

1

2 A murine experimental model of the unique pulmonary thrombotic effect 3 induced by the venom of the snake *Bothrops lanceolatus*

4

5

6

6 Alexandra Rucavado¹, Erika Camacho¹, Teresa Escalante¹, Bruno Lomonte¹, Julián
7 Fernández¹, Daniela Solano¹, Isabel Quirós-Gutiérrez¹, Gabriel Ramírez-Vargas², Karol
8 Vargas², Ivette Argüello², Alejandro Navarro¹, Carlos Abarca¹, Álvaro Segura¹, Jonathan
9 Florentin³, Hatem Kallel^{4,5}, Dabor Resiere³, Remi Neviere⁶, José María Gutiérrez^{1*}

10

11

12

¹Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica; ²Laboratorio de Hematología, Hospital Nacional de Niños ‘Dr Carlos Sáenz Herrera’, Caja Costarricense del Seguro Social, San José, Costa Rica; ³Department of Toxicology and Critical Care Medicine, University Hospital of Martinique (CHU Martinique), Fort-de-France, France; ⁴Intensive Care Unit, Cayenne General Hospital, French Guiana; ⁵Tropical Biome and immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, French Guiana; ⁶Cardiovascular Research Team (UR5_3 PC2E), University of the French West Indies (Université des Antilles), 97200 Fort de France, France

21

22

23

Short title: Experimental thrombosis by *Bothrops lanceolatus* venom

24

25

26

27

*Correspondence: José María Gutiérrez, Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica (jose.gutierrez@ucr.ac.cr)

29

30

21

32 **Abstract**

33 **Background**

34 The venom of *Bothrops lanceolatus*, a viperid species endemic to the Lesser Antillean Island
35 of Martinique, induces a unique clinical manifestation, i.e., thrombosis. Previous clinical
36 observations indicate that thromboses are more common in patients bitten by juvenile
37 specimens. There is a need to develop an experimental model of this effect in order to study
38 the mechanisms involved.

39 **Methodology/principal findings**

40 The venoms of juvenile and adult specimens of *B. lanceolatus* were compared by (a)
41 describing their proteome, (b) assessing their ability to induce thrombosis in a mouse model,
42 and (c) evaluating their *in vitro* procoagulant activity and *in vivo* hemostasis alterations.
43 Venom proteomes of juvenile and adult specimens were highly similar. When injected by the
44 intraperitoneal (i.p.) route, the venom of juvenile specimens induced the formation of
45 abundant thrombi in the pulmonary vasculature, whereas this effect was less frequent in the
46 case of adult venom. Thrombosis was not abrogated by the metalloproteinase inhibitor
47 Batimastat. Both venoms showed a weak *in vitro* procoagulant effect on citrated mouse
48 plasma and bovine fibrinogen. When administered intravenously (i.v.) venoms did not affect
49 classical clotting tests (prothrombin time and activated partial thromboplastin time) but
50 caused a partial drop in fibrinogen concentration. The venom of juvenile specimens induced
51 partial alterations in some rotational thromboelastometry parameters after i.v. injection. No
52 alterations in coagulation tests were observed when venoms were administered i.p., but
53 juvenile and adult venoms induced a marked thrombocytopenia.

54 **Conclusions/significance**

55 An experimental model of the thrombotic effect induced by *B. lanceolatus* venom was
56 developed. This effect is more pronounced in the case of venom of juvenile specimens,
57 despite the observation that juvenile and adult venom proteomes are similar. Adult and
58 juvenile venoms do not induce a consumption coagulopathy characteristic of other *Bothrops*
59 sp venoms. Both venoms induce a conspicuous thrombocytopenia. This experimental model

60 reproduces the main clinical findings described in these envenomings and should be useful
61 to understand the mechanisms of this thrombotic effect.

62 **Keywords:** *Bothrops lanceolatus*; Martinique; thrombosis; coagulopathy; proteome;
63 venom from juvenile specimens.

64 **Author summary**

65 Envenomings by the viperid species *Bothrops lanceolatus*, endemic of the Caribbean Island
66 of Martinique, are characterized by a unique thrombotic effect responsible for infarcts in
67 various organs. Until now, no experimental *in vivo* models of this effect have been described.
68 In this study, we developed a mouse model of thrombosis by using the intraperitoneal route
69 of venom injection. The venom of juvenile specimens of *B. lanceolatus* induced the
70 formation of abundant thrombi in the lungs, whereas the effect was much less pronounced
71 with the venom of adult specimens. This difference in the ability of juvenile and adult venoms
72 occurs despite both venoms having highly similar proteomic profiles. Both adult and juvenile
73 venoms showed a weak *in vitro* procoagulant effect on plasma and fibrinogen, underscoring
74 a thrombin-like (pseudo-procoagulant) activity. *In vivo*, the venoms did not affect the
75 classical clotting tests (prothrombin time and activated partial thromboplastin time) but
76 induced a partial drop in fibrinogen concentration and limited alterations in rotational
77 thromboelastometry parameters when injected by the i.v. route. In contrast, few alterations
78 of these parameters were observed after i.p. injection of venoms, in conditions in which
79 thrombosis occurred, hence evidencing the lack of a consumption coagulopathy. After i.p.
80 injection both venoms induced a pronounced thrombocytopenia. This experimental model
81 reproduces some of the main clinical manifestations of envenoming by this species. This
82 model can be used to identify the toxins responsible for the thrombotic effect, to study the
83 mechanism(s) of thrombosis and to assess the preclinical efficacy of antivenoms.

84

85

86

87

88 Introduction

89 *Bothrops lanceolatus* is a viperid snake species endemic to the Lesser Caribbean Island of
90 Martinique as a result of a long-distance dispersal of South American species of the *Bothrops*
91 *atrox-asper* complex [1]. It inflicts between 20-30 cases of envenoming per year [2, 3]. The
92 clinical manifestations of these envenomings include local effects, i.e., pain, edema, and
93 necrosis, and systemic alterations, i.e., hemodynamic disturbances and, in some cases,
94 alterations in hemostasis [2-5], most of which are characteristic of envenomings by *Bothrops*
95 sp [6-8]. However, in contrast to the typical hemostatic alterations induced by *Bothrops* sp
96 venoms, characterized by a consumption coagulopathy and defibrinogenation [8, 9],
97 envenomings by *B. lanceolatus*, in the absence of antivenom treatment, involve a severe
98 thrombotic effect which may result in cerebral, myocardial, and pulmonary infarctions [3,
99 10, 11], and a diffuse thrombotic microangiopathy [12]. Interestingly, clotting laboratory
100 tests are altered to a much lower extent in these envenomings as compared to those inflicted
101 by other *Bothrops* species, although thrombocytopenia is frequent [3, 5, 11]. This thrombotic
102 effect has been also described in envenomings by the closely relates species *B. caribbaeus*,
103 endemic to the neighboring island of Saint Lucia [13].

104 Despite its clinical relevance, the pathogenic mechanisms and the toxins involved in
105 this unique thrombotic effect remain unknown. It has been proposed that venom-induced
106 alterations in the endothelium might be involved [12, 13, 14]. Other proposed mechanisms
107 include platelet activation, the effect of venom on the binding of von Willebrand factor to
108 type VI collagen in the subendothelium [15], and the proinflammatory activity of the venom
109 [16-18].

110 Proteomic analysis of adult specimens of *B. lanceolatus* venom have revealed a
111 pattern characteristic of viperid snake venoms, with predominance of P-III and P-I
112 metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipases A₂ (PLA₂s) and,
113 to a lower extent, L-amino acid oxidases and C-type lectin like proteins (SNACLECs),
114 disintegrins, and cysteine-rich secretory proteins (CRISPs) [14, 19]. The proteome and the
115 toxicological profile of the venom of juvenile specimens have not been investigated.
116 Experimental *in vitro* and *in vivo* studies with venom of adult specimens have documented
117 lethal, hemorrhagic, edema-forming, myotoxic, PLA₂, proteinase, fibrinogenolytic,

118 complement-activating, and proinflammatory activities [14, 16-18, 20, 21, 22]. Conflicting
119 results have been presented regarding the *in vitro* procoagulant activity of this venom on
120 plasma, since this effect has been observed in some studies [19, 23, 24] but not in others [20,
121 21]. On the other hand, the thrombotic effect described in humans has not been reproduced
122 in mice injected intravenously (i.v.) with venom [14]. Thus, there is a need to develop
123 experimental models which would allow the study of the mechanisms involved in this
124 thrombotic effect.

125 It has been described that the thrombotic effect is more frequently observed in patients
126 bitten by small, i.e., juvenile snakes [4, 25], thus raising the possibility of ontogenetic
127 variations in the composition and effects of the venom of this species. In order to develop an
128 experimental model of venom-induced thrombosis, venoms were collected from juvenile and
129 adult specimens to compare their proteomes and their effects on blood coagulation, platelet
130 numbers, and thrombi formation. Results revealed that the venom of juvenile specimens,
131 when injected intraperitoneally, induces thrombosis in the pulmonary vasculature, whereas
132 the venom of adult specimens has a much weaker thrombotic activity. This thrombotic effect
133 occurs in the absence of a consumption coagulopathy characteristic of other *Bothrops* sp
134 venoms.

135 **Methods**

136 **Ethical statement**

137 The methods carried out in this study using mice were approved by the Institutional
138 Committee for the Care and Use of Laboratory Animals of Universidad de Costa Rica
139 (approval code CICUA 13-2023). Mice (CD-1 strain, 20-23 g body weight of both sexes)
140 were provided by the Bioterium of Instituto Clodomiro Picado. Mice were handled in
141 Tecniplast Eurostandard Type II 1264C cages (268 x 215 x 141 mm), four mice per cage.
142 Mice were maintained at 18 – 24°C, 60 – 65% relative humidity, and a 12:12 h light-dark
143 cycle, and were provided with water and food *ad libitum*.

144 **Venoms**

145 Venoms were obtained from *Bothrops lanceolatus* specimens caught in the wild in various
146 locations of Martinique. Venom of adult snakes was a pool obtained from six specimens (five
147 females, one male) with a range of body length of 150 to 172 cm. Venom of juvenile snakes
148 was a pool prepared from ten specimens (five females, five males) with a range of body
149 length of 59 to 92 cm. After venom extraction, snakes were released to the field in the places
150 where they had been collected. Upon collection, venoms were frozen, freeze dried, and kept
151 at -40 °C until used. Solutions of venoms were prepared immediately before use.

152 **SDS-Polyacrylamide gel electrophoresis (SDS-PAGE)**

153 The venoms of *B. lanceolatus* (adults and juveniles) were comparatively analyzed by
154 SDS-PAGE, after reduction with 2-mercaptoethanol for 5 min at 95°C. Samples of 10, 20 or
155 40 µg were loaded onto a 4-20% pre-cast gel (Bio-Rad) alongside with molecular weight
156 markers (Bio-Rad) and separated at 160 v in a mini-Protean apparatus (Bio-Rad). Proteins
157 were visualized with Coomassie Blue R-250 stain and recorded with ImageLab® software

158 **Reverse phase HPLC (RP-HPLC)**

159 The venoms of *B. lanceolatus* (adults and juveniles) were comparatively analyzed by
160 RP-HPLC. Samples of 2 mg were dissolved in 200 µL of water containing 0.1%
161 trifluoroacetic acid (solution A) and centrifuged. The supernatant was applied to a reverse-
162 phase column (C₁₈, 250 x 4.6 mm, 5 µm particle; Phenomenex) equilibrated with the same
163 solution and separated at 1 mL/min using an Agilent 1220 chromatography system monitored
164 at 215 nm. Elution was carried out with a gradient toward acetonitrile containing 0.1%
165 trifluoroacetic acid, as follows: 0% for 5 min, 0-15% for 10 min, 15-45% for 60 min, 45-70%
166 for 10 min, and 70% for 9 min [26].

167 **Proteomic profiling**

168 The venoms of *B. lanceolatus* (adults and juveniles) were comparatively analyzed using a
169 bottom-up 'shotgun' MS/MS approach, as described [27]. In brief, 15 µg of each venom,
170 dissolved in 25 mM ammonium bicarbonate, were subjected to reduction with 10 mM
171 dithiothreitol (30 min at 56 °C), alkylation with 50 mM iodoacetamide (20 min in the dark),
172 and overnight digestion with sequencing grade trypsin at 37 °C. After stopping the reaction

173 with 0.5 μ L of formic acid, the tryptic peptides were dried in a vacuum centrifuge
174 (Eppendorf), redissolved in 0.1% formic acid, and separated by RP-HPLC on a nano-Easy
175 1200[®] chromatograph coupled to a Q-Exactive Plus[®] mass spectrometer (Thermo). Six μ L
176 of each sample (~0.7 μ g of peptide mixture) were loaded onto a C18 trap column (75 μ m \times
177 2 cm, 3 μ m particle; Thermo), washed with 0.1% formic acid (solution A), and separated at
178 200 nL/min on a C18 Easy-Spray PepMap[®] column (75 μ m \times 15 cm, 3 μ m particle; Thermo).
179 A gradient toward solution B (80% acetonitrile, 0.1% formic acid) was developed for a total
180 of 120 min (1–5% B in 1 min, 5–26% B in 84 min, 26–80% B in 30 min, 80–99% B in 1
181 min, and 99% B for 4 min). MS spectra were acquired in positive mode at 1.9 kV, with a
182 capillary temperature of 200 °C, using 1 μ scan in the range 400–1600 m/z, maximum
183 injection time of 50 msec, AGC target of 1×10^6 , and resolution of 70,000. The top 10 ions
184 with 2–5 positive charges were fragmented with AGC target of 3×10^6 , minimum AGC 2×10^3 ,
185 maximum injection time 110 msec, dynamic exclusion time 5 s, and resolution 17,500.
186 MS/MS spectra were processed against protein sequences contained in the UniProt database
187 for Serpentes (taxid:8570) using Peaks X[®] (Bioinformatics Solutions). Parent and fragment
188 mass error tolerances were set at 15.0 ppm and 0.5 Da, respectively. Cysteine
189 carbamidomethylation was set as fixed modification, while methionine oxidation and
190 deamidation of asparagine or glutamine were set as variable modifications. A maximum of
191 2 missed cleavages by trypsin in semispecific mode were allowed. Filtration parameters for
192 match acceptance were set to FDR<0.1%, detection of ≥ 1 unique peptide, and -10lgP protein
193 score ≥ 30 .

194 ***In vitro* coagulant activity on plasma and fibrinogen**

195 Blood was collected from mice by cardiac puncture under isoflurane anesthesia, and
196 immediately added to citrate anticoagulant (3.8% sodium citrate; citrate: blood volume ratio
197 of 1:9), followed by centrifugation at 2,000 x g for 10 min for the collection of plasma.
198 Aliquots of 200 μ L of citrated plasma were incubated at 37°C for 5 min, and then 15 μ L of
199 0.2 M CaCl₂ was added, followed by 25 μ L of various amounts of each venom, dissolved in
200 25 mM Tris-HCl, 137 mM NaCl, 3.4 mM KCl, pH 7.4 (TBS). Tubes were incubated at 37
201 °C and the clotting time recorded. The ability of venoms to clot fibrinogen was assessed by
202 incubating 200 μ L of a 6 mg/mL bovine fibrinogen solution (Merck, Darmstadt, Germany)

203 at 37 °C for 5 min, followed by the addition of 25 µL of TBS containing various amounts of
204 venoms. In both cases, the formation of a clot was visually assessed during a period of 10
205 min by tilting the tubes every minute. Procoagulant activity was also assessed by the
206 turbidimetric assay described by O’Leary and Isbister [28], as modified by Sánchez et al.
207 [29]. Briefly, 50 µg venom, dissolved in 100 µL TBS, were added to wells in a microplate
208 and incubated for 2 min at 37°C in a microplate reader (Cytation 3 Imaging Reader, BioTek,
209 VT, USA). Then, 4 µL of 0.4 M CaCl₂ were added to 100 µL of mouse citrated plasma
210 previously incubated at 37°C, and the mixture added to wells in the plate containing the
211 venom dilutions. Controls included plasma/CaCl₂ incubated with TBS with no venom. After
212 shaking for 5 sec, the absorbances at 340 nm were recorded during 10 min. In other
213 experiments, the same protocol was followed, but a 6 mg/mL solution of bovine fibrinogen
214 (Merck) was used instead of plasma, without the addition of CaCl₂, in order to assess for
215 thrombin-like (pseudo-procoagulant) activity. In this assay, various amounts of venom were
216 tested and absorbances recorded at 10 min, and a dose of 25 µg venom was tested at various
217 time intervals. In all cases, tests were done in triplicates.

218 Effects of venom on coagulation parameters *in vivo*

219 Groups of four mice (20-22 g) received an intravenous (i.v.) injection of 20 µg of either
220 juvenile or adult *B. lanceolatus* venom, dissolved in 100 µL 0.12 M NaCl, 0.04 M phosphate,
221 pH 7.2 solution (PBS). One hr after injection, mice were bled by cardiac puncture under
222 isoflurane anesthesia and immediately added to Eppendorf vials containing 3.8 % sodium
223 citrate as anticoagulant, using a citrate : blood volume ratio of 1 : 9. In another set of
224 experiments, a dose of 70 µg of either adult or juvenile *B. lanceolatus* venom, dissolved in
225 100 µL PBS, was injected by the intraperitoneal (i.p.) route into groups of four mice (20-22
226 g). Blood was collected 4 hr after injection and added to citrate anticoagulant, as described
227 above. This dose was selected because it induced pulmonary thrombosis at this time interval
228 (see below). For controls, groups of mice received an injection of 100 µL PBS by the i.v.
229 route and were bled one hr after injection, as described.

230 Citrated blood samples were used for rotational thromboelastometry determinations,
231 using a ROTEM Delta 4000 equipment according to the manufacturer’s instructions (Tem
232 Innovations, GmbH, Munich, Germany). The parameters determined were: Extem, Intem and

233 FibTEM clotting time (CT), clot formation time (CFT), and amplitude-clot strength at 20 min
234 (A20). ExTEM and IntTEM tests evaluate the extrinsic and intrinsic coagulation pathways,
235 respectively, whereas FibTEM evaluates the contribution of fibrinogen to clot formation and
236 strength in conditions in which platelets are inhibited. CT is the time lapse (in sec) needed
237 for the formation of a clot amplitude of 2 mm. CFT is the time lapse (in sec) between 2 mm
238 clot amplitude and 20 mm clot amplitude. A20 reflects the clot firmness (in mm amplitude)
239 20 min after CT. These tests were run at a temperature of 37°C. Additional individual citrated
240 blood samples from each experimental group were centrifuged at 2,000 g for 10 min, and
241 plasma was obtained for determination of prothrombin time (PT), activated partial
242 thromboplastin time (aPTT) and fibrinogen concentration, using a STA R Max2 coagulation
243 analyzer (Stago, Paris, France). For platelet counts, a dose of 70 µg of either adult or juvenile
244 *B. lanceolatus* venom, dissolved in 100 µL PBS, was injected i.p. into groups of four to
245 eleven mice (20-22 g), whereas a control group of seven mice received 100 µL PBS alone.
246 Blood was collected at 4 hr and added to sodium citrate as described. Platelet counts were
247 carried out in citrated blood in an automated hematology analyzer (VetsCan HM5, Abaxis
248 Global diagnostics, USA). The time of 4 hr was selected in the case of mice receiving an i.p.
249 injection of venom because thrombi developed in the lungs at this time interval (see below).

250 **Histological assessment of thrombotic activity**

251 In order to establish a model of the thrombotic activity described in patients envenomed by
252 *B. lanceolatus*, various routes of venom injection were initially tested. Groups of four mice
253 (22-23 g) received either 30 µg venom by the i.v. route in the caudal vein, 50 µg venom by
254 the i.m. route in the right gastrocnemius muscle, 50 µg by the subcutaneous (s.c.) route or 70
255 µg by the i.p. route, in all cases diluting the venom in 100 µL PBS. Groups of four control
256 mice received 100 µL PBS under otherwise identical conditions. These venom doses were
257 selected for being sublethal (in the case of i.v. and i.p. routes) on the basis of previous reports
258 of Median Lethal Dose (LD₅₀) of venom from adult specimens [21, 30], and for inducing
259 prominent local tissue pathology without being lethal (in the cases of i.m. and s.c. routes). At
260 either 4 or 24 hr after venom injection mice were sacrificed by cervical dislocation, and
261 samples of heart, brain and lungs were obtained and added to 3.7% formalin fixative solution.

262 Tissues were processed routinely and embedded in paraffin. Sections of 4 μ m were obtained
263 and stained with hematoxylin-eosin for microscopic observation.

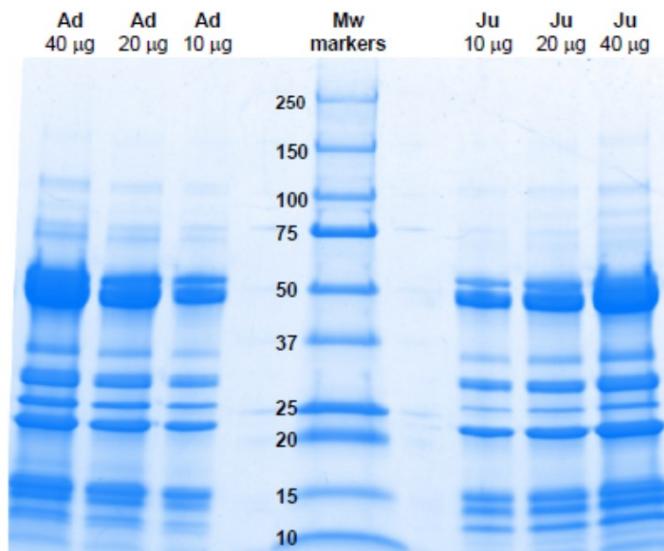
264 **Staining for fibrin in the microvasculature**

265 In order to ascertain whether fibrin microthrombi developed in the pulmonary
266 microvasculature, paraffin-embedded sections from mice receiving i.p. injections of 70 μ g
267 of venom of juvenile specimens were prepared as described above and stained with the
268 Martius-Scarlet-Blue kit for staining fibrin (Diapath, Martinengo, Italy). Sections of 4 μ m
269 were deparaffinized with xylene and ethanol and rehydrated with water. Then, sections were
270 serially stained with martius yellow, crystal scarlet and methyl blue following the
271 manufacturer's instructions. Sections were briefly rinsed with 1% acetic acid, dehydrated and
272 mounted. With this method, fibrin stains red, erythrocytes yellow, and connective tissue blue.

273 **Role of SVMPs in the thrombotic effect**

274 Once the experimental model of thrombotic effect was established, the role of SVMPs in the
275 pathogenesis of this effect was assessed by using the metalloproteinase inhibitor Batimastat
276 (British Biotech, Oxford, UK). Solutions of venom from adult or juvenile specimens were
277 prepared in PBS and incubated for 30 min at room temperature with Batimastat (final
278 concentration 250 μ M). Solutions of venoms incubated with the vehicle alone were also
279 prepared. Aliquots of 100 μ l of the mixtures, containing 70 μ g venom, were injected i.p. into
280 groups of four mice (22-23 g). Four hr after injection, mice were sacrificed and tissue samples
281 from the lungs were obtained and processed for histological observation, as described above.

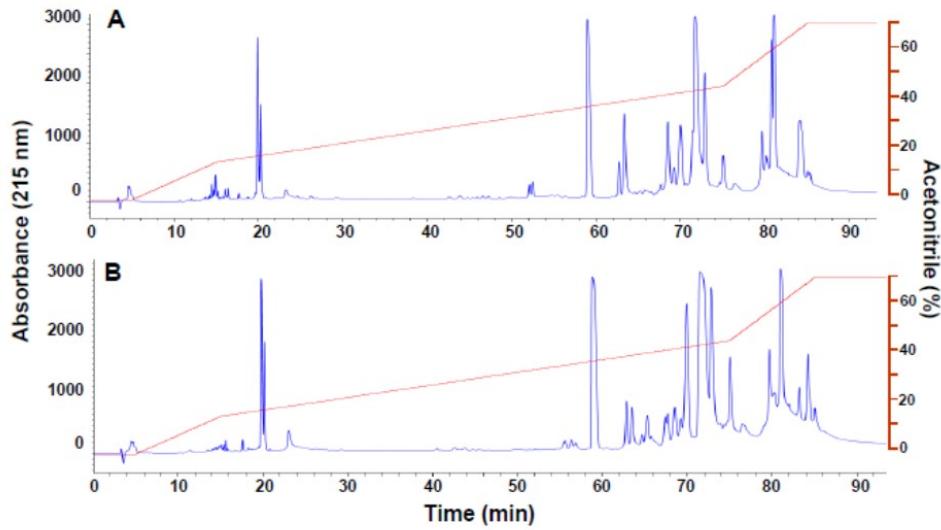
282 **Statistical analyses**


283 Results were expressed as mean \pm SEM. The significance of the differences between the
284 mean values of experimental groups was assessed by Mann-Whitney U test when two groups
285 were compared. In experiments involving more than two groups the significance of the
286 differences was assessed by one-way ANOVA for normally distributed data and by Kruskal-
287 Wallis test for non-normally distributed data. Tukey-Kramer or Dunn's post-hoc tests,
288 respectively, were used to analyze differences between pairs of mean values. P values < 0.05
289 were considered significant.

290 **Results**

291 **Electrophoretic and chromatographic analyses**

292 SDS-PAGE separation of venom revealed a highly similar electrophoretic pattern (Fig 1),
293 with bands in the range of 150 kDa to 10 kDa. The most abundant bands have estimated
294 molecular masses of 50, 30, 25, 22 and 15 kDa. A qualitatively similar RP-HPLC profile was
295 also observed in these venoms (Fig 2), with few differences in peaks eluting at 52 min
296 (juvenile venom) and 58, 65 and 83 min (adult venom).


297

298

299 **Figure 1: SDS-PAGE separation of venoms of adult (Ad) and juvenile (Ju) specimens**
300 **of *B. lanceolatus*.** Various amounts of venom (10, 20 and 40 µg) were separated under
301 reducing conditions on 4-20% pre-cast gels. Molecular weight (Mw) markers were also run.
302 Proteins were stained with Coomassie Blue R-250.

303

304

305 **Figure 2: RP-HPLC separation of venoms of juvenile (A) and adult (B) specimens of *B.***
306 ***lanceolatus*.** Samples of 2 mg were dissolved in water containing 0.1% trifluoroacetic acid
307 (solution A). After centrifugation, the supernatant was applied to a reverse-phase column
308 equilibrated with solution A and separation was monitored by recording the absorbance at
309 215 nm. The following gradient of acetonitrile, containing 0.1% trifluoroacetic acid, was
310 used for elution: 0% for 5 min, 0-15% for 10 min, 15-45% for 60 min, 45-70% for 10 min,
311 and 70% for 9 min (red line).

312

313 **Proteomic analysis**

314 **Table 1** depicts the protein families identified in the venoms of *Bothrops lanceolatus* (adults
315 and juveniles) by bottom-up shotgun proteomics. Families present in both venoms include
316 metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipases A₂ (PLA₂), C-type
317 lectin-like proteins, L-amino acid oxidases, nerve growth factor, phospholipase B, and
318 glutamyl cyclase, with highest number of variants in the first four families (**Table 1**). On the
319 other hand, nucleotidase, vascular endothelial growth factor, hyaluronidase and PLA₂
320 inhibitor were detected only in the adult venom, whereas protein disulfide isomerase was
321 detected only in juvenile venom (**Table 1**). **Supplementary Table S1** provides the details of
322 the protein matches and supporting peptides.

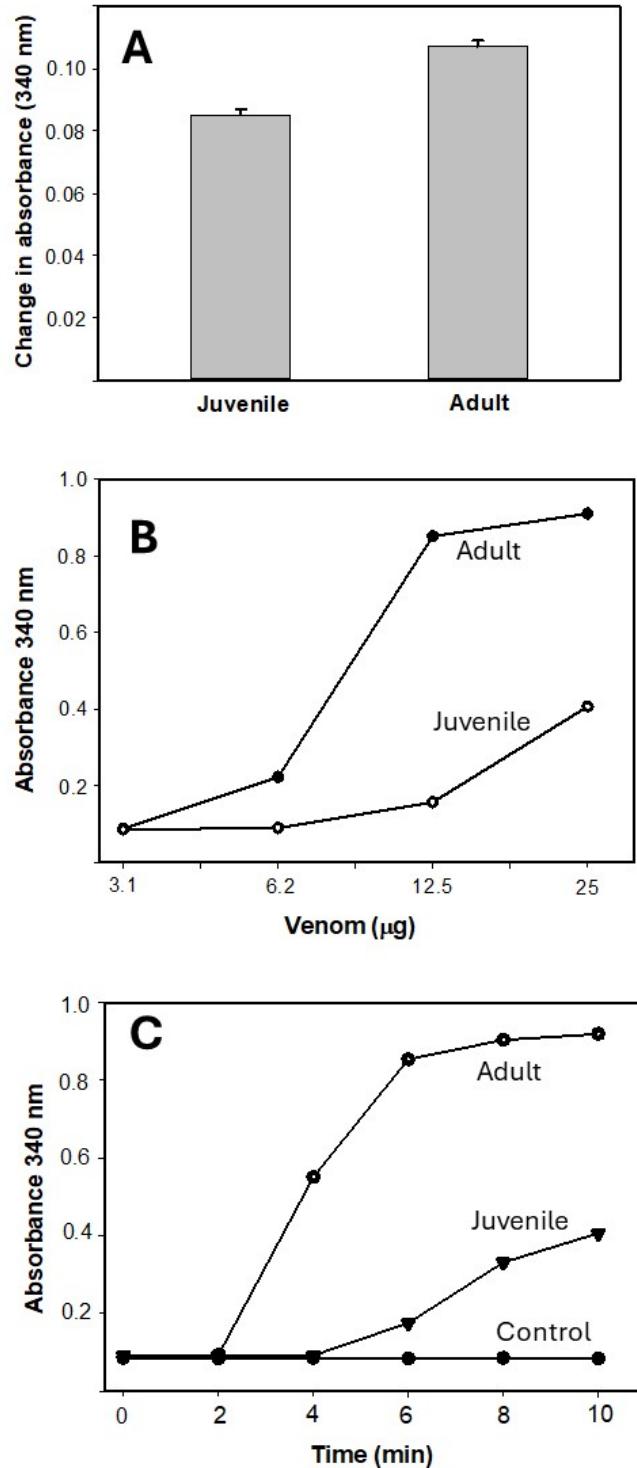
323 **Table 1:** Protein families identified in the venoms of *Bothrops lanceolatus* (adults and
324 juveniles) by bottom-up shotgun proteomics*

Protein family	Juveniles	Number of variants**	Adults	Number of variants
Metalloproteinase	✓	22	✓	25
Serine proteinase	✓	22	✓	21
Phospholipase A ₂	✓	9	✓	13
C-type lectin/lectin-like	✓	13	✓	12
L-amino acid oxidase	✓	2	✓	2
Phosphodiesterase	✓	2	✓	2
Nerve growth factor	✓	1	✓	1
Natriuretic peptide/BPP	✓	2	(-)	(-)
Phospholipase B	✓	1	✓	1
Glutaminyl cyclase	✓	1	✓	1
Protein disulfide-isomerase	✓	1	(-)	(-)
Nucleotidase	(-)	(-)	✓	1
Vascular endothelial growth factor	(-)	(-)	✓	2
Hyaluronidase	(-)	(-)	✓	1
Phospholipase A ₂ inhibitor	(-)	(-)	✓	1
Total number	11	76	14	83

325 * For a detailed summary of protein matches and supporting peptides, refer to Supplementary
326 Table S1.

327 ** Number of variants is expressed as the minimum number of distinct 'protein groups'
328 calculated by the Peaks X software, supported by at least 1 unique peptide.

329 ✓: detected; (-) not detected.

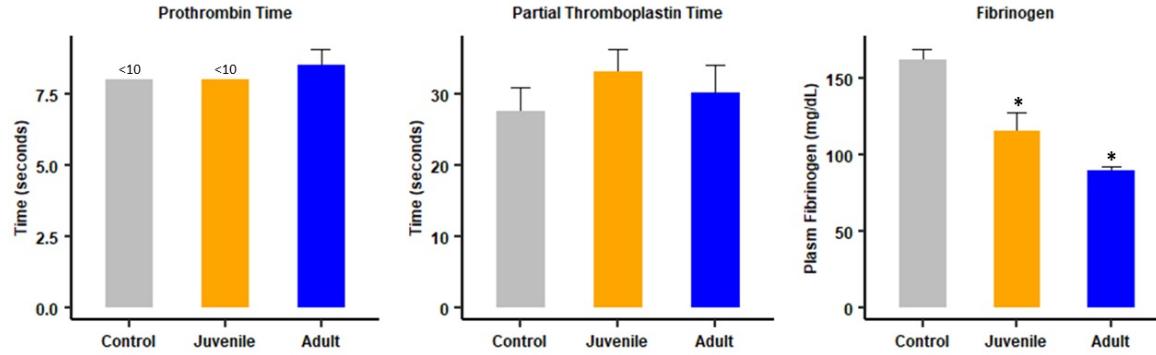

330

331 **Procoagulant activity on plasma and fibrinogen *in vitro***

332 When added to citrated plasma in the presence of calcium, the venom of juvenile specimens
333 of *B. lanceolatus* did not induce the formation of a firm clot up to a dose of 50 µg for a
334 maximum observation period of 10 min, although an increase in turbidity was observed.
335 When testing the venom of adult specimens, a weak clot formed after approximately 10 min
336 of incubation when using a dose of 50 µg venom, whereas no clot formation, and only an
337 increase in turbidity, occurred when using doses of venom of 25 µg, 12.5 µg, and 6.25 µg.

338 When venoms were added to a bovine fibrinogen solution, the venom of adult specimens
339 induced the formation of a fibrin clot in a dose-dependent way. The time required to form a
340 visible clot was 10 min, 9 min, 4.5 min and 3 min for venom amounts of 6.25 µg, 12.5 µg,
341 25 µg and 50 µg, respectively. In contrast, the venom of juvenile specimens did not induce
342 the formation of a firm fibrin clot when the same doses were tested, although an increase in
343 turbidity was observed at the dose of 50 µg. When the more sensitive turbidimetric method
344 was used, both venoms induced an increase in absorbance at 340 nm, reflecting the formation
345 of fibrin after addition of venoms to plasma and fibrinogen, thus revealing a thrombin-like
346 (pseudo-procoagulant) activity (Fig 3). Venom of adult specimens showed a stronger
347 thrombin-like activity than venom of juvenile specimens.

348

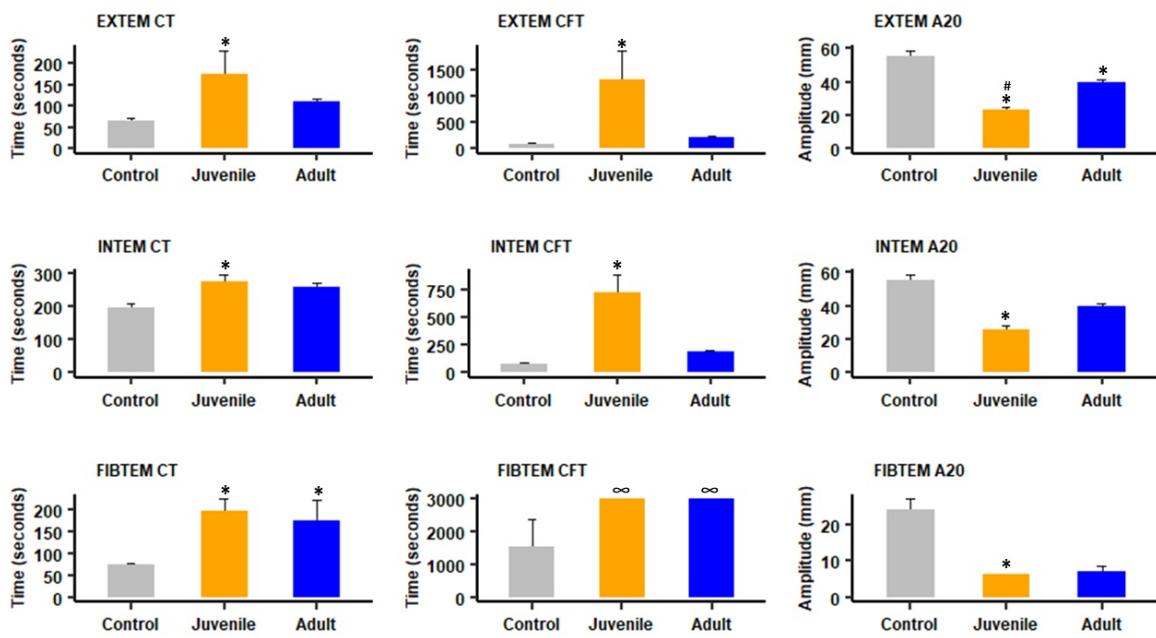

350 **Figure 3: *In vitro* procoagulant activity of venoms of juvenile and adult specimens of *B. lanceolatus*.** A: Procoagulant effect on plasma. Fifty μ g venom, dissolved in 100 μ L TBS, were added to wells in a microplate. Then, 4 μ L of 0.4 M CaCl_2 were added to 100 μ L of mouse citrated plasma previously incubated at 37°C, and the mixture added to wells in the plate containing the venom solution. Controls included plasma/ CaCl_2 incubated with TBS with no venom. After shaking for 5 sec, the absorbances at 340 nm were recorded during 10 min as an index of the increase in turbidity of the samples. Results are presented as mean \pm SEM (n = 3); p < 0.05 by Mann-Whitney U test when comparing the venoms. B and C: Thrombin-like (pseudo-procoagulant) activity effect of venoms on bovine fibrinogen. In B, solutions containing various amounts of venom, dissolved in 100 μ L TBS, were added to 100 μ L of a fibrinogen solution (6 mg/mL) previously incubated at 37°C and the change in absorbance at 340 nm were recorded at 10 min. In C, solutions containing 25 μ g venom, dissolved in 100 μ L TBS, were added to 100 μ L of fibrinogen (6 mg/mL). The changes in absorbance at 340 nm were recorded at various time intervals. Assays were run in triplicates.

364

365 **Effect of clotting parameters *in vivo***

366 Experiments were done in order to assess the effect of venoms of juvenile and adult
367 specimens on classical clotting tests and rotational thromboelastometry parameters. For this,
368 two experimental settings were used: i.v. injection of 20 μ g venom followed by bleeding and
369 testing one hr after injection, and i.p. injection of 70 μ g venom followed by bleeding and
370 testing at 4 hr, the time when thrombosis was observed in pulmonary blood vessels. When
371 the i.v. route was used, no major changes were observed in PT and aPTT in envenomed mice
372 receiving either venom, as compared to control mice receiving PBS. However, a partial and
373 significant drop in fibrinogen concentration occurred at one hr after i.v. injection of both
374 venoms (Fig 4).

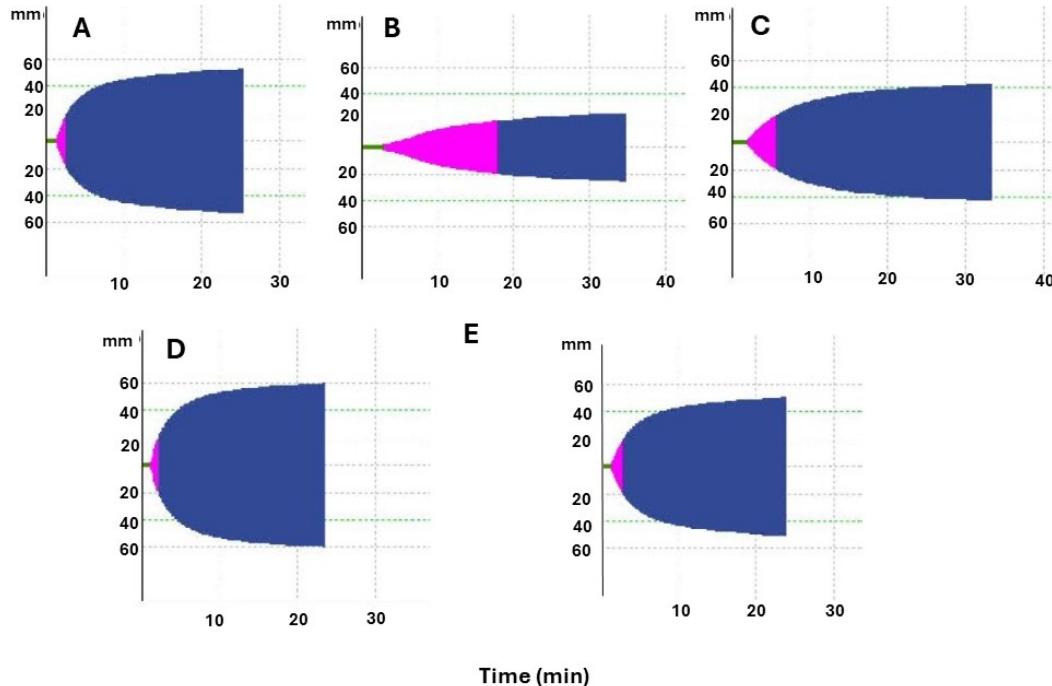
375



376

377 **Figure 4. Effect of i.v. injection of juvenile and adult *B. lanceolatus* venoms on classical**
378 **clotting tests.** 20 μ g venom from juvenile or adult specimens, dissolved in 100 μ L PBS, were
379 injected i.v. in mice. Controls received 100 μ L PBS. One hour after injection mice were bled
380 under isoflurane anesthesia and blood was collected, added to citrate anticoagulant, and
381 centrifuged for plasma collection to determine prothrombin time (PT), activated partial
382 thromboplastin time (aPTT) and fibrinogen concentration. Results are presented as mean \pm
383 SEM (n = 4). *p < 0.05 when compared to control.

384


385 Regarding rotational thromboelastometry parameters in samples obtained 1 hr after
386 i.v. injection, Extem, Intem and Fibtem CT and CFT were prolonged in mice injected with
387 juvenile venom, whereas only Fibtem CT and CFT were prolonged in the case of adult
388 venom. When the clot strength was assessed by the determination of the A20 parameter, it
389 was altered in Extem, Intem and Fibtem in the case of juvenile venom, whereas only the
390 Extem A20 was altered in the case of adult venom (Figs 5 and 6). Thus, overall, the venom
391 of juvenile specimens induced more pronounced alterations in these parameters than the
392 venom of adult specimens when injected by the i.v. route.

393

394

395 **Figure 5. Effect of i.v. injection of juvenile and adult *B. lanceolatus* venoms on rotational**
396 **thromboelastometry parameters.** Twenty μ g venom, dissolved in 100 μ L PBS, was
397 injected i.v. in mice. Controls received 100 μ L of PBS. One hour after injection mice were bled
398 under isoflurane anesthesia and blood was collected and added to citrate anticoagulant for
399 determination of Extem, Intem and Fibtem parameters (see methods for details). Results are
400 presented as mean \pm SEM ($n = 4$). * $p < 0.05$ when compared to control; # $p < 0.05$ when
401 comparing juvenile and adult venoms. In the case of Fibtem CFT in envenomed mice, no clot
402 was formed.

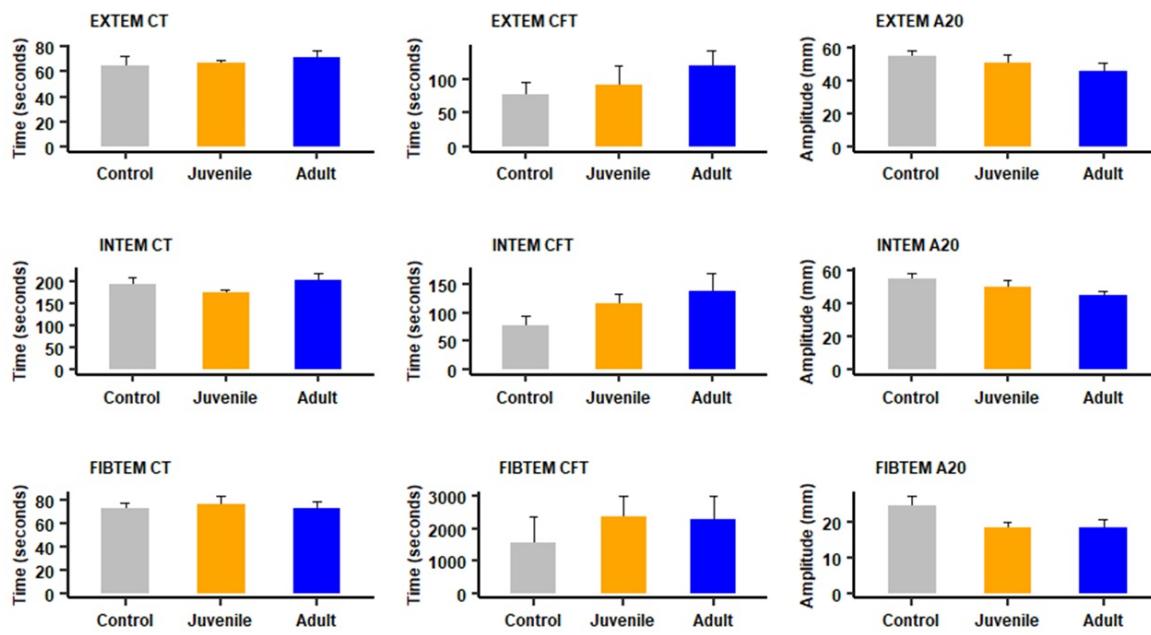

403

404

405 **Figure 6. Representative rotational thromboelastometry tracings from mice injected**
406 **with PBS or venoms of juvenile and adult specimens of *B. lanceolatus*.** Mice were bled
407 by cardiac puncture under isoflurane anesthesia, blood was added to sodium citrate solution,
408 and evaluated by rotational thromboelastometry (see methods for details). (A) Extem tracing
409 from a mouse receiving PBS by the i.v. route and bled 1 hr after injection. (B) and (C) Extem
410 tracings from mice receiving 20 µg of juvenile (B) or adult (C) *B. lanceolatus* venoms by the
411 i.v. route and bled 1 hr after injection. (D) and (E) Extem tracings from mice receiving 70 µg
412 of juvenile (D) or adult (E) venoms by the i.p. route and bled 4 hr after injection.

413

414 In order to assess the status of clotting parameters in circumstances when pulmonary
415 thrombosis occurred, the same assays were carried out in samples collected 4 hr after i.p.
416 injection of 70 µg venom, which induces thrombosis. No alterations in PT, aPTT and
417 fibrinogen concentration were observed in mice receiving adult venom, whereas a partial,
418 but significant, change occurred in aPTT and fibrinogen in mice receiving juvenile venom
419 (Fig 7). On the other hand, both venoms induced a profound thrombocytopenia (Fig 7).

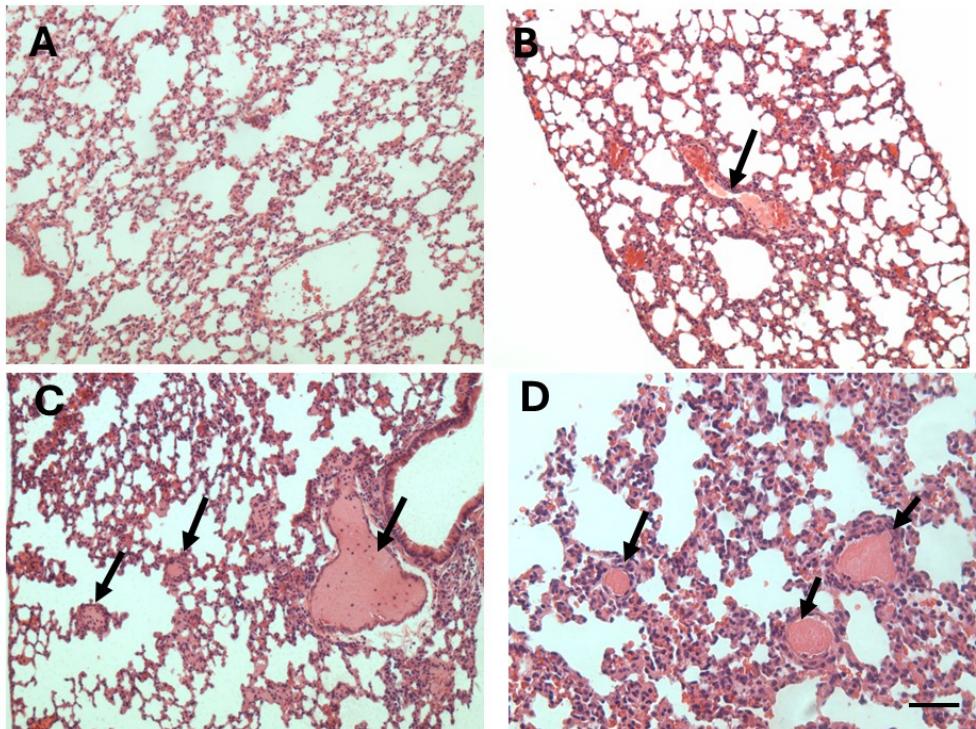


420

421 **Figure 7. Effects of i.p. injection of juvenile and adult *B. lanceolatus* venoms on classical**
422 **clotting tests and platelet counts.** Mice received 70 μ g venom, dissolved in 100 μ L PBS,
423 by the i.p. route. Controls received 100 μ L of PBS. Four hours after injection mice were bled
424 under isoflurane anesthesia and blood was collected and added to citrate anticoagulant for
425 determination of prothrombin time (PT), activated partial thromboplastin time (aPTT),
426 fibrinogen concentration, and platelet counts (see methods for details). Results are presented
427 as mean \pm SEM ($n = 4$ in the case of clotting tests and fibrinogen concentration and $n = 4-11$
428 in the case of platelet counts). * $p < 0.05$ when compared to control; # $p < 0.05$ when
429 comparing juvenile and adult venom.

430

431 Analysis of rotational thromboelastometry parameters in blood samples collected 4
432 hr after i.p. injection of venoms showed no significant alterations in samples from envenomed
433 mice, as compared to those from control mice (Fig 8). The raw data related to coagulation,
434 rotational thromboelastometry and platelet counts are available in [Supplementary Table S2](#).

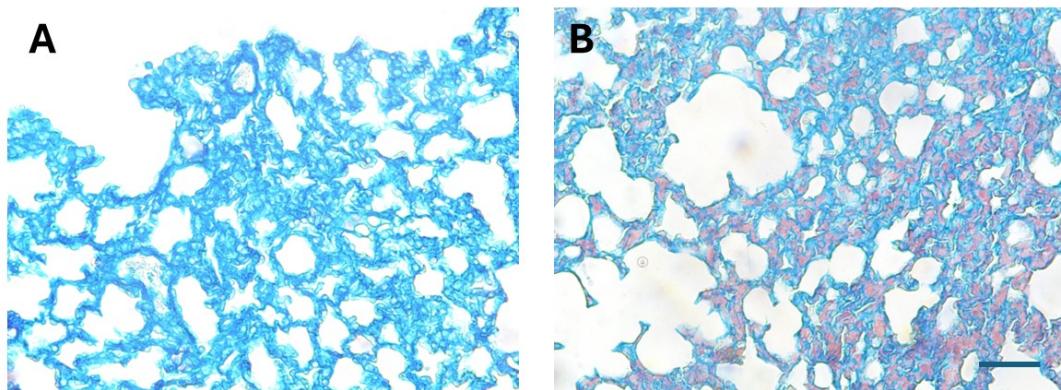

435

436 **Figure 8. Effect of i.p. injection of juvenile and adult *B. lanceolatus* venoms on**
437 **rotational thromboelastometry parameters.** Mice received 70 µg of venom, dissolved in
438 PBS, by the i.p. route. Controls were injected with 100 µl of PBS. Four hours after injection
439 mice were bled under isoflurane anesthesia and blood was added to citrate anticoagulant for
440 determination of Extem, Intem and Fibtem parameters (see methods for details)]. Results are
441 presented as mean ± SEM (n = 4).

442 Histological assessment of thrombosis

443 Tissue samples from control mice receiving injections of PBS by various routes showed
444 normal histological features in heart, brain, and lungs (Fig 9). In the cases of animals
445 receiving venoms, no thrombi were observed in brain, heart, and lung blood vessels after
446 adult and juvenile *B. lanceolatus* venom injections by the i.v., s.c. and i.m. routes at 4 hr and
447 24 hr. In contrast, when 70 µg venom were administered by the i.p. route, the venom of
448 juvenile *B. lanceolatus* specimens induced numerous thrombi in the lungs at both time
449 intervals (Fig 9), but not in heart or brain. Few mice receiving 70 µg juvenile venom by the
450 i.p. route died before 4 hr; in these cases, additional mice were injected to complete the
451 sample of four mice per time interval. In samples from mice receiving juvenile venom by the
452 i.p. route thrombi were observed in vessels of variable caliber, being more abundant in veins,
453 although they were also present in arteries and arterioles. On the other hand, venom of adult
454 specimens induced the formation of thrombi only in few blood vessels and in few of the
455 tissue samples analyzed, and no thrombi were observed in brain and heart vasculature. In

456 some pulmonary vessels, mostly veins, of mice injected with adult venom a hyaline pale
457 material was observed having a lower density as compared to the overt thrombi observed
458 with juvenile venom (Fig 9). No mice injected with adult venom by the i.p. route died.

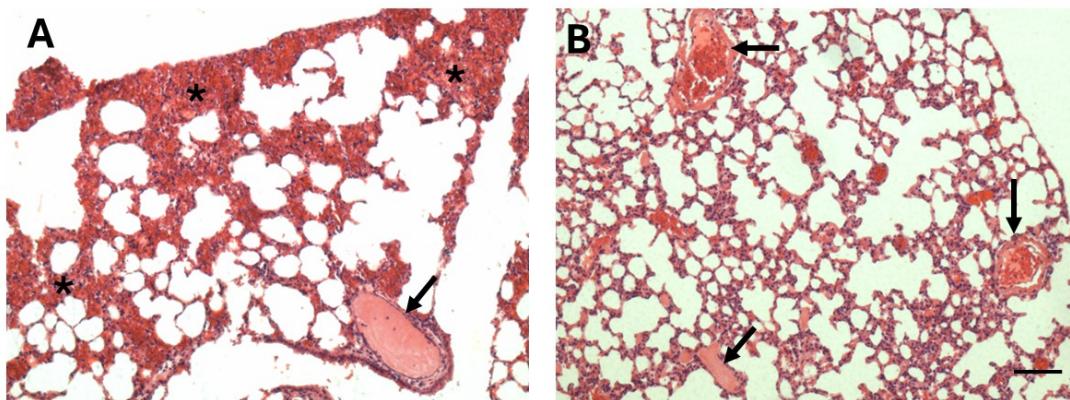

459

460 **Figure 9: Light micrographs of sections of pulmonary tissue of mice which received an**
461 **i.p. injection of venom from juvenile or adult *B. lanceolatus*.** Sections correspond to
462 samples of mice receiving 100 μ L PBS (A) or 70 μ g of *B. lanceolatus* venom from either
463 adult (B) or juvenile (C, D) specimens, dissolved in 100 μ L PBS. Mice were sacrificed 4 hr
464 after injections, and samples from pulmonary tissue were collected, added to formalin
465 fixative and processed for embedding in paraffin. Sections from control mice receiving PBS
466 show a normal histological pattern. In sections of mice receiving adult venom, thrombi are
467 largely absent and only a hyaline material is present in some vessels (arrow). In contrast,
468 samples from mice injected with juvenile venom present abundant thrombi in veins, arteries,
469 and smaller blood vessels (arrows). Hematoxylin-eosin staining. Bar represents 100 μ m.

470

471 Overall, blood vessels with thrombi were more abundant in mice injected with
472 juvenile venom than in those receiving adult venom. In order to provide a semiquantitative
473 assessment of the frequency of thrombi formation, a number of histological sections obtained
474 from mice injected with venoms were examined. Among 26 sections from mice receiving
475 juvenile venom, 20 showed thrombi, 3 presented the hyaline pattern of staining described

476 above, and 3 did not show thrombi. In contrast, in the case of 16 sections from lung tissue of
477 mice injected with adult venom, 1 had thrombi, 6 presented the hyaline material inside
478 vessels, and 9 did not show thrombi or hyaline material. It was of interest to assess whether
479 thrombi were also present in the microvasculature of mice receiving juvenile venom, by using
480 a specific staining of fibrin (Martius-Scarlet-Blue). No red staining, characteristic of fibrin,
481 was observed in the microvasculature of alveolar septa in samples from mice injected with
482 PBS, whereas abundant red-stained microthrombi occurred in sections from mice that had
483 received an i.p. injection of venom from juvenile specimens 4 hr after injection (Fig 10).


484

485 **Figure 10. Thrombi in the pulmonary microvasculature of mice injected with juvenile**
486 ***B. lanceolatus* venom.** Light micrographs of sections of pulmonary tissue of mice which
487 received an i.p. injection of 100 μ L PBS (A) or 70 μ g of *B. lanceolatus* venom from juvenile
488 specimens, dissolved in 100 μ L PBS (B). Mice were sacrificed 4 hr after injections, and
489 samples from pulmonary tissue were collected, added to formalin fixative and processed for
490 embedding in paraffin. Sections were stained with Martius-Scarlet-Blue, which stains fibrin
491 in red color. No fibrin is observed in samples of mice receiving PBS, whereas abundant red
492 fibrin deposits are observed in the microvasculature of the section from mice treated with
493 venom. Bar represents 100 μ m.

494

495 In order to assess the role of SVMPs in the formation of pulmonary thrombi, venoms
496 were incubated with the metalloproteinase inhibitor Batimastat before i.p. injection. Such

497 treatment did not inhibit the formation of thrombi in samples injected with juvenile venom,
498 and also did not prevent the formation of thrombi or the hyaline intravascular material in the
499 case of adult venoms. In contrast, Batimastat was effective in the inhibition of hemorrhagic
500 effect in the lungs (Fig 11). Thus, SVMPs do not seem to be the causative agent of pulmonary
501 thrombosis in this model but are responsible for the hemorrhagic activity. The raw data
502 related to histological assessment of thrombosis are available in [Supplementary Table S3](#).

503

504 **Figure 11. Inhibitory action of Batimastat on the effects induced by juvenile *B. lanceolatus* venom in the lungs.** Light micrographs of sections of pulmonary tissue of mice
505 which received an i.p. injection of 70 µg of *B. lanceolatus* venom from juvenile specimens
506 dissolved in 100 µL PBS (A) or the same dose of venom which was previously incubated
507 with Batimastat (250 µM final concentration) (B). Mice were sacrificed 4 hr after injections,
508 and samples from pulmonary tissue were collected, added to formalin fixative and processed
509 for embedding in paraffin. The section from a mouse receiving venom show abundant
510 hemorrhage (*) and a thrombus in a blood vessel (arrow). In contrast, no hemorrhage is
511 observed in tissue from a mouse receiving venom incubated with Batimastat, whereas
512 thrombi are present (arrows). Hematoxylin-eosin staining. Bar represents 100 µm.
513

514

515 Discussion

516 The mouse experimental model described in this work reproduces three of the characteristic
517 clinical findings in patients envenomed by *B. lanceolatus*, i.e., thrombosis, lack of

518 consumption coagulopathy, and thrombocytopenia. Clinical observations indicate that
519 patients developing thrombosis were generally bitten by specimens of small size [4, 22]. This
520 prompted us to obtain venoms of juvenile snakes and compare their composition and effects
521 with those of adult specimens. Results show that, when administered by the i.p. route, venom
522 from juvenile specimens induced pulmonary thrombosis in mice, whereas the venom of adult
523 specimens induced this effect to a much lower extent. Interestingly, no such effect was
524 observed when venom was injected i.v., s.c. or i.m. When administered by the i.p. route,
525 macromolecules reach the systemic circulation mainly via lymphatic vessels and reach higher
526 concentrations in blood than when using the s.c. and i.m. routes [31]. It is suggested that the
527 i.p. route is a model of systemic absorption of the venom that, in terms of toxicokinetics, may
528 resemble what occurs in clinical cases. Thus, our model could be used to study of the
529 mechanism of thrombosis by *B. lanceolatus*.

530 The majority of thrombi observed in pulmonary vasculature in mice injected with
531 juvenile venoms were observed in large and medium size veins, although thrombi were also
532 present in arteries. In addition, a staining for fibrin showed positive staining in the
533 microvasculature of the alveolar septa, hence reproducing the phenomenon of diffuse
534 thrombotic microangiopathy described in an autopsy of a patient envenomed by *B.*
535 *lanceolatus* [12]. In our study we did not observe thrombi in cerebral or myocardial blood
536 vessels, which are common findings in human patients [2-4]. Our observations can be
537 explained by the higher propensity of the pulmonary vasculature to develop inflammatory
538 and thrombotic complications in a variety of diseases [32, 33] and by its unique
539 hemodynamic and immunologic features. In the case of tissue samples from mice injected
540 with adult venoms the occurrence of evident thrombi was infrequent. Instead, a pale hyaline
541 material was observed in some vessels. Clearly, the thrombotic action induced by adult
542 venoms was weaker than by juvenile venoms.

543 The proteomic analysis of juvenile and adult venoms did not reveal overt differences
544 in composition. Thus, *B. lanceolatus* presents a venom proteomic profile that fits within the
545 ‘paedomorphic’ pattern described for some populations of *B. atrox*, in which there are no
546 major changes in venom composition as snakes age [34]. *Bothrops* sp venoms present a
547 dichotomic ontogenetic pattern, with some venoms having a ‘paedomorphic’ profile while

548 others show drastic changes as snakes age, corresponding to an ‘ontogenetic’ profile [34,35].
549 Thus, the basis for the difference in thrombogenic potential between juvenile and adult
550 venoms is not evident from the overall electrophoretic, chromatographic, and proteomic
551 comparison. It is likely that variations in the action of toxins within the most abundant protein
552 families may account for the functional difference observed, an issue that awaits the
553 identification of the thrombogenic factor(s) in venoms of juvenile specimens. The low
554 amount of venom available from juvenile specimens did not allow us to undertake the
555 purification of venom components.

556 The use of the SVMP inhibitor Batimastat allowed us to assess whether SVMPs are
557 involved in the thrombotic effect. It has been hypothesized that *B. lanceolatus* venom may
558 activate the vascular endothelium, rendering it thrombogenic [12, 36], an effect that might
559 be related to the action of SVMPs, which are abundant in this venom [14, 19, 37, 38]. It is
560 known that SVMPs induce a variety of effects on endothelial cells [39-41]. However,
561 inhibition of SVMPs did not prevent the formation of thrombi, although abrogated
562 pulmonary hemorrhage, thus evidencing that thrombosis occurs in conditions where SVMPs
563 are inhibited and implying that other as yet unidentified components are responsible for this
564 effect. The proinflammatory effect of *B. lanceolatus* venom, reflected by its ability to activate
565 the complement system and generate a variety of mediators, has been proposed as a possible
566 mechanism of the thrombotic effect [16-18]. Alternative mechanisms of thrombosis might
567 be related to the action of venom on von Willebrand factor, promoting its binding to type VI
568 collagen in the subendothelial surface [15] or to platelet activation, perhaps associated with
569 the thrombocytopenia observed in clinical cases in our experimental conditions. Our
570 observations concur with clinical laboratory findings in that this venom induces
571 thrombocytopenia, which might be a consequence of the action of a C-type lectin-like
572 component, similar to the one characterized from the closely related venom of *B. caribbaeus*
573 [42]. It is likely that the pathogenesis of thrombosis involves an interplay between
574 inflammatory events and platelet alterations in a scenario of thromboinflammation [43, 44].

575 There have been conflicting findings in the literature concerning the effect of *B.*
576 *lanceolatus* venom on hemostasis *in vitro* and *in vivo*. Regarding the *in vitro* procoagulant
577 effect on citrated plasma, both negative and positive results have been described [14, 19, 21,

578 23, 24], whereas the venom did not induce defibrinogenation in mice [21]. It has been
579 proposed that the negative *in vitro* results described by Bogarín et al [21] and Gutiérrez et al.
580 [14] are due to the fact that calcium, a cofactor required for coagulation, was not added to
581 the plasma in these experiments. When calcium is added, adult *B. lanceolatus* venom induces
582 plasma clotting *in vitro* [19, 23, 24]. Our observations and those of others demonstrate that
583 venoms of both adult and juvenile specimens exert thrombin-like (pseudo-procoagulant)
584 activity. This activity has been previously described for adult *B. lanceolatus* venom [20, 24].
585 This effect explains the weak procoagulant activity described for this venom on citrated
586 plasma. However, *in vitro* experiments do not necessarily reproduce what occurs *in vivo* and
587 hence the importance of assessing hemostatic alterations *in vivo*.

588 We explored the *in vivo* effect of adult and juvenile venoms on classical clotting tests
589 and rotational thromboelastometry parameters. No alterations were observed in PT and
590 aPTT, and there was only a significant drop in the concentration of fibrinogen after i.v.
591 injection. In contrast, when the venom of *B. asper*, which induces a typical consumption
592 coagulopathy, was tested in a similar mouse model, there were drastic alterations in these
593 parameters [45]. This agrees with clinical observations of *B. lanceolatus* envenomings since,
594 in most cases, a consumption coagulopathy is not observed [3, 5, 11].

595 When *in vivo* effects were evaluated by rotational thromboelastometry, which
596 provides a more detailed assessment of the hemostatic status, the venom of juvenile
597 specimens affected various Extem, Intem and Fibtem parameters 1 hr after i.v. injection,
598 whereas only Fibtem parameters were altered in the case of adult venom. These findings
599 might be due to the partial drop in fibrinogen concentration in mice injected with *B.*
600 *lanceolatus* venoms as a consequence of the action of thrombin-like (pseudo-procoagulant)
601 enzymes, since Fibtem basically depends on the status of fibrinogen. However, when venoms
602 were administered i.p., in conditions where pulmonary thrombosis occurs, clotting tests were
603 not altered, implying that thrombosis occurs in conditions where there is no
604 defibrinogenation. The higher extent of rotational thromboelastometry alterations when using
605 the i.v. route, as compared to the i.p. route, might be due to the fact that in the former the
606 venom is in immediate contact with clotting factors in the bloodstream, thus increasing the
607 likelihood of alterations. The lack of major alterations in rotational thromboelastometry

608 parameters is in contrast with observations carried out with the venom of *B. asper*, which
609 causes a consumption coagulopathy and drastically affects these parameters in a mouse
610 model [45]. Overall, *B. lanceolatus* venoms do not induce *in vivo* consumption coagulopathy
611 in this model, in agreement with clinical observations. The lack of overt consumption
612 coagulopathy might be related to the thrombotic effect since clotting factors are present in
613 the bloodstream by the time the thrombogenic mechanisms induced by the venom are
614 operating in blood vessels. On the other hand, a drastic drop in platelet numbers was observed
615 by the time thrombosis occurs, suggesting that platelet alterations might be related to the
616 pathogenesis of thrombosis by mechanisms as yet unknown.

617 In conclusion, when injected by the i.p. route, the venom of juvenile specimens of *B.*
618 *lanceolatus* induces abundant thrombi in the pulmonary vasculature, thus reproducing
619 clinical findings describing thrombosis in patients bitten by snakes of small size in
620 Martinique. The model also reproduces clinical observations describing lack of consumption
621 coagulopathy and thrombocytopenia in many patients. This experimental model could be
622 used to explore the mechanisms of thrombosis induced by the venom of *B. lanceolatus* and
623 to identify the toxins responsible for this unique effect. Moreover, although rare, peripheral
624 arterial thrombosis and pulmonary thromboembolism have been described in envenomings
625 by other viperid snake species [46, 47], thus opening the possibility of using this experimental
626 model to explore the development of thrombosis with other snake venoms.

627 **Acknowledgments**

628 The authors thank Marilla Lamela Méndez (Capris S.A., Costa Rica) for providing the
629 reagents for the rotational thromboelastometry assays and Jennifer Stynoski for her
630 collaboration in the statistical analyses. This study was supported by Vicerrectoría de
631 Investigación, Universidad de Costa Rica (project 01-273-2024).

632 **References**

633 1. Wüster W, Thorpe RS, Salomao MG, Thomas L, Puerto G, Theakston RDG, et al. Origin
634 and phylogenetic position of the Lesser Antillean species of *Bothrops* (Serpentes, Viperidae):
635 biogeographical and medical implications. Bull Nat Hist Mus Lond (Zool) 2002; 68: 101-6.

636 2. Thomas L, Tyburn B, and the Research Group of Snakebite in Martinique. *Bothrops*
637 *lanceolatus* bites in Martinique. Clinical aspects and treatment. In: Bon C, Goyffon M,
638 Editors. Envenomings and Their Treatment. Lyon: Fondation Marcel Mérieux; 1996. pp 255-
639 65.

640 3. Resiere D, Mégarbane B, Valentino R, Mehdaoui H, Thomas L. *Bothrops lanceolatus*
641 bites: guidelines for severity assessment and emergent management. *Toxins (Basel)* 2010; 2:
642 163-73. DOI: 10.3390/toxins2010163.

643 4. Thomas L, Tyburn B, Bucher B, Pecout F, Ketterle J, Rieux D, et al. Prevention of
644 thromboses in human patients with *Bothrops lanceolatus* envenoming in Martinique: failure
645 of anticoagulants and efficacy of a monospecific antivenom. *Am J Trop Med Hyg* 1995; 52:
646 419-26. DOI: 10.4269/ajtmh.1995.52.419.

647 5. Resiere D, Florentin J, Mehdaoui H, Kallel H, Legris-Alluson V, Gueye P, Neviere R.
648 *Bothrops lanceolatus* envenoming in Martinique: A historical perspective of the clinical
649 effectiveness of Bothrofav antivenom treatment. *Toxins (Basel)* 2024; 16: 146. DOI:
650 10.3390/toxins16030146.

651 6. Malaque, CMS, Gutiérrez JM. Snakebite envenomation in Central and South America. In:
652 Brendt et al, Editors. Critical Care Medicine. Switzerland: Springer International; 2016. pp
653 1-22.

654 7. Otero-Patiño R. Epidemiological, clinical and therapeutic aspects of *Bothrops asper* bites.
655 *Toxicon* 2009; 54: 998-1011. DOI: 10.1016/j.toxicon.2009.07.001.

656 8. Monteiro WM, Contreras-Bernal JC, Ferreira Bisneto P, Sachett J, Mendonca da Silva I,
657 Lacerda M, et al. *Bothrops atrox*, the most important snake involved in human envenomings
658 in the Amazon: How venomics contributes to the knowledge of snake biology and clinical
659 toxicology. *Toxicon:X* 2020; 6: 100037. DOI: 10.1016/j.toxcx.2020.100037.

660 9. Houcke S, Puji JM, Vauquelin S, Ngoula GRL, Matheus S, NkontCho F, et al. Effect of
661 time to antivenom administration on recovery from snakebite envenoming-related
662 coagulopathy in French Guiana. *PLoS Negl Trop Dis* 2023; 17: e0011242. DOI:
663 10.1371/journal.pntd.0011242.

664 10. Thomas L, Tyburn B, Lang J, Ketterle J. Early infusion of a purified monospecific F(ab')₂
665 antivenom serum for *Bothrops lanceolatus* bites in Martinique. *Lancet* 1996; 347: 406.
666 DOI: 10.1016/s0140-6736(96)90590-5.

667 11. Thomas L, Tyburn B, Ketterlé J, Biao T, Mehdaoui H, Moravie V, et al. Prognostic
668 significance of clinical grading of patients envenomed by *Bothrops lanceolatus* in
669 Martinique. *Trans R Soc Trop Med Hyg* 1998; 92: 542-5. DOI: 10.1016/s0035-
670 9203(98)90907-5.

671 12. Malbranque S, Piercecchi-Marti MD, Thomas L, Barbey C, Coucier D, Bucher B, et al.
672 Fatal diffuse thrombotic microangiopathy after a bite by the “Fer-de-Lance” pit viper
673 (*Bothrops lanceolatus*) of Martinique. *Am J Trop Med Hyg* 2008; 78: 856-61.

674 13. Numeric P, Moravie V, Didier M, Chatot-Henry D, Cirille S, Bucher B, et al. Multiple
675 cerebral infarctions following a snakebite by *Bothrops caribbaeus*. *Am J Trop Med Hyg*
676 2002; 67: 287-8. DOI: 10.4269/ajtmh.2002.67.287

677 14. Gutiérrez JM, Sanz L, Escolano J, Fernández J, Lomonte B, Angulo Y, et al. Snake
678 venomics of the Lesser Antillean pit vipers *Bothrops caribbaeus* and *Bothrops lanceolatus*:
679 correlation with toxicological activities and immunoreactivity of a heterologous antivenom.
680 *J Proteome Res* 2008; 7: 4396-408. DOI: 10.1021/pr8003826.

681 15. Pierre-Louis O, Resiere D, Alphonsine C, Dantin F, Banydeen R, Dubois MD, et al.
682 Increased binding of von Willebrand factor to subendothelial collagen may facilitate
683 thrombotic events complicating *Bothrops lanceolatus* envenomation in humans. *Toxins*
684 (Basel) 2023; 15: 441. DOI: 10.3390/toxins15070441.

685 16. Delafontaine M, Villas-Boas I, Mathieu L, Josset P, Blomet J, Tambourgi D. Enzymatic
686 and pro-inflammatory activities of *Bothrops lanceolatus* venom: relevance for
687 envenomation. *Toxins (Basel)* 2017; 9: 244. DOI: 10.3390/toxins9080244.

688 17. Delafontaine M, Villas-Boas IM, Pidde G, van den Berg, CW, Mathieu L, Blomet J, et
689 al. Venom from *Bothrops lanceolatus*, a snake species native to Martinique, potently
690 activates the complement system. *J Immunol Res* 2018; 2018: 3462136.
691 DOI: 10.1155/2018/3462136.

692 18. Gabrili JJM, Pidde G, Magnoli FC, Marques-Puerto R, Villas-Boas IM, Squaiella-
693 Baptista CC, et al. New insights into immunopathology associated to *Bothrops lanceolatus*
694 snake envenomation: focus on PLA₂ toxin. *Int J Mol Sci* 2023; 24: 9931.
695 DOI: 10.3390/ijms24129931.

696 19. Larréché S, Chevillard L, Jourdi G, Mathé S, Servonnet A, Joly BS, et al. *Bothrops*
697 venom-induced hemostasis disorders in the rat: between *Scylla* and *Charybdis*. *PLoS Negl*
698 *Trop Dis* 2023; 17: e0011786. DOI: 10.1371/journal.pntd.0011786.

699 20. Lobo de Araujo A, Donato JL, Bom C. Purification from *Bothrops lanceolatus* (der de
700 lance) venom of a fibrino(geno)lytic enzyme with esterolytic activity. *Toxicon* 1998; 36:
701 745-58. DOI: 10.1016/s0041-0101(97)00118-9.

702 21. Bogarín G., Romero, M., Rojas G, Lutsch C, Casadumont M, Lang J, et al. Neutralization,
703 by a monospecific *Bothrops lanceolatus* antivenom, of toxic activities induced by
704 homologous and heterologous *Bothrops* snake venoms. *Toxicon* 1999; 37: 551-7.
705 DOI: 10.1016/s0041-0101(98)00193-7.

706 22. Guimaraes AQ, Cruz-Hofling MA, Ferreira de Araújo PM, Bon C, Lobo de Araújo A.
707 Pharmacological and histopathological characterization of *Bothrops lanceolatus* (Fer de
708 Lance) venom-induced edema. Inflamm Res 2004; 53: 284-91. DOI: 10.1007/s00011-004-
709 1258-0.

710 23. Bourke LA, Znedek CN, Tanaka-Azevedo AM, Silveira GPM, Sant'Anna SS, Grego KF,
711 et al. Clinical and laboratory implications of dynamic coagulotoxicity. Divergences in
712 *Bothrops* (lancehead pit viper) venoms. Toxins (Basel) 2022; 14: 297. DOI:
713 10.3390/toxins14050297.

714 24. Saint-Aimé FR, Jalta P, Rapon C, Branford C, Florentin J, Gutiérrez JM, et al. The
715 contrasting effects of *Bothrops lanceolatus* and *Bothrops atrox* venom on plasmatic
716 procoagulant activity and thrombus stability under blood flow. PLoS Negl Trop Dis
717 (submitted).

718 25. Bucher B, Canonge D, Thomas L, Tyburn B, Robbe-Vincent A, Choumet V, et al.
719 Clinical indicators of envenoming and serum levels of venom antigens in patients bitten by
720 *Bothrops lanceolatus* in Martinique. Trans R Soc Trop Med Hyg 1997; 91: 186-90.
721 DOI: 10.1016/s0035-9203(97)90219-4.

722 26. Lomonte B, Calvete JJ. Strategies in 'snake venomics' aiming at an integrative view of
723 compositional, functional, and immunological characteristics of venoms. J Venom Anim
724 Toxins Incl Trop Dis 2017; 23: 26. DOI: 10.1186/s40409-017-0117-8.

725 27. Lomonte B, Díaz C, Chaves F, Fernández J, Ruiz M, Salas M, et al. Comparative
726 characterization of Viperidae snake venoms from Peru reveals two compositional patterns of
727 phospholipase A₂ expression. Toxicon:X 2020; 7: 100044.
728 DOI: 10.1016/j.toxcx.2020.100044.

729 28. O'Leary MA, Isbister GK. A turbidimetric assay for the measurement of clotting times
730 of procoagulant venoms in plasma. J Pharmacol Toxicol Methods 2010; 61: 27-31.
731 DOI: 10.1016/j.vascn.2009.06.004.

732 29. Sánchez A, Herrera M, Villalta M, Solano D, Segura Á, Lomonte B, et al. Proteomic and
733 toxinological characterization of the venom of the South African ringhals cobra, *Hemachatus*
734 *haemachatus*. J Proteomics 2018; 181: 104-17. DOI: 10.1016/j.jprot.2018.04.007.

735 30. Resiere D, Arias AS, Villalta M, Rucavado A, Brouste Y, Cabié A, et al. Preclinical
736 evaluation of the neutralizing ability of a monospecific antivenom for the treatment of
737 envenomings by *Bothrops lanceolatus* in Martinique. Toxicon 2018; 148: 50-55.
738 DOI: 10.1016/j.toxicon.2018.04.010.

739 31. Shoyaib AA, Archie SR, Karamyan VT. Intraperitoneal route of drug administration:
740 Should it be used in experimental animal studies? Pharm Res 2020; 37: 12. DOI:
741 10.1007/s11095-019-2745-x.

742 32. Bos LD, Ware LB. Acute respiratory distress syndrome: causes, pathophysiology and
743 phenotypes. *Lancet* 2022; 400: 1145-56. DOI: 10.1016/S0140-6736(22)01485-4.

744 33. Mitchell WB. Thromboinflammation in COVID-19 acute lung injury. *Paediatric Resp*
745 *Reviews* 2020; 35: 20-24. DOI: 10.1016/j.prrv.2020.06.004.

746 34. Calvete JJ, Sanz L, Pérez A, Borges A, Vargas AM, Lomonte B, et al. Snake population
747 venomics and antivenomics of *Bothrops atrox*: Paedomorphism along its transamazonian
748 dispersal and implications of geographic venom variability on snakebite management. *J*
749 *Proteomics* 2011; 74: 510-27. DOI: 10.1016/j.jprot.2011.01.003.

750 35. Alape-Girón A, Sanz L, Escolano J, Flores-Díaz M, Madrigal M, Sasa M, et al. Snake
751 venomics of the lancehead pitviper *Bothrops asper*: geographic, individual and ontogenetic
752 variations. *J Proteome Res* 2008; 7: 3556-71. DOI: 10.1021/pr800332p.

753 36. Warrell DA. Snakebites in Central and South America: Epidemiology, clinical features,
754 and clinical management. In: Campbell JA, Lamar WW, editors. *The Venomous Reptiles of*
755 *the Western Hemisphere*. Vol II. Ithaca: Comstock. pp. 709-61.

756 37. Stroka A, Donato JL, Bon C, Hyslop S, Lobo de Araújo A. Purification and
757 characterization of a hemorrhagic metalloproteinase from *Bothrops lanceolatus* (Fer-de-
758 Lance) snake venom. *Toxicon* 2005; 45: 411-20. DOI: 10.1016/j.toxicon.2004.11.010.

759 38. Terra RMS, Pinto AFM, Guimaraes JA, Fox JW. Proteomic profiling of snake venom
760 metalloproteinases (SVMPs): insights into venom induced pathology. *Toxicon* 2009; 54:
761 836-44. DOI: 10.1016/j.toxicon.2009.06.010.

762 39. Díaz C, Valverde L, Brenes O, Rucavado A, Gutiérrez JM. Characterization of events
763 associated with apoptosis/anoikis induced by snake venom metalloproteinase BaP1 on
764 human endothelial cells. *J Cell Biochem* 2005; 94: 520-8. DOI: 10.1002/jcb.20322

765 40. Gutiérrez JM, Rucavado A, Escalante T, Díaz C. Hemorrhage induced by snake venom
766 metalloproteinases: biochemical and biophysical mechanisms involved in microvessel
767 damage. *Toxicon* 2005; 45: 997-1011. DOI: 10.1016/j.toxicon.2005.02.029

768 41. Schattner M, Fritzen M, Ventura JS, de Albuquerque Modesto JC, Pozner G, Moura-da-
769 Silva AM, et al. The snake venom metalloproteinases berythracitivase and jararhagin activate
770 endothelial cells. *Biol Chem* 2005; 386: 369-74. DOI: 10.1515/BC.2005.044

771 42. Herrera C, Rucavado A, Warrell DA, Gutiérrez JM. Systemic effects induced by the
772 venom of the snake *Bothrops caribaeus* in a murine model. *Toxicon* 2013; 63: 19-31.
773 DOI: 10.1016/j.toxicon.2012.10.023.

774 43. Teixeira C, Fernandes CM, Leiguez E, Chudzinski-Tavassi, AM. Inflammation induced
775 by platelet-activating snake venoms: perspectives on thromboinflammation. *Front Immunol*
776 2019; 10: 2082. DOI: 10.3389/fimmu.2019.02082.

777 44. Mandel J, Casari M, Stepanyan M, Martyanov, Deppermann C. Beyond hemostasis:
778 platelet innate immune interactions and thromboinflammation. *Int J Mol Sci* 2022; 23: 3868.
779 DOI: 10.3390/ijms23073868.

780 45. Rucavado A, Chacón M, Villalobos D, Arguello I, Campos M, Guerrero G, et al.
781 Coagulopathy induced by viperid snake venoms in a murine model: Comparison of standard
782 coagulation tests and rotational thromboelastometry. *Toxicon* 2022; 214: 121-9.
783 DOI: 10.1016/j.toxicon.2022.05.042.

784 46. Senthilkumaran S, Patel K, Rajan E, Vajayakumar P, Miller SW, Rucavado A, et al.
785 Peripheral arterial thrombosis following Russell's viper bites. *TH Open* 2023; 7: e168-83.
786 DOI: 10.1055/s-0043-1769625.

787 47. Senthilkumaran S, Sampath S, Almeida JR, Williams J, Williams HF, Patel K, et al.
788 Pulmonary thromboembolism following Russell's viper bites. *Toxins (Basel)* 2024; 16: 222.
789 DOI: 10.3390/toxins16050222

790

791 **Supporting information**

792 **Supplementary Table S1.** Details of the protein matches and supporting peptides related to
793 the proteomic analysis of venoms of *B. lanceolatus* from adult and juvenile specimens.

794 **Supplementary Table S2.** Raw data of the assays evaluating the alterations induced by the
795 venoms of *B. lanceolatus* on classical clotting tests, rotational thromboelastometry, and
796 platelet counts.

797

798 **Supplementary Table S3.** Raw data of the histological assessment of thrombosis in
799 histological sections from the lungs of mice receiving intraperitoneal injection of 70 µg of
800 the venoms of juvenile and adult specimens of *B. lanceolatus*.

801

802

803

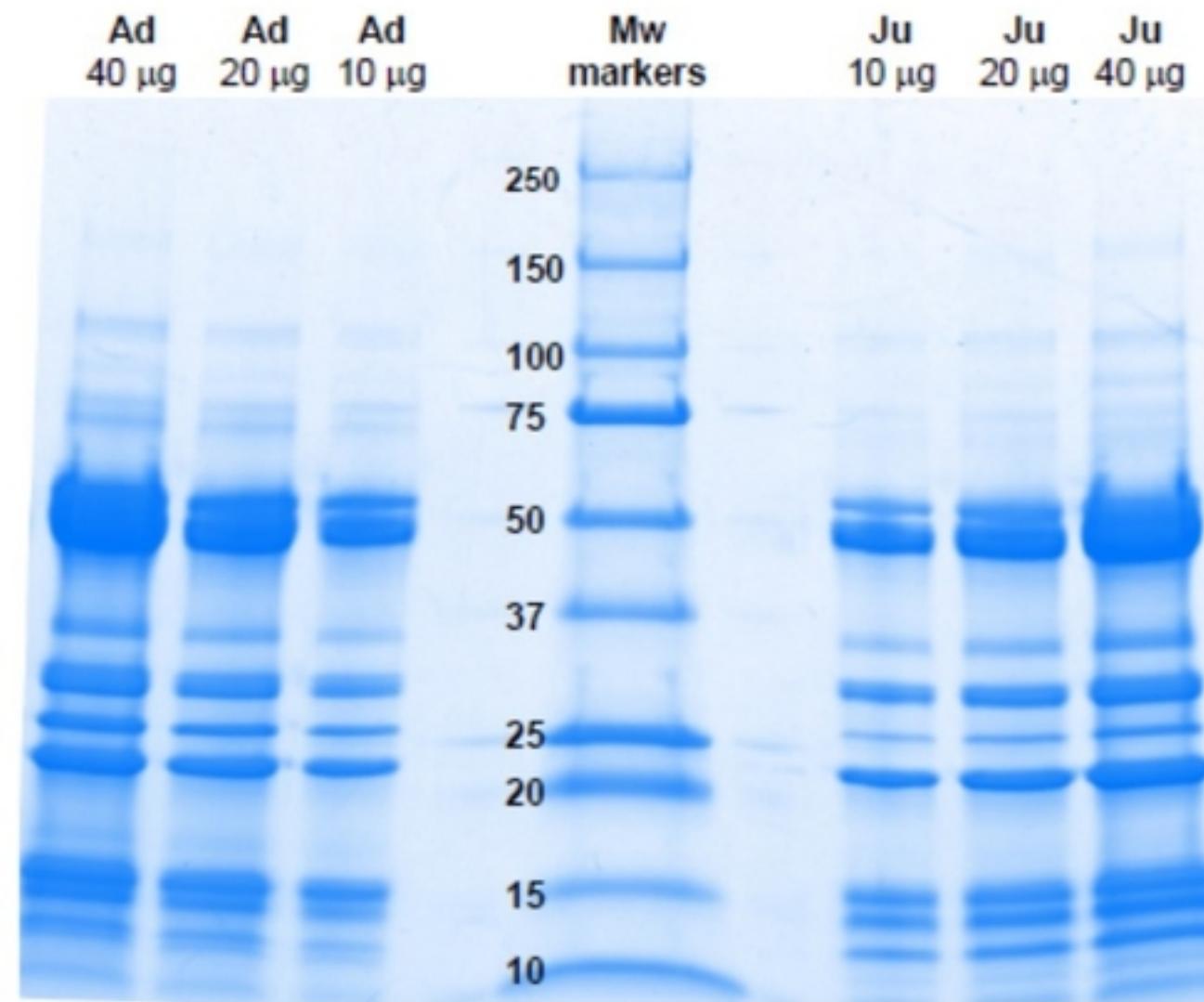


Figure 1

Figure 2

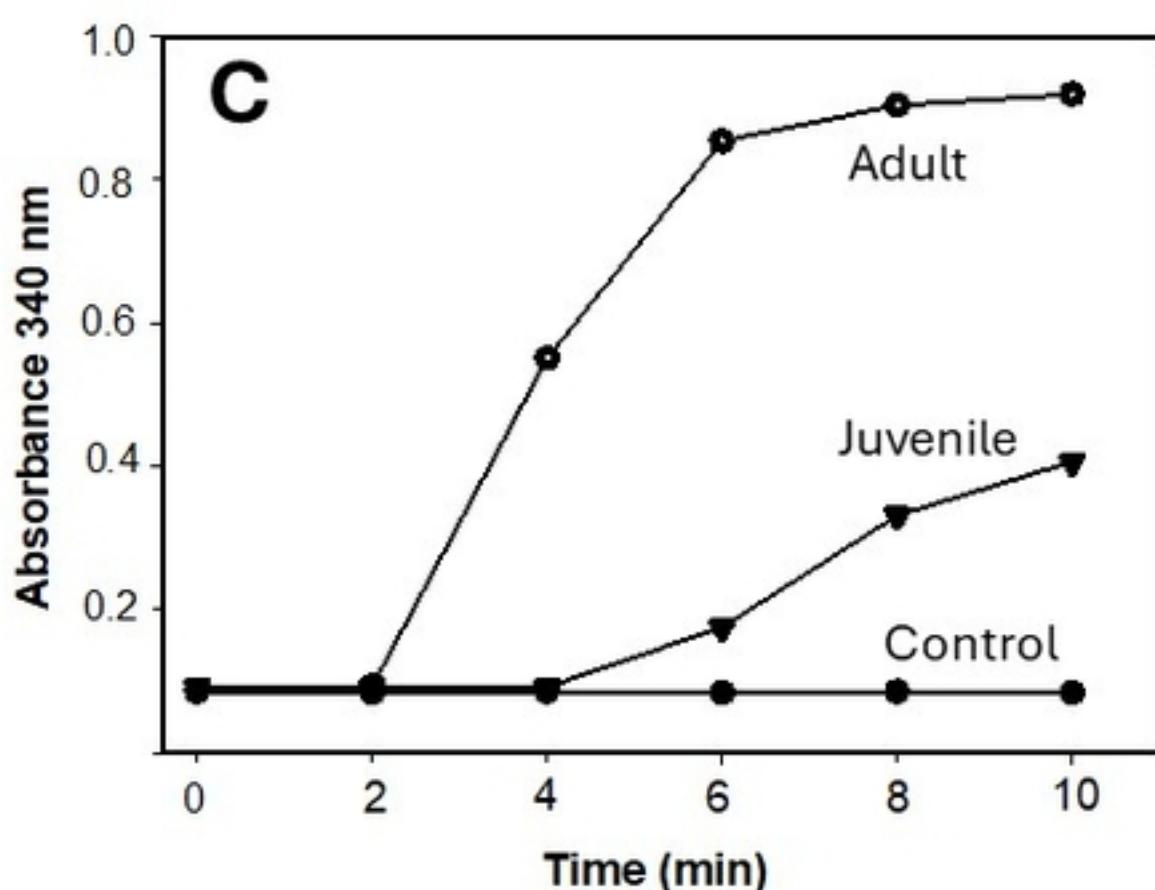
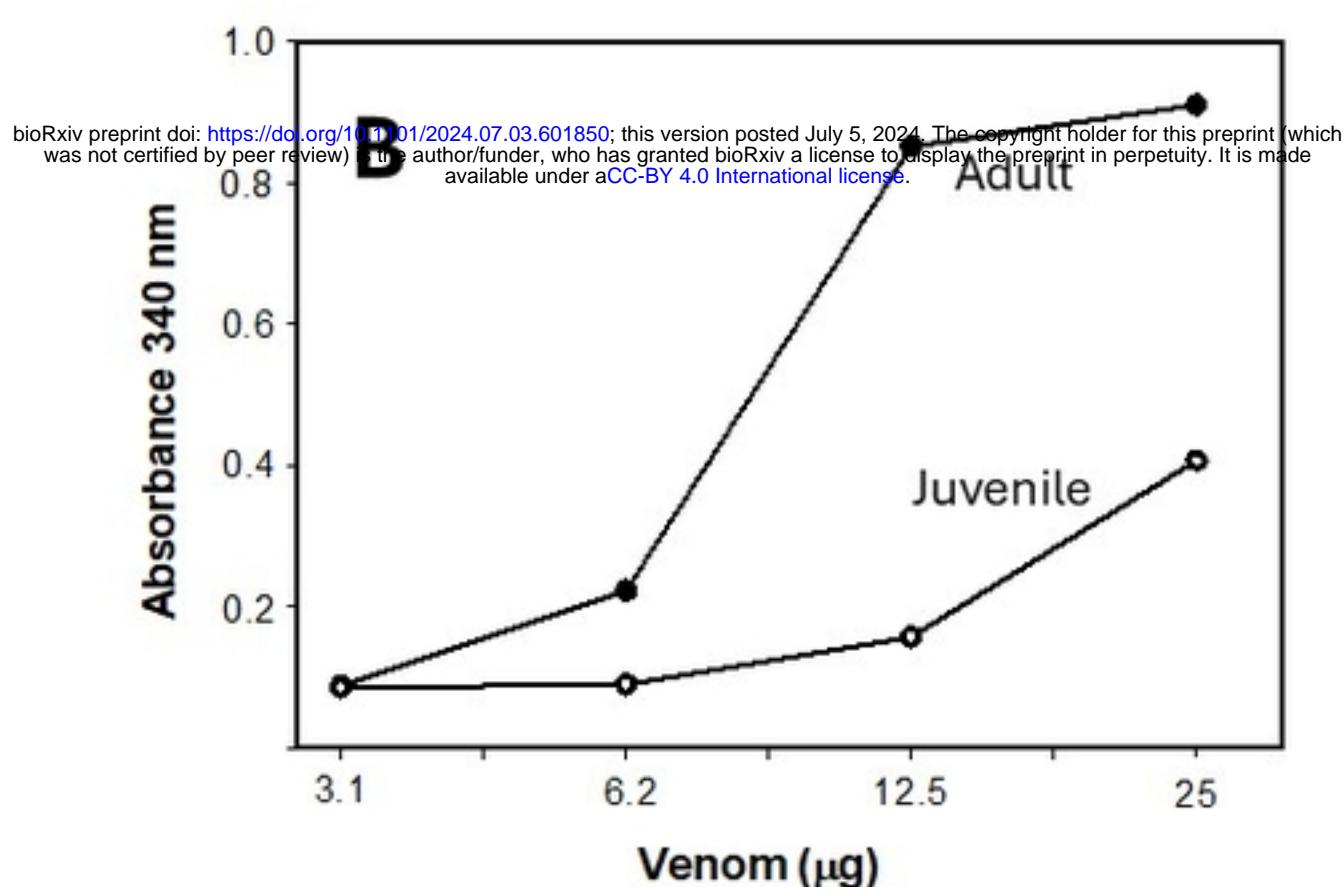
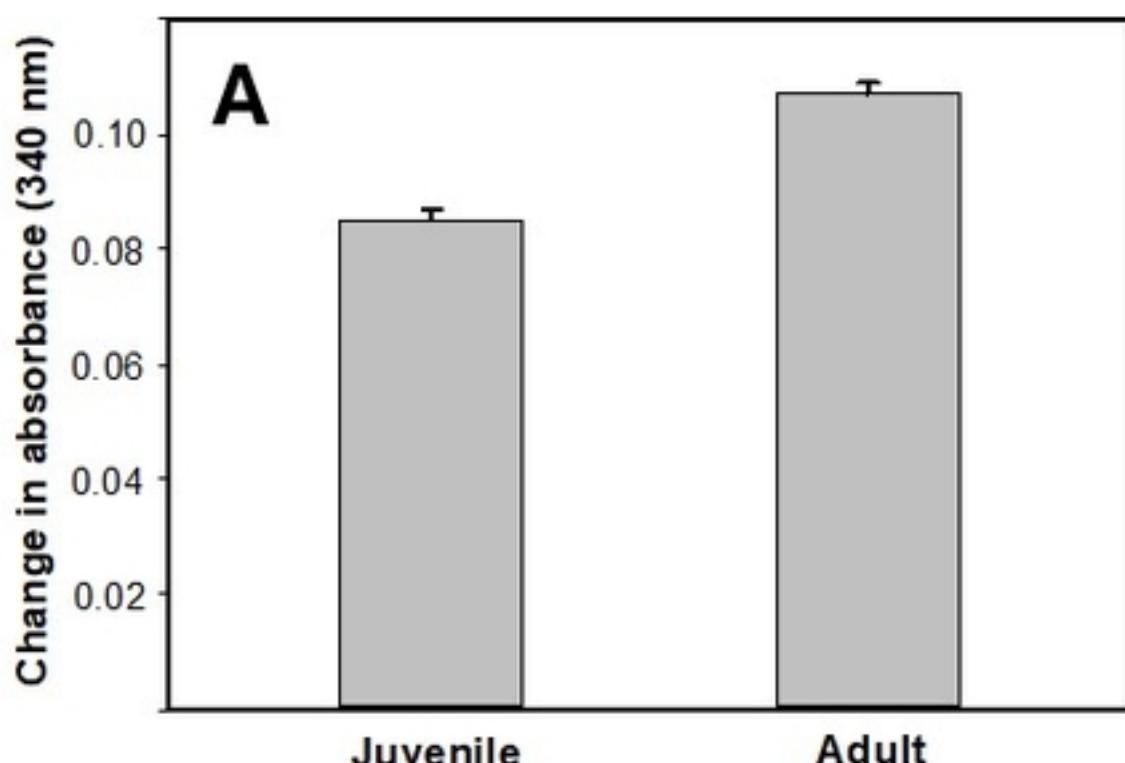




Figure 3

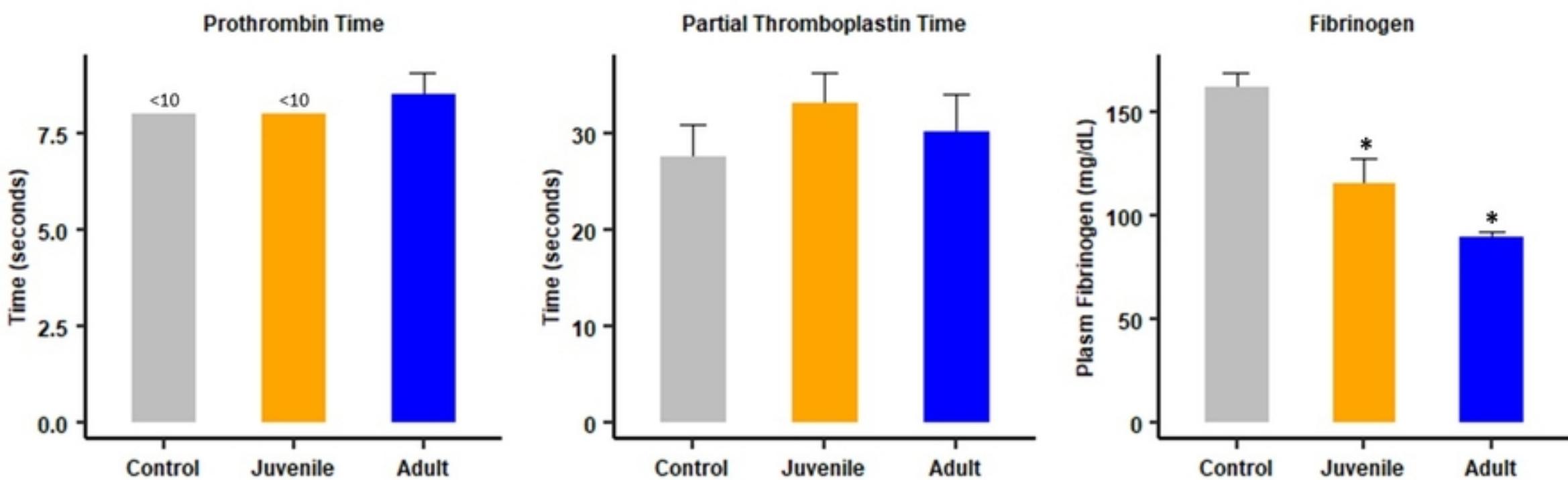


Figure 4

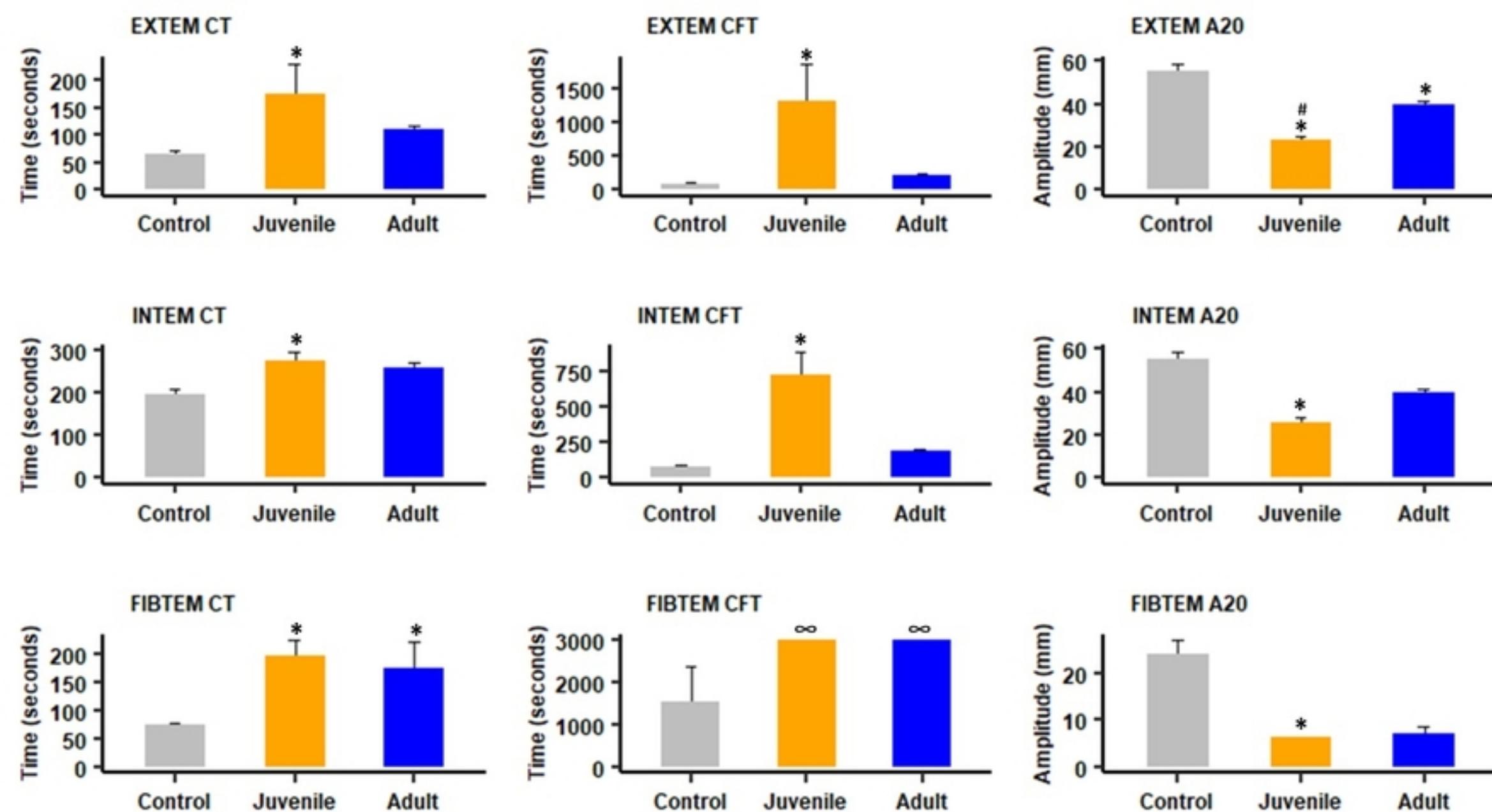


Figure 5

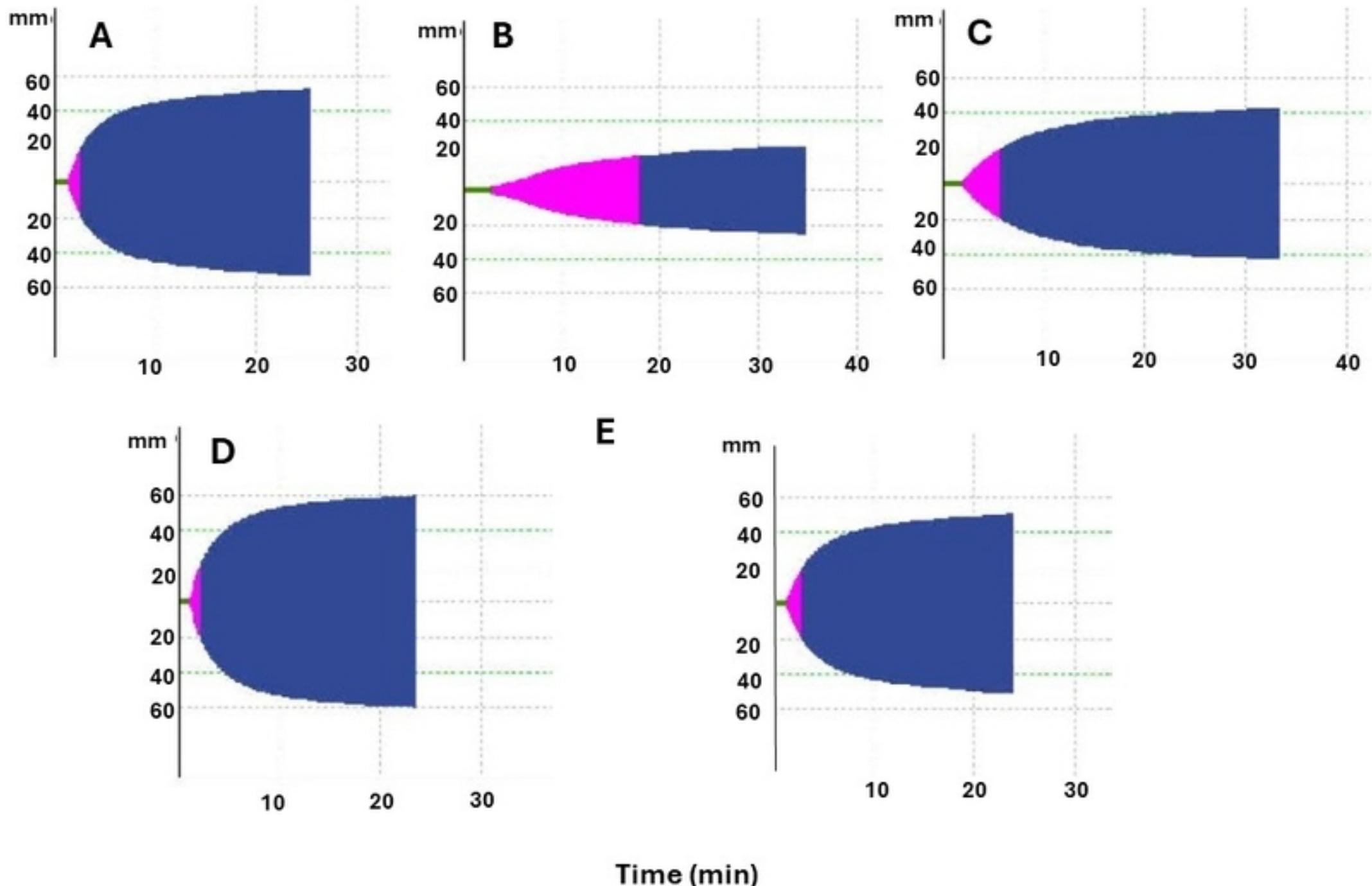


Figure 6

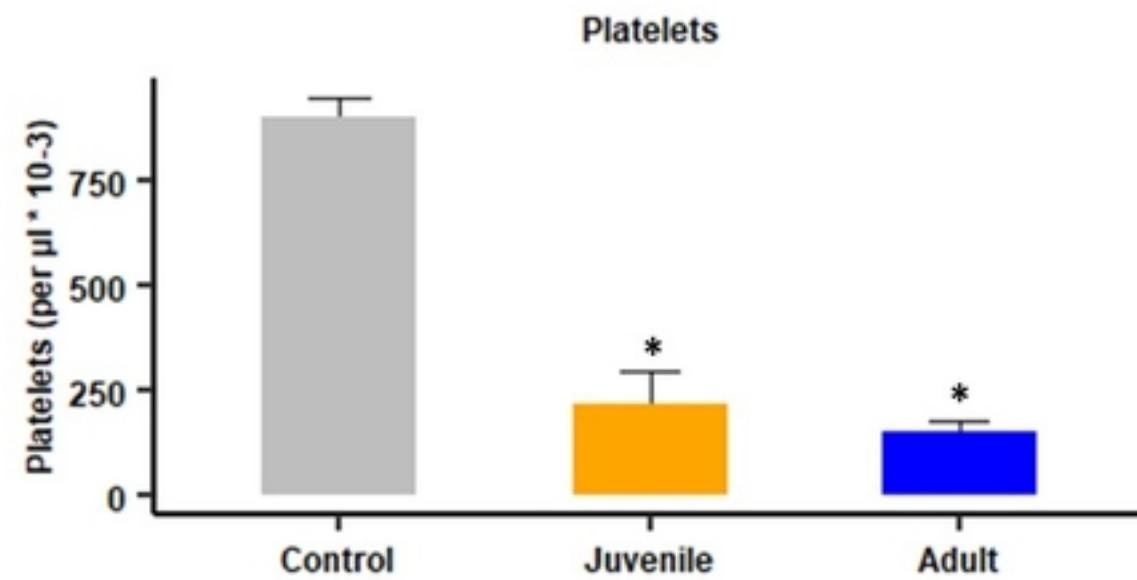
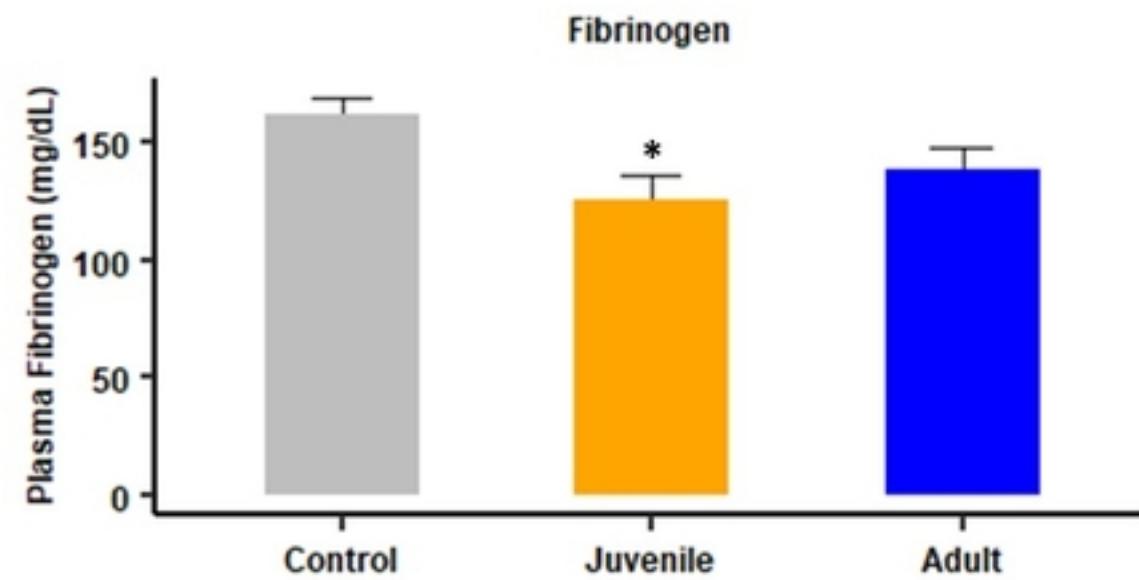
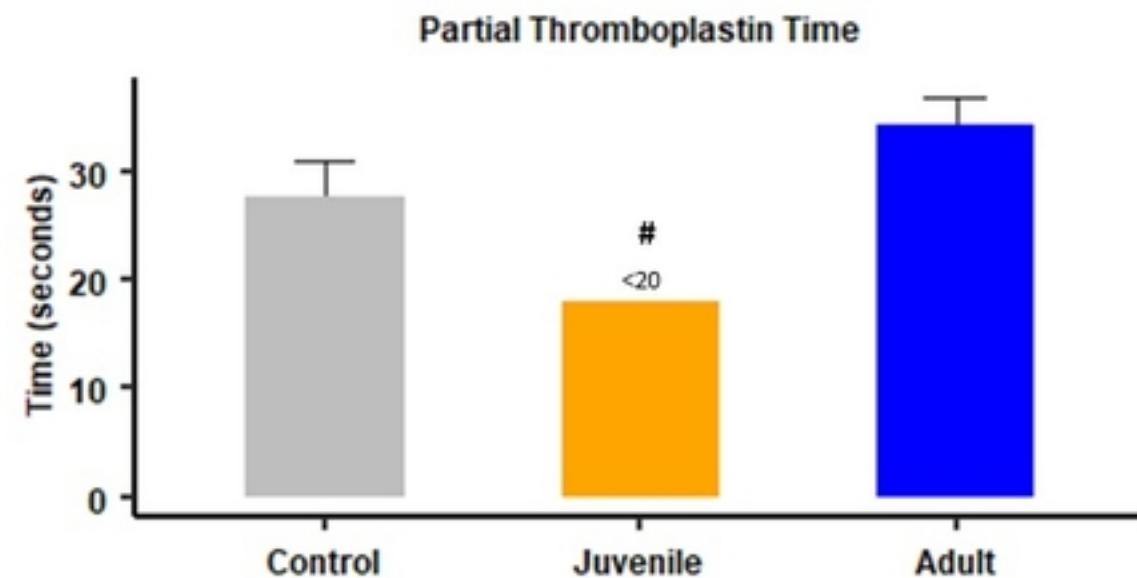
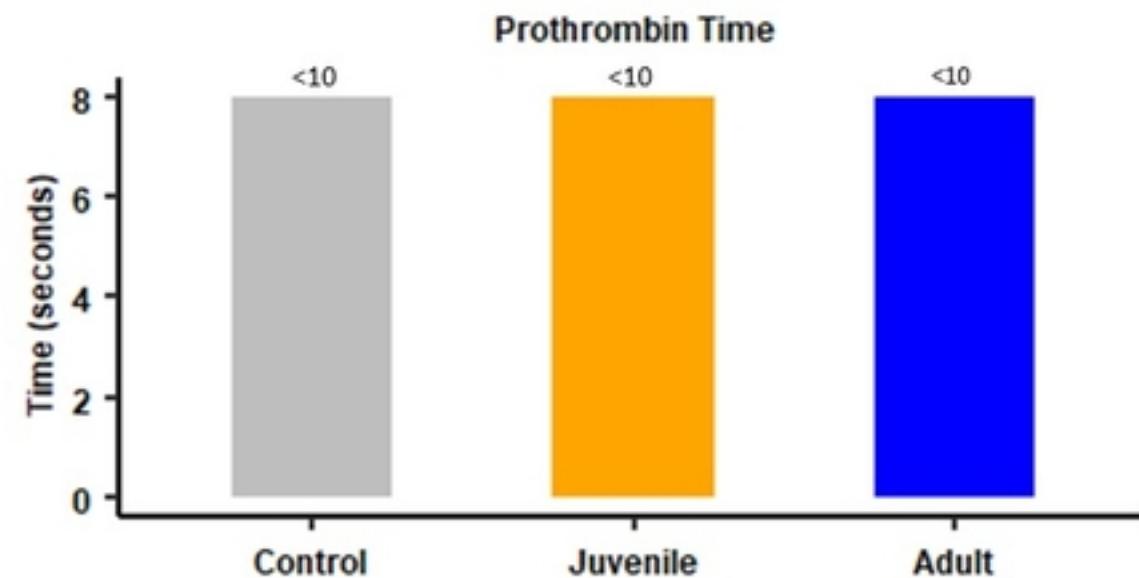





Figure 7



Figure 8

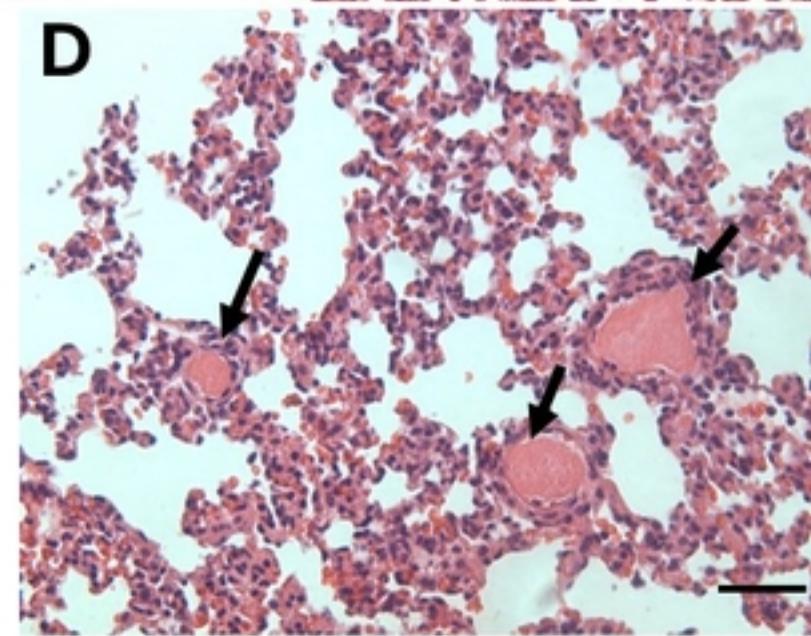
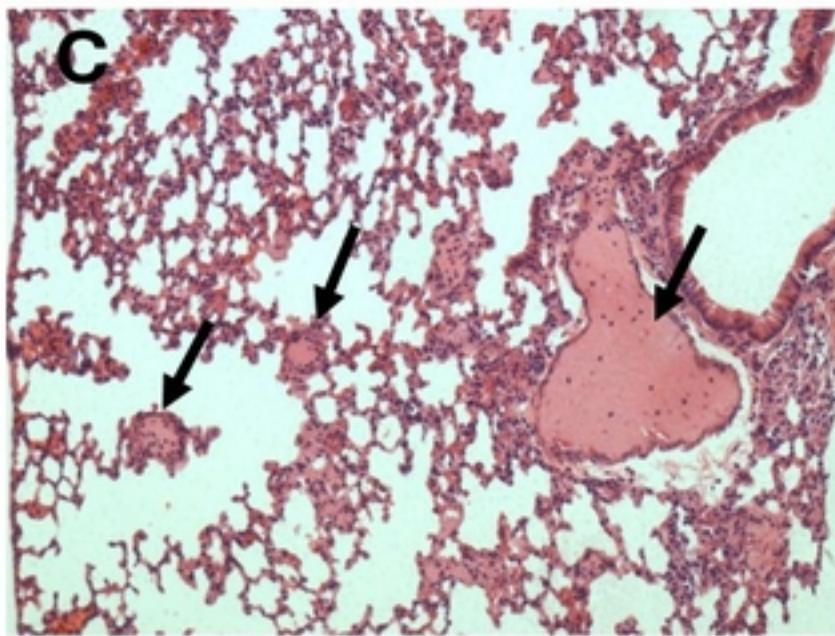
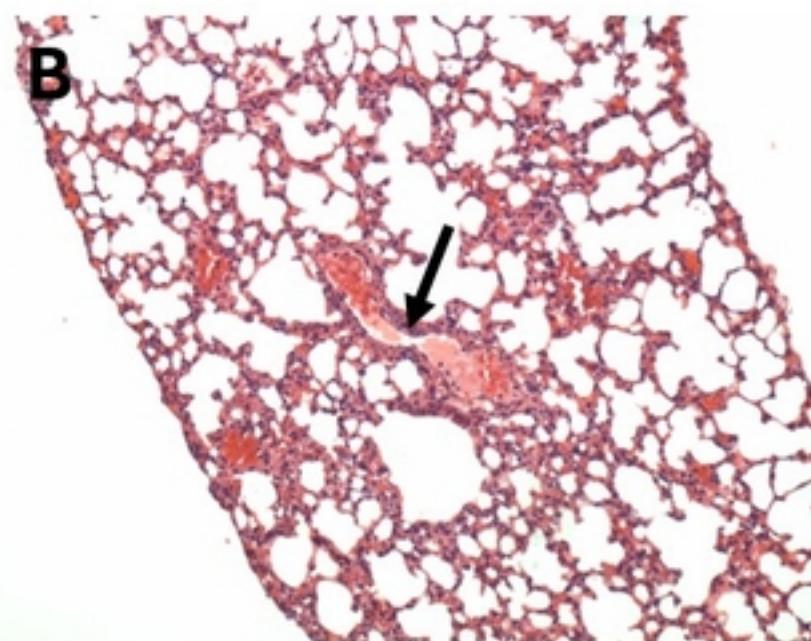
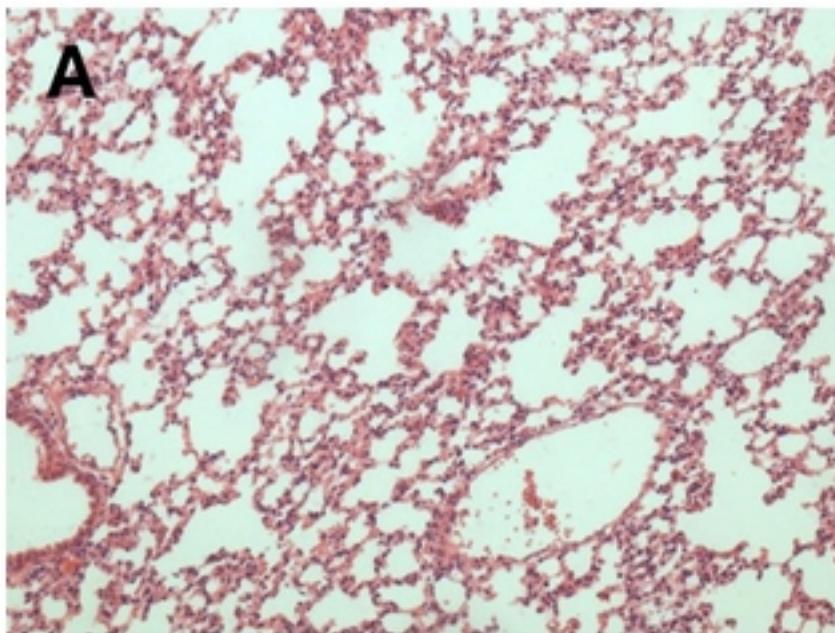





Figure 9

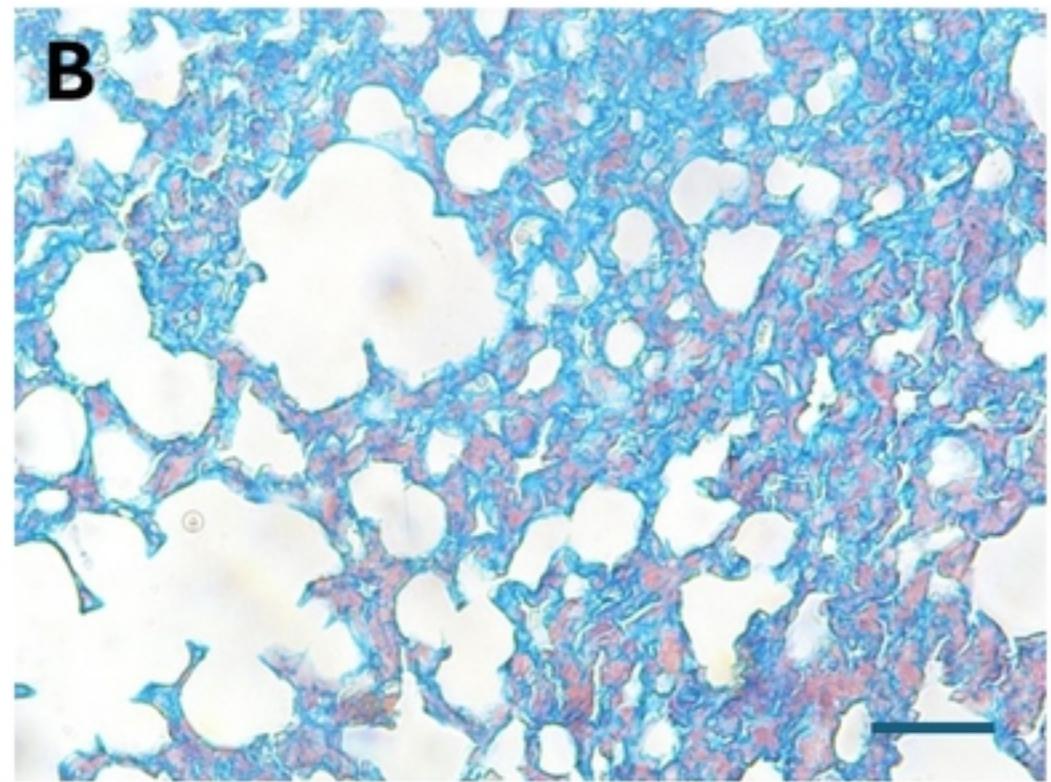
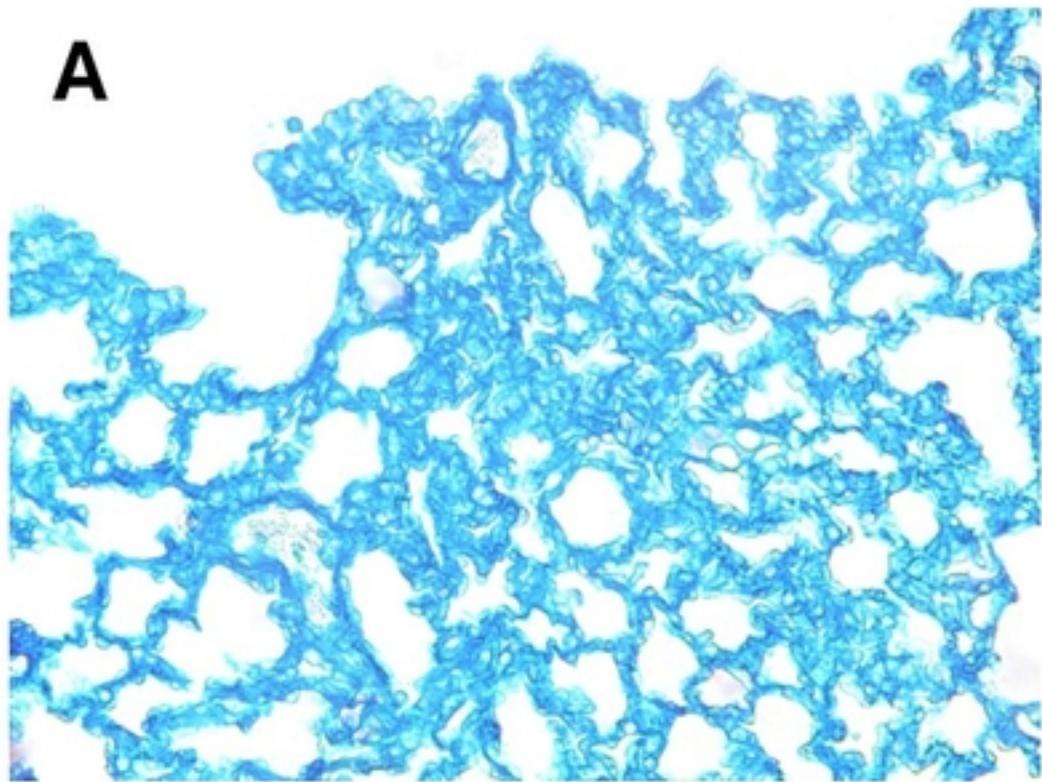



Figure 10

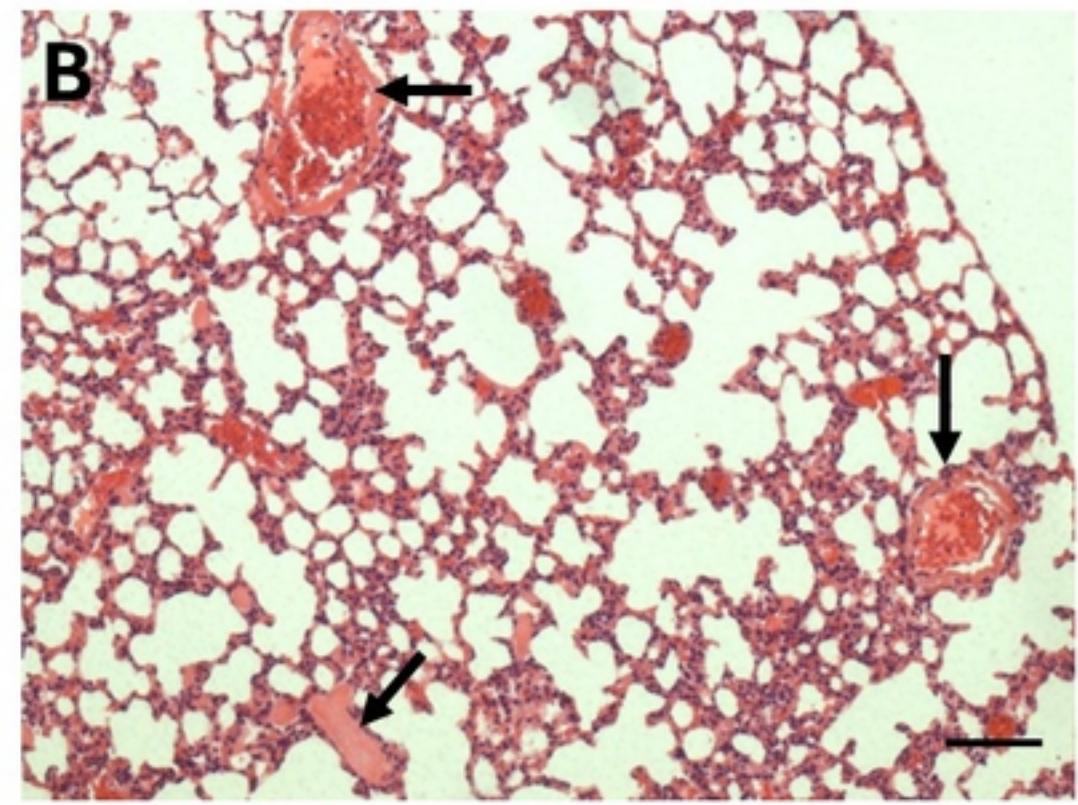
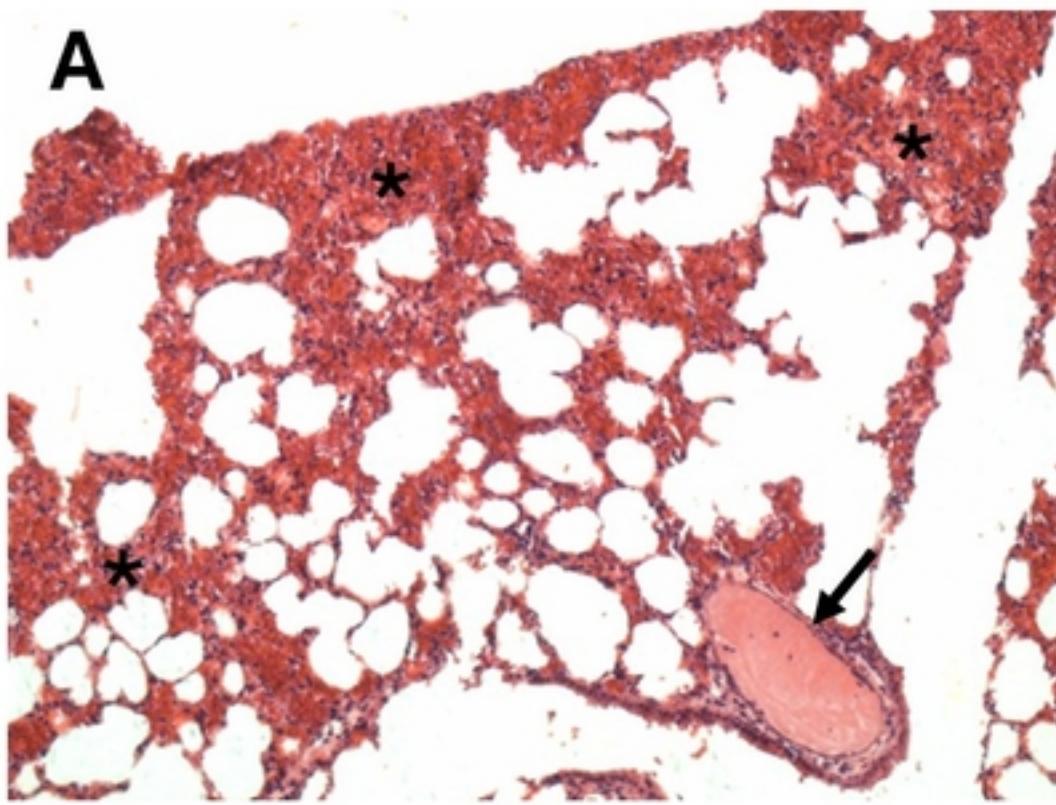



Figure 11