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Abstract

Microglia play a key role in the response to amyloid beta in Alzheimer’'s disease (AD). In this
context, a major transcriptional response of microglia is the upregulation of APOE, the strongest
late-onset AD risk gene. Of its three isoforms, APOE2 is thought to be protective, while APOE4
increases AD risk. We hypothesised that the isoforms functionally alter microglia by shaping their
transcriptomic and chromatin landscapes. We used RNA- and ATAC-sequencing to profile gene
expression and chromatin accessibility of human microglia isolated from a xenotransplantation
model of AD. We identified widespread transcriptomic and epigenomic differences which are
dependent on APOE genotype, and are corroborated across the profiling assays. Our results
indicate that impaired microglial proliferation, migration and immune responses may contribute to
the increased risk for late-onset AD in APOE4 carriers, while increased DNA-binding of the

vitamin D receptor in APOE2 microglia may contribute to the isoform’s protective role.
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Introduction

Microglia are key players implicated in the genetic susceptibility and progression of Alzheimer’'s
disease (AD). AD genetic risk predominantly falls within regulatory regions of the genome,
including those marked by H3K27ac?, an epigenetic modification found at active enhancers and
promoters?. H3K27ac is dysregulated in the brains of individuals with AD*#, and microglial
H3K27ac regions are strongly enriched for AD genetic risk>®. Microglia have also been associated
with AD risk in their open chromatin regions”°, and at the level of their transcriptome'~3, Recent
research using single-cell transcriptomics has highlighted that microglia occur in various distinct
subtypes and activation states, which are anticipated to exhibit different epigenomic and
transcriptomic responses dependent on their environmental niche. This variation is expected to
give rise to different downstream effects on AD pathogenesis. Supporting this is the continued
characterisation of different microglial phenotypes in AD, including those responsive to amyloid

beta (AB) aggregates, a pathological hallmark of AD4-16,

In mouse models, the strongest transcriptional response of microglia to AR aggregates is the
upregulation of the gene APOE 718 which harbours the strongest genetic risk factor for late-
onset AD. APOE is involved in regulating cholesterol and other lipid transport across cells®. In
the periphery, it is produced by macrophages in the liver, while in the brain, it is primarily produced
by astrocytes®®. In humans, APOE has uniquely evolved into three different isoforms: APOE2,
APOE4, and APOE4. In AD, APOEZ2 is thought to be protective, while APOE4 increases disease
risk up to 12-fold in homozygous individuals of certain human populations?°. Several studies have
begun to explore the role of microglial APOE in AD, using different samples and methodologies.
In mouse models of AD, APOE4 carriers exhibit a higher abundance of microglia stress and
inflammatory markers, a phenotype also observed in human tissue®®. Furthermore, APOE4
microglia are linked to dysregulated lipid metabolism?3?2, which subsequently triggers
neurotoxicity and tau phosphorylation?2. Regarding immune responses, APOE4 microglia induce
the signalling of transforming growth factor-B (TGF-B), a multifunctional cytokine, thereby
hindering the appropriate, neuroprotective microglial response to AD pathology?3. Clearly, APOE
plays a critical role in regulating microglia in response to AD pathology. Thus far, studies have
predominantly focused on APOEA4, but it is equally important to determine the role of APOE2,
which may potentially be antagonistic. We hypothesised that different APOE isoforms would
differentially regulate the microglial phenotype in response to A pathology. However, the unique

evolution of APOE in humans makes it difficult to faithfully recapitulate its effects on AD risk and
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pathogenesis in mouse models. As previously suggested, investigating the microglial response in
human tissue is challenging due to technical limitations and inconsistencies in biological

findings?.

To tackle these challenges, researchers have developed a human microglia xenotransplantation
model®>?%, in which iPSC-derived human microglia are xenografted into the brains of mice.
Single-cell profiling of these microglia has identified known and novel amyloid-responsive states?’.
These microglial states were enriched for different subsets of AD genetic risk genes, highlighting
that multiple microglial states are influenced by AD genetic susceptibility. One of the primary
human-specific microglial responses was impaired in APOE4 microglia'®. In addition to
demonstrating the usefulness of this model in disentangling the microglial response to AB
pathology, this highlights the need to investigate the functional role of AD genetic risk factors in a

cell type-specific manner.

Here, we used ATAC-seq and RNA-seq to profile human microglia expressing the different APOE
isoforms, which were xenotransplanted into the AppN-"°F mouse model of AD. This enabled us to
delineate the effects of the different APOE isoforms on the epigenomic and transcriptomic

landscapes of microglia in AD.

Results

We transplanted isogenic iPSC-derived human microglia APOE2/0, APOE4/0, APOE4/0 and an
APOE knockout (APOE-KO) into the brains of the AppN-“F mouse model of Alzheimer’s
disease?®. At 12 months, by which point AR pathology is extensive!®28, microglia were isolated by
FACS using human microglia-specific antibodies (CD11b+ hCD45+, Fig. 1a). This approach
results in a scenario where the manipulations of the APOE genotype are restricted to microglia,
thereby allowing us to study microglia-autonomous effects of the isoforms. To characterise the
epigenomic and transcriptomic landscapes of these microglia, they were profiled using ATAC-seq
for open chromatin and RNA-seq for gene expression, respectively. After quality control and pre-
processing, we obtained high-quality chromatin accessibility data across 16 mice (APOE2 = 5,
APOE3 = 5, APOE4 = 4, APOE-KO = 2, Supplementary Table 1; Supplementary Fig. 1) and
high-quality transcriptomic data across 17 mice (APOE2 =5, APOE3 = 4, APOE4 = 5, APOE-KO
= 3, Supplementary Table 1; Supplementary Fig. 1). Overall, we observed widespread

differences in gene expression and chromatin accessibility across microglia of the different APOE
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isoforms, highlighting the complexity of the microglial response to AB pathology. In support of the
opposing roles of APOE2 and APOE4 in AD risk, the greatest differences were observed between

these isoforms.
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Figure 1: Transcriptomic and epigenomic profiling of xenotransplanted microglia reveals
changes to their regulation in Alzheimer’s disease across the different APOE isoforms. a
Experimental design for xenotransplantation of iPSC-derived human microglia into the brains of
App"“CF mice (APOE2 = 5, APOE3 = 5, APOE4 = 4, APOE-KO = 2) and high-quality
transcriptomic data across 17 mice (APOE2 =5, APOE3 =4, APOE4 =5, APOE-KO = 3), followed
by transcriptomic and chromatin accessibility profiling at 12 months. b Boxplot of expression
profiles of APOE, confirming the knockout. ¢ Genome tracks showing chromatin accessibility
signals of all APOE groups around the Apoe locus. d Stacked barplot of the number of
differentially expressed genes (DEGs; FDR < 0.05) identified through pairwise comparisons

across the experimental groups.
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APOE isoforms are associated with consistent differences in gene
expression and chromatin accessibility

APOE expression was significantly lower in three out of five knockout samples (Supplementary
Fig. 2), and only these were used in downstream analyses (Fig. 1b). Additionally, APOE
expression was lower in the APOE4 microglia compared to APOE2 and APOES. This is in
agreement with previous studies investigating the APOE variants in microglia and astrocytes?®.
Chromatin accessibility around the transcriptional start site (TSS) of APOE was consistent across
the APOE groups (Fig. 1c). As the most commonly expressed allele?°, we used APOE3 as the
baseline for pairwise comparisons in the differential expression and chromatin accessibility
analyses performed using DESeq23. In addition, we compared APOE4 microglia with those
expressing APOE2. When compared to APOE3 microglia, differential expression analysis
revealed 475 (286 up, 189 down, (FDR < 0.05); Fig. 1d, Fig. 2a, Supplementary Table 2) and
332 (171 up, 161 down, (FDR < 0.05); Fig. 1d, Fig 2b, Supplementary Table 2) differentially
expressed genes (DEGs) in APOE2 and APOE4, respectively. As expected, given their
postulated opposing roles in AD risk, the direct comparison of APOE4 with APOE2 revealed the
most differences, with 1,644 DEGs (751 up, 893 down, (FDR < 0.05; Fig. 1d, Fig. 2c,
Supplementary Table 2). 127 genes were upregulated and 209 were downregulated in the
APOE-KO when compared with the APOES isoform (Supplementary Fig. 3, Supplementary
Table 2).

Comparison with the APOE-KO enabled us to infer whether the transcriptional mechanisms
underlying APOE2 and APOE4 microglia can be explained by loss and/or gain of function. We
used Rank-Rank Hypergeometric Overlap (RRHO) to quantify the degree of overlap between
expression signatures in the APOE-KO vs APOE3 and APOE2 vs APOE3, and the APOE-KO vs
APOE3 and APOE4 vs APOES3. We observed significant overlap between expression patterns in
the APOE-KO and APOE2 comparison (Spearman’s rank correlation, rho = 0.55, p < 2.2e; Fig.
2d), as well as for the APOE-KO and APOE4 variants (Spearman’s rank correlation, rho = 0.34,
p < 2.2e'5; Fig. 2e). The strongest overlap was seen for genes downregulated in both APOE2
and APOEA4, suggesting that the mechanisms underlying the different APOE isoforms can be in
part explained by a loss of APOE function. However, there were also unique transcriptional
changes occurring in APOE2 and APOE4 microglia (Fig. 2d-e). This corroborates findings

reported by Machlovi et al.*2 in which the authors performed similar analyses investigating the
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APOE4 and APOES isoforms in mouse microglia. To further explore the overlaps with the APOE-
KO, we correlated the genes that had similar expression profiles in APOE2 and the APOE-KO,
and APOE4 and the APOE-KO, when compared to the APOES3 isoform. All genes that had the
same direction of expression change in APOE2 and the APOE-KO, also had the same direction
of expression change in APOE4, when compared with APOE3 (Fig. 2f). A few genes were only
significant in either APOE2 or APOE4, including TSPAN13, which was upregulated in APOE4
microglia and is associated with lipid accumulation in microglia®*33, Due to the pleiotropic nature
of APOE, we evaluated whether genes differentially expressed across the APOE groups exhibited
differential enrichment for AD genetic risk variants. Using MAGMA gene set analysis®, we found
that genes downregulated in the APOE4 and APOE-KO microglia were enriched for risk variants
identified in one AD GWAS®*® (FDR < 0.05; Fig. 2g, Supplementary Table 4). This supports
previous evidence suggesting that the mechanisms of APOE4 reflect a loss-of-function in the
context of AD®336 with APOE4 affecting biological pathways that are consistent with those

linked to the polygenic component of AD.
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Figure 2: Microglia exhibit widespread differences in gene regulation across the APOE
isoforms. a Differentially expressed genes in APOE2 vs APOE3 microglia. b Differentially
expressed genes in APOE4 vs APOE3 microglia. ¢ Differentially expressed genes in APOE4 vs
APOE2 microglia. d Rank-Rank Hypergeometric Overlap (RRHO) heatmap comparing
expression signatures between APOE-KO vs APOE3 and APOE2 vs APOE3. e RRHO heatmap
comparing expression signatures between APOE-KO vs APOE3 and APOE4 vs APOES. f
Scatterplot of APOE4 vs APOES3 logFC against APOE2 vs APOE3 logFC for genes with
expression profiles overlapping with the APOE-KO. g MAGMA gene set analysis using the
differentially expressed genes across the APOE groups with three independent AD GWAS35:3738,
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To evaluate the upstream regulatory mechanisms associated with the transcriptomic changes
across the APOE isoforms, we next investigated changes in chromatin accessibility. When
compared to APOE3 microglia, APOE2 microglia had 40 differentially accessible regions (DARS)
(24 up, 16 down, FDR < 0.05; Fig. 3a, Supplementary Table 3), and APOE4 microglia had 50
DARs (38 up, 12 down, FDR < 0.05; Fig. 3b, Supplementary Table 3). Again, the direct
comparison of APOE4 with APOE2 revealed the most differences, with 72 DARs (52 up, 20 down,
FDR < 0.05; Supplementary Fig. 4a, Supplementary Table 3), with the fewest changes
observed in the KO (13 up, 7 down, FDR < 0.05; Supplementary Fig. 4b). Notably, our analysis
revealed consistent epigenomic and transcriptomic responses across microglia the different
APOE isoforms (Supplementary Fig. 5). For instance, CHCHDZ2, a mitochondrial gene involved
in promoting cellular migration® and implicated in Parkinson’s disease (PD)*%4!, was significantly
downregulated in APOE4 microglia when compared to both APOE3 (logFC = -7.8, p = 1.3e’%;
Fig. 2b, Fig. 3c, Supplementary Table 2) and APOE2 (logFC = -7.4, p = 7.8e'!; Fig. 2c, Fig.
3c, Supplementary Table 2). In parallel, chromatin accessibility was significantly reduced close
to the TSS of this gene when compared to APOE3 (logFC =-7.8, p = 1.2e”/, distance to TSS = 0;
Fig. 3b, d, Supplementary Table 3) and APOE2 (logFC = -6.5, p = 8.3e”, distance to TSS = 0;
Supplementary Fig. 4a, Supplementary Table 3). Expression of this gene was also significantly
reduced in the APOE-KO, suggesting a potential loss of protective function via this gene in the
APOE4 microglia (Supplementary Fig. 3). Similarly, the zinc finger protein ZNF248 was
upregulated in APOE4 microglia (E4 vs E3, logFC = 9, p = 5.1e'%;, E4 vs E2, logFC = 7.9, p =
5.2e1% Supplementary Table 2) and genomic regions in the vicinity of this gene had increased
chromatin accessibility (E4 vs E3, logFC = 6.3, p = 2.3e”®; E4 vs E2, logFC = 6.6, p = 3.2e;
Supplementary Table 3). Interestingly, in an in vitro study investigating functional and
transcriptional phenotypes of a TREM2 mutant and knockout in iPSC-derived microglia-like cells,
ZNF248 was upregulated in the TREM2-KO, while CHCHD2 expression was reduced in the R47H
mutant*2. For an overall assessment of the concordance between ATAC-seq and RNA-seq, we
correlated the logFC values between DEGs and DARs at the corresponding promoter peaks. We
observed a strong correlation across all APOE comparisons, indicating general concordance

between changes in chromatin and gene expression (Supplementary Fig. 6).

Microglia-specific regulatory regions originating from human samples are strongly enriched for
AD genetic risk®>%1943_ To evaluate whether human iPSC-derived microglia xenotransplanted into
the mouse brain would recapitulate this enrichment we used stratified linkage disequilibrium score

regression (s-LDSC)* with AD GWAS®. We found that open chromatin regions from the


https://paperpile.com/c/bhqS1h/0vuJs
https://paperpile.com/c/bhqS1h/R3TyG+uHN2U
https://paperpile.com/c/bhqS1h/gxcud
https://paperpile.com/c/bhqS1h/xeHuo+ZzcKn+lESJS+gjSD3
https://paperpile.com/c/bhqS1h/FWI4P
https://paperpile.com/c/bhqS1h/lym3r
https://doi.org/10.1101/2024.07.03.601874
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.03.601874; this version posted July 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

xenotransplanted microglia were enriched for AD heritability (FDR < 0.05, Fig. 3e,
Supplementary Table 5). As the xenotransplanted microglia are predominantly responding to Ap
in our model, this enrichment also suggests that a significant proportion of AD risk is associated
with microglial reactions to this pathological hallmark*®. By repeating the analysis using GWAS
data for autism spectrum disorder“®, and amyotrophic lateral sclerosis (ALS)*’, we confirmed that
this enrichment was specific to AD, and not a general brain disease enrichment (Fig. 3e,

Supplementary Table 5).
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Figure 3: Concordant APOE-associated gene expression and chromatin accessibility
signatures Heatmaps showing differential chromatin accessibility of significant peaks (FDR <
0.05) when comparing a E2 vs E3, and b E4 vs E3. Shown are the genes annotated to the top 20
most significant peaks. Genes marked in bold were also significantly differentially expressed in
the RNA-seq analysis. ¢ Boxplot of expression profiles of CHCHD2 shows reduced expression in
the APOE4 and the APOE-KO microglia. d Genome tracks of chromatin accessibility signals
around the CHCHD2 locus show a loss of the open chromatin peak at the CHCHD2 promoter in
APOE4 and KO. e s-LDSC analysis using all open chromatin regions from the xenotransplanted
human microglia with GWAS summary statistics for AD, ALS, and ASD shows a microglia-specific
enrichment for AD.
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APOE?2 and APOE4 microglia show differential expression of cytokines

Human microglia from the xenotransplantation model used here were previously profiled using
single-cell RNA sequencing?’. Mancuso et al. (2024) report eight microglial states responsive to
AB pathology, including previously characterised disease-associated microglia (DAM), as well as
novel states annotated as cytokine response (CRM) and antigen-presenting response (HLA)
microglia. Using hypergeometric testing, we found that genes dysregulated across the microglia
the different APOE isoforms were strongly enriched within several microglia clusters (Fig. 4a):
The strongest association was observed for genes downregulated in APOE4 microglia, which
were enriched in the HLA, ribosomal microglia (RM), and DAM clusters (Fig. 4a). Furthermore,
genes downregulated in APOE4 microglia and enriched in the DAM cluster were associated with
negative regulation of tumor necrosis factor (TNF) cytokine production (Fig. 4b). Since negative
regulation of cytokine production refers to processes that inhibit cytokine production, the
downregulation of these genes in APOE4 microglia suggests increased cytokine production in
this isoform. CRM microglia mount a pro-inflammatory response driven by the upregulation of
chemokines and cytokines, and have only been characterised in humans'®. Furthermore, in
response to AR, APOE4 microglia shift to the CRM state rather than HLA®. Although we do not
directly observe an association between APOE4 microglia and CRM, we find an upregulation of
chemokines and cytokines in APOE4 when compared to APOE2 (CCL4L2, CCL3, CCL3L1; Fig.
4c-e, Supplementary Table 2), with the exception of CXCL16, which was most highly expressed
in APOE2 microglia (Fig. 4f). In agreement, Machlovi et al. (2022), report increased cytokine
production in APOE4 microglia. Conversely, where the authors found increased TNFa in APOE4
microglia, TNF family members, including TNFRSF25 and TNFRSF21, were upregulated in
APOE2 microglia in our study. Taken together with the decreased HLA and DAM response in
APOE4 microglia here, these findings suggest that APOE4 microglia fail to transition towards
protective microglial states, and instead switch to more pathological states such as CRM (Fig.
4a).
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Figure 4: Pro-inflammatory cytokines are upregulated in APOE4 microglia. a Heatmap

showing enrichment of genes differentially expressed across the APOE groups amongst microglia
clusters defined by scRNA-seq. b Dotplot of pathway enrichment analysis using genes
downregulated in APOE4 microglia that are enriched in the DAM cluster. c-f Boxplots of gene
expression profiles of cytokines ¢ CCL3, d CCL3L1, e CCL4L2, and f CXCL16.

Gene networks upregulated in APOE2 microglia are associated with cellular
migration and immune response

We used weighted gene co-expression network analysis (WGCNA)“8 to identify microglial gene
modules with coordinated expression profiles. These modules were then tested for differential
expression across the APOE groups, and the differentially expressed modules were functionally
characterised using pathway enrichment analysis. We identified two differentially expressed
modules significantly associated with GO biological processes. First, a gene module upregulated
in APOE2 microglia when compared to both APOE3 and APOE4 was associated with proliferation
and cellular migration pathways (Fig. 5a-b, Supplementary Table 6). Such pathways are likely
important for microglia being recruited towards the site of A pathology and initiating its clearance,
which in some cases, requires APOE“°. Second, a module upregulated in APOE2 when compared
to APOE4 was significantly associated with a range of immune responses, including both innate
immune responses such as complement activation, and adaptive immune responses such as
antibody-mediated immunity (Fig. 5c-d, Supplementary Table 6). Overall, the enrichment of
proliferation, migration and immune responses, suggests enhanced protective microglial function
in APOE2.


https://paperpile.com/c/bhqS1h/IZ8Wr
https://paperpile.com/c/bhqS1h/XzK7S
https://doi.org/10.1101/2024.07.03.601874
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.03.601874; this version posted July 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

__ Proliferation and migration module | Immune response module

°
2

o S £

Module eigengenes
°
2
8
]
Module eigengenes
R
T
A

-

E2 E3 E4 Ko €2 =) E4 KO

b Up in APOE2 d Up in APOE2
| Proliferation and migration module Immune response module
cytoplasmic translation | synapse organization

regulation of apoptotic signaling pathway {

regulation of body fluid levels
1 postsynapse organization
regulation of protein catabolic process {

Gene count p.adjust
gg @« hemostasis 0.04
@ ® 10 a coagulation 003
] { ® 20 § blood coagulation 00
& negative regulation of apoptotic signaling pathway | ® 30 & p
— regulation of intrinsic apoptotic signaling pathway | ® 40 e 0.01
[:] { S platelet aggregation
G ribosomal small subunit biogenesis | i S platelet activation
g'equlanon of eytokine production involved in immune response { p-adjust 8 homotypic cell-cell adhesion Gene count
k=] cytokine production involved in immune response | 0.03 K=} biological process involved in interaction with symbiont- ° 2
o { @ synapse pruning- o4
o Itic vacuole organization | 0.02 o ! ®s
o] lysosome organization | 0.01 S @
¢ ® 0
positive regulation of B cell activation colljunction disassembly
regulation of extracellular matrix organization |
1 regulation of synaptic vesicle recycling -
{ regulation of synaptic vesicle endocytosis -
response to lipoprotein particle { protein localization to cellcell junction -
cellular response to low-density lipoprotein particle stimulus | postsynaptic cytoskeleton organization
ribosomal small subunit assembly { 4
negative regulation of extracellular matrix organization { | i ] negative regulation of bone mineralization
o
°& er Q@ Q’& & PP
Gene ratio Gene ratio

Figure 5: Gene networks upregulated in APOE2 microglia are associated with cellular
migration and immune responses. a Barplot of eigengene expression of the WGCNA module
associated with proliferation and migration. b GO biological processes enriched for genes within
the WGCNA module associated with proliferation and migration that is upregulated in APOE2
microglia. ¢ Barplot of eigengene expression of the WGCNA module associated with immune
responses. d GO biological processes enriched for genes within the WGCNA module associated

with immune responses, which is upregulated in APOE2 microglia.

Vitamin D receptor binding is upregulated in APOE2 microglia

To better understand the regulatory machinery of human microglia in Alzheimer’s disease and
the upstream orchestrators of altered transcriptional states, we performed de novo motif
enrichment analysis using HOMER® on the open chromatin regions from the xenotransplanted
microglia. Specifically, we used the top 100 hyper- and hypo-acetylated peaks in APOE2 and
APOE4 microglia as input and defined all ATAC-seq peaks as the background set. Regions with
increased accessibility in the APOE2 microglia were strongly enriched for the DNA binding motif
of the vitamin D receptor (VDR) (Fig. 6a), a ligand-inducible transcription factor (TF) and main
mediator of vitamin D signalling >*. Importantly, vitamin D deficiency has been linked to increased

risk for AD%2%3, We next assessed whether VDR target genes were upregulated in APOE2
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microglia. A hypergeometric test confirmed an overrepresentation of genes upregulated in APOE2
when compared to both APOE3 and APOE4 (Fig. 6b), in a list of monocytic VDR target genes
identified in a previous study®*. This confirms the expected downstream transcriptional response
predicted by increased VDR binding in APOE2 microglia. Activation of an anti-inflammatory
microglia phenotype via interleukin 10 (IL-10) and vitamin D signalling has been reported
previously®®. Consistent with this, in our data, the alpha subunit of the IL-10 receptor (IL-10RA)
was significantly upregulated in APOE2 microglia (Fig. 6c), suggesting increased anti-
inflammatory signalling in the APOEZ2 isoform.
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Figure 6: Regions with increased chromatin accessibility in APOE2 microglia are enriched
for the binding of vitamin D receptor. a Heatmap showing enrichment of motifs in regions with
increased chromatin accessibility in APOE2 microglia. b Barplot showing the overrepresentation
of genes upregulated in APOE2 microglia in a list of VDR target genes in monocytes®®. ¢ Boxplot
of gene expression profiles of IL-10RA. d Graphic adapted from Boontanrart et al. (2016), showing
a mechanism of anti-inflammatory microglia activation mediated through vitamin D and IL-10

signalling.
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Discussion

Increasing evidence points to a highly complex response of microglia to AD pathology. Here,
show that the human APOE2, APOES, and APOE4, differentially regulate microglia in the context
of AB aggregates. By profiling human microglia isolated from a xenotransplantation model of late-
onset AD using RNA-seq and ATAC-seq, we uncovered widespread changes to the
transcriptomic and chromatin landscape of this cell type, dependent on the APOE isoform
expressed. As anticipated, the largest differences were observed when comparing the AD risk
opposing APOE2 and APOE4 microglia.

First, we observed consistent epigenomic and transcriptomic responses for several genes,
including CHCHD2 and ZNF248. CHCHD?2 is involved in promoting cell migration®® and has been
linked to familial and sporadic Parkinson’s disease (PD)*°, where it is transcriptionally
downregulated. Its decreased expression and chromatin accessibility in APOE4 microglia, but
also in the knockout, suggest a potential loss of neuroprotective function in this isoform.
Conversely, ZNF248 was upregulated in APOE4 and the knockout in both assays, suggesting a
potential gain of toxic function. In a study comparing the effects of TREM2 knockout and a TREM2
mutation in a model of human microglia, the TREM2 knockout had deficits in phagocytosis,
chemotaxis, and survival that were not observed in the TREM2 mutant*?. ZNF248 was one of only
four differentially expressed genes with reduced expression in the knockout but increased
expression in the mutant. Although the authors argue that it is unlikely that such a limited number
of genes, including ZNF248, could explain such vast phenotypic differences*?, the overlap
between APOE4 microglia and TREM2 knockout microglia is interesting. The convergence of
results between the DEGs and DARs highlights the robustness of using multiple independent
assays to profile cellular states in a disease context. Overlapping expression signatures with the
APOE knockout enabled us to infer whether the APOE2 and APOE4 isoforms resulted in a loss
or gain-of-function. AR deposition is lower in AD mouse models with APOE knocked out®’=°.
Similarly, APOE2 is associated with reduced AR pathology in both animal models and humans®®.
In contrast, the genes downregulated in APOE4 microglia and the knockout were both enriched
for AD genetic risk, lending support to previous reports of APOE4 microglia increasing AD risk
through loss-of-function mechanisms!®2, Further investigation into the genes shared between
the knockout and APOE4 microglia highlighted a strong upregulation of TSPAN13. This gene is
also upregulated in microglia that accumulate damaging lipid droplets in the ageing brain33, and
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in microglia homozygous for APOE4, in response to AB?%. Our data suggest that lipid

dysregulation in APOE4 microglia may be driven by a loss of function.

Genes downregulated in APOE4 were enriched within distinct microglial states identified in
response to AB: HLA, RM, and DAM?’. HLA represents a novel, human-specific microglial state
that has a pronounced response to AR pathology and is thought to play a protective role?’. RM
are enriched for ribosomal genes. In murine AD models, stage 2 DAM cells, which signal the full
activation of the DAM programme that is thought to be protective, are enriched for ribosomal
genes!*. When considered collectively, these enrichments suggest that APOE4 microglia fail to
shift into protective states. Furthermore, our analyses point toward diminished migratory capacity
in APOE4 and enhanced migratory capacity in APOE2 microglia. Previously, APOE4 microglia
were shown to downregulate their expression of cellular migration genes in response to
demyelination®!, and pericytes derived from APOE4 carriers exhibited downregulation of genes
associated with cellular migration®?. This also suggests that migratory capacity is not a cell type

or pathology-specific mechanism affected by APOE in AD.

Another mechanism through which APOE4 may be exerting its pathogenic role in AD is by
mounting a pro-inflammatory response. In other studies, mouse microglia expressing the
humanised APOE4 allele increased cytokine production®?, and xenotransplanted human microglia
shifted towards a pro-inflammatory state?’. Similarly, we report a general upregulation of cytokines
in APOE4 when compared to both APOE2 and APOE3 microglia. One exception was CXCL16,
which was upregulated in the APOE2 microglia. However, this chemokine has been reported to
drive microglia to an anti-inflammatory phenotype in brain tumors®. Machlovi et al. (2022)
reported increased TNFa expression in APOE4 microglia, while we observed the opposite - TNF
family genes were increased in APOE2 when compared to APOE4. Therefore, it is important to
consider that APOE2 may also be driving a pro-inflammatory response, and while the isoform is
thought to be protective in AD, it can increase risk for other neurological conditions®. This pro-
inflammatory response may be balanced by the anti-inflammatory mechanisms suggested here
and in other studies®®®. In addition, it remains unclear as to what triggers the increased
production of pro-inflammatory cytokines in the APOE isoforms. For instance, in APOE2 microglia
the pro-inflammatory response may be triggered by their interaction and clearance of AB plaques.
Whereas in APOE4 microglia, the increased production of pro-inflammatory cytokines could be
due to a lack of response to AB, which in turn would result in continued AB deposition and a

sustained pro-inflammatory response.


https://paperpile.com/c/bhqS1h/xfjY6
https://paperpile.com/c/bhqS1h/rBJtO
https://paperpile.com/c/bhqS1h/rBJtO
https://paperpile.com/c/bhqS1h/cilFw
https://paperpile.com/c/bhqS1h/7sNbD
https://paperpile.com/c/bhqS1h/E1V8f
https://paperpile.com/c/bhqS1h/m6tGf
https://paperpile.com/c/bhqS1h/rBJtO
https://paperpile.com/c/bhqS1h/uISYM
https://paperpile.com/c/bhqS1h/BUxEz
https://paperpile.com/c/bhqS1h/8OUBk+BhJkp
https://doi.org/10.1101/2024.07.03.601874
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.03.601874; this version posted July 5, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Several studies have shown an enrichment of AD genetic risk within microglia-specific genes and
regulatory regions from the human brain®%11, Here, using the chromatin accessibility profiles from
the xenotransplanted microglia we recapitulate this enrichment, highlighting the robustness of this
model for investigating human genetic risk in a disease context. At the level of the transcriptome,
AD genetic risk was enriched within genes downregulated in APOE4 microglia but also the APOE
knockout. Supporting previous studies, this overlap suggests that AD risk increased by the
presence of APOE4 is partially mediated through loss of protective function. Our findings
underscore the need to consider the interplay between genetic risk factors, and microglial states
in AD.

In addition to arguing for increased proliferation, migration, and immune response in APOE2
microglia as underlying this isoform’s protective effect, we report a potential upstream regulatory
role for the VDR. In the context of AD, low levels of vitamin D have been associated with a higher
incidence of the disease®>%3, and vitamin D supplementation has been shown to improve disease
outcomes®”%8, |t is important to take into consideration APOE genotype, as some studies have
shown that APOE4 carriers have higher vitamin D levels®® ™ and therefore vitamin D
supplementation may be more beneficial to non-carriers®. Vitamin D acts via binding to VDR, and
enrichment of VDR in regions with increased chromatin accessibility in APOE2 may therefore
enable these microglia to be more responsive to vitamin D, regardless of serum levels.
Furthermore, the increased expression of the IL-10 receptor in APOE2 microglia was particularly
interesting. Vitamin D, via the VDR, increases the expression of the anti-inflammatory cytokine
IL-10%. IL-10 then activates SOCS3 via the IL-10 receptor, and this mechanism suppresses the
expression of pro-inflammatory cytokines. Several other studies have also demonstrated an
association between vitamin D and the expression of anti-inflammatory factors in microglia’-"¢.
The functional role of VDR activation and binding warrants further studies in terms of mechanisms

and therapeutic exploration.

Our study has several limitations. First, microglia exist in different subtypes and states. For
example, microglia associated with AR plaques may have distinct transcriptomic and epigenomic
profiles compared to less responsive microglia. While it is worth considering the contributions of
APOE from mouse microglia and astrocytes, these should remain consistent across the APOE
groups and, as such, should not affect differential expression and chromatin accessibility
analyses. Although transcriptomic and epigenomic profiling provide valuable insights into gene

regulatory mechanisms, other factors, such as histone modifications, also play a significant role
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in AD3*4_We linked regions with differential chromatin accessibility to differentially expressed
genes based on their proximity. While this approach may capture promoter-gene relationships,
many DARs may also function as enhancers. These enhancer-gene links can regulate target
genes up to a megabase away, making them more challenging to identify. Using appropriate
chromatin interaction data such as Hi-C could help disentangle these connections. Finally, while
the absence of an adaptive immune system is necessary to prevent xenograft rejection, it may

lead to unaccounted for changes in the microglial response’”.

Our work sheds light on the regulation of microglia in AD: we show that it is dependent on APOE
isoform, at both the level of the transcriptome and epigenome, further highlighting the complexity
of this cell type in response to AB. Our work suggests that APOE4 microglia have compromised
microglial functions including diminished migratory capacity and heightened pro-inflammatory
responses compared to APOE?2, and these may underlie the increased risk of AD seen in carriers
of this isoform. Furthermore, our findings underscore the importance of considering the interplay
between genetic risk factors, such as APOE, and microglial states in disease progression.
Importantly, we highlight the potential involvement of the VDR in modulating microglial responses,
providing new avenues for therapeutic exploration. Overall, the use of the microglia
xenotransplantation model coupled with genome-wide profiling has enabled us to dissect the
regulatory landscape of microglia expressing the different APOE isoforms. In future, this approach
could be extended to other relevant genes. In summary, our study emphasises the complex
interplay between genetic, epigenetic, and environmental factors in shaping microglial responses

in AD and underscores the need for targeted interventions based on APOE genotype.

Methods

Differentiation of microglial progenitors
Microglial progenitors were differentiated using the MIGRATE protocol, described in detail in

Fattorelli et al. (2021).

Human microglia xenotransplantation model

App"-CF mice were crossed with homozygous Rag2tm1.1Flv Csfltm1(CSF1)Flv l12rgtm1.1Flv
Apptm3.1Tcs mice (Jacksons Lab, strain 017708) to generate the Rag2-/- 12ry-/- hCSF1KI AppN-

GF In total, we transplanted 500,000 cells bilaterally across 20 mice. Mice had access to food
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and water ad libitum and were housed with a 14/10 h light-dark cycle at 21°C in groups of two to
five animals. All experiments were conducted according to protocols approved by the local Ethical
Committee of Laboratory Animals of the KU Leuven following country and European Union
guidelines. Five biological replicates were prepared per experimental group: APOE2, APOES,
APOE4, APOE KO. From each sample, FACS purification of the following cell numbers were
attained: 100,000 cells for ATAC-seq, 200,000 cells for RNA-seq. ATAC-seq samples were
processed immediately after cell collection for tagmentation and elution of transposed DNA
(details in ATAC-seq methods section). RNA-seq was conducted from cell pellets snap frozen in

liquid nitrogen.

RNA-seq library preparation

From snap frozen cell pellets of 200,000 cells per sample, RNA was extracted using the Monarch
Total RNA Miniprep Kit (T2010) following the manufacturer’s instructions. RNA-seq was
conducted using the rRNA depletion strategy rather than mRNA enrichment so that noncoding
RNAs could be recovered’. rRNA depletion was performed using NEBNext rRNA Depletion Kit
v2 Human/Mouse/Rat with RNA Sample Purification Beads (E7405), followed by stranded
(directional) library preparation using the NEBNext Ultra Il Directional RNA Library Prep Kit for
lllumina (E7765) following manufacturer's protocols without adjustments. RNA quality was
checked using the Agilent RNA 6000 Pico Kit (5067-1513) and final libraries were assessed using
Agilent High Sensitivity DNA Kit (5067-2646) where all libraries were appropriate for sequencing
apart from one replicate of the APOE3 microglia - therefore this isoform only has four biological

replicates for RNA-seq.

ATAC-seq library preparation

ATAC-seq was conducted as previously described®. Following FACS collection of 100,000 cells
per sample, cells were spun down at 5009 for 5 min at 4°C, and the supernatant was removed.
Cell pellets were gently resuspended in 50 pL of ice-cold Lysis Buffer (10 mM Tris-HCI pH 7.4,
10 mM NaCl, 3 mM MgClI2, 0.1% IGEPAL CA-630). 2.5 yL Tagment DNA Enzyme (lllumina;
20034197) was added directly and gently mixed by pipetting. The transposition reaction was
incubated at 37°C for 30 minutes, then transferred to ice. DNA was purified immediately with the
Zymo ChIP DNA Clean and Concentration Kit (D5205) following manufacturer’s instructions. The
DNA column was spun dry prior to elution of transposed DNA, which was conducted with 11 pL

Elution Buffer. Purified DNA was stored at -20°C until library preparation. 10 pL DNA per sample
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was transferred into a PCR tube and 34.25 yL PCR master mix was added per sample. 6.25 pL
of 10 uM Nextera Primer 2 (with barcode) was added per sample, where a different barcode was
used for each sample to enable multiplexing. PCR was conducted using the following settings:
(1) 72°C for 5 min, (2) 98°C for 30s; (3) 98°C for 10s; (4) 63°C for 30s; (5) 72°C for 1 min; (6)
repeat steps (3)-(5) for a total of 10 cycles; (7) hold at 4°C. Amplified library was purified using
the Zymo ChIP DNA Clean and Concentration Kit (D5205). The purified library was eluted using
20 pL Elution Buffer. 5 pL of 5x TBE Loading Buffer (Invitrogen; LC6678) was added and loaded
in a 12-well 10% TBE gel (Invitrogen; EC62752BOX). A ladder was prepared using 0.25-0.5uL
ORangeRuler 50 bp DNA Ladder (ThermoFisher; SM0613) diluted in 5 puL 5x TBE loading buffer.
The gel was run at 70 V until DNA enters the gel, then increased to 140 V for approximately one
hour. The gel was stained using 10 mL 1x TBE with SYBR Gold Nucleic Acid Gel stain (Invitrogen;
S11494) diluted at 1:10,000 (1 pL). The gel was cut between 175-225 bp markers into a 0.5 mL
DNA LoBind tube perforated three times with a 22G needle. The gel was shredded by
centrifugation at maximum speed for 2 min at room temperature into a 1.5 mL DNA LoBind tube.
150 pL Diffusion Buffer (0.5 M Ammonium Acetate, 0.1% SDS, 1 mM EDTA, 10 mM Magnesium
Acetate, ddH20) was added to the gel in the 1.5 mL tube and shaken at room temperature for 45
minutes. The sample was then transferred to filter columns using wide-bore tips and spun at max
speed for 2 min. DNA was purified (~140 pL) using the Zymo ChIP DNA Clean and Concentration
Kit and eluted with 10 pL Elution Buffer into 1.5 mL DNA LoBind tubes. Final libraries were
guantified with the Qubit 1X dsDNA HS Assay Kit (ThermoFisher; Q33230) and stored at -20°C
prior to sequencing (yield: ~0.25 ng/uL).

Sequencing

Final library size distributions were assessed by Agilent 2100 Bioanalyser and Agilent 4200
TapeStation for quality control before sequencing. Libraries were pooled to achieve an equal
representation of the desired final library size range (equimolar pooling based on
Bioanalyser/TapeSation signal in the 150bp to 800bp range). Paired-end lllumina sequencing
using the HiSeq 4000 PE75 strategy was conducted on barcoded libraries at the Imperial
Biomedical Research Centre (BRC) Genomics Facility following the manufacturer’s protocols.

RNA-seq QC and processing

General QC of each sample was assessed using fastQC

(https://lwww.bioinformatics.babraham.ac.uk/projects/fastqc/), followed by adapter trimming using
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TrimGalore! (https://github.com/FelixKrueger/TrimGalore). Reads were aligned to the GRCh38
genome and transcriptome using STAR®. Duplicate and multi-mapping reads were retained.
Transcript quantification was performed using Salmon?®?, using the gc bias flag. Two of the APOE
knockout samples with high APOE expression were excluded from subsequent analyses

(Supplementary Fig. 2).

ATAC-seq QC and processing

General QC of each sample was assessed using fastQC

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), followed by adapter trimming using

TrimGalore! (https://github.com/FelixKrueger/TrimGalore). Reads were aligned to GRCh38 using
bowtie2 with the following arguments: —local —very-sensitive —no-mixed —no-discordant -l 25 -X
1000. Post-alignment QC included removing: reads mapping to the mitochondrial genome,
duplicate reads, multi-mapping reads, and reads with low mapping quality (g < 30). Read count
generation was performed using featureCounts®. Additionally, peaks were filtered using the
filterByExpr() function in DESeq23!, retaining only peaks with sufficiently high counts for statistical
analysis. This left 228,041 peaks for downstream analyses. The 2 APOE-KO samples with high
APOE expression in the RNA-seq data were also excluded from the ATAC-seq dataset.
Additionally, another APOE-KO and one APOE4 microglia sample were discarded because they
did not meet QC standards.

Differential expression and accessibility analysis

DeSeq23! was used for the differential expression and differential chromatin accessibility analysis.
DeSeq2 was designed for the differential analysis of RNA-seq data and has since been widely
used for this purpose. In a recent study comparing methods for differential analysis of ATAC-seq
read counts, Gontarz et al (2020) showed that with five replicates, which we have for most of our
samples, DESeg2 had the lowest false positive rate and a true positive recall comparable to other
methods available for differential accessibility analysis. For both analyses, the APOE3 microglia
samples were used as a baseline for comparison, and we additionally tested for differences
between APOE4 and APOE2 microglia. To perform the differential analysis, we used the DESeq()
function which provides a wrapper for three functions: estimateSizeFactors() for estimation of size
factors, estimateDispersions() for estimation of dispersion, and nbinomWaldTest() for negative
binomial GLM fitting and Wald statistics. Genes and peaks were defined as being significant if p
< 0.05 after FDR correction.
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Weighted gene co-expression network analysis

To identify which genes had similar expression profiles across the APOE groups, we used
weighted gene co-expression network analysis (WGCNA)*. First, transcripts with zero or low
expression counts were filtered out using the filterByExpr() function in edgeR®. As suggested by
the authors of WGCNA, the count data was normalised by variance stabilising transformation and
explored for outliers using principal component analysis. An appropriate soft thresholding power
was chosen to ensure a scale-free network and used as input to the blockwiseModules() function
in WGCNA to calculate the adjacency matrix. This function was also used to detect gene co-
expression modules and to calculate module eigengenes. As defined by the authors*®, the module
eigengenes are the first principal component of a given module and can be considered to

represent the gene expression profile of that module.

Functional enrichment analysis using differentially expressed WGCNA
modules

The module eigengenes were used to perform differential expression analysis using ImFit()
function in limma®*, across the different APOE groups. The genes belonging to the top
differentially expressed modules (FDR < 0.05) were then used as input to perform functional
enrichment analysis using clusterProfiler®®. As the only differentially expressed modules were
associated with APOE2, the genes belonging to these modules were used to perform pathway
enrichment analysis using clusterProfiler®®, allowing characterisation of the APOE2-associated
modules based on their gene ontology (GO) enrichments. GO terms were considered to be

significantly associated with the given modules if p < 0.05 after FDR correction.

Stratified linkage disequilibrium score regression

To estimate the proportion of disease SNP-heritability attributable to open chromatin regions in
the xenotransplanted microglia, we performed stratified linkage disequilibrium score regression
(s-LDSC). Annotation files were generated and used to compute LD scores. Publicly available
GWAS summary statistics for a recent AD GWAS®*” were downloaded and converted to the
required format for LDSC. Steps for the analysis were followed as instructed here
https://github.com/bulik/Idsc/wiki and required files were downloaded from
https://alkesgroup.broadinstitute.org/LDSCORE/GRCh38. LDSC was run using the full baseline
model, thereby computing the proportion of SNP-heritability associated with the annotation of

interest, while taking into account all the annotations in the baseline model. As we observed a
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significant enrichment, we repeated the analysis using GWAS data for Amyotrophic Lateral
Sclerosis*’, and Autism spectrum disorder®®, to ensure this was not a generic neurological

enrichment.

MAGMA gene set analysis

MAGMA gene set analysis®* was used to assess the enrichment of AD SNP-based heritability
among differentially expressed genes across the APOE isoforms. The SNP window was restricted
to the gene region (0,0). Summary statistics for three independent AD GWAS were
downloaded®3"*® and formatted for use with MAGMA using MungeSumstats®’. P-values were

corrected using the FDR method.

Data and code availability

FASTQ and read count files have been deposited in the Gene Expression Omnibus (GEO) under
accession GSE271384 for the ATAC-seq dataset and GSE271385 for the RNA-seq dataset. All
the data and code required to reproduce the figures in this manuscript are available in our GitHub
repository: https://github.com/neurogenomics/APOE_microglia. All supplementary tables are
available at: 10.5281/zenodo.12516685
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Supplementary Figure 1: a PCA on gene expression across the APOE isoforms and the APOE-
KO. PCA was generated using the variance stabilizing transformation (VST)-normalised
expression counts matrix. b PCA on genome-wide chromatin accessibility across the APOE
isoforms and the APOE-KO. PCA was generated using the variance stabilizing transformation
(VST)-normalised expression counts matrix. ¢ Hierarchical clustering using Euclidean distance of
VST-normalised expression counts of the APOE isoforms and the APOE-KO. d Hierarchical
clustering using Euclidean distance of VST-normalised ATAC-seq read counts of the APOE
isoforms and the APOE-KO. e Pie chart of genomic annotations of the consensus set of chromatin
accessibility peaks. f TSS enrichment profiles of ATAC-seq peaks.
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Supplementary Figure 4: Heatmaps showing differential accessibility of significant peaks (FDR
< 0.05) when comparing a E4 vs E2, b KO vs E3. Shown are the genes annotated to the top 20
peaks, genes marked in bold were also significantly differentially expressed in the RNA-seq

analysis.
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Supplementary Figure 5: Stacked barplot of the number of differentially accessible regions

(DARs) and how many of these overlap with the DEGs based on peak-to-gene annotation.
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promoter peaks in a APOE2 vs APOE4, b APOE4 vs APOE4, c APOE4 vs APOE2, d APOE KO
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