

1 **Mechanobiochemical finite element model to analyze impact-loading-induced**
2 **cell damage, subsequent proteoglycan loss, and anti-oxidative treatment effects**
3 **in articular cartilage**

4 **Short title:** Numerical modeling of cartilage degeneration and antioxidant treatment

5 Joonas P. Kosonen^{1*}, Atte S.A. Eskelinen¹, Gustavo A. Orozco¹, Mitchell C. Coleman², Jessica E. Goetz²,
6 Donald D. Anderson², Alan J. Grodzinsky³, Petri Tanska¹ and Rami K. Korhonen¹

7 ¹Department of Technical Physics, University of Eastern Finland, Kuopio, Finland

8 ²Departments of Orthopedics & Rehabilitation and Biomedical Engineering, University of Iowa, Iowa,
9 United States of America

10 ³Departments of Biological Engineering, Electrical Engineering and Computer Science, and Mechanical
11 Engineering, Massachusetts Institute of Technology, Cambridge, United States of America

12 *Corresponding author:

13 Email: joonas.kosonen@uef.fi

14 **Abstract [word count: 230/300]**

15 Joint trauma often leads to articular cartilage degeneration and post-traumatic osteoarthritis (PTOA). Pivotal
16 determinants include trauma-induced excessive tissue strains that damage cartilage cells. As a downstream
17 effect, these damaged cells can trigger cartilage degeneration via oxidative stress, cell death, and proteolytic
18 tissue degeneration. N-acetylcysteine (NAC) has emerged as antioxidant capable of inhibiting oxidative
19 stress, cell death, and cartilage degeneration post-impact. However, temporal effects of NAC are not fully
20 understood and remain difficult to assess solely by physical experiments. Thus, we developed a
21 computational framework to simulate a drop tower impact of cartilage with finite element analysis in
22 ABAQUS, and model subsequent oxidative stress-related cell damage, and NAC treatment upon cartilage
23 proteoglycan content in COMSOL Multiphysics, based on prior *ex vivo* experiments. Model results provide
24 evidence that by inhibiting further cell damage by mechanically induced oxidative stress, immediate NAC
25 treatment can reduce proteoglycan loss by mitigating cell death (loss of proteoglycan biosynthesis) and
26 enzymatic proteoglycan depletion. Our simulations also indicated that delayed NAC treatment may not
27 inhibit cartilage proteoglycan loss despite reduced cell death after impact. These results enhance
28 understanding of temporal effects of impact-related cell damage and treatment that are critical for the
29 development of effective treatments for PTOA. In the future, our modeling framework could increase
30 understanding of time-dependent mechanisms of oxidative stress and downstream effects in injured cartilage
31 and aid in developing better treatments to mitigate PTOA progression.

32 **Author summary [word count: 134/200]**

33 Post-traumatic osteoarthritis is a debilitating disease which is often initiated by trauma and characterized by
34 cartilage degeneration. The degeneration is partly driven by trauma-induced damage, including oxidative
35 stress, to cartilage cells. Multiple drugs have been studied to counteract the cell damage, but it remains
36 difficult to inhibit the disease progression since temporal effects of such treatments are not fully understood.
37 Here, we developed a computational framework to study effects of antioxidant treatment in mechanically
38 impacted cartilage and compared our computational simulations with previously published experiments.
39 Our results showed that the high strain induced cell damage occurring in the mechanically impacted region
40 could be mitigated by N-acetylcysteine treatment. This mechanism could partly explain reduced cartilage
41 proteoglycan loss compared to untreated samples. Our modeling framework could help enhance
42 development of treatments to better inhibit osteoarthritis progression.

43 1. Introduction

44 Disturbances in articular joint homeostasis after traumatic injuries, such as intra-articular fractures and
45 anterior cruciate ligament rupture, can ultimately lead to post-traumatic osteoarthritis (PTOA) characterized
46 by pain, stiffness, and cartilage degeneration [1–3]. Although the mechanisms of PTOA onset are not fully
47 understood, several studies have shown that chondrocytes (cartilage cells) play a key role in cartilage health
48 after impact [1,4–6]. The cell-driven degeneration of the tissue has been suggested to be triggered by
49 inflammation [6] and trauma-related alterations in cell mechanotransduction due to excessive tissue strains
50 or strain rates [4,5,7]. The excessive mechanical strains can deform and damage the cells in cartilage, with
51 a downstream effect of promoting excessive production of reactive oxygen species (ROS) that cause
52 oxidative stress [5,8]. Damaged cells experiencing oxidative stress can undergo cell death, whether through
53 necrosis or apoptosis, which decreases biosynthesis of proteoglycan molecules in the extracellular matrix
54 (ECM) [9,10]. In addition, excessive amounts of ROS in damaged cells can act as secondary messengers
55 that upregulate the release of proteolytic enzymes, such as aggrecanase and collagenase enzymes, that
56 further increase the loss of the ECM components [11,12].

57 Orally or intra-articularly delivered antioxidants can reduce the amount of ROS directly by
58 scavenging ROS and indirectly by fortifying the natural antioxidative system within chondrocytes
59 [11,13,14]. Several antioxidants have been studied [13,15], and N-acetylcysteine (NAC) has emerged as
60 one of the most potent antioxidants in inhibiting cell death and reducing ECM degeneration after *ex vivo*
61 impact [16–20]. NAC has also been shown to inhibit cell death and ECM degeneration in a large animal
62 model after severe impact-injury when administered intra-articularly post-impact [20]. However, the rapid
63 clearance of small NAC molecules (163 Da) from intra-articular space [21] makes it challenging to find an
64 optimized dose sufficient to inhibit acute cell damage and later cartilage degeneration *in vivo* after impact.

65 Computational models have proved useful for estimating cartilage response to injurious loading,
66 progression of cartilage degeneration, and treatment effects. Biomechanical finite element models with
67 stress/strain-based degeneration algorithms have been used for simulating tissue degeneration under

68 physiologically relevant loading conditions [22–25]. Recently, these biomechanical degeneration models
69 have been coupled with biological mechanisms, such as time-dependent diffusion of pro-inflammatory
70 cytokines [26,27], biomechanically triggered ROS overproduction [28], cell death [29], and enzymatic
71 degeneration of proteoglycans [26]. Building on these mechanobiological degeneration models, recent work
72 has simulated the effects of anti-inflammatory treatments on time-dependent cartilage degeneration [30,31].
73 Yet, there are no models combining injurious loading, oxidative stress-induced cell damage, and damaged
74 cell-driven degeneration of cartilage with computational simulation of antioxidant treatment aiming to
75 prevent cellular oxidative injury following a high-energy impact. Such models could be used to explore why
76 an intra-articular anti-oxidative injection may or may not work in any given clinically relevant scenario
77 (type of injury, treatment timing, dosage, etc.).

78 In this study, we developed a new computational modeling framework to simulate a high energy
79 impact, impact-induced oxidative cell damage, acute cell death and adaptation of proteoglycan content. This
80 framework was then used to simulate the effects of short-term NAC treatment in mature bovine cartilage,
81 with an aim to understand which mechanobiologically relevant modeling parameters can explain the cell
82 viability and proteoglycan content quantitatively determined in prior experiments [17]. We hypothesized
83 that i) higher proteoglycan content in immediately NAC treated vs. untreated samples after impact could be
84 partly explained by inhibited strain-induced local cell oxidative damage, proteolytic degeneration of
85 proteoglycans, and cell death, and that ii) although impact-induced oxidation driven cell death could be
86 inhibited with NAC treatment delivered at a later time point after mechanical impact, delayed treatment is
87 insufficient to fully protect matrix proteoglycan content due to substantial release of proteolytic enzymes
88 before the treatment. Due to a lack of accurate and repeatable measures of cell-level parameters such as cell
89 death rate and chondrocyte protection rate by NAC, we investigated the effect of the most important
90 parameters on cell death and proteoglycan content via sensitivity analysis. This approach marks an important
91 step towards understanding and numerically estimating the underlying mechanobiological effects of
92 antioxidant treatment at cell and tissue levels in cartilage after severe impact-injury. Ultimately, our
93 modeling framework could help in designing more efficient treatments to mitigate PTOA.

94 **2. Methods**

95 **2.1. Previous experiments as a basis of the computational framework**

96 Our computational modeling framework leverages prior *ex vivo* drop-tower impact experiments of mature
97 bovine osteochondral plugs (25 mm wide) conducted by Martin et al. [17] (Fig 1A). The following
98 experimental data were compared against outputs from our computational model: **1**) cell viability in
99 untreated samples 200 μ m from the impacted surface (confocal microscopy) 1-, 3-, 6-, 12-, 24-, and 48-
100 hours after impact (Fig. 1A and B), **2**) cell viability in samples treated with NAC (2mM) at day 2 with 0-,
101 1-, 4-, and 12-hour treatment delay (Fig. 1C), and **3**) relative proteoglycan content at days 7 and 14 post-
102 impact in samples with and without immediate 1-day NAC treatment (Fig. 1D). In the experiments, the
103 relative proteoglycan content was quantified with dimethyl methylene blue assay of 4-mm wide impacted
104 vs. intact regions dissected from original samples [17].

105

106 **Fig. 1. Workflow.** A) The biomechanical response of cartilage to drop-tower impact was first simulated
107 based on prior experiments. Maximum shear strains were computed at the time of peak impact force (4000N)
108 to identify cell damage (i.e., cells experiencing oxidative stress). B) Time-dependent loss of cell viability
109 from impact was next simulated for comparison with experimental findings. C) Then N-acetylcysteine
110 (NAC)-induced cell recovery after 0, 1, 4, and 12-hour post-impact treatment delay was simulated, and
111 viability was matched with experiments. D) Finally, proteoglycan degeneration driven by the damaged cells
112 and the mitigating effect of NAC treatment was simulated.

113

114 **2.2. Finite element model for simulating impact loading and shear strain-triggered cell damage**

115 An axisymmetric finite element model of the cartilage (width of 12.5 mm, height of 1 mm) and a beveled
116 flat-ended indenter (5 mm diameter with 1 mm circle radius for the rounded edge) was constructed to
117 simulate the impact. Cartilage was modeled as a fibril-reinforced poroviscoelastic material with Donnan
118 osmotic swelling [32,33] while the indenter was assumed rigid. The depth-dependent content and structure

119 (i.e. proteoglycan content, water content, collagen density and orientation, and material parameters of the
120 model) were estimated based on prior reports of mature bovine cartilage (see Supplementary material S1)
121 [32–34]. As an initial condition in the model, cartilage was allowed to swell until mechanical equilibrium
122 (physiological salt concentration, i.e., 0.15 M NaCl) [32] followed by simulation of the cartilage-indenter
123 impact where sinusoidal-like force was applied on the indenter. Earlier drop-tower studies have reported
124 sinusoidal-like force-response to impact over 0.6–2 ms [35–37], thus we assumed impact time $t_{\text{impact}} = 1$
125 ms (Fig. 1A). With this impact time we calculated the average impact force ($F_{\text{impact,av}} = mv_{\text{av}}/t_{\text{impact}}$,
126 where impact velocity $v_{\text{av}} = \sqrt{2gh}$, m is mass of the impactor, g is the gravity constant, h is drop height of
127 the impactor) to be $F_{\text{impact,av}} = 2350$ N (average stress $\sigma_{\text{impact,av}} = 120$ MPa) and corresponding peak
128 impact force to be $F_{\text{impact,peak}} = 4000$ N (Fig 1A; peak impact stress $\sigma_{\text{peak}} = 200$ MPa). We consider
129 these peak impact force estimates reasonable, since they are in similar range as earlier drop-tower impact
130 experiments showing 50–70 MPa peak impact stresses (800–1100 N peak impact forces) with an indenter of
131 5.5 mm in diameter [38]. However, sensitivity analysis with 2000N (100MPa peak impact stress) and 6000N
132 peak impact forces (300MPa peak impact stress) was also conducted to analyze effect of the impact force
133 on maximum shear strains and cell damage (See supplementary material S2).

134 Since high local strains trigger oxidative stress and cell death [5], we calculated the maximum shear
135 strain from the Green-Lagrangian strain tensor at the peak impact force (0.5 ms). The maximum shear strain
136 distribution was used to define the initial cell damage (day 0 initial condition) with a non-linear cellular
137 damage function $f_{\text{dmg}}(\varepsilon)$ [23]:

$$138 \quad f_{\text{dmg}}(\varepsilon) = \begin{cases} 0, & \text{when } \varepsilon < \varepsilon_{\text{dmg,init}} \\ \frac{\varepsilon_{\text{dmg,max}}}{\varepsilon} \frac{\varepsilon - \varepsilon_{\text{dmg,init}}}{\varepsilon_{\text{dmg,max}} - \varepsilon_{\text{dmg,init}}}, & \text{when } \varepsilon_{\text{dmg,init}} \leq \varepsilon \leq \varepsilon_{\text{dmg,max}} \\ 1, & \text{when } \varepsilon > \varepsilon_{\text{dmg,max}} \end{cases} \quad (1)$$

139 where ε is the maximum shear strain, $\varepsilon_{\text{dmg,init}} = 40\%$ is the strain threshold describing the initiation of cell
140 damage, and $\varepsilon_{\text{dmg,max}} = 150\%$ is the maximum cell damage threshold describing the limit when all cells

141 are damaged [7]. This initial cell damage was used as an input for the cell viability and proteoglycan content
142 simulations (see section 2.3, Eq. 6).

143 The biomechanical model was constructed in ABAQUS (v. 2023, Dassault Systèmes, Providence,
144 RI, USA) with 2506 continuum pore pressure elements (type: CAX4P) and solved with transient soils
145 analysis. Indenter-cartilage contact was modeled using tabular pressure-overclosure relationship. Nodes of
146 the cartilage geometry initially in contact with the indenter were constrained in the radial direction during
147 the simulations. The bottom surface of the cartilage tissue was fixed in axial and radial directions
148 (osteochondral plug in Martin et al. [17]; bone was not included in the model). Fluid flow and radial
149 movement of the nodes was prevented on the symmetry axis of the plug (axisymmetric boundary condition).
150 Fluid flow was allowed through the free boundaries. Mesh convergence was verified (see Supplementary
151 material S3).

152 **2.3. Modeling cell viability, proteoglycan degeneration, and NAC treatment**

153 In our modeling framework, we simulated distributions of healthy, damaged and dead cells, where initially
154 healthy cells were turned into damaged cells due to excessive local strains caused by the impact (Eq. 1). The
155 damaged cell population was assumed to have less efficient antioxidative defenses, thus they were allowed
156 to die over time due to being more susceptible to oxidative stress after the impact [39–41]. In the model, the
157 cells in a damaged state released proteolytic enzymes that could degenerate proteoglycans and no purely
158 mechanically induced degeneration was considered. The total biosynthesis of proteoglycans in cartilage was
159 decreased due to lower number of viable cells (healthy + damaged). The cell damage was mitigated by
160 diffusion of NAC from the free tissue boundaries, inhibiting the downstream effects of cell damage and
161 restoring the antioxidative defense system of the cells rendering them back into healthy cellular state [20].

162 All cell-related processes were modeled in Comsol Multiphysics (v. 5.6, Burlington, MA, USA)
163 with reaction–diffusion partial differential equations [26,28]:

$$\frac{\partial C_s}{\partial t} = D_s \nabla^2 C_s + R_{s,\text{source}} - R_{s,\text{sink}}, \quad (2)$$

164 where t is time, C_s is the concentration of a given constituent species within cartilage, D_s is the effective
165 diffusion constant, $R_{s,\text{source}}$ is the source term, and $R_{s,\text{sink}}$ the sink term of species s (s = healthy, damaged or
166 dead cell population or proteoglycan, proteolytic enzyme, or NAC concentration) [26]. Effective diffusion
167 of proteolytic enzymes was modeled depth-dependent according to the defined proteoglycan content as in
168 [26]. Source/sink terms for proteoglycans and proteolytic enzymes (describing degeneration of
169 proteoglycans) were modeled according to Michaelis-Menten kinetics as in [26] and [28]. For NAC, we
170 assumed isotropic diffusion as $D_{\text{NAC}} = 120 \cdot 10^{-6} \text{ m}^2/\text{s}$ based on its molecular weight (163.2 Da) [42]. Due
171 to lack of experimental data regarding NAC half-life and chemical reaction rates in cartilage, source/sink
172 terms for NAC were assumed zero (i.e., NAC was only diffusing into cartilage without further changes until
173 free diffusion of NAC out of cartilage when culture media was changed).

174 Damaged chondrocytes were allowed to die due to oxidative stress. Unlike in previous studies
175 [28,29], we did not explicitly model ROS concentration in damaged cells due to high variation in reaction
176 kinetics of different ROS molecules [14]. Instead, we implicitly modeled cellular oxidative stress through
177 the concentration of damaged chondrocytes $C_{c,\text{dmg}}$, that could be further altered by the presence of NAC:

$$\frac{\partial C_{c,\text{dmg}}}{\partial t} = -k_{c,\text{dmg} \rightarrow c,\text{dead}} C_{c,\text{dmg}} - \frac{\partial C_{c,h}}{\partial t}, \quad (3)$$

178 where $k_{c,\text{dmg} \rightarrow c,\text{dead}}$ is the cell death rate for damaged cells, and $C_{c,h}$ is the concentration of healthy cells.
179 Accordingly, the recovery of damaged chondrocytes back to healthy was modeled as

$$\frac{\partial C_{c,h}}{\partial t} = k_{c,\text{dmg} \rightarrow c,h} C_{\text{NAC}} C_{c,\text{dmg}}, \quad (4)$$

180 where $k_{c,\text{dmg} \rightarrow c,h}$ is the chondrocyte protection rate due to NAC (recovery of damaged cells back to
181 healthy) and C_{NAC} is the NAC concentration. Since Martin et al. [17] reported on average less than 5%
182 change in cell viability in unimpacted control samples after 3 days of culture, we did not assume
183 spontaneous, basal chondrocyte death or recovery.

184 Proteoglycan loss was modeled by simulating increased proteolytic activity observed earlier after
185 impact injury [19,43]. The production of proteolytic enzymes was increased according to an exponential
186 stimulus function S (for more details, see Supplementary material S4), which was elevated in the areas of
187 damaged cells $C_{c,dmg}$:

$$\frac{\partial S}{\partial t} = \alpha_{aga}(k_{aga}C_{c,dmg} - S), \quad (5)$$

188 where $\alpha_{aga} = 0.4 \cdot 10^{-5} \text{ s}^{-1}$ is the rate constant for stimulus and k_{aga} is a stimulus constant for release
189 from damaged cells. Initial cell stimulus and proteolytic enzyme concentration was set to zero, and zero flux
190 for proteolytic enzymes was set at all boundaries. Initial proteoglycan concentration was calculated from
191 the fixed charge density distribution used in the biomechanical impact model (for more details of the
192 biochemical model, see supplementary material S4) [32,44].

193 Due to a lack of data on cell distribution of the impacted samples in [17], initial healthy cell
194 concentration was assumed homogenous ($C_{c,h,init} = 0.5 \times 10^{14} \text{ m}^{-3}$) [45]. Also, no cell proliferation was
195 considered (*i.e.* sum of damaged, healthy, and dead cells was assumed constant $C_{c,dmg} + C_{c,h} + C_{c,dead} =$
196 $C_{c,h,init}$). Assuming a fraction of cells would become damaged after impact (see Eq. 1) [5], we set the initial
197 cell damage as:

$$C_{c,dmg,init} = f_{dmg}(\varepsilon)C_{c,h} \quad (6)$$

198 The initial NAC concentration within the cartilage was set to zero, and the concentration on the free surfaces
199 (top and outer surface) was set to 2 mM (Fig. 1C). To simulate the delayed administration of NAC (0, 1, 2,
200 3, 4 and 12 hours after impact, Fig. 1C), the NAC concentration on the free surfaces was increased from 0
201 mM to 2 mM with a step function. Radial and axial fluxes through the boundaries for proteoglycan and
202 proteolytic enzyme molecules were defined as described previously by Kar et al. [26].

203 **2.5 Sensitivity analysis and reference parameters**

204 Sensitivity analyses were conducted to analyze the effect of relevant model parameters on the cell viability
205 and proteoglycan content (Table 1). These parameters included the maximum cell damage threshold

206 $\varepsilon_{\text{dmg,max}}$, cell death rate for damaged cells $k_{c,\text{dmg} \rightarrow c,\text{dead}}$, proteolytic enzyme stimulus constant in damaged
207 cells k_{aga} , and chondrocyte protection rate after NAC treatment $k_{c,\text{dmg} \rightarrow c,\text{h}}$. Reference parameters were
208 selected so that predicted average cell viability matched experimental outputs [17] (see Section 2.1). Ranges
209 for sensitivity analysis were selected so that predicted average cell viability was within one standard
210 deviation of the experimentally measured mean cell viability. Additionally, we conducted sensitivity
211 analyses for the peak impact force and proteolytic enzyme stimulus constant in damaged cells to study their
212 effect on the initial cell damage and proteoglycan loss (see supplementary material S2 and S5).

213 **Table 1. Parameters for sensitivity analysis.** Cell viability, proteoglycan degeneration and treatment-
214 related parameters chosen for the sensitivity analysis. Bolded values were chosen as the reference value.

Parameters	Reference parameters	Range	Description	Reference
$\varepsilon_{\text{dmg,max}} [\%]$	150%	100%, 150% , 200%	Maximum cell damage threshold	[7,17]
$k_{c,\text{dmg} \rightarrow c,\text{dead}} [10^{-5} \text{ s}^{-1}]$	0.69	4.6, 6.9 , 13.9	Cell death rate for damaged cells	[17]
$k_{c,\text{dmg} \rightarrow c,\text{h}} [10^{-4} \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}]$	0.53	0.29, 0.39, 0.53	Chondrocyte protection rate	[17]

215

216 3. Results

217 3.1 By inhibiting cell damage in impacted cartilage, NAC partly reduced proteoglycan loss

218 With the reference parameters (table 1 in Section 2.5), the mechanical impact model predicted cell damage
219 extending through the full thickness of the tissue, whereas no cell damage was predicted in the non-impacted
220 region (Fig 2A). Without treatment, cell death was observed in the excessively loaded regions of cartilage,
221 and NAC treatment immediately after impact inhibited the acute cell death.

222 The model predicted proteoglycan loss throughout the cartilage depth in the impacted area (Fig.
223 2B), and the lowest proteoglycan content was located at the superficial zone. Simulated NAC treatment was
224 able to inhibit the proteoglycan content loss in the impacted area when the treatment was administered
225 immediately after the impact loading. Four hours post-impact treatment delay resulted in proteoglycan loss
226 in the superficial and deeper parts of the cartilage closer to that in the untreated samples. Most of the
227 proteoglycan loss was observed within 7 days after impact, and at day 14, the predicted proteoglycan content
228 was 5%, 11% and 14 % lower in the impacted region compared to intact region in immediately treated, 4-
229 hour treatment delay, and without treatment models (Fig. 2C).

230

231 **Fig. 2 NAC can reduce proteoglycan loss by inhibiting impact-induced cell damage.** A) Our simulations
232 showed high cell damage after impact, leading to acute cell death in damaged regions. Immediate post-
233 impact NAC treatment effectively preserved cell viability throughout cartilage depth in the damaged areas.
234 B) Without NAC treatment, proteoglycan content was subsequently reduced throughout the depth of the
235 cartilage. Immediate post-impact NAC treatment inhibited proteoglycan loss by reducing cell damage, but
236 treatment after a 4-hour delay was less successful in maintaining proteoglycan content. C) Quantitatively,
237 our simulated results matched experiments and showed that 4-hour treatment delay resulted in proteoglycan
238 content resembling the content in untreated cartilage after impact.

239

240

241 **3.2 Sensitivity analysis of cell damage and predicted cell viability after delayed treatment**

242 Increasing the $\varepsilon_{\text{dmg,max}}$ threshold (Table 1) resulted in lower cell damage in the impacted area (Fig. 3 A-
243 C), while the opposite was observed when decreasing the threshold. That is, $\varepsilon_{\text{dmg,max}} = 100\%$ resulted in
244 65% cell damage for the initially healthy cells in the impacted superficial zone, whereas the reference value
245 $\varepsilon_{\text{dmg,max}} = 150\%$ led to 56% and $\varepsilon_{\text{dmg,max}} = 200\%$ to 52% cell damage. By selecting $\varepsilon_{\text{dmg,max}} = 150\%$
246 (Fig. 3D), the reference model (with $k_{c,\text{dmg}\rightarrow c,\text{dead}} = 6.9 \cdot 10^{-5} \text{ s}^{-1}$, Table 1) replicated well the average
247 cell viability (46%) observed in experiments three days after the impact loading [17]. The reference model
248 also showed the best fit to the experimentally observed cell viability over the entire 3 days after impact,
249 showing 64% cell viability 4 hours after impact (Fig. 3E). In contrast, with $k_{c,\text{dmg}\rightarrow c,\text{dead}} = 13.9 \cdot 10^{-5} \text{ s}^{-1}$
250 and $k_{c,\text{dmg}\rightarrow c,\text{dead}} = 4.6 \cdot 10^{-5} \text{ s}^{-1}$, the model overestimated (viability 51% at 4h) and underestimated
251 (viability 72% at 4h) the average cell death, respectively, compared to experiments during the first hours
252 post-impact.

253

254 **Fig. 3 Calibration of cell damage and viability after impact.** Cell damage distributions at day 0 after
255 impact, when A) the maximum cell damage threshold $\varepsilon_{\text{dmg,max}} = 100\%$, B) when $\varepsilon_{\text{dmg,max}} = 150\%$,
256 and C) when $\varepsilon_{\text{dmg,max}} = 200\%$. Since D) $\varepsilon_{\text{dmg,max}} = 150\%$ best matched the experiments, E) it was
257 utilized to determine the cell death rate for damaged cells $k_{c,d\rightarrow c,\text{dead}}$ over 72 hours after impact. With
258 $k_{c,d\rightarrow c,\text{dead}} = 6.9 \times 10^{-5} \text{ s}^{-1}$, the model replicated also the decrease in cell viability (amount of healthy cells
259 maintained) during the first 16 hours after impact. Experimental data show the mean \pm standard deviation.

260

261 In the case of immediate NAC treatment post-impact, increasing the chondrocyte protection rate
262 ($k_{c,\text{dmg}\rightarrow c,h}$) resulted in further improvements in predicted cell viability two days post-impact, especially at
263 the superficial cartilage (Fig. 4A-C). With 2 day NAC treatment and $k_{c,\text{dmg}\rightarrow c,h} = 0.29 \cdot 10^{-4} \text{ m}^3\text{mol}^{-1}\text{s}^{-1}$
264 in the model, the predicted cell viability was increased from 46% (no NAC treatment) to 69% in the
265 impacted superficial zone (Fig. 4D), while with $k_{c,\text{dmg}\rightarrow c,h} = 0.39 \cdot 10^{-4} \text{ m}^3\text{mol}^{-1}\text{s}^{-1}$ or $k_{c,\text{dmg}\rightarrow c,h} =$
266 $0.53 \cdot 10^{-4} \text{ m}^3\text{mol}^{-1}\text{s}^{-1}$, the predicted cell viabilities due to treatment were increased to 73% and 77%,

267 respectively. When $k_{c,dmg \rightarrow h} = 0.29 \cdot 10^{-4} \text{ m}^3\text{mol}^{-1}\text{s}^{-1}$ and $k_{c,dmg \rightarrow h} = 0.39 \cdot 10^{-4} \text{ m}^3\text{mol}^{-1}\text{s}^{-1}$ was used,
268 the model underestimated cell viability when the treatment was delayed compared to the experiments (data
269 not shown). When $k_{c,dmg \rightarrow h} = 0.53 \cdot 10^{-4} \text{ m}^3\text{mol}^{-1}\text{s}^{-1}$ was used in the model, cell viabilities were reduced
270 from 77% to 45% as a function of the NAC treatment delay from 0 to 12 hours, respectively (Fig. 4E).

271
272 **Fig. 4 Cell viability after treatment.** Cell viability distributions 2 days after impact when A) chondrocyte
273 protection rate $k_{c,dmg \rightarrow c,h} = 2.9 \cdot 10^{-5} \text{ m}^3\text{mol}^{-1}\text{s}^{-1}$, B) when $k_{c,dmg \rightarrow c,h} = 3.9 \cdot 10^{-5} \text{ m}^3\text{mol}^{-1}\text{s}^{-1}$ and when
274 C) $k_{c,dmg \rightarrow c,h} = 5.3 \cdot 10^{-5} \text{ m}^3\text{mol}^{-1}\text{s}^{-1}$. D) Simulated and experimentally-measured cell viability in the
275 superficial zone of the impacted area over 2 days. E) Comparison of the simulated and experimentally-
276 measured cell viability after 0-, 1-, 4-, and 12-hour treatment delay. With reference parameter $k_{c,dmg \rightarrow c,h} =$
277 $5.3 \times 10^{-5} \text{ m}^3\text{mol}^{-1}\text{s}^{-1}$, our model was able to replicate the cell viability after treatment delay as observed in
278 experiments.

279
280
281
282
283
284
285
286
287
288
289

290 4. Discussion

291 We developed a computational modeling framework to simulate impact induced early-phase cell damage
292 (oxidative stress), cell death, proteoglycan degeneration, and short-term anti-oxidative NAC treatment
293 aiming to counteract the biological effects of the impact. We calibrated the model against quantitative data
294 of cell viability and proteoglycan loss from previous *ex vivo* experiments [17]. The main findings were: i)
295 high shear strains in the impacted region of cartilage can lead to cellular damage and oxidative stress,
296 triggering cell death pathway and proteoglycan degeneration, ii) inhibition of impact-induced oxidative cell
297 damage and cell death with NAC resulted in reduced proteolytic enzyme activity and production (Eq. 5),
298 thereby mitigating proteoglycan loss and iii) since ongoing proteolytic enzyme production was not inhibited,
299 delayed (> 4 hours) treatment may not protect the proteoglycan content despite the fact that cell death could
300 be reduced by NAC.

301 4.1 Simulated cell damage and cell viability after impact

302 Cell damage was observed in the superficial and deep cartilage due to high shear strains [4,8,46] leading to
303 accumulated cell death over 2 days after impact (Fig 2). This is also consistent with earlier cartilage impact
304 loading experiments that have reported post-impact cell death in superficial and deep cartilage layers [46–
305 49]. Furthermore, our simulations predicted 56% cell damage immediately after impact, in line with the
306 earlier *ex vivo* reports showing harmful ROS production in 60% of superficial chondrocytes 1 hour after
307 impact [47] and 55 % viability (Fig 3D) after 3 days [17]. Similarly, other *ex vivo* impact models have shown
308 that there is a connection between lethal oxidative stress, oxidative stress associated cell damage, and
309 subsequent cell death within an hour after impact [46]. Acute cell death within hours after impact can include
310 different types of cell death such as necrosis and subacute apoptosis [50], both promoted by excessive
311 amounts of ROS [51]. In the current model, net cell death rate considering both necrosis and apoptosis was
312 used to replicate rapid cell death [17] and different cell death types were not considered. However, a large
313 number of necrotic cells could influence net cell death rate in early time-points post-impact and limit the
314 timeframe when NAC can inhibit oxidative stress in lethally damaged cells. Nevertheless, inclusion of

315 necrosis and apoptosis separately has been done in earlier computational models [28], and it could be
316 included in the current modeling workflow when more experimental data become available.

317 Our simulations showed that immediately administered NAC treatment reduced acute cell death
318 during the first hours after impact by inhibiting cellular oxidative damage (Fig 2A). With a high chondrocyte
319 protection rate ($k_{c,dmg \rightarrow c,h} = 5.3 \cdot 10^{-5} \text{ m}^3 \text{ mol}^{-1} \text{ s}^{-1}$), simulated cell viability increased from 46% to 77%
320 in 2 days after impact compared to untreated cartilage in agreement with a 32 % -point increase seen in the
321 *ex vivo* experiments [17] (Fig 4D). Similar efficiency of NAC was reported in human *ex vivo* experiments:
322 14 % -point increase in cell viability after 1-day NAC treatment (2 mM) [16] and increase of over 20 % -
323 points after 7-day continuous (medium changed every 2-3 days) treatment of impacted cartilage compared
324 to untreated samples [19]. Simulation results suggest that NAC could inhibit loss of cell viability throughout
325 the tissue by counteracting cellular oxidative damage in superficial and deep zones of injured cartilage
326 because of fast diffusion of NAC (small molecular size) to damaged regions.

327 After 1-, 4- and 12-hour post-impact treatment delays, our model predicted 69%, 55%, and 45% cell
328 viability compared to $74 \pm 7\%$, $59 \pm 6\%$, and $39 \pm 6\%$ cell viability, respectively, in the previous experiments
329 [17] after a single administration of NAC (Fig. 4E). An earlier *ex vivo* human study reported that 7 days of
330 continuous NAC treatment after a 24-hour delay could effectively increase cell viability above that of
331 untreated samples after impact (0.59 J) [16]. This result could imply that with low impact energies, delayed
332 administration of NAC after impact may still remain effective than currently suggested by our modeling
333 framework (4 h). Although not simulated here, also estimating different impact energies and the associated
334 different cell death rates affected by pro-inflammatory cytokines [28] is possible in the current modeling
335 framework.

336 **4.2 Proteoglycan content after impact**

337 Without treatment, impact loading can trigger oxidative stress related proteoglycan degeneration in cartilage
338 [16,20]. Our model showed 85% relative proteoglycan content at day 14 which was consistent with $88 \pm 10\%$
339 relative proteoglycan content measured in the experiments [17] (Fig. 2C). The lowest proteoglycan content

340 was observed in the superficial zone, which has been also reported in previous *ex vivo* studies of injuriously
341 loaded cartilage [52] which could be driven by mechanical disruption of cartilage, loss of biosynthesis and
342 increased proteolytic activity [16,52]. In our earlier model [28], we showed that over short periods,
343 proteolytic enzyme production is more important to induce loss of proteoglycan content than cell death and
344 impaired biosynthesis in injured and physiologically, cyclically loaded cartilage. This same mechanism is
345 present in the current study which suggests decrease of proteoglycan biosynthesis was not the primary
346 mechanism for the proteoglycan loss after impact. Hence, acute ROS inhibition by NAC could be important
347 to effectively inhibit proteoglycan loss caused by catabolic cell reactions.

348 When NAC treatment was utilized immediately after impact (time 0) and after 4-hour delay, our
349 simulations indicated that relative proteoglycan content in the impacted region (compared to the intact area)
350 was increased by 10%-points and 3%-points compared to untreated cartilage at day 14, respectively (Fig.
351 2C). On average, the experiments reported an average increase of 22%-points in relative proteoglycan
352 content at day 14 when treatment was not delayed [17]. Our modeling results suggest that after a 4-hour
353 delay, treatment is no longer effective in reducing proteoglycan loss although it is still able to reduce cell
354 death. Thus, our model suggests that acute inhibition of impact- and oxidative stress-related stimulation of
355 catabolic enzymes (such as a disintegrin and metalloproteinase with thrombospondin-like motifs
356 (ADAMTS)-4 and -5 [53–55]) may play an important role in preventing proteoglycan loss with NAC
357 treatment [16,56]. However, in addition to reduced oxidative stress and cell damage, other mechanisms may
358 also affect NAC-induced reduction in proteoglycan loss (Fig. 2C), such as an increase of proteoglycan
359 biosynthesis by increased anabolic activities in cells [16,57], reduction of direct ROS-induced proteoglycan
360 oxidation [58], and inhibited inflammatory response of chondrocytes [15,59]. Further research is needed to
361 decipher the effect of each of these variables.

362 **4.3 Limitations**

363 Even though our computational modeling framework was able to replicate the experimentally observed cell
364 viability and proteoglycan content, there are some limitations regarding its biomechanical and biochemical

365 aspects. Our biomechanical simulations of the impact and the resulting strain distributions are dependent on
366 the estimated material properties, cartilage thickness, and depth-dependent structural properties. Based on
367 our preliminary tests, we observed that strain distribution during rapid impact loading was mostly influenced
368 by collagen-related parameters (such as strain-dependent collagen fibril modulus and depth-dependent
369 collagen orientation [32,33]), which were not analyzed by Martin et al. [17]. Also, the maximum shear strain
370 threshold defining initiation of cell damage (40%) [22] and maximum cell damage (150%) [7] were based
371 on earlier computational studies reporting cell death in areas exceeding the tissue-level strain-thresholds,
372 but experiments have shown smaller cell-level strains causing cell death and damage [5]. These uncertainties
373 may affect simulated strain distribution and initial cell damage distribution in cartilage, which may also
374 influence the spatial NAC treatment effects predicted by our model. However, earlier studies have quantified
375 cell deformation in near real-time during dynamic [60] and static [61] loading, and similar techniques
376 combined with cell viability analysis may enable quantification of high strain-induced cell death after
377 impact.

378 We included biochemical tissue degeneration and adaptation mechanisms that have the most
379 experimental and computational support from literature. However, the resulting model remained simplified
380 from *ex vitro/in vivo* conditions. The excluded mechanisms were inflammatory response of injured cartilage
381 [6], release of damage-associated molecular patterns [62], degeneration caused by chondrocyte
382 differentiation [63], altered NAC transport due to molecular charge of NAC [30] and decrease of NAC
383 concentration via chemical reactions and uptake in the cells [64,65]. Since decrease of NAC concentration
384 over time was not considered, our model may underestimate the efficiency of NAC because it would be
385 smaller (degraded) concentration of NAC that actually causes the protection found against cell damage. In
386 addition, our current model does not consider collagen degeneration, which can affect factors such as
387 diffusion of different biomolecules [66]. Yet, our model offers a novel way to study temporal effects of
388 degeneration and antioxidative treatments *ex vivo*, and augmenting the mechanisms in this baseline model
389 would be the next step towards simulating cartilage degeneration and treatment-induced regeneration *in*
390 *vivo*. Nevertheless, extensive experimental calibration and more quantitative data (for example gene

391 expression, immunohistochemical analysis, and experiments with/without proteolytic enzyme-inhibitors to
392 analyze NAC effects spatially and temporally) is needed to augment the current model with new
393 mechanisms.

394 **4.4 Future directions**

395 In the future, this new modeling framework can be augmented with our previous modeling framework to
396 simulate time-dependent cyclic loading and inflammation post-impact [28], time-dependent effects of
397 treatment administration, sustained drug delivery, and multiple drug treatments to mitigate cartilage
398 degeneration [67]. To advance this new modeling framework, the following biomechanical and biological
399 data are needed: sample-specific material properties, fraction of damaged cells experiencing oxidative
400 stress, location-specific reduction of damaged cells by NAC, fraction of live and dead cells, and quantitative
401 data on proteoglycan content at several time-points post-impact. In addition, to analyze NAC uptake into
402 cartilage and treatment effects in physiologically loaded cartilage, more data will be needed about possible
403 lesions after impact, tissue structure and content, and activity of proteolytic enzymes within the cartilage.
404 To gather these data, we will conduct new *ex vivo* experiments. Combining the calibrated cell-tissue level
405 model into state-of-the-art joint-level degeneration models with patient-specific joint geometries, contact
406 forces and inflammation [44,68], the model could then be used to guide the most optimal treatment strategies
407 to mitigate PTOA progression.

408 5. Conclusions

409 We developed a novel computational modeling framework to study NAC treatment mechanisms on
410 mitigating cartilage degeneration through overloading-driven cell damage. Our model successfully
411 predicted reduced proteoglycan loss after NAC treatment following reduced impact-related cell damage and
412 inhibited proteolytic activity. The developed modeling framework enhances understanding of the role of
413 cell damage and oxidative stress on cartilage degeneration and time-dependent NAC treatment mechanisms
414 post injurious loading of cartilage. Although definitive treatment has yet to be discovered for PTOA, our
415 new modeling framework could aid the development of better treatment strategies. In the future, our
416 modeling framework could help optimizing NAC dosage and timing for cartilage treatment to better inhibit
417 cell death and cartilage degeneration after injurious loading.

418 **Acknowledgements**

419 We acknowledge the support of University of Eastern Finland, Massachusetts Institute of Technology and

420 University of Iowa to conduct this research.

421

422 References

- 423 1. Anderson DD, Chubinskaya S, Guilak F, Martin JA, Oegema TR, Olson SA, et al. Post-
424 traumatic osteoarthritis: Improved understanding and opportunities for early intervention. *J
425 Orthop Res.* 2011;29: 802–809. doi:10.1002/jor.21359
- 426 2. Wang LJ, Zeng N, Yan ZP, Li JT, Ni GX. Post-traumatic osteoarthritis following ACL
427 injury. *Arthritis Res Ther.* 2020;22: 1–8. doi:10.1186/s13075-020-02156-5
- 428 3. Mahmoudian A, Lohmander LS, Mobasheri A, Englund M, Luyten FP. Early-stage
429 symptomatic osteoarthritis of the knee — time for action. *Nat Rev Rheumatol.* 2021;17:
430 621–632. doi:10.1038/s41584-021-00673-4
- 431 4. Bartell LR, Fortier LA, Bonassar LJ, Cohen I. Measuring microscale strain fields in
432 articular cartilage during rapid impact reveals thresholds for chondrocyte death and a
433 protective role for the superficial layer. *J Biomech.* 2015;48: 3440–3446.
434 doi:10.1016/j.jbiomech.2015.05.035
- 435 5. Bonnevie ED, Delco ML, Bartell LR, Jasty N, Cohen I, Fortier LA, et al. Microscale
436 frictional strains determine chondrocyte fate in loaded cartilage. *J Biomech.* 2018;74: 72–
437 78. doi:10.1016/j.jbiomech.2018.04.020
- 438 6. Lieberthal J, Sambamurthy N, Scanzello CR. Inflammation in joint injury and post-
439 traumatic osteoarthritis. *Osteoarthr Cartil.* 2015;23: 1825–1834.
440 doi:10.1016/j.joca.2015.08.015
- 441 7. Argote PF, Kaplan JT, Poon A, Xu X, Cai L, Emery NC, et al. Chondrocyte viability is
442 lost during high-rate impact loading by transfer of amplified strain, but not stress, to
443 pericellular and cellular regions. *Osteoarthr Cartil.* 2019;27: 1822–1830.
444 doi:10.1016/j.joca.2019.07.018

445 8. Brouillette MJ, Ramakrishnan PS, Wagner VM, Sauter EE, Journot BJ, McKinley TO, et
446 al. Strain-dependent oxidant release in articular cartilage originates from mitochondria.
447 Biomech Model Mechanobiol. 2014;13: 565–572. doi:10.1007/s10237-013-0518-8

448 9. Torzilli PA, Grigiene R, Borrelli J, Helfet DL. Effect of impact load on articular cartilage:
449 Cell metabolism and viability, and matrix water content. J Biomech Eng. 1999;121: 433–
450 441. doi:10.1115/1.2835070

451 10. Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. Biochim
452 Biophys Acta - Mol Basis Dis. 2016;1862: 576–591. doi:10.1016/j.bbadi.2016.01.003

453 11. Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key
454 modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review.
455 Cellular & molecular biology letters. NLM (Medline); 2023. p. 76. doi:10.1186/s11658-
456 023-00489-y

457 12. Hodgkinson T, Kelly DC, Curtin CM, O'Brien FJ. Mechanosignalling in cartilage: an
458 emerging target for the treatment of osteoarthritis. Nat Rev Rheumatol. 2022;18: 67–84.
459 doi:10.1038/s41584-021-00724-w

460 13. Tudorachi NB, Totu EE, Fifere A, Ardeleanu V, Mocanu V, Mircea C, et al. The
461 implication of reactive oxygen species and antioxidants in knee osteoarthritis.
462 Antioxidants. 2021;10: 1–29. doi:10.3390/antiox10060985

463 14. Aldini G, Altomare A, Baron G, Vistoli G, Carini M, Borsani L, et al. N-Acetylcysteine as
464 an antioxidant and disulphide breaking agent: the reasons why. Free Radic Res. 2018;52:
465 751–762. doi:10.1080/10715762.2018.1468564

466 15. Setti T, Arab MGL, Santos GS, Alkass N, Andrade MAP, Lana JFSD. The protective role
467 of glutathione in osteoarthritis. J Clin Orthop Trauma. 2021;15: 145–151.
468 doi:10.1016/j.jcot.2020.09.006

469 16. Rieger J, Joos H, Palm HG, Friemert B, Reichel H, Ignatius A, et al. Antioxidative
470 therapy in an ex vivo human cartilage trauma-model: attenuation of trauma-induced cell
471 loss and ECM-destructive enzymes by N-acetyl cysteine. *Osteoarthr Cartil.* 2016;24:
472 2171–2180. doi:10.1016/j.joca.2016.07.019

473 17. Martin JA, McCabe D, Walter M, Buckwalter JA, McKinley TO. N-acetylcysteine inhibits
474 post-impact chondrocyte death in osteochondral explants. *J Bone Jt Surg - Ser A.* 2009;91:
475 1890–1897. doi:10.2106/JBJS.H.00545

476 18. Rieger J, Leucht F, Palm HG, Ignatius A, Brenner RE. Initial harm reduction by N-
477 acetylcysteine alleviates cartilage degeneration after blunt single-impact cartilage trauma
478 in vivo. *Int J Mol Sci.* 2019;20. doi:10.3390/ijms20122916

479 19. Rieger J, Joos H, Palm HG, Friemert B, Reichel H, Ignatius A, et al. Striking a new path
480 in reducing cartilage breakdown: combination of antioxidative therapy and
481 chondroanabolic stimulation after blunt cartilage trauma. *J Cell Mol Med.* 2018;22: 77–88.
482 doi:10.1111/jcmm.13295

483 20. Coleman MC, Goetz JE, Brouillet MJ, Seol D, Willey MC, Petersen EB, et al. Targeting
484 mitochondrial responses to intra-articular fracture to prevent posttraumatic osteoarthritis.
485 *Sci Transl Med.* 2018;10: 1–32. doi:10.1126/scitranslmed.aan5372

486 21. Siefen T, Bjerregaard S, Borglin C, Lamprecht A. Assessment of joint pharmacokinetics
487 and consequences for the intraarticular delivery of biologics. *J Control Release.* 2022;348:
488 745–759. doi:10.1016/j.jconrel.2022.06.015

489 22. Orozco GA, Tanska P, Florea C, Grodzinsky AJ, Korhonen RK. A novel
490 mechanobiological model can predict how physiologically relevant dynamic loading
491 causes proteoglycan loss in mechanically injured articular cartilage. *Sci Rep.* 2018;8: 1–
492 16. doi:10.1038/s41598-018-33759-3

493 23. Hosseini SM, Wilson W, Ito K, Van Donkelaar CC. A numerical model to study
494 mechanically induced initiation and progression of damage in articular cartilage.
495 *Osteoarthr Cartil.* 2014;22: 95–103. doi:10.1016/j.joca.2013.10.010

496 24. Eskelinen ASA, Mononen ME, Venäläinen MS, Korhonen RK, Tanska P. Maximum shear
497 strain-based algorithm can predict proteoglycan loss in damaged articular cartilage.
498 *Biomech Model Mechanobiol.* 2019;18: 753–778. doi:10.1007/s10237-018-01113-1

499 25. Elahi SA, Castro-Viñuelas R, Tanska P, Korhonen RK, Lories R, Famaey N, et al.
500 Contribution of collagen degradation and proteoglycan depletion to cartilage degeneration
501 in primary and secondary osteoarthritis: an in silico study. *Osteoarthr Cartil.* 2023;31:
502 741–752. doi:10.1016/j.joca.2023.01.004

503 26. Kar S, Smith DW, Gardiner BS, Li Y, Wang Y, Grodzinsky AJ. Modeling IL-1 induced
504 degradation of articular cartilage. *Arch Biochem Biophys.* 2016;594: 37–53.
505 doi:10.1016/j.abb.2016.02.008

506 27. Eskelinen ASA, Tanska P, Florea C, Orozco GA, Julkunen P, Grodzinsky AJ, et al.
507 Mechanobiological model for simulation of injured cartilage degradation via
508 proinflammatory cytokines and mechanical. *PLoS Comput Biol.* 2020;16: 1–25.
509 doi:10.1371/journal.pcbi.1007998

510 28. Kosonen JP, Eskelinen ASA, Orozco GA, Nieminen P, Anderson DD, Grodzinsky AJ, et
511 al. Injury-related cell death and proteoglycan loss in articular cartilage: Numerical model
512 combining necrosis, reactive oxygen species, and inflammatory cytokines. *PLoS Comput
513 Biol.* 2023;19: 1–26. doi:10.1371/journal.pcbi.1010337

514 29. Kapitanov GI, Wang X, Ayati BP, Brouillette MJ, Martin JA. Linking cellular and
515 mechanical processes in articular cartilage lesion formation: A mathematical model. *Front
516 Bioeng Biotechnol.* 2016;4. doi:10.3389/fbioe.2016.00080

517 30. Kar S, Smith DW, Gardiner BS, Grodzinsky AJ. Systems based study of the therapeutic
518 potential of small charged molecules for the inhibition of IL-1 mediated cartilage
519 degradation. *PLoS One*. 2016;11: 1–38. doi:10.1371/journal.pone.0168047

520 31. Rahman MM, Watton PN, Neu CP, Pierce DM. A chemo-mechano-biological modeling
521 framework for cartilage evolving in health, disease, injury, and treatment. *Comput
522 Methods Programs Biomed*. 2023;231. doi:10.1016/j.cmpb.2023.107419

523 32. Wilson W, Van Donkelaar CC, Van Rietbergen B, Huiskes R. A fibril-reinforced
524 poroviscoelastic swelling model for articular cartilage. *J Biomech*. 2005;38: 1195–1204.
525 doi:10.1016/j.jbiomech.2004.07.003

526 33. Wilson W, Van Donkelaar CC, Van Rietbergen B, Ito K, Huiskes R. Stresses in the local
527 collagen network of articular cartilage: A poroviscoelastic fibril-reinforced finite element
528 study. *J Biomech*. 2004;37: 357–366. doi:10.1016/S0021-9290(03)00267-7

529 34. Julkunen P, Kiviranta P, Wilson W, Jurvelin JS, Korhonen RK. Characterization of
530 articular cartilage by combining microscopic analysis with a fibril-reinforced finite-
531 element model. *J Biomech*. 2007;40: 1862–1870. doi:10.1016/j.jbiomech.2006.07.026

532 35. Jeffrey JE, Gregory DW, Aspden RM. Matrix damage and chondrocyte viability following
533 a single impact load on articular cartilage. *Arch Biochem Biophys*. 1995;322: 87–96.
534 doi:10.1006/abbi.1995.1439

535 36. Jeffrey JE, Aspden RM. The biophysical effects of a single impact load on human and
536 bovine articular cartilage. *Proc Inst Mech Eng Part H J Eng Med*. 2006;220: 677–686.
537 doi:10.1243/09544119JEIM31

538 37. Burgin L V., Aspden RM. A drop tower for controlled impact testing of biological tissues.
539 *Med Eng Phys*. 2007;29: 525–530. doi:10.1016/j.medengphy.2006.06.002

540 38. Heiner AD, Smith AD, Goetz JE, Goreham-Voss CM, Judd KT, McKinley TO, et al.

541 Cartilage-on-cartilage versus metal-on-cartilage impact characteristics and responses. *J*
542 *Orthop Res.* 2013;31: 887–893. doi:10.1002/jor.22311

543 39. Coleman MC, Brouillette MJ, Andresen NS, Oberley-Deegan RE, Martin JM. Differential
544 effects of superoxide dismutase mimetics after mechanical overload of articular cartilage.
545 *Antioxidants.* 2017;6: 1–10. doi:10.3390/antiox6040098

546 40. Coleman MC, Ramakrishnan PS, Brouillette MJ, Martin JA. Injurious Loading of
547 Articular Cartilage Compromises Chondrocyte Respiratory Function. *Arthritis Rheumatol.*
548 2016;68: 662–671. doi:10.1002/art.39460

549 41. Sauter E, Buckwalter JA, McKinley TO, Martin JA. Cytoskeletal dissolution blocks
550 oxidant release and cell death in injured cartilage. *J Orthop Res.* 2012;30: 593–598.
551 doi:10.1002/jor.21552

552 42. Didomenico CD, Lintz M, Bonassar LJ. Molecular transport in articular cartilage - What
553 have we learned from the past 50 years? *Nat Rev Rheumatol.* 2018;14: 393–403.
554 doi:10.1038/s41584-018-0033-5

555 43. Ding L, Guo D, Homandberg GA, Buckwalter JA, Martin JA. A single blunt impact on
556 cartilage promotes fibronectin fragmentation and upregulates cartilage degrading
557 stromelysin-1/matrix metalloproteinase-3 in a bovine ex vivo model. *J Orthop Res.*
558 2014;32: 811–818. doi:10.1002/jor.22610

559 44. Orozco GA, Eskelinen ASA, Kosonen JP, Tanaka MS, Yang M, Link TM, et al. Shear
560 strain and inflammation-induced fixed charge density loss in the knee joint cartilage
561 following ACL injury and reconstruction: A computational study. *J Orthop Res.* 2022;40:
562 1505.1522. doi:10.1002/jor.25177

563 45. Jadin KD, Wong BL, Bae WC, Li KW, Williamson AK, Schumacher BL, et al. Depth-
564 varying density and organization of chondrocytes in immature and mature bovine articular

565 cartilage assessed by 3D imaging and analysis. *J Histochem Cytochem*. 2005;53: 1109–
566 1119. doi:10.1369/jhc.4A6511.2005

567 46. Bartell LR, Fortier LA, Bonassar LJ, Szeto HH, Cohen I, Delco ML. Mitoprotective
568 therapy prevents rapid, strain-dependent mitochondrial dysfunction after articular cartilage
569 injury. *J Orthop Res*. 2020;38: 1257–1267. doi:10.1002/jor.24567

570 47. Goodwin W, McCabe D, Sauter E, Reese E, Walter M, Buckwalter JA, et al. Rotenone
571 prevents impact-induced chondrocyte death. *J Orthop Res*. 2010;28: 1057–1063.
572 doi:10.1002/jor.21091

573 48. Rosenzweig DH, Djap MJ, Ou SJ, Quinn TM. Mechanical injury of bovine cartilage
574 explants induces depth-dependent, transient changes in MAP kinase activity associated
575 with apoptosis. *Osteoarthr Cartil*. 2012;20: 1591–1602. doi:10.1016/j.joca.2012.08.012

576 49. Stolberg-Stolberg JA, Furman BD, William Garrigues N, Lee J, Pisetsky DS, Stearns NA,
577 et al. Effects of cartilage impact with and without fracture on chondrocyte viability and the
578 release of inflammatory markers. *J Orthop Res*. 2013;31: 1283–1292.
579 doi:10.1002/jor.22348

580 50. Chen CT, Burton-Wurster N, Borden C, Hueffer K, Bloom SE, Lust G. Chondrocyte
581 necrosis and apoptosis in impact damaged articular cartilage. *J Orthop Res*. 2001;19: 703–
582 711. doi:10.1016/S0736-0266(00)00066-8

583 51. Charlier E, Relic B, Deroyer C, Malaise O, Neuville S, Collée J, et al. Insights on
584 molecular mechanisms of chondrocytes death in osteoarthritis. *Int J Mol Sci*. 2016;17:
585 doi:10.3390/ijms17122146

586 52. Eskelinen A, Florea C, Tanska P, Hung H, Frank E, Mikkonen S, et al. Cyclic loading
587 regime considered beneficial does not protect injured and interleukin-1-inflamed cartilage
588 from post-traumatic osteoarthritis. *J Biomech*. 2022. Available:

589 https://doi.org/10.1016/j.jbiomech.2022.111181

590 53. Glasson SS, Askew R, Sheppard B, Carito B, Blanchet T, Ma HL, et al. Erratum: Deletion
591 of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis
592 (Nature (2005) 434, 644-648)). Nature. 2007;446: 102. doi:10.1038/nature05640

593 54. Stanton H, Rogerson FM, East CJ, Golub SB, Lawlor KE, Meeker CT, et al. ADAMTS5 is
594 the major aggrecanase in mouse cartilage in vivo and in vitro. Nature. 2005;434: 648–652.
595 doi:10.1038/nature03417

596 55. Zhang E, Yan X, Zhang M, Chang X, Bai Z, He Y, et al. Aggrecanases in the human
597 synovial fluid at different stages of osteoarthritis. Clin Rheumatol. 2013;32: 797–803.
598 doi:10.1007/s10067-013-2171-0

599 56. Riegger J, Brenner RE. Pathomechanisms of posttraumatic osteoarthritis: Chondrocyte
600 behavior and fate in a precarious environment. Int J Mol Sci. 2020;21.
601 doi:10.3390/ijms21051560

602 57. Heywood HK, Lee DA. Bioenergetic reprogramming of articular chondrocytes by
603 exposure to exogenous and endogenous reactive oxygen species and its role in the anabolic
604 response to low oxygen. J Tissue Eng Regen Med. 2017;11: 2286–2294.
605 doi:10.1002/term.2126

606 58. Hines MR, Goetz JE, Gomez-Contreras PC, Rodman SN, Liman S, Femino EL, et al.
607 Extracellular biomolecular free radical formation during injury. Free Radic Biol Med.
608 2022;188: 175–184. doi:10.1016/j.freeradbiomed.2022.06.223

609 59. Homandberg GA, Wen C, Hui F. Agents that block fibronectin fragment-mediated
610 cartilage damage also promote repair. Inflamm Res. 1997;46: 467–471.
611 doi:10.1007/s000110050226

612 60. Komeili A, Otoo BS, Abusara Z, Sibole S, Federico S, Herzog W. Chondrocyte

613 Deformations Under Mild Dynamic Loading Conditions. *Ann Biomed Eng.* 2021;49: 846–
614 857. doi:10.1007/s10439-020-02615-9

615 61. Han SK, Ronkainen AP, Saarakkala S, Rieppo L, Herzog W, Korhonen RK. Alterations in
616 structural macromolecules and chondrocyte deformations in lapine retropatellar cartilage 9
617 weeks after anterior cruciate ligament transection. *J Orthop Res.* 2018;36: 342–350.
618 doi:10.1002/jor.23650

619 62. Rosenberg JH, Rai V, Dilisio MF, Agrawal DK. Damage-associated molecular patterns in
620 the pathogenesis of osteoarthritis: potentially novel therapeutic targets. *Mol Cell Biochem.*
621 2017;434: 171–179. doi:10.1007/s11010-017-3047-4

622 63. Rim YA, Nam Y, Ju JH. The role of chondrocyte hypertrophy and senescence in
623 osteoarthritis initiation and progression. *Int J Mol Sci.* 2020;21. doi:10.3390/ijms21072358

624 64. Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of N-acetylcysteine
625 actions. *Cell Mol Life Sci.* 2003;60: 6–20. doi:10.1007/s000180300001

626 65. Pedre B, Barayeu U, Ezeriña D, Dick TP. The mechanism of action of N-acetylcysteine
627 (NAC): The emerging role of H₂S and sulfane sulfur species. *Pharmacol Ther.* 2021;228.
628 doi:10.1016/j.pharmthera.2021.107916

629 66. Leddy HA, Guilak F. Site-specific molecular diffusion in articular cartilage measured
630 using fluorescence recovery after photobleaching. *Ann Biomed Eng.* 2003;31: 753–760.
631 doi:10.1114/1.1581879

632 67. Zhao T, Li X, Li H, Deng H, Li J, Yang Z, et al. Advancing drug delivery to articular
633 cartilage: From single to multiple strategies. *Acta Pharmaceutica Sinica B. Chinese*
634 Academy of Medical Sciences; 2023. doi:10.1016/j.apsb.2022.11.021

635 68. Esrafilian A, Halonen KS, Dzialo CM, Mannisi M, Mononen ME, Tanska P, et al. Effects
636 of gait modifications on tissue-level knee mechanics in individuals with medial

637 tibiofemoral osteoarthritis: A proof-of-concept study towards personalized interventions. J
638 Orthop Res. 2024;42: 326–338. doi:10.1002/jor.25686
639

640 **Supporting information captions**

641 **S1 Structural, compositional, and material inputs for the modeling framework.**

642 **S2 Sensitivity analysis for peak impact force.**

643 **S3 Mesh convergence analysis.**

644 **S4 Proteoglycan degeneration in the biochemical model.**

645 **S5 Sensitivity analysis for aggrecanase release from damaged cells.**

646

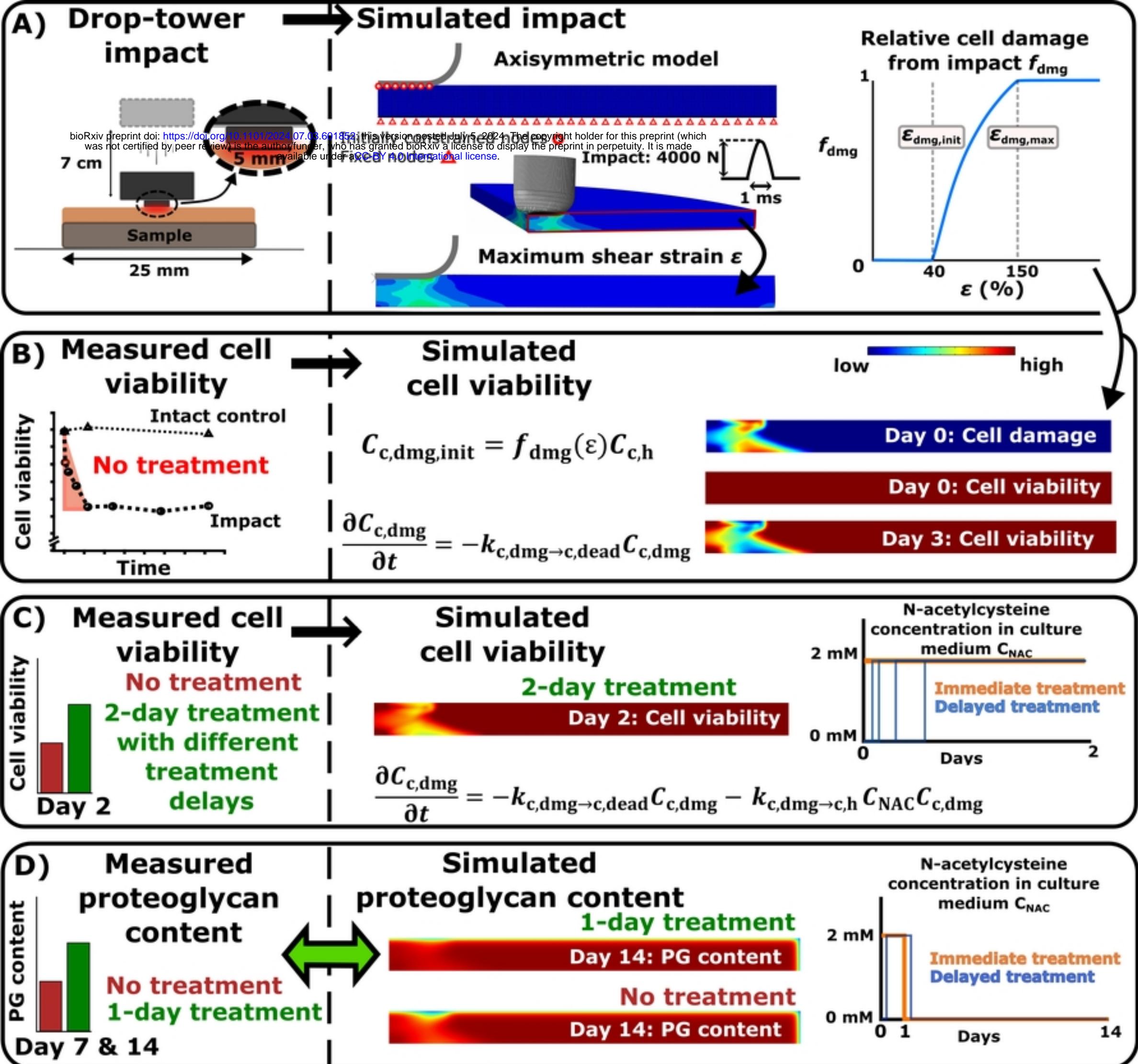


Figure 1

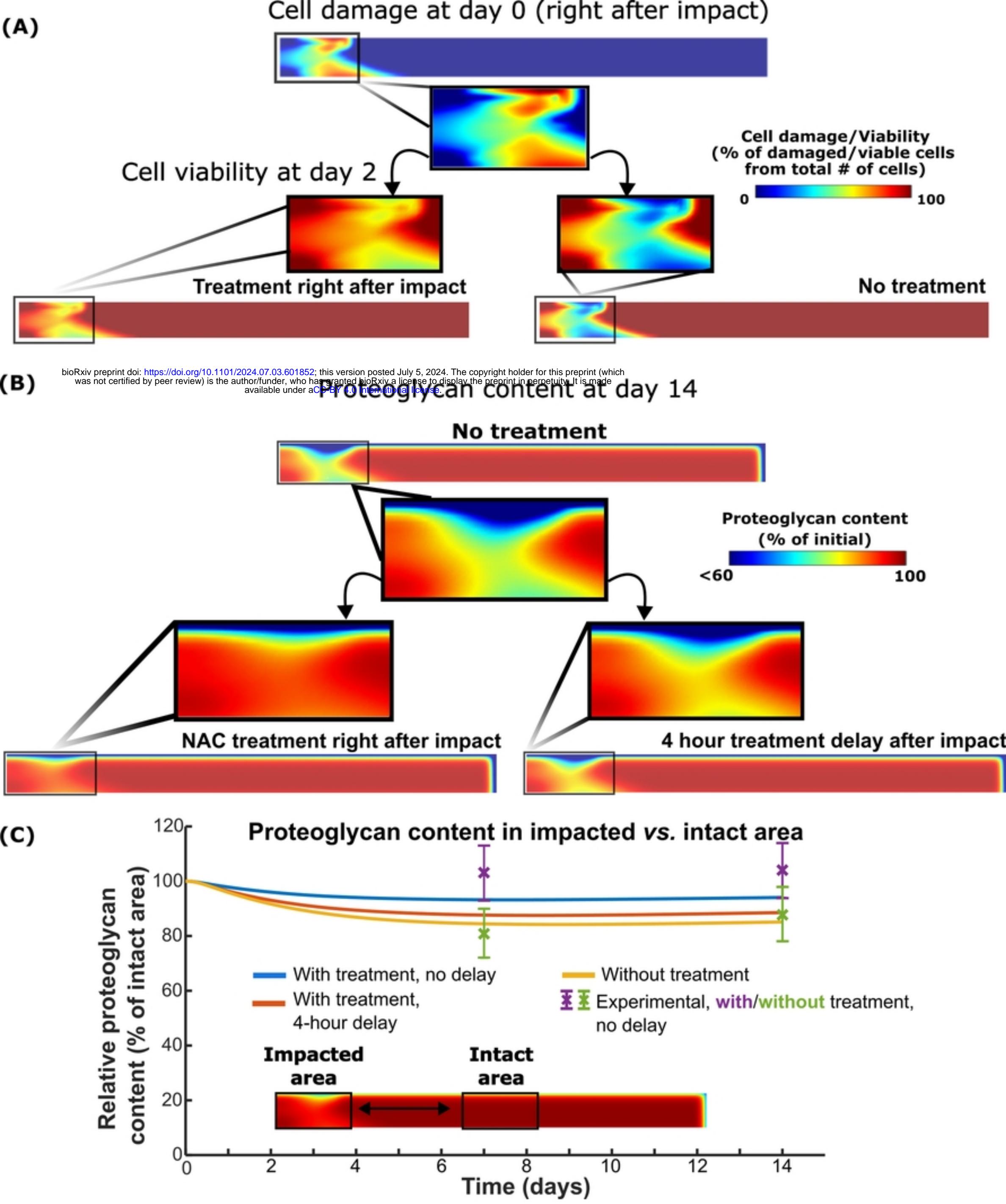
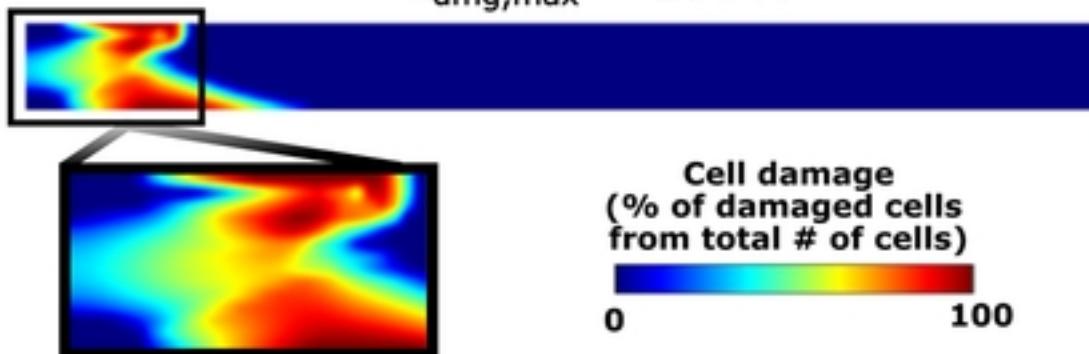
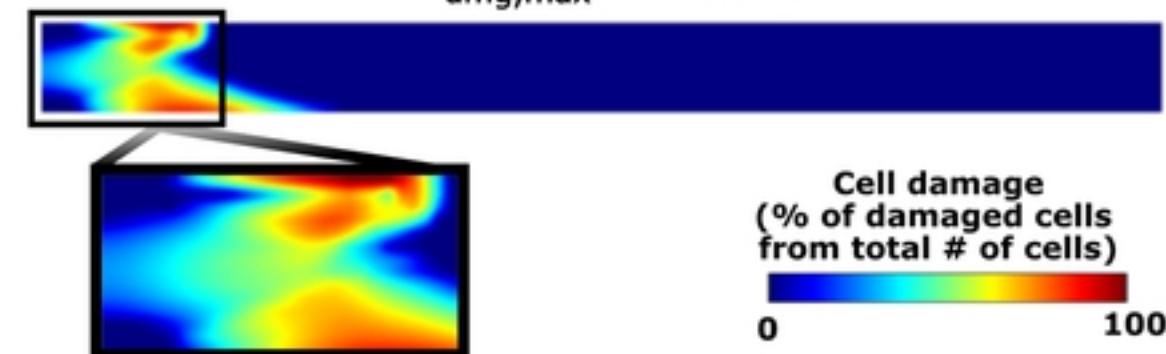
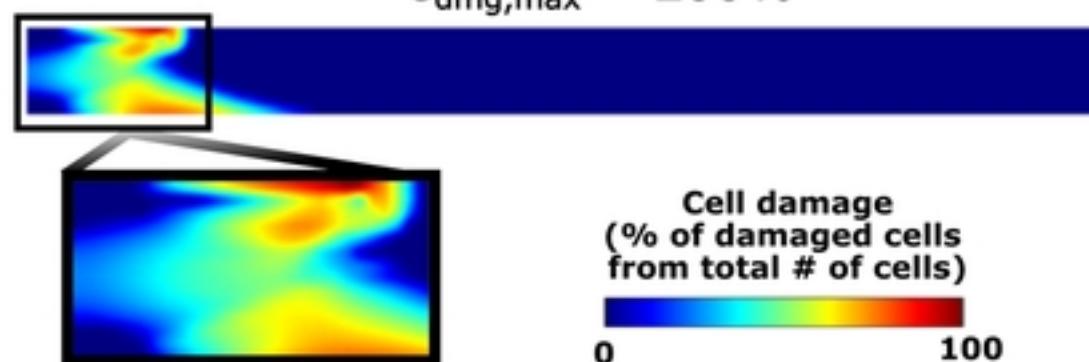



Figure 2


(A) Cell damage at day 0

$$\varepsilon_{\text{dmg,max}} = 100\%$$


(B) Cell damage at day 0

$$\varepsilon_{\text{dmg,max}} = 150\%$$

(C) Cell damage at day 0

$$\varepsilon_{\text{dmg,max}} = 200\%$$

(D) Average cell damage (day 0) & viability (day 3) in mechanically impacted superficial zone

$\varepsilon_{\text{dmg,max}}$	100%	150%	200%
Cell damage	65%	56%	52%
Cell viability	35%	44%	48%
Experimentally measured viability			46%

(E) Cell viability (healthy + damaged) when $\varepsilon_{\text{dmg,max}} = 150\%$

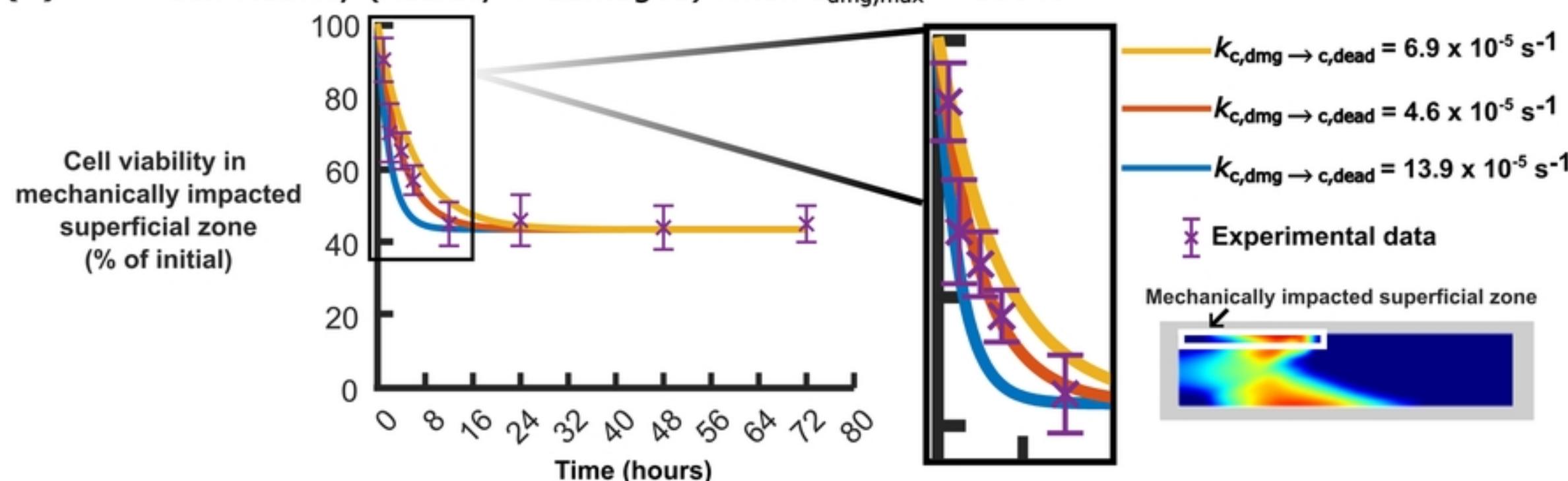
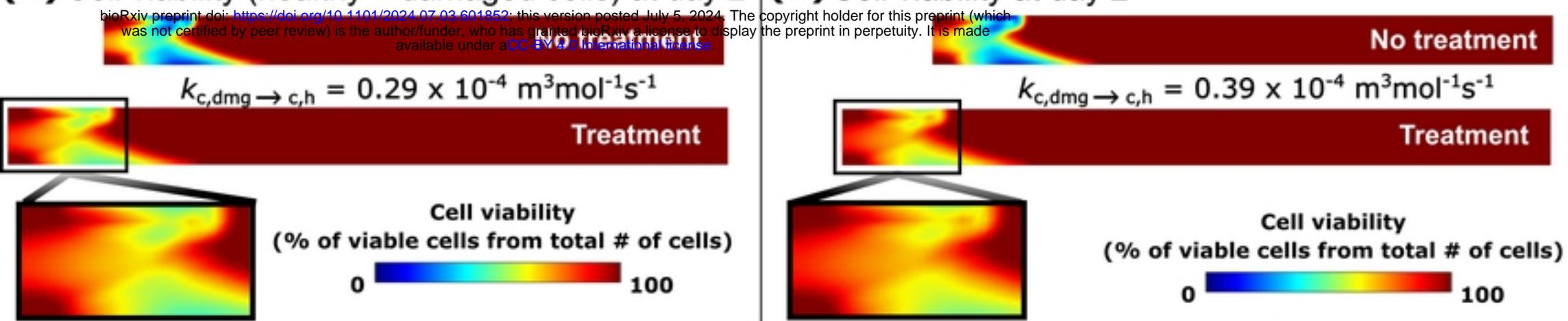
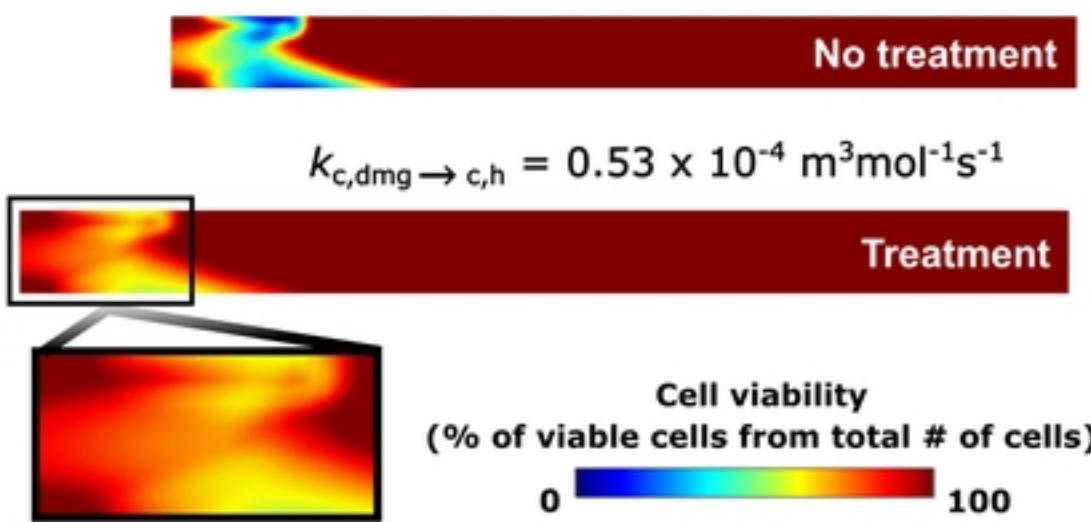
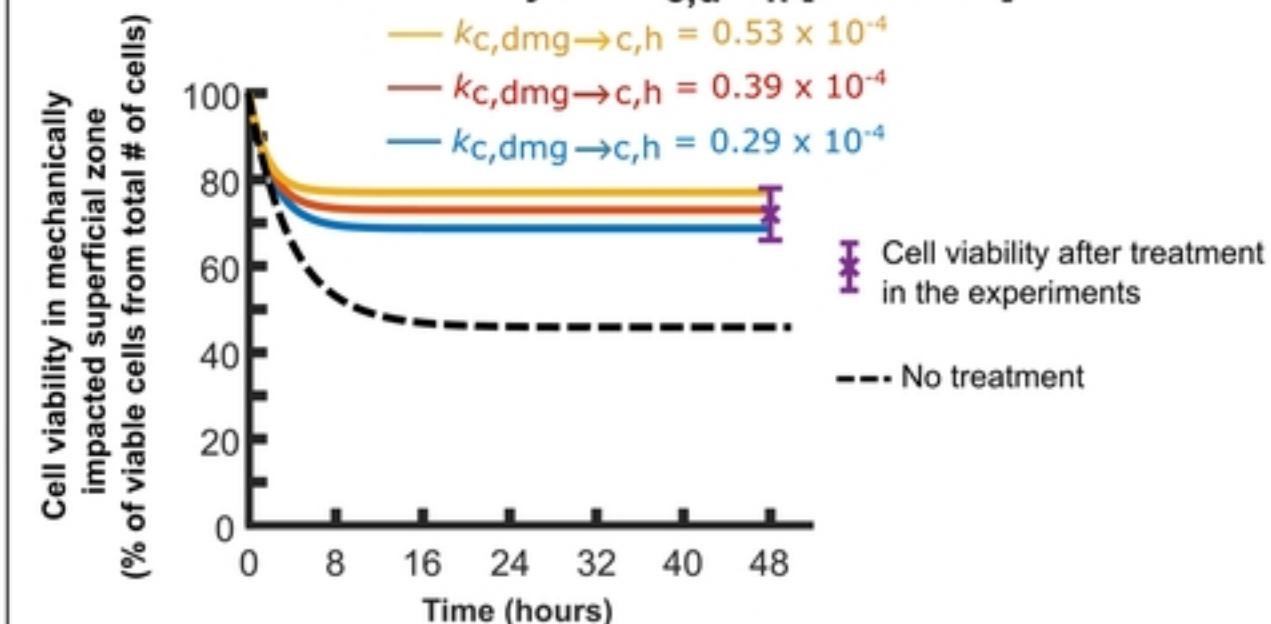
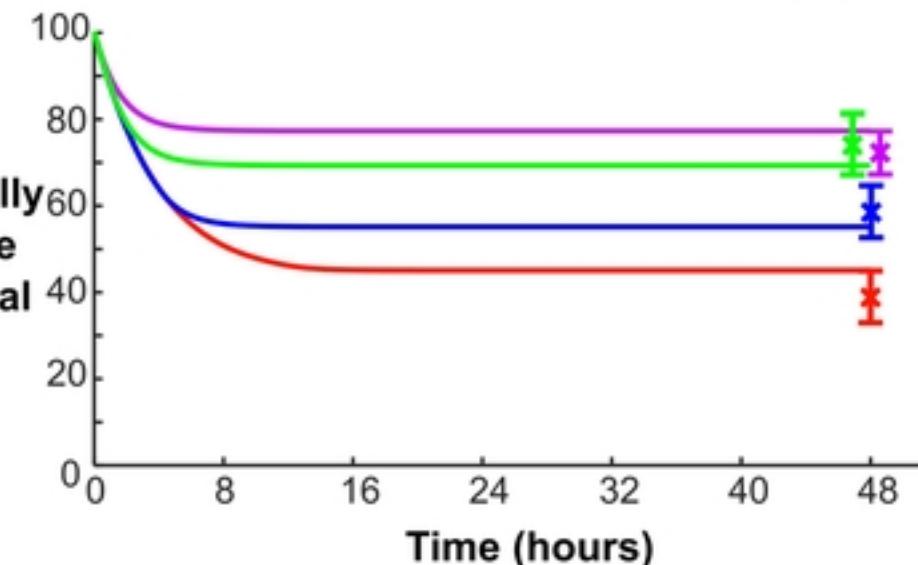





Figure 3

(A) Cell viability (healthy + damaged cells) at day 2


bioRxiv preprint doi: <https://doi.org/10.1101/2024.07.03.601852>; this version posted July 5, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

(C) Cell viability at day 2**(B) Cell viability at day 2****(D) Simulated cell viability after treatment with different cell recovery rate $k_{c,dmg \rightarrow c,h}$ [$\text{m}^3 \text{mol}^{-1} \text{s}^{-1}$]****(E)**

When $k_{c,dmg \rightarrow c,h} = 0.53 \times 10^{-4} \text{ m}^3 \text{mol}^{-1} \text{s}^{-1}$ was selected, cell viability could be predicted after delayed treatment

Predicted cell viability in delayed treatment when $k_{c,dmg \rightarrow c,h} = 0.53 \times 10^{-4} \text{ m}^3 \text{mol}^{-1} \text{s}^{-1}$

Cell viability in mechanically impacted superficial zone
(% of viable cells from total # of cells)

Simulated

- Treatment right after impact
- 1 hour treatment delay after impact
- 4 hour treatment delay
- 12 hour treatment delay

Experimental [ref]

- Treatment right after impact
- 1 hour treatment delay after impact
- 4 hour treatment delay
- 12 hour treatment delay

Figure 4