

1 **Structural models predict a significantly higher binding affinity between the NblA protein**
2 **of cyanophage Ma-LMM01 and the phycocyanin of *Microcystis aeruginosa* NIES-298**
3 **compared to the host homolog**

4 Isaac Meza-Padilla^{1,a,*}, Brendan J. McConkey¹, Jozef I. Nissimov^{1,b}

5 ¹Department of Biology, University of Waterloo, Canada

6 ^a<https://orcid.org/0000-0002-0934-0920>

7 ^b<https://orcid.org/0000-0002-2220-6136>

8 *Corresponding author: imezapad@uwaterloo.ca

9

10 **Abstract**

11 Horizontal gene transfer events between viruses and hosts are widespread across the virosphere.
12 In cyanophage-host systems, such events often involve the transfer of genes involved in
13 photosynthetic processes. The genome of the lytic cyanomyovirus Ma-LMM01 infecting the
14 toxic, bloom-forming, freshwater *Microcystis aeruginosa* NIES-298 contains a homolog of the
15 *non-bleaching A* (*nblA*) gene, which was probably acquired from its host. The function of the
16 *NblA* protein is to disassemble phycobilisomes, cyanobacterial light harvesting complexes that
17 can comprise up to half of the cellular soluble protein content. *NblA* thus plays an essential dual
18 role in cyanobacteria: it protects the cell from high light intensities and increases the intracellular
19 nitrogen pool under nutrient limitation. *NblA* has previously been shown to interact with
20 phycocyanin, one of the main components of phycobilisomes. Using structural modeling and
21 protein-protein docking, we show that the *NblA* dimer of Ma-LMM01 is predicted to have a
22 significantly higher binding affinity for *M. aeruginosa* NIES-298 phycocyanin ($\alpha\beta$)₆ hexamers,
23 compared to the host homolog. Protein-protein docking suggests that the viral *NblA* structural
24 model is able to bind deeper into the phycocyanin groove. The main structural difference
25 between the virus and host *NblA* appears to be an additional α -helix near the N-terminus of the
26 viral *NblA*, which could be partly responsible for the deeper binding into phycocyanin. This
27 unique helical region, absent in the cellular *NblA*, would be expected to constitute a viral
28 evolutionary innovation. We propose that a higher binding affinity of *NblA* to the host
29 phycocyanin may represent a selective advantage for the virus, whose rapid infection cycle
30 requires an increased phycobilisome degradation rate that is not fulfilled by the *NblA* of the host.

31

32 **Keywords**

33 Cyanophage, non-bleaching A (NblA) protein, structural modeling, AlphaFold2, protein-protein
34 docking, virus evolution, virus ecology, horizontal gene transfer (HGT)

35

36 **1. Introduction**

37 Aquatic viruses influence global biogeochemical cycles, control the abundance and diversity of
38 their hosts, shape ecological food webs, accelerate coevolutionary processes, and transfer genetic
39 information in marine and freshwater environments (DeLong et al., 2023; Fuhrman, 1999;
40 Rohwer & Thurber, 2009). Virus-host horizontal gene transfer (HGT) events, however, are not
41 unique to aquatic ecosystems. In fact, they take place across the whole virosphere. Exemplary
42 cases include the double jelly-roll major capsid protein of diverse archaeal viruses and
43 bacteriophages within *Varidnaviria*, probably exapted from a family of bacterial enzymes
44 involved in carbohydrate metabolism (Krupovic et al., 2022); the acquisition of cholera toxin
45 genes from the temperate single-stranded DNA bacteriophage CTXΦ by *Vibrio cholerae* (Davis
46 & Waldor, 2003; Waldor & Mekalanos, 1996); as well as several HGTs in eukaryotic viruses,
47 including members of the *Nucleocytoviricota*, and their hosts (Irwin et al., 2022). Collectively,
48 HGTs have played foundational roles in macroevolutionary processes of both viruses and cells
49 throughout the history of life on Earth (Forterre & Prangishvili, 2009; Koonin et al., 2022).

50 In marine cyanophage-host systems, HGT events often involve the transfer of genes involved
51 in photosynthesis. At the beginning of the 21st century, it was found that S-PM2, a myovirus
52 infecting *Synechococcus* strains, encoded D1 (*psbA*) and D2 (*psbD*) proteins in its genome
53 (Mann et al., 2003; Wilson et al., 1993). D1 and D2 are photosystem II reaction center proteins
54 (Barber, 2013). Lindell et al. (2004) discovered two more myoviruses and a podovirus infecting

55 *Prochlorococcus* that also contained auxiliary metabolic genes encoding for proteins involved in
56 photosynthesis, namely, *psbA*, *psbD*, *hli*, *petE*, and *petF*. *Hli*, *petE*, and *petF* encode high-light-
57 inducible protein, plastocyanin, and ferredoxin, respectively, all components of the
58 photosynthetic process (Gross, 2013; Hanke & Mulo, 2013; Konert et al., 2022). Further,
59 phylogenetic analyses suggested that these genes were not only horizontally transferred from
60 cyanobacterial hosts to viruses, but also that they were probably transferred back to the hosts
61 (Lindell et al., 2004).

62 Although research on freshwater viruses is relatively limited compared to their marine
63 counterparts, various cases of the presence of photosynthesis-related genes in the genomes of
64 freshwater cyanophages have already been reported (Gao et al., 2012; Meng et al., 2023b; Nadel
65 et al., 2019; Ou et al., 2015; Yoshida et al., 2008). The strain-specific double-stranded DNA lytic
66 myovirus Ma-LMM01 infecting the toxic, bloom-forming *Microcystis aeruginosa* NIES-298 is
67 arguably the most comprehensively characterized freshwater cyanophage to date (e.g., Morimoto
68 et al., 2018; Yoshida et al., 2008; Yoshida et al., 2006). Its genome contains a homolog of the
69 *non-bleaching A* (*nblA*) gene, which was probably horizontally acquired from a *Microcystis* host
70 (Ou et al., 2015; Yoshida et al., 2008). The function of the host NblA protein is to disassemble
71 phycobilisomes, the light harvesting complexes of cyanobacteria, which can comprise up to half
72 of the cellular soluble protein content (Baier et al., 2004; Bienert et al., 2006; Grossman et al.,
73 1993). NblA thus plays an essential dual role in cyanobacteria: it protects the cell from high light
74 intensities and increases the intracellular nitrogen pool under nutrient limitation (Collier &
75 Grossman, 1994; Baier et al., 2004; Grossman et al., 1993). NblA has previously been shown to
76 interact with phycocyanin, one of the main components of phycobilisomes (Bienert et al., 2006;
77 Dines et al., 2008; Karradt et al., 2008; Luque et al., 2003; Nguyen et al., 2017). The fact that the

78 *nblA* gene has been fixed in the Ma-LMM01 population readily suggests that it provides a
79 selective advantage for the virus. Indeed, it is highly transcribed during infection (Honda et al.,
80 2014; Morimoto et al., 2018; Yoshida-Takashima et al., 2012). Here we employ structural
81 modelling and protein-protein docking to investigate which of the two NblAs present in the Ma-
82 LMM01/*M. aeruginosa* NIES-298 virocell (i.e., the virus- or the host-encoded one) is predicted
83 to have a higher binding affinity to the phycocyanin of the host. We elaborate on the potential
84 implications of such a difference in the eco-evolutionary context of this virus-host system.

85

86 **2. Materials & Methods**

87 *2.1. Structural Bioinformatics Pipeline*

88 The amino acid sequences of Ma-LMM01 NblA (vNblA), *M. aeruginosa* NIES-298 NblA
89 (hNblA), *M. aeruginosa* NIES-298 phycocyanin α -subunit, and *M. aeruginosa* NIES-298
90 phycocyanin β -subunit were downloaded from the NCBI Protein Database (GenBank accession
91 numbers: BAF36096, GBD54109, GBD54899, and GBD54900, respectively; Sayers et al.,
92 2022). Structural modelling for the vNblA dimer, hNblA dimer, and *M. aeruginosa* NIES-298
93 phycocyanin ($\alpha\beta$)₆ hexamer (PC) was performed using AlphaFold2 (AF2) ColabFold (Jumper et
94 al., 2021; Mirdita et al., 2022) with an NVIDIA A100-SXM4-40GB graphics processor.
95 Secondary structure predictions for vNblA and hNblA were further corroborated using PSIPRED
96 4.0 (Buchan & Jones, 2019). The sequence alignment between vNblA and hNblA was generated
97 using MUSCLE 3.8 through the EMBL-EBI (Edgar, 2004; Madeira et al., 2022). Entropy-based
98 conservation values were calculated and mapped onto the structural models using AL2CO and
99 University of California, San Francisco (UCSF) ChimeraX (Meng et al., 2023a; Pei & Grishin,

100 2001). The structural models of the vNblA and hNblA dimers were superimposed using the
101 Matchmaker algorithm implemented in ChimeraX (Meng et al., 2023a) with default parameters,
102 while the pairwise structure comparison tool of the DALI server (Holm et al., 2023) was used to
103 generate single-chain alignments. Hits with a DALI Z-score > 2 (i.e., two standard deviations
104 above expected) were considered significant (Holm & Sander, 1995). Protein-protein docking
105 was carried out using ClusPro 2.0 (Kozakov et al., 2017). To construct the vNblA-PC and
106 hNblA-PC complexes, the PC and NblA structural models were used as the receptor and ligand,
107 respectively. The 30 Balanced models were downloaded and subsequently uploaded to the
108 PRODIGY server (Xue et al., 2016) for binding affinity prediction at 25 °C.

109

110 2.2. Statistical Analyses

111 Statistical analyses were conducted using R version 4.3.0 (R Core Team, 2023). In order to
112 investigate whether the vNblA-PC and hNblA-PC predicted complexes had significantly
113 different binding affinities, Welch's *t*-tests were employed. Prior to analyses, the normality of
114 data was tested using a series of Shapiro-Wilk tests. Gibbs free energy change (ΔG) data, as well
115 as the number of charged-charged (CCs), and polar-nonpolar (PNs) intermolecular contacts at the
116 interface within a threshold distance of 5.5 Å followed normal distributions ($P > 0.062$ in all
117 cases). However, dissociation constant (K_d) data, and the number of charged-polar, charged-
118 nonpolar, polar-polar, and nonpolar-nonpolar intermolecular contacts (CPs, CNs, PPs, and NNs,
119 respectively) departed from normality. Thus, a log transformation was applied to K_d , CPs, CNs,
120 PPs, and NNs data. After transformation, K_d , CPs, CNs, PPs, and NNs data followed normal
121 distributions ($P > 0.063$ in all cases). ΔG (kcal mol⁻¹), K_d (M), CCs, PNs, CPs, CNs, PPs and

122 NNs were used as the dependent variables, and complex (vNblA-PC, hNblA-PC) as the grouping
123 variable. Significance was defined at $P < 0.05$.

124

125 **3. Results**

126 *3.1. Structural Models*

127 The vNblA and hNblA AF2 structural models can be found in **Fig. 1**. An α -helix, absent in the
128 host model, can be observed near the N-terminus of the viral NblA. Secondary structure
129 prediction also supports the presence of this additional helix in the viral protein, spanning from
130 alanine 3 to glutamic acid 12 (**Fig. 1h**). The structural model of PC, required for protein-protein
131 docking and binding affinity prediction, is shown in **Fig. 1c,f**.

132

133 *3.2. Virus-Host NblA Sequence & Structure Conservation*

134 A moderate pattern of virus-host sequence conservation in the middle region of the vNblA
135 model, where the additional α -helix is also predicted to be located, stands out (**Fig. 2**). These
136 conserved residues and region may be directly involved in the interaction with the host's
137 phycobilisomes. A significant DALI pairwise structure comparison between vNblA and hNblA
138 (Z-score = 4.4) suggests that the structure of the vNblA model is more conserved compared to its
139 amino acid sequence (**Fig. 2c,f**). Based on the virus-host NblA sequence alignment, the residues
140 absent in hNblA span from leucine 7 to aspartic acid 18, a region containing the predicted α -helix
141 unique to the vNblA model (**Fig. 2g**; section 3.1).

142

143 *3.3. Protein-Protein Docking & Binding Affinity Prediction*

144 Statistical analyses indicate that the vNblA-PC and hNblA-PC predicted complexes have
145 significantly different binding affinities, as determined by ΔG (Welch's *t*-test, $t_{49,667} = 3.017$, $P =$
146 0.004; **Fig. 3a**) and K_d ($t_{49,578} = 3.038$, $P = 0.004$; **Fig. 3b**). Likewise, the predicted complexes
147 have significantly different CC, CP, CN and PP intermolecular contacts at the interface within a
148 threshold distance of 5.5 Å ($P < 0.041$ in all cases; **Fig. 3c-f**). No significant differences were
149 detected regarding the number of PN and NN intermolecular contacts ($P > 0.05$ in both cases).
150 This suggests that the lower ΔG and K_d values of the vNblA-PC complex are mainly due to an
151 increased number of CC, CP, and CN intermolecular contacts. ΔG was found to be -15.89 ± 2.69
152 kcal mol⁻¹ ($n = 30$) for the hNblA-PC complex, and -17.66 ± 1.74 kcal mol⁻¹ ($n = 30$) for the
153 vNblA-PC complex; while K_d was $2.32 \times 10^{-10} \pm 5.80 \times 10^{-10}$ M ($n = 30$) for the hNblA-PC
154 complex, and $6.86 \times 10^{-12} \pm 3.28 \times 10^{-11}$ M ($n = 30$) for the vNblA-PC complex. Both of these
155 significantly lower ΔG and K_d values of the vNblA-PC predicted complex translate into a
156 significantly higher binding affinity between the vNblA and PC structural models compared to
157 the hNblA and PC models.

158 The best ranked hNblA-PC ClusPro 2.0 docking model (**Fig. 3i,j**) was predicted to have ΔG
159 and K_d values of -14.9 kcal mol⁻¹ and 1.20×10^{-11} M, respectively. In comparison, the best
160 ranked vNblA-PC model had a ΔG of -16.3 kcal mol⁻¹ and a K_d of 1.10×10^{-12} M, almost an
161 order of magnitude lower than the hNblA-PC model. It is worth noting that in most complexes
162 the viral and cellular NblAs were in similar positions as they were in the best ranked models
163 (**Fig. S1**), showing consistency in the docking predictions. Most hNblA models (23/30) were
164 bound superficially (compared to vNblA) to PC, with a smaller region inside the PC groove. In
165 contrast, virtually all vNblA models were bound deep inside the PC groove (29/30). The main

166 structural difference between the two NblA models, namely, the additional vNblA α -helix, may
167 contribute, at least in part, to binding vNblA deeper into the PC groove.

168

169 **4. Discussion**

170 The sequencing of the Ma-LMM01 genome (Yoshida et al., 2008) and more recently its *M.*
171 *aeruginosa* NIES-298 host (Yamaguchi et al., 2018), along with the development of highly
172 accurate structure prediction (Jumper et al., 2021) and other robust structural bioinformatics tools
173 (Kozakov et al., 2017; Xue et al., 2016) provide a unique opportunity to model the NblA and PC
174 structures of this cyanophage-host system and compare their predicted binding affinities. First, a
175 qualitative analysis of the viral and host NblA models readily highlights an additional α -helix
176 present in the viral structural model (section 3.1; **Fig. 1**). Phylogenetic evidence suggests that
177 Ma-LMM01 *nblA* was horizontally acquired from a *Microcystis* host (Ou et al., 2015). Structure
178 conservation analyses, including a significant DALI pairwise structure comparison between
179 vNblA and hNblA (section 3.2; **Fig. 2**), support virus-host structural homology as well. Hence,
180 either the viral *nblA* expanded (insertions) or the host *nblA* shortened (deletions) after the HGT
181 took place. Multiple sequence alignments show that, unlike Ma-LMM01 NblA, cellular NblA
182 amino acid sequences have a similar length (Ou et al., 2015; Yoshida et al., 2008). This arguably
183 renders the expansion of Ma-LMM01 *nblA* more parsimonious compared to the reduction of
184 different cellular *nblA* genes. It follows then that not only has the *nblA* gene become fixed in the
185 Ma-LMM01 population, but it has also expanded throughout evolutionary timescales; the
186 additional vNblA α -helix constitutes a viral evolutionary innovation. Here it may be possible to
187 retrospectively appreciate two steps of the origin of evolutionary novelties (Blount et al., 2012):

188 actualization, represented by the *nblA* HGT event itself; and refinement, represented by the
189 expansion of the viral *nblA* gene.

190 An increase in genome size (the acquisition of the cellular *nblA* gene by the virus and, to a
191 lesser extent, its expansion) must constitute a selective advantage strong enough to counter the
192 possible trade-off associated with the greater amount of time and resources required to replicate
193 the viral genome (DiMaio, 2012; Edwards et al., 2021; Mills et al., 1967). We propose that such
194 an advantage is the increased binding affinity that the viral NblA is predicted to have for PC
195 compared to the host's NblA (see section 3.3). The quantitative analyses conducted on the
196 vNblA-PC and hNblA-PC predicted complexes indicate a significantly lower ΔG and K_d for the
197 vNblA-PC complex, which translate into a higher binding affinity. Not surprisingly, the number
198 of intermolecular contacts was also predicted to be greater in vNblA-PC compared to the hNblA-
199 PC complex in most contact property categories. The exact binding mechanism of NblA in
200 phycobilisomes has not been resolved yet. However, various studies have provided insights into
201 the mode of action of NblA (Baier et al., 2004; Bienert et al., 2006; Dines et al., 2008; Hu et al.,
202 2020; Karradt et al., 2008; Levi et al., 2018; Luque et al., 2003; Nguyen et al., 2017; Sendersky
203 et al., 2015; Sendersky et al., 2014). For example, Bienert et al. (2006) determined the crystal
204 structure of NblA from *Anabaena* sp. PCC 7120, and using pull-down assays, found that NblA
205 bound the α -subunits of phycocyanin and phycoerythrocyanin; while Nguyen et al. (2017)
206 detected a protein interaction between *S. elongatus* UTEX 2973 NblA and β -phycocyanin. Dines
207 et al. (2008) determined the NblA structures of *S. elongatus* PCC 7942 and
208 *Thermosynechococcus vulcanus*, and using random mutagenesis, found that amino acids
209 essential for the interaction with phycobilisome proteins were located across the two NblA
210 helices. The hNblA-PC docking models from the present study are consistent with those reported

211 by Nguyen et al. (2017), where *S. elongatus* PCC 7942 NblA and PC X-ray structures docked
212 similarly to *M. aeruginosa* NIES-298 NblA and PC structural models. In contrast, the vNblA-PC
213 docking models differ drastically from both hNblA-PC and those reported previously for *S.*
214 *elongatus* (Nguyen et al., 2017). In particular, the vNblA model was predicted to bind deeper into
215 the PC groove. The additional α -helix, which appears to be the main structural difference
216 between vNblA and the cellular NblAs, may be partly responsible for this.

217 Beyond the specific binding site of the viral NblA protein, a higher binding affinity for PC
218 would be expected to increase the disassembling rate of the host phycobilisomes. This could be
219 essential for the virus if the performance of the host protein is not enough during infection. In
220 fact, the viral *nblA* is highly transcribed in the Ma-LMM01/*M. aeruginosa* NIES-298 virocell
221 (Honda et al., 2014; Morimoto et al., 2018; Yoshida-Takashima et al., 2012). The infection cycle
222 of Ma-LMM01 is rapid; the latent period is estimated to take between six to twelve hours
223 (Yoshida et al., 2006). As previously described, phycobilisomes are the light harvesting
224 complexes of cyanobacteria, and can comprise up to half of the cellular soluble protein content
225 (Baier et al., 2004; Bienert et al., 2006; Grossman et al., 1993). A higher phycobilisome
226 degradation rate in the Ma-LMM01/*M. aeruginosa* NIES-298 virocell could lead to a larger burst
227 size after a steeper increase in the intracellular nitrogen pool (Morimoto et al., 2020; Morimoto
228 et al., 2018; Yoshida et al., 2008). A faster degradation of phycobilisomes would also imply a
229 more efficient protection for the virocell from high light intensities to which *M. aeruginosa*
230 NIES-298 is highly susceptible (Morimoto et al., 2020; Morimoto et al., 2018; Yoshida et al.,
231 2008).

232 Based on the significantly lower ΔG and K_d of the vNblA-PC docking models, we conclude
233 that vNblA is predicted to have a higher binding affinity for PC compared to hNblA. The

234 potential implications of this are in line with the biology of Ma-LMM01. However, rather than
235 aiming to provide a definitive answer regarding the mode of action of the vNblA protein, these
236 structural models invite further investigation through experimental approaches, including
237 structure determination efforts. They also highlight the statistics-based hypothesis generating
238 potential of the structural bioinformatics pipeline implemented here, particularly for comparative
239 interactomics in the fields of evolutionary virology and viral ecology.

240

241 **Acknowledgements**

242 This study would not have been possible without the continuous support of Dr. Medardo Meza
243 Olea and Dr. Esther Padilla Calderón.

244

245 **Funding**

246 This work was funded by Natural Sciences and Engineering Research Council of Canada
247 (NSERC) Discovery Grants (2022-03350 and 2022-00329), and a Phycological Society of
248 America Norma J. Lang Early Career Researcher Fellowship awarded to Jozef I. Nissimov; and
249 partially enabled by a Mitacs Globalink Graduate Fellowship, and a University of Waterloo
250 International Master's Award of Excellence awarded to Isaac Meza-Padilla.

251

252 **Data availability**

253 The binding affinity prediction data is available in Supplementary Material (**Tables S1, S2**). The
254 structural models can be generated following the structural bioinformatics pipeline described in

255 section 2.1. Alternatively, the models can be provided upon reasonable request to the
256 corresponding author.

257

258 **Author contributions**

259 Meza-Padilla conceived the idea, carried out the structural bioinformatics pipeline, conducted
260 and reported the statistical analyses, analyzed the data, and wrote the manuscript. McConkey
261 provided additional insights on structural modeling and molecular docking. Nissimov
262 administered the project, provided resources and funding, and supervised the work. All authors
263 contributed to the refinement (review and editing) of the final manuscript prior to its submission
264 and publication.

265

266 **References**

267 Baier, K., Lehmann, H., Stephan, D. P., & Lockau, W. (2004). NblA is essential for
268 phycobilisome degradation in *Anabaena* sp. strain PCC 7120 but not for development of
269 functional heterocysts. *Microbiology*, 150(8), 2739-2749.
270 <https://doi.org/10.1099/mic.0.27153-0>.

271 Barber, J. (2013). Photosystem II: Redox and protein components. In W. J. Lennarz, & M. D.
272 Lane (Eds.), *Encyclopedia of Biological Chemistry II*. Elsevier. <https://doi.org/10.1016/B978-0-12-378630-2.00381-9>.

274 Bienert, R., Baier, K., Volkmer, R., Lockau, W., & Heinemann, U. (2006). Crystal structure of
275 NblA from *Anabaena* sp. PCC 7120, a small protein playing a key role in phycobilisome

276 degradation. *Journal of Biological Chemistry*, 281(8), 5216-5223.

277 <https://doi.org/10.1074/jbc.M507243200>.

278 Blount, Z. D., Barrick, J. E., Davidson, C. J., & Lenski, R. E. (2012). Genomic analysis of a key
279 innovation in an experimental *Escherichia coli* population. *Nature*, 489(7417), 513-518.
280 <https://doi.org/10.1038/nature11514>.

281 Buchan, D. W., & Jones, D. T. (2019). The PSIPRED protein analysis workbench: 20 years
282 on. *Nucleic Acids Research*, 47(W1), W402-W407. <https://doi.org/10.1093/nar/gkz297>.

283 Collier, J. L., & Grossman, A. (1994). A small polypeptide triggers complete degradation of
284 light-harvesting phycobiliproteins in nutrient-deprived cyanobacteria. *The EMBO
285 Journal*, 13(5), 1039-1047. <https://doi.org/10.1002/j.1460-2075.1994.tb06352.x>.

286 Davis, B. M., & Waldor, M. K. (2003). Filamentous phages linked to virulence of *Vibrio
287 cholerae*. *Current Opinion in Microbiology*, 6(1), 35-42. [5274\(02\)00005-X](https://doi.org/10.1016/S1369-
288 5274(02)00005-X).

289 DeLong, J. P., Van Etten, J. L., & Dunigan, D. D. (2023). Lessons from chloroviruses: the
290 complex and diverse roles of viruses in food webs. *Journal of Virology*, 97(5), e00275-23.
291 <https://doi.org/10.1128/jvi.00275-23>.

292 DiMaio, D. (2012). Viruses, masters at downsizing. *Cell Host & Microbe*, 11(6), 560-561.
293 <https://doi.org/10.1016/j.chom.2012.05.004>.

294 Dines, M., Sendersky, E., David, L., Schwarz, R., & Adir, N. (2008). Structural, functional, and
295 mutational analysis of the NblA protein provides insight into possible modes of interaction

296 with the phycobilisome. *Journal of Biological Chemistry*, 283(44), 30330-30340.

297 <https://doi.org/10.1074/jbc.M804241200>.

298 Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and
299 space complexity. *BMC Bioinformatics*, 5, 1-19. <https://doi.org/10.1186/1471-2105-5-113>.

300 Edwards, K. F., Steward, G. F., & Schvarcz, C. R. (2021). Making sense of virus size and the
301 tradeoffs shaping viral fitness. *Ecology Letters*, 24(2), 363-373.
302 <https://doi.org/10.1111/ele.13630>.

303 Forterre, P., & Prangishvili, D. (2009). The great billion-year war between ribosome-and capsid-
304 encoding organisms (cells and viruses) as the major source of evolutionary novelties. *Annals
305 of the New York Academy of Sciences*, 1178(1), 65-77. [https://doi.org/10.1111/j.1749-6632.2009.04993.x](https://doi.org/10.1111/j.1749-
306 6632.2009.04993.x).

307 Fuhrman J. A. (1999). Marine viruses and their biogeochemical and ecological effects. *Nature*,
308 399(6736), 541–548. <https://doi.org/10.1038/21119>.

309 Gao, E. B., Gui, J. F., & Zhang, Q. Y. (2012). A novel cyanophage with a cyanobacterial
310 nonbleaching protein A gene in the genome. *Journal of Virology*, 86(1), 236-245.
311 <https://doi.org/10.1128/jvi.06282-11>.

312 Gross, E. L. (2013). Plastocyanin. In W. J. Lennarz, & M. D. Lane (Eds.), *Encyclopedia of
313 Biological Chemistry II*. Elsevier. <https://doi.org/10.1016/B978-0-12-378630-2.00137-7>.

314 Grossman, A. R., Schaefer, M. R., Chiang, G. G., & Collier, J. (1993). The phycobilisome, a
315 light-harvesting complex responsive to environmental conditions. *Microbiological
316 Reviews*, 57(3), 725-749. <https://doi.org/10.1128/mr.57.3.725-749.1993>.

317 Hanke, G. U. Y., & Mulo, P. (2013). Plant type ferredoxins and ferredoxin-dependent
318 metabolism. *Plant, Cell & Environment*, 36(6), 1071-1084. <https://doi.org/10.1111/pce.12046>.

319 Holm, L., Laiho, A., Törönen, P., & Salgado, M. (2023). DALI shines a light on remote
320 homologs: One hundred discoveries. *Protein Science*, 32(1), e4519.
321 <https://doi.org/10.1002/pro.4519>.

322 Holm, L., & Sander, C. (1995). Dali: a network tool for protein structure comparison. *Trends in
323 Biochemical Sciences*, 20(11), 478-480. [https://doi.org/10.1016/S0968-0004\(00\)89105-7](https://doi.org/10.1016/S0968-0004(00)89105-7).

324 Honda, T., Takahashi, H., Sako, Y., & Yoshida, T. (2014). Gene expression of *Microcystis
325 aeruginosa* during infection of cyanomyovirus Ma-LMM01. *Fisheries Science*, 80, 83-91.

326 Hu, P. P., Hou, J. Y., Xu, Y. L., Niu, N. N., Zhao, C., Lu, L., Zhou, M., Scheer, H., & Zhao, K. H.
327 (2020). The role of lyases, NblA and NblB proteins and bilin chromophore transfer in
328 restructuring the cyanobacterial light-harvesting complex. *The Plant Journal*, 102(3), 529-
329 540. <https://doi.org/10.1111/tpj.14647>.

330 Irwin, N. A., Pittis, A. A., Richards, T. A., & Keeling, P. J. (2022). Systematic evaluation of
331 horizontal gene transfer between eukaryotes and viruses. *Nature Microbiology*, 7(2), 327-336.
332 <https://doi.org/10.1038/s41564-021-01026-3>.

333 Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool
334 K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, A. A. S., Ballard, A.
335 J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S.,
336 Reiman, D., Clancy, E., Zielinski M., Steinegger, M., Pacholska, M., Berghammer, T.,
337 Bodenstein, S., Silver, D., Vinyals, O., Senior, A. W., Kavukcuoglu, K., Kohli, P., & Hassabis,

338 D. (2021). Highly accurate protein structure prediction with AlphaFold. *Nature*, 596(7873),
339 583-589. <https://doi.org/10.1038/s41586-021-03819-2>.

340 Karradt, A., Sobanski, J., Mattow, J., Lockau, W., & Baier, K. (2008). NblA, a key protein of
341 phycobilisome degradation, interacts with ClpC, a HSP100 chaperone partner of a
342 cyanobacterial Clp protease. *Journal of Biological Chemistry*, 283(47), 32394-32403.
343 <https://doi.org/10.1074/jbc.M805823200>.

344 Konert, M. M., Wysocka, A., Koník, P., & Sobotka, R. (2022). High-light-inducible proteins
345 HliA and HliB: pigment binding and protein–protein interactions. *Photosynthesis
346 Research*, 152(3), 317-332. <https://doi.org/10.1007/s11120-022-00904-z>.

347 Koonin, E. V., Dolja, V. V., & Krupovic, M. (2022). The logic of virus evolution. *Cell Host &
348 Microbe*, 30(7), 917-929. <https://doi.org/10.1016/j.chom.2022.06.008>.

349 Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S.
350 (2017). The ClusPro web server for protein–protein docking. *Nature Protocols*, 12(2), 255-
351 278. <https://doi.org/10.1038/nprot.2016.169>.

352 Krupovic, M., Makarova, K. S., & Koonin, E. V. (2022). Cellular homologs of the double jelly-
353 roll major capsid proteins clarify the origins of an ancient virus kingdom. *Proceedings of the
354 National Academy of Sciences*, 119(5), e2120620119.
355 <https://doi.org/10.1073/pnas.2120620119>.

356 Levi, M., Sendersky, E., & Schwarz, R. (2018). Decomposition of cyanobacterial light
357 harvesting complexes: NblA-dependent role of the bilin lyase homolog NblB. *The Plant
358 Journal*, 94(5), 813-821. <https://doi.org/10.1111/tpj.13896>.

359 Lindell, D., Sullivan, M. B., Johnson, Z. I., Tolonen, A. C., Rohwer, F., & Chisholm, S. W.
360 (2004). Transfer of photosynthesis genes to and from *Prochlorococcus* viruses. *Proceedings of*
361 *the National Academy of Sciences*, 101(30), 11013-11018.
362 <https://doi.org/10.1073/pnas.0401526101>.

363 Luque, I., Ochoa de Alda, J. A., Richaud, C., Zabulon, G., Thomas, J. C., & Houmard, J. (2003).
364 The NblAI protein from the filamentous cyanobacterium *Tolyphothrix* PCC 7601: regulation of
365 its expression and interactions with phycobilisome components. *Molecular*
366 *Microbiology*, 50(3), 1043-1054. <https://doi.org/10.1046/j.1365-2958.2003.03768.x>.

367 Madeira, F., Pearce, M., Tivey, A. R., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N.,
368 Kolesnikov, A., & Lopez, R. (2022). Search and sequence analysis tools services from
369 EMBL-EBI in 2022. *Nucleic Acids Research*, 50(W1), W276-W279.
370 <https://doi.org/10.1093/nar/gkac240>.

371 Meng, E. C., Goddard, T. D., Pettersen, E. F., Couch, G. S., Pearson, Z. J., Morris, J. H., &
372 Ferrin, T. E. (2023a). UCSF ChimeraX: Tools for structure building and analysis. *Protein*
373 *Science*, 32(11), e4792. <https://doi.org/10.1002/pro.4792>.

374 Meng, L. H., Ke, F., Zhang, Q. Y., & Zhao, Z. (2023b). Biological and genomic characteristics of
375 MaMV-DH01, a novel freshwater *Myoviridae* cyanophage strain. *Microbiology*
376 *Spectrum*, 11(1), e02888-22. <https://doi.org/10.1128/spectrum.02888-22>.

377 Mills, D. R., Peterson, R. L., & Spiegelman, S. (1967). An extracellular Darwinian experiment
378 with a self-duplicating nucleic acid molecule. *Proceedings of the National Academy of*
379 *Sciences*, 58(1), 217-224. <https://doi.org/10.1073/pnas.58.1.217>.

380 Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022).
381 ColabFold: making protein folding accessible to all. *Nature Methods*, 19(6), 679-682.
382 <https://doi.org/10.1038/s41592-022-01488-1>.

383 Morimoto, D., Kimura, S., Sako, Y., & Yoshida, T. (2018). Transcriptome analysis of a bloom-
384 forming cyanobacterium *Microcystis aeruginosa* during Ma-LMM01 phage
385 infection. *Frontiers in Microbiology*, 9, 317806. <https://doi.org/10.3389/fmicb.2018.00002>.

386 Morimoto, D., Šulčius, S., & Yoshida, T. (2020). Viruses of freshwater bloom-forming
387 cyanobacteria: genomic features, infection strategies and coexistence with the
388 host. *Environmental Microbiology Reports*, 12(5), 486-502. <https://doi.org/10.1111/1758-2229.12872o>.

390 Nadel, O., Rozenberg, A., Flores-Uribe, J., Larom, S., Schwarz, R., & Béjà, O. (2019). An
391 uncultured marine cyanophage encodes an active phycobilisome proteolysis adaptor protein
392 NblA. *Environmental Microbiology Reports*, 11(6), 848-854. <https://doi.org/10.1111/1758-2229.12798>.

394 Nguyen, A. Y., Bricker, W. P., Zhang, H., Weisz, D. A., Gross, M. L., & Pakrasi, H. B. (2017).
395 The proteolysis adaptor, NblA, binds to the N-terminus of β-phycocyanin: Implications for the
396 mechanism of phycobilisome degradation. *Photosynthesis Research*, 132, 95-106.
397 <https://doi.org/10.1007/s11120-016-0334-y>.

398 Ou, T., Gao, X. C., Li, S. H., & Zhang, Q. Y. (2015). Genome analysis and gene *nblA*
399 identification of *Microcystis aeruginosa* myovirus (MaMV-DC) reveal the evidence for
400 horizontal gene transfer events between cyanomyovirus and host. *Journal of General
Virology*, 96(12), 3681-3697. <https://doi.org/10.1099/jgv.0.000290>.

402 Pei, J., & Grishin, N. V. (2001). AL2CO: calculation of positional conservation in a protein
403 sequence alignment. *Bioinformatics*, 17(8), 700-712.
404 <https://doi.org/10.1093/bioinformatics/17.8.700>.

405 R Core Team. (2023). R: A Language and Environment for Statistical Computing. R Foundation
406 for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>.

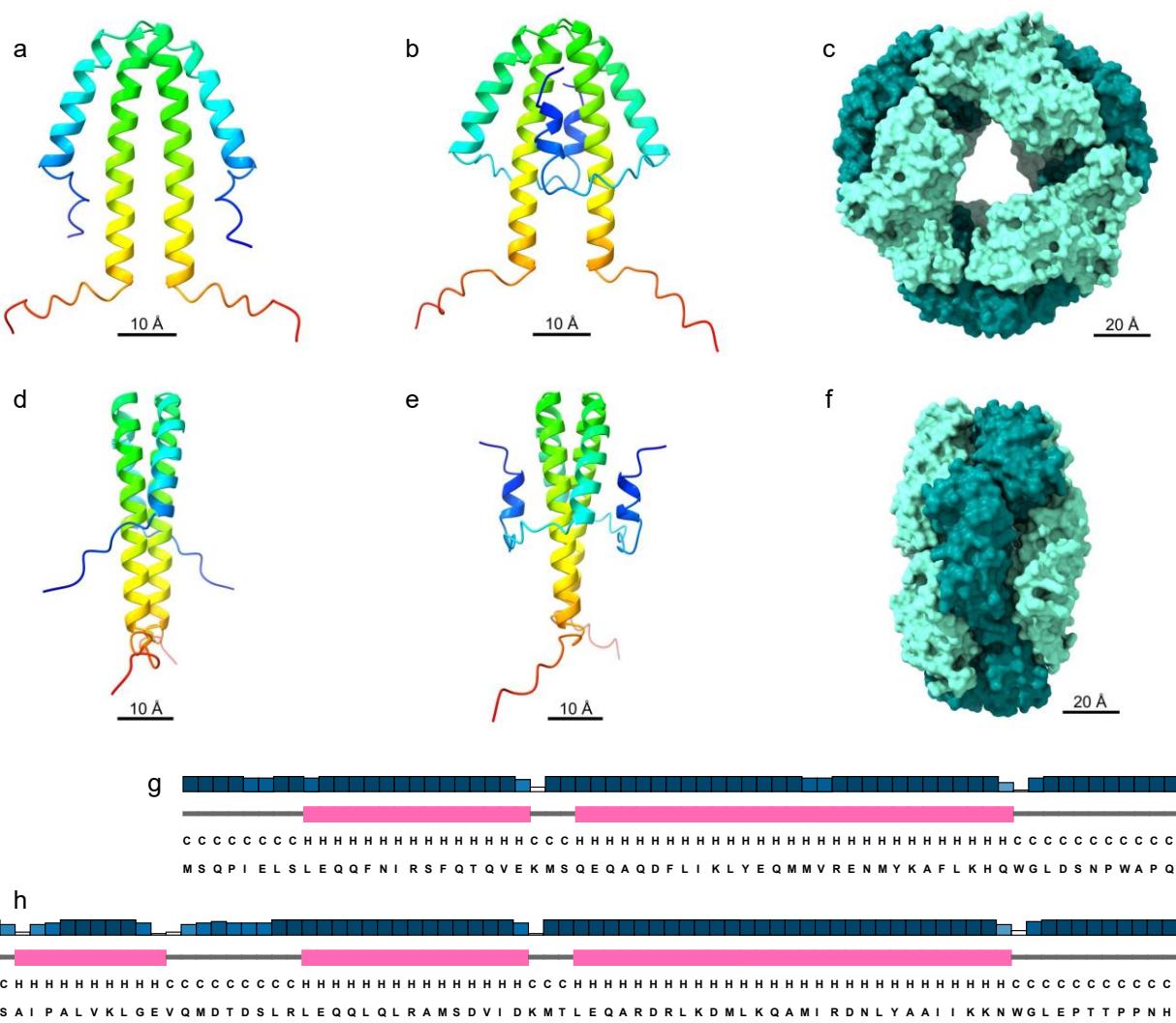
407 Rohwer, F., & Thurber, R. V. (2009). Viruses manipulate the marine
408 environment. *Nature*, 459(7244), 207-212. <https://doi.org/10.1038/nature08060>.

409 Sayers, E. W., Beck, J., Bolton, E. E., Bourexis, D., Brister, J. R., Canese, K., Chan, J., Comeau,
410 D. C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej T., Marchler-Bauer, A., Lanczycki, C.,
411 Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., Tse, T., Wang,
412 J., Williams, R., Trawick, B., W., Pruitt, K., D., & Sherry, S. T. (2022). Database resources of
413 the national center for biotechnology information. *Nucleic Acids Research*, 50(D1), D20-D26.
414 <https://doi.org/10.1093/nar/gkab1112>.

415 Sendersky, E., Kozer, N., Levi, M., Garini, Y., Shav-Tal, Y., & Schwarz, R. (2014). The
416 proteolysis adaptor, NblA, initiates protein pigment degradation by interacting with the
417 cyanobacterial light-harvesting complexes. *The Plant Journal*, 79(1), 118-126.
418 <https://doi.org/10.1111/tpj.12543>.

419 Sendersky, E., Kozer, N., Levi, M., Moizik, M., Garini, Y., Shav-Tal, Y., & Schwarz, R. (2015).
420 The proteolysis adaptor, NblA, is essential for degradation of the core pigment of the
421 cyanobacterial light-harvesting complex. *The Plant Journal*, 83(5), 845-852.
422 <https://doi.org/10.1111/tpj.12931>.

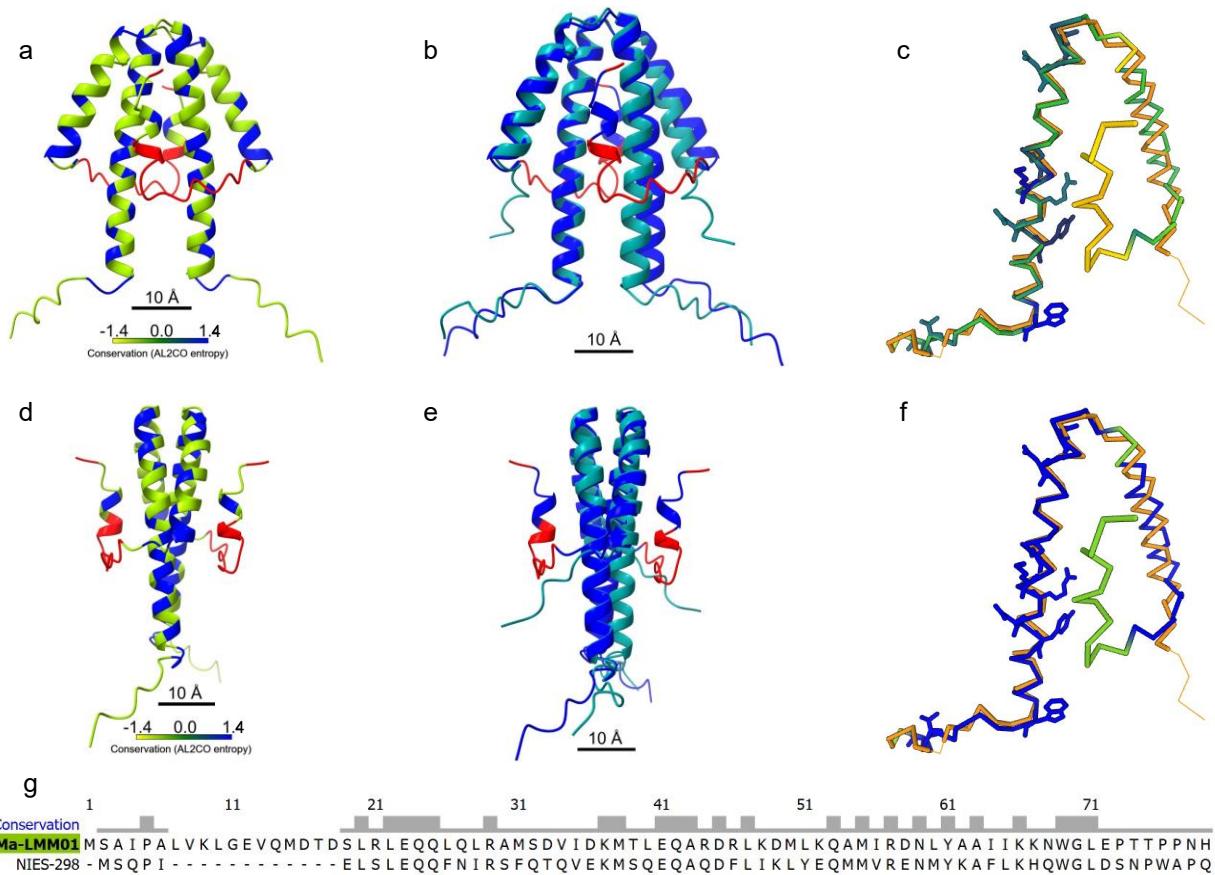
423 Waldor, M. K., & Mekalanos, J. J. (1996). Lysogenic conversion by a filamentous phage
424 encoding cholera toxin. *Science*, 272(5270), 1910-1914.
425 <https://doi.org/10.1126/science.272.5270.1910>.


426 Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: a
427 web server for predicting the binding affinity of protein–protein complexes. *Bioinformatics*,
428 32(23), 3676-3678. <https://doi.org/10.1093/bioinformatics/btw514>.

429 Yamaguchi, H., Suzuki, S., & Kawachi, M. (2018). Improved draft genome sequence of
430 *Microcystis aeruginosa* NIES-298, a microcystin-producing cyanobacterium from Lake
431 Kasumigaura, Japan. *Genome Announcements*, 6(5), 10-1128.
432 <https://doi.org/10.1128/genomea.01551-17>.

433 Yoshida, T., Nagasaki, K., Takashima, Y., Shirai, Y., Tomaru, Y., Takao, Y., Sakamoto, S.,
434 Hiroishi, S., & Ogata, H. (2008). Ma-LMM01 infecting toxic *Microcystis aeruginosa*
435 illuminates diverse cyanophage genome strategies. *Journal of Bacteriology*, 190(5), 1762-
436 1772. <https://doi.org/10.1128/jb.01534-07>.

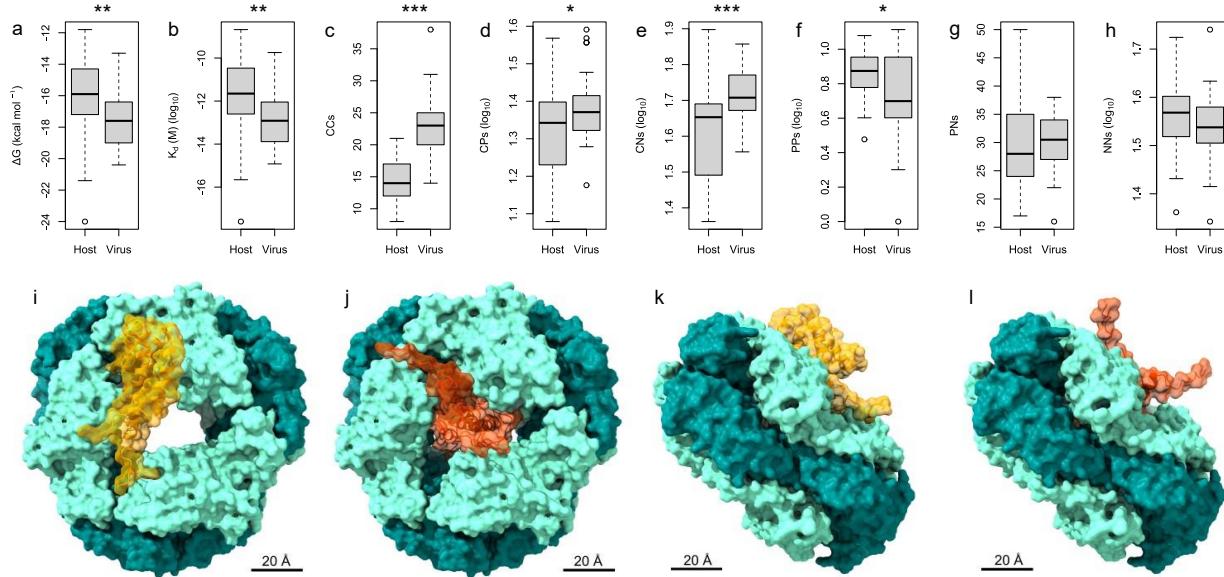
437 Yoshida-Takashima, Y., Yoshida, M., Ogata, H., Nagasaki, K., Hiroishi, S., & Yoshida, T. (2012).
438 Cyanophage infection in the bloom-forming cyanobacteria *Microcystis aeruginosa* in surface
439 freshwater. *Microbes and Environments*, 27(4), 350-355.
440 <https://doi.org/10.1264/jsme2.ME12037>.


441 Yoshida, T., Takashima, Y., Tomaru, Y., Shirai, Y., Takao, Y., Hiroishi, S., & Nagasaki, K. (2006).
442 Isolation and characterization of a cyanophage infecting the toxic cyanobacterium *Microcystis*
443 *aeruginosa*. *Applied and Environmental Microbiology*, 72(2), 1239-1247.
444 <https://doi.org/10.1128/AEM.72.2.1239-1247.2006>.

454 a low prediction confidence, and tall blue bars a high prediction confidence. Note the additional

455 α -helix near the N-terminus of the vNblA secondary and tertiary structural models.

456



457

458 **Fig. 2.** Structure and sequence conservation of the Ma-LMM01/*Microcystis aeruginosa* NIES-
459 298 cyanophage-host system non-bleaching A (NblA) structural models. (a) Front and (d) side
460 views of Ma-LMM01 NblA (vNblA) colored by sequence conservation according to the (g) Ma-
461 LMM01/*M. aeruginosa* NIES-298 NblA sequence alignment. The AL2CO entropy-based amino
462 acid sequence conservation measure between the two proteins is shown using a yellow-green-
463 blue gradient, where yellow and blue represent the least and most conserved residues,
464 respectively. Residues without conservation values, i.e., residues absent in *M. aeruginosa* NIES-
465 298 NblA (hNblA) are shown in red. (b) Front and (e) side views of the vNblA and hNblA
466 superimposed models via the UCSF ChimeraX Matchmaker algorithm. hNblA is shown in dark
467 cyan, while vNblA in blue. As above, the amino acids unique to vNblA are shown in red. Single-
468 chain superimpositions resulting from a DALI pairwise structure comparison with a significant

469 Z-score = 4.4 are displayed in (c) and (f) using a yellow-green-blue scheme mapped onto the C- α
470 trace of the vNblA model, yellow representing the lowest conservation values and blue the
471 highest. In (c) and (f), the relative entropy (0-6.3 bits) was used as the conservation measure. The
472 side chains with a sequence conservation above 4.15 bits are displayed. In (c), vNblA is colored
473 by amino acid sequence conservation; in (f), by structure conservation. hNblA is colored in
474 orange. (g) Ma-LMM01/*M. aeruginosa* NIES-298 NblAs sequence alignment, where the short
475 and tall bars above the residues indicate low and high sequence conservation values,
476 respectively.

477

478

479 **Fig. 3.** Protein-protein docking and binding affinity prediction between Ma-LMM01 non-
480 bleaching A dimer (vNblA) and *Microcystis aeruginosa* NIES-298 phycocyanin ($\alpha\beta$)₆ hexamer
481 (PC) structural models compared to *M. aeruginosa* NIES-298 NblA dimer (hNblA) and PC
482 models. (a) ΔG (kcal mol⁻¹) and (b) K_d (M) of hNblA-PC (host) and vNblA-PC (virus) predicted
483 complexes. (c) Number of host and virus charged-charged (CC), (d) charged-polar (CP), (e)
484 charged-nonpolar (CN), (f) polar-polar (PP), (g) polar-nonpolar (PN), and (h) nonpolar-nonpolar
485 (NN) intermolecular contacts at the interface within a threshold distance of 5.5 Å. See text for
486 statistical values. (i) Front and (k) side views of the best ranked ClusPro 2.0 hNblA-PC docking
487 model. (j) Front and (l) side views of the best ranked vNblA-PC model. hNblA is colored in
488 orange, while vNblA in orange red; PC α - and β -subunits are colored in dark cyan and
489 aquamarine, respectively. Note how vNblA is predicted to bind deeper into the PC groove
490 compared to hNblA. See text for binding affinities of the displayed docking models.