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Abstract

Since the introduction of the first immune checkpoint inhibitor (ICI), immunotherapy has changed
the landscape of molecular therapeutics for cancers. However, ICIs do not work equally well on
all cancers and for all patients. There has been a growing interest in using mathematical and
computational models to optimize clinical responses. Ordinary differential equations (ODEs) have
been widely used for mechanistic modeling in immuno-oncology and immunotherapy because they
allow rapid simulations of temporal changes in the cellular and molecular populations involved.
Nonetheless, ODEs cannot describe the spatial structure in the tumor microenvironment or quan-
tify the influence of spatially-dependent characteristics of tumor-immune dynamics. For these
reasons, agent-based models (ABMs) have gained popularity because they can model more detailed
phenotypic and spatial heterogeneity that better reflect the complexity seen in vivo. In the con-
text of anti-PD-1 ICIs, we compare treatment outcomes simulated from an ODE model and an
ABM to show the importance of including spatial components in computational models of cancer
immunotherapy. We consider tumor cells of high and low antigenicity and two distinct cytotoxic T
lymphocyte (CTL) killing mechanisms. The preferred mechanism differs based on the antigenicity
of tumor cells. Our ABM reveals varied phenotypic shifts within the tumor and spatial organization
of tumor and CTLs, despite similarities in key immune parameters, initial conditions of simulation,
and early temporal trajectories of the cell populations.

1 Introduction

The versatility of mathematical and computational models has made them an increasingly crucial
tool in biomedical research. Models create abstract and simplified representations of real-world
phenomena, allowing researchers to gain deeper insights into inherently complex biological pro-
cesses. These biologically driven and carefully calibrated models extend beyond purely theoretical
pursuits. They can shed light on important underlying mechanisms, predict emergent patterns
[11], test therapeutic strategies[d], and even inform the design of clinical trials [39, §]. Immune
checkpoint inhibitors (ICIs) are a class of immunotherapeutics that reinvigorate the killing ac-
tivities of immune cells by blocking the activation of inhibitory immunoreceptors [10]. Immune
checkpoint blockade therapy has shown remarkable results for many patients. However, the low
overall response rates of ICI monotherapy and the difficulty to enhance patients’ responses with
combination therapy in many cancers present an ongoing challenge to clinicians [I7, [33]. Adding
further complexity to the antitumor immune responses is the fact that cytotoxic T lymphocytes
(CTLs) execute their cell-killing function via at least two distinct mechanisms [6 16]. The first
process is mediated by perforin and granzymes. Perforin facilitates the formation of pores in the
target cell membrane, which allows granzymes to access the target cell cytoplasm to induce apop-
tosis [IL 16, B7]. The second process is through the Fas pathway. FasL, a type II transmembrane
protein upregulated on CTLs, can engage Fas on the target cell to trigger apoptosis of the target
cell 9, [6]. Evidence showed that the perforin/granzyme-mediated process happens faster than
the FasL-mediated process [6]. In an in vitro study, perforin-mediated killing completed within
thirty minutes, whereas FasL-based killing was detected no sooner than two hours after the tumor
cell conjugated with CTL. [9]. Evidence also showed that the switch from fast to slow killing is
related to decreasing presence of antigens [19]. Although the connections between distinct CTL
killing mechanisms are not fully understood, we find it important to consider the immune system’s
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varied responses towards tumor cells with different antigenicity and to integrate them into our
computational models.

To explain the wide variations of patient responses, quantify the influence of spatial complexity
in the tumor microenviroment (TME) , and predict which patients are most likely to respond
well to ICIs, we build mathematical and computational models for the ICIs targeting the PD-
1/PD-L1 immune checkpoint. Ordinary differential equations (ODEs) and agent-based models are
two popular modeling approaches for cancer treatments. An ODE model describes the temporal
evolution of populations of cells or molecules through a set of coupled mathematical equations. An
ABM simulates how individual entities such as cells and molecules move and interact with each other
and with the environment. There have been many ODE-based models in the field of mathematical
oncology, including but not limited to works on general tumor-immune dynamics [14], oncolytic
virus therapy [13] and anti-PD-1 immune checkpoint inhibitors [24]. Similarly, ABMs have been
developed to model the TME and cancer immune response [25]. We previously developed the first
ODE model building on the works of [14] and [24], and subsequently the first ABM for anti-PD-1
immune checkpoint blockade therapy with consideration of tumor cells of different antigenicity and
the two aforementioned CTL killing mechanisms [36, 2], although the ABM in [2] also includes the
anti-FGFR3 small molecule inhibitors. The ABM in this paper is adapted from [2] to focus on the
activity of the PD-1/PD-L1 immune checkpoint and the two CTL killing mechanisms like in the
ODE model.

The ABM is undoubtedly more complex than the ODE, capturing the phenotypical hetero-
geneity of the three-dimensional tumor in space, as well as the spatial activities of CTLs in the
TME. Our previous work analyzed the ODE model in detail to identify important characteristics of
the tumor-immune landscape that have the largest impact on the outcomes of immune checkpoint
blockade. Therefore, this paper centers on examining what aspects of the tumor-immune dynamics
both the ODE and ABM can describe and what unique insights the ABM can offer due to the
integration of the spatial elements. By comparing and contrasting the ABM and the ODE model
and using the immune checkpoint inhibitors as an example, we will also discuss the balance between
model tractability, model complexity and computational efficiency when building models for cancer
immunotherapy.

2 Materials and Methods

Computational models

We compare two mathematical models to describe the tumor-immune dynamics with an active or
blocked PD1/PD-L1 immune checkpoint. The first formulation is an ODE model that tracks the
temporal changes in the number of tumor cells, CTLs, and concentration of PD-1 and PD-L1. The
details of this ODE model are previously published in [36]. The second formulation is a three-
dimensional, on-lattice ABM in which tumor cells and immune cells are modeled as autonomous
agents interacting with each other and the TME. Like in the ODE model, there are three types of
cells in the ABM: high-antigen (HA) tumor cells, low-antigen (LA) tumor cells, and CTLs. Cells in
the ABM occupy lattice sites. Tumor cells are immobile while CTLs are mobile. At each time step,
tumor cells can proliferate or undergo apoptosis. The proliferation of tumor cells slows down due
to contact inhibition [20], because tumor cells are immobile in this ABM. Here we only simulate the
virtual tumor until it escapes or metastasizes into nearby blood vessels. Hence, simulations stop
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when the tumor cells exceed a maximum number allowed or too many tumor cells have reached
the boundaries of the TME lattice. The model employs an immune stimulatory factor (ISF), a
construct representing the combined effect of factors that each tumor cell secretes into the local
neighborhood of the tumor microenvironment. The level of ISF expression depends on the cell’s
antigenicity. LA tumor cells secrete a fraction of ISF compared to HA tumor cells.

In the ABM, CTLs are recruited from the lattice boundaries at a constant rate, independent
of tumor size. At each time step, a CTL can execute one of the following actions: proliferation,
apoptosis or exhaustion, movement, or conjugation. The proliferation rate of CTLs depend on
both a base rate and the concentration of ISFs in the surrounding, and is also affected by contact
inhibition. CTL exhaustion occurs as a result of extended antigen exposure [I8, 5, 22]. CTL
apoptosis also arises naturally [22]. Since both dead and exhausted CTLs lose effector functions,
the apoptosis and exhaustion of CTLs are combined into a single event in the ABM. The direction
of CTL movement is influenced by the concentration gradient of ISF in the TME, i.e., CTLs are
more likely to move in the direction of higher ISF. Once CTLs conjugate with a tumor cell, they
attempt to destroy it via fast or slow killing. In our previous ABM [2], HA tumor cells are only
killed via the fast mechanism and the LA tumor cells are only killed via the slow mechanism. We
relax this restriction, adding the probability of fast killing for both HA and LA tumor cells, allowing
maximum modeling flexibility and also allowing us to assess the importance of considering the two
killing mechanisms in tumor-immune dynamics. The assumption in the baseline parameter set is
that CTLs kill HA preferentially via the fast mechanism and kill LA preferentially via the slow
mechanism. In both the ABM and the ODE model, an active PD-1/PD-L1 immune checkpoint
inhibits the recruitment and antigen-mediated proliferation rates of CTLs in the TME. In both
models, we categorize therapeutic outcomes into “elimination”, “dormancy” and “escape”, which
corresponds to the three phases of the immunoediting framework [27].

Description of experiments

For mouse experiments, 6-8 week old female RAG1 KO and C57BL/6J mice were obtained from The
Jackson Laboratory. Mice were housed in a specific pathogen-free animal facility at the University
of Chicago and used in accordance to the animal experimental guidelines set by the Institute of
Animal Care and Use Committee.

The MB49 cell line is a chemical carcinogen-induced urothelial carcinoma cell line derived from a
male C57BL/lcrf-a’ mouse. Cells were maintained at 37°C with 5% CO2 in DMEM supplemented
with 10% heat-inactivated FCS, penicillin and streptomycin. 1 x 10° MB49 tumor cells were
subcutaneously injected into the flank of RAG1 KO (n=27) or C57Bl/6J (n=24). Four types of
MB49 cells with different expression levels of the model antigen SIY (SIYRYYGL) were used: Zs
green (no SIY), L14 (low SIY), H1 (high SIY) and a mix of L14 and H1 cells with 1:1 ratio. Each
type of MB49 cells were injected to five to seven mice of each strain. Mice that died or had tumors
with more than 50% ulceration were excluded from the data used for model calibration. Tumors
were measured three dimensionally using a digital caliper on Day 7, 10, 12, 14, 17 and 19. Tumor
volume was calculated using L x W x H. All mice were sacrificed on Day 20 in accordance with
TACUC guidelines for humane endpoints. Tumors were harvested and digested in 10% FBS/RPMI.
Single cell suspensions were filtered through a 100 uM cell strainer and stained with antibodies
to PD-1, CD69, CD3, CD19, LAG3, Ki67, CD4, CD44, CD45, CD8a, SIY, CD62L, Foxp3, and
Live/Dead Viability Dye Zombie NIR. CTLs were analyzed using flow cytometry. The number of
CD8 cells is directly measured and the CTL density within the tumor, i.e. the number of CD8
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cells per mm? of tumor is calculated. All experimental animal procedures were approved by the
University of Chicago Animal Care and Use Committee (IACUC).

Estimation of model parameters and construction of virtual tumors

To convert tumor volume to number of tumor cells, we assume that 1 mm? of tumor is equivalent
to 109 tumor cells [7]. Given this conversion rate and the initial conditions of the experiments and
the ABM simulations, each ABM tumor cell represents 50,000 actual tumor cells. The proliferation
rate () and the contact inhibition parameter (Ogﬂmlzf ) of tumor cells in the ABM were calibrated
using the tumor volumes of RAG KO1 mice using the “SMoRe ParS” method developed by [12].
The calibrated parameters are shown in Table[I] In Figurd2JA, the blue line shows the mean volume
of 25 virtual tumors with calibrated «,, and Og}mlzf . The range of simulated tumor volumes at each
time point shows little variation, and the simulated trajectory closely matches the mean tumor
volume of RAG KO1 mice, as shown in orange.

Fixing the calibrated a;, and Og}mhf , we then varied ten other tumor-immune characteristics us-
ing Latin Hypercube Sampling in the range given in Table[2]to construct a virtual cohort comprising
12,000 simulated TMEs. Due to the stochastic nature of the ABM and computational limitations,
we cannot vary all ABM parameters We chose ten parameters that we believed would have the most
impact on therapeutic outcomes based on most sensitive parameters in the ODE model, which de-
scribes the same biological process, and our understanding of the spatial components of the ABM.
In Figure , the blue line shows the median, interquartile range, and 95% simulated interval of
tumor volumes up to Day 19. The orange lines show the mean and standard deviation of tumor
volume of C57BL/6J mice on days when measurements were taken. The simulated trajectories lie
reasonably close to the experimental data.

Based on the calculated density of CTLs within the tumor in C57BL/6.J mice at the endpoint of
Day 19, we estimated each ABM CTL represents 2175 actual CTL cells. This scale was calculated,
and the range of the CTL recruitment rate in the ABM was chosen so that the range of simulated
CTL densities on Day 19 in the virtual cohort matches the range observed experimentally, as
illustrated in Figure [2IC. The green and orange lines show the observed minimum and maximum
CTL density in C57BL/6J mice on Day 19. The grey dots show the endpoint CTL density of each
virtual mouse, and the blue line shows the median CTL density for each integer interval of CTL
recruitment rate (e.g., 2-3, 19-20, etc.).
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Figure 1: (A) Simulation pipeline: In vivo data of RAG KO1 and C57BL/6J mice calibrate key
parameters in the ODE mode and the ABM to simulate virtual tumors and virtual cohort and
predict therapeutic outcomes of anti-PD1 immune checkpoint inhibitors (ICIs). (B) Formulation of
the ODE model and the temporal trajectories of tumor volumes after immune checkpoint blockade
in “elimination” and “escape” cases. HA: high antigen, LA: low antigen. r: logistic growth of the
tumor; gy: fast killing of the tumor cells; gs: slow killing of the tumor cells; u: constant recruitment
of CTLs per day; hprouf: antigen-stimulated proliferation of CTLs; F: immune suppression by
the PD1-PD-L1 complex; d: death/exhaustion of CTLs. See [36] for exact formulation of the
ODE model. See S.Table 2 for descriptions of key ODE parameters shown in this figure. (C)
Simplified flowchart of the ABM and simulations of tumor elimination and tumor escape after
immune checkpoint blockade . At each time step, each tumor cell can either proliferate or undergo
apoptosis. Each CTL undergoes one of the four events: movement, conjugation with tumor cells
to attach via fast or slow killing, proliferation, apoptosis or exhaustion.
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Figure 2: The ABM is calibrated to closely reflect experimental data of mice with an active PD-
1/PD-L1 immune checkpoint. (A) Tumor volumes of immunocompromised RAG KO1 mice (in
orange) and virtual tumors in the absence of an immune system (in blue) from Day 0 to Day 19.
Error bar: standard deviation of RAG KO1 tumor volumes. Shaded blue region: 95% confidence
interval of the simulated mean. (B) Tumor volumes of immunocompetent C57B1/6J mice (in
orange) and a virtual cohort comprising 12000 simulated tumors with immune responses (in blue)
from Day 0 to Day 19. Error bar: standard deviation of CB57B1/6J tumor volumes. Shaded grey
region: 2.5 to 97.5 percentile of simulated tumor volumes on each day. Shaded blue region: 25 to
75 percentile of simulated tumor volumes on each day. (C) Grey circles: simulated endpoint CTL
densities in virtual tumors at different CTL recruitment rates (u). Blue line: median CTL density
of virtual tumors with p values in each integer bin. Orange and blue lines: maximum and minimum
CTL densities in experimental data of CB57B1/6J mice on Day 19.

3 Results

3.1 Immunotherapy Efficacy Widely Varies in Virtual Cohort with Indistin-
guishable Pretreatment Tumor Growth Patterns

To explore the best-case scenarios of checkpoint blockade therapy in the same virtual cohort as in
Figure for which pre-treatment growth patterns are similar, we simulated completely blocking
the PD-1 PD-L1 immune checkpoint in both the ODE model and the ABM. Figures and B
show the median, 95% and 50% simulated interval of tumor volume, with A corresponding to
the ODE simulations and B corresponding to the ABM simulations. Both ODE and ABM are
able to capture a wide range of treatment outcomes after immune checkpoint blockade, as shown
by similar 95% simulated interval (shaded grey) and 50% simulated interval (shaded light blue).
Tumor status after treatment ranges from elimination to escape by Day 19. This result contrasts
with the tight interval of simulated tumor growth in Figurd2B, for the same virtual cohort of mice
with an active immune checkpoint. This implies that tumors that grow similarly pre-treatment can
have drastically different therapeutic outcomes after immune checkpoint blockade therapy.

We notice stark differences in the median trajectories of the tumor volume in (A) and (B).
In the ODE model, the median tumor volume achieves a moderate size, which we characterize
as dormancy, by Day 19; whereas in the ABM, the median tumor volume is small enough to be
described as eliminated by Day 19. A closer look at tumor volumes on Day 19 reveals that most
tumors resolve into an elimination or escape steady state outcome much faster in the ABM than
in the ODE. Figures and D show the distribution of tumor volume on Day 19. Tumors in ODE
simulations range from 0 to 2000 mm?®, whereas tumors in the ABM simulations are either close to
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3

0 mm? or above 1000mm?, with no in-between cases. The lack of intermediate tumor sizes on Day

19 in the ABM suggests that a typical virtual tumor either gets eliminated or escapes by Day 19.
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Figure 3: ABM and ODE virtual cohort simulations show a wide range of efficacies for immune
checkpoint blockade therapy. (A) ABM simulations of virtual cohort response to ICI. (B) ODE
simulations of virtual cohort response to ICI. Blue line: simulated median. Shaded grey region: 2.5
to 97.5 percentile of simulated tumor volumes on each day. Shaded blue region: 25 to 75 percentile
of simulated tumor volumes on each day. (C) Histogram of ABM-simulated tumor volumes on Day
19. (D) Histogram of ODE-simulated tumor volumes on Day 19.

3.2 Initial phenotypic composition dictates composition and volume of tumor
after checkpoint blockade therapy

In virtual clones with identical tumor and immune characteristics, ODE and ABM simulations
show that different initial percentages of LA tumor cells result in different outcomes of checkpoint
blockade therapy. The baseline assumption of our models is that LA tumor cells have a survival
advantage over HA tumor cells. In the ODE model and the ABM, HA tumor cells are more likely
to be killed via the fast mechanism, and LA tumor cells are more likely to be killed via the slow
mechanism. Moreover, in the ABM, CTLs are more likely to move towards HA tumor cells than
LA tumor cells, increasing the likelihood of CTL conjugation with HA tumor cells and HA cell
clearance.

For the chosen set of parameters, Figure A shows that, using the ODE model, if the initial
tumor is 50% or 80% LA tumor cells, the tumor grows to the maximum possible volume. Using
the ABM model, Figures 4B and C show that the tumor escapes, but there are slight variations in
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the long-term steady-state tumor volume. This variation in final tumor volume in panels B and C
is likely due to one of the stopping criteria of our ABM. The ABM stops and marks the tumor as
“escape” once sufficient ABM tumor cells reach the boundary of the TME, and this might happen
at different times for each of these tumors that escaped. Therefore, the tumors in panels B and
C have no qualitative differences in terms of tumor volume. With 20% LA tumor cells initially in
the ODE model, the tumor gets eliminated by Day 28. In the ABM, an initial LA ratio of 20%
makes tumor elimination possible but not guaranteed. In this case, the outcome ranges from tumor
elimination to tumor escape across simulations, with a wide range of possible steady-state tumor
sizes in between.

In terms of tumor composition, across all ODE and ABM simulations with different initial tumor
compositions, the final tumor is always more LA-dominant than the initial tumor, even in the cases
where the tumor shrinks. This result reflects the survival advantages that LA cells have in our
models. It also suggests that checkpoint blockade therapy can reduce the tumor size but increase
the proportion of LA cells in the resulting tumor, which can impact the results of other subsequent
immunotherapies. While both ODE and ABM simulations show a trend toward increased LA ratio,
there are notable differences in the final tumor compositions. In the ODE simulations, the final
tumor is consistently 100% LA tumor cells. However, in the ABM, the final tumor can exhibit a
wider range of LA ratios, with the range expanding as the initial ratio of LA tumor cells decreases.
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Figure 4: Virtual clones with identical tumor-immune characteristics but different initial tumor
composition show varied long-term response to checkpoint blockade therapy. (A) Volumes of ODE-
simulated virtual tumors. (B-D) Volumes of ABM-simulated virtual tumors. (E) Ratio of low-
antigent (LA) tumor cells to total tumor cells in ODE-simulated virtual tumors. (F-H) Ratio
of LA tumor cell to total tumor cell in ABM-simulated virtual tumors. Colors show different
compositions of the initial tumor. Blue: 80% LA tumor cells, 20% HA tumor cell. Green: 50%
LA, 50% LA. Orange: 20% LA, 80% HA. ODE parameters for virtual clones in (A) and (E):
Qe = 0.32, = 2x10*. ABM parameters for virtual clones in (B-D) and (F-H): o, = 0.32, = 15.
Other parameters are set at baseline.
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3.3 Therapeutic outcomes are correlated with key immune parameters

We explore what tumor or immune characteristics are most correlated with therapeutic outcomes
of checkpoint blockade in the ODE model and the ABM model. In particular, we are interested
in knowing whether there are similar conclusions for parameters common to both models and how
spatial parameters unique to the ABM relate to the outcomes. In our extensive analysis of the
ODE model [36], we determined that the CTL recruitment rate (u) is the most important immune
parameter for achieving tumor reduction and elimination. The ABM indeed corroborates this
result. Figure shows the distribution, median, and interquartile range of the CTL recruitment
rate in the ODE model in the virtual cohort associated with each therapeutic outcome. Figure
shows a similar graph for p in the ABM. The median and interquartile range of u associated
with tumors that eventually get eliminated are higher than those of escape cases. The ABM shows
more prominent separation of the distribution of 1 between elimination and escape cases, as the 75
percentile in the escape cases is lower than the 25 percentile in the elimination cases. This suggests
the CTL recruitment rate might be even more predictive of treatment outcomes in the ABM than
in the ODE model.

In our analysis of the ODE model, we examined the combined effect of varying both CTL
recruitment rate and maximum antigen-mediated CTL proliferation rate. The parameter with an
equivalent effect in the ABM is the maximum ISF-stimulated proliferation rate of CTLs (cu).
Figure shows the two-parameter bifurcation diagram of u and oy, in the ABM. An analogous
approach was used in the ABM to capture the effect of the ODE bifurcation analysis. Figure
depicts at the probability of tumor elimination in the virtual cohort of mice as p and ayy
vary. Blue represents a 100% chance of elimination, and yellow represents a 0% chance of tumor
elimination. Due to the stochastic nature of the ABM, different runs of the same set of parameters
yield different tumor outcomes, resulting in the gradient of colors between blue and yellow in panel
D. Green regions Figure thus represents a non-zero probability of tumor elimination. Both C
and D show that our baseline case lies in the region of parameter space where the tumor escapes
to carrying capacity with certainty. For virtual tumors with a low «,; value, only increasing o,
is ineffective for reducing tumor volume in the long term. The most efficient way to reduce tumor
volume at equilibrium is by increasing o, and p simultaneously, landing in the green region where
the tumor can be eliminated. Increasing p sufficiently can eliminate the tumor with certainty.

Figure and F show the distribution of spatial parameters of tumors associated with each
outcome. Figure shows that escape cases generally have a much lower T cell movement rate
(m) than elimination and dormancy cases. A low T cell movement rate, as depicted in Figure
E, has significant consequences. It hampers the ability of CTLs to reach tumor cells fast enough
to prevent the tumor from spreading to the lattice’s edge and escaping. Moreover, in the ABM
cohort, only a small number of tumors have not been eliminated or escaped by Day 150, therefore
being marked as dormant. Figure shows that most dormancy cases have a low conjugation rate
(8) between tumor and CTLs. The low conjugation rate is a significant factor in tumor dormancy.
It leads to reduced interaction, prolonging the time to reach a stable term equilibrium, as shown
in Figure HF. We observe a similar pattern with the LA-ISF factor, the ratio of ISF secreted by
LA tumor cells compared to HA tumor cells, as seen in Figure S1. As CTLs are more likely to
move towards regions with high ISF, a low LA-ISF factor makes it harder for CTLs to locate and
conjugate with LA cells. Therefore, low 8 has a similar effect as a low m: both cause the tumor to
stay dormant for longer.
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Figure 5: Key immune parameters in ABM and ODE models are correlated with outcomes of
immune checkpoint blockade. Colors in all sub-panels represent long-term (¢ > 150 days) outcomes
of checkpoint blockade therapy. Elimination (blue): tumor size < 0.lmm?; Dormancy (green):
0.1 < tumor size < 500mm?; Escape (yellow): tumor size > 500mm?. (A) ODE: Violin plot of
the distribution of CTL recruitment rate (u) in the virtual cohort associated with each outcome,
with the shape showing probability density, the white circle showing the median, and the black
lines showing the interquartile range. (B) ABM: Violin plot of the distribution of x in the virtual
cohort associated with each outcome. (C) ODE: Two-parameter bifurcation diagram of u and max
antigen-stimulated CTL proliferation rate (cu,:) on steady state tumor size. Red star: baseline
parameters. (D) ABM: Probability of tumor elimination at each p-cu,; combination. Colormap
shows the probability of tumor elimination ranging from 0 (yellow) to 1 (blue). (E) ABM: CTL
movement rate (m). (F) ABM: CTL conjugation rate (3).
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3.4 ABM reveals spatial and phenotypic heterogeneity despite similar temporal
tumor and immune growth patterns

To explore what additional insights we gain using an ABM that includes spatial features, we
examine tumors that are expected to grow similarly after checkpoint blockade in the ODE model
but end up having different or even completely opposite therapeutic outcomes in the ABM. In
particular, we analyze 603 virtual tumors with the same number of tumor cells and CTLs initially
and similar CTL temporal trajectories up to Day 7. Eventually, 251 of these tumors are eliminated,
and 352 escape long-term. Based on their future tumor status, we categorize these 603 tumors as
“to be eliminated” and * ‘to escape,” or “elimination” and “escape,” in short. Figure[6JA shows that
despite the same initial condition, the number of tumor cells in the “elimination” and “escape”
groups diverge quickly between Day 2 and Day 3. However, the total number of CTLs in the
TME in both groups remains close up to Day 7, as illustrated in Figure [6B. Analysis of the ODE
model in [36] identified CTL recruitment rate as the most critical parameter for predicting tumor
outcomes after checkpoint blockade, followed by maximum antigen-stimulated CTL proliferation
rate and fast-kill rate. Figures [(C,D,E show similar distributions and close medians of these key
immune parameters in “elimination” and “escape” groups. In Figure 4] we saw that initial tumor
compositions can greatly influence the outcomes of checkpoint blockade therapy. Nonetheless, there
is no clear patterns of LA-dominance or HA-dominance in the initial tumors in either group, as
illustrated by comparable distributions and close medians of initial ratio of HA tumor cells (hag)
in Figure [6F. The probability of fast killing (p1, p2) were not identified as sensitive parameters for
tumor volumes in the ODE model [36]. Nonetheless, here in the ABM, they show some correlation
with the therapeutic outcomes as seen in Figure S2. Tumors with low p; are more likely to escape.
Other relationships between the probability of tumor elimination and the values of p; and ps
are weaker. Given similar initial conditions, critical immune parameters, and similar temporal
trajectories of the number of CTLs, the ODE model is unable to describe or explain the disparate
treatment outcomes. Therefore, we focus on parameters and features that are unique to the ABM
next.

Figures shows the temporal evolution of the total number of CTLs in the TME. However,
it does not tell us where these CTLs are and how they interact with the tumor cells. Figures
complements information about CTLs in the ABM. Figure shows that despite the “escape”
group and “elimination” group having similar numbers of CTLs, there are clearly more tumor cells
cleared by CTLs per day in the “elimination” group. Figure[7|B shows that on average, at each time
point, CTLs in the “elimination” group are closer to the tumor center than those in the “escape”
group in the first four days, allowing CTLs to be closer to tumor cells and have a higher chance of
clearing tumor cells early on. Another spatial feature is the volume of the tumor convex hull, which
is defined as the smallest convex shape that includes all the tumor cells. Figure [7{C shows a smaller
mean tumor convex hull in the “elimination” group, meaning that the tumor is more compact.
The combined effect of more CTLs closer to the tumor center and a smaller convex hull is that
the CTL density within the tumor is higher in the “elimination” group starting on Day 2, making
conjugations and tumor cell clearance more likely. In addition to examining CTLs in relation to
the tumor center, we also consider the spatial distribution of CTLs with respect to each tumor cell.
Figure and E show the temporal evolution of the distributions of CTLs relative to tumor cells
in the ABM. The top-down direction shows the evolution of time. The x-axis shows the distance
from a tumor cell. The color map represents the mean number of CTLs at a certain distance from
a tumor cell at each time point from Day 0 to Day 7, averaged across all virtual tumors in each
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Figure 6: Virtual tumors with similar number of CTLs in the TME up to Day 7 show diverging
tumor control outcomes after checkpoint blockade. Blue: tumor elimination; orange: tumor escape.
(A) Number of ABM tumor cells up to Day 7. Lines show the mean and error bars show the standard
deviation of tumor volume in each group. (B) Number of ABM CTLs up to Day 7. (C) Histogram
of CTL recruitment rates (u) in “elimination” and “escape” groups respectively, with the y-value
normalized by the total number of virtual tumors in that group. Vertical lines show the median p
of virtual tumors in each group. (D) Max ISF-stimulated CTL proliferation rate (a,:) (E) Rate of
fast killing by CTLs (F) Initial ratio of HA tumor cells to total tumor cells.
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Figure 7: Spatial features explain diverging therapeutic outcomes after immune checkpoint blockade
despite similar total number of CTLs in the TME. (A) Number of tumor cells cleared by CTLs per
day in “elimination” and “escape” groups. Blue: elimination; orange: escape. The line shows the
mean and error bars show standard deviation in each group. (B) Mean distance of CTLs to the
tumor center. (C) Volume of the tumor convex hull (D,E) Y-axis shows time. X-axis shows the
distance of a CTL to a tumor cell. The color represents the mean number of CTLs at a certain
distance from a tumor cell at that time point. D corresponds to the “elimination” group and E
corresponds to the “escape” group. (F) Normalized histogram of CTL movement rate (m) of virtual
tumors in “elimination” and “escape” groups respectively. Vertical lines: median m in each group.
(G) CTL conjugation rate (3).
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group. In the first four days, there are more CTLs close to tumor cells (e.g., distance < 160um)
in the “elimination” group. From Day 4 onwards, although the number of CTLs near each tumor
cell increases in the “escape” group, it was too late. The tumors still escape eventually.

Parameters existing in both the ABM and the ODE model show no clear pattern in distribution
in “elimination” and “escape” groups in Figure [0l However, spatial parameters in the ABM that
are not captured by the ODE model show distinct distribution patterns corresponding to each
outcome group. This helps explain the observations about number of tumor cells cleared per day
and spatial distributions of CTLs in the “elimination” and “escape” groups in Figure [7] A, B, D
and E. Movement rate (m) and conjugation rate (5) skew to the right in the “elimination” group
and to the left in the “escape” group in Figurd/F and G. Almost all virtual tumors with extremely
low m or 8 values escape. On the contrary, a virtual tumor with high m or § values are much more
likely to get eliminated than to escape. CTLs with high m values have higher motility, and are
thus able to collocate to tumor cells faster. CTLs with high S values are more likely to conjugate
with tumor cells at each time step. Therefore, given a similar number of CTLs, virtual tumors
with higher CTL movement and conjugation rates are more likely to have favorable outcomes after
checkpoint blockade therapy in the long term.

4 Discussion

Here, we present a comparison of an ODE model with an ABM for the same cancer immunotherapy:
ICI for the PD-1/PD-L1 immune checkpoint. We simulate tumor progression and the response to
immune checkpoint blockade therapy in a virtual cohort using a three-dimensional, on-lattice ABM
calibrated using in vivo data from bladder cancer studies in mice. Our models reveal which tumor
and immune characteristics affect the outcomes of checkpoint blockade therapy the most. While
our previous work [36] analyzed the ODE models thoroughly, this paper focuses on the capabilities
of the ABM. In this way, we explore what biological insights both models can provide and what
additional insights the ABM offers about the spatial complexity of the TME and its impact on
therapeutic outcomes. Despite the enhanced modeling capabilities, the use of ABMs also presents
challenges. Therefore, we will also discuss the pros and cons of the ODE model and the ABM for
modeling tumor-immune dynamics.

The ODE model and ABM predict a wide range of therapeutic responses to immune checkpoint
blockade therapy in a virtual cohort with similar tumor growth pre-treatment. Both models also
identify crucial immune parameters linked to the range of outcomes. Our analysis of both models
underscores the pivotal role of CTL recruitment rate () and maximum rate of antigen-mediated
CTL proliferation (ay) in tumor reduction or elimination. Since adoptive T cell therapy can in-
crease p and therapeutic cytokines like interleukin-2 (IL-2) can increase au,, our results in Figure
A-D have implications on the effectiveness of combination therapy strategies. Our simulations
suggest that combination therapy of anti-PD1 and adoptive T cell transfer is effective in reducing
tumor size drastically or eliminating tumors if CTL recruitment rate can be enhanced to sufficiently
high levels. Various combination therapy strategies involving anti-PD1 and tumor-infiltrating lym-
phocytes (TIL) or chimeric antigen receptor (CAR) T cells have shown synergistic effects in both
preclinical studies and clinical trials [28] 29]. Lifileucel, a TIL therapy was recently approved for pa-
tients who received prior treatment with anti-PD1/PD-L1 antibodies [29]. Our simulations suggest
another possible way to achieve a drastic reduction of tumor volume or even tumor elimination with
a smaller amount of drug: combining ICIs with both adoptive T cell transfer and cytokine-directed
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therapy. In this way, a patient’s parameters can move from a baseline outcome of ICI monotherapy,
where the tumor escapes with certainty, to a region in parameter space where tumor elimination
is possible. In fact, IL-2 treatments are often administered with other forms of immunotherapy,
such as Lifileucel. Furthermore, IL-2 therapy in combination with anti-PD1/PD-L1 was shown
to be feasible and tolerable, although clinical trials to show effectiveness of this therapy are still
underway [30] [32].

Both models also show the importance of considering tumor antigenicity and multiple immune-
cell kill mechanisms preferentially associated with HA or LA tumor cells. Our baseline assump-
tions was that CTLs preferentially kill HA cells via the fast mechanism and LA cells via the slow
mechanism. Effectively, we assumed that LA cells are the harder-to-treat phenotype regarding
antigenicity. Using virtual clones with different initial LA to total tumor cell ratio, we showed
that the less LA-dominant the initial tumor is, the better the outcomes after immune checkpoint
blockade. Moreover, the final tumor was always more LA-dominant than the initial tumor. These
are both consequences of CTLs killing HA tumor cells faster than LA tumor cells. Higher num-
bers of LA cells in the resulting tumor suggests that if ICI does not eliminate the tumor, it might
become a “colder” tumor, thereby affecting the responses to subsequent treatments. The shift to
LA-dominance aligns with well-documented observations of immune selection for lowly antigenic
tumors [38]. In the ABM, the antigenicity of the tumor cells not only determines how fast CTLs
kill tumor cells once conjugation has occurred, it also greatly impacts the movement of CTLs before
conjugation. CTLs gravitate towards regions with high ISF, and HA tumor cells secret higher ISF
in our model. This key difference between HA and LA tumor cells underlies the impact of the CTL
movement rate, conjugation rate and LA-ISF factors on treatment outcomes.

The ABM enhances our understanding of the TME by incorporating spatial characteristics that
ODEs cannot capture. This allows for more nuanced insights, revealing complexities that might
be overlooked when immune parameters, initial tumor composition, and the temporal evolution
of cellular populations appear similar. In both models, we observed the importance of CTL re-
cruitment rate (u) and max antigen-stimulated CTL proliferation rate (o) to tumor elimination
after immune checkpoint blockade. This might seem intuitive as higher p and a,; results in more
active CTLs in the TME, and thus, they eliminate more tumor cells. However, we chose 603 virtual
tumors from ABM simulations to show that, when considering intratumoral spatial heterogeneity,
tumors with similar p and «,,; values and similar temporal trajectories of CTLs in the TME can
experience drastically different fates after checkpoint blockade therapy (Figure @ . In the ODE
model formulation, CTLs indiscriminately target all HA or all LA. By contrast, in the ABM, im-
mune attacks are contingent on CTLs moving toward tumor cells and successfully conjugating with
them. Therefore, the movement rate of CTLs (m) and the conjugation rate of CTLs with tumor
cells (B) prove to be crucial in determining how fast CTLs colocalize to, attack and clear tumor
cells. Virtual tumors with high m and £ are more likely to get eliminated after checkpoint blockade.
Translational data are emerging on the critical nature of spatial relationships in the immune tumor
microenvironment. A multitude of factors such as gradients of chemokines and physical features of
the microenvironment have been shown to affect T cell movement [35]. In a melanoma mouse study,
adoptive T cell therapy successfully controled tumor growth in some cases but failed in others. The
T cell infiltration and motility were higher in responders relative to non-responders, as evidenced
by increased speed and distance traveled of T cells [3I]. An in vitro study of melanoma showed
that varied ICI responses were not merely due to differences in tumor structure or proportion of cell
types. Physical proximity and contact frequency between CTLs and tumor cells also significantly
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differed between responders and nonresponders of ICIs [2I]. Among many ongoing efforts to de-
velop therapeutics to enhance the T cell motility and infiltration, tebentafusp, a bispecific protein
consisting of an affinity-enhanced T cell receptor fused to an anti-CD3 effector that can redirect T
cells to target glycoprotein 100—positive cells [23], was FDA-approved in 2022.

With proper formulation, both ABMs and ODE models can accurately reflect biological pro-
cesses. Still, they have a few fundamental differences, which lead to their respective pros and cons
from the modeling perspective. ODEs model the population-level temporal dynamics of each type
of cell or drug molecule, whereas ABMs model each cell as an autonomous agent. At a given
time point, all cells or molecules of a single type in the ODE undergo the same changes uniformly,
whereas agents in the ABM experience different events based on their location in space or what
other agents surround them. Thus, the ABM is more flexible in modeling intratumoral differences
and more closely reflect complexities seen in vivo. Another key distinction between the ABM and
the ODE model is that the ABM is discrete and stochastic, whereas the ODE model is continu-
ous and deterministic. These properties of the ABM might have caused it to wander away from
locally stable equilibrium, leading to what we observed in Figure and D. Tumor growth reach
equilibrium faster in the ABM than in the ODE model, leading to the lack of intermediate-sized
tumors on Day 19 in the ABM. Nevertheless, the enhanced granularity and versatility of ABMs
come at the cost of longer computational time and increased difficulty in parameterizing and ana-
lyzing the model. Because the ABM updates each cell individually at each time step, simulations
slow down significantly when the number of tumor cells increases exponentially. Thus, simulating
tumor and immune dynamics at a realistic scale is computationally prohibitive. ABMs generally
have many more parameters than the ODE model, making parametrization of the model challeng-
ing. In the ODE, we used sensitivity analysis to determine which parameters impact the tumor
outcome most and focused our calibration and analytical efforts on those. Sensitivity analysis of
ABM parameters, though possible [3], 34], is no trivial task. Future avenues of exploration include
using machine learning to overcome the shortcomings of ABMs. In our upcoming work, we plan to
combine this ABM with machine learning algorithms to predict the tumor-immune landscape after
immune checkpoint blockade, which can make simulating larger virtual cohorts or larger number
of cells more feasible.

5 Conclusions

We presented the first side-by-side comparison of an ABM with an ODE model for ICIs targeting
the PD1/PD-L1 immune checkpoint. We simulated the responses to immune checkpoint blockade
therapy in a virtual cohort with diverse tumor-immune characteristics. In particular, we emphasized
the importance of including spatial components in mathematical models of immunotherapy by
elucidating the additional insights that the ABM provided regarding the spatial complexity of the
TME and their impact on therapeutic outcomes. Our computational method can efficiently enhance
discovery of key spatial elements, inform biomarker development and validate findings from ongoing
clinical data. Even though our model was built for ICIs and was calibrated with in vivo bladder
cancer data, our modeling framework and methodology can be applied to other cancers or other
forms of cancer immunotherapy.
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Table 1: ABM parameters calibrated from experimental data.

Name Description Values (Baseline)

o, Proliferation rate of tumor cells 2.6d71

O?fonf Maximum number of occupied neighbors that 20 cells
still allows tumor cell proliferation (out of 26)
1 CTL recruitment rate 2.5-25(8) ABM CTL d~!

Table 2: Parameters varied in the ABM.

NameDescription Values (Baseline) Source
1 CTL recruitment rate 25 - 25 (8) ABM Calibrated
CTL d™!
hao  Initial proportion of HA cells 0.05 - 0.95 (0.5) d~!  Estimated
2
ane  Max ISF stimulated CTL prolifer-  0.04 - 1.00 (0.15) d~!  Estimated
ation rate [14, 26] 24]
Stast  Fast kill rate 12 - 120(48) d—! Estimated
2
p1 Probability of fast killing for HA 0 - 1(0.92) Assumed
D2 Probability of fast killing for LA 0-1 (0.33) Assumed
m CTL movement rate 1-8(2) pmmin~! Estimated
2]
B CTL Conjugation rate with tumor 0.5 - 4 (1.2) h™! [15 2]
cells
Ureach Immune stimulatory factor reach 60 - 200 (100) pm Estimated
2
rise ISF expression by LA tumor cells 0.1 - 0.9 (0.5) Assumed
compared to HA tumor cells [2]

Table 3: Initial conditions.

Name Description Value
Ny Total Tumor cells 20 ABM cells
Ty CTLs 0 ABM cells
hag Ratio of HA tumor cells to 0.05 - 0.95

total tumor cells
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