the same parameters described in Wuidart *et al.*, with the following changes, to
579 aid comparison with the Smart-N1ICD dataset: the analysis was performed using Seurat, and
580 Log Normalization was used. Data were scaled, PCA, clustering and UMAP steps were run,
581 using the same settings as for our Smart-N1ICD dataset. Based on gene markers, gene
582 expression clusters were defined as BAS, E14_EMP, and LP and ML.

583

584 *Centonze dataset*

585 The scRNASeq RDS object reported in Centonze *et al.* (Centonze et al., 2020) was downloaded
586 from GEO (GSE148791). To aid comparison with the Smart-N1ICD dataset, the Centonze
587 dataset was re-normalized (using Seurat Log normalization) and re-processed using the same
588 steps described for the Smart-N1ICD dataset. After gene expression clustering, the resulting
589 cell subtypes were re-labelled as BAS, INT_Hyb (intermediate hybrid), LP, ML.

590

591 *SCENIC analysis*

592 To infer transcription factor (TF) activity, SCENIC analysis was performed using pySCENIC
593 (0.12.1) (Aibar et al., 2017; Van de Sande et al., 2020), using default parameters. Smart-seq2
594 gene expression counts and metadata were imported to create Anndata files (Scanpy, v1.7.2),
595 quality checks were performed and cells were filtered using the same parameters as described
596 for Seurat analysis, to exclude low-quality cells from the analysis. All 3 batches were then
597 concatenated, and then converted to a loom format for analysis with the pySCENIC pipeline.
598 First, genes correlating in expression with TFs were inferred using the GRN step, resulting in
599 TF modules. Next, the CTX step was used to prune genes from these modules, to retain only
600 genes which contain the associated TF motif within cis-regulatory regions. These pruned
601 modules represent regulons of TFs and their associated downstream targets. Lastly, activity of
602 the regulons was estimated as an Area Under Curve (AUC) in the AUCell step of the analysis.
603 From the resulting loom file, a matrix of AUC values was extracted and then imported into an
604 R environment for further analysis. The AUC matrix and the Smrt-NIC Seurat object were both
605 filtered to contain the same set of cells. Next, cluster annotation labels (derived from the Seurat

606 object) were used to perform Regulon specificity score (RSS) analysis on the SCENIC AUC
607 matrix, to infer which regulons show the strongest cluster-specific activity. Activity of selected
608 regulons were also visualized using UMAP plots.

609

610 *Trajectory analysis*

611 Trajectory analysis was performed on the Smart-N1ICD Seurat object using slingshot (v2.8.0)
612 (Street et al., 2018). Slingshot analysis was performed on the PCA structure, specifying the
613 BAS cluster as the origin. Principal curves were plotted and 2 trajectories were observed.
614 Next, genes whose expression correlated with the trajectory #1 (from BAS to HR^{neg})
615 pseudotime were inferred using tradeseq (v1.14.0) (Van den Berge et al., 2020), which uses a
616 generalized additive model (GAM) to fit the variation of expression of each gene along a
617 pseudotime. The optimal number of knots was estimated for our dataset at 8 knots, which were
618 further used for the analysis. This analysis was performed upon the 4000 most highly variable
619 genes in the dataset. Next, an association test was performed to identify genes correlating with
620 pseudotime, using settings lineages=TRUE and contrastType="consecutive". The genes were
621 ordered based on statistical significance of this correlation (Wald statistic), and the top 40 genes
622 significantly associated with trajectory #1 were inferred. To visualize these genes, integrated
623 expression values for these genes were extracted from the Seurat object, ordering cells along
624 trajectory #1 pseudotime. Gene expression values in the resulting matrix were smoothed using
625 a binning/ rolling window process along pseudotime, using the rollapply function from the
626 "zoo" package (1.8-12) (Zeileis and Grothendieck, 2005). Correspondingly, a similar bin
627 smoothing was applied on cluster annotations, selecting the most common cluster annotation
628 within each bin. The resulting matrix was plotted as a heatmap using the pheatmap package
629 (v1.0.12) (<https://cran.r-project.org/web/packages/pheatmap/index.html>), along with cluster
630 annotations, using settings cutree_rows=3, and clustering_method="average", and package
631 viridis (v0.6.3) (Garnier et al., 2024) was used for the heatmap color palette. For selected genes,
632 integrated gene expression was plotted in single cells ordered along the trajectory 2 in
633 pseudotime.

634

635 *Statistical tools*

636 Analysis in R (4.3.0) was performed within RStudio (2023.06.0+421). Analysis in Python
637 (SCENIC) was performed using python (3.10.4) within a conda environment (4.7.12), using
638 Jupyter notebook (6.4.10). ggplot-based plots were created with ggplot2 (v3.4.2).

639

640 **Statistics and reproducibility**

641 Animals were randomized and analyzed in a non-blinded manner. All graphs show mean \pm SD.

642 For each experiment, at least n=3 biological replicates were analyzed.

643

644 **Data availability**

645 Smart-Seq2 scRNA-sequencing data generated in this study is accessible on the Gene
646 Expression Omnibus GEO repository (GSE268822, available at
647 <https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE268822>). The following secure
648 token has been created to allow review of record GSE268822 while it remains in private status:
649 qtozsiowtxunhkj. Analysis codes are available upon request.

650

651 **Acknowledgments**

652 We acknowledge Sarah Kinston and Berthold Göttgens at Wellcome Trust-MRC Cambridge
653 Stem Cell Institute, University of Cambridge, UK, for assistance with the Smart-seq2V2
654 scRNA-sequencing protocol. We also wish to warmly acknowledge the flow cytometry and cell
655 sorting platform at Institute Curie for their technical support, the *in vivo* experimental facility
656 for help in the maintenance and care of our mouse colony, and the Cell and Tissue Imaging
657 Platform-PICT-IBiSA at Institut Curie (member of the French National Research Infrastructure
658 France-Bioimaging, ANR-10-INBS-04) for their expertise and assistance. We are very grateful
659 to all members of the Fre laboratory for support, critical reading of the manuscript and
660 constructive discussions. This work was funded by Paris Sciences et Lettres (PSL* Research
661 University) (grant # C19-64-2019-228), the French National Research Agency (ANR) grant
662 numbers ANR-21-CE13-0047 and ANR-22-CE13-0009, the Medical Research Foundation
663 FRM "FRM Equipes" EQU201903007821, the FSER (Fondation Schlumberger pour
664 l'éducation et la recherche) FSER20200211117, the Association for Research against Cancer
665 (ARC) label ARCPGA2021120004232_4874, the Worldwide Cancer Research Foundation #
666 24-0216 and by Labex DEEP ANR-Number 11-LBX-0044 to SF. C.M. was funded by a post-
667 doctoral fellowship from ARC (ARCPDF12021020003033).

668 The funders had no role in study design, data collection and analysis, decision to publish, or
669 preparation of the manuscript.

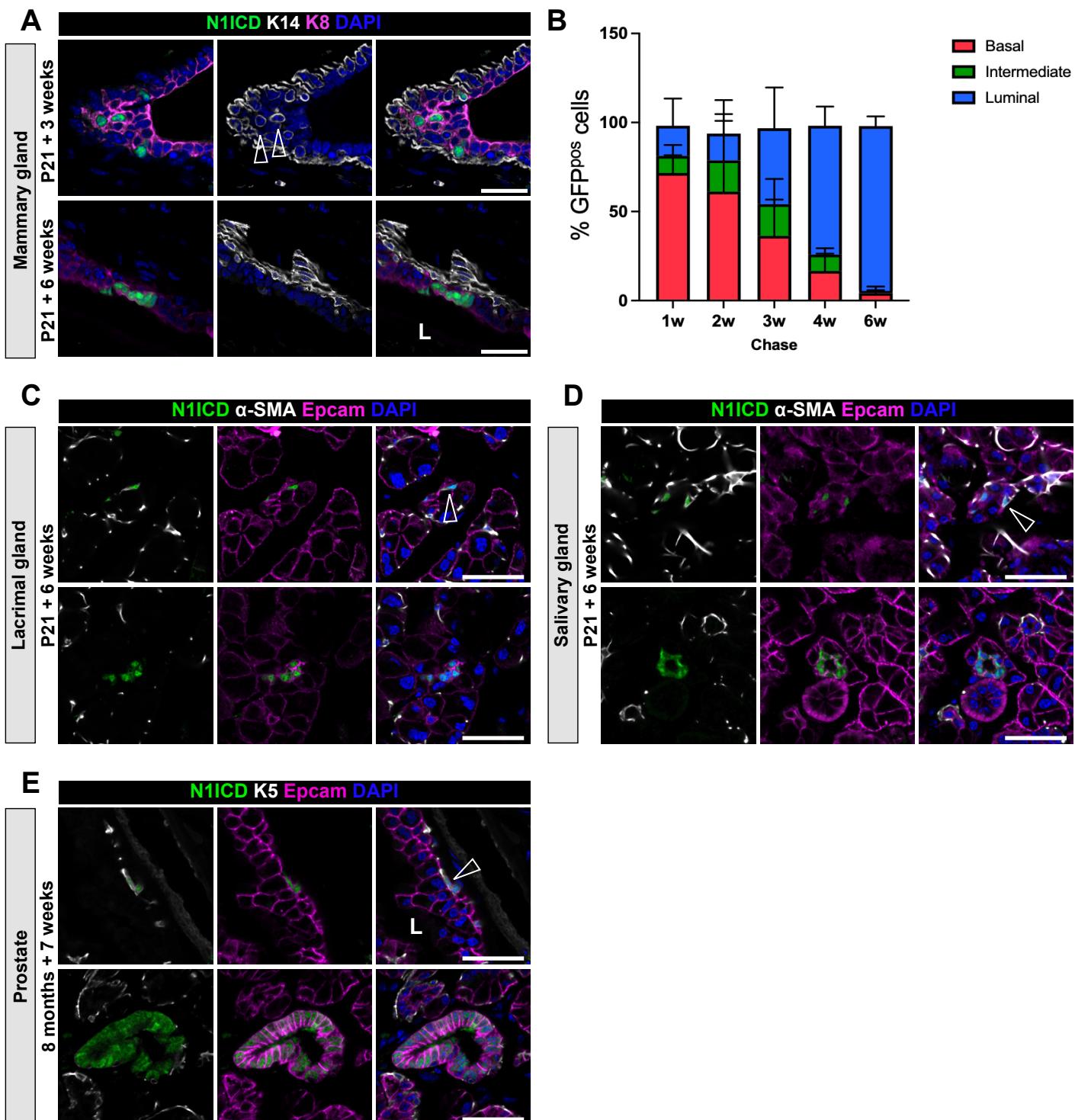
670

671 **Disclosure and Competing interests Statement**

672 The authors declare no competing interests

673

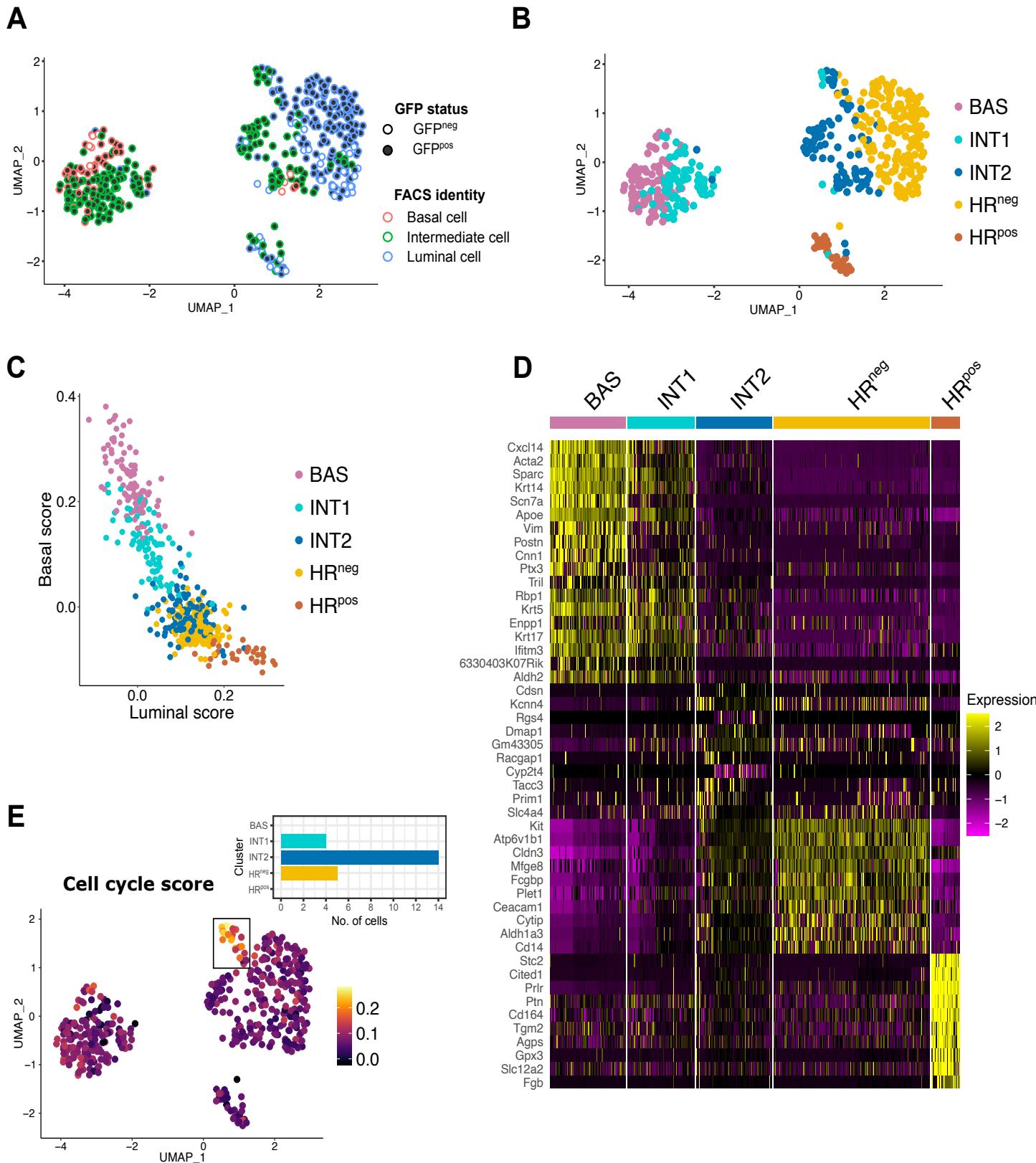
References


- 674 Aibar, S., González-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., Hulselmans,
675 G., Rambow, F., Marine, J.-C., Geurts, P., Aerts, J., van den Oord, J., Atak, Z.K.,
676 Wouters, J., Aerts, S., 2017. SCENIC: single-cell regulatory network inference and
677 clustering. *Nat Methods* 14, 1083–1086. <https://doi.org/10.1038/nmeth.4463>
- 678 Anders, S., Pyl, P.T., Huber, W., 2015. HTSeq—a Python framework to work with high-
679 throughput sequencing data. *Bioinformatics* 31, 166–169.
680 <https://doi.org/10.1093/bioinformatics/btu638>
- 681 Blanpain, C., Fuchs, E., 2014. Stem cell plasticity. Plasticity of epithelial stem cells in tissue
682 regeneration. *Science* 344, 1242281. <https://doi.org/10.1126/science.1242281>
- 683 Bouras, T., Pal, B., Vaillant, F., Harburg, G., Asselin-Labat, M.-L., Oakes, S.R., Lindeman,
684 G.J., Visvader, J.E., 2008. Notch Signaling Regulates Mammary Stem Cell Function
685 and Luminal Cell-Fate Commitment. *Cell Stem Cell* 3, 429–441.
686 <https://doi.org/10.1016/j.stem.2008.08.001>
- 687 Brunson, J.C., 2020. ggalluvial: Layered Grammar for Alluvial Plots. *J Open Source Softw* 5,
688 2017. <https://doi.org/10.21105/joss.02017>
- 689 Butler, A., Hoffman, P., Smibert, P., Papalexi, E., Satija, R., 2018. Integrating single-cell
690 transcriptomic data across different conditions, technologies, and species. *Nat
691 Biotechnol* 36, 411–420. <https://doi.org/10.1038/nbt.4096>
- 692 Callahan, R., Smith, G.H., 2000. MMTV-induced mammary tumorigenesis: gene discovery,
693 progression to malignancy and cellular pathways. *Oncogene* 19, 992–1001.
694 <https://doi.org/10.1038/sj.onc.1203276>
- 695 Centonze, A., Lin, S., Tika, E., Sifrim, A., Fioramonti, M., Malfait, M., Song, Y., Wuidart, A.,
696 Van Herck, J., Dannau, A., Bouvencourt, G., Dubois, C., Dedoncker, N., Sahay, A., de
697 Maertelaer, V., Siebel, C.W., Van Keymeulen, A., Voet, T., Blanpain, C., 2020.
698 Heterotypic cell–cell communication regulates glandular stem cell multipotency.
699 *Nature* 584, 608–613. <https://doi.org/10.1038/s41586-020-2632-y>
- 700 Charifou, E., Sumbal, J., Koledova, Z., Li, H., Chiche, A., 2021. A Robust Mammary
701 Organoid System to Model Lactation and Involution-like Processes. *Bio Protoc* 11,
702 e3996. <https://doi.org/10.21769/BioProtoc.3996>
- 703 Diévert, A., Beaulieu, N., Jolicoeur, P., 1999. Involvement of Notch1 in the development of
704 mouse mammary tumors. *Oncogene* 18, 5973–5981.
705 <https://doi.org/10.1038/sj.onc.1202991>
- 706 Ding, Z.-M., Huang, C.-J., Jiao, X.-F., Wu, D., Huo, L.-J., 2017. The role of TACC3 in mitotic
707 spindle organization. *Cytoskeleton* 74, 369–378. <https://doi.org/10.1002/cm.21388>
- 708 Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson,
709 M., Gingeras, T.R., 2013. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics*
710 29, 15–21. <https://doi.org/10.1093/bioinformatics/bts635>
- 711 Durinck, S., Spellman, P.T., Birney, E., Huber, W., 2009. Mapping identifiers for the
712 integration of genomic datasets with the R/Bioconductor package biomaRt. *Nat Protoc*
713 4, 1184–1191. <https://doi.org/10.1038/nprot.2009.97>
- 714 Garnier, S., Ross, N., Rudis, R., Camargo, A.P., Sciaiani, M., Scherer, C., 2024. viridis(Lite) -
715 Colorblind-Friendly Color Maps for R. <https://doi.org/10.5281/zenodo.4679423>
- 716 Giraddi, R.R., Chung, C.-Y., Heinz, R.E., Balcio glu, O., Novotny, M., Trejo, C.L., Dravis, C.,
717 Hagos, B.M., Mehrabad, E.M., Rodewald, L.W., Hwang, J.Y., Fan, C., Lasken, R.,
718 Varley, K.E., Perou, C.M., Wahl, G.M., Spike, B.T., 2018. Single-Cell Transcriptomes
719 Distinguish Stem Cell State Changes and Lineage Specification Programs in Early
720 Mammary Gland Development. *Cell Rep* 24, 1653–1666.e7.
721 <https://doi.org/10.1016/j.celrep.2018.07.025>

- 722 Harrison, H., Farnie, G., Howell, S.J., Rock, R.E., Stylianou, S., Brennan, K.R., Bundred,
723 N.J., Clarke, R.B., 2010. Regulation of breast cancer stem cell activity by signaling
724 through the Notch4 receptor. *Cancer Res* 70, 709–718. <https://doi.org/10.1158/0008-5472.CAN-09-1681>
- 725 Indra, A.K., Warot, X., Bocard, J., Bornert, J.-M., Xiao, J.-H., Chambon, P., Metzger, D.,
726 1999. Temporally-controlled site-specific mutagenesis in the basal layer of the
727 epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-
728 ERT and Cre-ERT2 recombinases. *Nucleic Acids Research* 27, 4324–4327.
729 <https://doi.org/10.1093/nar/27.22.4324>
- 730 Jamieson, P.R., Dekkers, J.F., Rios, A.C., Fu, N.Y., Lindeman, G.J., Visvader, J.E., 2017.
731 Derivation of a robust mouse mammary organoid system for studying tissue dynamics.
732 *Development* 144, 1065–1071. <https://doi.org/10.1242/dev.145045>
- 733 Jardé, T., Lloyd-Lewis, B., Thomas, M., Kendrick, H., Melchor, L., Bougaret, L., Watson,
734 P.D., Ewan, K., Smalley, M.J., Dale, T.C., 2016. Wnt and Neuregulin1/ErbB signalling
735 extends 3D culture of hormone responsive mammary organoids. *Nat Commun* 7,
736 13207. <https://doi.org/10.1038/ncomms13207>
- 737 Kendrick, H., Regan, J.L., Magnay, F.-A., Grigoriadis, A., Mitsopoulos, C., Zvelebil, M.,
738 Smalley, M.J., 2008. Transcriptome analysis of mammary epithelial subpopulations
739 identifies novel determinants of lineage commitment and cell fate. *BMC Genomics* 9,
740 591. <https://doi.org/10.1186/1471-2164-9-591>
- 741 Koren, S., Reavie, L., Couto, J.P., De Silva, D., Stadler, M.B., Roloff, T., Britschgi, A.,
742 Eichlisberger, T., Kohler, H., Aina, O., Cardiff, R.D., Bentires-Alj, M., 2015. PIK3CA
743 H1047R induces multipotency and multi-lineage mammary tumours. *Nature* 525, 114–
744 118. <https://doi.org/10.1038/nature14669>
- 745 Lekomtsev, S., Su, K.-C., Pye, V.E., Blight, K., Sundaramoorthy, S., Takaki, T., Collinson,
746 L.M., Cherepanov, P., Divecha, N., Petronczki, M., 2012. Centralspindlin links the
747 mitotic spindle to the plasma membrane during cytokinesis. *Nature* 492, 276–279.
748 <https://doi.org/10.1038/nature11773>
- 749 Lilja, A.M., Rodilla, V., Huyghe, M., Hannezo, E., Landragin, C., Renaud, O., Leroy, O.,
750 Rulands, S., Simons, B.D., Fre, S., 2018. Clonal analysis of Notch1-expressing cells
751 reveals the existence of unipotent stem cells that retain long-term plasticity in the
752 embryonic mammary gland. *Nat Cell Biol* 20, 677–687.
753 <https://doi.org/10.1038/s41556-018-0108-1>
- 754 Murtaugh, L.C., Stanger, B.Z., Kwan, K.M., Melton, D.A., 2003. Notch signaling controls
755 multiple steps of pancreatic differentiation. *Proc Natl Acad Sci U S A* 100, 14920–
756 14925. <https://doi.org/10.1073/pnas.2436557100>
- 757 Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, L., Luo, L., 2007. A global double-fluorescent
758 Cre reporter mouse. *genesis* 45, 593–605. <https://doi.org/10.1002/dvg.20335>
- 759 Pal, B., Chen, Y., Milevskiy, M.J.G., Vaillant, F., Prokopuk, L., Dawson, C.A., Capaldo, B.D.,
760 Song, X., Jackling, F., Timpson, P., Lindeman, G.J., Smyth, G.K., Visvader, J.E., 2021.
761 Single cell transcriptome atlas of mouse mammary epithelial cells across development.
762 *Breast Cancer Research* 23, 69. <https://doi.org/10.1186/s13058-021-01445-4>
- 763 Prater, M.D., Petit, V., Russell, I.A., Giraddi, R., Shehata, M., Menon, S., Schulte, R.,
764 Kalajzic, I., Rath, N., Olson, M.F., Metzger, D., Faraldo, M.M., Deugnier, M.-A.,
765 Glukhova, M.A., Stingl, J., 2014. Mammary stem cells have myoepithelial cell
766 properties. *Nat Cell Biol* 16, 942–7. <https://doi.org/10.1038/ncb3025>
- 767 Reedijk, M., Odoricic, S., Chang, L., Zhang, H., Miller, N., McCready, D.R., Lockwood, G.,
768 Egan, S.E., 2005. High-level Coexpression of JAG1 and NOTCH1 Is Observed in
769 Human Breast Cancer and Is Associated with Poor Overall Survival. *Cancer Research*
770 65, 8530–8537. <https://doi.org/10.1158/0008-5472.CAN-05-1069>

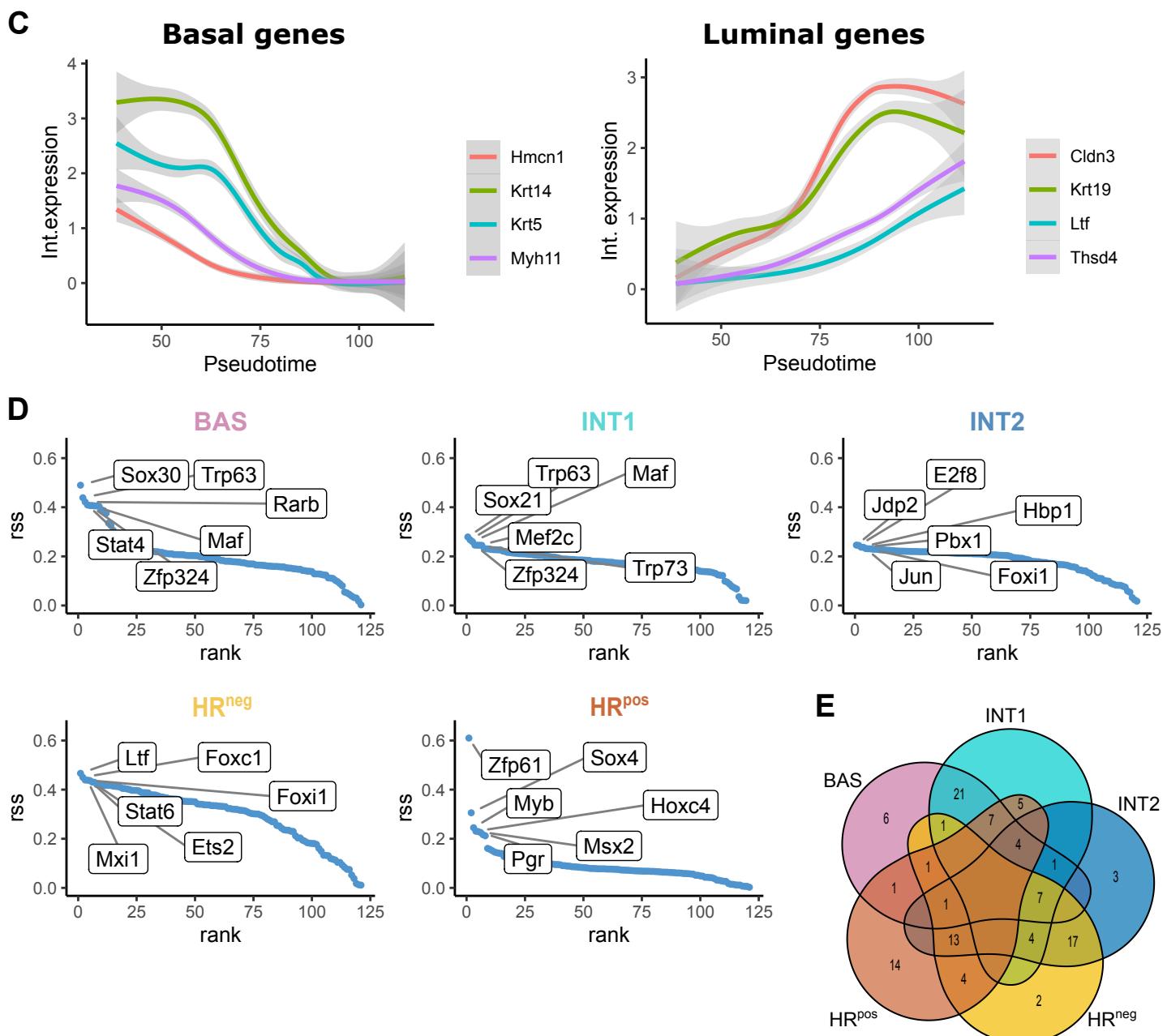
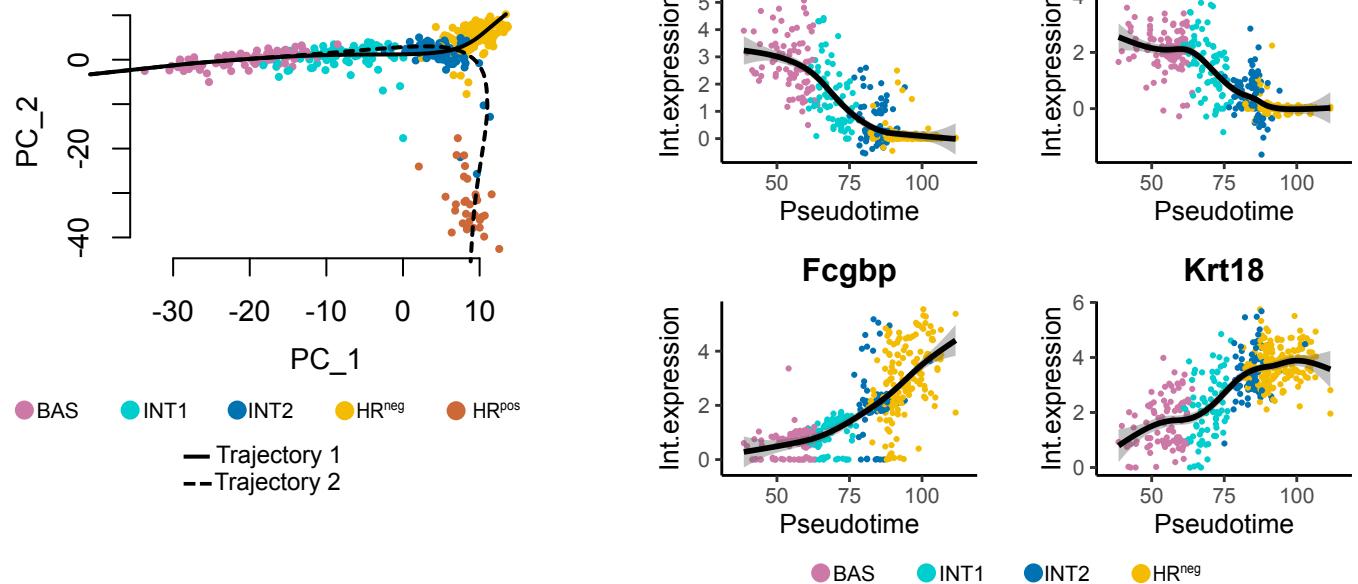
- 772 Rodilla, V., Dasti, A., Huyghe, M., Larkas, D., Laurent, C., Reyat, F., Fre, S., 2015. Luminal
773 progenitors restrict their lineage potential during mammary gland development. PLoS
774 Biol 13, e1002069. <https://doi.org/10.1371/journal.pbio.1002069>
- 775 Ronchini, C., Capobianco, A.J., 2001. Induction of Cyclin D1 Transcription and CDK2
776 Activity by Notchic: Implication for Cell Cycle Disruption in Transformation by
777 Notchic. Mol Cell Biol 21, 5925–5934. <https://doi.org/10.1128/MCB.21.17.5925-5934.2001>
- 779 Satija, R., Farrell, J.A., Gennert, D., Schier, A.F., Regev, A., 2015. Spatial reconstruction of
780 single-cell gene expression data. Nature Biotechnology 33, 495–502.
781 <https://doi.org/10.1038/nbt.3192>
- 782 Seldin, L., Macara, I.G., 2020. DNA Damage Promotes Epithelial Hyperplasia and Fate Mis-
783 specification via Fibroblast Inflammasome Activation. Developmental Cell 55, 558-
784 573.e6. <https://doi.org/10.1016/j.devcel.2020.09.021>
- 785 Shackleton, M., Vaillant, F., Simpson, K.J., Stingl, J., Smyth, G.K., Asselin-Labat, M.-L., Wu,
786 L., Lindeman, G.J., Visvader, J.E., 2006. Generation of a functional mammary gland
787 from a single stem cell. Nature 439, 84–88. <https://doi.org/10.1038/nature04372>
- 788 Singh, P., Thomas, G.E., Gireesh, K.K., Manna, T.K., 2014. TACC3 Protein Regulates
789 Microtubule Nucleation by Affecting γ -Tubulin Ring Complexes*. Journal of
790 Biological Chemistry 289, 31719–31735. <https://doi.org/10.1074/jbc.M114.575100>
- 791 Sizemore, G.M., Sizemore, S.T., Pal, B., Booth, C.N., Seachrist, D.D., Abdul-Karim, F.W.,
792 Kume, T., Keri, R.A., 2013. FOXC1 Is Enriched in the Mammary Luminal Progenitor
793 Population, but Is Not Necessary for Mouse Mammary Ductal Morphogenesis1. Biol
794 Reprod 89, 10, 1–10. <https://doi.org/10.1095/biolreprod.113.108001>
- 795 Stingl, J., Eirew, P., Ricketson, I., Shackleton, M., Vaillant, F., Choi, D., Li, H.I., Eaves, C.J.,
796 2006. Purification and unique properties of mammary epithelial stem cells. Nature
797 439, 993–997. <https://doi.org/10.1038/nature04496>
- 798 Street, K., Risso, D., Fletcher, R.B., Das, D., Ngai, J., Yosef, N., Purdom, E., Dudoit, S., 2018.
799 Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC
800 Genomics 19, 477. <https://doi.org/10.1186/s12864-018-4772-0>
- 801 Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M., Hao, Y.,
802 Stoeckius, M., Smibert, P., Satija, R., 2019. Comprehensive Integration of Single-Cell
803 Data. Cell 177, 1888-1902.e21. <https://doi.org/10.1016/j.cell.2019.05.031>
- 804 Stylianou, S., Clarke, R.B., Brennan, K., 2006. Aberrant Activation of Notch Signaling in
805 Human Breast Cancer. Cancer Research 66, 1517–1525. <https://doi.org/10.1158/0008-5472.CAN-05-3054>
- 807 Van de Sande, B., Flerin, C., Davie, K., De Waegeneer, M., Hulselmans, G., Aibar, S.,
808 Seurinck, R., Saelens, W., Cannoodt, R., Rouchon, Q., Verbeiren, T., De Maeyer, D.,
809 Reumers, J., Saeys, Y., Aerts, S., 2020. A scalable SCENIC workflow for single-cell
810 gene regulatory network analysis. Nat Protoc 15, 2247–2276.
811 <https://doi.org/10.1038/s41596-020-0336-2>
- 812 Van den Berge, K., Roux de Bézieux, H., Street, K., Saelens, W., Cannoodt, R., Saeys, Y.,
813 Dudoit, S., Clement, L., 2020. Trajectory-based differential expression analysis for
814 single-cell sequencing data. Nat Commun 11, 1201. <https://doi.org/10.1038/s41467-020-14766-3>
- 816 Van Keymeulen, A., Lee, M.Y., Ousset, M., Brohée, S., Rorive, S., Giraddi, R.R., Wuidart, A.,
817 Bouvencourt, G., Dubois, C., Salmon, I., Sotiriou, C., Phillips, W.A., Blanpain, C.,
818 2015. Reactivation of multipotency by oncogenic PIK3CA induces breast tumour
819 heterogeneity. Nature 525, 119–123. <https://doi.org/10.1038/nature14665>
- 820 Van Keymeulen, A., Rocha, A.S., Ousset, M., Beck, B., Bouvencourt, G., Rock, J., Sharma,
821 N., Dekoninck, S., Blanpain, C., 2011. Distinct stem cells contribute to mammary

- 822 gland development and maintenance. *Nature* 479, 189–193.
823 <https://doi.org/10.1038/nature10573>
- 824 Wendling, O., Bornert, J.-M., Chambon, P., Metzger, D., 2009. Efficient temporally-controlled
825 targeted mutagenesis in smooth muscle cells of the adult mouse. *Genesis* 47, 14–18.
826 <https://doi.org/10.1002/dvg.20448>
- 827 Wuidart, A., Sifrim, A., Fioramonti, M., Matsumura, S., Brisebarre, A., Brown, D., Centonze,
828 A., Danna, A., Dubois, C., Van Keymeulen, A., Voet, T., Blanpain, C., 2018. Early
829 lineage segregation of multipotent embryonic mammary gland progenitors. *Nature
Cell Biology* 20, 666–676. <https://doi.org/10.1038/s41556-018-0095-2>
- 830 Zappia, L., Oshlack, A., 2018. Clustering trees: a visualization for evaluating clusterings at
831 multiple resolutions. *Gigascience* 7, giy083.
832 <https://doi.org/10.1093/gigascience/giy083>
- 833 Zeileis, A., Grothendieck, G., 2005. zoo: S3 Infrastructure for Regular and Irregular Time
834 Series. *Journal of Statistical Software* 14, 1–27. <https://doi.org/10.18637/jss.v014.i06>
- 835
- 836
- 837


Figures and legends

838 **Figure 1. *In vivo* reprogramming of adult BCs to LCs by Notch1 activation in four bi-
839 layered glandular epithelia.**

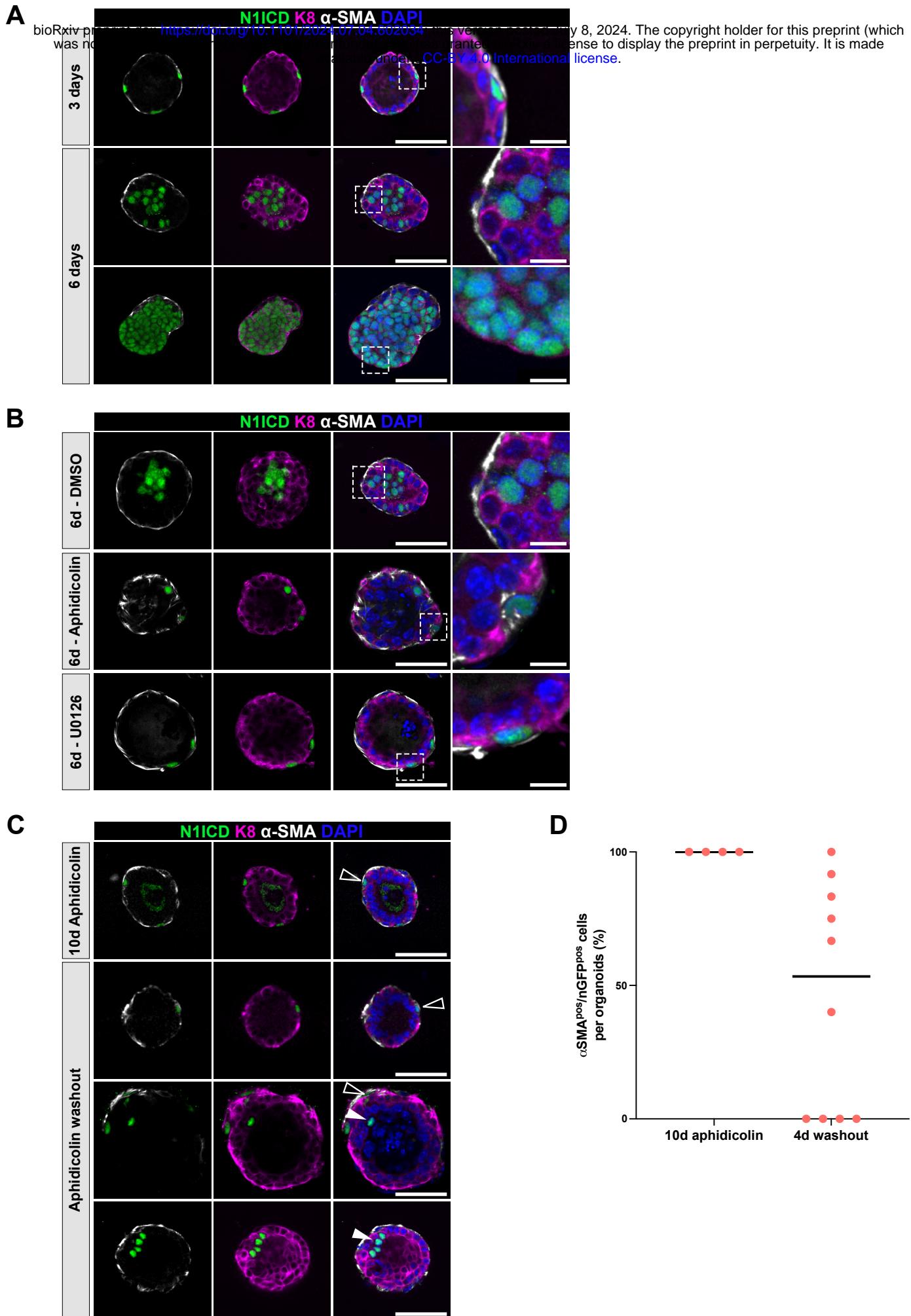
840 **A.** Representative sections of SMACre^{ERT2}/N1ICD-ires-nGFP mammary glands induced at P21
841 and analyzed 3 or 6 weeks later by immunofluorescence for the basal marker K14 (white), the
842 luminal marker K8 (purple) and nGFP (correlated to N1ICD expression in green). Nuclei are
843 stained with DAPI. Empty arrowheads indicate mutant cells co-expressing nGFP, K14 and K8.
844 **B.** Quantification by flow cytometry of the percentage of nGFP^{pos} basal (CD49f^{high}/EPCAM^{low}),
845 intermediate (CD49f^{med}/EPCAM^{med}) and luminal (CD49f^{low}/EPCAM^{high}) cells 1, 2, 3, 4 and 6
846 weeks after tamoxifen induction at P21 (mean, SD, n). **C-D.** Representative sections of
847 SMACre^{ERT2}/N1ICD lacrimal glands (C) and salivary glands (D) induced at P21 and analyzed
848 6 weeks later by immunofluorescence for the basal marker α -SMA (white), the luminal marker
849 Epcam (purple) and nGFP (N1ICD in green). Nuclei are stained with DAPI. **E.** Representative
850 sections of K5Cre^{ERT2}/N1ICD prostate induced at 8 months and analyzed 7 weeks later by
851 immunostaining for the basal marker K5 (white), the luminal marker Epcam (purple) and nGFP
852 (N1ICD in green). Scale bar represents 25 μ m in A, C-E. Empty arrowheads in C-E indicate
853 cells that have not undergone cell fate switch at the time of the analysis. “L” indicates the lumen
854 position in A and E.



855

856 **Figure 2. Index-sorted single cell RNAseq reveals the hybrid signatures of transitioning**
857 **intermediate mutant cells.**

858 **A.** UMAP plot showing the identity of each index-sorted cell along with their GFP status. Cells
859 are color-coded based on their FACS-defined identity as Basal (red), Intermediate (green) and
860 Luminal (blue) cells. Mutant cells (GFP^{pos}) are depicted as filled dots; WT cells (GFP^{neg}) are
861 shown as empty dots. **B.** UMAP plot showing clustering of single sequenced cells by Smart-
862 seq2. 5 Seurat clusters were identified: BAS=Basal cells (pink), INT1=Intermediate 1
863 (turquoise), INT2=Intermediate 2 (dark blue), HR $^{\text{neg}}$ = Hormone Receptor $^{\text{neg}}$ (yellow), and
864 HR $^{\text{pos}}$ = Hormone Receptor $^{\text{pos}}$ cells (brown). **C.** Plot representing the basal and luminal scores
865 for each individual cell. Each dot represents a cell and their color corresponds to the clusters
866 illustrated in (B). **D.** Heatmap of marker genes specific for each cell cluster illustrated in (B). The color
867 key corresponds to normalized and scaled values of gene expression. **E.** UMAP plot showing
868 enrichment for the GO term “Cell cycle score” across individual cells. The bar plot represents
869 the number of cells, grouped by cluster, within the rectangular selected region in the UMAP.
870

871

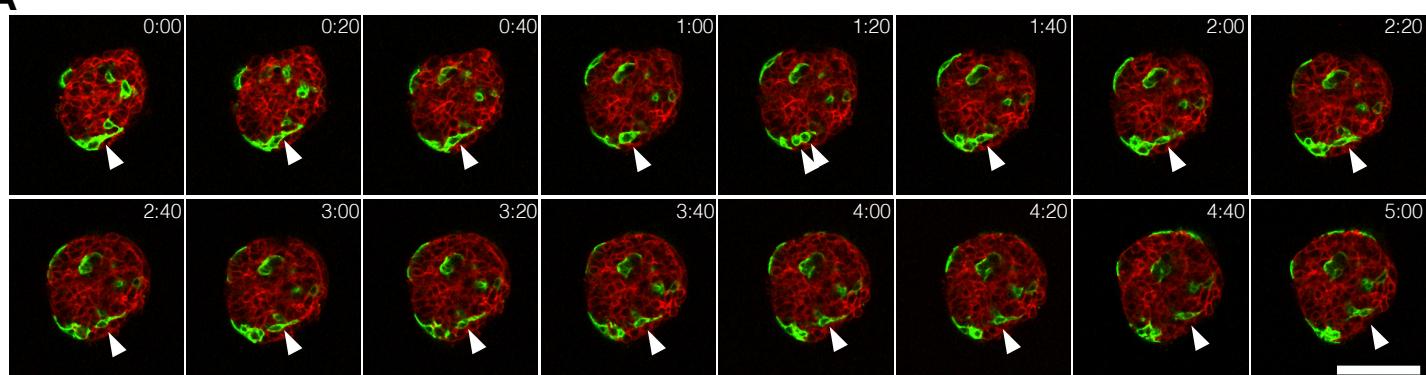


872 **Figure 3. Cell trajectory and transcriptional signatures defining the progressive transition**

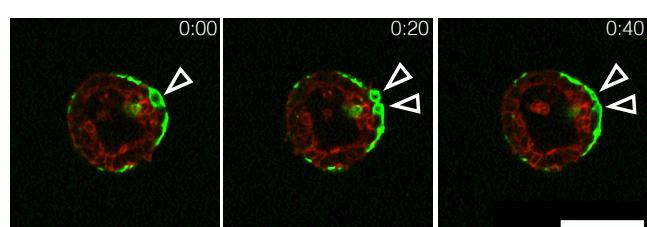
873 **from basal to luminal identity.**

874 **A.** Slingshot trajectory analysis showing two cellular paths, connecting BAS cells to HR^{neg}
875 (trajectory 1) or HR^{pos} (trajectory 2) clusters in a PCA plot. **B.** Expression of selected genes
876 within cells plotted along trajectory 1 in pseudotime. The integrated gene expression is plotted;
877 dots correspond to individual cells color-coded according to the UMAP clusters from Fig. 2B.
878 **C.** Expression of selected basal and luminal genes along pseudotime trajectory 1. **D.** SCENIC
879 analysis showing the Regulon specificity score (RSS) for each cluster: only the 6 most
880 significant TF regulons showing cluster-specific activity are indicated. **E.** Venn diagram
881 presenting the number of overlapping regulons among the 50 most significant TF regulons for
882 each cell cluster.

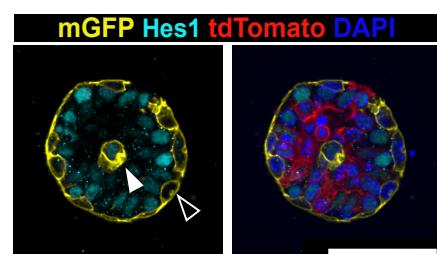
883



884 **Figure 4. Proliferation is an obligatory step for lineage transition to occur in organoids.**


885 **A-C.** Representative images showing immunofluorescence for nGFP (N1ICD in green),
886 luminal K8 (purple) and basal α -SMA (white) expression in SMACre^{ERT2}/N1ICD mutant
887 organoids 3 or 6 days after 4-OHT induction in (A); in SMACre^{ERT2}/N1ICD mutant organoids
888 treated with DMSO, Aphidicolin or U0126 in (B) and in SMACre^{ERT2}/N1ICD mutant organoids
889 treated with Aphidicolin for 6 days and grown for another 4 days upon Aphidicolin washout or
890 treated with Aphidicolin for 10 consecutive days. Nuclei are stained with DAPI in blue. Scale
891 bar represents 50 μ m in A-C and 10 μ m (in A-B) for the magnified insets. Empty arrowheads
892 indicate cells that have not undergone cell fate switch at the time of the analysis, white arrow
893 heads indicate nGFP^{pos} luminal cells. **D.** Quantification of the proportion of basal nGFP^{pos}
894 mutant cells within each organoid after 10 days of aphidicolin or after Aphidicolin washout for
895 4 days. The trait indicates the mean value.

896


A

B

C

897 **Figure 5. Dynamic behavior of lineage transitioning cells by time-lapse analysis.**

898 **A-B.** Sequential time-lapse images of SMA^{Cre}^{ERT2}/mTmG/N1ICD organoids showing
899 recombined GFP^{pos} (green) cell rearrangements over 5 h. Red: non-recombined tdTomato^{pos}
900 cells. White arrowheads in (A) pinpoint a mutant BC that first divides (between 1h 20min and
901 1h 40 min time frames) and then one of the two daughter cells that moves to a luminal position
902 after mitosis. The empty arrowheads in (B) depict the mitosis of a WT basal cell whose
903 daughters stay in the basal outer cell layer after division. Scale bar 25 μ m. **C.** Representative
904 images showing immunofluorescence for mGFP (indicating recombined cells in yellow), Hes1
905 (marking nuclei and reflecting Notch activation in turquoise) and tdTomato expression in red
906 in organoids grown for 3 days. Nuclei are stained with DAPI in blue. White arrowheads indicate
907 mutant cells (Hes1 positive) and black arrowhead indicate WT cells (Hes1 negative). Scale bar
908 50 μ m.

909

bioRxiv preprint doi: <https://doi.org/10.1101/2024.07.04.602034>; this version posted July 8, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

	Chase	LC GFP+	BC GFP+	Inter GFP+	LC GFP-	BC GFP-
SMACre/N1ICD	1w	6	73	11	6	
SMACre/N1ICD	3w	34	12	44	6	
SMACre/N1ICD	3w	30	34	26	6	
SMACre/N1ICD	3w	0	0	60	6	6
K5Cre/N1ICD	3w	6	6	66	6	6
K5Cre/N1ICD	3w	6	6	66	6	6
SMACre/N1ICD	4w	22	17	51	6	
SMACre/N1ICD	6w	84				12