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Summary 14 
Cis-regulatory elements (CREs) precisely control spatiotemporal gene expression in cells. Using a spatially 15 
resolved single-cell atlas of gene expression with chromatin accessibility across ten soybean tissues, we 16 
identified 103 distinct cell types and 303,199 accessible chromatin regions (ACRs). Nearly 40% of the ACRs 17 
showed cell-type-specific patterns and were enriched for transcription factor (TF) motifs defining diverse 18 
cell identities. We identified de novo enriched TF motifs and explored conservation of gene regulatory 19 
networks underpinning legume symbiotic nitrogen fixation. With comprehensive developmental trajectories 20 
for endosperm and embryo, we uncovered the functional transition of the three sub-cell types of endosperm, 21 
identified 13 sucrose transporters sharing the DOF11 motif that were co-up-regulated in late peripheral 22 
endosperm and identified key embryo cell-type specification regulators during embryogenesis, including a 23 
homeobox TF that promotes cotyledon parenchyma identity. This resource provides a valuable foundation 24 
for analyzing gene regulatory programs in soybean cell types across tissues and life stages. 25 
 26 
Introduction 27 
Plants are composed of cells from various tissues and cell types, each containing the same genome, but 28 
exhibiting highly divergent gene expression that enables specialized functions. One key driver of 29 
transcriptional variation is cis-regulatory elements (CREs), non-coding loci in the genome that regulate gene 30 
expression in a spatiotemporal manner.1 Spatiotemporal gene expression is controlled by interactions 31 
between specific binding motif sequences and cognate transcription factors (TFs), along with cofactors 32 
assembled at CREs.2 Most TFs bind to CREs in nucleosome-depleted accessible chromatin regions (ACRs).3 33 
Consequently, distinct TF expression and chromatin accessibility patterns establish the gene expression 34 
programs of specific cell types. Thus, detailed maps of CRE accessibility and gene expression in diverse cell 35 
types are essential for understanding how different cells use the genome, facilitates our functional 36 
understanding of the genome, and enables the exploration of gene regulatory networks. 37 
 38 
Advancements in single-cell genomics, such as snRNA-seq (single‐nucleus RNA sequencing) and scATAC-39 
seq (single-cell sequencing of assay for transposase accessible chromatin), enable the profiling of 40 
transcriptomes and chromatin accessibility from complex tissues at single-cell resolution.4-6 Extensive 41 
single-cell genomic datasets have been generated by large projects in mammals, such as the Human Cell 42 
Atlas and the Mouse Cell Atlas.7-10 In plants, single-cell research has mostly been focused on transcriptomes, 43 
often limited to selected organs, tissues, and cell types.11-17 To date, only three atlas-scale single-cell 44 
transcriptomes or chromatin accessibility maps have been reported in Arabidopsis thaliana, Oryza sativa 45 
(rice) and Zea mays (maize), each limited to a single modality.18-20 However, while extremely valuable, these 46 
resources are limited by challenges inherent in single-cell genomic technologies, where the cell types are 47 
extracted from their origin in a complex tissue, potentially losing critical biological information, and 48 
increasing the difficulty of proper cell-type annotation.21 49 
 50 
Cell-type annotation is fundamental for elucidating cell population heterogeneity and is typically determined 51 
through cell-type markers specifically expressed in one or a few cell types.12,21 For many non-model species, 52 
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there are usually insufficient validated marker genes, and cell-type annotation often relies on the expression 53 
patterns of orthologs in model plants, mostly Arabidopsis.14,19 However, annotation based on ortholog gene 54 
expression can be problematic due to gene loss, gene duplication or gene functional diversification following 55 
whole genome duplications. Recently, spatial transcriptomics has provided the opportunity to investigate 56 
gene expression profiles within the spatial context of cells, successfully assisting cell-type annotations in 57 
animals and plants without needing a priori cell-type markers.22-24 To date, no comprehensive cell-type level 58 
atlas has been completed for any plants, which spans gene expression, accessible chromatin regions, and 59 
spatially resolved cell-type annotations. 60 
 61 
Here, we describe a spatially resolved, multimodal single-cell atlas for the crop species Glycine max 62 
(soybean), which experienced genome duplications approximately 59 and 13 million years ago, resulting in 63 
a highly duplicated genome with nearly 75% of its genes present in multiple copies25. We measured 64 
chromatin accessibility and gene expression in 316,358 nuclei across ten soybean tissues, which identified 65 
and characterized 303,199 ACRs in 103 distinct cell types. We found that nearly 40% of ACRs showed cell-66 
type-specific patterns and were enriched for TF binding motifs controlling cell-type specification and 67 
maintenance. Focusing on a unique feature of soybean biology, the infected cells which make up the 68 
developing nodules, we identified the non-cell autonomous activity of NLP7 and the conservation of a NIN 69 
gene regulatory network for legume symbiotic nitrogen fixation. Three sub-cell types of endosperm were 70 
detailed characterized and we found that a group of 13 sucrose transporters, including two SWEETs 71 
(SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTERs): GmSWEET15a and 72 
GmSWEET10a, were co-up-regulated in late peripheral endosperm, both sharing the DOF11 binding motif. 73 
We also constructed comprehensive developmental trajectories across embryogenesis and early maturation 74 
and identified key embryo cell type specification regulators during embryogenesis. Finally, we created an 75 
interactive web atlas to disseminate these resources, which we named the soybean multi-omic atlas 76 
(https://soybean-atlas.com/). 77 
 78 
Results 79 
Assembly of a single-cell accessible chromatin and expression atlas in soybean 80 
To generate a comprehensive accessible chromatin and transcriptome atlas across soybean cell types, we 81 
collected samples from ten tissues at different stages of the soybean life cycle. These tissues included leaf, 82 
hypocotyl, root, nodule, young pod, and five stages of developing seeds: globular stage (GS), heart stage 83 
(HS), cotyledon stage (CS), early maturation stage (EMS), and middle maturation stage (MMS). For each 84 
tissue, we conducted scATAC-seq and snRNA-seq with at least two replicates, using optimized soybean 85 
nuclei isolation methods (Figure 1A, Methods). After filtering out low-quality nuclei and doublets, we 86 
obtained high-quality accessible chromatin profiles for ten tissues, totaling 200,732 nuclei with a median of 87 
17,755 unique Tn5 transposase (Tn5) integrations per nucleus, and transcriptome profiles for seven tissues, 88 
totaling 115,626 nuclei with a median of 2,474 Unique Molecular Identifiers (UMIs) and 1,986 genes 89 
detected per nucleus (Figure S1; Tables S1,2). Initial clustering of 2,000 random nuclei from all tissues 90 
revealed similar cluster structures in both scATAC-seq and scRNA-seq, with seed tissue nuclei clearly 91 
separated from non-seed tissues (Figure 1B-C). To further explore cell type heterogeneity in soybean tissues, 92 
we used the Seurat26 and Socrates19 workflows for separate analysis of each tissue. We identified 147 and 93 
97 scATAC-seq and snRNA-seq cell clusters respectively, revealing the diverse cell types or states in 94 
soybean (Table S3, 4). 95 
 96 
To annotate these cell clusters, we collected a set of marker genes from the literature spanning multiple 97 
species, including soybean, Arabidopsis, and maize, and matched them to expected soybean cell types. Cell 98 
types were assigned based on a manual review of marker gene performance and evaluation of enriched 99 
biological processes (Methods, Table S5). For example, in cotyledon stage seeds, we identified 17 clusters 100 
in scATAC-seq and 18 clusters in snRNA-seq, with high concordance between the two replicates (Figure 101 
S2A-D). By comparing the single-cell data with previously published laser capture microdissection RNA-102 
seq datasets27,28, we identified the three main regions of soybean seeds: seed coat, endosperm, and embryo, 103 
as well as specific cell types, such as the seed coat endothelium and seed coat inner integument (Figure S2E, 104 
F). Additional cell types were annotated based on representative marker genes. For instance, the plasma 105 
membrane sugar transporter GmSWEET15, which mediates sucrose export from the endosperm to the 106 
embryo.29 As expected, the paralogs GmSWEET15a and GmSWEET15b showed both expression and 107 

https://soybean-atlas.com/


   
 

   
 

chromatin accessibility enriched in the endosperm, with neighboring ACRs reflecting the potential cis-108 
regulatory elements driving its endosperm specific gene expression (Figure 1F-I). After comprehensive 109 
annotation and subsequent analysis, we identified a total of 103 and 79 cell types in the scATAC-seq and 110 
snRNA-seq data, respectively, with a high correlation between gene accessibility from scATAC-seq and 111 
gene expression from snRNA-seq for the same cell types (Figure S3-6, Table S3-5). 112 

 113 
Figure 1. Profiling single-nuclei transcriptomes and chromatin accessibility in soybean 114 
(A) Overview of tissue types and experimental design. Seed stages include GS (globular stage), HS (heart 115 
stage), CS (cotyledon stage), EMS (early maturation stage), and MMS (middle maturation stage). (B-C) 116 
Two-dimensional embeddings using Uniform Manifold Approximation and Projection (UMAP) depicting 117 
similarity among nuclei based on gene expression (B) and gene chromatin accessibility (C). 2,000 nuclei 118 
were randomly selected from each tissue and colored by tissue type. (D-E) Z-score heatmap of gene 119 
expression (D) and gene chromatin accessibility (E) for representative marker genes across shared cell types 120 



   
 

   
 

in soybean cotyledon stage seeds. SC, seed coat; Emb, embryo. (F-G) UMAP embeddings overlaid with 121 
gene expression (top) or gene accessibility (bottom) (F) and pseudobulk cell type Tn5 integration site 122 
coverage (G) around the endoderm marker gene GmSWEET15a. (H-I) Similar to panels F-G, but for the 123 
paralog gene GmSWEET15b. 124 
 125 
Validation of cell-type identity with spatial transcriptomics  126 
The limited availability of experimentally validated marker genes for cell-type annotation in scATAC-seq 127 
and scRNA-seq datasets is a common challenge, particularly in non-model species. Homology-based marker 128 
identification is problematic due to gene loss, duplication, or neofunctionalization. To validate the cell-type 129 
annotations for the single-cell datasets, we conducted spatial RNA-seq (spRNA-seq) for five tissue types 130 
matching the single-cell datasets (root, hypocotyl, seed at heart stage, cotyledon stage, and early maturation 131 
stage). Multiple serial tissue sections were placed on a 10X Genomics Visium spatial slide. In total, we 132 
profiled 12,490 high-quality spatial spots across these tissues (Table S6). The median gene number per spot 133 
ranged from 453 to 6,262 across all tissue types. 134 
  135 
The unsupervised clustering of the expression profiles revealed that spatial spot clusters showed cell-type 136 
specific spatial localization (Figure 2B and Figure S7B). For example, we identified 13 unique clusters in 137 
the cotyledon stage seed dataset (Figure 2B). Four of these clusters are localized in the embryo region, three 138 
in the endosperm region, and six within the seed coat region (Figure 2B). This indicates high-quality spatial 139 
transcriptome data and enables us to accurately annotate cell types based on tissue histology. The Visium 140 
spatial slides are designed with 55-um resolution spots, which capture gene expression profiles from multiple 141 
cells. To study the spatial expression profile at single-cell resolution and validate the snRNA-seq cell-type 142 
annotation, we performed the deconvolution analysis using spRNA-seq and snRNA-seq datasets of the same 143 
tissue types. The prediction score of each snRNA-seq cell was calculated to quantify the certainty of the 144 
association between snRNA-seq cells and their predicted spatial spots. We observed high prediction scores 145 
between similar cell types that were independently annotated in the two datasets (Figure 2C, Figure S7C), 146 
supporting a robust annotation.    147 
 148 
Leveraging the spatial transcriptome data, we corroborated the known marker genes selected for the snRNA-149 
seq cell-type annotation (Figure 2D and Table S5). For example, GmKTi3 (Glyma.08G341500) mRNA is 150 
known to be exclusive to the soybean embryo,30  and we confirmed GmKTi3 embryo specificity with the 151 
spRNA-seq data. Likewise, PLETHORA2 (PLT2) is expressed in the Arabidopsis root apical meristem 152 
(RAM)31, which was validated by the spatial transcriptomic data. Finally, GmSWEET15a is mainly 153 
expressed in the cotyledon stage endosperm, which is also consistent with our spRNA-seq data; the seed 154 
coat parenchyma marker GmSWEET10b (Glyma.08G183500)32 showed a highly specific expression in the 155 
seed coat. Collectively, these data support that the spRNA-seq results accurately reflect mRNA localization 156 
and provide a valuable tool for marker in situ validation. 157 
 158 
To identify more soybean cell-type-specific markers, we performed de novo marker identification using the 159 
spRNA-seq and snRNA-seq datasets (Figure 2E and Figure 2F, Table S7, S8). With the de novo markers 160 
from spRNA-seq, we distinguished similar cell types that are spatially differentiated. For example, we 161 
identified three subclusters of endosperm cells, and annotated them as micropylar, peripheral, and chalazal 162 
endosperm based on their localization in the seed (Figure 2F). The spatial de novo markers from these cell 163 
types showed distinct expression patterns in the corresponding snRNA-seq and scATAC-seq subclusters. 164 
Taken together, by integrating the spRNA-seq, we not only validated the cell-type annotation for snRNA-165 
seq and scATAC-seq, but also identified spatially differentiated sub-cell types of endosperm. 166 



   
 

   
 

 167 
Figure 2. A spatially resolved transcriptome facilitates cell-type annotation for soybean seeds. (A) The 168 
histological structure of soybean seeds at the cotyledon stage. (B) The visualization of spatial spot clusters 169 
on the tissue section (left) and on the UMAP plot (right). (C) Heatmap of the snRNA-seq cell-type prediction 170 
scores on the spRNA-seq cell types (left) and the spatial distribution of predicted snRNA-seq cell types on 171 
the tissue section (right). (D) The validation of known marker genes used in the scRNA-seq data. The gene 172 
expression of selected markers was plotted on the UMAP of snRNA-seq data (top), scATAC-seq data 173 
(middle), and on the spatial plot of the tissue section (bottom). (E) Dotplot of the top de novo marker genes 174 
identified for each cell type in the spRNA-seq data. (F) The validation of spatial de novo marker genes in 175 
the single-cell data. The gene expression of selected markers was plotted on the spatial plot of the tissue 176 
section (top), the UMAP of snRNA-seq data (middle), and the scATAC-seq data (bottom). 177 
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Identification and characterization of ACRs across cell types 183 
To identify ACRs in the 103 cell types, we aggregated chromatin accessibility profiles from all nuclei within 184 
each cell cluster and applied a peak calling procedure optimized for single-cell data (Methods). This 185 
uncovered 303,199 non-overlapping ACRs, ranging from 137,046 to 193,792 per tissue (Figure 3A). 186 
Compared to bulk ATAC-seq from leaf at the same stage (Methods), scATAC-seq identified almost twice 187 
as many ACRs despite having fewer total reads, as scATAC-seq identified cell-type-specific ACRs (Figure 188 
3B, C). Next, we categorized the ACRs based on their proximity to annotated genes: 128,916 (45.52%) 189 
overlapped genes (genic ACRs), 74,655 (24.62%) were within 2 kilobases (kb) of genes (proximal ACRs), 190 
and 99,628 (32.86%) were more than 2 kb away from genes (distal ACRs). Distal ACRs had significantly 191 
higher cell-type specificity scores than genic ACRs and proximal ACRs, suggesting their important role in 192 
establishing cell-type-specific gene expression patterns (t.test, p-value < 2.2e-16, Figure S8A).  Genetic 193 
diversity from the soybean haplotype map (GmHapMap)33 was remarkably reduced, and TF motifs were 194 
enriched at the summit of all three groups of ACRs, supporting the functionality of the identified ACRs 195 
(Figure 3E, Figure S8B). 196 
 197 
ACRs can be classified as activating ACRs, which positively regulate gene expression, and repressing ACRs, 198 
which reduce gene expression.34 To predict ACR function, we associated ACRs with putative target genes 199 
based on the correlation between ACR accessibility and nearby gene expression across all cell types in the 200 
scATAC-seq and snRNA-seq datasets (Figure 3F, Methods). This process identified 145,638 ACR-gene 201 
associations for 137,245 ACRs and 33,068 genes, with an average of four ACRs per gene (Figure 3G, Table 202 
S9). We found that gene expression cell-type specificity is positively correlated with the number of 203 
associated ACRs, suggesting that the number of ACRs is associated with restricted gene expression patterns 204 
(Figure 3H). Next, we categorized ACRs with positive correlations as activating ACRs and those with 205 
negative correlation as repressive ACRs (Figure 3F, I, L, M; Figure S8C). Overall, 71.9% were activating 206 
ACRs, 24.1% were repressing ACRs, and 3.9% had ambiguous functions with mixed significant positive 207 
and negative correlations with flanking genes (Figure 3J). Activating ACRs were more likely to act 208 
proximally compared to repressing ACRs (Figure 3K). Notably, we identified three known activating CREs 209 
expressed in different tissues and involved diverse developmental pathways (Figure 3N-P), such as in seed 210 
tissues,35 ASYMMETRIC LEAVES2-LIKE 18 (ASL18), a known root nodule symbiosis marker,36  and a pod 211 
shattering-resistance related gene37. 212 

To identify motifs that could act as distal activators or repressors, we conducted a TF motif enrichment 213 
analysis on the distal activating and repressing ACRs. We found 35 motifs enriched in distal activating ACRs, 214 
and six of the top ten motifs had known transcriptional activator activity, such as NAC DOMAIN 215 
CONTAINING PROTEIN 47 (NAC047)38 and RESPONSE REGULATOR 22 (RR22)39 (Figure 3Q, Table 216 
S10). Additionally, 26 motifs were enriched in distal repressing ACRs, primarily Type II MADS-box factors 217 
like APETALA3 (AP3)40 and AGAMOUS-LIKE 16 (AGL16)41, known transcriptional repressors involved 218 
in floral organ specification (Figure 3R, Table S10). Type II classic MADS-box genes are key developmental 219 
regulators in angiosperms and are well-studied due to their role in floral organ specification.42 We observed 220 
distinct MADS gene expression patterns in seed versus non-seed tissues, consistent with MADS-box genes 221 
regulating reproductive growth by transcriptionally repressing distal genes. In summary, we constructed a 222 
comprehensive atlas of cis-regulatory activity across 103 soybean cell types, predicted their target genes and 223 
regulatory functions by integrating snRNA-seq data. These results provide a foundation for dissecting gene 224 
regulatory programs at cell-type resolution. 225 



   
 

   
 

226 
Figure 3. Characterization of ACRs across cell types. (A) Number of ACRs identified in each tissue. 227 
(B) Comparison of the number of ACRs identified using scATAC-seq versus bulk ATAC-seq in leaf 228 
tissues. (C) Distribution of cell-type specificity score for ACRs shared between bulk ATAC and scATAC, 229 
and those unique to scATAC-seq. (D) Bimodal distribution of ACR distances to the nearest gene. ACRs 230 
are categorized into three groups based on the distance from the summit to the nearest gene: genic ACRs 231 
(overlapping or within 10 bp of genes), proximal ACRs (within 2 kb of genes), and distal ACRs (more 232 
than 2 kb away from genes). (E) Relative SNP density within 500-bp flanking regions of different classes 233 
of ACRs and control regions. (F) Schematic overview of the computational strategy used to predict the 234 
activity function of ACRs. (G) Distribution of genes associated with different numbers of ACRs. (H) 235 
Distribution of expression specificity for genes associated with different numbers of ACRs. (I) Density 236 
distribution of the overall Spearman correlation coefficient between ACRs and flanking genes. (J) Venn 237 
diagram analysis of activating and repressing ACRs. (K) Density distribution of the distance between the 238 
pair of ACRs and genes for the activating and repressing ACRs. (L-M) Heatmap showing chromatin 239 
accessibility of activating ACR (L) and the expression of associated genes (M). (N-P) Pseudobulk cell type 240 
Tn5 integration site coverage patterns around gene bodies (top) and scatter plots of ACR accessibility and 241 
gene expression across 66 cell types (bottom) for Glyma.03g229700, GmAS18a (03G161400), and 242 
GmSHAT1-5 (16G019400), respectively. (Q-R) TF motif enrichment of distal activating ACRs (Q) and 243 
distal repressing ACRs (R). 244 



   
 

   
 

 245 
Identification and characterization of cell-type-specific ACRs (ctACRs) 246 
This single-cell atlas provides an excellent opportunity to characterize the heterogeneous regulatory 247 
programs underlying specialized cell-type functions. First, we identified ctACRs that were significantly 248 
more accessible in one or two cell types within each tissue (Methods). Approximately 40.23% of the ACRs 249 
(122,558 ACRs) were identified as ctACRs across ten tissues, ranging from 12,711 in root to 37,897 in 250 
young pod (Figure 4A, Figure S9A, Table S11). We observed a higher number of ctACRs in seed-related 251 
tissues compared to non-seed tissues, with a significantly higher number of endosperm-specific ACRs in 252 
young developing seeds compared to the ctACR number in other cell types (Figure S9A). The proportion of 253 
ACRs located in proximal regions was similar across ctACRs and non-ctACR, but there was a higher 254 
proportion of distal ACRs among ctACRs (Figure S9C). This suggests the importance of distal ACRs in 255 
contributing to cell-type-specific chromatin accessibility patterns. Comparing polymorphism density across 256 
distal specificity groups, we found that ctACRs were highly conserved, suggesting positive selection of 257 
ctACRs in soybean breeding (Figure S9D).  258 

Transposable elements (TEs) contribute to cell-type-specific CREs in both mammals and plants.19,43,44 For 259 
example, enhancer cell-type-specific CREs are often found within long terminal repeat retrotransposons 260 
(LTRs) in maize.19 In soybean, a similar proportion of ctACRs and non-ctACRs overlapped with TEs. TE 261 
enrichment analysis indicated significant enrichment of hAT TIR transposons in ctACRs (Fisher’s exact test, 262 
FDR < 10e-16), representing a distinct TE family enrichment as compared to maize. To investigate the role 263 
of TEs and their relationship to cell-type-specific CREs, we conducted an enrichment analysis comparing 264 
ctACRs-overlapping TEs with non-ctACRs-overlapping TEs for each cell type. We found significant TE 265 
enrichment in nine cell-type states (Fisher’s exact test, FDR < 0.01). Notably, hAT TIR transposons were 266 
significantly enriched in endosperm-specific ACRs across all seed development stages (FDR < 10e-4, Figure 267 
4C), highlighting a unique relationship between a specific TE family and cell-type critical for agriculture.  268 



   
 

   
 

269 
Figure 4. Characterization of cell-type-specific ACRs, motif and TFs. (A) Number of ctACRs identified 270 
in each tissue. (B) Proportion of ACRs that overlap with TEs and TE enrichment in all ctACRs. (C) TE 271 
enrichment in ctACRs for each cell type. (D) Heatmap of TF motif enrichment across 103 cell types. (E) 272 
UMAP embeddings overlaid with gene expression of GmMYB118 (top row) or TF motif deviation score of 273 
the MYB118 binding motif (bottom row) across four developmental stages of seeds. (F) Image of a root 274 
with nodules (left) and an illustration of major cell types and the gene regulatory pathway in infected cells 275 
of developing nodules. (G) UMAP embeddings overlaid with gene expression of GmNLP7a and TF motif 276 
deviation score of NLP7 in nodule tissue. (H-J) Pseudobulk cell type Tn5 integration site coverage pattern 277 
around gene body (top), UMAP embedding overlaid motif deviation score (middle) and gene expression 278 
(bottom) for GmNSP1(H), GmNIN2a (I) and GmNF-YA1a (J). (K-L) UMAP embedding overlaid TF motif 279 
deviation score for de novo motifs of STREME-7 and STREME-9 280 

 281 

 282 

 283 

 284 



   
 

   
 

Identification of key TF regulators that define distinct cell identities 285 
Identifying which TFs are involved in generating and maintaining a diversity of cell types from an invariant 286 
genome is a central question in developmental biology. We leveraged these data to systematically assess 287 
which TF motifs are enriched in ctACRs across tissues, thus identifying key regulatory networks potentially 288 
critical in cell fate specification. 289 
 290 
Initially, for each cell type, we determined (Fisher’s Exact test) which TF motifs are overrepresented in 291 
ctACRs compared to non-ctACRs. By analyzing each tissue independently, we identified the most highly 292 
enriched TF motifs and TFs from the JASPAR database45 for 103 cell types across all tissues, revealing both 293 
known and novel potential regulators (Figure 4D, Figure S9E, Table S12). For example, the HDG11 294 
(MA0990.2) motif, an established regulator of epidermal cells46, is highly accessible in epidermal cells of 295 
hypocotyl, root, leaf, and cotyledon stage seeds. It is likely that HDG11 and its family members are critical 296 
drivers of epidermal cell fate. Similarly, the DOF1.6 (MA1275.1) motif is enriched in procambium-related 297 
cells across all tissues (Figure S9F, Table S12). Additionally, the MYB118 motif, a known endosperm-298 
specific transcriptional activator47, is enriched for cell-type-specific chromatin accessibility in endosperm 299 
and is specifically expressed in soybean endosperm cells across four developmental stages (Figure 4E, Figure 300 
S9F). These results show that specific TF motifs and their associated networks are used in a tissue-specific 301 
and cell-type-specific manner.   302 
 303 
Adapting these analyses, we were further interested in developing nodules, where a symbiosis between 304 
legumes and soil bacteria fix nitrogen for both the plant and the natural or agricultural ecosystem.48 Nitrogen 305 
fixation occurs in infected cells, a unique cell type that encapsulates the bacteria (Figure 4F). However, how 306 
these cells are altered in terms of their CRE usage after infection remains underexplored.   We found a series 307 
of symbiotic nitrogen fixation genes that were specifically expressed and accessible in these infected cells 308 
in both snRNA-seq and scATAC-seq datasets (Figure S3C, D). 73 TF motifs were enriched in infected cells, 309 
including the binding motif of NIN-LIKE PROTEIN 7 (NLP7), a known regulator of root nodule 310 
symbiosis49,50 (Figure 4G, Table S12). Notably, there was a spatial separation between NLP7’s expression 311 
in epidermis or cortex and its binding site accessibility in infected cells, suggesting non-cell autonomous 312 
activity, following a previously published method for identifying non-cell autonomous TFs19 (Figure 4G). 313 
The top two most enriched motifs in infected-cell-specific ACRs were AHL13 (MA2374.1), which regulates 314 
jasmonic acid biosynthesis and signaling51 and ANTHOCYANINLESS 2 (MA1375.2) which regulated 315 
anthocyanin accumulation and primary root organization52 (Figure S9G, H). 316 
 317 
Only seven of the motifs in the JASPAR database45 are from soybean, with most being from Arabidopsis 318 
(580) or other species (218), potentially limiting the study key soybean TF motifs, as they are unknown. For 319 
example, key regulator genes essential for initiating cortical cell divisions and microbial infection during 320 
nodulation, such as NODULATION SIGNALING PATHWAY 1 (NSP1)36, NODULE INCEPTION 321 
(NIN)36, ASYMMETRIC LEAVES 2-LIKE 18 (ASL18)36, Nuclear Factor-YA1 (NF-YA1)48, were highly 322 
expressed in infected cells (Figure 4H-J). Their TF binding motifs, characterized in Medicago truncatula 323 
and Lotus japonicus, were expected to be enriched in infected-cells-specific ACRs, but they were absent in 324 
the JASPAR database. Using the same analysis, we found those TF motifs were enriched and showed 325 
specific chromatin accessibility in infected cells, suggesting their conservation in soybean (Figure 4H-J, 326 
Table S12). 327 
 328 
To comprehensively identify potential TF binding motifs in infected cells, we performed de novo motif 329 
enrichment in infected-cell-specific ACRs, identifying 10 enriched motif clusters (Table S13). Interestingly, 330 
all four binding motifs of known key regulators (NLP7, NIN, NSP1, NF-YA1) matched the de novo motifs 331 
(Figure S9I). Additional TF motifs matched known motifs in the JASPAR database, including binding sites 332 
for AP2/ERFs, B3 domain-containing TFs RAV2, Basic leucine zipper (bZIP) TFs, Ethylene-responsive 333 
(ERF) TFs, and Protein BASIC PENTACYSTEINE1 (BPC1) TFs. Notably, among these motifs, the GCC-334 
box motif is a known pathogenesis-related promoter element that recruits ERF TFs, including the Ethylene 335 
Response Factor Required for Nodulation1 (ERN1), which is essential for infection-thread formation and 336 
nodule organogenesis in Medicago.53 We also identified two novel motifs, which are specifically accessible 337 
in the infected cell, including the AACCTTTCAA motif (STREME-7) and the TCCAATAAGATTAAA 338 
motif (STREME-9) (Figure 4K, L), which suggests their importance for nodule development in soybean and 339 
provides clues into uncharacterized nodulation transcriptional regulatory circuits. In summary, integrating 340 



   
 

   
 

TF motif enrichment in ctACRs with scRNA-seq allows us to profile known TF binding motifs of key 341 
regulators and de novo uncover novel TF motifs essential for cell-type specification.  342 
 343 
Characterizing three sub-cell types of endosperm across seed development 344 
The endosperm plays a crucial role in supporting embryo growth by supplying nutrients and other factors 345 
during seed development.54-56 Soybean endosperm is a membrane-like, semi-transparent tissue between 346 
embryo and seed coat. Primary endosperm can be divided into three sub-cell types: micropylar, nearest to 347 
the young embryo; peripheral, in the center of the endosperm region; and chalazal, at the opposite end of the 348 
embryonic axis, towards the seed coat attachment point (Figure 5A).57 Although the development of these 349 
subregions has been well-characterized morphologically, little is known about the molecular processes 350 
occurring in these subregions or how their development is coordinated within the context of seed maturation. 351 
 352 
By integrating snRNA-seq and spatial RNA-seq, we separated the three sub-cell types of endosperm (Figure 353 
2B) and gained insights into the cellular processes within each sub-cell type by identifying significantly 354 
overrepresented Gene Ontology (GO) terms (P < 0.01, Figure 5A, Table S14). Some of overrepresented GO 355 
terms were consistent with the known roles of these endosperm sub-cell types in seed development. For 356 
example, the peripheral endosperm is enriched in photosynthesis-related pathways, consistent with the 357 
presence of chloroplasts57,58, the chalazal endosperm is enriched in vascular transport pathways, aligning 358 
with its role in loading maternal resources into developing seeds56,59, and the micropylar endosperm is 359 
enriched in cutin biosynthetic process pathways, suggesting involvement in cuticle synthesis in the nearby 360 
embryo epidermis54,55,60. These results support the reliability of the annotation of the three sub-cell types of 361 
endosperm cells. 362 
 363 
To overview endosperm development, we analyzed all endosperm nuclei across four stages (globular, heart, 364 
cotyledon, and early maturation) of seed development, integrating scATAC-seq and snRNA-seq modalities 365 
(Figure 5B-C, Figure S10A, Methods). Using de novo markers from spRNA-seq, we clearly separated and 366 
annotated the three sub-cell types (Figure S10B, Table S15). Comparing the proportion of nuclei in each 367 
stage across clusters revealed a developmental change in cell number for peripheral and micropylar 368 
endosperm, but not for chalazal endosperm (Figure S10C-H). This observation can be explained by the 369 
cellularization of peripheral and micropylar endosperm following nuclei proliferation, while the chalazal 370 
endosperm undergoes degradation without a clear cellularization process.57,59  371 
 372 
To determine regulatory and gene expression dynamics during endosperm development, we performed 373 
pseudotime analysis for micropylar and peripheral endosperm using snRNA-seq nuclei as a reference (Figure 374 
5D, E). Pseudotime was highly correlated with the progressive development (Figure 5F, G). We classified 375 
genes based on expression patterns across pseudotime into three stages (early, middle, late) for micropylar 376 
and peripheral endosperm (Figure 5H, I, Table S16,17). GO enrichment analysis reflected the processes of 377 
nuclei proliferation in the early stage and further cellularization and function specification in later stages 378 
(Figure 5J, Table S18). These results suggested we constructed a comprehensive developmental trajectory 379 
for micropylar and peripheral endosperm, allowing high resolution exploration of the gene regulatory 380 
network along the endosperm development. 381 
 382 
During soybean seed development, endosperm cells undergo programmed cell death (PCD) and transfers 383 
nutrients to support rapid embryo growth and expansion.56,61,62 The molecular regulation of endosperm PCD, 384 
and which nutrient transporters are involved, remains poorly understood. By examining expression patterns 385 
of PCD-related genes63 and sucrose or amino acid transporter genes64 in developmental trajectories, we found 386 
more PCD-related and nutrient transporter genes expressed in early and middle stages of micropylar 387 
endosperm than the late stage (Figure 5K-M, Table S16,17). The micropylar endosperm, being closest to the 388 
embryo, undergoes PCD and serves as an important nutrient source during early seed development.61 More 389 
nutrient transporter genes were expressed in the peripheral endosperm in the late stage, suggesting its role 390 
in transferring maternal nutrients in later embryo development. 391 
 392 
Sucrose is the major photosynthetic product transported into seeds65 and sugar transporters essential for 393 
embryo development have been identified and characterized in different plants.66 We identified a cluster of 394 
13 sugar transporters highly upregulated in the late stage of peripheral endosperm, including GmSWEET10a 395 
and GmSWEET15a, known to control soybean seed size and oil content29,32. As these sugar transporters share 396 



   
 

   
 

similar expression patterns along development, we hypothesize they might share similar TF motif sequences 397 
and chromatin accessibility patterns and be regulated by TFs with colocalized expression patterns. To predict 398 
shared upstream regulators controlling the 13 sucrose transporters, we scanned all TF motifs in their 399 
proximal and genic ACRs, and found five motifs from three TF superfamilies shared by all ACRs (Figure 400 
S10I-K): DOF (DNA binding with one finger) family, Homeodomain-leucine zipper (HD-Zip) TFs, and 401 
C2H2 zinc-finger TFs, including INDETERMINATE DOMAIN (IDD) TFs. We imputed TF motif 402 
deviations from scATAC-seq onto snRNA-seq nuclei, identifying 226 TF motifs following the trajectory 403 
pattern, with only two DOF motifs highly correlated with the 13 sugar transporter genes (Figure 5N, Figure 404 
S10I-K). We identified four DOF genes highly expressed in the late stage of peripheral endosperm, including 405 
GmDOF11a (Glyma.08G276300), whose paralog GmDOF11b (Glyma.13G329000) controls soybean seed 406 
size and oil content.67 Specifically, GmSWEET10a and GmSWEET15a were highly expressed in the late 407 
stage, and their ACRs capturing DOF motif (MA1278), become more accessible throughout seed 408 
development (Figure 5O, P).  409 

 410 



   
 

   
 

Figure 5. Characterizing three endosperm sub-cell types across seed development. (A) Spatial tissue 411 
section showing the three sub-cell types (chalazal, peripheral, micropylar endosperm) (top) and a heatmap 412 
of their representative enriched biological processes (bottom). (B-C) UMAP embeddings overlaid with cell 413 
type (B) or assays (C) (D-E) UMAP embeddings depicting pseudotime trajectories for micropylar 414 
endosperm (D) and peripheral endosperm (E). (F-G) Comparison of pseudotime and categorical seed stages 415 
for micropylar endosperm (D) and peripheral endosperm (E). (H-I) Heatmap of pseudotime-associated genes 416 
(FDR < 0.05) for micropylar endosperm (H) and peripheral endosperm (I). (J) Heatmap of representative 417 
enriched biological processes across pseudotime-inferred stages and cell types. (K-M) Number of 418 
programmed cell death genes (K), sucrose transporters (L), and amino acids transporters (M) across 419 
pseudotime-inferred stages and cell types. (N) Correlation heatmap between TF motif deviation scores and 420 
pseudotime-associated genes aligned by pseudotime for peripheral endosperm. PCC, Pearson correlation 421 
coefficient (O) Expression of GmDOF11 (08G276300), DOF-MA1278 motif deviation, and expression of 422 
its putative target genes GmSWEET10a and GmSWEET15a. The DOF-MA1278 motif is shown above. (P) 423 
Pseudobulk cell type Tn5 integration site coverage around GmSWEET10a and GmSWEET15a across the 424 
four seed stages. 425 
 426 
Developmental trajectories defining soybean embryogenesis 427 
Many important soybean agronomic traits are established during early seed development. However, the 428 
regulatory and gene expression dynamics underlying cellular diversification during embryogenesis and the 429 
relationship with agronomically important traits are unresolved. Motivated by this question, we isolated all 430 
embryo-related nuclei across four stages (globular, heart, cotyledon, and early maturation) of seed 431 
development and performed an integration across scATAC-seq and snRNA-seq modalities (Figure S11A-432 
S11B, Table S19). To improve the resolution of developmental progression, we inferred the precise 433 
developmental age of each nucleus using a recently described LASSO regression approach (Figure 6A).68 434 
The predicted continuous developmental ages from the full data set (Pearson’s correlation = 0.93) and 435 
withheld test nuclei (Pearson’s correlation = 0.96) were highly correlated with the known seed stage (Figure 436 
6B, Figure S11C). We identified 248 genes predictive of developmental age and uncovered the sequential 437 
gene expression dynamics associated with overall developmental progression regardless of cell lineage 438 
(Figure 6C-6D). These results provide a useful benchmark for anchoring analyses of cellular diversification 439 
during embryogenesis.  440 
 441 
Evaluation of cellular diversity across the four seed stages of embryogenesis revealed five distinct 442 
developmental branches (Figure 6E). To determine the regulatory and gene expression dynamics that make 443 
these lineages unique, we constructed pseudotime trajectories for each individual branch using the snRNA-444 
seq nuclei as a reference. Providing a firm biological foundation, we observed a strong positive trend 445 
between pseudotime scores and inferred developmental age (Figure 6F-6G). Interestingly, we found a strong 446 
negative correlation between transcriptional complexity and inferred developmental age, a notable feature 447 
of differentiation in mammals68 that appears to be conserved in plants (Figure S11D). Hypothesizing that 448 
cellular diversification would be accompanied by the acquisition of specialized gene expression programs, 449 
we identified differentially expressed genes across pseudotime for each individual branch. Indeed, 450 
visualization of pseudotime-associated genes revealed unique transcription dynamics for each lineage 451 
(Figure 6H). Importantly, we found that several well-known marker genes displayed expected developmental 452 
transcription patterns, including LATE EMBRYOGENESIS ABUNDANT 26 (LEA26) in cotyledon 453 
parenchyma69, PROTODERMAL FACTOR 1 (PDF1) in the protoderm, MONOPTEROS (MP) in provascular, 454 
and PLETHORA2 (PLT2) in shoot/root apical meristem trajectories that collective support robust trajectory 455 
ordering (Figure 6I).70  456 
 457 
Specification of the developing cotyledon parenchyma has been posited as a key developmental stage that 458 
determines nutrient composition of mature seeds (Figure 6E).71 We hypothesized that detailed interrogation 459 
of the regulatory dynamics between cotyledon and axis parenchyma would be informative for understanding 460 
the divergence of these tissues during embryogenesis and uncover ideal targets for soybean improvement 461 
efforts. To this end, we imputed TF motif deviations from scATAC-seq onto embedded snRNA-seq nuclei 462 
(Figure S11E, S6H) and identified TF motif deviations and gene expression patterns that were correlated 463 
across pseudotime for the cotyledon parenchyma trajectory (Figure 6J). This analysis revealed eight TF 464 
modules associated with largely distinct gene sets, representing putative gene regulatory networks 465 
underlying cotyledon parenchyma development. Next, we speculated that temporal gene expression 466 



   
 

   
 

divergence between axis and cotyledon parenchyma could identify genes associated with lineage bifurcation 467 
of parenchyma initials. By comparing temporal gene expression between axis and cotyledon parenchyma, 468 
using each branch as a reference (Figure S11F), we found similar gene expression patterns between axis and 469 
cotyledon parenchyma early in both trajectories. Interestingly, we identified a marked decrease in temporal 470 
gene expression correlations approximately 60% of the way through both trajectories aligning with visual 471 
differences in branch-specific genes and the onset of parenchyma initials bifurcation (Figure S11F, Figure 472 
S11G). Further dissection of this time point revealed that a homolog of ATHB-13 (hereafter referred to as 473 
GmATHB13) was the first TF to be differentially expressed between axis and cotyledon parenchyma at 474 
parenchyma initials bifurcation. Interestingly, ATHB-13 is an HD-Zip I TF previously associated with 475 
cotyledon morphogenesis in Arabidopsis72 and null alleles of ATHB-13 exhibit increased root length73 which 476 
is developed from the axis tissue in soybean seed. Thus, we hypothesized that GmATHB13 acts as a negative 477 
regulator of axis development by promoting cotyledon parenchyma identity.  478 
 479 
 480 
Next, to showcase the power of pseudotime analysis for understanding cellular differentiation, we aimed to 481 
characterize the targets and dynamics of GmATHB13 across cotyledon parenchyma development. First, we 482 
defined the putative targets of GmATHB13 as the set of expressed genes within the cotyledon parenchyma 483 
trajectory with nearby ACRs containing the ATHB13 motif (n=2,177), as well as a set of cotyledon 484 
parenchyma expressed control ‘non-target’ genes (n=2,177) lacking ATHB13 motifs within nearby ACRs 485 
(Figure 6K). Consistent with the known function of cotyledon parenchyma, expressed genes with accessible 486 
ATHB13 motifs were enriched for GO terms related to carbohydrate, polysaccharide, glycogen, and energy 487 
reserve metabolic processes (Table S20). We then evaluated expression and TF motif deviation dynamics of 488 
ATHB13 in unison with the expression patterns of putative ATHB13 targets and the set of control genes 489 
(Figure 6K). GmATHB13 is initially expressed at low levels and then reaches a peak immediately after the 490 
bifurcation point that is followed by a rapid decrease. This indicates that GmATHB13 expression is tightly 491 
correlated with bifurcation of parenchyma initials in a dose-dependent manner. Global chromatin 492 
accessibility of the ATHB13 motif increased markedly following the peak of GmATHB13 expression, 493 
suggesting a genome-wide increase in ATHB13 DNA-binding activity that depends on GmATHB13 494 
transcript levels. Finally, putative ATHB13 targets show higher levels of expression compared to the control 495 
set following bifurcation, implicating GmATHB13 as a transcriptional activator. These data suggest that the 496 
expression of GmATHB13 in parenchyma initials above a dosage threshold results in the activation of a gene 497 
expression program that promotes cotyledon parenchyma identity.  498 
 499 
 500 



   
 

   
 

501 
Figure 6. Developmental trajectories defining soybean embryogenesis. (A) Illustration of LASSO 502 
models to learn continuous representations of nuclei age. (B) Comparison of inferred nuclei age and 503 
categorical seed stages. (C) LASSO coefficient ranks of genes towards inferred nuclei ages. (D) Heatmap of 504 
relative gene expression levels ordered by nuclei age. (E) Schematic of embryogenesis trajectories. (F) 505 
UMAP scatter plots of cell-type annotation (left), inferred nuclei age (middle), and pseudotime (right) for 506 
embryonic snRNA-seq nuclei. (G) Comparison of inferred age and pseudotime scores across all embryonic 507 
nuclei. (H) Heatmap of pseudotime-associated genes (FDR < 0.05) for all five trajectories. (I) Exemplary 508 
gene expression profiles across pseudotime for five marker genes. (J) Correlation heatmap between TF motif 509 
deviation scores and pseudotime-associated genes aligned by cotyledon parenchyma pseudotime. (K) ATHB-510 
13 gene expression, ATHB-13 motif deviation, ATHB-13 target gene expression, and control gene 511 
expression profiles across cotyledon parenchyma developmental pseudotime. The motif recognized by 512 
ATHB-13 is shown above. 513 
 514 
 515 
Discussion 516 
In-depth knowledge of cell-type resolved transcriptional regulatory programs is essential for gene function 517 
studies and gene regulatory network discovery, which are key to both developmental biology and crop 518 
improvement.74 Here, we constructed a comprehensive single-cell CRE and gene expression atlas by 519 
integrating single-cell genomic and spatial technology, profiling 316,358 cells across ten primary tissues in 520 
soybean. We assessed the accessibility of approximately 300,000 ACRs across 103 cell types, measuring the 521 
cell-type-specific CRE activity that drives dynamic gene expression from the soybean genome. This ACR 522 



   
 

   
 

atlas represents a valuable resource for the soybean community to understand the molecular patterns 523 
underlying cell-type diversification in soybean. Additionally, this work provides a framework for 524 
constructing cell-type-specific cis-regulatory maps for other non-model species lacking known functional 525 
marker genes. 526 
 527 
The identification of CREs and TFs with cell-type-specific activities provided a comprehensive roadmap for 528 
studying regulatory dynamics across cell types and developmental stages. Our results integrate single-cell 529 
chromatin and transcriptome data and allowed us to find soybean gene regulatory networks that recapitulate 530 
those identified in other species. Notably, using data from infected cells in developing nodules, we 531 
successfully de novo identified four TF motifs of known master regulators of nodulation and identified their 532 
TF binding sites in the ACRs of their target genes (Figure 4H-K). We also discovered two novel infected 533 
cell-specific TF motifs that underpin unknown roles in symbiotic nitrogen fixation that can be explored to 534 
find novel TFs needed for nitrogen fixation. These results demonstrate how integrating single-cell 535 
transcriptome and chromatin accessibility data can discover new cell type regulators and their gene 536 
regulatory networks. 537 
 538 
The endosperm is fundamental to soybean seed development, providing nutrition through the high 539 
expression of nutrition transporter genes.54 Among the 80 sucrose transporters in the soybean genome the 540 
endosperm expressed GmSWEET15a and GmSWEET15b played significant roles in increasing seed size and 541 
oil content in soybean domestication and modern breeding29. However, their precise expression patterns 542 
across seed development were unclear, as was whether other transporters have similar expression patterns 543 
that could be exploited in soybean breeding. Our results suggest that GmSWEET15a and GmSWEET15b are 544 
specifically expressed in the peripheral endosperm and are upregulated during seed development. Along 545 
with these two genes, a group of 13 sucrose transporters showed similar expression patterns and shared the 546 
same motif binding site of DOF transcription factors in their candidate CREs. These DOF regulated late 547 
stage of peripheral endosperm sugar transporters may likewise affect seed size and oil content (Figure 5P). 548 
Interestingly, OsDof11 also controls six sugar transporter genes by directly binding to their promoters and 549 
regulating rice seed size75 , suggesting that the DOF-SWEET gene regulation may be conserved across 550 
monocots and dicots75￼ These findings highlight the value of our dataset for precisely studying gene 551 
function and positioning genes within transcriptional regulatory networks. 552 
 553 
The seed is the agronomic product of soybean, and despite significant efforts studying soybean seeds,28,76,77 554 
the gene regulatory networks underpinning seed development are not well characterized. By producing 555 
single-cell transcriptome and chromatin accessibility data across seed development, we provide the resources 556 
needed to identify these seed developmental regulatory networks. Exemplifying this, we identified the main 557 
embryo cell lineages and constructed a comprehensive pseudotime trajectory for embryogenesis, 558 
successfully finding known transcriptional regulators, such as PDF1 and MP.70 A detailed comparison of 559 
regulatory dynamics between cotyledon and axis parenchyma lineages revealed that differential expression 560 
of GmATHB-13 coincides with the lineage bifurcation between axis and cotyledon parenchyma. Arabidopsis 561 
ATHB-13 regulates cotyledon morphogenesis, and genes containing ATHB-13 motifs are enriched in 562 
carbohydrate and polysaccharide metabolism and biosynthesis, matching the expected functions of 563 
cotyledon parenchyma cells, which are energy production and nutrition storage. These results suggest that 564 
GmATHB-13 is a good candidate for modifying seed size or composition in soybean, as it may trigger the 565 
fate decision between axis and cotyledon parenchyma. 566 
 567 
Our analyses are just a starting point, with many other insights to be discovered from these data by exploring 568 
the expression patterns and regulatory networks of other genes interest. To facilitate future discovery, we 569 
constructed a soybean multi-omic atlas database (https://soybean-atlas.com/), which includes chromatin 570 
accessibility and gene expression data for all the cell types explored here. To demonstrate how to explore 571 
the gene regulatory network using the database, we created a workflow focusing on predicting the gene 572 
regulatory network for LEAFY COTYLEDON1 (LEC1) (Figure S12), a central regulator controlling 573 
embryo and endosperm development78. We found several interesting observations for GmLEC1a/b 574 
regulation directly from the database: 1) Two ACRs were identified in the first intron of the paralogs , which 575 
were specifically accessible in endosperm and embryo cells; 2) These ACRs captured two motifs consistently 576 
enriched in endosperm or embryo cells at three stages of developing seeds: the GmABI3A (ABA 577 
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INSENSITIVE3a) motif, which controls embryo development and directly binds GmLEC128, and the 578 
MYB118 motif, which is specifically expressed in endosperm and control endosperm maturation in 579 
Arabidopsis47; 3) GmABI3a and its TF motif was mainly expressed and accessible in embryo cells in 580 
cotyledon stage seeds, while GmMYB118a/b and their TF motif were mainly expressed and accessible in 581 
endosperm. Thus, we can propose a model where the specific use of the intronic MYB118 and ABI3 motifs 582 
contributes to the expression pattern of GmLEC1a/b (Figure S12). The soybean multi-omic atlas is easy to 583 
explore via the interactive website, allowing the soybean community to study the gene regulatory networks, 584 
at cell-type resolution, for all soybean traits. 585 
 586 
Additionally, all preprocessed data matrices, including cell-type-specific ACRs, genes, and TF motifs, are 587 
also accessible through The National Center for Biotechnology Information79 (NCBI GEO: GSE270392) 588 
and SoyBase (https://www.soybase.org/)80. We anticipate that the real potential of single-cell methods will 589 
extend beyond aiding gene function studies and uncovering regulatory networks - It will involve combining 590 
single-cell gene regulatory atlases with machine learning and high-throughput perturbation techniques, to 591 
achieve a profound and predictive understanding of gene regulation throughout plant development to 592 
improve crop performance. 593 
 594 
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 637 
Experimental model and subject details 638 
 639 
Growth conditions 640 
The soybean seeds of the Williams 82 genotype were obtained from the USDA National Plant Germplasm 641 
System (https://npgsweb.ars-grin.gov) and sown in Sungro Horticulture professional growing mix (Sungro 642 
Horticulture Canada Ltd.). For libraries derived from leaf, hypocotyl, nodule, and seed-related tissues, the 643 
plants were grown in a greenhouse under a 50/50 mixture of 4100K (Sylvania Supersaver Cool White Deluxe 644 
F34CWX/SS, 34W) and 3000K (GE Ecolux with Starcoat, F40CX30ECO, 40W) lighting, with a 645 
photoperiod of 16 hours of light and 8 hours of dark. The temperature was maintained at approximately 25°C 646 
during light hours, with a relative humidity of approximately 54%. 647 
 648 
Soybean leaves 649 
For each sample, approximately 6 leaves with a 1 cm diameter were harvested between 8 and 9 AM, ten 650 
days after sowing. Fresh tissue was used to construct bulk ATAC-seq, scATAC-seq and snRNA-seq libraries. 651 
 652 
Soybean hypocotyls 653 
For each sample, approximately 4 hypocotyls were harvested between 8 and 9 AM, seven days after sowing. 654 
Fresh tissue was used to construct scATAC-seq and snRNA-seq libraries. 655 
 656 
Soybean roots 657 
Soybean root samples were obtained as follows: soybean seeds were sterilized with 70% ethanol for 1 minute. 658 
After removing the ethanol solution, the seeds were treated with 10% bleach for 5 minutes, followed by five 659 
washes with autoclaved Milli-Q water. The sterilized seeds were then sown on mesh plates with half-strength 660 
MS media (Phytotech Laboratories, catalog: M519) and wrapped in Millipore tape. Plates were incubated in 661 
a Percival growth chamber with a photoperiod of 16 hours of light and 8 hours of dark. The growth chamber 662 
temperature was set to 25°C with a relative humidity of approximately 60%. For each sample, approximately 663 
5 whole roots were harvested between 8 and 9 AM, seven days after sowing. Fresh tissue was used to 664 
construct scATAC-seq and snRNA-seq libraries. 665 
 666 
Soybean nodules 667 
Soybean nodules were induced following a previously described soil-free method for producing root nodules 668 
in soybean.81 Briefly, seeds were germinated in sterilized germination paper (Anchor Paper Company, St 669 
Paul, MN, USA) wetted with autoclaved water for 10 days. The roots were then infected with 670 
Bradyrhizobium japonicum strain USDA110 to produce nodules. Roots with nodules approximately 1 mm 671 
in diameter were collected 15 days post-inoculation (dpi), and root tips were removed (Figure 4F). The tissue 672 
was flash-frozen in liquid nitrogen and stored at -80°C. For each sample, approximately 10 tissues were used 673 
for scATAC-seq and snRNA-seq preparation. 674 
 675 
Soybean pods 676 
For each sample, approximately 20 whole pods, each 5 mm in length, were harvested between 8 and 9 AM 677 
in the greenhouse. Fresh tissue was used to construct scATAC-seq and snRNA-seq libraries. 678 
 679 
Soybean seeds 680 
Seed stages were determined according to previously described methods and standards.82 Specifically, seed 681 
lengths for the globular, heart, cotyledon, and early maturation stages were 1.0 mm, 2 mm, 3 mm, and 7 mm, 682 
respectively. Seeds at the middle maturation stage weighed about 200-250 mg. Fresh tissue was used to 683 
construct scATAC-seq and snRNA-seq libraries for all seed tissues. 684 
 685 
 686 
scATAC-seq library preparation 687 
Nuclei isolation and purification were performed as described previously.51 Briefly, the tissue was finely 688 
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chopped on ice for approximately 2 minutes using 600 μL of pre-chilled Nuclei Isolation Buffer (NIB: 10 689 
mM MES-KOH at pH 5.4, 10 mM NaCl, 250 mM sucrose, 0.1 mM spermine, 0.5 mM spermidine, 1 mM 690 
DTT, 1% BSA, and 0.5% Triton X-100). After chopping, the mixture was passed through a 40-μm cell 691 
strainer and centrifuged at 500 rcf for 5 minutes at 4°C. The supernatant was carefully decanted, and the 692 
pellet was reconstituted in 500 μL of NIB wash buffer (10 mM MES-KOH at pH 5.4, 10 mM NaCl, 250 mM 693 
sucrose, 0.1 mM spermine, 0.5 mM spermidine, 1 mM DTT, and 1% BSA). The sample was filtered through 694 
a 10-μm cell strainer and gently layered onto 1 mL of 35% Percoll buffer (35% Percoll mixed with 65% NIB 695 
wash buffer) in a 1.5-mL centrifuge tube. The nuclei were centrifuged at 500 rcf for 10 minutes at 4°C. After 696 
centrifugation, the supernatant was carefully removed, and the pellets were resuspended in 10 μL of diluted 697 
nuclei buffer (DNB, 10X Genomics Cat# 2000207). Approximately 5 μL of nuclei were diluted tenfold, 698 
stained with DAPI (Sigma Cat. D9542), and the nuclei quality and density were evaluated using a 699 
hemocytometer under a microscope. The original nuclei were then diluted with DNB buffer to a final 700 
concentration of 3,200 nuclei per μL. Finally, 5 μL of nuclei (16,000 nuclei in total) were used as input for 701 
scATAC-seq library preparation. 702 
 703 
scATAC-seq libraries were prepared using the Chromium scATAC v1.1 (Next GEM) kit from 10X 704 
Genomics (Cat# 1000175), following the manufacturer's instructions (10x Genomics, 705 
CG000209_Chromium_NextGEM_SingleCell_ATAC_ReagentKits_v1.1_UserGuide_RevE). Libraries 706 
were sequenced on an Illumina NovaSeq 6000 in dual-index mode with eight and 16 cycles for i7 and i5 707 
indexes, respectively. 708 
 709 
Bulk ATAC-seq library preparation 710 
Nuclei isolation followed the exact procedure used for scATAC-seq, and the library preparation strictly 711 
adhered to the protocol described previously83. 712 
 713 
snRNA-seq library preparation 714 
The protocol for nuclei isolation and purification was adapted from a previously described scATAC-seq 715 
method. To minimize RNA degradation and leakage, the tissue was finely chopped on ice for approximately 716 
1 minute using 600 μL of pre-chilled Nuclei Isolation Buffer containing 0.4 U/μL RNase inhibitor (Roche, 717 
Protector RNase Inhibitor, Cat. RNAINH-RO) and a low detergent concentration of 0.1% NP-40. Following 718 
chopping, the mixture was passed through a 40-μm cell strainer and centrifuged at 500 rcf for 5 minutes at 719 
4°C. The supernatant was carefully decanted, and the pellet was reconstituted in 500 μL of NIB wash buffer 720 
(10 mM MES-KOH at pH 5.4, 10 mM NaCl, 250 mM sucrose, 0.5% BSA, and 0.2 U/μL RNase inhibitor). 721 
The sample was filtered again through a 10-μm cell strainer and gently layered onto 1 mL of 35% Percoll 722 
buffer (prepared by mixing 35% Percoll with 65% NIB wash buffer) in a 1.5-mL centrifuge tube. The nuclei 723 
were centrifuged at 500 rcf for 10 minutes at 4°C. After centrifugation, the supernatant was carefully 724 
removed, and the pellets were resuspended in 50 μL of NIB wash buffer. Approximately 5 μL of nuclei were 725 
diluted tenfold and stained with DAPI (Sigma Cat. D9542). The quality and density of the nuclei were 726 
evaluated using a hemocytometer under a microscope. The original nuclei were further diluted with DNB 727 
buffer to achieve a final concentration of 1,000 nuclei per μL. Ultimately, a total of 16,000 nuclei were used 728 
as input for snRNA-seq library preparation. 729 
 730 
For scRNA-seq library preparation, we employed the Chromium Next GEM Single Cell 3'GEM Kit v3.1 731 
from 10X Genomics (Cat# PN-1000123), following the manufacturer's instructions (10xGenomics, 732 
CG000315_ChromiumNextGEMSingleCell3-_GeneExpression_v3.1_DualIndex_RevB). The libraries 733 
were subsequently sequenced using the Illumina NovaSeq 6000 in dual-index mode with 10 cycles for the 734 
i7 and i5 indices, respectively. 735 
 736 
Spatial RNA-seq library preparation 737 
For the spatial RNA-seq experiment, the hypocotyl tissues, the root tissues, and the seed tissues at the heart 738 
stage, cotyledon stage, and early maturation stage, matching the stages of the single-cell datasets, were 739 
sampled. The tissues were embedded in the Optimal Cutting Temperature (OCT) compound, snap-frozen in 740 
a cold 2-methylbutane bath merged in liquid nitrogen, and cryosectioned into 12 um thick slices. 741 
  742 
We used the Visium Spatial Gene Expression Kit (10X Genomics, USA) to construct the spatial RNA-seq 743 
libraries following the manufacturer’s instructions. The tissue sections were mounted onto the spatial slides, 744 



   
 

   
 

fixed by cold methanol, and stained by 0.05% toluidine blue. The stained tissue sections were imaged using 745 
the BZ-X800 fluorescent microscope (Keyence, Japan). To determine the optimal tissue permeabilization 746 
time, we performed the Tissue Optimization workflow on a series of digestion times for each tissue type. 747 
For the spatial RNA-seq libraries, mRNA was first released according to the optimal permeabilization time, 748 
then the spatially barcoded cDNAs were synthesized on the slides. Finally, cDNA were released from the 749 
slide and subjected to amplification and library construction, following the manufacturer’s specifications 750 
 751 
Quantification and statistical analysis 752 
 753 
scATAC-seq raw reads processing 754 
The raw data processing followed the previously described method.19 In brief, raw BCL files were 755 
demultiplexed and converted into fastq format using the default settings of the 10X Genomics tool 756 
cellranger-atac makefastq (v1.2.0). Initial read processing, including adaptor/quality trimming, mapping, 757 
and barcode attachment/correction, was carried out with cellranger-atac count (v1.2.0) using the soybean 758 
William 82 v4 reference genome and the Glycine max organelle genomes (NCBI Reference Sequence: 759 
NC_007942.1, NC_020455.1).84 Properly paired, uniquely mapped reads with a mapping quality greater 760 
than 30 were retained using samtools view (v1.6; -f 3 -q 30) and reads with XA tags were filtered out.85  761 
Duplicate fragments were collapsed on a per-nucleus basis using picardtools 762 
(http://broadinstitute.github.io/picard/) MarkDuplicates (v2.16; BARCODE_TAG=CB 763 
REMOVE_DUPLICATES=TRUE). Reads mapping to mitochondrial and chloroplast genomes were 764 
counted for each barcode and then excluded from downstream analysis. Potential artifacts were removed by 765 
excluding alignments coinciding with a blacklist of regions exhibiting Tn5 integration bias from Tn5-treated 766 
genomic DNA (1-kb windows with greater than 4x coverage over the genome-wide median) and potential 767 
collapsed sequences in the reference (1-kb windows with greater than 4x coverage over the genome-wide 768 
median using ChIP-seq input). BAM alignments were then converted to single base-pair Tn5 integration 769 
sites in BED format by adjusting coordinates of reads mapping to positive and negative strands by +4 and -770 
5, respectively, and retaining only unique Tn5 integration sites for each distinct barcode. 771 
 772 
The R package Socrates was used for nuclei identification and quality control.19 The BED file containing 773 
single base-pair Tn5 integration sites was imported into Socrates along with the soybean GFF gene 774 
annotation (Phytozome, version Gmax_508_Wm82.a4.v1) and the genome index file. To identify bulk-scale 775 
ACRs in Socrates, the callACRs function was employed with the following parameters: genome size=8.0e8, 776 
shift=-75, extsize=150, and FDR=0.1. This step allowed us to estimate the fraction of Tn5 integration sites 777 
located within ACRs for each nucleus. Metadata for each nucleus were collected using the buildMetaData 778 
function, with a TSS (Transcription Start Site) window size of 1 kb (tss.window=1000). Sparse matrices 779 
were then generated with the generateMatrix function, using a window size of 500. High-quality nuclei were 780 
identified based on the following criteria: a minimum of 1,000 Tn5 insertion sites per nucleus, at least 20% 781 
of Tn5 insertions within 2 kb of TSSs, and at least 20% of Tn5 insertions within ACRs across all datasets. 782 
Additionally, a maximum of 20% of Tn5 insertions in organelle genomes was allowed. 783 
 784 
For each tissue, integrated clustering analysis of all replicates was performed using the R package Socrates.19 785 
For the binary nucleus x window matrix, windows accessible in less than 1% of all nuclei and nuclei with 786 
fewer than 100 accessible ACRs were removed using the function cleanData (min.c=100, min.t=0.01). The 787 
filtered nucleus x window matrix was normalized with the term-frequency inverse-document-frequency (TF-788 
IDF) algorithm with L2 normalization (doL2=T). The dimensionality of the normalized accessibility scores 789 
was reduced using the function reduceDims while removing singular values correlated with nuclei read depth 790 
(method="SVD", n.pcs=25, cor.max=0.4). The reduced embedding was visualized as a UMAP embedding 791 
using projectUMAP (k.near=15). Approximately 5% of potential cell doublets were identified and filtered 792 
by performing a modified version of the Socrates workflow on each library separately with the function 793 
detectDoublets and filterDoublets (filterRatio=1.0, removeDoublets=T). To address batch effects, we used 794 
the R package Harmony with non-default parameters (do_pca=F, vars_use=c("batch"), tau=5, lambda=0.1, 795 
nclust=50, max.iter.cluster=100, max.iter.harmony=50). The dimensionality of the nuclei embedding was 796 
further reduced with Uniform Manifold Approximation Projection (UMAP) via the R implementation of 797 
projectUMAP (metric="correlation", k.near=15). Finally, the nuclei were clustered with the function 798 
callClusters (res=0.5, k.near=15, cl.method=3, m.clust=25). 799 



   
 

   
 

 800 
snRNA-seq raw reads processing 801 
STARSolo was used to map the snRNA-seq reads and count the gene features using the soybean genome 802 
(William 82 v4).86 We specified the following parameters in STARSolo to filter the UMI, filter empty cells, 803 
and count multi-mapping reads: --soloUMIfiltering MultiGeneUMI_CR, --soloCellFilter EmptyDrops_CR, 804 
--soloMultiMappers PropUnique. The filtered expression data was analyzed using the Seurat (v4) R 805 
package.26 Potential low-quality nuclei or empty droplets were filtered. Specifically, cells with gene counts 806 
below a threshold calculated as the median gene count minus two times the median absolute deviation, and 807 
cells with UMI counts less than the lower 10% percentile of total UMI counts, were filtered out. Additionally, 808 
cells with organelle gene counts comprising more than 15% of the total gene count were excluded. The 809 
preprocessed datasets were normalized using SCTransform before the RunPCA for principal component 810 
analysis (PCA). Subsequently, the doublets were identified by the DoubletFinder R package, and removed 811 
from downstream analysis. We prepared two replicates for each library and integrated them using the 812 
Harmony R package.87 The integrated dataset was then processed using RunUMAP (reduction = "harmony", 813 
dims = 1:20) for Uniform Manifold Approximation and Projection (UMAP) dimension reduction, 814 
FindNeighbors (reduction = "harmony", dims = 1:30) to obtain the Nearest-neighbor graph, and 815 
FindClusters to identify distinct cell populations. Different resolutions were selected to classify cell types in 816 
varying tissue types. We used FindSubCluster to identify the sub-clusters according to the specificity of 817 
marker genes.  818 
 819 
spRNA-seq reads processing 820 
We used Space Ranger (10X Genomics) to map the spRNA-seq reads to the soybean genome and to count 821 
gene expression. The filtered gene expression matrix was analyzed using the Seurat (v4) R package.26 All 822 
the datasets were analyzed using SCTransform and RunPCA. To remove the batch effect for replicates placed 823 
in different spatial capture areas, we used the Harmony R package to integrate the replicates and analyzed it 824 
using RunUMAP (reduction = "harmony", dims = 1:20) and FindNeighbors (reduction = "harmony", dims 825 
= 1:20). We used FindClusters to identify cell clusters and FindSubCluster to identify the subclusters for 826 
specific cell types. Various resolutions were used to identify the cell clusters in distinct types of tissues. 827 
 828 
Integration of snRNA-seq and spRNA-seq 829 
We applied the ‘anchor’-based integration method from Seurat to integrate the snRNA-seq and spRNA-seq 830 
datasets.88 First, we used FindTransferAnchors (normalization.method="SCT") to find the anchors between 831 
the reference dataset (snRNA-seq) and the query dataset (spRNA-seq). These anchors were used to calculate 832 
the prediction scores of each snRNA-seq cell type for the spRNA-seq using the TransferData (dims = 1:30). 833 
 834 
De novo marker identification 835 
After cell type annotation, we identified the de novo marker genes using the FindAllMarkers 836 
(test.use=”wilcox”, logfc.threshold = 1, only pos=T, min.pct = 0.1) from the Seurat R package. Then we 837 
took the top 50 most up-regulated genes and filtered them by adjusted p-value>0.00001 and log2FC>2 to 838 
obtain the significant marker genes. 839 
 840 
Cell-type annotation for snRNA-seq 841 
To assign cell types to each cluster, we used a combination of marker gene-based annotation and gene set 842 
enrichment analysis. Initially, we compiled a list of known cell-type-specific marker genes known to localize 843 
to discrete cell types or domains expected in the sampled tissues based on an extensive review of the literature 844 
(Table S5). And the ortholog list for Arabidopsis and soybean was downloaded from PANTHER (v18.0)89. 845 
Gene expression was calculated using the UMI counts in the gene body and aggregating all nuclei in a cluster, 846 
then the raw counts matrix was normalized with the CPM function in edgeR. The Z-score was calculated for 847 
each marker gene across all cell types using the scale function in R, and key cell types were assigned based 848 
on the most enriched marker genes with the highest Z-score. Ambiguous clusters displaying similar patterns 849 
to key cell types were assigned to the same cell type as the key cell types, reflecting potential variations in 850 
cell states within a cell type (Figure S3). To aid visualization, we smoothed normalized gene accessibility 851 
scores by estimating a diffusion nearest neighbor graph.19 852 
 853 
For soybean seed tissue, the cpm normalized matrix was also mapped to the subregion by checking the 854 
correlation with the laser capture microdissection (LCM) RNA-seq dataset 855 
(http://seedgenenetwork.net/seeds). With this approach, we could clearly identify the seed coat, endosperm, 856 



   
 

   
 

and embryo regions, which confirmed our cell type annotation. There were no available markers for seed 857 
coat endothelium and seed coat inner integument, so these two cell types were annotated based on specific 858 
high correlations with the LCM dataset (Figure S2 E,F). 859 
 860 
For gene set enrichment analysis, we used the R package fgsea, following a methodology described 861 
previously.19,90 Firstly, we constructed a reference panel by uniformly sampling nuclei from each cluster, 862 
with the total number of reference nuclei set to the average number of nuclei per cluster. Subsequently, we 863 
aggregated the UMI counts across nuclei in each cluster for each gene and identified the differential 864 
expression profiles for all genes between each cluster and the reference panel using the R package edgeR.91 865 
For each cluster, we generated a gene list sorted in decreasing order of the log2 fold-change value compared 866 
to the reference panel and utilized this list for gene set enrichment analysis. We excluded GO terms with 867 
gene sets comprising less than 10 or greater than 600 genes from the analysis, and GO terms were considered 868 
significantly enriched at an FDR < 0.05 with 10,000 permutations. The cell type annotation was additionally 869 
validated by identifying the top enriched GO terms that align with the expected cell type functions. 870 
 871 
Cell-type annotation for scATAC-seq 872 
A similar approach used for snRNA-seq cell type annotation was applied to scATAC-seq with minor 873 
optimizations. Specifically, the gene chromatin accessibility score, rather than gene expression, was 874 
calculated using the Tn5 integration number in the gene body, a 500 bp upstream region, and a 100 bp 875 
downstream region. The raw counts were then normalized with the cpm function in edgeR. Cell types were 876 
assigned to each cluster following the snRNA-seq annotation process, including evaluating marker gene 877 
performance and GO enrichment profiles. 878 

For tissues with both snRNA-seq and scATAC-seq data, we further confirmed the cell annotations by 879 
integrating the two modalities using the Seurat workflow (v4.0.4).26 Briefly, the gene chromatin accessibility 880 
score was normalized and scaled with the functions NormalizeData and ScaleData. The function 881 
FindTransferAnchors was used for canonical correlation analysis (CCA) to compare the scATAC-seq gene 882 
score matrix with the scRNA-seq gene expression matrix and to find mutual nearest neighbors in low-883 
dimensional space. Annotations from the scRNA-seq dataset were then transferred onto the scATAC-seq 884 
cells using the TransferData function, and prediction scores less than 0.5 were filtered out. This approach 885 
allowed us to match and validate cell types across the two modalities, and we observed a median prediction 886 
score of 0.75 across the seven tissues (Figure S2G-I). Finally, we calculated the Pearson correlation 887 
coefficient with the top 1,000 variable genes from snRNA-seq, which ranged from 0.4 to 0.7 for the same 888 
cell type across the two modalities, similar to observations from other studies (Figure S4).19,68,92 889 

ACR identification 890 
Following cell clustering and annotation, peaks were identified using all Tn5 integration sites for each cluster 891 
by running MACS2 with non-default parameters: --extsize 150 --shift -75 --nomodel --keep-dup all.93 To 892 
account for potential bias introduced by read depth, we adjusted the q-value cutoffs based on the total Tn5 893 
integration number in each cell type as follows: for less than 10 million integrations, we used --qvalue 0.1; 894 
for 10-25 million, we used 0.05; for 25-50 million, we used 0.025; for 50-100 million, we used 0.01; and for 895 
more than 100 million, we used 0.001. Peaks were then redefined as 500-bp windows centered on the peak 896 
coverage summit. To consolidate information across all clusters, we concatenated all peaks into a unified 897 
master list using a custom script.19 The peak chromatin accessibility score was calculated based on the Tn5 898 
integration count within the peak and then normalized using the cpm function in edgeR.91 ACRs with less 899 
than 4 CPM in all cell types were removed from downstream analysis. We also used the same method 900 
described above to identify the ACRs for bulk ATAC-seq data. 901 
 902 
 903 
Predicting the functions of ACRs 904 
We hypothesized that the ACRs only control the flanking genes and used a correlation-based approach to 905 
predict the function of the ACRs. Firstly, we created the count matrix of the ACRs and gene expression 906 
across 66 main shared cell types between scATAC-seq and snRNA-seq. The count matrix was then 907 
normalized using the cpm function in edgeR and the normalize.quantiles function in preprocessCore 908 
(v1.57.1).94 For each test, we calculated the Spearman correlation between the ACRs accessibility and gene 909 
expression, shuffling the ACRs accessibility and gene expression 1,000 times to obtain a p-value for each 910 



   
 

   
 

correlation. This allowed us to compute the p-value for each correlation and adjust for multiple hypotheses 911 
using the Benjamini-Hochberg procedure (FDR). We then selected all correlations below -0.25 and above 912 
0.25 with an FDR below 0.05. To simplify the ACRs function, we hypothesized that one ACR controls one 913 
gene. For ACRs associated with multiple genes, we filtered the associations based on the following criteria: 914 
(i) Kept the best association with the highest correlation if all the associations were genic and proximal. (ii) 915 
Kept the best association with the highest correlation if all the associations were distal. (iii) If the associations 916 
were a mix of distal or genic and proximal, we only kept distal associations with higher correlation than the 917 
genic or proximal associations. Finally, the ACRs with all positive correlations with a flanking gene were 918 
predicted as activating ACRs, and the ACRs with all negative correlations with a flanking gene were 919 
predicted as repressing ACRs. About 3.9% of ACRs had both negative and positive correlations with a 920 
flanking gene, and these ACRs with ambiguous functions were removed from downstream analysis. 921 
 922 
Identification of cell-type-specific ACRs 923 
To identify the cell-type-specific ACRs, we first identified the differentially accessible chromatin regions 924 
for each cell type in the tissue. Specifically, for each cell type, we constructed a reference panel by uniformly 925 
sampling nuclei from other cell types, with the total number of reference nuclei set to the number of nuclei 926 
in the tested cell type. Subsequently, we aggregated the Tn5 integration counts across nuclei in the cell type 927 
and identified the differential accessibility profiles for all ACRs between each cell type and their reference 928 
panel using the R package edgeR. High accessible ACRs in a cell type with a fold change > 4 and p-value < 929 
0.05 were aggregated in the tissue. ACRs identified as highly accessible in at most two cell types were 930 
retained as cell-type-specific ACRs in the tissue.  931 
 932 
TF Motif deviations score calculation 933 
TF motif deviation scores of specific TF motifs among nuclei were estimated using chromVAR (Schep et 934 
al., 2017) with the non-redundant core plant PWM database from JASPAR2022.95 The input matrix for 935 
chromVAR was filtered to retain ACRs with a minimum of 10 fragments and cells with at least 100 936 
accessible ACRs. We applied smoothing to the bias-corrected motif deviations for each nucleus, integrating 937 
them into UMAP embedding for visualization, like the method used for visualizing gene body chromatin 938 
accessibility. 939 
 940 
Motif enrichment 941 
Firstly, TF motif occurrences in all ACRs were identified with fimo from the MEME suite toolset (ref) using 942 
position weight matrices (PWM) from the non-redundant core plant motif database in JASPAR 2024.45,96 943 
To test the motif enrichment in the cell-type-specific ACRs, we compared the motif distribution in the 944 
ctACRs and a control set of "constitutive" ACRs, which varied the least and were broadly accessible across 945 
cell types (fold change < 2 and p-value > 0.1), using Fisher's exact test (alternative = 'greater') for each cell 946 
type and motif. To control for multiple testing, we used the Benjamini-Hochberg method to estimate the 947 
FDR, considering tests with FDR < 0.05 as significantly different between the cell-type-specific ACRs and 948 
constitutively accessible regions. To test the motif enrichment in the activating ACRs and repressing ACRs, 949 
we compared the motif distribution in the activating ACRs and repressing ACRs using Fisher's exact test 950 
(alternative = 'greater') for each motif. Motifs with a p-value less than 0.01 were considered significantly 951 
enriched. 952 
 953 
De novo TF motif enrichment 954 
To identify novel motifs in the cell-type-specific ACRs, we first created a control set by randomly selecting 955 
the same number of cell-type-specific ACRs from the "constitutive" ACRs described above, ensuring that 956 
they had a similar GC content ratio to the test set. De novo motif searches in cell-type-specific ACRs were 957 
performed using XSTREME version 5.5.3 within the MEME suite package (v5.5.0) with the non-default 958 
parameter “--maxw 30,” and we provided the known motifs from the non-redundant core plant motif 959 
database in JASPAR 2024 or collected from the literature.97 960 
 961 
Embryo scATAC-seq and scRNA-seq clustering 962 
To chart the dynamics of chromatin accessibility and transcription during embryogenesis, we first collected 963 
all scATAC-seq and snRNA-seq nuclei with embryo cell type annotations from the four matched seed 964 
developmental time points (Globular, Heart, Cotyledon, and Early Maturation stages), and re-clustered 965 
scATAC-seq and snRNA-seq nuclei, independently.  966 
 967 



   
 

   
 

For the snRNA-seq data set, we first partitioned the nuclei x gene matrix corresponding specifically to 968 
embryo cell types and removed genes expressed in less than 0.1% of nuclei. To remove outlier nuclei, we 969 
then selected nuclei with at least 100 unique expressed genes and less than 10,000 unique expressed genes. 970 
The sparse gene x nuclei matrix was then processed with the R package, Seurat (v5.0.1) by first log-971 
normalizing counts using NormalizeData with default parameters.98 We scaled the normalized counts with 972 
ScaleData and regressed out effects from variation in the log-scaled UMI counts and percent UMIs mapping 973 
to organeller genes. The scaled matrix was then used to identify variable features via FindVariableFeatures 974 
with non-default parameters (selection.method=”mean.var.plot”, dispersion.cutoff=c(0.5, Inf), 975 
mean.cutoff=c(0.0125,3)).  To reduce the dimensionality of the nuclei x gene matrix, we ran principal 976 
component analysis with RunPCA to identify the top 20 PCs. The reduced embedding was used as input for 977 
UMAP from the uwot R package (min_dist=0.01, n_neighbors=30, metric=”cosine”). We then generated a 978 
neighborhood graph with FindNeighbors with non-default parameters (dims=1:20, nn.esp=0, k.param=30, 979 
annoy.metric=”cosine”, n.trees=100, prune.SNN=1/30, l2.norm=T). Finally, we identified clusters using the 980 
FindClusters function with resolution=1 and the leiden algorithm (algorithm=4). Cluster cell types were 981 
derived from the prior annotation strategy and validated using marker gene expression profiles from the new 982 
clustering results (Table S5).  983 
 984 
To recluster the scATAC-seq embryo nuclei, we first partitioned the nuclei x ACR matrix specifically for 985 
nuclei labeled as embryo cell types from the prior annotation. All downstream scATAC-seq analyses were 986 
conducted inside the Socrates framework unless otherwise noted. Nuclei with less than 100 unique accessible 987 
chromatin regions were removed and ACRs that were accessible in less than 1% of nuclei were also excluded 988 
using the function cleanData (min.c=100, min.t=0.01). The nuclei x ACR matrix was normalized by TFIDF 989 
followed by taking the L2 norm of each nucleus with the function tfidf and non-default parameters (doL2=T). 990 
To reduce the dimensionality of this matrix, we performed Singular Value Decomposition (SVD), taking the 991 
top 25 singular values after removing singular values correlated with per-nucleus read depths greater than 992 
0.5, and L2 normalizing the components via non-default parameters of the function reduceDims (n.pcs=25, 993 
method=”SVD”, cor.max=0.5, scaleVar=T, doL2=T). The reduced matrix was then projected into two-994 
dimensions with projectUMAP with non-default settings (metric=”cosine”, k.near=15). To identify clusters, 995 
we generated a shared neighborhood graph and clustered the data using leiden with the function callClusters 996 
with non-default parameters (res=0.5, k.near=15, cleanCluster=T, cl.method=4, e.thresh=3, m.clust=25, 997 
min.reads=5e5) to remove UMAP outliers and clusters with less than 25 nuclei and a total read depth of 998 
500,000. Cell type annotations for each cluster were determined similarly as for the snRNA-seq clustering 999 
results.  1000 
 1001 
Embryo scATAC-seq and snRNA-seq integration 1002 
To integrate the scATAC-seq and snRNA-seq nuclei, we first partitioned three matrices (nuclei x gene 1003 
accessibility, nuclei x ACR, and nuclei x gene expression) to specifically retain embryo nuclei from the 1004 
scATAC-seq and snRNA-seq clustering results from above. The integration was performed using the 1005 
unshared features iNMF workflow from the R package, liger.99 Specifically, we normalized the nuclei x 1006 
ACR matrix by tfidf (Socrates) followed by the normalize function of liger with default settings. The 1007 
normalized nuclei x ACR slot was then rescaled such that the sum of all accessible regions for a given 1008 
barcode was 1. Using the Seurat framework, we then identified the top 2,000 most variable features using 1009 
FindVariableFeatures with non-default parameters (selection.method=”vst”, nfeatures=2000). The 1010 
normalized nuclei x ACR matrix was scaled using scaleNotCenter and stored as the set of unshared features 1011 
for downstream integration.  1012 
 1013 
Focusing on the matrices with the shared feature set (geneIDs) between scATAC-seq and snRNA-seq, we 1014 
selected genes from each modality within the inner 98% quantile of each distribution and retained the 1015 
intersected genes. The nuclei x gene activity and nuclei x gene expression matrices were normalized using 1016 
the default settings of the normalize function. Variable genes were selected using selectGenes with 1017 
var.thresh=0.1, datasets.use=”RNA”, unshared=TRUE, unshared.datasets=list(2), unshared.thresh=0.2 1018 
parameters. The normalized matrices were scaled with scaleNotCenter with default settings. The integration 1019 
was performed with the function optimizeALS by setting k=30, use.unshared=TRUE, max_iters=30, and 1020 
thresh=1e-10. Finally, the integrated embedding was quantile normalized with the function quantile_norm 1021 
setting the reference data set to the snRNA-seq modality.  1022 
 1023 
Using the integrated embedding based on the snRNA-seq nuclei as a reference, we then aimed to impute 1024 



   
 

   
 

scATAC-seq modalities on to the snRNA-seq nuclei. To accomplish this, we ran the function imputeKNN 1025 
from the liger package to impute motif deviation scores and ACR normalized chromatin accessibility values 1026 
from the scATAC-seq nuclei onto the snRNA-seq nuclei using default parameters. This results in estimates 1027 
of gene expression, chromatin accessibility, and motif deviation scores for an individual snRNA-seq barcode.  1028 
 1029 
Inferred developmental age of embryo nuclei 1030 
The time-series nature of the four seed developmental stages of our data lends itself to precise inference of 1031 
developmental age using model-based approaches.68 To simplify interpretation, we focused on the snRNA-1032 
seq embryo nuclei across the four developmental stages. Starting from the raw nuclei x gene counts matrix, 1033 
we log-transformed counts and scaled the resulting values such that the sum across all genes was equal to 1034 
10,000 for each barcode. We then downsampled each stage to have the same number of nuclei. Using the R 1035 
package, caret, we partitioned the downsampled nuclei into training and test sets via the function 1036 
createDataPartition with non-default parameters (seed_stage, p=10/11, list=F, times=1). We then trained a 1037 
linear regression model with a LASSO penalty and 10-fold cross-validation using the cv.glmnet function 1038 
from the R package, glmnet, on gene expression profiles for seed stage. The model was then used to collect 1039 
gene coefficients and continuous developmental age predictions from the entire data set.  1040 
 1041 
Trajectory analysis 1042 
Pseudotime trajectory analysis for each trajectory outlined in Figure 5 H,I and Figure 6E was performed 1043 
similar to a previously published approach.19 Specifically, we ran the function calcPseudo with 1044 
cell.dist1=0.95 and cell.dist2=0.95 from the github repository 1045 
(https://github.com/plantformatics/maize_single_cell_cis_regulatory_atlas), resulting in pseudotime 1046 
estimates for individual nuclei for a specific developmental branch. We then identified genes with significant 1047 
gene expression variation across each trajectory using the function sigPseudo2 from the same github repo. 1048 
For visualization, gene expression scores across pseudotime for significantly variable genes were smoothed 1049 
using predictions on 500 equally spaced bins from a generalized additive model as previously shown.19  1050 
 1051 
To identify TFs associated with gene expression variation across pseudotime during Cotyledon parenchyma 1052 
development, we performed a Pearson’s correlation analysis between TF motif deviations and genes with 1053 
significant pseudotime variance. TF modules were clustered using k-means, where the final k=8 was selected 1054 
based on the elbow and silhouette approaches.  1055 
 1056 
Data and code availability 1057 
All datasets generated in this study have been deposited at GEO (Accession number: GSE270392) and are 1058 
publicly available as of the date of publication.  1059 
 1060 
All original code has been deposited at Github (https://github.com/schmitzlab/soybean_atlas). 1061 
 1062 
Any additional information required to reanalyze the data reported in this paper is available from the lead 1063 
contact (schmitz@uga.edu) upon request. 1064 
 1065 
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Figure S1. Evaluation and quality control of soybean scATAC-seq and snRNA-seq, related to Figure 1
(A-D) Quality control of scATAC-seq: Distribution of unique Tn5 integration sites per nucleus across ten tissues (A); 
Distributions of the proportion of Tn5 integration sites within the promoter regions, encompassing the 1-kb flanking regions around gene transcription start sites (TSSs) (B); 
Distributions of the proportion of Tn5 integration sites within peaks per nucleus (C); Spearman correlation coefficient heatmap among all scATAC-seq libraries (D).
(E-H)  Quality control of snRNA-seq: Distribution of total number of UMI (D); Distribution of number of detected genes (E); Distribution of the proportion of reads from organelle (F); 
 Spearman correlation coefficient heatmap among all snRNA-seq libraries (H). 
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Figure S2. Cell type clustering and initial annotation for soybean seeds at cotyledon stage, related to Figure 1  
(A-B) UMAP embeddings for scATAC-seq overlaid with cluster id (A) or library replicates (B).
(C-D) UMAP embeddings for snRNA-seq overlaid with cluster id (C) or library replicates (D). 
(E) Z-score heatmap of spearman correlation coefficient across all laser capture microdissection (LCM) RNA-seq datasets and scATAC-seq clusters.
(F) Z-score heatmap of spearman correlation coefficient across LCM RNA-seq datasets and snRNA-seq clusters.
(G) UMAP embeddings for scATAC-seq (G) overlaid predicted cluster id in snRNA-seq.
(H) UMAP embeddings for snRNA-seq overlaid with raw cluster id.
(I) Frequency distribution of max prediction score of snATAC-seq nuclei from the TransferData function in Seurat.
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Figure S3. Marker-based annotation for scATAC-seq and snRNA-seq, related to Figure 1
(A-B) Z-score heatmap of gene accessibility (A) and gene expression (B) for representative marker genes across shared cell types in soybean roots.
(C-D) Z-score heatmap of gene accessibility (C) and gene expression (D) for representative marker genes across shared cell types in soybean nodules.
(E-F) Z-score heatmap of gene accessibility for representative marker genes across cell types in soybean leaves (E) and pods (F).
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Figure S4. Marker-based annotation for scATAC-seq and snRNA-seq, related to Figure 1
(G-H) Z-score heatmap of gene accessibility (G) and gene expression (H) for representative marker genes across shared cell types in soybean seeds at globular stage.
(I-J) Z-score heatmap of gene accessibility (I) and gene expression (J) for representative marker genes across shared cell types in soybean seeds at heart stage.
(K-L) Z-score heatmap of gene accessibility (K) and gene expression (L) for representative marker genes across shared cell types in soybean seeds at early maturation stage.
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Figure S5. Gene expression or activity correlation between snRNA-seq and scATAC-seq, related to Figure 1
(A-F) The heatmap of spearman correlation coefficient between 1,000 most variable gene accessibility and expression across all cell types in each tissues, 
including hypocotyls (A), nodules (B), seeds at globular stage (C), heart stage (D), cotyledon stage (E) and early maturation stage (F).
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Figure S6. Cell type annotation for nuclei from scATAC-seq and snRNA-seq, related to Figure 1
(A-J) UMAP projection of nuclei, distinguished by assigned cell-type labels for scATAC-seq (left) snRNA-seq (right) across ten tissues, 
including hypocotyls (A), roots (B), nodules (C), leaves (D), pods (E), seeds at globular stage (F), heart stage (G), cotyledon stage (H), 
early maturation stage (I), and middle maturation stage (J).

A

B

C

D

E

F

G

H

I

J



Epidermis & Cortex
Vasculature1
Vasculature2
Vasculature3
Vasculature4
Vasculature5
Outer cortex
Cortex
Pith

Epidermis & Cortex
Cortex & Vasculature1
Vasculature2
Vasculature3
Vasculature4
Cortex

SC parenchyma1 & epidermis
SC parenchyma2
SC parenchyma3 and epidermis
SC vasculature
End peripheral
End chalazal
End micropylar
Emb initial
SC hilum

Endosperm
Emb parenchyma
Emb axis
Emb epidermis
SC vasculature & parenchyma
SC epidermis
SC hilum
SC tracheid bar

Emb axis
End chalazal
End peripheral
Emb vasculature
End micropylar
Emb parenchyma
Emb epidermis
SC inner parenchyma
SC hilum
SC epidermis
SC outer parenchyma
SC vasculature
SC tracheid bar

B

C

SC vasculature & parenchyma
SC tracheid bar

SC hilum
SC epidermis

Endosperm
Emb parenchyma

Emb epidermis
Emb axis

Divid
ing

 ce
ll

Emb e
pid

erm
is

Emb p
are

nc
hym

a

Emb v
as

cu
lat

ure

End
os

pe
rm

SC en
do

the
lium

SC ep
ide

rm
is

SC pa
ren

chy
ma

SC va
scu

lat
ure

SC xy
lem

Unk
no

wn

Cell fraction

0
0.2
0.4
0.6
0.8

Cell fraction

0
0.2
0.4
0.6
0.8

SC vasculature
SC parenchyma3 and epidermis

SC parenchyma2
SC parenchyma1 and epidermis

SC hilum
End peripheral
End micropylar

End chalazal

Emb initial

Divid
ing

 ce
ll

Em in
itia

ls

End
os

pe
rm

SC en
do

the
liu

m

SC ep
ide

rm
is

SC hi
llu

m pa
ren

ch
ym

a

SC hi
llu

m va
sc

ula
tur

e

SC in
ne

r in
teg

um
en

t

SC pa
ren

ch
ym

a

SC ph
loe

m

SC va
sc

ula
r p

are
nc

hy
ma

SC xy
lem

Vasculature4

Vasculature3

Vasculature2

Epidermis & Cortex

Cortex & Vasculature1

Cortex

Cort
ex

End
od

erm
is

Epid
erm

is

Peri
cy

cle

Phlo
em

Proc
am

biu
m

Roo
t h

air

Xyle
m

Cell fraction

0
0.2
0.4
0.6
0.8

Vasculature5
Vasculature4
Vasculature3
Vasculature2
Vasculature1

Pith
Outer cortex

Epidermis & Cortex
Cortex

Corte
x

Divi
ding ce

ll

Endoderm
is

Epiderm
is

Inner c
orte

x

Outer c
orte

x

Peric
yc

le

Phloem

Proca
mbium

Tri
ch

ome

Unkn
ow

n

Vasc
ular p

arench
ym

a

Xyle
m

Pith

Cell fraction

0
0.2
0.4
0.6
0.8

Hypocotyl

HypocotylRootEarly maturation stage seedCotyledon stage seed

Cotyledon stage seed

Heart stage seed

Heart stage seed

Early maturatioin stage seed

Root

Hypocotyl

Heart stage seed

A

Early maturation stage seed

Root

snRNA-seq

snRNA-seq

snRNA-seq

snRNA-seq

sp
R

N
A-

se
q

sp
R

N
A-

se
q

sp
R

N
A-

se
q

sp
R

N
A-

se
q

Figure S7. Spatial transcriptome atlas of soybean, related to Figure 2 
(A) The histological structure of soybean tissues used for spRNA-seq. 
(B) The visualization of spatial spot clusters on the tissue (left) and on the UMAP plot (right) for all the tissue types. 
(C) Heatmaps of the snRNA-seq cell type prediction scores on the spRNA-seq cell types for all the tissue types. 
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(A) Distribution of cell-type specificity score across three types of ACRs.
(B) Relative density density within 500-bp flanking regions of different classes of ACRs and control regions. 
(C-D) Heatmap showing chromatin accessibility of repressing ACRs (C) and the expression of associated genes.
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Figure S9. Characterization of ctACRs, related to Figure 4
(A) Proportion of ctACRs and non-ctACR.
(B) Distribution of the number of ctACRs identified in each cell type. Endosperm cell types were highlighted in red.
(C) Proportion of different groups of ACRs located in genic, proximal and distal regions.
(D) Relative SNP density within 500-bp flanking regions of different groups of distal ACRs and control regions.
(E) Heatmap showing relative chromatin accessibility of ctACRs across 103 cell types.
(F) UMAP embeddings overlaid with motif deviation score of epidermis specific TF HDG11 (top row) and vasculature specific TF DOF1.6 (bottom row) across 4 tissues, 
     including hypocotyls, roots, leaves, and seeds at cotyledon stage.
(G) Heatmap of motif enrichment across 9 cell types in nodules.
(H) UMAP embeddings overlaid with motif deviation score of motif MA2374.1 (top) and MA1375.2 (bottom) in nodule tissue.
(I) The motif sequence alignment of key nodulation related TF motifs (up) and de novo motifs (bottom) enriched in infected-cell-specific ACRs.
(J) The motif sequence alignment of known TF motifs in JASPAR2024 (up) and de novo motifs (bottom) enriched in infected-cell-specific ACRs.
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Figure S10. Characterizing three sub-cell types of endosperm, related to Figure 5
(A) UMAP embeddings of integration of scATAC-seq and snRNA-seq for endosperm cells across 4 developmental stages, 
     including globular stage, heart stage, cotyledon stage and early maturation stage.
(B) Z-score heatmap of gene expression for de novo marker genes for three sub-cell types of endosperm, 
     including micropylar, peripheral and chalazal endosperm from spRNA-seq of seeds at the cotyledon stage.
(C-D) UMAP embeddings of micropylar endosperm cells overlaid with four developmental stages (C) 
        and nuclei proportion in four developmental stages across micropylar clusters (D). 
        Seed stages include GS (globular stage), HS (heart stage), CS (cotyledon stage), EMS (early maturation stage).
(E-F) Similar to panels C-D, but for the peripheral endosperm.
(G-H) Similar to panels C-D, but for the chalazal endosperm.
(I-K) The five motifs that were identified in ACRs of all the 13 SWEET transporter genes (left) and its motif deviation across peripheral endosperm developmental pseudotime (right).
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Figure S11. Analysis of embryogenesis trajectories, related to Figure 6
(A) Cell-type annotation of snRNA-seq and scATAC-seq embryogenic nuclei.
(B) Integration of scATAC-seq and snRNA-seq embryo nuclei via non-negative matrix factorization. 
(C) Comparison of inferred nuclei age derived from LASSO predictions across seed developmental stages from withheld test nuclei. 
(D) Comparison of inferred nuclei age with the number of uniquely expressed genes (log10). 
(E) Illustration of scATAC-seq and snRNA-seq imputation strategy. 
(F) Gene expression dynamics across pseudotime for axis and cotyledon parenchyma trajectories. Red boxes highlight genes with divergent expression patterns. 
(G) Correlation of gene expression profiles between axis and cotyledon parenchyma trajectories. ATHB-13 is highlighted. 
(H) TF motif deviation scores across pseudotime for the five embryogenesis branches.
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Figure S12. Workflow of exploring GmLEC1a/b gene regulatory network with soybean multi-omic atlas database  
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