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SUMMARY

Health is strongly affected by aging and lifespan-modulating interventions, but the molecular
mechanisms of mortality regulation remain unclear. Here, we conducted an RNA-seq analysis of
mice subjected to 20 compound treatments in the Interventions Testing Program (ITP). By
integrating it with the data from over 4,000 rodent tissues representing aging and responses to
genetic, pharmacological, and dietary interventions with established survival data, we developed
robust multi-tissue transcriptomic biomarkers of mortality, capable of quantifying aging and
change in lifespan in both short-lived and long-lived models. These tools were further extended to
single-cell and human data, demonstrating common mechanisms of molecular aging across cell
types and species. Via a network analysis, we identified and annotated 26 co-regulated modules of
aging and longevity across tissues, and developed interpretable module-specific clocks that capture
aging- and mortality-associated phenotypes of functional components, including, among others,
inflammatory response, mitochondrial function, lipid metabolism, and extracellular matrix
organization. These tools captured and characterized acceleration of biological age induced by
progeria models and chronic diseases in rodents and humans. They also revealed rejuvenation
induced by heterochronic parabiosis, early embryogenesis, and cellular reprogramming,
highlighting universal signatures of mortality, shared across models of rejuvenation and age-
related disease. They included Cdknla and Lgals3, whose human plasma levels further
demonstrated a strong association with all-cause mortality, disease incidence and risk factors, such
as obesity and hypertension. Overall, this study uncovers molecular hallmarks of mammalian
mortality shared across organs, cell types, species and models of disease and rejuvenation,

exposing fundamental mechanisms of aging and longevity.
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INTRODUCTION

Aging is associated with the systemic accumulation of damage, leading to a gradual loss
of function, deterioration of organismal health, and an increased mortality rate!. However, these
manifestations of aging can be influenced by numerous genetic, dietary, and pharmacological
lifespan-shortening and longevity interventions, ranging from Hutchinson-Gilford progeria
syndrome (HGPS)*? and the Klotho knockout (KO) model®’ to caloric restriction (CR)®,
rapamycin® !, and dwarf models associated with growth hormone deficiency'?!*. Since 2004, the
Interventions Testing Program (ITP)'® has evaluated the effects of over 50 compounds and
combinations on the survival of genetically heterogeneous UM-HET3 female and male mice. It

established that more than 10 treatments can effectively extend lifespan in female and/or male

9,10,16,17 18-20 1
b

mice, including rapamycin acarbose , canagliflozin®', 17-o-estradiol'®!°?2,

protandim!8, captopril®®, glycine®*, nordihydroguaiaretic acid (NDGA)*>?¢, astaxanthin?’, and

18

meclizine’’, along with two combinations of compounds, rapamycin with metformin'® and

rapamycin with acarbose®*. Previous studies by our group and others focused on the identification

2832 or lifespan-regulating models*—¢. However, a unified

of molecular signatures of aging
analysis of mortality-associated mechanisms driven by mammalian aging and by various lifespan-
shortening and longevity interventions has been lacking.

Rapid accumulation of high-throughput data, including transcriptomics, proteomics, and

DNA methylation (DNAm) allowed for the development of chronological epigenetic’’!,

transcriptomic*?#°

, and proteomic*® clocks that can predict the age of humans or animals based on
the molecular profiles of their tissues and individual cell types*’*®. Recently, the first pan-
mammalian chronological epigenetic clock was developed®, highlighting the existence of
conserved molecular biomarkers of aging across organs and species. However, since age-related
signatures reflect not only detrimental but also neutral and adaptive changes*', biomarkers of
mortality and clinical measurements provide a more direct evaluation of an aggregated level of
damage (i.e., biological age) and allow to predict health outcomes more effectively’. Previously,
DNAm was used to develop blood-specific clocks that estimate human time to death and
healthspan®®>!. However, current mortality-associated clocks are limited to human blood cells, and

their application is further restricted by the low amount of single-cell DNAm data and low

interpretability of features (methylation of individual CpG sites) used to train these models.
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In contrast, detailed characterization of mammalian genes makes transcriptomic models
highly interpretable and widely applicable to various models of aging and longevity interventions.
Implementation of transcriptomic tools is further facilitated by wide availability of single-cell
RNA-seq (scRNA-seq) data, allowing to examine the level of molecular damage across cell types
and characterize cells most vulnerable to a given treatment. Therefore, the development of
mortality transcriptomic clocks based on gene expression profiles and their functional components
across organs and mammalian species could reveal universal and specific molecular mechanisms

of the established and novel models of healthspan regulation, rejuvenation and aging.

To fill this gap, we performed RNA sequencing (RNA-seq) of tissues of mice subjected to
20 interventions with known effects on lifespan tested by the ITP. By integrating these and publicly
available transcriptomic data encompassing 4,539 rodents, we developed robust mammalian
mortality multi-tissue clocks and deconstructed them into functional modules associated with
aging and longevity. We demonstrated their utility in assessing longevity and detrimental
mechanisms of progeria and aging-related diseases. By including human data, we constructed
multi-species multi-tissue transcriptomic clocks of chronological age and mortality. These tools
allowed us to gain numerous novel insights into longevity, rejuvenation, and chronic diseases,
revealing shared and model-specific signatures of mortality. Using them, we also established
universality of the aging-related damage accumulation paradigm across cell types and identified a
compound with a substantial rejuvenation effect that resembles heterochronic parabiosis. Finally,
we developed an interactive online platform TACO for preprocessing of RNA-seq data and

implementation of the constructed transcriptomic clocks.

RESULTS

Gene expression regulation of mammalian aging and longevity

To identify gene expression hallmarks of maximum lifespan and mortality, we performed
RNA-seq of liver samples from 170 22-month-old UM-HET3 female and male mice subjected to
20 pharmacological treatments tested by the ITP!%1721-23 together with the corresponding age- and
sex-matched controls (Supplementary Table 1A; Fig. 1A). These interventions included those with

no statistically significant effect on mouse lifespan, such as minocycline'® and nicotinamide
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riboside (NR)?2, as well as those leading to extension of lifespan in males and/or females, such as
the antidiabetic drug canagliflozin®!, antihypertensive angiotensin-converting enzyme (ACE)
inhibitor captopril®®, late-life treatment with rapamycin'¢, middle- and late-life treatment with a

122, as well as a whole-life and middle-life

‘non-feminizing’ derivative of estrogen 17-a-estradio
treatment with a combination of rapamycin and acarbose’’, one of the most effective
pharmacological longevity interventions in mammals up to date. We further expanded our dataset
with 12 liver samples from 4-6-month-old male and female mice. This allowed us to assess
molecular mechanisms of lifespan regulation and aging and integrate these features into a single

mortality model.

To calculate expected all-cause mortality rate for each animal presented in our data, we
fitted survival curves obtained from original ITP studies with Gompertz model (Fig. 1B) separately
for each cohort, sex, site, and experimental group. Since every ITP compound was tested across 3
independent sites and survival of control animals was tested across multiple cohorts, we
aggregated parameters of individual Gompertz functions for each sex and experimental group
using a mixed-effect model to increase the reliability of mortality estimates (Extended Data Fig.
1A). As expected, aggregated Gompertz models produced intermediate estimates of hazard rate
and survival across studies (Extended Data Fig. 1 A-B). We then calculated the logarithm of hazard
rate for each sample in our dataset by providing its chronological age to the corresponding
aggregated and cohort-specific mortality models and taking the average of the resulting two
estimates (see Methods). This algorithm allowed us to estimate expected mortality rate for every
mouse based on its age, sex, cohort, and treatment data (Fig. 1C). As a complementary metric of
biological age, we also calculated lifespan-adjusted age, defined as a chronological age divided by
the maximum lifespan (99.9" percentile) of the respective mouse model estimated with the
Gompertz function (Fig. 1B). This metric, therefore, can be considered as a fraction of maximum
lifespan that has passed for the provided animal. 90" percentile lifespan estimates predicted by
Gompertz models for each experimental group, sex, and cohort were well correlated with the
corresponding lifespan estimates derived from survival data (Pearson’s r = 0.97) (Fig. 1D),
suggesting that this mortality model captures differences in survival dynamics across treatments

and sexes, and can be used to estimate expected hazard rate and maximum lifespan.

Principal component analysis (PCA) performed on the filtered and normalized dataset

revealed separation of samples by sex according to the first principal component (Extended Data


https://doi.org/10.1101/2024.07.04.601982
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.04.601982; this version posted July 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Fig. 1C). To identify transcriptomic biomarkers of maximum lifespan, expected mortality and
lifespan-adjusted age, we utilized a regression model and tested if gene log-expression is
associated with these features after adjustment for sex and site. The same approach was employed
to detect signatures of chronological age between young (4-6 months) and old (22 months) control
samples. Using a False Discovery Rate (FDR) threshold of 0.05, we revealed 1272, 1457, 868 and
700-795 genes significantly associated with chronological age, lifespan-adjusted age, expected
hazard rate (in log scale) and maximum lifespan, respectively (Extended Data Fig. 1D-F). Age-
related gene expression changes demonstrated statistically significant weak negative correlation
with biomarkers of lifespan (Spearman rho between -0.05 and -0.2), both before and after
adjustment for chronological age (Extended Data Fig. 1G), in agreement with our previous
findings®®. At the same time, signatures of lifespan-adjusted age and mortality rate demonstrated
a stronger negative association with lifespan (Spearman rho between -0.13 and -0.37) and positive
association with age (Spearman rho > 0.93), confirming that these metrics better reflect detrimental
changes associated with aging and shorter lifespan. Regression analysis performed separately for
males and females revealed a significant positive correlation between sexes for all estimated
signatures (Fig. 1E). This suggests that molecular mechanisms of aging and longevity are generally
shared across sexes, despite the presence of sex-specific molecular and lifespan-extending effects

induced by many interventions, such as 17-a-estradiol and canagliflozin®!?%33,

Remarkably, one of the top genes positively associated with maximum lifespan (p.adjusted
= 510 and negatively associated with chronological age and expected mortality (p.adjusted =
2.9:10*) was Gpx1, encoding the selenoprotein glutathione peroxidase 1 (Fig. 1F-G). Accordingly,
overexpression of this gene was shown to ameliorate age-related kidney pathologies in old mice,
such as glomerulosclerosis and interstitial fibrosis>2. In addition, we observed a similar association
with age, mortality, and lifespan for several other genes involved in antioxidative response,
including multiple cytochrome P450 genes (e.g., Cyp2f2, Extended Data Fig. 2A-B), and genes
involved in fatty acid metabolism (e.g., Acsml, Extended Data Fig. 2C-D). To characterize
pathways, enriched for the identified gene expression signatures, we performed gene set
enrichment analysis (GSEA) (Supplementary Table 2A). As at the level of genes, the functional
signature of chronological age was positively correlated with mortality and lifespan-adjusted age
(Spearman rho > 0.94) and negatively correlated with lifespan (Spearman rho <-0.31), both before
and after adjustment for age (Extended Data Fig. 2E). Interestingly, correlations at the level of
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pathways were generally stronger than at the level of genes, suggesting that longevity interventions
may affect the expression of different individual genes but ultimately lead to similar functional
outcomes. Pathways positively associated with lifespan and negatively with mortality, both before
and after adjustment for age, included oxidative phosphorylation, mitochondrial translation,
xenobiotic metabolism, and fatty acid metabolism, while interferon signaling and hemostasis

demonstrated the opposite associations (Extended Data Fig. 2F).

To characterize universal molecular mechanisms of rodent aging, mortality, and lifespan
regulation that are reproduced across tissues, species, genetic backgrounds and interventions, we
expanded our dataset with publicly available gene expression data from tissues of control healthy
mice and rats with known chronological age (Fig. 1H). Thus, we integrated 3,575 samples from
26 tissues, covering a substantial range of rodent ages, from 4 to 943 days (Extended Data Fig.
3A). We also introduced 964 transcriptomic samples from mice subjected to various
pharmacological, genetic, dietary, and environmental interventions with extending, shortening, or
neutral effects on lifespan that have the associated published survival data, including HGPS

progeria model?, caloric restriction®, spermidine®, acarbose'®!%3?

, pregnancy-associated plasma
protein-A (PAPP-A) KO>*, Ames and Snell dwarf models'>>>, S6K1 deletion®®, hypoxia®’, and
others (Fig. 1H). Overall, our meta-dataset included 4,539 mouse and rat gene expression profiles
representing 26 tissues, 79 unique interventions, 96 independent studies, and various platforms
(Supplementary Table 1B). Utilizing published survival data, we fitted cohort-specific and
aggregated Gompertz mortality models for every presented strain, sex, and intervention using the
algorithm explained above. We then used them to calculate expected hazard rate and lifespan-
adjusted age for every sample in our gene expression dataset (Fig. 11-J). Similar to the ITP data,
the Gompertz function was able to capture differences in mortality dynamics across various rodent
models, confirmed by a high correlation between the estimate of 90™ percentile lifespan predicted
by the model and the lifespan estimate derived from the corresponding survival data (r = 0.995)
(Extended Data Fig. 3B). As expected, hazard rate, as a composite metric, was positively correlated
with chronological age (Extended Data Fig. 3D) but was also affected by different genetic

backgrounds, progeria models, high-fat diets and lifespan-extending interventions.

Using aggregated data, we searched for robust multi-tissue transcriptomic biomarkers of
aging, mortality, and maximum lifespan. To reduce variation in gene expression caused by batch

effect and differences in baseline expression across organs and sexes, for every subset of samples
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corresponding to a particular dataset, tissue, and sex we centered their gene expression profiles
around the median expression profile of a randomly chosen control group (see Methods). We then
applied linear mixed-effect model, including data source and tissue as random terms and sex as a
fixed term, to identify gene expression changes associated with difference in chronological age,
lifespan-adjusted age, maximum lifespan (99.9™ percentile), and expected hazard rate (in log
scale). Using FDR threshold of 0.05, we detected 3098 statistically significant signatures of
maximum lifespan and 9059 to 9167 signatures of chronological age, lifespan-adjusted age and
mortality at the level of gene expression (Fig. 1K). Interestingly, after adjustment for chronological
age, 3213, 4099, and 4439 genes demonstrated statistically significant association with maximum
lifespan, lifespan-adjusted age, and expected hazard rate, respectively (Fig. 1L; Extended Data

Fig. 3C), pointing to systemic regulation of mortality and longevity at the molecular level.

Among top genes, whose expression is negatively associated with maximum lifespan of
rodents and positively correlated with their mortality after adjustment for age, we found Igf7
(p.adjusted < 3610713 for age-adjusted lifespan and mortality signatures), encoding insulin-like
)58

growth factor-1, a well-known regulator of lifespan in multiple species (Fig. 1L)”°. Previously, we

have shown that this gene is consistently downregulated in tissues of long-lived mammalian

species?®

, supporting its crucial role in the longevity control both across and within species.
Another gene negatively correlated with lifespan and positively associated with both mortality and
chronological age was Ddost (p.adjusted < 3.7:10°® for signatures of age-adjusted mortality and
lifespan signatures; p.adjusted = 3.5:10"* for aging signature), involved in processing of advanced
glycation end products (AGEs)>. Its expression is elevated in people with Alzheimer’s disease
(AD)% and can serve as a prognostic biomarker of poor survival for patients with hepatocellular

carcinoma (HCC)®! and gliomas®?.

Among genes positively associated with lifespan and negatively correlated with mortality,
we identified flavin-containing monooxygenase 3 gene Fmo3 (p.adjusted < 3910 for age-
adjusted lifespan and mortality signatures), an established inhibitor of mTOR and activator of
autophagy®’. Its overexpression in mice was shown to ameliorate several aging-related hallmarks,
reducing levels of pro-inflammatory cytokine interleukin-6, total cholesterol, triglyceride, and
markers of senescence. Interestingly, Fmo3 expression is also slightly upregulated with age
(p.adjusted = 0.011; Extended Data Fig. 3E), while Igf7 is downregulated in tissues of aged
organisms (p.adjusted = 8.3:1077), further supporting the idea that age-related biomarkers include
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both detrimental and compensatory molecular changes*'. We also detected strong positive
association with rodent lifespan and negative correlation with hazard rate for Nmrkl (p.adjusted <
1.3:10"13 for age-adjusted lifespan and mortality signatures) (Fig. 1L; Extended Data Fig. 3C),
encoding a nicotinamide riboside kinase 1, an enzyme involved in biosynthesis of NAD" precursor

NMN®, whose association with aging and longevity is well established?®3,

Consistent with the ITP data, genes associated with chronological age had statistically
significant co-directional overlap with biomarkers of age-adjusted mortality and counter-
directional overlap with lifespan signatures (Extended Data Fig. 3F). This was evident both at the
level of up- and downregulated genes (Fig. 1M), supporting the hypothesis that age-associated
transcriptomic changes are generally prognostic of poor health outcomes even after adjustment for
the organism’s age. We also detected significant correlations between these signatures, both at the
level of individual genes (Extended Data Fig. 3G) and enriched functions (Fig. IN). As expected,
signatures of lifespan-adjusted age and expected mortality exhibited a stronger association with

maximum lifespan, at the same time maintaining high correlation with chronological age.

GSEA revealed that genes negatively associated with maximum lifespan and positively
associated with aging and mortality rate, both before and after adjustment for chronological age,
were involved in interferon and interleukin signaling, p53 pathway, complement cascade, and
mTOR and insulin signaling, while genes involved in oxidative phosphorylation and mitochondrial
biogenesis showed the opposite associations (Fig. 10; Supplementary Table 2B). We also detected
significant positive association with lifespan and negative association with age-adjusted mortality
for genes related to fatty acid metabolism and xenobiotic metabolism, supporting their role in

33,35,66,67

regulation of longevity and clearance of accumulated molecular damage'.

10
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Fig. 1. Gene expression signatures reflect molecular mechanisms of mammalian aging, maximum lifespan, and
mortality. A. Overview of samples from the Interventions Testing Program (ITP) subjected to RNA-seq. B. Example
of a fitted survival curve of ITP mice. UM-HET3 control females and females subjected to rapamycin and acarbose
treatment are shown from the University of Texas 2017 ITP cohort. Estimates of lifespan-adjusted age for control and
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treated animals of the same chronological age are shown in the text. C. Expected all-cause mortality curves (in log
scale) of animals from (B), fitted with a Gompertz model. 95% confidence intervals are shown with shaded areas.
Dotted lines reflect estimates of expected hazard for age-matched control and treated organisms. D. Estimates of
expected maximum lifespan (90" percentile) for various ITP cohorts derived from survival data (x axis) and from
fitted Gompertz models (y axis). Pearson correlation coefficient and p-value are shown in text. Rapa: Rapamycin;
Aca: Acarbose; CC: Candesartan Cilexetil; GGA: Geranylgeranyl Acetone; NR: Nicotinamide Riboside; Late: Late-
life; Mid: Mid-life. E. Correlation between male and female gene expression signatures of lifespan (green bars),
chronological age, lifespan-adjusted age and mortality unadjusted (blue) and adjusted for chronological age (red) from
ITP data. For each trait, union of top 1000 associated genes in females and males (with the lowest p-value) was used
to estimate Spearman’s correlation coefficient. Asterisks reflect BH-adjusted p-values. F. Expression of Gpx/ adjusted
for sex in young (left) and old (right) control UM-HET3 mice. BH adjusted p-value corresponding to age difference
in expression is shown in text. G. Association between expected maximum lifespan of ITP cohorts estimated from
survival data (x axis) and expression of Gpx/ adjusted for sex (y axis). BH adjusted p-value is shown in text. H.
Overview of transcriptomic data from mice and rats aggregated in the study. Number of samples for control (blue)
and all animals (green) corresponding to various strains, sexes, ages and lifespan-regulating interventions is provided.
Icons reflect most represented organs and types of interventions. Examples of lifespan-shortening and -extending
interventions included in the dataset at the level of gene expression and survival are shown. KO: Knockout; oe:
overexpression. I. Distribution of lifespan-adjusted ages (x axis) and tissues (shown by color) for all samples covered
in the aggregated meta-dataset (n=4,539). BAT: Brown Adipose Tissue; scWAT: Subcutaneous White Adipose
Tissue; vVWAT: Visceral White Adipose Tissue. J. Distribution of expected all-cause mortality (in log scale, x axis),
available strains and types of interventions (shown by color) for all samples in the meta-dataset (n=4,539). K. Gene
expression signatures of chronological age in control animals identified from the whole meta-dataset (n=3,575). Slope
of association and BH-adjusted p-value (in log scale) are shown on x and y axis, respectively. Top genes associated
with age are shown in the text. L. Gene expression signatures of expected maximum lifespan adjusted for
chronological age identified from the whole meta-dataset (n=4,539). Maximum lifespans were estimated with
Gompertz model based on survival data for the corresponding sex, strain and intervention. M. Venn diagrams of genes
significantly associated (BH-adjusted p-value < 0.05) with chronological age (blue), expected mortality (red) and
maximum lifespan (green) adjusted for age. Statistical significance of pairwise overlaps was assessed with Fisher’s
exact test and is shown with asterisks. N. Correlation matrix of normalized enrichment scores (NES) of pathways
associated with signatures of maximum lifespan (green), chronological age, lifespan-adjusted age and mortality
unadjusted (blue) and adjusted for chronological age (red), identified from meta-dataset. NES were estimated with
GSEA. Correlation coefficient and statistical significance are indicated with text and asterisks, respectively. O.
Functional enrichment (GSEA) of transcriptomic signatures of maximum lifespan (green), chronological age, lifespan-
adjusted age and mortality unadjusted (blue) and adjusted for chronological age (red), identified from meta-dataset.
Statistical significance is shown with asterisks. Only functions significantly enriched by at least one signature are
shown (BH-adjusted p-value < 0.05). The whole list of enriched functions is in Supplementary Table 2B.

~p.adj <0.1; * p.adj <0.05; ** p.adj <0.01; *** p.adj <0.001.

Rodent multi-tissue transcriptomic clocks of aging and mortality

To develop quantitative multi-tissue biomarkers of mammalian aging and mortality at the
level of gene expression, we utilized the aggregated dataset to train machine learning models that
predict chronological age, lifespan-adjusted age, and expected hazard rate of tissue samples. For

the chronological clock, we trained an Elastic Net (EN) linear model with K-Fold cross-validation
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on the complete gene expression profiles of 3,575 samples from 26 tissues of healthy mice and
rats not subjected to any interventions. Most organs in the dataset were well distributed across age
groups, with the top represented tissues being liver (750 samples), skeletal muscle (521 samples),
brain (499 samples) and kidney (275 samples) (Extended Data Fig. 3A). As a response variable,
we used chronological age divided by the species maximum recorded lifespan, according to
AnAge®®®, in a linear way or with log-log transformation*’. We also tested 2 normalization
methods of gene expression: scaling and YuGene normalization”’, shown to be effective for
standardization of transcriptomic data from different sources’! (see Methods). The trained model
was able to predict absolute chronological age of animals on the test set with R? = 0.88, Pearson’s
r = 0.94 and mean absolute error (MAE) = 2.2 months (Fig. 2A). To get robust estimates of model
quality, we performed nested cross-validation by randomly choosing training and test set 10 times
and calculating median accuracy of the model across iterations (Extended Data Fig. 4A). Log-log
transformation of age resulted in a higher quality of the transcriptomic clock (median Pearson’s r
= 0.938, median MAE = 2.11 months), while scaling and YuGene normalization methods
produced comparable accuracy.

To further improve predictive power of the clock by reducing batch effect, we calculated
relative gene expression compared to a randomly chosen reference group within each dataset and
tissue, and trained the clock to predict difference in chronological age based on differences in gene
expression profiles (see Methods; Fig. 2B). Indeed, this approach resulted in an even higher R? on
test sets (median Pearson’s r = 0.957 and median R? = 0.92 across 10 iterations) (Fig. 2C; Extended
Data Fig. 4A), demonstrating quality of age prediction comparable to epigenetic clocks®73%4049,
Finally, to enhance applicability of the model, we trained it with Bayesian Ridge (BR) model that
provides transcriptomic age (tAge) point estimate together with a credible interval (CI) reflecting
the level of uncertainty for model’s prediction on the given data, which may be particularly useful
when model is applied to novel interventions and datasets with small sample sizes. The accuracy
of BR clocks was similar to EN models (median Pearson’s r = 0.953, median R?=0.91) (Extended
Data Fig. 4A), suggesting that they can also be employed for assessing aging-associated molecular
phenotypes.

In addition to the rodent multi-tissue model, we trained chronological clocks on individual
tissues, including kidney, liver, brain and skeletal muscle, as well as a multi-tissue model based

only on mouse samples (Fig. 2C; Extended Data Fig. 4B). The resulting clocks had comparable
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accuracy (median Pearson’s r between 0.94 and 0.982), suggesting that individual tissues may be
integrated in a multi-tissue model without substantial loss of quality. We also applied other
machine learning algorithms, including Support Vector Machines (SVM), Light Gradient Boosting
Machine (LightGBM), Random Forest and K-Nearest Neighbors (KNN), and observed similar or
worse accuracy compared to the EN model (Extended Data Fig. 4C).

To validate the clock’s ability to predict chronological age of samples from independent
datasets, we performed leave-one-dataset-out (LODO) test, iteratively excluding each dataset from
the training set and passing it to the model trained on remaining datasets. In agreement with
previous results, we observed higher quality of age prediction across independent datasets for the
relative chronological clock (Pearson’s r = 0.853, MAE = 3.96 months; Fig. 2D), which
significantly outperformed absolute clocks (Extended Data Fig. 4E-F), confirming that
differentiation of gene expression profiles is effective for the reduction of tissue- and dataset-
associated batch effects.

To examine if the multi-tissue model can be applied to tissues not used during training, we
performed leave-one-tissue-out test. Remarkably, relative chronological clock was able to predict
age dynamics in all tested unseen tissues (Extended Data Fig. 4D) with the median Pearson’s r =
0.878 (Fig. 2E), suggesting that the model indeed captures systemic aging-associated molecular
hallmarks shared across mammalian organs.

To develop an integrated model encompassing molecular mechanisms of aging and
longevity, we utilized the complete transcriptomic meta-dataset that includes healthy animals and
rodents subjected to lifespan-shortening, neutral or longevity interventions together with the
corresponding survival data (Fig. 1I-J). Using these data, we trained rodent multi-tissue
transcriptomic clocks of lifespan-adjusted age and expected mortality rate (Fig. 2F; Extended Data
Fig. 5A). Like chronological clocks, relative models demonstrated higher quality on test sets than
absolute clocks (Median Pearson’s r = 0.954 and 0.943 for lifespan-adjusted age and mortality,
respectively), while EN and BR models showed comparable accuracy (Extended Data Fig. SD-G).
When applied to independent datasets in LODO test, multi-tissue transcriptomic clocks of lifespan-
adjusted age and mortality also showed similar quality (Pearson’s r = 0.848 and 0.81, respectively;
Extended Data Fig. 6A-B).

In agreement with the signature analysis, clock coefficients were in general positively

correlated across models of chronological age, lifespan-adjusted age, and expected mortality
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(Extended Data Fig. 5B-C), with lifespan-adjusted and mortality clocks exhibiting the highest
similarity. Among top features with positive coefficients selected by chronological and mortality
models across 10 random iterations, we observed genes Gpnmb, Cst7, and Cdknla, encoding a
type I transmembrane glycoprotein, endosomal/lysosomal cathepsin inhibitor, and cell cycle
inhibitor, respectively (Fig. 2G; Extended Data Fig. 4G). Remarkably, these genes have been
previously shown to be prognostic biomarkers of individual diseases. Thus, glycoprotein
nonmetastatic melanoma protein B (GPNMB), involved in regulation of cell differentiation,
regeneration and inflammation’>, was shown to have elevated levels in patients with
neurodegenerative diseases, including Alzheimer’s disease’?, Gaucher disease’*, and amyotrophic
lateral sclerosis’®. Cystatin F regulates cell cytotoxicity, while its induction is also associated with
development of brain pathologies, such as a prion disease’® and AD in mice and humans’’,
presumably through the impairment of lysosomal function in microglia. Finally, cyclin-dependent
kinase inhibitor p21 (CDKN1A), a member of the p53 pathway, is a well-established marker of
cellular senescence, DNA damage, and tumor progression’®”. Interestingly, Cst7 and Cdknla
expression across rodent tissues demonstrated positive association with both aging and mortality
after adjustment for age (Extended Data Fig. 3E), suggesting that these factors are robust molecular
hallmarks of impaired health. In contrast, top features with negative coefficients in mortality clock
included several genes associated with cellular differentiation and epithelial-mesenchymal
transition (EMT), such as Nrep, Collal and Col3al (Fig. 2G), presumably reflecting the overall
stem cell exhaustion observed with aging and in short-lived mouse models®*®*!. Thus, neuronal
regeneration related protein (NREP, of P311) plays a crucial role in wound healing and scar
formation®. Accordingly, expression of these genes showed significant negative association with
both chronological age and mortality after adjustment for age (Extended Data Fig. 3E).

To test if the developed molecular models of biological age capture both the effects of
aging and lifespan-regulating interventions, we assessed the correlation of transcriptomic clock
predictions on independent datasets separately with chronological age and with the ratio of
expected maximum lifespan between age-matched control animals and mice subjected to the
intervention. To have a positive control for the second test, we trained gene expression model to
directly predict lifespan (i.e., lifespan clock), utilizing changes in expected maximum lifespan as
a response variable (Extended Data Fig. 6C). Interestingly, addition of chronological age to the

list of features for this model didn’t improve its quality (median Pearson r across test sets is 0.885
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and 0.886 for lifespan model with and without chronological age, respectively), suggesting that
chronological age differences were well reflected by gene expression data (Extended Data Fig.
6D). As expected, predictions of chronological clocks demonstrated a high positive correlation
with age and a mild negative correlation with the effect on maximum lifespan (Pearson r = 0.85
and -0.36, respectively), whereas the lifespan clock showed the opposite (Pearson r = -0.12 and
0.54, respectively) (Fig. 2H; Extended Data Fig. 6E). At the same time, lifespan-adjusted and
mortality clocks demonstrated high correlation with both chronological age and the effect on
lifespan (Pearson r = 0.85 and -0.53, respectively). Remarkably, when we analyzed short-lived and
long-lived models separately, we observed that the multi-tissue chronological clock was able to
distinguish detrimental interventions from other groups (p.adjusted = 0.0012) and predicted higher
tAge for these models (p.adjusted = 0.003) (Fig. 2I). However, it didn’t capture the effect of
lifespan-extending interventions (p.adjusted > 0.7), in agreement with previous studies showing
that established longevity interventions typically don’t produce a strong anti-aging effect on the
gene expression profile?®*®. In contrast, transcriptomic clocks of lifespan-adjusted age and
especially clocks of expected mortality distinguished both short-lived and long-lived models
(p.adjusted < 6:10* and < 3:10° for lifespan-adjusted and mortality clocks, respectively), predicting
higher and lower tAge for detrimental and longevity interventions, respectively (p.adjusted <
6.9-10° and < 1.3:107 for lifespan-adjusted and mortality clocks, respectively) (Fig. 2J; Extended
Data Fig. 6F). Remarkably, the mortality clock predicted lifespan-modulating models even better
than lifespan clock (Extended Data Fig. 6G), suggesting that aging and longevity-affecting models

complement each other improving the overall quality of molecular biomarkers of health.
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Fig. 2. Multi-tissue transcriptomic clocks capture mortality-associated changes caused by aging and lifespan-
regulating interventions. A-B. Accuracy of prediction of absolute (A) and relative (B) chronological age with multi-
tissue transcriptomic clocks trained with Elastic Net (EN) model on mice and rats (with scaling normalization).
Training and test sets are denoted by color. Pearson correlation coefficient, R? and mean absolute error (MAE) for test
set are shown in the text. C. Accuracy of predictions of relative chronological age on 10 randomly chosen test sets for
tissue-specific (kidney, liver, brain, skeletal muscle) and mouse or rodent multi-tissue EN transcriptomic clocks.
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Pearson correlation coefficient and MAE are shown on left and right panels, respectively. Median estimate of quality
across 10 runs is provided in text. MAE of random age prediction is shown in grey. Pairwise comparison of accuracy
for various models was performed with Wilcoxon signed-rank test, corresponding BH-adjusted p-values are shown in
text. D. Leave-one-dataset-out (LODO) accuracy of relative chronological age prediction with rodent multi-tissue EN
transcriptomic clock (with YuGene normalization). Sex of samples is depicted with color. Pearson correlation
coefficient, R> and mean absolute error (MAE) are shown in the text. E. Quality of relative chronological age
prediction for novel tissues not included in the training set with rodent multi-tissue EN transcriptomic clock. Pearson
correlation between real and predicted age was estimated for each organ after training on remaining tissues (leave-
one-tissue-out procedure) with scaling (left) and YuGene (right) normalization methods. Median correlation
coefficient across tissues is shown in the text. F. Accuracy of prediction of relative expected hazard ratio (HR) in log
scale with rodent multi-tissue EN transcriptomic clock (with YuGene normalization). Training and test sets are
denoted by color. Pearson correlation coefficient, R* and mean absolute error (MAE) for test set are shown in the text.
G. Top 25 genes with the highest average absolute coefficients in rodent multi-tissue EN mortality clocks trained on
data subjected to scaling (left) or YuGene (right) normalization across 10 randomly chosen training sets. Data are
mean normalized coefficients + SE. H. Quality of prediction of chronological age (left) and effect on lifespan induced
by various interventions (right) for rodent multi-tissue EN transcriptomic clocks of chronological age, lifespan-
adjusted age, mortality and expected maximum lifespan. Pearson correlation coefficient was calculated between
predicted transcriptomic age and real chronological age (months) or effect on lifespan (log-ratio between treated and
control animals) in independent datasets. Median Pearson’s r and statistical significance are shown with text and
asterisks, respectively. I-J. Accuracy of prediction of intervention effect on expected lifespan for rodent multi-tissue
EN transcriptomic clocks of chronological age (I) and mortality (J) (with YuGene normalization). For every type of
interventions (lifespan-shortening, neutral or lifespan-extending), dots reflect mean tAge differences between treated
and control samples for a given intervention, dataset and sex. Statistical significance of deviation from zero for
lifespan-shortening and lifespan-extending interventions and pairwise comparison of tAges across the groups were
assessed with mixed effect models. Corresponding BH-adjusted p-values are shown with asterisks and text,
respectively. Data are mean tAge differences + SE.

* p.adj <0.05; ** p.adj <0.01; *** p.adj <0.001.

Co-regulated gene expression modules of aging and longevity

To deconstruct transcriptomic hallmarks of aging and longevity into independent co-
regulated components, we employed weighted gene co-expression network analysis (WGCNA)®,
To focus on modules associated with aging- and lifespan-associated changes and reduce the impact
of batches, tissues, and sexes, we centered all gene expression profiles in our meta-dataset around
median profile of randomly selected reference group from the same dataset, tissue, and sex (see
Methods). Genes in the resulting dataset formed several distinct co-regulated clusters (Extended
Data Fig. 7A), suggesting that the signatures of aging and longevity may be separated into
components. WGCNA revealed 28 co-regulated modules, each composed of 30 to 630 genes (Fig.
3A; Extended Data Fig. 8). Most modules identified by separately analyzing male and female
samples demonstrated significant overlap, confirming that gene clustering was largely not driven

by sex-specific differences in gene expression (Extended Data Fig. 7B). Following filtering of
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genes within each module (see Methods; Extended Data Fig. 7C), we performed a functional
enrichment analysis. Remarkably, we found that most gene clusters were enriched for specific sets
of pathways, with very little overlap across modules (Fig. 3B; Extended Data Fig. 9-10;
Supplementary Table 4). Thus, turquoise, blue, and greenyellow modules were enriched for genes
associated with inflammatory response and innate immune system, mitochondrial translation and
respiratory electron transport, and extracellular matrix (ECM) organization and EMT, respectively.

To validate the biological meaning of the identified gene network components, we
estimated partial correlation between 1% principal components (PCs) of modules after adjustment
for chronological age (Extended Data Fig. 7D). As expected, modules annotated with similar
functions had a higher correlation and clustered together (Fig. 3C). For example, modules
associated with inflammatory response, interferon signaling and T cell signaling formed a
connected higher-order cluster, while metabolism-related modules were organized in a different
interconnected cluster. To examine the association of transcriptomic components with aging and
longevity, we estimated correlation of their 1% PCs with chronological age and expected maximum
lifespan (Fig. 3C-D). In agreement with our previous studies, modules of immune response
demonstrated a strong positive association with aging and a negative correlation with maximum
lifespan®®33. In contrast, modules of mitochondrial function, oxidative phosphorylation, and lipid
metabolism were positively correlated with longevity and negatively associated with age,

highlighting their role in the regulation of healthspan?333-:66:84.85

. Overall, most modules
demonstrated opposite associations with aging and lifespan. However, several transcriptomic gene
sets, including modules of heat stress response, translation, and ECM organization and EMT,
showed co-directional associations with chronological age and maximum lifespan, potentially
reflecting adaptive aging-related hallmarks. Finally, some modules, such as those involved in
protein processing and mTOR signaling, demonstrated association with longevity but no
significant correlation with aging (Fig. 3D).

To develop quantitative biomarkers of mortality based on the identified independent
components of gene expression network, for every module we trained relative rodent multi-tissue
transcriptomic clocks of chronological age and expected mortality (Fig. 3E). Clocks trained on all
genes included in at least one module (2,141 genes) demonstrated high quality comparable to the

clocks trained on the whole transcriptome (median Pearson r across test sets = 0.88-0.9),

suggesting that together the identified co-regulated components explain most of the association
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between gene expression and mortality. Most individual module-specific clocks were able to
predict response variables in test sets with moderate accuracy (median Pearson’s r across modules
= 0.41-0.44). After filtering out modules with median Pearson’s r < 0.3, we obtained 23
functionally annotated module-specific multi-tissue clocks of chronological age and mortality
(Fig. 3E, left). Moreover, all mortality clocks were positively correlated with chronological age
and negatively correlated with expected maximum lifespan in test samples (Fig. 3E, right),
confirming that mortality models trained on gene sets from individual modules preserved the
composite nature of this metric. Besides, transcriptomic ages predicted with module-specific
clocks maintained the overall structure of the network observed at the level of the 1% PCs (e.g.,
outputs of clocks trained on inflammatory, adaptive immunity, and interferon signaling modules
formed an interconnected cluster) (Extended Data Fig. 7E-F), suggesting that predictions of the
clocks indeed represent mortality-associated changes of specific cellular pathways and may be
used to obtain interpretable data on molecular mechanisms of aging and longevity in the given

animal model.

Molecular mechanisms of mortality induced by Klotho knockout

To validate the developed biomarkers and characterize molecular mechanisms of mortality
associated with an established progeria model, we performed RNA-seq on the kidney and skeletal
muscle samples of Klotho gene knockout mice and healthy age-matched controls (n=6 per group).
Klotho is an established pro-longevity gene involved in several lifespan-associated pathways. It
was shown to inhibit IGF1/mTOR signaling, upregulate antioxidant enzymes through activation
of Nrf2 signaling, and block TGF-p leading to prevention of fibrosis and stem cell exhaustion®¢,
Klotho overexpression extends mouse lifespan®’, whereas its deficiency results in progeria,
limiting mouse maximum lifespan to 4-5 months®’.

Klotho was highly expressed in the kidneys of control mice (Fig. 3F), consistent with
previous data®®, while its expression was barely detected in both kidneys and skeletal muscles of
KO mice. To get an unbiased estimate of transcriptomic age, we retrained multi-tissue clocks by
excluding Klotho gene from the feature set and applied the models to control and progeria samples.
In agreement with survival data, we detected a statistically significant increase of transcriptomic

age in both organs of Klotho KO mice, according to chronological, lifespan-adjusted, and mortality
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clocks (Fig. 3G; Extended Data Fig. 11A-B). Interestingly, a more profound effect was observed
in kidneys where the gene is usually produced (Fig. 3G). Among top genes driving the pro-aging
and pro-mortality effect of this model was Cdknla, upregulated in both tissues (Fig. 31; Extended
Data Fig. 11C-D), consistent with the role of Klotho in the prevention of cellular senescence®.
Overall, gene expression changes contributing to a higher transcriptomic age were similar between
kidneys and skeletal muscles (Pearson’s r = 0.39) (Extended Data Fig. 11D).

We then examined top transcriptomic modules that contributed to the increased molecular
damage in Klotho KO mice after adjustment for the effect of all other modules. To do that, we
applied EN multi-tissue clocks trained on all genes included in at least one module and summed
up contributions of each module for control and Klotho KO samples, followed by pairwise
comparison between the groups. Top modules driving the pro-mortality effect of this progeria
model in kidneys included those associated with respiration and mitochondrial translation, ECM
organization and EMT, cholesterol metabolism and mTOR signaling, and Nrf2 signaling and
proteasome function (Fig. 3H), in agreement with the established mechanisms of Klotho activity
from the previous studies®®. Respiration/mitochondrial translation and ECM/EMT modules also
had the highest effect on increased tAge in the muscle, according to chronological and mortality
clocks (Extended Data Fig. 11E). Interestingly, the module of inflammation and innate immunity
was downregulated in both kidneys and skeletal muscles of Klotho KO mice, and accordingly had
a negative effect on mortality and chronological tAge, suggesting that this cellular pathway was
not responsible for the pro-mortality phenotype in this progeria model (Fig. 3H; Extended Data
Fig. 11E).

To identify all functional components exhibiting the damaging effect of Klotho KO, we
applied module-specific multi-tissue chronological and mortality clocks. In agreement with
previous results, clocks trained on respiration and mitochondrial translation, and cholesterol
metabolism and mTOR signaling gene sets demonstrated a statistically significant increase of tAge
in both tissues according to chronological and mortality clocks (Fig. 3J; Extended Data Fig. 11F-
G), confirming that these cellular pathways are shared hallmarks of this progeria model across
organs. Besides, we observed a statistically significant pro-mortality effect for ECM organization
and EMT, and Nrf2 signaling and proteasome modules in kidneys (Fig. 3J), while skeletal muscle
was characterized by a significantly aged profile of myogenesis and muscle contraction component

(Extended Data Fig. 11F-G). This data suggests that Klotho KO is characterized by both shared
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mechanisms of aging across organs and tissue-specific effects highlighted by co-regulated modules
of the gene network. Again, immunity-related modules didn’t exhibit increased tAge in the Klotho
KO model (Extended Data Fig. 11G), although they were among most accurate module-specific
clocks (Fig. 3E), suggesting that inflammation and interferon signaling were not elevated in the
examined progeria model. Finally, to establish the direction of expression changes for the
identified mortality-associated pathways in K/otho KO mice, we performed functional enrichment
(Fig. 3K; Supplementary Table 5A). In agreement with the module analysis, we observed a strong
statistically significant downregulation of genes associated with respiratory electron transport and
mitochondrial translation induced by Klotho KO in both organs, and these pathways were also
negatively correlated with mortality, both before and after adjustment for chronological age,
providing further evidence for impairment of mitochondrial function induced by this genetic
intervention. Thus, the identified co-regulated components of the gene expression network provide
interpretable characterization of molecular mechanisms responsible for the observed change of

biological age induced by an intervention.
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Fig. 3. Co-regulated gene expression modules characterize components of mammalian aging and longevity. A.
Gene co-expression network based on spectral embedding with several modules identified with weighted gene co-
expression network analysis (WGCNA). Representative enriched functions for each module are shown in the text with
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the corresponding color. B. Functional enrichment of co-regulated gene expression modules identified with WGCNA.
Modules and pathways are shown in columns and rows, respectively. Size of dots and their color reflect odds ratio
and BH-adjusted p-value, respectively. Only enrichments with p.adjusted < 0.05 are shown with dots. The whole list
of enriched functions is in Supplementary Table 4A. C. Partial correlation network of 1% principal components (PCs)
of co-regulated modules (grey dots), chronological age (blue) and expected maximum lifespan (green). Sign and scale
of partial correlation coefficient (PCC) are indicated by color and line width. Modules are named after representative
enriched functions. The dictionary between modules and functions is in Supplementary Table 4B. AA: Amino acid;
Chrono: Chronological; FA: Fatty acid. D. Spearman correlation between 1% PC of module and chronological age
(blue) or expected maximum lifespan after adjustment for age (green). Statistical significance is reflected with
asterisks. E. Quality of rodent multi-tissue Elastic Net (EN) transcriptomic clocks of chronological age (blue) and
expected mortality (red) trained on various co-regulated modules (left), and correlation of mortality clock predictions
with chronological age (blue) and expected maximum lifespan adjusted for age (green) (right) on 10 randomly chosen
test sets. All available genes (1° row), all genes associated with at least one module (2" row) and genes associated
with individual modules (other lines) were used to train the clocks. Number of genes included in feature set for each
clock is shown with text. Statistical significance is denoted with asterisks. Module clocks with Pearson correlation
coefficient with outcome < 0.3 are shown in grey and excluded from the subsequent analysis. F. Normalized
expression of Klotho (in log scale) in kidney (left) and skeletal muscle (right) of 8-week-old control mice and age-
matched mice with Klotho knockout (KO). BH-adjusted p-value is shown in text. G. Transcriptomic age (tAge) for
control and Klotho KO mice in kidney (left) and muscle (right) estimated with rodent multi-tissue Bayesian Ridge
(BR) mortality clock trained on all genes excluding Klotho. tAges between the groups were compared with mixed
effect model, corresponding BH-adjusted p-values are shown in text. Data are tAges + SE. H. Contributions of gene
expression modules to tAge difference between control and Klotho KO mice estimated with the rodent multi-tissue
Elastic Net (EN) mortality clock. Individual modules are shown in rows and named after representative functions.
Positive and negative values reflect pro- and anti-mortality changes in Klotho KO mice compared to age-matched
controls, respectively. Statistical significance for each module was assessed with the two-sample unpaired t-test and
indicated with asterisks. Bars are colored based on normalized enrichment scores (NES) from gene set enrichment
analysis (GSEA), reflecting if genes associated with a particular module are generally up- (red) or downregulated
(blue) in Klotho KO mice. Modules significantly enriched for up- or downregulated genes (BH-adjusted p-value <
0.05) are visualized with thick bars. Data are means + SE. I. Top genes driving pro- (positive) or anti-mortality
(negative) transcriptomic changes in kidneys (left) and skeletal muscles (right) of Klotho KO mice compared to age-
matched controls, according to the rodent multi-tissue EN clock. Top 25 genes with the highest absolute effect on
tAge difference (logFC * clock coefficient) are shown. Genes up- and downregulated in Klotho KO mice are colored
in red and blue, respectively. Statistical significance of logFC for each gene is indicated with asterisks. Data are mean
tAge difference + SE. J. Mortality tAge in control and Klotho KO mice estimated with representative module-specific
multi-tissue mortality clocks. Difference between the groups was assessed with the two-sample unpaired t-test, and
corresponding BH-adjusted p-values are shown in text. Results for all module-specific mortality and chronological
clocks are in Extended Data Fig. 11G. K. Functional enrichment (GSEA) of gene expression changes induced in
Klotho KO mice, and signatures of mortality. Only functions significantly enriched by at least one signature are shown
(BH-adjusted p-value < 0.05). The whole list of enriched functions is in Supplementary Table 5A.

HR: Hazard Ratio; ECM: Extracellular matrix; EMT: Epithelial-Mesenchymal Transition; met: metabolism. * p.adj
<0.1; * p.adj <0.05; ** p.adj < 0.01; *** p.adj < 0.001.

Transcriptomic aging of individual cell types

To examine if multi-tissue transcriptomic hallmarks identified in bulk tissues reflect

molecular mechanisms of aging and mortality within individual cell types, we utilized murine
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droplet scRNA-seq data collected by Tabula Muris Consortium®. This dataset includes gene
expression profiles of single cells obtained from various tissues of mice of different age and sex.
To increase coverage of single cell data for the clock application, we employed a metacell
approach, pooling read counts from a randomly selected number of cells corresponding to the same
biological sample (Fig. 4A). To validate this method, we selected tissues with at least 7 samples
covering more than 15 months of mouse lifespan, pooled together reads from all available cells for
every tissue and animal and applied the mouse multi-tissue chronological clock (Extended Data
Fig. 12A-B). The clock was able to capture age dynamics with high quality for all examined mouse
organs (median Pearson’s r = 0.92; Pearson’s r for pooled data = 0.86). To test how metacell
coverage affects clock quality, we reran the analysis using different numbers of cells for metacell
aggregation (Fig. 4B-C). Dependence between cell coverage and clock quality followed a
saturation model, reaching median Pearson’s r = 0.9 (95% of the maximum value) starting from
approximately 100 cells (~1 mln reads per metacell), while already 25 cells (200-250 thousand
reads per metacell) resulted in median Pearson’s r = 0.84, corresponding to 89% of the maximum
value.

To examine if multi-tissue biomarkers of chronological age and mortality capture age
dynamics within individual cell types, we applied the metacell procedure and transcriptomic clocks
separately to every cell type. Interestingly, out of 50 examined cell types (Fig. 4D), 47 and 46 of
them demonstrated a statistically significant increase of tAge with mouse age according to
chronological and mortality clocks, respectively (Fig. 4E, Extended Data Fig. 12C). They included
fibroblasts, hepatocytes, muscle cells, endothelial cells, macrophages, lymphocytes, etc. (Fig. 4G).
Surprisingly, even stem cells, such as mesenchymal stem cells and skeletal muscle satellite cells,
exhibited substantial pro-aging and pro-mortality gene expression changes with age, suggesting
that aging is associated with systemic universal molecular changes shared across most cell types
and tissues.

Indeed, gene expression changes contributing to increased tAge with time were generally
positively correlated across cell types (Extended Data Fig. 13A). Top shared pro-aging and pro-
mortality transcriptomic hallmarks included upregulation of several inflammation-associated
genes, such as a pro-inflammatory chemokine Cc/5%° and modulators of leukocyte recruitment and
cytokine secretion S/00a8 and S100a9%°, as well as downregulation of the circadian rhythm

91-93

regulator Dbp and a modulator of ECM synthesis, differentiation, and wound healing Sparc®*
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(Fig. 4F; Extended Data Fig. 13B). Despite the overall similarity in aging-associated gene
expression changes across cell types, clustering revealed several groups of cell types that shared
closely related aging profiles (Fig. 4D). In general, cell types aggregated according to their tissue
origin, with the exception of blood cells, most of which formed a single cluster even though they
were derived from different organs. This suggests that aging is accompanied by both global
hallmarks of damage accumulation shared across tissues and local environment effects specific for
neighboring groups of cells. Detailed exploration of differences in aging across mammalian cell
types may provide insights for the development of effective longevity therapies targeted to specific

subsystems of the organism.

Effect of Klotho KO on gene expression hallmarks of mortality across

cell types

To further characterize molecular mechanisms of the K/otho KO progeria model and test if
it induces systemic pro-aging effect shared across multiple cell types, we performed single-nucleus
RNA-seq (snRNA-seq) of kidney and brain tissues from an 8-week-old control mouse and an age-
matched Klotho KO animal. UMAP revealed distinct clusters of cells in each organ, representing
various cell types (Fig. 41; Extended Data Fig. 14A). The brain was mostly composed of neurons,
along with astrocytes, oligodendrocytes, microglia, endothelial cells, and oligodendrocyte
precursor cells (OPC) (Fig. 41). The majority of kidney cells were proximal tubule epithelial cells,
accompanied by mesangial cells, endothelial cells, podocytes, epithelial cells from loop of Henle,
distal convoluted tubule, and connecting tubule, as well as principal and intercalated cells of
collecting duct (Extended Data Fig. 14A). To decrease noise and chances of getting a mixed signal
from multiple cell types, we filtered kidney data ensuring that cells from every annotated cell type
form a single cluster on the UMAP (Fig. 4H). Interestingly, most kidney cell types demonstrated
a clear separation between control and K/otho KO mice, while brain cells formed homogeneous
clusters (Extended Data Fig. 14B-C), confirming that the kidney is more affected by this genetic
manipulation. Indeed, we observed a substantially higher snRNA level of Klotho in kidney cells
of control mice, and it was significantly downregulated in all cell types of progeroid mice
(Extended Data Fig. 14D). In contrast, brain cells exhibited lower expression of this gene in control

animals, and its downregulation in K/otho KO mice was statistically significant only for neurons
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and oligodendrocytes, although a similar trend was observed for all cells except for OPC (Extended
Data Fig. 14E).

We then aggregated metacells separately for each cell type of control and Klotho KO mice
using the total coverage of 200K reads per metacell and applied multi-tissue chronological and
mortality clocks trained on all genes except for Klotho. The mortality clock revealed a statistically
significant acceleration of tAge induced by Klotho KO in all presented kidney cell types, except
for the loop of Henle cells (Fig. 4J). The chronological clock showed similar effects for most cell
types, although not all of them reached statistical significance (Extended Data Fig. 14F). In the
brain, both mortality and chronological clocks detected a significant increase of tAge in neurons,
astrocytes, and oligodendrocytes, as well as marginal significance in endothelial cells (p.adjusted
= 0.076-0.079) (Fig. 4K; Extended Data Fig. 14QG). Interestingly, microglia cells demonstrated a
marginally significant decrease of tAge according to the mortality clock (p.adjusted = 0.076),
consistent with the previous data showing that Klotho KO results in systemic downregulation of
genes associated with inflammatory response across organs (Fig. 3H,K).

To further characterize molecular mechanisms of the progeria, we focused on the most
representative cell types in the kidney and brain, being proximal tubule cells and neurons,
respectively. Genes driving aging- and mortality-associated effect of K/otho KO in proximal tubule
cells were similar to those in the bulk kidney (Pearson’s r = 0.57) (Extended Data Fig. 15A-C),
including upregulated Cdknla and Cp, the latter encoding ceruloplasmin glycoprotein involved in
iron metabolism and shown to be elevated in multiple disease models, including HCC, glioma,
heart failure, and cerebral ischemia® %%, At the same time, although neurons also exhibited an
acceleration of tAge in Klotho KO model, it was associated with distinct molecular signatures of
mortality, not significantly correlated with those in proximal tubules (Pearson’s r = 0.02) and
weakly correlated with those in skeletal muscle (Pearson’s r = 0.11) (Extended Data Fig. 15A-C).
Among top gene drivers of the pro-mortality molecular phenotype of neurons, we detected
downregulated Nrep and upregulated cell cycle regulator Junb, capable of inducing senescence
and stem cell niche delpetion®'?.

Despite distinct mortality-associated signatures of Klotho KO at the level of individual
genes, our module analysis revealed several shared molecular mechanisms of progeria between
proximal tubule cells and neurons (Extended Data Fig. 15D-E). Thus, modules of respiration and

mitochondrial translation, and cholesterol metabolism and mTOR signaling were among top
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contributors to biological age acceleration in both cell types, in agreement with bulk transcriptomic
data. At the same time, the inflammatory module had a negative effect on mortality tAge in both
proximal tubule cells and neurons, and the corresponding genes were significantly downregulated,
especially in neurons. Accordingly, mortality tAge of neurons and proximal tubules estimated with
the module-specific inflammatory clock also demonstrated a trend towards decline in progeroid
mice (Extended Data Fig. 15F). These findings are in line with the observed decreased biological
age of microglia cells in Klotho KO mice (Fig. 4K), suggesting that the overall inflammatory
response was diminished by introduced genetic manipulation. Therefore, this progeria model
shows that lifespan-regulating interventions may produce contrasting effects on mortality across
different cell types and cellular components, emphasizing the systemic nature of mammalian

mechanisms of aging and longevity.
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Fig. 4. Single-cell RNA-seq data reveal conserved mechanisms of aging and mortality across cell types in
naturally aged and short-lived mice. A. Scheme of a metacell analysis of transcriptomic age of individual cells.
Gene expression profiles of randomly chosen cells corresponding to the same type and experimental group are pooled
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together and passed to clocks. B. Dependence between quality of age prediction with mouse multi-tissue Elastic Net
(EN) chronological transcriptomic clock and number of cells from a sample aggregated in a single metacell. Dots
reflect individual tissues from the droplet Tabula Muris Senis scRNA-seq dataset. C. Dependence between quality of
chronological age prediction with mouse multi-tissue EN chronological clock and mean coverage of aggregated
metacells. Data are mean Pearson correlation coefficient between chronological ages and predicted transcriptomic
ages (tAges) across tissues in Tabula Muris Senis data + SE. D. Hierarchical clustering of weighted aging-associated
gene expression signatures of individual cell types. Union of top 1000 genes associated with age (with the lowest p-
value) was used to estimate Pearson’s correlation coefficient for each pair of cell types. Weighted signatures were
calculated as (age slope * chronological clock coefficient). Complete hierarchical method based on correlation
distance was used for clustering. Cell types are colored according to tissue origin. E. Dependence between
chronological age and transcriptomic age estimated with mouse multi-tissue EN chronological (left) and mortality
(right) clocks for individual cell types from Tabula Muris Senis dataset (in rows). Data are normalized slopes + SE.
Statistical significance of association was assessed with linear model. Asterisks reflect corresponding BH-adjusted p-
values. MEP: Megakaryocytic-erythroid progenitors. F. Top genes contributing into increased molecular age across
cell types according to mouse multi-tissue EN mortality clock. Top 5 genes with the highest average effect on
normalized tAge (normalized slope * clock coefficient) are shown. Cell types are labelled on E. Genes up- and
downregulated with age are colored in red and blue, respectively. Statistical significance of slope for each gene is
denoted with asterisks. Data are normalized tAge slope = SE. G. Molecular age dynamics in representative cell types
estimated with mouse multi-tissue chronological (left) and mortality (right) clocks. Pearson correlation coefficient and
corresponding BH-adjusted p-value are shown in text. Sk. muscle: Skeletal muscle. H-I. UMAP of filtered kidney (H)
and brain (I) cells from 8-week-old control and Klotho knockout (KO) mice. Cell type annotation is denoted with
color. OPC: Oligodendrocyte Precursor Cells. J-K. Mortality tAge difference between metacells of control and age-
matched Klotho KO mice representing various kidney (J) and brain (K) cell types, estimated with the rodent multi-
species Bayesian Ridge (BR) mortality clock trained on all genes excluding Klotho. tAges between the groups were
compared with mixed effect model, and BH-adjusted p-values are shown in text. Data are tAges + SE.

HR: Hazard Ratio. * p.adj < 0.05; ** p.adj < 0.01; *** p.adj <0.001.

Molecular mechanisms of biological age deviation in models of

chronic disease

To examine molecular mechanisms of mortality induced by established models of aging-
related diseases, we preprocessed 9 publicly available datasets with gene expression profiles of
tissues from animals representing models of Alzheimer’s disease (AD) (brain and pineal gland)'®!,
chronic kidney disease (CKD) (kidney)'%?, diabetic neuropathy (DN) (kidney)!'%*, ischemic stroke
(IS) (heart, brain and microglia cells)!®'%_ nonalcoholic steatohepatitis (NASH) (liver)'?’, and
hepatocellular carcinoma (HCC) (liver)!®, along with age-matched controls. Multi-tissue
chronological and mortality clocks revealed a statistically significant acceleration of biological age
in all examined disease models and organs, except for HCC (Fig. 5A; Extended Data Fig. 16).

Interestingly, transcriptomic age of heart and microglia in the model of ischemic stroke

demonstrated an accumulating effect with time following disease induction. Thus, mortality tAge

30


https://doi.org/10.1101/2024.07.04.601982
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.04.601982; this version posted July 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

of the heart was elevated already 1 day after the stroke but was even further increased on day 3
(Fig. 5A). The brain, being a primary target of IS, exhibited an even higher increase in biological
age 3 days after disease induction, both in young and old animals. At the same time, microglia
cells demonstrated an elevated mortality tAge only 14 days after the stroke in both young and old
animals, suggesting that various components of the organism may respond to disease models with
different rates. Moreover, on day 14 biological age of microglia derived from the ipsilateral
hemisphere, where IS was induced, was significantly higher than that from the contralateral
hemisphere (p.adjusted < 0.046 for mortality clock) (Fig. 5A), highlighting the effect of the local

environment on the dynamics of aging- and mortality-associated molecular mechanisms.

Interestingly, HCC samples showed a significantly lower mortality tAge compared to
control liver samples from age-matched animals (Fig. 5A). Many genes driving this signal were
related to cellular dedifferentiation, ECM organization and cell cycle, such as Plekhbl, Collal,
Col3al, Col4al, Ube2c, Cdkl, and Mki67 (Extended Data Fig. 17A-B). Accordingly, modules of
EMT/ECM organization and cell cycle had the highest negative statistically significant effect on
aging- and mortality-associated molecular profile of HCC (Fig. 5B), confirming that tumors
resemble some features of young cells, such as elevated proliferation, dedifferentiation, ECM
remodeling, and increased deposition of collagen'® 2, This was further supported by the module-
specific EMT/ECM organization clock that showed a marginally significant decrease of
chronological and mortality tAge in HCC (p.adjusted = 0.08-0.1) (Fig. 5C). At the same time,
several other modules, such as those associated with inflammatory response, and amino acid and
xenobiotic metabolism, contributed to the acceleration of biological age in tumor samples (Fig.
5B,D). Interestingly, most module-specific clocks displayed elevated tAge in hepatocellular
carcinoma (Fig. 5C,E; Extended Data Fig. 18A), indicating that although tumors exhibit some anti-
aging features, they are accompanied by accelerated aging of other cellular components and,
therefore, don’t fully resemble the young organismal state. Examples of such established pro-aging
hallmarks of cancer include inflammation and dysregulation of energy metabolism and
mitochondrial function!?. In agreement with that, functional enrichment revealed multiple shared
hallmarks between signatures of HCC and signatures of mortality, such as a statistically significant
upregulation of genes associated with inflammatory response, interferon signaling, p53 pathway
and apoptosis, and downregulation of genes involved in oxidative phosphorylation and

mitochondrial translation (Extended Data Fig. 18B; Supplementary Table 5B).
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To examine if different age-related diseases share similar molecular signatures of aging
and mortality, we estimated pairwise correlations between gene expression changes contributing
to increased tAge in each of the models. Remarkably, the majority of examined pathologies
exhibited overall similar aging- and mortality-associated signatures (Fig. 5F; Extended Data Fig.
17C). The top module contributing to the acceleration of biological age for most diseases was the
inflammatory component (Fig. 5D), in agreement with the crucial role of chronic inflammation in
progression of age-related pathologies®®!!*!'4 Module-specific clocks reflecting various branches
of immune response were also among those predicting the highest difference in tAge between
healthy and diseased animals across the models (Fig. SE; Extended Data Fig. 18A), followed by
clocks representing mRNA splicing, chromatin modification/transcription, and energy metabolism
(respiration/mitochondrial translation, oxidative phosphorylation, etc.). Accordingly, genes related
to inflammatory response, interferon signaling, and apoptosis were upregulated in response to the
majority of aging-related diseases, while genes involved in oxidative phosphorylation and
respiratory electron transport were downregulated, resembling changes associated with mortality
and aging (Extended Data Fig. 18B; Supplementary Table 5B). The only 2 models that didn’t
display an upregulation of inflammatory response and positive contribution of inflammatory
module to biological age were AD in the pineal gland and ischemic stroke in the heart tissue, which
explains clustering of their mortality-associated profiles separately from most other pathologies
(Fig. 5F; Extended Data Fig. 17C). Instead, pro-aging mechanisms in these models were mainly
driven by the EMT/ECM organization module (Fig. 5D). Interestingly, this module had a negative
effect on mortality tAge for many examined diseases, which may reflect ECM remodeling due to

tissue fibrosis that often accompanies chronic inflammation''>!1®,

Since various pathologies were characterized by overall similar mortality-associated
molecular profiles, we looked at top genes with the highest average contribution to acceleration of
biological age across the models. Remarkably, some genes, including Gpnmb, Cdknla, and
Lgals3, were significantly upregulated (p.adjusted < 0.05) in at least 5 models and had a strong
pro-mortality effect shared across diseases (Fig. 5G). One of these factors, CDKNIA (p21), is a
marker of intracellular damage and senescence’®”?. On the other hand, GPNMB and galectin-3,
being members of the inflammatory transcriptomic module, are involved in the modulation of

72,117

immune response and are elevated in patients with certain diseases, including AD’® and

118

arrhythmogenic cardiomyopathy ' '°, while downregulation of galectin 3 in mouse CKD model is
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further associated with amelioration of renal inflammation and fibrosis!!?. Our study suggests that
these genes are not only consistent multi-tissue biomarkers of aging and mortality but are also
robust signatures of age-related diseases. To test if these factors also reflect health deterioration in
humans, we utilized plasma proteomic data collected for more than 50,000 patients from UK
Biobank'?® and tested if concentration of GPNMB, CDKNIA, and LGALS3 in plasma is
associated with various health outcomes after adjustment for chronological age and sex.
Remarkably, all these proteins demonstrated a statistically significant positive association with
human’s all-cause mortality and incidence of numerous diseases, including cardiac arrest, heart
failure, liver cirrhosis, type I and type II diabetes, kidney failure, anaemia, atherosclerosis,
emphysema, chronic ischemic heart disease, depression, and others (Fig. SH; Supplementary Table
6). Interestingly, their concentration was also associated with established risk factors, such as
obesity, hypertension, and sleep disorders. This suggests that the identified genes indeed reflect
fundamental mechanisms of mammalian aging and mortality, shared across tissues, species,

models of health degeneration, and levels of molecular organization.
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Fig. 5. Aging-related diseases in mammals exhibit common molecular and functional changes associated with
mortality. A. Mortality transcriptomic age (tAge) of tissues from control rodents (grey) and age-matched animals
representing different models of age-related diseases (indicated with color), as assessed with the rodent multi-tissue
Bayesian Ridge (BR) mortality clock. tAges between the groups were compared with mixed effect model, and
corresponding BH-adjusted p-values are shown in the text. Species and organs are depicted with icons. GEO IDs for
all datasets are provided in text. Data are tAges + SE. B. Contributions of transcriptomic modules to chronological
(left) and mortality (right) tAge difference between livers from control mice and age-matched animals with
spontaneous hepatocellular carcinoma, estimated with rodent multi-tissue Elastic Net (EN) chronological and
mortality clocks. Individual modules are shown in rows and named after representative functions. Positive and
negative values reflect pro- and anti-aging and mortality changes in carcinoma compared to control livers,
respectively. Statistical significance for each module was assessed with ANOVA or linear regression (for stroke
microglia model) and indicated with asterisks. Bars are colored based on normalized enrichment scores (NES) from
gene set enrichment analysis (GSEA), reflecting if genes associated with a particular module are generally up- (red)
or downregulated (blue) in carcinoma samples. Modules significantly enriched for up- or downregulated genes (BH-
adjusted p-value < 0.05) are visualized with thick bars. Data are means + SE. C. Chronological (up) and mortality
(bottom) tAge in control and hepatocellular carcinoma livers estimated with representative module-specific multi-
tissue clocks. Difference between the groups was assessed with the two-sample unpaired t-test, and corresponding
BH-adjusted p-values are shown in text. D. Top modules with the highest absolute contribution to the normalized
tAge difference between control and diseased animals across age-related disease models. Color and thickness schemes
are identical to (B). E. Normalized mortality tAge difference between control and age-matched diseased animals
assessed with all module-specific multi-tissue mortality clocks. Color and asterisks reflect size and statistical

34


https://doi.org/10.1101/2024.07.04.601982
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.04.601982; this version posted July 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

significance (BH-adjusted p-values) of tAge difference between control and disease groups, assessed with the
ANOVA or linear regression (for stroke microglia data). Increased and decreased tAges in disease models are shown
in red and blue, respectively. F. Correlation between weighted gene expression signatures of mortality (logFC * clock
coefficient) across various models of age-related diseases, according to the rodent multi-tissue EN mortality clock.
The union of top 500 differentially expressed genes (with the lowest p-value) were used to estimate Pearson’s
correlation coefficient for each pair of signatures. Statistical significance is indicated with asterisks. G. Top genes
contributing to increased molecular age across age-related diseases according to rodent multi-tissue EN mortality
clock. Top 3 genes with the highest average effect on normalized tAge (normalized slope * clock coefficient) are
shown. Genes up- and downregulated in disease samples are colored in red and blue, respectively. Statistical
significance of expression change for each gene is denoted with asterisks. Data are normalized tAge difference + SE.
H. Association of GPNMB, CDKNI1A and LGALS3 protein concentration in human plasma with mortality and
various diseases and risk factors, based on UK Biobank. Hazard Ratio (HR) for protein concentration normalized by
standard deviation across patients is shown on X axis. Statistical significance is indicated with asterisks. Data are
exp(logioHR = SE).

HR: Hazard Ratio; AD: Alzheimer’s disease; DN: Diabetic Neuropathy; IS: Ischemic Stroke; CKD: Chronic Kidney
Disease; NASH: Nonalcoholic Steatohepatitis; HCC: Hepatocellular Carcinoma; ipsi: ipsilateral; contra: contralateral;
ECM: Extracellular matrix; EMT: Epithelial-Mesenchymal Transition; met: metabolism. ” p.adj <0.1; * p.adj < 0.05;
**p.adj <0.01; *** p.adj <0.001.

Molecular mechanisms of rejuvenation induced by heterochronic

parabiosis

To identify molecular mechanisms associated with organismal rejuvenation, we utilized
gene expression data corresponding to the models of heterochronic parabiosis!?! and
embryogenesis'??. Heterochronic parabiosis (HPB), which involves connecting the circulatory
systems of aged mice with younger counterparts, was shown to reverse multiple age-related

123,124

impairments in old animals, including reduction of regenerative and repair capacity , cardiac

125 126

hypertrophy'~°, and cognitive function decline'“". Recently, we observed a significant reduction of
biological age measured with epigenetic clocks in the blood and liver of 20-month-old mice
attached to 3-month-old counterparts for 3 months'?!. Interestingly, this effect was preserved 2
months after detachment from the young animal and resulted in lifespan extension of old mice
compared to isochronic parabionts. At the same time, young mice attached to the old counterparts
exhibited a transient increase of epigenetic age compared to the isochronic group, but this effect
was diminished after 2 months of recovery'?’.

We analyzed liver gene expression data that was collected from young and old mice
subjected to heterochronic and isochronic parabiosis for 3 months, sacrificed at the end of the

intervention (Attached) or 2 months after detachment (Detached). In line with epigenetic data'?!,
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multi-tissue transcriptomic clocks of lifespan-adjusted age and mortality revealed a significant
decrease of biological age induced by HPB in attached old mice (p.adjusted < 0.031), while the
chronological clock showed marginal significance (p.adjusted = 0.075) (Fig. 6A; Extended Data
Fig. 19A-B). Remarkably, the effect of HPB was even more prominent 2 months after detachment,
being statistically significant for all the clocks. We also detected an elevated tAge in young
heterochronic parabionts compared to isochronic controls right after the procedure (Fig. 6A;
Extended Data Fig. 19A-B), whereas this difference was diminished after 2 months of recovery,
in total agreement with the predictions of epigenetic clocks'?’.

The top gene driving the rejuvenating effect of HPB in old mice across attached and
detached groups was Nrep, upregulated in response to young blood exposure (Fig. 6B; Extended
Data Fig. 19C), in line with the improved regenerative potential induced by parabiosis!?*1%,
Besides, the anti-mortality molecular profile of old heterochronic parabionts was associated with
downregulation of Cdknla, Vwf (Von Willebrand Factor), involved in regulation of platelet
aggregation'?8, and Veaml (vascular cell adhesion molecule 1), a modulator of vascular-immune
cell interaction, whose ablation was shown to counteract neuroinflammation and improve learning
and memory in age mice'%,

Top modules contributing to the HPB-related decrease of biological age included those
representing inflammation, cholesterol metabolism and platelet degranulation, lipid metabolism,
and mTOR signaling (Fig. 6C; Extended Data Fig. 19D). Accordingly, a functional enrichment
analysis revealed a statistically significant downregulation of genes involved in inflammatory
response, complement cascade, p53 pathway, apoptosis, and mTOR signaling in old animals
subjected to HPB, opposing signatures of mortality (Extended Data Fig. 19E; Supplementary
Table 5C). Interestingly, most module-specific clocks predicted a statistically significant reduction
of biological age in old HPB animals, especially at the level of mortality (Fig. 6D; Extended Data
Fig. 19F), suggesting that heterochronic parabiosis induces systemic rejuvenation across different
cellular components, ranging from immune response and apoptosis to mTOR signaling and lipid
metabolism, in agreement with functional enrichment results. At the same, the effect of HPB in
young animals was much less prominent and included a mixture of pro- and anti-mortality features,
such as upregulation of complement cascade and downregulation of p53 pathway, respectively

(Extended Data Fig. 19E).
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Molecular mechanisms of rejuvenation during early embryogenesis

To examine dynamics of transcriptomic age during mammalian embryonic development,
we analyzed the gene expression dataset covering the whole period of mouse embryogenesis, from
fertilized egg to newborn animal'?2. Previous studies demonstrated a rejuvenation event during the
first 4.5-10.5 days of development at the level of DNA methylation, followed by a monotonous
increase of epigenetic age'*’. This finding was consistent with the ground zero hypothesis, stating
that early embryogenesis is accompanied by systemic repair and elimination of aging-associated
damage accumulated in parental germ cells through their lifespan'’!. Interestingly, we also
observed a similar U-shaped trajectory of biological age during embryogenesis at the level of gene
expression, supported by multi-tissue transcriptomic clocks of chronological age, lifespan-
adjusted age, and mortality (Fig. 6E-F; Extended Data Fig. 20A-B). Minimum tAge was detected
on day 10 of embryonic development (E10), with the 95% confidence interval spanning between
E8.5 and E12.5-E15. Therefore, according to our analysis, early development indeed appears to
be associated with systemic rejuvenation of the organism at different levels of molecular
organization.

Expression changes driving alteration of biological age up to E10 and after E10 were
significantly correlated (Pearson’s r =-0.42) (Fig. 6G), suggesting that overall the same individual
genes were responsible for rejuvenation during early embryogenesis and the increase of tAge
afterwards. Top drivers of such dynamics included Cdknla and multiple genes associated with the
regulation of inflammation, such as S700a8, S100a9, and Lgals3, all of which were downregulated
up to E10 and upregulated afterwards (Fig. 6G; Extended Data Fig. 20C-D). Downregulation of
the intracellular damage marker Cdknla during early embryonic development may reflect the
global process of damage removal, in line with the ground zero model'3!. At the same time,
mortality-associated signatures of early embryogenesis exhibited a weak positive statistically
significant correlation with the signatures of heterochronic parabiosis (Pearson’s r = 0.12) (Fig.
6H), indicating that although generally these models share common molecular hallmarks of
rejuvenation (such as downregulated Cdknla and Lgals3), their effects are also partially achieved
through distinct biological mechanisms (e.g., Nrep is upregulated in old heterochronic parabionts
but not during early embryonic development).

Overall, the first half of mouse embryogenesis was characterized by relative decrease of

mRNA levels for most genes across the genome, while more genes were upregulated after E10
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(Extended Data Fig. 20E). To test if the observed U-shaped trajectory of biological age may be
driven by this global remodeling of the transcriptome, we examined components of tAge dynamics
separately for genes up- and downregulated during each phase of embryonic development
(Extended Data Fig. 20F-G). For both subsets of genes, we observed a statistically significant
decrease of biological age up to E10 estimated with chronological and mortality clocks (p < 0.002),
while tAge was increased during the later stages of embryogenesis according to both up- and
downregulated gene sets (p < 6.4:10”). At the same time, genes following the global expression
pattern showed a higher amplitude of the U-shaped curve for biological age during embryonic
development (Extended Data Fig. 20F-G), suggesting that it may indeed play a significant role in
the observed rejuvenation signal.

Interestingly, genes downregulated up to E10 and upregulated afterwards mostly consisted
of those associated with immune response and lipid metabolism, while genes with the opposite
behavior were enriched for cell cycle and mRNA splicing (Extended Data Fig. 21A-B). In line
with these findings, functional enrichment revealed strong downregulation of inflammatory
response, interferon signaling, pS3 pathway, and fatty acid metabolism up to E10, and their
upregulation afterwards (Extended Data Fig. 21C; Supplementary Table 5D). Inflammation and
interferon signaling modules were among top drivers of the rejuvenation signal during early
embryogenesis according to both module-specific clocks (Fig. 61; Extended Data Fig. 21E, 22)
and the module contribution analysis (Fig. 6J; Extended Data Fig. 21D). Remarkably, most
module-specific clocks, including those representing respiration/mitochondrial translation, lipid
metabolism, and heat stress response, produced the U-shaped trajectory of tAge during
embryogenesis (Extended Data Fig. 21E, 22), pointing to the systemic nature of the rejuvenation
event during early embryonic development. At the same time, some modules, such as that
associated with cell cycle, didn’t follow the common trajectory and demonstrated a significant
elevation of tAge during the first phase of embryogenesis (Fig. 6I; Extended Data Fig. 21E),
suggesting that development contains a mixture of pro- and anti-aging signals that may be
distinguished at the level of co-regulated modules.

To examine if molecular rejuvenation during early embryogenesis is conserved across
different cell lineages, we utilized scRNA-seq data collected from embryos between E6.5 and
E8.5'32. To validate a general anti-aging trend during this period of embryonic development, we

pooled all cells within each sample into a single metacell and applied multi-tissue clocks of
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chronological age and mortality. Indeed, both clocks revealed a statistically significant decrease
of tAge between E6.5 and E8.5 (Fig. 6K), consistent with the bulk data. To reconstruct ancestral
lineage trajectories for each cell type presented at the last timepoint (ES8.5), we then employed an
optimal transport method (see Methods)!**. Based on gene expression profiles of single cells, for
each point of time it provided probability that a given cell is a part of lineage leading to the group
of cells representing a particular cell type at E8.5. Overall, recovered trajectories resembled
established lineages of embryonic tissues (Extended Data Fig. 23-24)!32134135  Thys,
extraembryonic endoderm was predicted to have an independent developmental trajectory,
cardiomyocytes had mesodermal origin, endothelium was derived from haematoendothelial
progenitors, while neural crest and spinal cord shared similar ancestral trajectories originating from
neuroectoderm (Extended Data Fig. 23-24).

Utilizing reconstructed ancestral lineages, for every cell type presented at ES8.5, we
recovered the corresponding gene expression trajectory throughout the whole examined period of
development. To do that, for each sample we aggregated gene expression profiles of individual
cells into metacells, weighing them based on probabilities that a given cell is an ancestor of the
respective cell type. Remarkably, multi-tissue transcriptomic clocks of chronological age and
mortality revealed a statistically significant decrease of biological age from E6.5 to E8.5 for almost
all examined cell lineages (Fig. 6L-M; Extended Data Fig. 25). The strongest rejuvenation effect
was observed for mesodermal tissues, including endothelium, paraxial mesoderm and pharyngeal
mesoderm. However, consistent effects were also observed for the representatives of other germ
layers, including gut (endoderm), neural crest, and spinal cord (ectoderm).

The only cell type that showed a marginally significant increase of tAge during the
examined period was extraembryonic endoderm (p.adjusted = 0.06-0.1), indicating that systemic
rejuvenation observed during early embryogenesis may be restricted to cell layers with
intraembryonic origin. This finding is in line with previous studies, showing that extraembryonic
endoderm and ectoderm have a higher epigenetic age compared to other embryonic cell types from
the same developmental stage*’. Interestingly, although other cell lineages were characterized by
decreased tAge at E8.5 compared to E6.5, some of them (e.g., cardiomyocytes) exhibited a U-
shaped curve, demonstrating an increase of biological age starting from ~E8 (Fig. 6M; Extended
Data Fig. 25). This may indicate that although early development is accompanied with systemic

rejuvenation, ground zero stage may vary across embryonic tissues and molecular modalities.
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Further studies focused on a detailed characterization of biological age dynamics during later

stages of embryogenesis may shed light on mechanistic underpinnings of this rejuvenation process.
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Fig. 6. Heterochronic parabiosis and early embryogenesis exhibit rejuvenation at the level of gene expression.
A. Mortality transcriptomic age (tAge) of livers from 3-month-old (left) and 20-month-old (right) mice subjected to
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isochronic or heterochronic parabiosis for 3 months, as assessed with the rodent multi-tissue Bayesian Ridge (BR)
mortality clock. tAges between the groups were compared with a mixed effect model, and corresponding BH-adjusted
p-values are shown in text. Data are tAges + SE. B. Top genes driving pro- or anti-mortality transcriptomic changes
in livers of old mice subjected to heterochronic parabiosis compared to the isochronic parabiosis group, according to
the rodent multi-tissue EN mortality clock. Top 25 genes with the highest absolute effect on tAge difference (logFC
* clock coefficient) are shown. Attached and detached samples were pooled together for the logFC calculation, and
attachment status was included in the model as a separate covariate. Genes up- and downregulated in old heterochronic
parabiosis group are colored in red and blue, respectively. Statistical significance of logFC for each gene is indicated
with asterisks. Data are mean tAge difference + SE. C. Contributions of transcriptomic modules to mortality tAge
difference in old mice subjected to heterochronic parabiosis, estimated with the rodent multi-tissue Elastic Net (EN)
mortality clock. Individual modules are shown in rows and named after representative functions. Statistical
significance for each module was assessed with ANOVA and indicated with asterisks. Bars are colored based on
normalized enrichment scores (NES) from gene set enrichment analysis (GSEA), reflecting if genes associated with a
particular module are generally up- (red) or downregulated (blue) in old mice subjected to heterochronic parabiosis
compared to age-matched isochronic parabiosis group. Modules significantly enriched for up- or downregulated genes
(BH-adjusted p-value < 0.05) are visualized with thick bars. Data are means = SE. D. Normalized tAge difference
between isochronic and heterochronic parabiosis groups assessed with all module-specific multi-tissue chronological
(left) and mortality (right) clocks. Color and asterisks reflect size and statistical significance (BH-adjusted p-values)
of tAge difference between isochronic and heterochronic parabiosis groups, assessed with the ANOVA. Increased and
decreased tAges in heterochronic models are shown in red and blue, respectively. Module names are provided in (C).
Het: Heterochronic; Iso: Isochronic. E-F. Chronological (E) and mortality (F) tAge of mouse embryos during
development, assessed with mouse multi-tissue BR chronological and mortality clocks. The overall change of tAge
was assessed with mixed effect ANOVA, whereas slopes of tAge change up to day 10 and after day 10 were assessed
with a mixed effect linear model. The corresponding p-values and slope estimates are shown in the text. Loess
regression curve is shown with a purple line. Dotted line shows time point with the minimum average tAge, and 95%
confidence interval that contains putative minimum of embryo’s biological age (ground zero state) is shown with
shaded grey area. Data are tAges £ SE. G. Association between weighted gene expression signatures of mortality
(slope * clock coefficient) up to day 10 and after day 10 of mouse embryogenesis, according to the mouse multi-tissue
EN mortality clock. The union of top 2,000 differentially expressed genes (with the lowest p-values) are shown on the
plot. Statistical significance (BH-adjusted p-value < 0.05) is indicated with color. Pearson correlation coefficient and
corresponding p-value are shown in text. H. Association between weighted gene expression signatures of mortality
during early embryogenesis (slope * clock coefficient) and in old mice subjected to heterochronic parabiosis (logFC
* clock coefficient). The union of top 2,000 differentially expressed genes (with the lowest p-values) are shown on
the plot. I. Chronological tAge of mouse embryos during development estimated with representative module-specific
multi-tissue chronological clocks. Slope of change up to day 10 and after day 10 was assessed with the linear
regression. Corresponding p-values and slope estimates are shown in text. Purple line and shaded grey area around it
reflect loess regression curve and its 95% confidence interval, respectively. Results for all module-specific
chronological and mortality clocks are in Extended Data Fig. 21E. J. Contributions of transcriptomic modules to
chronological tAge change in mouse embryos up to day 10 (left) and after day 10 (right) of development estimated
with the multi-tissue Elastic Net (EN) chronological clock. Statistical significance for each module was assessed with
the linear regression and indicated with asterisks. Bars are colored based on normalized enrichment scores (NES) from
gene set enrichment analysis (GSEA), reflecting if genes associated with a particular module are generally up- (red)
or downregulated (blue) during the corresponding stage of embryogenesis. Modules significantly enriched for up- or
downregulated genes (BH-adjusted p-value < 0.05) are visualized with thick bars. Data are slopes + SE. K.
Chronological (left) and mortality (right) tAge of metacells representing mouse embryos between days 6.5 and 8.5 of
embryogenesis, assessed with the mouse multi-tissue BR chronological clock. Slope of tAge change during this period
was assessed with a mixed effect linear model. Pearson correlation coefficient, slope estimate and corresponding p-
value are shown with text. Black line and shaded grey area around it reflect loess regression curve and its standard
error, respectively. Data are tAges £ SE. L. Slopes of chronological (left) and mortality (right) tAges between days

41


https://doi.org/10.1101/2024.07.04.601982
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.04.601982; this version posted July 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

6.5 and 8.5 for different cell lineages presented at the end of this interval. Statistical significance of the slope
coefficient for each lineage indicated by asterisks was assessed with a mixed effect linear model. Data are slope
estimates = SE. M. Chronological tAge of metacells for representative cell lineages between days 6.5 and 8.5 of
embryogenesis, assessed with the mouse multi-tissue BR chronological clock. Slope of tAge change was assessed
with a mixed effect linear model. Pearson correlation coefficient, slope estimate and corresponding p-value are shown
with text. Black line and shaded grey area around it reflect loess regression curve and its 95% confidence interval,
respectively. Data are tAges = SE.

HR: Hazard Ratio; ECM: Extracellular matrix; EMT: Epithelial-Mesenchymal Transition; met: metabolism; EXE:
Extraembryonic; NMP: Neuromesodermal Progenitors. ~ p.adj < 0.1; * p.adj < 0.05; ** p.adj < 0.01; *** p.adj <
0.001.

Biological age deviation and rejuvenation in human models

To examine if the rodent multi-tissue transcriptomic clock model can be further expanded
to cover aging-associated molecular changes in humans, we aggregated publicly available gene
expression data from 12 sources, encompassing 2,296 brain, skeletal muscle, skin, and blood
samples from healthy people of different ages as well as 10 brain samples from people with
Hutchinson-Gilford progeria syndrome (Supplementary Table 1C). For every sample, we
calculated chronological age divided by human’s maximum recorded lifespan (122 years®®%%), as
well as lifespan-adjusted age and expected all-cause mortality rate estimated from published
survival data. We then trained unified relative multi-tissue clocks of chronological age, lifespan-
adjusted age, and mortality using transcriptomic profiles from all 6,845 samples representing mice,
rats, and humans. The developed EN and BR models accurately predicted differences in outcome
variables in all 3 species (Fig. 7A; Extended Data Fig. 26A-B). Median Pearson’s r on test sets
across 10 iterations was 0.94 to 0.95 for all the clocks, and median MAE for chronological clock
was 5.5% to 5.7% of maximum lifespan, corresponding to <6.7-7 years and 2.6-2.8 months for
humans and mice, respectively (Extended Data Fig. 26C-D).

To test if the developed multi-species models capture biological age acceleration in humans
caused by health impairment, we applied them to gene expression data collected from tissues of
healthy people and patients diagnosed with various diseases, including heart failure (heart)'*®,
Alzheimer’s disease (brain)'*’, Down syndrome (brain)!*%, Crohn’s disease (large intestine)'*’,

)39 age-related macular degeneration (AMD) (retina)'#’, and

ulcerative colitis (large intestine
chronic kidney disease (CKD) (skeletal muscle)'*!. In agreement with health status, multi-species
multi-tissue transcriptomic clocks of mortality predicted a statistically significant acceleration of

biological age for patients diagnosed with all examined diseases compared to healthy people after
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adjustment for chronological age and sex (Fig. 7B), while chronological clocks predicted a tAge
increase in all models except for Down syndrome where marginal significance was observed (p =
0.08) (Extended Data Fig. 27A). Therefore, transcriptomic hallmarks of aging and mortality appear
to be generally conserved across species, in line with our previous findings?3, allowing to develop
universal models that are capable of distinguishing people and rodents with aging-associated
diseases or genetically inherited impairments, such as Klotho knockout progeria (in mice) and
Down syndrome (in humans).

To explore molecular hallmarks of rejuvenation in human cells and establish shared
mechanisms of biological age reversal across species, we applied multi-species transcriptomic
clocks to the model of cell reprogramming. For that, we utilized gene expression profiles of
primary skin fibroblasts derived from patients of different ages along with induced pluripotent
stem cells (iPSCs) reprogrammed from these cells through overexpression of Yamanaka factors
(OSKM)'*2, In line with previous studies**!*>!#4 we observed a substantial decrease of biological
age induced by reprogramming according to both chronological and mortality clocks (p < 2.2'10
2%) (Fig. 7C; Extended Data Fig. 27D). Remarkably, while chronological age of patients was
correlated with tAge of their skin fibroblasts, prefrontal cortex, and neurons transdifferentiated
from the fibroblasts, there was no significant association between the age of patients and biological
age of iPSCs (Pearson’s r=-0.012 and -0.017 for chronological and mortality clocks, respectively)
(Fig. 7C; Extended Data Fig. 27B-D). This indicates that while aging-associated features of
original cells may be weakly preserved in iPSCs at the level of DNA methylation'*, aging- and
mortality-associated hallmarks of gene expression are mostly reset during reprogramming
regardless of the donor’s age.

Interestingly, mortality-associated gene expression changes contributing to alteration of
biological age were positively correlated across all examined models of rejuvenation, including
heterochronic parabiosis in old mice, early mouse embryogenesis (up to E10), and OSKM
reprogramming of human fibroblasts (Extended Data Fig. 27E). At the same time, signatures of
iPSCs exhibited higher correlation with the signatures of early embryonic development (Pearson’s
r=0.27, p =310"%) (Fig. 7D), highlighting general similarity between iPSCs and embryonic stem

cells'40

. Remarkably, some of the top hallmarks contributing to the decreased biological age were
shared across all three models, including downregulation of Cdknla and several pro-inflammatory

factors, such as S100a4, S100a9, and Lgals3 (Fig. 7E). Therefore, Cdknla and Lgals3 appear to
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be universal biomarkers of mammalian aging, rejuvenation, and mortality affected by multiple
diseases and lifespan-regulating interventions, pointing to the presence of fundamental molecular

hallmarks of aging and longevity conserved across experimental models and species.

Identification and characterization of novel mortality-regulating

interventions

The developed multi-tissue transcriptomic models allow one to screen for novel
interventions with potential positive or negative effects on mortality-associated phenotypes. To
identify candidate interventions that decrease biological age and improve healthspan, we utilized
ClockBase'?’, a database with the collection of harmonized metadata and preprocessed publicly
available datasets from Gene Expression Omnibus (GEO). We used 2,487 RNA-seq datasets
corresponding to mouse tissues exposed to various pharmacological, dietary, and genetic
interventions, and applied multi-tissue transcriptomic clocks of mortality to calculate tAge of every
sample within this collection. Using ANOVA, we selected datasets with significant differences in
biological age across the groups after adjustment for age and other factors, such as tissue and sex
(p.adjusted < 0.05). Then, for every intervention within chosen datasets, we assessed the difference
in tAge compared to age-matched control mice. This resulted in a number of interventions with a
statistically significant effect on biological age in mouse tissues (p.adjusted < 0.05) (Extended

Data Fig. 28A).

Overall, 3.6 times more interventions in mouse tissues induced a statistically significant
increase of biological age than a decrease (Pearson’s chi square test p = 3-107%), suggesting that it
is generally easier to elevate tissue damage than to effectively reduce it. As expected, pro-mortality
gene expression changes were observed in murine models of chronic diseases, including
Alzheimer’s disease, myocardial infarction and spinal muscular atrophy; in short-lived animal
models not used to train the clock (e.g., in rodents with conditional knockout of Tsc2'*® and PLN-
R14del mutation!#’); and in mice subjected to lipopolysaccharide (LPS) injection, kainic acid
(brain seizure inducing compound) and unhealthy diets, such as methionine-choline deficient diet
(MCD) and choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) associated with

development of nonalcoholic steatohepatitis'>. At the same time, several interventions resulted in
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the decrease of biological age in murine tissues. In addition to the established health-improving
interventions, such as rapamycin and exercise, they included estrogen and progesterone applied to
ovariectomized mice'>! and the cardiac glycoside ouabain applied to aged healthy mice'>

(Extended Data Fig. 28A).

Ovariectomy is an established pro-aging intervention that was shown to induce

neuroinflammation and shorten lifespan of mouse females'>*!>*

, while sex hormones estrogen and
progesterone were able to ameliorate some of the aging phenotypes in ovariectomized animals,
improving their cognitive performance and working memory'*>!3, When applied to gene
expression profiles of mammary glands of 3-month-old ovariectomized mice treated with estradiol

and progesterone for 2 weeks'!

, multi-tissue transcriptomic clocks of chronological age and
mortality revealed a strong statistically significant reduction of biological age induced by the
treatment in luminal mature and luminal progenitor cells (p.adjusted < 10°°) (Extended Data Fig.
28D-E). Interestingly, mammary stem cells were not affected by this treatment, pointing to its cell-
specific activity. Moreover, progesterone receptor antagonists telapristone and mifepristone
partially mitigated the treatment effect, particularly in mammary progenitor cells. This finding

confirms that the observed reduction in biological age was in part caused directly by the examined

hormones.

Another identified intervention that produced the anti-aging effect on liver gene expression
profile of healthy old mice was ouabain. Ouabain is a cardiac glycoside that was shown to exhibit
senolytic activity and improve physical function of aged rodents'®?. According to both
chronological and mortality multi-tissue transcriptomic clocks, 3-month treatment with ouabain
was able to significantly decrease biological age of livers of 24-month-old female mice (p.adjusted
< 4107'%) (Fig. 7F; Extended Data Fig. 28B). Remarkably, this compound decreased predicted
chronological tAge of mouse livers by ~10 months, suggesting that it did not just slow down the
accumulation of aging-associated changes but also activated mechanisms of molecular
rejuvenation. Indeed, top drivers of the decrease in tAge induced by ouabain included many
biomarkers of mortality shared by other models of rejuvenation, such as upregulation of Nrep, and
downregulation of Cdknla, Vcaml, Gpnmb, and Ccl5 (Fig. 7G). Overall, the mortality-associated
gene expression signature of ouabain demonstrated a strong positive correlation with the
rejuvenation signature of heterochronic parabiosis (Pearson’s r = 0.55) (Fig. 7H), indicating that

this drug may be the first discovered pharmacological mimetic of HPB. As in the parabiosis model,
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the top module contributing to ouabain-induced molecular rejuvenation was the one representing
innate immune response and inflammation (Extended Data Fig. 28C). At the same time, most
module-specific clocks demonstrated a statistically significant decrease of chronological and
mortality tAge induced by this compound, suggesting that ouabain may produce systemic
rejuvenation of multiple cellular components, including immune response, respiration, ECM
organization, mRNA splicing, and others (Fig. 7I). In agreement with our observations,
experimental data demonstrated the reversal of multiple age-related phenotypes produced by
ouabain, including the reduction of senescence and local inflammation in the liver revealed by
immunohistochemistry, restoration of albumin and phosphate levels in blood, and improvement of
motor coordination and strength!®2. Therefore, ouabain appears to be a promising candidate for
future studies that may reveal its effect on other organs and molecular modalities and shed light

on specific mechanisms of tissue rejuvenation induced by this compound.

Finally, to facilitate application of the developed transcriptomic clocks, we developed an
interactive platform TACO (Transcriptomic Age Calculator Online). This tool simplifies
implementation of the models by offering software and an interface for RNA-seq data
preprocessing and application of liver and multi-tissue clocks of chronological age, lifespan-
adjusted age, and expected mortality, developed using Elastic Net and Bayesian Ridge models.
Additionally, TACO enables users to visualize clock results and conduct analyses to assess

statistical significance of tAge difference between groups (Fig. 7J).
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Fig. 7. Conserved transcriptomic biomarkers of aging and mortality across mammals allow for the
identification and characterization of health-regulating interventions. A. Accuracy of prediction of relative
chronological age adjusted for species maximum lifespan with multi-tissue transcriptomic clocks trained with Elastic
Net (EN) model on human, mouse and rat data (with scaling normalization). Accuracy of the trained model was
assessed separately for humans (left), mice (middle) and rats (right). Training and test sets are denoted by color.
Pearson correlation coefficient, R? and mean absolute error (MAE) for test sets are shown in text. B. Mortality
transcriptomic age (tAge) residual of tissues from healthy people (grey) and patients diagnosed with age-related and
genetic diseases (indicated with color). tAges were calculated with the multi-species multi-tissue Bayesian Ridge (BR)
mortality clock and adjusted for chronological age and sex. tAges between the groups were compared with mixed
effect model, and corresponding BH-adjusted p-values are shown in text. Organs are depicted with icons. GEO IDs
of corresponding datasets are provided in text. Data are tAges = SE. AD: Alzheimer’s Disease; AMD: Age-Related
Macular Degeneration, CKD: Chronic Kidney Disease. C. Chronological tAge of primary fibroblasts and
reprogrammed induced pluripotent stem cells (iPSCs) from patients of different chronological ages, assessed with the
multi-species multi-tissue BR chronological clock. Association between chronological age and tAge for each cell type
was assessed with a mixed effect model, and corresponding p-value and Pearson correlation coefficient are shown
with colored text. tAges of primary fibroblasts and corresponding iPSCs were compared with a mixed effect model,
where patient ID was included as a factor covariate. The corresponding p-value is provided in black. Data are tAges
+ SE. D. Association between weighted gene expression signatures of mortality up to day 10 of embryogenesis (slope
* clock coefficient) and during iPSC reprogramming (logFC * clock coefficient), according to the multi-species multi-
tissue EN mortality clock. Union of top 2,000 differentially expressed genes (with the lowest p-values) are shown on
the plot. Statistical significance (BH-adjusted p-value < 0.05) is indicated with color. Pearson correlation coefficient
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and corresponding p-value are shown in text. E. Top genes contributing to decreased transcriptomic age during
reprogramming, early embryogenesis and heterochronic parabiosis in old mice, according to the multi-species multi-
tissue EN mortality clock. Statistical significance of expression change for each gene in the corresponding model is
denoted with asterisks. Data are normalized tAge difference + SE. F. Mortality transcriptomic age (tAge) of livers
from 7-week-old (Young) and 24-month-old (Old) mice treated with saline (Untreated) or ouabain (Ouabain),
examined with the rodent multi-tissue BR mortality clock. tAges between the groups were compared with a mixed
effect model, and corresponding BH-adjusted p-values are shown in text. Data are tAges + SE. G. Top genes driving
pro- or anti-mortality transcriptomic changes in livers of old mice subjected to ouabain, according to the rodent multi-
tissue EN mortality clock. Top 25 genes with the highest absolute effect on tAge difference (logFC * clock coefficient)
are shown. Statistical significance of logFC for each gene is indicated with asterisks. Data are mean tAge difference
+ SE. H. Association between weighted gene expression signatures of mortality (logFC * clock coefficient) of old
mice subjected to ouabain and heterochronic parabiosis, according to the rodent multi-tissue EN mortality clock.
Union of top 2,000 differentially expressed genes (with the lowest p-values) are shown on the plot. Statistical
significance (BH-adjusted p-value < 0.05) is indicated with color. Pearson correlation coefficient and corresponding
p-value are shown in text. I. Normalized tAge difference between control old mice and animals treated with oubain
assessed with all module-specific multi-tissue chronological (left) and mortality (right) clocks. Color and asterisks
reflect size and statistical significance (BH-adjusted p-values) of tAge difference between control and treated samples,
assessed with the two-sample unpaired t-test. J. Screenshot of a TACO app that provides a platform and interactive
interface to examine chronological, lifespan-adjusted and mortality tAges for the given gene expression data.

HR: Hazard Ratio; ECM: Extracellular matrix; EMT: Epithelial-Mesenchymal Transition; met: metabolism. * p.adj
< 0.05; ** p.adj < 0.01; *** p.adj <0.001.

DISCUSSION

While aging is accompanied by the systemic deterioration of organismal functions, and
models that predict chronological age (i.e., chronological clocks) may be used to indirectly assess
biological age, a unified transcriptomic model of mortality that encompasses both aging and
various models of lifespan-shortening and longevity interventions (i.e., mortality clocks) has been
lacking. The ability to capture the effects of these interventions is the key to targeting the aging
process in order to extend lifespan/healthspan and to partially rejuvenate organismal systems, as
opposed to merely assessing progression through aging. The robust biologically interpretable
multi-species multi-tissue mortality biomarkers we report in the study provided critical insights

into mechanisms of longevity, chronic disease, and rejuvenation.

To develop these tools, we sequenced the transcriptomes of a large cohort of ITP mice
subjected to various neutral and longevity interventions, expanded the dataset with publicly
available gene expression data representing organs of mice and rats across various strains and
lifespan-regulating interventions, connected these models with survival data, and performed a

meta-analysis of aggregated 4,539 rodent samples, which allowed us to identify multi-tissue

48


https://doi.org/10.1101/2024.07.04.601982
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.04.601982; this version posted July 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

transcriptomic signatures of aging, mortality rate, and maximum lifespan. Interestingly, they
included well established biomarkers of longevity, such as Igf1°® and Fmo3®, but also other genes,
such as Lgals3, a modulator of inflammation and fibrosis!!”"!'?, Ddost, involved in processing of
AGEs*, Nmrkl, a member of NMN biosynthesis pathway®*, and Nrep, involved in wound healing
and scar formation®?. The signatures of aging were negatively correlated with maximum lifespan
and positively correlated with age-adjusted mortality, indicating that molecular hallmarks of aging
are generally associated with impaired health and shortened lifespan. At the functional level, aging
and mortality were characterized by upregulation of genes involved in inflammation, complement
cascade, apoptosis, and p53 pathway, while oxidative phosphorylation, fatty acid metabolism, and
mitochondrial translation were negatively associated with mortality, both before and after
adjustment for age, in agreement with the established role of these functions in the regulation of

aging and longevity?833157-161,

Utilizing the aggregated dataset, we developed rodent multi-tissue transcriptomic clocks of
chronological age, lifespan-adjusted age, and mortality. The clocks showed high quality on test
sets (Pearson’s r = 0.94 to 0.96) and were able to capture age dynamics in the tissues and datasets
that were not used in training. While the chronological clock could distinguish the effect of
detrimental genetic and dietary models, it did not show a decrease in biological age in response to
longevity interventions. In contrast, clocks of lifespan-adjusted age and mortality both captured
aging-associated dynamics and correctly predicted the effect of lifespan-shortening and extending
interventions, indicating that they can be applied for the identification and characterization of
diverse models of aging and longevity. By expanding our dataset with gene expression profiles of
2,306 human samples collected from brain, skin, skeletal muscle and blood, we also developed
unified multi-species multi-tissue transcriptomic clocks, capable of predicting chronological age,
lifespan-adjusted age, and mortality risk across mice, rats and humans, with Pearson’s r on test
sets > 0.92 for each of the species. The multi-species clocks were validated on 7 models of human
age-related and genetic diseases, including heart failure, Alzheimer’s disease, Down syndrome,
Crohn’s disease, ulcerative colitis, AMD, and CKD, where they were able to capture the
acceleration of biological age in tissues of diseased patients after adjustment for chronological age
and sex. Therefore, mammals share common aging- and mortality-associated molecular
mechanisms that may be combined in a single transcriptomic model. While mouse- and human-

specific transcriptomic clocks of chronological age have been developed previously*?#44348
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multi-species multi-tissue clocks trained to predict mortality across various models of healthspan
regulation, including aging, genetic manipulations, diets, and pharmacological treatments, provide
a direct assessment of universal mortality-associated biomarkers that reflect an aggregated level

of molecular damage and are validated both in short-lived and long-lived models.

To characterize specific cellular components associated with age and mortality, we
performed a network analysis. We identified 26 co-regulated transcriptomic modules enriched for
specific cellular pathways and used them to develop interpretable multi-tissue module-specific
clocks of chronological age and mortality. Remarkably, clocks trained on 23 modules were able
to predict outcomes with Pearson’s r > 0.3, and the corresponding mortality clocks demonstrated
both a positive association with chronological age and negative correlation with lifespan,
indicating that the identified individual gene expression modules contain information about aging
and health status of the tissue. To demonstrate application of the developed tools, we sequenced
kidneys and skeletal muscles from Kl/otho KO mice and age-matched controls. Chronological and
mortality transcriptomic clocks revealed an acceleration of biological age induced by this genetic
manipulation, with more prominent effect in kidneys where Klotho is typically expressed. Among
top contributors to this pro-mortality effect, we identified upregulation of cellular damage marker
Cdknla along with downregulation of genes associated with mitochondrial function and ECM
organization, while inflammation was not elevated in Klotho KO mice and didn’t induce biological
age acceleration. These findings were in line with the results of functional enrichment, suggesting
that modules provide interpretable information about the cellular functional components driving

observed differences in biological age.

By applying transcriptomic clocks to the single-cell Tabula Muris data, we found that most
cell types, including stem cells, exhibit an increase in biological age and share common pro-aging
signatures, such as upregulation of pro-inflammatory chemokine Cc/5% and downregulation of
modulators of circadian rhythm Dbp®' and ECM organization Sparc®*. To examine if Klotho KO
induces systemic acceleration of biological age across different cell types, we performed snRNA-
seq of kidneys and brains derived from an 8-week-old Klotho KO mouse and an age-matched
control mouse. We observed a significant increase of tAge in most kidney and brain cell types,
including proximal tubule epithelial cells, endothelial cells, astrocytes, and neurons. Interestingly,
microglia demonstrated a marginally significant decrease of biological age, in agreement with

downregulation of inflammatory module, observed across sequenced tissues. Thus, different cell
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types share similar molecular hallmarks of aging and mortality, and the same intervention can have
opposite effects on different cell types and intracellular components revealing complex systemic

nature of aging and regulation of longevity.

This was further highlighted by rodent models of aging-related diseases. While clocks
captured accelerated biological age in most models, including ischemic stroke, Alzheimer’s
disease, chronic kidney disease, diabetic neuropathy, and nonalcoholic steatohepatitis, the model
of hepatocellular carcinoma showed a decreased transcriptomic age, driven by EMT/ECM
organization and cell cycle modules. Remarkably, module-specific clocks revealed a pro-aging
signal for multiple cellular components in HCC samples, while the clock trained on genes
associated with EMT/ECM organization demonstrated marginally significant rejuvenation
induced by HCC, in line with the dedifferentiation and remodeling of ECM associated with tumor
progression'®!2. Various age-related diseases shared common pro-aging and pro-mortality
signatures, such as upregulation of the inflammatory module and several specific genes
contributing to tAge increase, including Gpnmb, Lgals3 and Cdknla. Interestingly, higher levels
of the corresponding proteins in human plasma were associated with the increased mortality rate
after adjustment for chronological age and sex, along with higher incidence of numerous aging-
related diseases, including heart and kidney failure, type Il diabetes, atherosclerosis, and others,
and established risk factors, such as obesity and hypertension. Therefore, the identified factors
represent universal biomarkers of biological age acceleration, shared across diseases, tissues,

species, and levels of molecular organization.

Several established models of organismal rejuvenation, including heterochronic parabiosis
in old mice, early embryogenesis, and cellular reprogramming, were also validated by the
developed transcriptomic clocks that captured a decrease of biological age induced by these
models. Interestingly, anti-mortality signatures of all 3 models were positively correlated with each
other, with the most similar effect observed between the signatures of iPSCs and early embryonic
development. Common hallmarks of rejuvenation models included downregulation of Cdknla and
Lgals3, again highlighting the universal role of these genes in the regulation of damage affected
by both aging-accelerating and rejuvenating models. Module-specific clocks revealed a systemic
effect of early embryogenesis and HPB on biological age shared by multiple cellular components,
with the strongest contribution of the inflammatory module. Remarkably, rejuvenation of the

embryo during early organogenesis (between days E6.5 and E8.5) was also observed across almost
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all cell lineages, with the exception of extraembryonic endoderm, in line with the results of
epigenetic clocks predicting higher biological age for extraembryonic tissues*’. At the same time,
several individual module-specific clocks, including those associated with cell cycle, didn’t show
a decrease in biological age during early phases of embryogenesis, indicating that global

rejuvenation may be still accompanied by pro-aging signals of individual cellular components.

Finally, by employing Clockbase database'*’, we searched for interventions with a
significant anti-mortality effect according to multi-tissue transcriptomic clocks. We identified
several such cases, including the therapy of ovariectomized mice with the combination of estrogen
and progesterone'>! as well as treatment of old healthy mice with the cardiac glycoside ouabain'>2.
In particular, a 3-month treatment with ouabain was able to decrease the biological age of 24-
month-old mice by ~10 months suggesting a first example of a radical in vivo rejuvenation effect
induced by a single-molecule pharmacological intervention. Remarkably, the effect of ouabain
was systemic, supported by most module-specific clocks, biochemical assays, and physiological
tests, while its anti-mortality signature was strongly correlated with that of HPB, suggesting that
ouabain mimics many effects of heterochronic parabiosis. Indeed, ouabain induced multiple
rejuvenation hallmarks shared by HPB, such as downregulation of Cdknla and Vcaml, a vascular
cell adhesion molecule shown to modulate neuroinflammation and impair the cognitive function
of old mice!?. Therefore, transcriptomic biomarkers developed in this study provide an
opportunity to identify interventions promoting or counteracting molecular mechanisms of
mortality, and characterize specific targets associated with their effects at the level of cell types,
intracellular functional components, and individual genes. These methods may facilitate the
development of effective therapies capable of ameliorating age-related impairments and restoring

a young functional phenotype in mammalian organisms.

Our study has several limitations. Molecular signatures and transcriptomic clocks
developed in this study may reflect both causal and compensatory response to damage
accumulation associated with aging and mortality. Methods of causal inference, such as Mendelian
Randomization, may be utilized to partially distinguish between causal and adaptive molecular
changes in humans highlighted by the clocks and signatures*!. Human UK Biobank data used for
the analysis of the association between concentration of GPNMB, CDKNIA, and LGALS3 and
health outcomes is based on an observational study. Therefore, some of the identified associations

with diseases and risk factors may be driven by co-morbidities or other confounders, such as
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socioeconomic status, smoking and drinking behavior. Finally, an association of the identified co-
regulated transcriptional modules with corresponding cellular processes was performed based on
the pre-existing annotation of genes and may be further improved and directly tested using

functional assays and established perturbations in cell culture.

Overall, our study resolves the challenge of predicting biological age and mortality by
developing a comprehensive transcriptomic model encompassing both aging and lifespan-
modulating interventions. By sequencing the transcriptomes of a large cohort of mice subjected to
various treatments and integrating the dataset with gene expression profiles from multiple strains,
species, and intervention models with corresponding survival data, we identified multi-species
multi-tissue signatures of lifespan and mortality. We further developed robust clocks that
accurately predict chronological age, lifespan-adjusted age, and mortality, which in turn revealed
common molecular mechanisms of aging across cell types, and deconstructed them into functional
components, providing broad insights into the effects of genetic, dietary, and pharmacological
interventions on biological age as well as critical insights into the mechanisms of diseases and
established models of rejuvenation. Furthermore, our findings revealed universal biomarkers of
mammalian mortality contributing to the observed effect on biological age induced by most
chronic diseases and anti-aging models, and identified potential rejuvenation interventions, such
as the cardiac glycoside ouabain. Our study underscores the complexity of aging and mortality
mechanisms, the interplay between various processes involved, and the clear potential for

developing therapies to extend healthspan and lifespan.
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METHODS

Animals from ITP cohorts

Liver samples of mice from the Interventions Testing Program (ITP) were acquired from
the collections of University of Michigan Medical School (UM), University of Texas (UT) and
The Jackson Laboratory (TJL) obtained from animals of 2015, 2016 and 2017 cohorts!®?!-23, 22-
23-month-old female and male mice were sacrificed following subjection to 20 interventions,
including 17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride (17-DMAG)
(30 ppm, as in '®), b-guanidinopropionic acid (bGPA) (3300 ppm, as in '¢), minocycline (300 ppm,
as in '), mitoQ (100 ppm, as in '6), rapamycin applied from 20 months (42 ppm, as in '),
canagliflozin (180 ppm, as in ?!), candesartan cilexetil (30 ppm, as in 2?), geranylgeranyl acetone
(600 ppm, as in 2?), 17-o-estradiol applied to males from 20 months (14.4 ppm, as in ??), 17-0-
estradiol applied to males from 16 months (14.4 ppm, as in ??), 3-(3-hydroxybenzyl)-5-
methylbenzo[d]oxazol-2(3H)-one (MIF098) (240 ppm, as in 2?), nicotinamide riboside (NR) (1000
ppm, as in ?2), 1,3-butanediol (100,000 ppm, as in 2*), captopril (180 ppm, as in 2*), leucine (40,000
ppm, as in 2%), PB125 (100 ppm, as in 2), sulindac (5 ppm, as in ?), syringaresinol (300 ppm, as
in 2%), combination of rapamycin and acarbose applied from 9 months (14.7 ppm and 1000 ppm,
as in 2%), and combination of rapamycin and acarbose applied from 16 months (14.7 ppm and 1000
ppm, as in 2). Besides, livers were taken from control untreated male and female mice sacrificed
at 4-6 and 22 months of age. All mice were fed ad libitum with the same diet (Purina SLG6) made
in the same commercial diet kitchen (TestDiet, Richmond, IN, USA). Mice represented genetically
heterogenous UM-HET3 strain, produced by crossing female CByB6F1/J and male C3D2F1/]
animals. Therefore, each rodent in the cohort had a unique genetic background but shared the same
set of inbred grandparents (C57BL/6J, BALB/cByJ, C3H/Hel, and DBA/2J). All interventions
continued until the organisms were sacrificed. Details of the mouse housing and methods used for

health monitoring are provided in '°.

Klotho knockout (KO) mice

8-week-old male WT mice (C57BL6/J) and a-klotho™ knockout mice were purchased from

CLEA Japan. Mice were maintained under specific pathogen-free conditions, on a 12-h light—dark
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cycle and fed normal diet. The animal protocols were approved by the Tohoku University
Institutional Animal Care and Use Committee. The animal procedures performed conform to the

NIH guidelines (Guide for the Care and Use of Laboratory Animals).

Bulk RNA-seq profiling of mouse tissues

For RNA-seq profiling of liver samples from ITP cohorts, 3 biological replicates per sex
were utilized for each intervention, except for canagliflozin represented by 7 biological replicates
per sex. In addition, samples from 24 old and 6 young control mice per sex across different cohorts
were sequenced, resulting in the total of 182 samples (Supplementary Table 1A). For RNA-seq
analysis of bulk kidney and gastrocnemius skeletal muscle samples from WT and K/otho KO male
mice, 6 biological replicates per group were utilized for every tissue, resulting in the total of 24
samples. RNA was extracted with PureLink RNA Mini Kit as described in the protocol and passed
to sequencing. Paired-end sequencing with 150 bp read length was performed on Illumina

NovaSeq 6000 platform.

Nuclei extraction from tissues of Klotho KO mice

Brains and kidneys were harvested following cervical dislocation and flash frozen in liquid
nitrogen. The cortical region of brain and radially section of kidney were dissected. Their nuclei
were isolated with the Minute™ single nucleus isolation kit for neuronal tissue/cells and the
Minute™ single nucleus isolation kit for tissue/cells (Cat# BN-020, SN-047, Invent
Biotechnologies, INC), following manufacturer’s protocol with minor modifications. Specifically,
the isolated nuclei were resuspended in 5% BSA solution with RNase inhibitor (Cat# 1000494;

10x genomics).

Single-nucleus RNA-seq profiling of Klotho knockout mouse tissues

SnRNA-seq was performed with Chromium Single Cell 5' Reagent Kits (Cat# PN-
1000265; 10x genomics) according to the manufacturer's instructions. Briefly, single-cell
suspensions from the tissues were loaded into a Chromium Next GEM Chip K Single Cell Kit
(Cat# PN-1000287; 10x Genomics), and a Chromium Controller was used for barcoding and
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cDNA synthesis. A Chromium Next GEM Single Cell 5' Library & Gel Bead Kit v2 (Cat# PN-
1000265; 10x Genomics) was used to amplify the cDNA and construct the cDNA libraries. RNA
sequencing was performed by DNAFORM (Yokohama, Kanagawa, Japan). The sequenced raw
data were then processed using Cell Ranger v7.0.0 and the R package Seurat (v5.0.1). For quality
control, nuclei that were detected with a mitochondrial content > 10%, < 200 genes, or > 4,000
genes were considered dying cells, empty droplets, and doublets, respectively, and were excluded.

Cells were annotated using established sets of marker genes for brain and kidney cell types!'®>~1%4,

Estimates of maximum lifespan, expected mortality and lifespan-adjusted age

Estimates of maximum registered lifespan for mice, rats and humans were obtained from
AnAge database (4, 3.8 and 122 years, respectively)®®®. Survival curves corresponding to control
mice and rats from various strains and sexes, and to mice subjected to different lifespan-shortening,
neutral or longevity interventions were obtained from published resources and digitalized, where

2,6-8,10,12,14,16-21,23-25,53-57,67,165-204

necessary Survival data for overall human population and

patients with Hutchinson-Gilford progeria syndrome (HGPS) were downloaded from US CDC

> and from the corresponding clinical trial, respectively®. Survival data was fitted with

repo
Gompertz mortality rate function adjusted for left truncation with flexsurvreg function from

flexsurv R package?®¢:
u(t) = Ae™.

Mean and standard error estimates of parameters (n(A) and r from individual mortality curves
corresponding to the same experimental model (strain, sex, intervention) were used to calculate
aggregated meta-parameters. For that, mixed-effect model with restricted maximum likelihood

(REML) criterion was applied via rma.uni function from metafor R package?’’.

For every sample presented in the transcriptomic dataset, logarithm of its expected hazard rate
log,o(p) was calculated based on chronological age and annotation (strain, sex, intervention) of
the sample as an average of log,, (1) from the corresponding aggregated model and individual
model, fitted from survival data that was derived from the same study as the gene expression data.
For transcriptomic data downloaded from studies without survival data, estimates of respective

aggregated mortality functions were utilized. Quality of Gompertz model fitting was assessed with
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correlation coefficient between 90™ percentile lifespan estimates from real survival data and from
survival data simulated with corresponding fitted Gompertz models. Maximum lifespan estimates
(99.9™ percentile) for every experimental group were derived from survival data simulated with
the corresponding fitted Gompertz functions. Lifespan-adjusted age was calculated as a
chronological age divided by the expected maximum lifespan (99.9'" percentile) estimated for the

corresponding experimental model.

Preprocessing and analysis of ITP cohort RNA-seq data

Reads were mapped to mouse genome (GRCm39) with STAR (version 2.7.11b)*® and
counted via featureCounts (version 2.0.6)*%. To filter out non-expressed genes, we left only genes
with at least 10 reads in at least 20% of samples, resulting in 13,422 detected genes according to
Entrez annotation. Filtered data was then passed to RLE normalization?!®. Samples were
considered outliers based on Principal Component Analysis (PCA) performed separately for each
sex, if their 1* or 2™ principal component (PC) values were more than 1.5 interquartile ranges
(IQR) above the third quartile or below the first quartile. Following this rule, 21 samples were
identified as outliers and filtered out from the data. All interventions were still present in the dataset

after the filtering step.

Transcriptomic signatures of chronological age, lifespan-adjusted age, expected hazard rate
(log1o(1)) and expected maximum lifespan (90" percentile), estimated directly from survival data
(“estimate”) or corresponding Gompertz mortality models (“model”), were identified with linear

models fitted with edgeR package?!!

separately for each sex and together for both sexes. For the
pooled signature, sex was included in the model as a separate covariate. Besides, associations with
age-adjusted expected mortality rate (in log scale), lifespan-adjusted age and maximum lifespan
were examined by including chronological age as a separate covariate in corresponding models.
Genes were considered statistically significant if their p-value, adjusted with Benjamini-Hochberg

(BH) method?'?, was lower than 0.05.
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Aggregation and preprocessing of transcriptomic data across sources

Gene expression data for meta-analysis were obtained from the current study (ITP cohorts),
published studies?’!2!32!4 and the repositories NCBI GEO?!>, ArrayExpress>'®, and SRA?!” with
the following identifiers: GSE3150%*'%, GSE65912!°, GSE11291%%°, GSE34378!7, GSE27625%!,
GSE53960%22, GSE66715%2°, GSE132040%**, GSE146977*%, GSE145480°%, GSE3129*!%,
GSE55272'%,  GSE131754%, GSE81959%, GSE36838'", GSE46895'"7, GSE51108'7,
GSE26267%7, GSE92486*7, GSE124772'3, GSE101657'%, GSE117188'!, GSE32609°,
GSE1093%%, GSE40977°%, GSE48333'7, GSE48331'7, GSE49000'%2, GSE97074!%,
GSE108379'%, GSE122116*, GSE121395%!, GSE122080'%?, GSE122085%, GSE122243%,
GSE122367%%, GSE126814*4, GSE127758'%, GSE128724%%, GSE129083%%, GSE137504%%,
GSE139204%7, GSE140286>%%, GSE143304*, GSE145972%%, GSE146796**, GSE147666°4,
GSE148647*%, GSE149569**, GSE155407*%, GSE156762%%, GSE158980%*, GSE165409%%,
GSE154832%%, GSE166615%°, GSE166778%!, GSE168211%%2, GSE168610%%, GSE175571%%,
GSE178770%°, GSE69952%¢, GSE78130%7, GSE83931%%%, GSE93833, GSE124483!,
GSE127475'*, GSE190939*%°, GSE201207>°, GSE141252%%°, GSE134781%%, GSE134780%,
GSE219203%7, GSE149029'7, GSE39699'7°, GSE75574°%!, GSE89272°%?, GSE54853'8!,
GSE155064°%°, GSE86882%, GSE234563%*2, GSE51202'%, GSE84390°%, GSE1232932%,
GSE234667%%°, GSE52794%%7, GSE241904%%, GSE75192%7, PRINA281127%%,
PRINA516151%%°, E-MTAB-3374%7°, E-MEXP-2320°%, and E-MEXP-153%"!. For training of
multi-species transcriptomic clock, human gene expression data was derived from GTEx>"? (blood
samples) and the following GEO datasets: GSE103232%7 GSE113957%, GSE134080°7,
GSE17612%,  GSE21935%7%, GSE226189%7%, GSE36192%"7, GSE40645%78, GSES5086%",
GSE53890%°, GSE674%%!, and GSE75337%.

Preprocessing pipelines for RNA-seq and microarray datasets were as described in 2%,
Briefly, for each RNA-seq dataset, raw counts were downloaded, and soft filtering was performed
to remove unexpressed genes. Afterwards, genes were mapped to Entrez IDs, followed by RLE
normalization, log-transformation and scaling of gene expression profiles. For microarray datasets,
data was log-transformed, mapped to Entrez IDs and scaled. After data aggregation, we filtered
out genes presented in less than 20% of datasets, keeping 18,592 genes that passed this criterion.

As a quality control, for every sample in the meta-dataset we calculated correlation between its
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expression profile and median expression profiles across all samples corresponding to the same
tissues. Samples with Spearman p < 0.5 were removed from the data as outliers. This resulted in
4,539 mouse and rat gene expression samples with known chronological age (Supplementary
Table 1B), 4,487 of which also had associated estimates of lifespan-adjusted age, expected
mortality and maximum lifespan. The same pipeline was used to preprocess 2,306 human tissue
samples (Supplementary Table 1C), followed by mapping of human genes to mouse 1-to-1
(mutually exclusive) orthologs. Integration of human data resulted in a meta-dataset consisting of
6,845 tissue samples from mice, rats and humans, utilized for training the multi-species

transcriptomic clock.

For clock development, we used either scaled gene expression profiles or utilized YuGene
normalization’’, shown to be effective for integration of transcriptomic data across multiple
platforms’!. To adjust for potential batch effects and differences in baseline expression across
tissues, within every dataset and tissue we calculated relative gene expression of each sample using
the following algorithm. (1) For each dataset and tissue, we randomly selected a subset of control
samples of the same chronological age and sex; (2) for a selected reference group, we estimated
median expression profile separately for each gene and (3) subtracted it from the expression profile
of each sample in the examined dataset and tissue. Similarly, we subtracted chronological age,
lifespan-adjusted age, expected mortality rate (in log scale) and maximum lifespan of the reference
group from corresponding estimates of every sample. Therefore, for each sample we obtained
changes in log-expression and changes in chronological age, lifespan-adjusted age, mortality rate
(in log scale) and expected lifespan compared to a randomly chosen control group from the same
dataset and tissue, thus correcting for batch effects and organ-specific differences in gene
expression. These features and outcome variables were then employed to train the corresponding

relative transcriptomic clocks.

For the identification of rodent gene expression signatures of aging, mortality and lifespan,
and for a weighted gene co-expression network analysis (WGCNA), a similar algorithm of relative
expression estimation was applied within every dataset, tissue and sex, to keep only transcriptomic
changes associated with aging and the effect of various lifespan-regulating interventions. Outliers
were identified during PCA analysis as samples with values of the 1% or 24 PCs falling outside

the boundaries of the quartiles £1.5 IQR. After filtering out such samples, the dataset for meta-

60


https://doi.org/10.1101/2024.07.04.601982
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.04.601982; this version posted July 7, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

analysis included relative gene expression data for 4,476 mouse and rat samples. Besides, we
filtered out genes detected in less than 50% of samples. This resulted in the expression data for

12,894 genes.

Transcriptomic signatures of aging, mortality and lifespan on the aggregated meta-dataset

To identify transcriptomic signatures of chronological age, lifespan-adjusted age, expected
mortality and maximum lifespan based on the aggregated meta-dataset of rodent relative gene
expression, we utilized linear mixed-effect model with REML criterion via Imer function from

282 We considered change in log-expression as an outcome variable

Ime4 and ImerTest R packages
and difference in trait of interest as an independent variable, while tissue and source of data were
implemented in the model as random terms, and sex was included as a fixed term. To examine
genes associated with age-adjusted differences in expected mortality (in log scale), lifespan-
adjusted age and maximum lifespan, we introduced difference in chronological age into a mixed-
effect model as a separate fixed term covariate. Genes were considered statistically significant if

d?'?, was lower than 0.05. Pairwise

their p-value, adjusted with Benjamini-Hochberg (BH) metho
overlaps between transcriptomic signatures associated with different traits were assessed
separately for up- and downregulated genes with Fisher’s exact test, and together with Pearson’s

chi-square test.

Development of transcriptomic clocks

To develop rodent liver-specific, mouse multi-tissue, rodent multi-tissue and multi-species
(based on mice, rats and humans) multi-tissue transcriptomic clocks of chronological age, lifespan-
adjusted age and expected mortality, we utilized Elastic Net (EN) and Bayesian Ridge (BR) models
from scikit-learn library in Python (functions ElasticNet and BayesianRidge, respectively). Models
were applied to relative expression datasets normalized with scaling and YuGene methods. For the
chronological clock, only control samples not subjected to interventions were utilized, while for
the lifespan-adjusted and mortality clocks all samples with estimated outcome values from both
control organisms and those subjected to interventions were employed. To account for differences

in lifespan across species, chronological age was divided by maximum recorded lifespan (4, 3.8
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and 122 years for mice, rats and humans), and the resulting value was provided as a response value

to train the chronological clock.

90% and 10% of samples were selected as training and test sets, respectively, with
stratification based on species and type of intervention (controls, lifespan-shortening, neutral and
lifespan-extending). Genes detected in less than 20% of samples in training set were filtered out.
Missing values for every gene were imputed with median expression calculated on training set.
Hyperparameters of the model were selected based on R? accuracy metric estimated with grid
search (GridSearchCV) through 5-fold cross-validation method (KFold). For EN model, optimized
hyperparameters included alpha (between 107 and 10?), /1 ratio (between 0 and 1) and those
defining whether scaling of features should be performed (with_mean and with_std parameters of
StandardScaler function). For BR model, trained hyperparameters included initial values for alpha
alpha_init (between 10 and 10™") and lambda lambda_init (between 107 and 1) as well as
with_mean and with std parameters of StandardScaler function. Interestingly, for all trained
models with std parameter was selected to be 0, suggesting that standardization of features doesn’t
improve the quality of the model. Pearson correlation coefficient, R> and mean absolute error

(MAE) were examined as metrics of accuracy on test set.

For robust quality assessment, nested cross-validation with 10 iterations was performed. In
particular, we randomly divided data into training and test sets 10 times, each time training the
model with 5-fold cross-validation and applying it to the test set. Median accuracy (Pearson’s r,
R? and MAE) across 10 test sets was considered as a final quality of the model. To have a reference
for MAE assessment, we also calculated MAE based on random guessing — i.e., using mean
outcome value on the training set as a prediction for every sample in the test set. Mean and standard
error of gene coefficients from trained EN models across 10 test sets were calculated to identify

top predictors of rodent chronological age and mortality.

Similarly, for rodent multi-tissue data we trained transcriptomic clocks of absolute
chronological age, lifespan-adjusted age and expected mortality with linear or log-log transformed
outcomes, and clock of relative expected maximum lifespan with chronological age included or
excluded from the set of features. Besides, we developed tissue-specific transcriptomic clocks of
chronological age utilizing data only from liver, kidney, brain or skeletal muscle. For rodent multi-

tissue chronological clock, in addition to EN and BR, we also tested other machine learning
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models, including support vector machines (SVM), random forest (RF), k-nearest neighbors
(KNN) and light gradient-boosting  machine  (LightGBM) (functions SVR,
RandomForestRegressor, KNeighborsRegressor and LGBMRegressor from lightgbm package,
respectively). For all models, in addition to model hyperparameters, StandartScaler with _mean and
with_std parameters were optimized. Besides, for SVM model optimized hyperparameters
included kernel (linear or rbf), regularization parameter C (from 10 to 1) and epsilon (from 107
to 1); for KNN they included n_neighbors (from 2 to 10), weights (uniform or distance) and power
parameter p (from 1 to 5); for RF they included n_estimators (from 100 to 2000), max_depth (from
10 to 110), min_samples split (from 2 to 10) and min_samples leaf (from 1 to 4); and for
LightGBM they included boosting type (dart or gbdt), num_leaves (from 100 to 250), max_depth
(from 1 to 3), n_estimators (from 100 to 5000), subsample (from 0.5 to 1), min_child samples
(from 50 to 200), min_child weight (from 107 to 0.1), reg _alpha (from 107 to 1), reg lambda
(from 10® to 1) and colsample bytree (from 0.2 to 1). To identify an optimal set of
hyperparameters for RF and LightGBM, we employed RandomizedSearchCV with 60 iterations.

To improve applicability of the clocks on new unseen data, we trained final models with
GroupKFold cross-validation, ensuring that optimization of hyperparameters occurs on
independent datasets not used to train the model. Gene coefficients of final EN models trained on
the whole datasets are in Supplementary Table 3. To test the quality of the trained clocks on novel
tissues and datasets, we utilized Leave-One-Tissue-Out (LOTO) and Leave-One-Dataset-Out
(LODO) approaches. Iteratively, we trained models on all tissues or datasets but one and estimated
the quality of the model on the remaining tissue or dataset. Besides, we tested the quality of clocks
to separately predict chronological age and effect of interventions on maximum lifespan in new
independent data. Correlation with chronological age was examined using tAge predictions for all
control samples estimated during LODO test. The effect of a given intervention on maximum
lifespan was calculated within each dataset and experimental group by dividing expected
maximum lifespan (99.9" percentile) of cohort subjected to the intervention by expected maximum

lifespan of corresponding control cohort. Then we estimated the correlation of log-ratio of

MLexp
MLcon

maximum lifespans (log;g ) with average difference in tAge between experimental and

control group after adjustment for chronological age and tissue estimated with ANOVA

(tAgeexp — tAgecon) across all available interventions and experimental groups (datasets, strains,
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sexes). In addition, we divided all interventions into 3 categories based on the size of their effect

MLexp
MLCOTI.

on maximum lifespan (log;q ): (1) lifespan-extending interventions with log-ratio of

lifespans > IQR (more than +15.7% to the original maximum lifespan); (2) lifespan-shortening
interventions with log-ratio of lifespans < -IQR (less than 86.4% of the original maximum
lifespan); and (3) neutral interventions with the intermediate effect on lifespan. For lifespan-
extending and lifespan-shortening interventions, we assessed statistical significance of non-zero
mean tAge difference across interventions within given category using mixed-effect model with

y*%7. Mean and standard error of

rma.mv function from metafor package (with REML criterion
(tAgeexp — tAgecon) from ANOVA were considered as an outcome variable, while source of
expression data was included as a random term. Pairwise comparison of predicted effect on tAge
between categories of interventions was assessed using similar mixed-effect model, with
intervention category included as a fixed term. Resulted p-values were adjusted for multiple

comparisons with BH apptoach?'?.

Co-regulated transcriptomic modules of aging and longevity

Preprocessed rodent relative expression data were filtered using the goodSamplesGenes
function from the WGCNA package®® to remove samples and genes with a high number of missing
values. The remaining missing values were then imputed with the median values for each gene.
To identify co-regulated transcriptomic modules associated with aging and longevity, Pearson
correlation metric was utilized to determine the similarity of expression profiles across all pairs of
genes and construct adjacency matrix with the SoftThreshold = 4. Hierarchical clustering was
performed based on the topological overlap matrix (TOM) with the settings TOMType =
"unsigned", deepSplit = 2, and minClusterSize = 20, using the dynamic tree cut method. The same
procedure was applied separately to male and female data to ensure consistency of the results.
Pairwise overlaps of modules identified across sexes were assessed with Fisher’s exact test
(Extended Data Fig. 7B). Obtained 28 clusters of co-regulated genes were further iteratively
filtered, ensuring that all genes within each module have Spearman p > 0.475 with the median
gene expression profile estimated based on all genes included in the given module. The threshold

0f 0.475 reflects maximum Spearman p with median expression profile for 2,500 randomly chosen
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genes not attributed to any module according to WGCNA, multiplied by 1.1 to account for

potential variation caused by random subsetting of this gene set.

Functional and upstream regulator enrichment of gene lists associated with each identified
module was performed using Fisher's exact test via the Python package GSEApy***. KEGG**,
MSigDB HALLMARK?> REACTOME?*® and ChEA transcription factor®®’ ontologies were
utilized for the analysis (Supplementary table 4A). Adjustment for multiple comparisons was
performed with Benjamini-Hochberg method, and terms with adjusted p-value < 0.05 were
considered significantly enriched by the given module. Based on the results of functional
enrichment, 26 modules were annotated based on their top representative enriched pathways
(Supplementary table 4B). The resulting annotated and filtered 26 modules were utilized for

subsequent analysis and development of module-specific clocks.

Gene correlation network was visualized via spectral embedding?®®*%°. First, negative
correlations were replaced by zeros to ensure non-negative edge weights, providing an adjacency
matrix A(i,j)=max(cor(i,j), 0). Subsequently, the Laplacian D-A and the random walk normalized
Laplacian L_norm = DL were computed, where D is a diagonal degree matrix, with entries
equal to the weighted degrees of nodes. Eigenvalues and eigenvectors of the normalized Laplacian
were then computed using eig function from numpy.linalg module, and the coefficients of the 1%
and the 3" non-trivial eigenvectors were used as vertical and horizontal coordinates of a node. To
visualize WGCNA modules, a sample of 3000 genes was generated and displayed, including all

genes associated with the corresponding module and randomly sampled background genes.

For each module, its eigengenes reflecting the 1% PC were calculated for every sample in
the rodent meta-dataset of relative expression. Partial Spearman correlation between module
eigengenes after adjustment for chronological age was estimated. Besides, for eigengenes of every
module, we calculated their Spearman correlation with chronological age and partial Spearman
correlation with maximum lifespan adjusted for chronological age. Sparse partial correlation
network of identified modules, chronological age and expected maximum lifespan was computed
using graphical lasso regularization and model selection based on extended Bayesian information
criterion® with EBICglasso function from bootnet package®'. The resulting Gaussian graphical

model was visualized with qgraph R package using the spring layout algorithm. The same method
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was used to visualize partial correlation network of tAge predictions of module-specific clocks

estimated on test sets.

Rodent multi-tissue module-specific EN and BR clocks of relative chronological age and
expected mortality were trained similarly to the conventional clocks, with stratification and 5-fold
cross-validation, using only genes associated with the given module. To obtain robust estimates of
accuracy, we also performed nested cross-validation, dividing whole dataset into 10 equal folds,
and iteratively training each module-specific clock on 9 subsets and testing its quality on the
remaining fold. To examine the overall power of module genes to predict age and mortality, we
also trained composite clocks using all genes associated with at least one module. We then assessed
the accuracy of the module-specific clocks by calculating average Pearson’s r with response
variable across 10 test sets. Besides, for mortality clocks we separately calculated correlation of
their tAge predictions with chronological age on control test samples and partial correlation of

their predictions with expected maximum lifespan after adjustment for chronological age.

Application of Transcriptomic Clocks

Preprocessing of gene expression data for clock application was similar to that performed
for aggregated meta-data. Particularly, for RNA-seq data non-expressed genes were removed
based on soft filtering, genes were mapped to Entrez IDs, and the resulting data was normalized
with RLE method, log-transformed and subjected to scaling or YuGene transformation. For
preprocessed microarray data, expression matrix was log-transformed (if required), mapped to
Entrez IDs and subjected to scaling or YuGene transformation. Afterwards, one of control groups
was chosen as a reference group and used to calculate relative log-expression for each sample in
the dataset. Relative gene expression data were then passed to transcriptomic clocks. Missing
values were imputed with median values precalculated during the training of the clock. For
convenience of tAge interpretation, the outputs of the chronological clocks were multiplied by the
maximum registered lifespan of the corresponding species (4, 3.8, and 122 years for mice, rats and
humans®®®%), while the outputs of lifespan-adjusted clocks were multiplied by 100 to represent
percentage of the passed expected lifespan. For EN conventional and module-specific clocks,

comparison of predicted biological age across groups was assessed with t-test, ANOVA or linear
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model. The outcomes of the BR clocks were compared with a mixed-effect model, fitted with the

point estimates of tAge and their corresponding standard errors provided by the BR model.

Top genes associated with the effect on tAge were estimated using the following procedure.
First, differential expression between groups of interest was estimated with limma?°2. Then, logFC
or slopes of log-expression together with their standard errors were multiplied by the
corresponding gene coefficient from the utilized clock. The resulting clock-weighted log-
expression changes were ranked and visualized on a barplot. Besides, they were employed to

estimate correlation between aging- or mortality-associated signatures of different models.

The impact of various transcriptomic modules on the difference in tAge predicted by a
conventional EN clock after adjustment for the effect of other modules was assessed as follows.
First, standard preprocessing of the dataset was performed. Then, calculated relative expression
values were multiplied by gene coefficients from the conventional EN clock trained only on genes
associated with any module. Since EN transcriptomic clocks represent linear models without
standardization of features, the composite relative tAge for each sample can be represented as a
sum of tAge contributions from individual modules plus some fixed intercept equal for all samples

in the data:

tAgecomposite = Co + Zmodule(ZgEmodule Wy * exprsg) = Co t Lmodute tAgemoduie>

where exprs, and w, are relative log-expression and clock weight for a given gene g,
while tAgemodule reflects contribution of the corresponding module to the composite tAge value.
Therefore, for every module we then calculated its impact on sample tAge by adding contributions
of all genes associated with this module. Finally, t-test, ANOVA or linear model were employed
to assess the average contribution of each module to tAge difference between control and
experimental groups, together with its statistical significance. Resulting p-values were adjusted for
multiple comparisons with BH procedure?'?. Besides, for each module we estimated if gene
expression signature of the examined intervention is enriched for the list of genes associated with

)293

this module using gene set enrichment analysis (GSEA)~”°, as described below.
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Functional Enrichment Analysis of Signatures

For identification of functions enriched by transcriptomic signatures of examined traits
(chronological age, lifespan-adjusted age, expected mortality and expected maximum lifespan),
along with signatures of individual interventions (K/otho KO, age-related diseases, heterochronic
parabiosis, embryogenesis), we performed gene set enrichment analysis (GSEA)**? on a pre-

ranked list of genes based on logio(p-value) corrected by the sign of regulation, calculated as:

—log,0(pv) X sgn(ec),

where pv and ec are p-value and expression change for certain gene, respectively, estimated with
ANOVA, linear model or mixed-effect model, and sgn is signum function (is equal to 1, -1 and 0
if value is positive, negative and equal to 0, respectively). REACTOME, KEGG and
HALLMARKS ontologies from Molecular Signature Database (MSigDB) have been used as gene
sets for GSEA?®. False discovery rate (FDR) cutoff of 0.05 was used to select statistically

significant associations.

Hierarchical clustering of enriched functions for a heatmap was performed based on
normalized enrichment scores (NES), using complete linkage and euclidean distance. Enriched
functions that (i) were significantly enriched (adjusted p-value <0.05) by multiple signatures of
aging, mortality and lifespan, and (ii) represented different aspects of cellular biology, were
selected for visualization. The whole lists of statistically significant enriched functions are

available in Supplementary Tables 2 and 5.

Analysis of Tabula Muris Senis single-cell RNA-seq data

To validate the applicability of the clock to single-cell RNA-seq (scRNA-seq) data, we
utilized droplet Tabula Muris Senis dataset®® that covers gene expression profiles of single cells
from multiple organs extracted from mice of different ages, ranging from 1 to 30 months. For the
subsequent analysis we filtered out organs that covered less than 15 months of mouse lifespan and
were presented in less than 7 samples. Employing the data on remaining 9 tissues, we assessed if
mouse chronological multi-tissue transcriptomic clock can predict dynamics of chronological age
across organs based on expression profiles of individual cells. To do that, we utilized metacell

procedure, randomly selecting a subset of cells corresponding to the same tissue and organism,
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and pooling reads of these cells together, combining their gene expression profiles in a single meta-
profile (Fig. 4A). The resulting meta-profiles were treated as bulk samples, and the standard
preprocessing and clock application pipelines were applied. First, we utilized this algorithm,
combining all available cells for a given tissue and organism in a single metacell. We assessed
Pearson’s correlation coefficient between chronological age and tAge of a metacell predicted with
mouse chronological multi-tissue EN clock and obtained accuracy similar to that achieved on the
bulk data (Extended Data Fig. 12A-B). We then repeated the same procedure, utilizing different
number of randomly chosen cells for a metacell aggregation (from 1 to 750 cells per metacell). In
each case, for every tissue and cell number threshold we obtained a set of metacells, each of which
represented a single mouse. We then calculated Pearson’s correlation between chronological age
and metacell tAge within every tissue for each cell number (Fig. 4B). Besides, we calculated
average coverage across metacells for every cell number threshold to establish the dependence

between total coverage of the sample and accuracy of the transcriptomic clock (Fig. 4C).

We then utilized metacell algorithm separately for each cell type, aggregating all cells
annotated as the same cell type into a single metacell within each organism. For each cell type,
association between chronological age and tAge predicted with the mouse chronological or
mortality multi-tissue EN clock was assessed with linear model. Corresponding p-values were
adjusted for multiple comparisons with BH procedure?'2. To compare aging-associated signatures
across cell types, we selected genes expressed in at least 75% of cell types and estimated their
weighted age-associated expression slopes within each cell type, calculated as Slope *
Coef ficient, where Slope is a slope estimate representing association of log-expression with
chronological age estimated with linear model from limma package®”?, and Coefficient is a
coefficient of the corresponding gene in the mouse chronological multi-tissue EN clock. We then
calculated pairwise Pearson correlation between obtained weighted signatures using a union of top
1,000 genes associated with age (with the lowest p-value from linear model) for each pair of cell
types. The resulted correlation matrix was used to calculate a distance matrix and perform
complete hierarchical clustering of cell types according to their aging-associated weighted
signatures. To identify top shared pro-aging and pro-mortality signatures across cell types, we
normalized weighted slopes by standard deviation estimated across all examined genes for the

given cell type and ranked genes by average normalized weighted slopes. Top 5 genes driving pro-
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aging and pro-mortality phenotype according to mouse chronological and mortality multi-tissue

EN clocks were visualized on barplots (Fig. 4F; Extended Data Fig. 13B).

Preprocessing and analysis of Klotho KO bulk and single-nucleus RNA-seq data

Bulk RNA-seq reads were mapped to mouse genome (GRCm39) with STAR (version
2.7.11b)**® and counted via featureCounts (version 2.0.6)*%. To filter out non-expressed genes, we
left only genes with at least 10 reads in at least 25% of samples, resulting in 15,744 detected genes
according to Entrez annotation. Filtered data was then passed to RLE normalization?'’ and
preprocessed for the clock separately for each tissue. Control samples were selected as a reference
group for calculation of relative expression. To have unbiased estimation of tAge for Klotho KO
mice, we retrained transcriptomic clocks excluding Klotho gene from training set. tAges estimated
with resulting rodent chronological, lifespan-adjusted and mortality multi-tissue BR clocks were
compared between control and Klotho KO mice separately for skeletal muscle and kidney using
mixed-effect model. Difference in Klotho expression between control and progeroid mice was
assessed with edgeR?!'!. To identify top genes driving the difference in tAge, we performed
differential expression analysis between control and Klotho KO groups separately for each organ
with limma®®? and multiplied logFC by clock coefficients, as described above. Contribution of
each module to the difference in tAge according to conventional clock was examined separately
for each tissue as described above. Difference in tAge between control and progeroid mice
predicted by module-specific clocks in each organ was assessed with ANOVA. P-values across
modules were adjusted with BH approach. Pearson correlation between weighted mortality-
associated signatures of Klotho KO in kidney and skeletal muscle was assessed as described above
based on the union of top 2,000 differentially expressed genes (with the lowest p-value) in each

organ.

snRNA-seq data from brain and kidney of control and K/otho KO mice were normalized,
subjected to PCA and visualized with Uniform Manifold Approximation and Projection (UMAP)
separately for each organ using Seurat package’** (Fig. 4I; Extended Data Fig. 14A-C). To
establish homogenous clusters of cell types for kidney, we filtered out cells with dimensionally
reduced coordinates falling outside the boundaries of the quartiles +1.5 IQR calculated for the

corresponding cell type (Fig. 4H). Following filtering, we aggregated individual cells within each
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cell type and experimental group into metacells using coverage threshold of 200K reads per
metacell. Difference in expression of K/otho between metacells representing control and progeroid
mice was assessed for each cell type with edgeR. Afterwards, standard preprocessing pipeline was
applied separately for each cell type with control metacells selected as a reference group, followed
by application of the clocks trained on all genes excluding K/otho. Predictions of tAges estimated
with rodent chronological and mortality multi-tissue BR clocks were compared between control
and progeroid mice with mixed-effect model separately for each cell type. P-values across cell

types were adjusted for multiple comparison with BH procedure.

For most represented cell types, i.e., neurons and proximal tubule, we performed
differential expression analysis, calculating logFC of genes between metacells of control and
Klotho KO mice. Resulting logFC profiles were multiplied by clock coefficients to establish top
genes driving aging- and mortality-associated phenotype in neurons and proximal tubules of
progeroid animals. Contribution of modules into tAge difference between control and Klotho KO
mice was examined separately for each cell type. Difference in tAge estimated with module-
specific clocks in neurons and proximal tubules of control and K/otho KO mice was tested with
ANOVA. P-values across modules were adjusted for multiple comparisons using BH approach.
Pairwise Pearson correlation between weighted mortality-associated signatures of different tissues
and cell types was assessed based on the union of top 2,000 genes differentially expressed (with

the lowest p-value) in at least one cell type or tissue from the given pair.

Mortality-associated mechanisms of aging-related diseases

Gene expression data representing tissues of mice and rats with chronic disease models
and corresponding age-matched controls were obtained from the NCBI GEO repository with the
identifiers GSE142633'°!, GSE137482!%, GSE148350'%, GSE129586'"!, GSE102558!%,
GSE189377'%2 GSE197699'%, GSE120977'%, GSE26538!%. Each dataset was preprocessed
separately as described above. Control samples from the youngest age group were selected as a
reference group for calculation of relative expression. Following preprocessing, we applied rodent
chronological and mortality multi-tissue transcriptomic clocks. Difference in tAge between

healthy and diseased animals estimated with BR clocks was assessed with mixed-effect model
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separately for each age group and time point within the dataset. P-values in datasets with multiple

comparisons were adjusted with BH approach.

To identify top genes driving the observed age acceleration, for every dataset we
performed differential expression analysis between control and disease groups. For datasets with
several age groups (GSE142633, GSE137482, GSE148350), age group was included in the limma
model as a separate factorial covariate. For datasets with multiple time points (GSE102558,
GSE148350), time after stroke induction was included in the limma model as a numeric covariate,
and slope of its association with log-expression was evaluated. For dataset with expression profiles
of two hemispheres examined after stroke induction (GSE148350), slope of association between
log-expression and time after disease was evaluated separately for ipsilateral and contralateral
hemispheres. The resulting differential expression profiles were multiplied by mortality EN clock
coefficients, and top 25 genes with pro- or anti-mortality effects were visualized with barplots and
volcano plots. Pearson correlation between weighted aging- and mortality-associated signatures of
various disease models was estimated based on the union of top 1,000 differentially expressed
genes (with the lowest p-value) for each pair of disease signatures. To identify top pro-mortality
signatures shared across models, we normalized each weighted mortality signature by standard
deviation across all genes, filtered out genes with missing values in at least one signature and
ranked genes based on their average normalized mortality association. Using a similar
methodology, we identified top modules contributing to the pro- or anti-mortality effect on tAge
across examined disease models. Contribution of each module to tAge difference for every disease
was assessed with the same statistical models utilized for identification of differentially expressed
genes (ANOVA or linear regression depending on the dataset). Same models were also used to
examine change in biological age induced by diseases according to individual module-specific

clocks. P-values across modules were adjusted for multiple comparison using BH procedure.

Gene expression profiles of human organs representing healthy cohort and patients with
diagnosed age-related and genetic diseases were uploaded from GEO using the following
identifiers: GSE135055'%, GSE104704!%7, GSE137939'3, GSE166925'%, GSE99248'* and
GSE157712'*!. Following preprocessing of each dataset, we estimated biological ages of samples
using multi-species chronological and mortality multi-tissue BR transcriptomic clocks. Difference

in tAge between healthy and diseased patients was assessed with a mixed-effect model with
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chronological age and sex included as fixed term covariates. P-values in datasets with multiple

comparisons were adjusted with BH approach.

Association between plasma protein concentration and health outcomes in humans

To investigate the association between concentration of GPNMB, CDKNIA and
LGALS3 in human plasma and the incidence of mortality and various diseases in the UK Biobank
cohort!'?’, we utilized Cox proportional hazards regression analysis using the coxph function from
the survival package in R. The UK Biobank provides normalized protein expression data for
selected patients, measured by Olink using Proximity Extension Assay (PEA). UK Biobank
includes information on the first disease occurrence for patients. Covariates in our model included
chronological age, sex, and the interaction between these two factors. To standardize protein
levels, we divided concentrations by their standard deviation. Since the patient data is continuously
updated, for every disease, including death, the right censoring date was the date of the latest
recorded occurrence of that disease in the UK Biobank. The data was left truncated, meaning that
patients with disease occurrences reported before the day of sample collection were excluded.
Because the samples were collected at different time points, the time to disease was calculated as
the time of disease occurrence minus the time of sample collection. For censored samples, the time
to the latest recorded occurrence among patients in the dataset was used, subtracted by the time of
sample collection. Several diseases were combined into groups, and the earliest occurrence within
each group was used for the model. The following diseases were grouped by ICD-10 codes:
dementia (FO0-F03), kidney failure (N17-N19), hypertension (110, I15), and myocardial infarction

(I21, 122). To control for multiple testing, p-values were adjusted using BH procedure.

Rejuvenation-associated mechanisms of heterochronic parabiosis

Liver gene expression profiles of 3-month-old and 20-month-old mice subjected to
isochronic or heterochronic parabiosis (HPB) for 3 months following sacrifice or 2-month
recovery period after detachment were downloaded from GSE224378!%!. Data was preprocessed
as discussed above, and young isochronic attached mice were selected as a reference group for

calculation of relative expression. tAge of samples was estimated with rodent chronological,
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lifespan-adjusted and mortality multi-tissue transcriptomic clocks. Difference in tAge between
isochronic and heterochronic animals estimated with BR models was assessed with mixed-effect
model separately for each age and attachment status group. P-values were adjusted for multiple

comparisons using BH procedure.

To identify genes associated with pro- or anti-mortality effect of HPB in old mice, we
identified differentially expressed genes between old mice subjected to isochronic and
heterochronic parabiosis, including attachment status as a separate factorial covariate in limma
model. logFC between isochronic and heterochronic parabionts were multiplied by rodent
mortality multi-tissue EN clock coefficients. Genes were ranked based on absolute clock-weighted
logFC. Module contributions to chronological and mortality tAge difference between old
isochronic and heterochronic animals were assessed using ANOVA model with attachment status
included as a separate factorial covariate. The same statistical model was utilized to examine
differences in predictions of individual module-specific clocks of chronological age and mortality
between isochronic and heterochronic mice separately for young and old animals. P-values across

modules were adjusted using BH procedure.

Transcriptomic age trajectory during mouse embryogenesis

Microarray gene expression data representing mouse embryos at different stages of
development, from fertilized eggs to newborn mice, were downloaded from GSE39897'22.
Samples corresponding to day 0 of embryogenesis (fertilized eggs) were selected as a reference
group used to calculate relative expression. tAges of embryo samples were estimated with mouse
chronological and mortality multi-tissue EN and BR clocks. Overall variation of biological age
during development was assessed with ANOVA. Decrease of tAge up to day 10 of embryogenesis
(E10) and its increase afterwards was tested with linear model and mixed effect models for
predictions of EN and BR models, respectively. To estimate 95% confidence interval of
development stage that contains minimum tAge (ground zero state), we took samples representing
stage with the minimum average tAge (E10) and iteratively expanded this subset with samples

corresponding to earlier time points until statistically significant slope of biological age with time

was detected (p-value < 0.05). Same procedure was utilized for the right side of the confidence
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interval (later stages of development). Identified interval was shown on tAge trajectory plot with

a grey shadow rectangular (Fig. 6E-F; Extended Data Fig. 20A-B).

Top genes associated with changes in chronological and mortality tAge during early and
late embryogenesis were identified with the linear regression limma model based on samples
representing stages up to E10 and stages after E10, respectively. Gene log-expression slopes were
multiplied by corresponding coefficients from mouse chronological and mortality multi-tissue EN
clocks, and top genes with the average absolute weighted slope across phases of embryogenesis
were visualized on barplots and volcano plots. Module contributions to tAge dynamics during
early (up to E10) and late (after E10) embryogenesis were calculated based on coefficients of
mouse chronological and mortality EN models and assessed with linear models. The same
statistical model was utilized to examine the dynamics of tAges predicted with individual module-
specific clocks of chronological age and mortality. P-values across modules were adjusted for

multiple comparisons using BH procedure.

To assess if early and late embryogenesis are characterized by global remodeling of gene
expression profiles, we examined differences in absolute slopes between statistically significant
up- and downregulated genes (BH-adjusted p-value < 0.05) separately for each phase of embryonic
development (up to E10 and after E10) using Wilcoxon rank sum test (Extended Data Fig. 20E).
To assess dynamics of biological age separately for genes with increased and decreased
expression, for each phase of embryogenesis we selected statistically significant up- or
downregulated genes (BH-adjusted p-value < 0.05) and calculated tAge components formed by
these genes for every sample using coefficients of mouse chronological or mortality multi-tissue
EN clocks. We then examined if estimated tAge components change during early and late phases
of embryonic development using linear regression model separately for up- and downregulated
genes (Extended Data Fig. 20F-G). Functional enrichment of gene sets upregulated during early
embryogenesis (up to E10) and downregulated afterwards or vice versa was performed with
Fisher’s exact test based on GO BP ontology, utilizing genes expressed in this dataset as a
background and using enrichGO function from clusterProfiler package in R?*°. Terms with BH-
adjusted p-value < 0.05 were considered statistically significant. Redundant functional terms were
removed with the simplify function. Network of enriched maintained functional terms was

visualized with emapplot function from enrichplot package in R (Extended Data Fig. 21A-B).
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Pearson correlation of mortality-associated weighted slopes of log-expression during early and late
embryonic development was estimated based on the union of the top 2,000 differentially expressed
genes (with the lowest p-values from the limma model) representing each phase of embryogenesis.
Similarly, mortality signature of early embryogenesis was compared with the signature of HPB in

old animals.

Dynamics of biological age across individual cell lineages during early organogenesis

To assess dynamics of transcriptomic age across individual lineages during early
organogenesis (from E6.5 to E8.5), we utilized scRNA-seq data from '*2. To validate global
decrease of biological age for the whole embryo during this interval of development, we
aggregated all cells corresponding to each sample in a single metacell. We then filtered out
metacells with total coverage less than 200K and preprocessed remaining meta-profiles using the
standard pipeline for bulk RNA-seq data described above. Samples representing the earliest stage
of development (E6.5) were selected as a reference group for relative expression calculation.
Mouse chronological and mortality multi-tissue BR clocks were applied to the preprocessed
metacell data, and the slope of tAge change with time was assessed with a linear mixed effect
model.

To reconstruct ancestral lineages for all cell types presented at day 8.5, we utilized

Waddington optimal transport method (wot package in python)'3

. Before inferring the trajectories,
we preprocessed raw data following methodology described in '3, First, we conducted depth
normalization of cell counts so that each cell had an equal total number of reads (denoted as
CP10k), using normalize total function in Scanpy?*® with parameter target sum=1e4. Next, we
log-transformed the values using log(x+1) (loglp function in Scanpy). This combination of
transformations is referred to as loglpCP10k and is necessary to control for dispersion and read
depth in the data. Then we identified 3000 most highly variable genes, using

highly variable genes function with parameters n_top genes=3000, flavor="seurat v3” in

Scanpy.

To infer trajectories, we first computed the average z-score for each cell based on the
expression of genes involved in cell cycle and apoptosis. For each gene, we calculated z-score,

truncated it at -5 or 5, and then computed the average z-score across all genes in the set for each
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cell, using score_gene_sets function with parameters permutations=0, method="“mean_z_score” in
the wot library. Using the resulting values, representing signatures of apoptosis and proliferation,
we assessed cell growth rate g(x) using a Birth-Death Process model. We then calculated transport
matrices linking each pair of adjacent time points. We used OTModel function from the wot library
with parameters epsilon = 0.05, lambdal = 1, lambda2 = 50, growth iters=3. The calculated
transport matrices reflect ancestors and descendants of each cell. To determine the probabilistic
distribution of ancestors of the cell populations present at E8.5, we first calculated probability
vectors of these cell types using population from cell sets function from the wot library with
parameter at time=8.5. The probability vectors of ancestor cell types were calculated by
multiplying the cell type probability vector with the transport matrix using the wot trajectories
function. Thus, we obtained ancestral trajectories of all cell types at E8.5, representing a sequence

of probability distributions across individual cells at earlier time points.

To validate ancestral lineages reconstructed from the data, for every embryonic tissue at
E8.5 we examined top cell types at each stage of development that together covered more than
90% of its total ancestral probability (Extended Data Fig. 23). Besides, we estimated pairwise
Spearman correlation between ancestral lineages for each pair of cell types presented at E8.5
(Extended Data Fig. 24). Utilized trajectories represented probability distributions of cells that

cumulatively explained more than 99% of total ancestral probability for the given cell type.

Reconstructed trajectories were utilized to estimate tAge dynamics for individual cell
lineages between E6.5 and E8.5. To ensure sufficient gene coverage at E8.5, we selected cell types
represented by at least 400 cells at this time point. Additionally, for each cell type, we filtered out
cells that had zero probability for the given trajectory. To account for the probabilistic distribution
of ancestors derived from our analysis, for each cell at earlier time points we multiplied its
estimated probability by the gene expression profile. Thus, the counts of each gene in a specific
cell were weighted according to its probability of being a part of the trajectory, i.e., being an
ancestor of the corresponding cell type from E8.5. Therefore, low probability of being a member
of ancestral lineage resulted in a reduced impact of cell’s expression profile on the meta-profile of
the corresponding metacell and, therefore, lower effect on estimated tAge. We then aggregated
weighted gene expression profiles of all cells within each sample into a single metacell, similar to
the pipeline utilized for evaluation of tAge for the whole embryos, and multiplied the resulting

aggregated weighted counts by the number of cells at the corresponding time point to get total
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expression values on the similar scale to the original ones. We filtered out meta-cells with total
coverage less than 200K reads and preprocessed the data for clock analysis, utilizing samples at
E6.5 as a reference group for calculation of relative expression. We then assessed tAge of each
metacell using mouse chronological and mortality multi-tissue BR clocks and examined change of
tAge between E6.5 and E8.5 for every cell lineage using a linear mixed-effect model. In addition,
we computed Pearson correlation between the predicted point estimate of tAge and the day of
development. P-values representing slope difference from zero estimated with mixed effect models

were adjusted for multiple comparisons using BH method.

Rejuvenation-associated signature of human iPSCs

To examine the change of tAge during cellular reprogramming of human fibroblasts and
association between biological age of induced pluripotent stem cells (iPSCs) and chronological
age of their donors, we utilized E-MTAB-3037 dataset'*?. Following standard preprocessing and
mapping of human genes to corresponding mouse orthologs, we calculated relative expression
using all primary fibroblasts samples as a reference group and applied multi-species multi-tissue
BR clocks of chronological age and mortality. For every cell type presented in the data, including
prefrontal cortex, primary fibroblasts, iPSCs and directly transdifferentiated neurons, we estimated
association between tAge of samples and chronological age of donors, from whom the samples
were derived, using linear mixed effect model. Besides, we calculated paired difference in
biological age between original primary fibroblasts and iPSCs derived from these cells, using
mixed effect model with patient ID incorporated there as a separate factorial covariate. Similar
model was used to identify genes differentially expressed between primary fibroblasts and
corresponding reprogrammed iPSCs. logFC were multiplied by the corresponding coefficients of
multi-species multi-tissue EN clocks, and Pearson correlation between signatures of cellular
reprogramming of human fibroblasts, HPB in old mice and early embryogenesis (up to E10)
weighted by coefficients of multi-species mortality clock was assessed based on the union of top
2,000 differentially expressed genes (with the lowest p-value) for each pair of models. Top genes
with the highest rejuvenation effect across models were estimated based on average gene

association with mortality normalized by standard deviation (Fig. 7E).
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Screening of anti-aging compounds with Clockbase

To identify interventions with significant effect on molecular mechanisms of aging and
mortality, we utilized Clockbase collection'*’” of 2,487 mouse tissue RNA-seq datasets from GEO
repository. To focus on systemic effects of interventions on animal’s organs, we filtered out
datasets representing cell culture experiments, keeping only gene expression profiles of mouse
tissues. Following standard preprocessing of transcriptomic data, we calculated relative expression
considering all samples within the dataset as a reference group. Afterwards, we utilized rodent
multi-tissue EN clocks of chronological age, lifespan-adjusted age and expected mortality. For
each dataset, we aggregated ANOVA model by introducing age, sex and tissue (if available) as
well as all columns that included at least 2 non-unique and 2 different factorial or numerical values
(‘experimental columns’). This threshold was applied to remove columns with unique sample IDs
as well as columns specifying technical information shared across all the samples within the
dataset. Using ANOVA test, for every experimental column within each dataset we calculated p-
value reflecting statistical significance of tAge variation across the groups covered by the
corresponding column. Following p-value adjustment with BH method, we filtered out datasets
with not statistically significant variation according to at least one experimental column (BH
adjusted p-value > 0.05). For the remaining datasets, we repeated ANOVA, examining pairwise
comparisons between control and experimental groups after adjustment for age, sex, tissue and
other available experimental columns. As control groups, we considered strings containing the
following keywords: ‘wt’, ‘wild type’, ‘wild-type’, ‘control’, ‘ctr]’, ‘naive’, ‘none’, ‘sham’ ,
‘dmso’, ‘pbs’, ‘ad libitum’, ‘untreat’, ‘no treat’, ‘unstimulated’, ‘intact’, ‘healthy’, ‘vehicle’, ‘veh’
(whole string), ‘empty’, ‘mock’, ‘saline’, ‘negative’, ‘neg’ (whole string), ‘no’ (whole string),
‘flox’, ‘standard’, ‘normal’, ‘chow’, ‘scramble’, ‘uninfected’. Resulting p-values representing
pairwise comparisons between control and treated groups across datasets were adjusted for
multiple comparisons with BH approach. Experimental groups with BH-adjusted p-value < 0.05
were considered significant. Top hits identified during this screening were verified by manual

preprocessing and analysis of the corresponding datasets.

Gene expression profiles of luminal mature, luminal progenitor and mammary stem cells
from 3-month-old ovariectomized mice treated with Estrogen and Progesterone (EP), EP and

telapristone (TPA), EP and mifepristone (MFP), or sham for 14 days were downloaded from
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GSE127197%!. Data were preprocessed with a standard pipeline, with sham samples specified as
a reference group for calculation of relative expression. Resulting preprocessed profiles were
passed to rodent chronological and mortality multi-tissue BR clocks. Pairwise differences between
sham and EP, EP and TPA, and EP and MFP groups were assessed with mixed effect model
separately for each cell type. Resulting p-values were adjusted for multiple comparisons using BH

procedure.

Transcriptomic profiles of livers from young 7-week-old untreated C57BL/6J female
mice, and old 24-month-old mice subjected to saline injections or 3-month treatment with ouabain
were obtained from GSE122080'%2. Data were preprocessed with a standard pipeline, and young
control animals were selected as a reference group for calculation of relative expression profiles.
tAges of tissues were estimated with conventional and module-specific rodent multi-tissue
transcriptomic clocks of chronological age and mortality trained on independent data, not
intersecting with the examined dataset. Pairwise differences in conventional tAge estimated with
BR models between young and old control groups, and between old animals subjected to saline
and ouabain, were assessed with mixed-effect models. P-values were adjusted for multiple
comparisons using BH procedure. Differences in tAge between old control and ouabain-treated
animals revealed by individual module-specific clocks were assessed with ANOV A model. Same
statistical model was used to assess module contributions to observed changes in biological age
induced by ouabain treatment. To identify top genes driving rejuvenation effect of ouabain in old
animals, differential expression analysis between old control and ouabain groups was performed,
and the resulting logFC were multiplied by corresponding coefficients of the conventional rodent
mortality multi-tissue EN clock. Genes were ranked by absolute value of weighted mortality-
associated changes, and top 25 genes were visualized on a barplot. Pearson correlation between
mortality-associated signatures of ouabain and HPB in old mice was assessed based on the union

of top 2,000 differentially expressed genes (with the lowest p-value) across examined models.
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