
ABSTRACT 

Severe Coronavirus disease 2019 (COVID-19) induces heterogeneous and progressive diffuse 

alveolar damage (DAD) highly disrupting lung tissue architecture and homeostasis, hampering 

disease management leading to fatal outcomes. Characterizing DAD pathophysiology across 

disease progression is of ultimate importance to better understand the molecular and cellular 

features driving different DAD patterns and to optimize treatment strategies. To contextualize 

the interplay between cell types and assess their distribution, spatial transcriptomics (ST) 

techniques have emerged, allowing unprecedented resolution to investigate spatial architecture 

of tissues. To this end, post-mortem lung tissue provides valuable insights into cellular 

composition and their spatial relationships at the time of death. Here, we have leveraged 

VisumST technology in post-mortem COVID-19 induced acute and proliferative DAD lungs 

including control samples with normal morphological appearance, to unravel the 

immunopathological mechanisms underlying DAD, providing novel insights into cellular and 

molecular communication events driving DAD progression in fatal COVID-19. We report a 

progressive loss of endothelial cell types, pneumocytes type I and natural killer cells coupled 

with a continuous increase of myeloid and stromal cells, mostly peribronchial fibroblasts, over 

disease progression. Spatial organization analysis identified variable cellular compartments, 

ranging from major compartments defined by cell type lineages in control lungs to increased 

and more specific compartmentalization including immune-specific clusters across DAD 

spectrum. Importantly, spatially informed ligand-receptor interaction (LRI) analysis revealed an 

intercellular communication signature defining COVID-19 induced DAD lungs. Transcription 

factor (TF) activity enrichment analysis identified TGF-B pathway as DAD driver, highlighting 

SMAD3 and SMAD7 TFs activity role during lung fibrosis. Integration of deregulated LRIs and 

TFs activity allowed us to propose a downstream intracellular signaling pathway in peribronchial 

fibroblasts, suggesting potential novel therapeutic targets. Finally, spatio-temporal trajectories 

analysis provided insights into the alveolar epithelium regeneration program, characterizing 

markers of pneumocytes type II differentiation towards pneumocytes type I. In conclusion, we 

provide a spatial characterization of lung tissue architecture upon COVID-19 induced DAD 

progression, identifying molecular and cellular hallmarks that may help optimize treatment and 

patient management.   
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ABSTRACT 

Severe Coronavirus disease 2019 (COVID-19) induces heterogeneous and progressive diffuse 

alveolar damage (DAD) highly disrupting lung tissue architecture and homeostasis, hampering 

disease management leading to fatal outcomes. Characterizing DAD pathophysiology across 

disease progression is of ultimate importance to better understand the molecular and cellular 

features driving different DAD patterns and to optimize treatment strategies. To contextualize 

the interplay between cell types and assess their distribution, spatial transcriptomics (ST) 

techniques have emerged, allowing unprecedented resolution to investigate spatial architecture 

of tissues. To this end, post-mortem lung tissue provides valuable insights into cellular 

composition and their spatial relationships at the time of death. Here, we have leveraged 

VisumST technology in post-mortem COVID-19 induced acute and proliferative DAD lungs 

including control samples with normal morphological appearance, to unravel the 

immunopathological mechanisms underlying DAD, providing novel insights into cellular and 

molecular communication events driving DAD progression in fatal COVID-19. We report a 

progressive loss of endothelial cell types, pneumocytes type I and natural killer cells coupled 

with a continuous increase of myeloid and stromal cells, mostly peribronchial fibroblasts, over 

disease progression. Spatial organization analysis identified variable cellular compartments, 

ranging from major compartments defined by cell type lineages in control lungs to increased 

and more specific compartmentalization including immune-specific clusters across DAD 

spectrum. Importantly, spatially informed ligand-receptor interaction (LRI) analysis revealed an 

intercellular communication signature defining COVID-19 induced DAD lungs. Transcription 

factor (TF) activity enrichment analysis identified TGF-B pathway as DAD driver, highlighting 

SMAD3 and SMAD7 TFs activity role during lung fibrosis. Integration of deregulated LRIs and 

TFs activity allowed us to propose a downstream intracellular signaling pathway in peribronchial 

fibroblasts, suggesting potential novel therapeutic targets. Finally, spatio-temporal trajectories 

analysis provided insights into the alveolar epithelium regeneration program, characterizing 

markers of pneumocytes type II differentiation towards pneumocytes type I. In conclusion, we 

provide a spatial characterization of lung tissue architecture upon COVID-19 induced DAD 

progression, identifying molecular and cellular hallmarks that may help optimize treatment and 

patient management.   
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Introduction 

Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus caused 

a worldwide pandemic of the derived coronavirus disease 2019, COVID-19. At the time of the 

writing (June 28th, 2023) beyond 775 million confirmed cases and more than 7 million deaths 

(https://data.who.int/dashboards/covid19/) had been reported. COVID-19 has a wide range of 

symptomatology, but most affected individuals exhibit mild clinical manifestations or are 

asymptomatic (Coronaviridae Study Group, 2020; Wu et al., 2020). Importantly, respiratory 

failure linked to lung damage and acute respiratory distress syndrome (ARDS) is the most 

common cause of death in COVID-19 patients (Milross et al., 2022; Bridges et al., 2022). 

Mechanical ventilation to compensate for respiratory failure is usually required for these high-

risk cases (Berlin et al., 2020; Marini et al., 2020). Most importantly, for the current clinical 

situation with the advancement of COVID-19 vaccines, the maintenance of lung lesions in a 

subgroup of COVID-19 patients could also be associated to prolonged clinical manifestation 

(Adeloye et al., 2021; Davis, et al., 2023). Upon SARS-CoV-2 infection in the severe cases, 

the pathological change is defined by the presence of diffuse alveolar damage (DAD) (Erjefält 

et al., 2022) in the lung that initiates with a first acute stage of early intra-alveolar epithelial 

lesions, interstitial inflammation and oedema, followed by, the proliferative stage with a final 

appearance of pneumocyte hyperplasia and fibroblast proliferation (Milross et al., 2022; 

Bridges et al., 2022). 

 Despite the principal contribution of respiratory failure to lethal COVID-19, the molecular 

context of lung damage provoked by SARS-CoV-2 infection is not fully established. Among the 

multiple multiomics layers that could be interrogated in the disorder, most studies have only 

addressed the bulk transcription landscape of the disease (Blanco-Melo et al., 2020; Pinto et 

al., 2020; D’Agnillo et al., 2021) or a particularly isolated lineage such as immune cells (Liao 

et al., 2020; Wilk et al, 2020). A more granulated view of the lung affected by severe COVID-

19 can be gained by the characterization of single-cell gene expression profiles as it has also 

been recently reported (Mels et al., 2021; Delorey et al., 2021; Sikkema et al., 2023). However, 

a comprehensive and unbiased transcriptional profiling of the lung in these severe cases of 

COVID-19 have not been properly available since all previous approaches destroyed the rich 

and relevant anatomical structure of the lung that could be crucial in understanding its 

pathobiology. Even if in the above approaches there is purification of particularly important cell 

types, the global determination of cell-cell interactions in the space of the host tissue is lost. In 

this regard, only a limited number of studies have analyzed a spatial component in the lung of 

COVID-19 cases, using high-parameter imaging mass cytometry for a discreet set of targeted 

proteins (Rendeiro et al., 2021) or restricted to small sublocations termed regions of interest 

(ROI) (Desai et al., 2020; Margaroli et al., 2021; Park et al., 2022; Milross et al., 2024). 
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Importantly, larger pathological scrutiny of spatial transcriptomics in COVID-19 patients has 

only been performed recently and to the best of our knowledge, once (Mothes et al., 2023).  

To overcome these issues, we leveraged the recently developed Visium spatial 

transcriptomics (VisiumST) technology in a cohort of lungs with normal histology and those 

that underwent DAD upon the course of fatal COVID-19. To further untangle the precise and 

topographically located gene expression changes underlying the disease, both acute and 

proliferative stages of DAD were studied using the single-cell RNA expression data of a human 

cell atlas of the lung to annotate cell types (Sikkema et al., 2023). These exhaustive analyses 

provided the constellation of shifts in the forty-five cell types and fates annotated that occur 

upon severe COVID-19, but also the perturbations in cell-to-cell communication events. The 

unveiled anatomical specific information of the altered cell types, their spatial relationships and 

their corresponding molecular pathways could be extremely valuable to design more targeted-

based pharmacological treatments to prevent the progression of the disease in severe COVID-

19 patients. 

 

Results 

Identification of cell types and cellular compartments in the lung through COVID-19 

associated DAD progression 

To assess how fatal COVID-19 affected cell type composition, cell-cell communication, and 

global expression patterns across DAD progression in the lung of patients that died by the 

disease, we followed the study design shown in Figure 1A. We first retrieved twenty-three 

formalin-fixed paraffin-embedded (FFPE) post-mortem lung tissue samples obtained from 

nineteen patients with DAD, corresponding to seven cases of acute DAD stage and twelve 

proliferative DAD stages classified as previously described (Pérez-Mies et al., 2022), and four 

lung samples from control lungs with normal morphological appearance without clinical 

evidence of SARS-CoV-2 infection. The clinicopathological characteristics of the studies 

samples are described in Table 1. We then analyzed the spatial transcriptomics patterns of 

the described samples using tissue spots on a microarray slide with arrayed oligonucleotides 

to capture spatial gene expression information (Ståhl et al., 2016). Reverse transcription was 

performed on the intact tissue, and the resulting cDNA was coupled to the oligonucleotides on 

the slide before tissue lysis, before final generation of next generation sequencing (NGS) 

libraries (Ståhl et al., 2016). This technology was later adapted by 10x Genomics as ‘10x 

Visium’ (VisiumST), with increased resolution of 55 μm (10X Genomics, 2019), as we have 

herein used as previously described (Rao et al., 2021). In total, 91,068 tissue spots were 

studied after quality control (QC) and preprocessing (Methods), selecting the most informative 
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genes as previously described (Sikkema et al., 2023) (Methods). The herein used spatial 

transcriptomics technology does not achieve complete single-cell level approach. To assess 

the spatial organization of cell types across tissue slides, we used the integrated Human Lung 

Cell Atlas (HLCA), that combines 49 single-cell RNA datasets spanning 2.4 million cells from 

486 individuals (Sikkema et al., 2023), as a reference to deconvolute the main cell types 

present in each spot by applying the validated cell2location pipeline (Kleshchevnikov et al., 

2022; Madissoon et al., 2023). Uniform Manifold Approximation and Projection (UMAP) using 

the integrated global spatial transcriptome data showing the spots colored by our three groups 

of lung samples (control, acute DAD, and proliferative DAD) was able to distinguish these three 

entities (Figure 1B). Both the entire set of cases and illustrative examples are shown in Figure 

1B.  

Using cell2location, we annotated forty-five cell types in HLCA defined by derived markers 

(Methods) in our lung samples (Figure S1). A UMAP visualization of these cell populations 

according to their lineage (epithelial, stroma, immune and endothelial) in the spatial 

transcriptomics spots for all the integrated samples and illustrative examples are shown in 

Figure 1B.  The mapping of the identified cell types on top of the VisiumST brightfield images 

stained with Hematoxylin and Eosin (HE) for the described lineages in illustrative control and 

acute and proliferative DAD cases are shown in Figure 1C. Cell types mapped to their 

expected locations, matching well-described structures, with epithelial cells lining the airway 

lumen and stromal cells mapping to blood vessel walls, as validated by endothelial (CD34) and 

epithelial (CK7) markers immunostaining (Figure 1C). 

Overall, we observed that in control lungs the most abundant lineage corresponded to 

endothelial cell types, as previously described (Travaglini et al., 2020), and that the acute DAD 

phase was characterized by a decrease of the endothelial cell types and an increase in immune 

infiltrates, whereas the proliferative phase was mostly defined by the large proportion of fibrotic 

tissue, as previously described (Milross et al., 2022; Bridges et al., 2022) and shown in Figure 

1D. These findings were validated using hematoxylin/eosine (HE) stained sections and specific 

immunohistochemistry (IHC) markers such as CD34 (endothelial), CD68 (myeloid lineage) and 

CK7 (epithelial markers) and trichrome staining (fibroblasts) shown in Figure 1E. 

We then moved to characterize a possible uneven distribution of the identified 45 cell types 

according to their abundance in the control, acute and proliferative DAD lung groups (Figure 

2A and 2B). To ease the analyses interpretation, we ordered these cell populations according 

to their lineage (epthelial, stromal, immune, and endothelial) (Figure 2A). Among the epithelial 

lineage (10 identified cell types), the most important difference was observed in alveolar type 

1 (AT1) cells, comprising between 5-10% of total cells in normal lungs as previously reported 
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(Crapo et al., 1982), that were significantly downregulated in COVID-19 associated 

proliferative DAD cases in comparison to controls (FDR<0.05) and acute DAD lungs 

(FDR<0.05) (Figure 2A and 2B). The reverse process was observed in alveolar type 2 (AT2) 

cells that were upregulated in proliferative cases in comparison to acute DAD and control 

samples (Figure 2A and 2B). These results fit with the concept that AT1s are the main cell 

type responsible for provision of the interface for the blood-gas exchange (a function that it is 

compromised in COVID-19 patients); whereas AT2 cells function as progenitors that repair the 

injured alveoli epithelium (Chan and Liu, 2022). Regarding the endothelial lineage (7 identified 

cell types), we observed that capillary cell types were the most abundant of lung cells (~30% 

of total cells), as previously reported (Crapo et al., 1982; Travaglini et al., 2020), and that the 

studied lung samples underwent a progressive loss from normal lung to acute DAD stage to 

the final proliferative DAD phase for the abundance of endothelial cells (EC) aerocyte capillary, 

arterial, general capillary and venous pulmonary (Figure 2A and 2B) (for all cases FDR<0.05). 

These results fully support the mounting evidence linking SARS-CoV-2 infection to multiple 

endothelial dysfunction (Xu et al., 2023). For the immune lineage (19 identified cell 

populations), we observed in the myeloid lineage that alveolar macrophages (Mph) CCL3+, 

and monocyte-derived Mph were significantly overrepresented in COVID-19 associated 

proliferative DAD cases in comparison to controls (FDR<0.05) and acute DAD lungs 

(FDR<0.05) (Figure 2A and 2B). Interstitial Mph perivascular showed a progressive increase 

in the evolution of the disease from controls to acute cases (FDR<0.05) and from these to the 

proliferative samples (FDR<0.05). In the lymphoid lineage, a decrease in CD4 and CD8 T-cells 

was observed in proliferative COVID-19 patients in comparison to the control group 

(FDR<0.05) (Figure 2A and 2B). Interestingly, Natural Killer (NK) cells experienced a 

significant decrease from control and acute DAD samples to proliferative DAD cases 

(FDR<0.05) (Figure 2A and 2B). In this regard, these innate effector lymphocytes that respond 

to acute viral infections have been previously related to COVID-19 severity (Maucourant et al., 

2020). Additionally, both Alveolar macrophages and Plasma cells were overrepresented in 

proliferative DAD lungs compared to control samples (FDR<0.05). Finally, regarding the 

stromal lineage (9 cell types), the most dramatic change was observed for peribronchial 

fibroblast with increased numbers in the progression of the disease from control to acute DAD 

phases, but skyrocketed in proliferative DAD cases (FDR<0.05) (Figure 2A and 2B). Not all 

fibroblast subtypes behaved in a similar manner, including subpleural fibroblasts where we 

also found an overrepresentation in COVID-19 associated DAD fatal cases compared to the 

control group and between acute and proliferative stages (FDR<0.05), whereas for alveolar 

fibroblasts and pericytes we saw a decrease in the proliferative DAD samples compared to 

control and acute DAD lungs (FDR<0.05), likely associated with the loss of alveoli and 

endothelial cells characteristic of the proliferative DAD phase of the disease. Lastly, adventitial 
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fibroblasts were overrepresented in proliferative DAD samples compared to controls 

(FDR<0.05). Illustrative UMAPs for the entire set of cases in the cellular populations of AT1, 

AT2, EC aerocyte capillary, peribronchial fibroblast, monocyte-derived macrophages and 

smooth muscle activated stress response cells are shown in Figure 2C, showing unbalanced 

distribution between control, acute and proliferative groups (Figure 1B). The mapping of the 

identified cell types on top of the VisiumST brightfield images stained with HE in illustrative 

control and COVID-19 associated acute and proliferative DAD cases are shown in Figure 2B. 

As expected, cell types annotated with the finest granularity level mapped to their expected 

locations, including subpleural fibroblasts located next to the pleura, and multiciliated cells 

lining small airways lumen and smooth muscle cells mapping to blood vessel walls (Figure 

2B). 

To assess the spatial distribution of the identified forty-five cell types within neighboring 

compartments, we applied the cell2location algorithm to the VisiumST data. As expected for 

the normal lung tissue samples, the characterized cell types mapped within physiological 

cellular microenvironments such as the great compartment defined by immune and endothelial 

cells, one rich in epithelial cells (excluding AT2 proliferating, suprabasal and deuterosomal 

cells that shared a common location), another related to smooth muscle related cells and the 

fibroblast lineage (where peribronchial fibroblast resided in an isolated compartment) (Figure 

2C). This compartmentalization underwent an abrupt shift upon DAD progression. The acute 

DAD stage was characterized by a recruitment of an enriched AT2 proliferating population to 

the epithelial compartment; the irruption of a spatial cluster of macrophage subtypes and type-

2 dendritic cells (DC2s, that promote cytotoxic T-cell responses and helper T-cell 

differentiation); and the appearance of plasma cells in an isolated population (Figure 2C). Most 

of these cellular redistributions underwent further compartmentalization in the proliferative 

DAD stage that additionally exhibited the emergence of a unique compartment for lymphatic 

mature endothelial cells (Figure 2C). 

To further analyze and characterize tissue architecture differences we also developed an 

independent methodological approach by applying GraphCompass (Graph Comparison Tools 

for Differential Analyses in Spatial Systems) (Ali et al., 2024) (Methods), a comprehensive set 

of designed graph analyses methods for “omics” data to quantitatively determine and compare 

spatial arrangement of distinct cell types among different biological conditions that have been 

successfully applied to VisiumST data (Ali et al., 2024). In this regard, GraphCompass has 

been used to evaluate cell-type-specific composition in breast cancer progression, the 

miocardium following ischemic injury, and for brain development (Ali et al., 2024). Using this 

approach, we observed the alteration of the spatial organization of cell types from healthy lung 

to acute and proliferative DAD stages. The cell-type-specific subgraphs across condition pairs, 
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where the size of the dot indicates the pairwise similarity score variances (Methods), is shown 

in Figure 2D. Among the characterized distinct cells through COVID-19 progression, we further 

analyzed peribronchial fibroblasts, endothelial aerocyte capillary cells and AT2 cells by plotting 

filtration curves for every sample, as well as the mean curve for each lung stage (Methods) 

(Figure 2E). These analyses reinforced the findings that these cell types underwent 

antiparallel shifts in their abundance upon DAD progression: peribronchial fibroblasts and AT2 

cells exhibited an overrepresentation whereas endothelial aerocyte capillary cells were 

depleted, particularly at the proliferative stage (Figure 2E). 

Spatial cell-cell interactions in the spectrum of the disease 

One of the most exciting applications of spatial transcriptomics is the potential to analyze 

cell-cell communication (CCC). CCC is a multicellular and complex process involving multiple 

mechanisms, including intercellular signaling and intracellular signaling as a downstream 

response associated to the intercellular signaling. Related to the intercellular component, cells 

interact on diverse levels that include direct contact between ligands and surface receptors, 

tight junctions, and mechanical forces, and through indirect means, such as the release of 

soluble factors. For single-cell analyses, the molecular profiles of sender and receiver cell 

types allow the inference of underlying cell communication events in a tissue using co-

occurrence of ligand and receptor (LR) expression among the candidate communicating cells 

(Browaeys et al., 2020; Efremova et al., 2020) and through gene expression profiles in the 

receiving cell type related to the extracellular interaction (Arnol et al., 2019; Browaeys et al., 

2020). In this regard, most models of intercellular crosstalk depend on the molecular landscape 

of dissociated cells and, thus, do not pay attention to the location of the studied cells within a 

tissue. Herein, we used the VisiumST data to identify coordinated cell-cell communication 

signatures shared across all tissue slides by applying non-negative matrix factorization (NMF) 

to the estimated local (spot level) ligand-receptor interactions (LRIs), calculated using spatially-

weighted Cosine similarity with LIANA+ (Dimitrov et al., 2022; Dimitrov et al., 2023) (Methods). 

Using the elbow selection procedure, we decomposed the local interactions into three Factors 

(1, 2 and 3) representing three different intercellular communication signatures. The NMF 

factor scores indicate the strength of each factor in each spot, representing the degree of 

influence by the associated signature. The averaged factor scores per tissue slide clustered 

according to lung status are shown in Figure 3A. Importantly, Factor 3 distinguished the best 

between control and COVID-19 associated DAD lung tissues, with high mean scores in 

proliferative DAD and to a lesser extent in acute DAD (Figure 3A). Factor 1 was most 

prominent in control samples, whereas Factor 2 was more active in a subset of proliferative 

DAD.  
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 To provide further biological insight, we performed LRIs pathway enrichment analysis on 

the distinct interaction loadings contributing to the three factors (Figure 3B) using multivariate 

linear regression (Badia-i-Mompel et al., 2022) and pathway annotations from PROGENy 

(Schubert et al., 2018) (Methods). We found that DAD associated Factor 3 was significantly 

enriched in interactions related to the transforming growth factor beta (TGF-β) pathway (Figure 

3B), a driver of fibrosis involved in response to tissue injury (Chanda et al., 2019). Conversely, 

DAD associated Factor 3 was depleted for the EGFR pathway, almost reaching significance 

(P = 0.055) (Figure 3B). Interestingly, the wingless-related integration site (WNT) pathway 

was enriched in Factor 1 (characteristic of the control samples) but depleted in Factor 2 (Figure 

3B). 

Since Factor 3 was the more optimal discriminator between healthy and COVID-19 

associated DAD affected pulmonary tissues, we mainly focused our analyses in this CCC 

readout. The top four LR loadings defining DAD associated Factor 3 were the interactions 

TIMP1^CD63, that regulates cell proliferation, survival and migration (Warner et al., 2020), with 

TIMP1 promoting  fibrosis in lung tissues mediated by the TGF-β1/SMAD3 pathway (Duch et 

al., 2022) being proposed as a potential therapy target (Almuntashiri et al., 2023);  APP^CD74, 

highlighting the role of APP as a lung capillary barrier defense during infection (Vorth, S.B. et 

al., The FASEB journal 2022) and being associated with failed tissue repair, fibrotic niches and 

scar-macrophages and natural killers (Ye et al., 2022; Yu et al., 2023); CD99^CD81, regulators 

of both T-cell and B-cell activity (Pata et al., 2011; Gao et al., 2018); and LUM^ITGB1, with 

LUM being linked to extracellular matrix (ECM) remodeling and inflammation-associated 

fibroblasts (Tao et al., 2024) (Table S1). Noteworthy additional LRIs involved PSAP 

(PSAP^LRP1) and members of the S100 protein family S100A8 (S100A8^AGER, 

S100A8^ITGB2) and S100A9 (S100A9^AGER, S100A9^CD68, S100A9^ITGB2), that have 

been reported to activate macrophages in COVID-19 (Melms et al., 2021, Rendeiro et al., 

2021); the SPARC protein (SPARC^ENG), that promotes microvascular remodeling and act 

as a downstream effector of TGF-B induced fibrosis (Wong and Sukkar, 2019) and is 

upregulated in COVID-19-associated fibrosis (Pérez-Mies et al., 2022, Melms et al., 2021) and 

idiopathic pulmonary fibrosis patients (Conforti et al., 2020;); and vimentin (VIM^CD44), an 

important attachment factor for SARS-CoV-2 entry into endothelial cells that contribute to 

COVID-19 vascular complications (Amraei et al., 2022). Beyond the mentioned ligand proteins, 

it is also relevant to mention that the three most frequent receptors involved in the LRIs (Table 

S1) were CD44, involved in T-cell abundance and fostering of the cytokine storm linked to poor 

prognosis of COVID-19 patients (Zick, 2022); ITGB1, that associates with the angiotensin-

converting enzyme 2 (ACE2) to mediate SARS-CoV-2 entry (Zhang et al., 2022) and regulates 

ECM remodeling; and LRP1, that is involved in the overproduction of cytokines and 
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chemokines (Zick, 2022) and enriched in those COVID-19 patients that died (Razaghi et al., 

2022) or underwent long haul COVID-19 disease (Gu et al., 2023). The NMF factor scores 

indicating the strength of each factor in each spot are depicted for illustrative examples of 

VisiumST slide images throughout COVID-19 induced DAD progression and shown in Figure 

3C. 

Regarding intracellular signaling analysis, we studied transcription factor activities including 

their downstream transcriptional targets that shift in the progression from normal lung to the 

COVID-19 associated acute phase and, at the end, to the proliferative DAD stage. We 

estimated transcription factor (TF) activity in each VisiumST spot based on multivariate linear 

regression using decoupleR (Badia-i-Mompel et al., 2022) and CollecTRI (Müller-Dott et al., 

2023) network containing a curated collection of TFs and their targets (Methods). Table S2 

shows the TFs activity in each type of lung tissue and Figure 3D displays the top 10 Z-scaled 

TF enrichment scores in each condition that discriminate between control lungs and the 

pulmonary samples of COVID-19 associated acute and proliferative DAD. One important 

observation is that these data highlight the critical role of TGF-β pathway in DAD progression, 

as did also the intercellular LRI analysis (Figure 3B). In this regard, it is noteworthy to mention 

the opposite activity landscape of SMAD protein family members. The COVID-19 associated 

proliferative DAD stage is characterized by upregulation of SMAD3 activity, a key mediator of 

TGF-β signaling to promote ECM production, tissue repair, fibrosis and scar formation after 

injury (Finnson et al., 2010). Conversely, SMAD7 activity that exerts antagonizing roles to TGF-

β/SMAD3 profibrotic pathway, is downregulated across DAD progression. Illustrative VisiumST 

slides depicting the described TF activity patterns of SMAD TFs in COVID-19 associated DAD 

progression are shown in Figure 3E. The altered activity of the TGF-β signaling pathway in 

the natural history of the disease was also further strengthened by the involvement of two 

additional components, TGFB1|1 [a marker of contractile smooth muscle cells (Wang)] and 

ZEB2 [epithelial to mesenchima transition and fibrogenesis (Teraishi et al., 2017)], that were 

upregulated in control and proliferative DAD lungs, respectively (Figure S2). Interestingly for 

the last gene, ZEB2 DNA methylation status has been linked to another severe consequence 

of SARS-CoV-2 infection, the multisystem inflammatory syndrome in children (MIS-C) 

(Davalos et al., 2022). In addition to TGF-β signaling, another two cellular networks were 

targeted by aberrant TF activity: lung epithelial cell differentiation and NK cells functionality. In 

the first case, downregulation of the ATII cell identity regulator ETV5 occurred upon COVID-

19 induced DAD progression as shown in Figure 3E, suggesting initiation of epithelial 

regeneration by ATII cells (Melms et al., 2021; Zheng); whereas NKX2-1 [regulator of alveolar 

epithelial progenitors (Toth et al., 2023)], MYB [involved in airway epithelial cell differentiation 

(Pan et al., 2014)] and BHLHA15 [linked to acinar cell function (Ref)] were upregulated in 
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proliferative DADs (Figure S2). Remarkedly, SREBF2, related to surfactant production in ATII 

cells, and CIITA, which drives MHCII expression and induces cell resistance to SARS-CoV-2 

(Bruchez et al., 2020), was enriched in acute DAD lungs (Figure S2). For NK cells, where we 

already observed a quantitative decrease in COVID-19 progression (Figure 2A), multiple TFs 

essential for their proper development were also downregulated in the DAD lungs, such as 

IRF2 (Persyn et al., 2022), IKZF1 (Goh et al., 2024), NFIL3 (Gascoyne et al., 2009) and 

EOMES (Zhang et al., 2021) (Figure S2), supporting that the proposed NK cell dysfunction in 

COVID-19 (Bi, 2022) could be associated to fatal forms of the disease.  

Spatial relationships of ligand-receptor interactions and transcription factor activities 

with cell type abundance  

 Using VisiumST data, we have above provided a comprehensive assessment of the 

targeted cell types, the intercellular and the intracellular signaling that characterizes the 

consecutive steps from a morphologically normal lung to the tissue affected in the COVID-19 

induced acute DAD phase to the late proliferative stage. To further capture how local LRIs, 

TFs and the distinct cell type abundances relate in the lung spatial context, we leveraged an 

explainable multi-view modelling approach to decipher the global spatial relationships between 

these three components (Tanevski J. et al., 2022). In this regard, we jointly modelled, in a 

spatially informed manner, cell type abundances in each spatial spot using the top 25 local 

ligand-receptor loadings from Factor 3 (Table S1) and the activity of the top 10 most enriched 

TFs (Table S2) per condition. We observed that across control and DAD lung tissue slides, 

both LRIs and TFs activity jointly contributed to explain the variance of cell type abundance 

(mean multi-view R2 = 0.21) (Figure 3F). The relative contribution of each spatial “view” to the 

joint predictive performance was higher for TF activities (median contribution > 60%) compared 

to LRIs (median contribution < 40%) across disease progression (Figure 3F). A high degree 

of variability in variances explained across tissue slides and cell types was also observed. In 

this regard, the abundance of fibroblasts was best explained by these components [including 

activity of TFs SMAD3 and SMAD7 and TIMP1^CD63 LRI among top 10 predictors of 

peribronchial fibroblasts (Figure 3F)], highlighting their contribution to DAD. Additionally, 

important differences were also found when explaining cellular composition across control 

lungs and COVID-19 induced DAD progression, particularly for peribronchial fibroblasts, 

endothelial aerocyte capillary cells, endothelial general capillary cells, alveolar macrophages 

subtypes, monocyte-derived macrophages, non-classical monocytes and NK cells (Figure 

S3). These last results further highlight the critical role of these cell types in COVID-19 induced 

DAD lung remodeling reflected by the observed temporal differences. 
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Additionally, we used the predictor importances (coefficients’ t-values) from this predictive 

linear model to infer intracellular signaling networks linking both LRIs and TF activity patterns. 

To accomplish this aim, we applied LIANA+ (Dimitrov et al., 2023) (Methods), to infer a 

putative causal network linking LRIs to TFs using a network optimization approach. To better 

understand the pathological lung tissue repair response in DAD, we inferred intracellular 

signaling pathways focusing on peribronchial fibroblasts considering their significant 

enrichment in proliferative DAD lungs (Figure 3G) and in idiopathic pulmonary fibrosis patients 

(Madissoon et al., 2023). Our analyses suggested that initial activation of the ITGB1 receptor 

unleashed a downstream signaling pathway that caused an upregulation of the transcription 

factors SMAD3, MYB and BRCA1 and a downregulation of SMAD7 and CIITA (Figure 3G). 

Importantly, CIITA represses collagen expression by lung fibroblasts after injury (Xu et al., 

2011). Interestingly, and beyond a better basic understanding of the pathophysiology of the 

disease, this pathway analysis shows that integrin ITGB1 induces an activation of the kinases 

ILK, AKT1, MAP2K4 and MAPK14 that have been previously linked to the disorder 

(Bouhaddou et al., 2020; Xia et al., 2020) and could be now considered as even more 

amenable candidates for new targeted therapies. 

The characterized global spatial relationships are calculated at the level of the whole 

VisumST slide. To identify local spatial dependencies that might occur only in a sub-region of 

the studied lung tissues and to pinpoint their precise location, we leveraged spatially-informed 

local bivariate similarity metrics, that included spatially-weighted Cosine similarity and global 

Moran´s R (Figure 4A), to identify pairs of LRIs that are spatially clustered together or apart 

(Methods). The LRI TIMP1^CD63 showed the highest spatial co-clustering pattern by both 

Cosine similarity and globan Moran’s R metrics (Figure 4A). The pattern of the co-clustering 

was particularly evident in proliferative DAD lungs within DAD associated Factor 3 boundaries 

(Figure 4B and Figure S4). Computed permutation-based p-values to assess the significance 

of the local interactions demonstrated an agreement with the high Cosine similarity regions 

(Figure 4B). To further categorize TIMP1^CD63 spatial relationship, we identified that for the 

majority of local category areas, both ligand and receptor were highly expressed and only in a 

few sub regions one interaction member was highly and the other lowly expressed (Figure 

4B). Interestingly, the amyloid-beta precursor protein (APP) participated in multiple LRIs, 

including APP^CD74 with the second highest Cosine similarity, albeit a weak global Moran´s 

R (Figure 4A). An additional APP LRI, APP^AGER, showed a clear distinct and diminishing 

spatial co-clustering pattern over disease progression (Figure S4 and Figure S5), suggesting 

a meaningful biological relationship since AGER is an AT1 marker described in the literature 

(Madissoon et al., 2023) and also reported in our study (Figure S1). Intriguingly, beta-amyloid 

produced by the infection-mediated lung injury can reach through general circulation other 
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organs originating further defects, including neurocognitive dysfunction (Balczon et al., 2024). 

Strikingly, cognitive impairment in the post-acute phases of COVID-19 is not an uncommon 

observation (Wang et al., 2024) and SARS-CoV-2 infection is considered a risk factor for 

Alzheimer´s disease (Bonhenry et al., 2024). Finally, multiple LRIs with proteins involved in the 

activation of Mphs in COVID-19, such as S100A9, showed increased spatial co-clustering 

through disease progression (Figure S4 and Figure S6). Interestingly, S100A9^CD68, the 

best LRI predictor of all Mph subtypes, non-classical monocytes and T cells proliferating cell 

type abundances (Figure S6 and Figure S7), yielded one of the highest median global 

Moran´s R scores (Figure 4A), suggesting an important role contributing to aberrant myeloid 

activation and dysregulated immune response (Melms et al., 2021; Merad et al., 2022). The 

mapping of the described LRIs on the VisiumST images in illustrative control and COVID-19 

associated acute and proliferative DAD cases are shown in Figure 4B, Figures S5 and S6. 

In a similar manner that we analyzed the local spatial dependencies for LRIs, we next 

leveraged the spatially-informed local bivariate similarity metrics to investigate associations 

between cell types and TFs activity considering their relevance for tissue function, using also 

spatially-weighted Cosine similarity and global Moran´s R (Figure 4C) (Methods). 

Peribronchial fibroblasts (PBFs), the most abundant cell type in COVID-19 associated DAD 

proliferative lungs (Figure 2A), were most spatially associated and co-clustered with the pro-

fibrotic TF SMAD3 activity locations (Figure 4C, 4D), whereas PBFs and the anti-fibrotic TF 

SMAD7 activity locations were spatially clustered apart (Figure 4C, 4D). These results fit the 

previously characterized mutually exclusive location of SMAD3 and SMAD7 activities through 

DAD progression (Figure 3E) and the top LRI loading, TIMP1^CD63, characterizing DAD 

associated Factor 3 in COVID-19 induced DAD tissues promoting lung fibrosis through the 

TGF-β1/SMAD3 pathway (Figure 4B). All these results highlight the central role of TGF-β 

pathway activation in driving pathological ECM remodeling and repair linked to aberrant 

activation of PBFs that leads to scar formation and a grossly disrupted lung tissue architecture 

in the COVID-19 associated DAD proliferative cases. 

To provide a second example beyond PBFs of local spatial relationships between TFs 

activity and the identified cell types, it is worth highlighting the myeloid lineage. We observed 

that the activity of the TF MYB was the best predictor of the abundance of myeloid cell types 

(Figure S7). The spatial co-expression of MYB with the myeloid and T cell proliferating cell 

fates increases as disease progresses (Figure S8). MYB plays an essential role in many 

hematopoietic pathways (Ref) and, most importantly, the E2F/MYB regulatory programs from 

myeloid cell populations have been recently described as hyperactivated in COVID-19 patients 

with poor disease outcomes (Lam et al., 2023), that in a similar manner we have herein 

observed with a spatial perspective. The interrogation of the immune landscape by assessing 
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local relationships between TFs activity and cell types also unveiled that NK cells, another 

population critically depleted in our COVID-19 associated DAD cases (Figure 2A), were most 

influenced by IKZF1 activity showing the highest co-clustering pattern (Figure S8). IKZF1 is 

essential for proper NK cell development (Goh et al., 2023). Here we report a loss of the co-

clustering pattern of IKFZ1 and NKs across COVID-19 associated DAD progression (Figure 

S8). Results that strengthen the suggested central role of NK cell dysfunction in the 

development of fatal COVID-19 (Krämer et al., 2021). 

Cell-cell communication as a function of niche composition 

The potential cell-cell communication events that could occur in lung tissues across the 

different conditions was assessed not only accounting for LRIs and TFs activity, as explained 

above, but using a graph neural network method (NCEM) (Fischer et al., 2023) that estimates 

the effect of the inferred spot composition on gene expression variation within cell types across 

spots to discover intercellular dependencies (‘Methods’).  

To discriminate different intercellular dependencies between control and fatal COVID-19 

lung sections, we identified multiple cell type couplings across the most abundant and variable 

cell types over disease progression (Methods) observing a profound reconfiguration of 

intercellular communication (Figure 5A). We observed a dependency of NK cells in control 

lung tissues on various cell types, including CD8 T cells, EC aerocyte capillary cells, alveolar 

Mph CCL3+ and AT1 cells. However, these dependencies were lost in acute and proliferative 

COVID-19 associated DAD lung tissues (Figure 5A). Most importantly, we observed that in 

DAD samples the population of CD4 T cells beared multiple dependencies on various cell 

types such as non-classical monocytes, SM activated stress response cells, plasma cell and 

AT1 cells, becoming a prominent receiver node of communication, particularly in acute DAD 

and to a lesser extent in proliferative DAD lungs. Interestingly, AT1 cells exhibited limited 

intercellular dependencies in control lung samples, that increased in the acute DAD phase, 

and were lost in the proliferative DAD stage. Lastly, CD4 T cells established a dependency on 

AT2 cells in the proliferative DAD phase. Additionally, we performed a receiver effect analysis 

highlighting gene-wise effects of all senders on once receiver cell type to contextualize gene 

expression differences in some of the couplings (Figure 5B). Furthermore, since CD4 T cells 

showed important dependencies on multiple cell types in DAD lungs, we performed a sender 

similarity analysis to characterize the profile of these intercellular dependencies across DAD 

progression. We observed that in acute DAD lungs, the sender profile mostly conserved 

lineage cell type identity but was lost in proliferative DAD lungs (Figure 5B).   

Spatio-temporal trajectories: AT2-AT1 epithelial regeneration 
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AT2 cells play an important role as AT1 progenitors during lung injury, proliferating and 

contributing to alveolar repair and regeneration. By contrast, AT1 cells are fragile, susceptible 

to damage and unable to proliferate. Therefore, characterizing AT2-AT1 differentiation is 

important to provide novel insights into cellular processes and tissue repair mechanisms in 

severe COVID-19. To decipher the dynamic relationships across tissue space and time 

between transcriptional states of AT2 and AT1 cells, we leveraged a spatial graph-based 

method named pseudo-time-space (PSTS) implemented in the stLearn software (Pham et al., 

2023)  ‘Methods’). By combining spatial and imaging information, representing cell and tissue 

morphology, with gene expression data, we used the PSTS algorithm to map the spatial 

changes in AT2 and AT1 cell states, modelling and reconstructing their spatio-temporal 

trajectories. In this regard, we defined a spatial trajectory for AT2 cells transitioning into AT1 

cells across two clusters (clade 6 and clade 9) in a proliferative DAD lung (Figure 5C). The top 

10 most upregulated and downregulated genes defining AT2 to AT1 transition in each clade 

are shown (Figure 5C). Enrichment analysis (’Methods’) revealed that the top 10 upregulated 

genes in clade 6 were enriched (FDR q-value = 0.001) in AT1 cell identity markers including 

ICAM1, DPYSL2, ANGPTL2 and AGER (Travaglini et al., 2020). Likewise, the top 10 

downregulated genes in clade 6 were enriched (FDR q-value < 0.001) in AT2 cell identity 

markers including SFTPB, SCD and CYB5A (Travaglini et al., 2020). Furthermore, the top 10 

downregulated genes in clade 9 were also enriched (FDR q-value < 0.001) in AT2 cell identity 

markers including SFTPB, SFTPC, SLC34A2, FASN, CTSH, DBI, MLPH, LPCAT1 and CYB5A 

(Travaglini et al., 2020). These results further validate the inferred spatio-temporal trajectories 

in AT2 and AT1 cell states, better characterizing the alveolar epithelial regeneration process 

after lung injury. Interestingly, when comparing clade 6 and clade 9 (Figure 5C), we found that 

CAV1, a late AT1 maturation marker (Melms et al., 2021) was upregulated in clade 9, 

suggesting a complete transition of AT2 to AT1 cells. This is further supported by the cell type 

specific gene expression of CAV1 in spatial coordinates among different subtypes of 

pneumocytes, where CAV1 is expressed only by AT1 cells in distinct locations but not by co-

located AT2 and derived AT0 cells during alveolar repair, driving most of CAV1 total expression 

across all cell types (Figure 5C). Altogether, these results reinforces the notion that, in the 

lung of patients with severe COVID-19, AT2 cells aim to repopulate AT1 cells upon the 

activation of alveolar epithelial regeneration programs. 

 

Discussion 

 

COVID-19 exhibits a great range of clinical behaviors, with most of SARS-CoV-2 infected 

individuals displaying only a few symptoms or being completely asymptomatic (Coronaviridae 
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Study Group, 2020; Wu et al., 2020). However, the natural history of the disease could also 

end with the death of the patient, particularly when severe respiratory failure occurs linked to 

acute respiratory distress syndrome and interstitial pneumonia. The causes behind the wide 

spectrum of clinical manifestations of COVID-19 are mostly unknown, although life-threatening 

COVID-19-associated respiratory failure occurs more frequently in aged males with 

concomitant medical conditions, such as obesity, diabetes, hypertension and cardiovascular 

disease (Zhou et al., 2020; Li et al., 2020). Several genomic and epigenomic biomarkers have 

also been associated with COVID-19 life-threatening pneumonia (Covid-19 GWAS Group 

Severe et al., 2020; Pairo-Castineira et al., 2020; Zhang et al., 2020; Bastard et al., 2020; 

Castro de Moura et al., 2021). Focusing on one of the main target tissues of the disorder, the 

lung, transcription profiles in extracts or laboratory-suspended cells from autopsy specimens 

of pulmonary samples have also shown at both bulk transcriptome level (Blanco-Melo et al., 

2020; Pinto et al., 2020; D’Agnillo et al., 2021) and high-resolution single-cell transcriptional 

magnification (Mels et al., 2021; Delorey et al., 2021; Sikkema et al., 2023) some of the 

expression profiles tied to fatal COVID-19. However, this wealth of information is derived from 

disaggregated lung tissues where the architecture of the organ and its potential shift in the 

disease is not preserved. This can be extremely important to understand the pathophisiology 

of COVID-19 because RNA expression patterns do not only depend on internal gene 

regulation, but also the influence of neighboring cells and, overall, on the surrounding tissue 

microenvironment. This issue has been scarcely addressed in COVID-19 affected lung tissues 

(Desai et al., 2020; Margaroli et al., 2021; Park et al., 2022; Mothes et al., 2023). To solve 

these issues, we have herein applied in the lung of fatal COVID-19 patients the spatial 

transcriptomic technology that delivers the transcriptional pattern of cells by RNA-sequencing 

preserving the organization of the tissue in the organ. Importantly, spatial transcriptomics can 

be combined with microscopic imaging and immunohistochemistry, as also herein described, 

to improve our understanding of where even further in the spatial context these expression 

changes are taking place. The picture that emerges is one defined by profound shifts in specific 

cellular populations of the epithelium, endothelium, fibroblasts and immune cells with distorted 

intercellular communications that finally disrupt important gene networks leading to fatal 

outcomes. 

 The disbalance between cell types exhibited the most remarkable change for peribronchial 

fibroblasts that experimented an extraordinary increase in the proliferative stage of the 

disease. Other subclasses of fibroblasts also underwent upregulation among COVID-19 

progression, except for alveolar fibroblasts that decreased in a similar fashion of other cell 

types populating the functional respiratory alveolus such as epithelial AT1 cells and aerocyte 

capillary endothelial cells. Interestingly, the proliferative DAD phases showed an increase in 

various subtypes of alveolar macrophages. Furthermore, the myeloid lineage underwent an 
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overall increase, including interstitial and monocyte-derived macrophages and non-classical 

monocytes, whereas the lymphoid lineage decreased across DAD progression, mostly driven 

by the loss of NK cells in proliferative DAD lungs.  These results match the reported aberrant 

activation of myeloid cells and impaired T cell and NK cell responses in fatal COVID-19 (Melms 

et al., 2021; Krämer et al., 2021). In this regard, we highlight the important role of NK cells in 

severe COVID-19, characterizing NK cells dysfunction with marked downregulation of 

essential TFs activity for their functional development and maturation, including IKZF1 (Goh et 

al., 2024), IRF2 (Persyn et al., 2022), EOMES (Zhang et al., 2021) and NFIL3 (Gascoyne et 

al., 2009). Herein, we report a progressive and persistent dysfunction of NK cells throughout 

DAD spectrum, further implicating NK cell functional impairment in promoting lung fibrosis in 

fatal COVID-19 (Krämer et al., 2021). Besides NK cells dysfunction, a dysregulated 

immunological repair response to SARS-Cov-2 infection has been proposed as a major 

contributor to disease progression (Merad et al., Science 2022). Hence, we have described 

the LRIs and TFs activity related to essential elements of the immune system, identifying 

S100A9^CD68 LRI and MYB TF activity as major determinants of myeloid cell types 

abundance, showing increased spatial co-expression patterns over DAD progression, 

highlighting their important role in the aberrant activation of macrophages in severe COVID-19 

(Rendeiro et al., 2021; Lam et al., 2023).  

 

Moreover, we have characterized the molecular drivers of pathological responses to lung injury 

leading to massive fibrosis and grossly disrupted tissue architecture. We report the key role of 

TGF-β pathway in DAD progression, identifying an upregulation of the profibrotic SMAD3 

activity coupled with downregulation of antagonizing SMAD7 activity. Importantly, we have 

identified TIMP1^CD63 LRI as a major contributor to DAD, emphasizing TIMP1 role as a key 

regulator of ECM homeostasis and downstream effector of TGF-β pathway activation, being 

identified as a candidate therapy target for pulmonary fibrosis (Almuntashiri et al., 2023). 

Furthermore, when connecting deregulated intercellular communication events to downstream 

intracellular signaling pathways, we inferred an intracellular signaling network in PBFs 

suggesting that the phenotypic changes and the different targeting of the SMAD TFs involved 

the activation of integrin ITGB1 receptor and their associated downstream kinases AKT1, 

MAP2K4 and MAPK14, representing additional potential targets for COVID-19 therapies 

(Bouhaddou et al., 2020; Xia, Qui-Dong, et al., Cell Proliferation 2021). 

 

Interestingly, when analyzing intercellular dependencies as a function of niche composition, 

we described a dependency of NK cells on various cell types in control lungs that was lost on 

DAD lungs, whereas a dependency of CD4 T cells on multiple cell types including CD8 T cells 

in control lungs shifted towards other lymphoid and myeloid immune cells and stromal cells in 
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DAD, such as non-classical monocytes, plasma cells and smooth muscle activated stress 

response cell types, including epithelial AT1 cells in acute DAD and AT2 cells in proliferative 

DAD, further reflecting the disrupted tissue architecture across the DAD spectrum.  

 

Importantly, our spatio-temporal trajectories analysis helps to characterize the alveolar 

epithelial regeneration process, highlighting the important role of AT2 cells as AT1 progenitors 

and identifying markers of AT2 to AT1 differentiation. This process is impaired in severe 

COVID-19 induced DAD cases, contributing to fatal outcomes in these patients. Following 

these last observations, it is tempting to speculate that the occurrence of long COVID-19 could 

relate to the partial or complete disruption of intercellular communication events and 

differentiation trajectories that cannot completely restore the functional alveolar gas exchange 

capacity and/or prevent the persistence of fibrotic scars.  

 Our findings could also provide and foster the research of small drugs and antibodies 

targeting some of the cell types, pathways and intercellular communication that characterize 

the spatial aftermath of severe COVID-19. One example could be related to the combating of 

the fibrosis associated with DAD progression. Pirfenidone and nintedanib are two antifibrotic 

drugs approved for the treatment of idiopathic pulmonary fibrosis (IPF) (Sing and Wairkar, 

2024; Perez-Favila et al., 2024; Li et al., 2024). These agents can also be repurposed to avoid 

severe COVID-19 associated fibrosis since Pirfenidone inhibits TGF-Sansores, et al., 2023, 

the main profibotic pathway underpinned in our study, and nintedanib blocks several tyrosine 

and serine/threonine kinases (Landi et al., 2020; Umemura et al., 2021) among them the 

MAPKs and AKT1 identified in our intracellular pathways analyses of peribronchial fibroblasts. 

Furthermore, peribronchial fibroblasts are enriched in idiophatic pulmonary fibrosis patients 

(Madissoon et al., 2023), suggesting common mechanisms underpinning both idiopathic 

pulmonary fibrosis and DAD diseases. Moreover, we suggest MAPK14 kinase activation role 

within the intracellular signaling pathway of peribronchial fibroblasts leading to SMAD3 

activation. Importantly, MAPK14 inhibitors such as ralimetinib, clinically tested in patients with 

advanced cancers (Patnaik et al., 2016), and ARRY-797, clinically tested in patients with 

dilated cardiomyopathy (Judge et al., 2022), have shown SARS-Cov-2 antiviral activity 

(Bouhaddou et al., 2020), being candidates for drug repurposing in severe COVID-19. 

Interestingly, several inhibitors of the integrin v6, such as GSK3335103 and BG00011 are 

also at different levels of preclinical studies or even in clinical trials to treat idiopathic pulmonary 

fibrosis. Following this lead, our finding that integrin ITGB1 activation unleashes a profibrotic 

signaling in peribronchial fibroblasts in fatal COVID-19 cases suggests that this receptor can 

be also another amenable target to avoid the complications of the disorder. A similar case can 

be drawn for the therapeutic counteract of the emerging and hyperactivated population of 

inflammatory myeloid cells that we have observed in our spatial transcriptomic analysis. In this 
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regard, macrophages and monocytes engage the NOD-like receptor family pyrin domain 

containing 3 (NLRP3) inflammasome during SARS-CoV-2 infection and established COVID-

19 (Lécuyer et al., 2023). Thus, in addition to the use of general anti-inflammatory 

interventions, our results further supports that the application of NLRP3 inhibitors, such as 

NT0793/NT0249 or MCC950 (Diarimalala et al., 2023), can be another useful strategy to 

restrict the activity of these belligerent myeloid cells and treat severe COVID-19 cases. 

Importantly, because our integrative spatial transcriptomics analysis of TFs activity within the 

identified cell types yielded MYB as a major determinant factor for macrophages in severe 

COVID-19 associated DAD lungs, it could be proposed as a candidate drug target  (Uttarkar 

et al., 2017; Samy et al., 2022). Similarly, we report S100A9^CD68 LRI as a major determinant 

of myeloid cell types. Interestingly, S100 protein family members S100A8 and S100A9 have 

been proposed as potential biomarkers for COVID-19 severity, modulators of the cytokine 

storm and have been investigated as potential targets of small molecules such as Paquinimod 

to control aberrant myeloid activation in severe COVID-19 (Mellett et al., 2021; Guo et al., 

2021).  

Related to treatment, we can also briefly mention a provocative thought. Since multiple LRIs 

including our second ranked LRI according to Cosine similarity co-clustering metric involved 

the Amyloid-Beta Precursor Protein (APP^CD74), and it has been proposed that common 

cognition defects in post-COVID-19 (Wang et al., 2024) could be due to beta-amyloid produced 

by the lung lesions and liberated to the blood (Balczon et al., 2024), including that SARS-CoV-

2 infection is considered a risk factor for Alzheimer´s disease (Bonhenry et al 2024), we 

suggest that maybe we can target both processes: the lung injury and the associated cognitive 

impairment. Following this train of thought, the lysophosphatidic acid receptors (LPARs) from 

the G protein-coupled receptor family contribute to both Alzheimer's disease (AD) and bind to 

the viral SPIKE protein being implicated in COVID-19 inflammation, and LPAR inhibitors are 

started to be explored for this potential double effect (Malar et al., 2024). 

 

Our study is unique because we provide a spatially informed characterization of the cellular 

and molecular hallmarks of lung tissue architecture in fatal COVID-19. This detailed spatial 

transcriptomics study that highlights in situ the disease-associated changes in the composition 

of cellular subsets, their spatial dependencies and disrupted intercellular communication 

programs also constitutes a proof-of-principle of the potential translational use of the emerging 

spatial technologies. This transition will require careful benchmark comparison studies among 

the competing spatial transcriptomic platforms, harmonization of data processing pipelines and 

design of user-friendly databases where the data can be deposited and interrogated, 

automatization of sample processing and data analysis workflows leading to a shorter 

timeframe to deliver the results together with the ongoing reduction of sequencing costs; and 
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scalable computational methods to exploit spatial transcriptomics data. Related to this last 

point, spatial transcriptomics can constitute one of the entrance points for the application of 

artificial intelligence in pathology and modern medicine. In this regard, our investigation of the 

altered cellular and molecular architecture of the lung in fatal COVID-19 could serve as an 

excellent example of the versatility of spatial transcriptomics to fulfill the promise of how the 

new genomic technologies could improve our understanding and the personalized 

management of many human diseases. 

 

Contributors 

C. A. G.-P. provided the bioinformatic analyses of the spatial transcriptomics data. E. M., V. D. 

and G. F. reviewed the clinical data. X. S. S., E. E., B. P. M., T. C. C., J. Pal. and E. M. reviewed 

the postmortem lung samples. E. M. performed the immunostainings. M. E. designed the study 

and wrote the manuscript with contributions from all authors. The study was approved by the 

institutional ethical review boards of Ramón y Cajal University Hospital (Necropsias_Covid19; 

355_20) and the Lund Hospital (ref 2020- 02369). 

 

Declaration of interests 

Dr. Esteller declares past grants from Ferrer International and Incyte and personal fees from 

Quimatryx, outside the submitted work. 

 

Data sharing 

 

Acknowledgements 

We thank CERCA Programme / Generalitat de Catalunya for institutional support. The 

Secretariat for Universities and Research of the Ministry of Business and Knowledge of the 

Government of Catalonia has provided funding to ME (2021 SGR01494). ME has also received 

funding from the Spanish Ministry of Science and Innovation 

MCIN/AEI/10.13039/501100011033/ERDF ‘A way to make Europe’ (PID2021-125282OB-I00), 

Cellex Foundation (CEL007) and “la Caixa” Foundation (LCF/PR/HR22/00732). M.E. is an 

ICREA Research Professor. GF received support by Fundacio La Marato de TV3 (ref 202131-

32). BP-M and JP is supported by Instituto de Salud Carlos III (ISCIII) (PI22/01892, 

PMP22/00054, PMP21/00107). EE is supported by Region Skane funds. 

 

References 

1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The 
species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and 
naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544 (2020). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2024. ; https://doi.org/10.1101/2024.07.03.601404doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.03.601404
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 
 

2. Wu, Z. & McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus 
Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the 
Chinese Center for Disease Control and Prevention. JAMA 323, 1239–1242 (2020). 

3. Milross, L. et al. Post-mortem lung tissue: the fossil record of the pathophysiology and 
immunopathology of severe COVID-19. Lancet Respir. Med. 10, 95-106 (2022). 

4. Bridges, J.P. et al. Respiratory epithelial cell responses to SARS-CoV-2 in COVID-19. Thorax 
77, 203-209 (2022). 

5. Berlin, D.A., Gulick, R.M. & Martinez, F.J. Severe Covid-19. N. Engl. J. Med. 383, 2451-2460 
(2020). 

6. Marini, J.J. & Gattinoni, L. Management of COVID-19 Respiratory Distress. JAMA 323, 2329–
2330 (2020). 

7. Adeloye, D. et al. The long-term sequelae of COVID-19: an international consensus on research 
priorities for patients with pre-existing and new-onset airways disease. Lancet Respir. Med. 9, 
1467-1478 (2021). 

8. Davis, H.E. et al. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. 
Microbiol. 21, 133-146 (2023). 

9. Erjefält, J.S. et al. Diffuse alveolar damage patterns reflect the immunological and molecular 
heterogeneity in fatal COVID-19. EBioMedicine. 83, 104229 (2022). 

10. Blanco-Melo, D. et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of 
COVID-19. Cell 181, 1036-1045.e9 (2020). 

11. Pinto, B.G.G. et al. ACE2 Expression Is Increased in the Lungs of Patients With Comorbidities 
Associated With Severe COVID-19. J. Infect. Dis. 222, 556-563 (2020). 

12. D'Agnillo, F. et al. Lung epithelial and endothelial damage, loss of tissue repair, inhibition of 
fibrinolysis, and cellular senescence in fatal COVID-19. Sci. Transl. Med. 13, eabj7790 (2021). 

13. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-
19. Nat. Med. 26, 842-844 (2020). 

14. Wilk, A.J. et al. A single-cell atlas of the peripheral immune response in patients with severe 
COVID-19. Nat. Med. 26, 1070-1076 (2020). 

15. Melms, J.C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114-119 
(2021). 

16. Delorey, T.M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. 
Nature 595, 107-113 (2021). 

17. Sikkema, L. et al. An integrated cell atlas of the lung in health and disease. Nat. Med. 29, 1563-
1577 (2023). 

18. Rendeiro, A.F. et al. The spatial landscape of lung pathology during COVID-19 progression. 
Nature. 593, 564-569 (2021). 

19. Desai, N. et al. Temporal and spatial heterogeneity of host response to SARS-CoV-2 pulmonary 
infection. Nat. Commun 11, 6319 (2020). 

20. Margaroli, C. et al. Spatial mapping of SARS-CoV-2 and H1N1 lung injury identifies differential 
transcriptional signatures. Cell Rep. Med. 2, 100242 (2021). 

21. Park, J. et al. System-wide transcriptome damage and tissue identity loss in COVID-19 patients. 
Cell Rep. Med. 3, 100522 (2022). 

22. Milross, L. et al. Distinct lung cell signatures define the temporal evolution of diffuse alveolar 
damage in fatal COVID-19. EbioMedicine 99, 104945 (2024). 

23. Mothes, R. et al. Distinct tissue niches direct lung immunopathology via CCL18 and CCL21 in 
severe COVID-19. Nat. Commun. 14, 791 (2023). 

24. Pérez-Mies, B. et al. Progression to lung fibrosis in severe COVID-19 patients: A morphological 
and transcriptomic study in postmortem samples. Front Med (Lausanne). 9, 976759 (2022). 

25. Ståhl, P.L. et al. Visualization and analysis of gene expression in tissue sections by spatial 
transcriptomics. Science 353, 78-82 (2016). 

26. Rao, A. et al. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211-220 
(2021). 

27. Kleshchevnikov, V. et al. Cell2location maps fine-grained cell types in spatial transcriptomics. 
Nat. Biotechnol. 40, 661-671 (2022). 

28. Madissoon, E. et al. A spatially resolved atlas of the human lung characterizes a gland-
associated immune niche. Nat. Genet. 55, 66-77 (2023). 

29. Travaglini, K.J., et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. 
Nature 587, 619-625 (2020). 

30. Crapo, J.D. et al. Cell number and cell characteristics of the normal human lung. Am. Rev. 
Respir. Dis. 126, 332-337 (1982). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2024. ; https://doi.org/10.1101/2024.07.03.601404doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.03.601404
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 
 

31. Chan, M. & Liu, Y. Function of epithelial stem cell in the repair of alveolar injury. Stem Cell Res. 
Ther. 13, 170 (2022). 

32. Xu, S.W., Ilyas, I. & Weng, J.P. Endothelial dysfunction in COVID-19: an overview of evidence, 
biomarkers, mechanisms and potential therapies. Acta. Pharmacol. Sin. 44, 695-709 (2023). 

33. Maucourant, C. et al. Natural killer cell immunotypes related to COVID-19 disease severity. 
Sc.i Immunol. 5, eabd6832 (2020). 

34. Ali, M. et al. GraphCompass: Spatial metrics for differential analyses of cell organization across 
conditions. bioRxiv 2024.02.02.578605; doi: https://doi.org/10.1101/2024.02.02.578605 

35. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by 
linking ligands to target genes. Nat. Methods 17, 159–162 (2020). 

36. Efremova, M. et al. CellPhoneDB: inferring cell–cell communication from combined expression 
of multi-subunit ligand–receptor complexes. Nat. Protoc. 15, 1484–1506 (2020). 

37. Dimitrov, D. et al. Comparison of methods and resources for cell-cell communication inference 
from single-cell RNA-Seq data. Nat. Commun. 13, 3224 (2022). 

38. Dimitrov, D. et al. LIANA+: an all-in-one cell-cell communication framework. bioRxiv 
2023.08.19.553863; doi: https://doi.org/10.1101/2023.08.19.553863. 

39. Badia-I-Mompel, P. et al. decoupleR: ensemble of computational methods to infer biological 
activities from omics data. Bioinform. Adv. 2, vbac016 (2022). 

40. Schubert, M. et al. Perturbation-response genes reveal signaling footprints in cancer gene 
expression. Nat. Commun. 9, 20 (2018). 

41. Chanda, D. et al. Developmental pathways in the pathogenesis of lung fibrosis. Mol. Aspects 
Med. 65, 56-69 (2019). 

42. Warner, R.B. et al. Establishment of Structure-Function Relationship of Tissue Inhibitor of 
Metalloproteinase-1 for Its Interaction with CD63: Implication for Cancer Therapy. Sci. Rep. 10, 
2099 (2020). 

43. Duch, P. et al. Aberrant TIMP-1 overexpression in tumor-associated fibroblasts drives tumor 
progression through CD63 in lung adenocarcinoma. Matrix Biol. 111, 207-225 (2022). 

44. Almuntashiri, S. et al. TIMP-1 and its potential diagnostic and prognostic value in pulmonary 
diseases. Chin. Med. J. Pulm. Crit. Care Med. 1, 67-76 (2023). 

45. Ye, C. et al. Single-cell and spatial transcriptomics reveal the fibrosis-related immune landscape 
of biliary atresia. Clin. Transl. Med. 12, e1070 (2022). 

46. Yu, Z. et al. Cell Profiling of Acute Kidney Injury to Chronic Kidney Disease Reveals Novel 
Oxidative Stress Characteristics in the Failed Repair of Proximal Tubule Cells. Int. J. Mol. Sci. 
24, 11617 (2023). 

47. Pata, S. et al. Association of CD99 short and long forms with MHC class I, MHC class II and 
tetraspanin CD81 and recruitment into immunological synapses. BMC Res. Notes. 4, 293 
(2011). 

48. Gao, Q. et al. Tumor suppressor CD99 is downregulated in plasma cell neoplasms lacking 
CCND1 translocation and distinguishes neoplastic from normal plasma cells and B-cell 
lymphomas with plasmacytic differentiation from primary plasma cell neoplasms. Mod. Pathol. 
31, 881-889 (2018). 

49. Tao, Z., Huang, J. & Li. J. Comprehensive intratumoral heterogeneity landscaping of liver 
hepatocellular carcinoma and discerning of APLP2 in cancer progression. Environ. Toxicol. 39, 
612-625 (2024). 

50. Wong, S.L. & Sukkar, M.B. The SPARC protein: an overview of its role in lung cancer and 
pulmonary fibrosis and its potential role in chronic airways disease. Br. J. Pharmacol. 174, 3-14 
(2017). 

51. Conforti, F. et al. Paracrine SPARC signaling dysregulates alveolar epithelial barrier integrity 
and function in lung fibrosis. Cell Death Discov. 6, 54 (2020). 

52. Amraei, R. et al. Extracellular vimentin is an attachment factor that facilitates SARS-CoV-2 entry 
into human endothelial cells. Proc. Natl. Acad. Sci USA. 119, e2113874119 (2022). 

53. Zick, Y. Galectin-8, cytokines, and the storm. Biochem Soc. Trans. 50, 135-149 (2022). 
54. Zhang, Y. et al. An antibody-based proximity labeling map reveals mechanisms of SARS-CoV-

2 inhibition of antiviral immunity. Cell Chem. Biol. 29, 5-18.e6 (2022). 
55. Razaghi, A. et al. Proteomic Analysis of Pleural Effusions from COVID-19 Deceased Patients: 

Enhanced Inflammatory Markers. Diagnostics (Basel). 12, 2789 (2022). 
56. Gu, X. et al. Probing long COVID through a proteomic lens: a comprehensive two-year 

longitudinal cohort study of hospitalised survivors. EBioMedicine 98,104851 (2023). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2024. ; https://doi.org/10.1101/2024.07.03.601404doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.03.601404
http://creativecommons.org/licenses/by-nc-nd/4.0/


23 
 

57. Müller-Dott, S. et al. Expanding the coverage of regulons from high-confidence prior knowledge 
for accurate estimation of transcription factor activities. Nucleic Acids Res. 51, 10934-10949 
(2023). 

58. Finnson, K.W. et al. Endoglin differentially regulates TGF-β-induced Smad2/3 and Smad1/5 
signalling and its expression correlates with extracellular matrix production and cellular 
differentiation state in human chondrocytes. Osteoarthritis Cartilage 18, 1518-1527 (2010). 

59. Teraishi, M. et al. Critical involvement of ZEB2 in collagen fibrillogenesis: the molecular similarity 
between Mowat-Wilson syndrome and Ehlers-Danlos syndrome. Sci. Rep. 7, 46565 (2017). 

60. Davalos, V. et al. Epigenetic profiling linked to multisystem inflammatory syndrome in children 
(MIS-C): A multicenter, retrospective study. EClinicalMedicine 50, 101515 (2022). 

61. Toth, A. et al. Alveolar epithelial progenitor cells require Nkx2-1 to maintain progenitor-specific 
epigenomic state during lung homeostasis and regeneration. Nat. Commun. 14, 8452 (2023). 

62. Pan, J.H. et al. Myb permits multilineage airway epithelial cell differentiation. Stem Cells 32, 
3245-3256 (2014). 

63. Bruchez, A. et al. MHC class II transactivator CIITA induces cell resistance to Ebola virus and 
SARS-like coronaviruses. Science 370, 241-247 (2020). 

64. Persyn, E. et al. IRF2 is required for development and functional maturation of human NK cells. 
Front. Immunol. 13, 1038821 (2022). 

65. Goh, W. et al. IKAROS and AIOLOS directly regulate AP-1 transcriptional complexes and are 
essential for NK cell development. Nat. Immunol. 25, 240-255 (2024). 

66. Gascoyne, D.M. et al. The basic leucine zipper transcription factor E4BP4 is essential for natural 
killer cell development. Nat. Immunol. 10, 1118-1124 (2009). 

67. Zhang, J. et al. Sequential actions of EOMES and T-BET promote stepwise maturation of 
natural killer cells. Nat. Commun. 12, 5446 (2021). 

68. Bi, J. NK cell dysfunction in patients with COVID-19. Cell Mol. Immunol. 19, 127-129 (2022). 
69. Tanevski, J. et al. Explainable multiview framework for dissecting spatial relationships from 

highly multiplexed data. Genome Biol. 23, 97 (2022). 
70. Xu, Y. et al. The effect of class II transactivator mutations on bleomycin-induced lung 

inflammation and fibrosis. Am. J. Respir. Cell. Mol. Biol. 44, 898-905 (2011). 
71. Bouhaddou, M. et al. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 

182, 685-712.e19 (2020). 
72. Xia, Q.D. et al. Network pharmacology and molecular docking analyses on Lianhua Qingwen 

capsule indicate Akt1 is a potential target to treat and prevent COVID-19. Cell Prolif. 53, 12949 
(2020). 

73. Balczon, R. et al. Lung endothelium, tau, and amyloids in health and disease. Physiol. Rev. 104, 
533-587 (2024). 

74. Wang, W. et al. Cognitive Impairment in the Post-Acute Phases of COVID-19 and Mechanisms: 
An Introduction and Narrative Review. J. Alzheimers. Dis. Rep. 8, 647-658 (2024). 

75. Bonhenry, D. et al. SARS-CoV-2 infection as a cause of neurodegeneration. Lancet Neurol. 23, 
562-563 (2024). 

76. Merad, M. et al. The immunology and immunopathology of COVID-19. Science 375, 1122-1127 
(2022). 

77. Lam, M.T.Y. et al. Dynamic activity in cis-regulatory elements of leukocytes identifies 
transcription factor activation and stratifies COVID-19 severity in ICU patients. Cell Rep. Med. 
4, 100935 (2023). 

78. Krämer, B. et al. Early IFN-α signatures and persistent dysfunction are distinguishing features 
of NK cells in severe COVID-19. Immunity 54, 2650-2669.e14 (2021). 

79. Fischer, D.S., Schaar, A.C.. Theis, F.J. Modeling intercellular communication in tissues using 
spatial graphs of cells. Nat. Biotechnol. 41, 332-336 (2023). 

80. Pham D, et al. Robust mapping of spatiotemporal trajectories and cell-cell interactions in 
healthy and diseased tissues. Nat Commun. 14, 7739 (2023). 

81. Zhou, F. et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in 
Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020). 

82. Li, X. et al. Risk factors for severity and mortality in adult COVID-19 in patients in Wuhan. J. 
Allergy Clin. Immunol. 146, 110–118 (2020). 

83. Covid-19 GWAS Group Severe et al. Genomewide association study of severe Covid-19 with 
respiratory failure. N. Engl. J. Med. 383, 1522–1534 (2020). 

84. Pairo-Castineira, E. et al. Genetic mechanisms of critical illness in Covid-19. Nature 591, 92-98 
(2021). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 4, 2024. ; https://doi.org/10.1101/2024.07.03.601404doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.03.601404
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 
 

85. Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. 
Science 370, eabd4570 (2020). 

86. Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. 
Science 370, eabd4585 (2020). 

87. Castro de Moura, M. et al. Epigenome-wide association study of COVID-19 severity with 
respiratory failure. EbioMedicine 66, 103339 (2021). 

88. Singh, S. & Wairkar, S. Revolutionizing the Treatment of Idiopathic Pulmonary Fibrosis: From 
Conventional Therapies to Advanced Drug Delivery Systems. AAPS PharmSciTech. 25, 78 
(2024). 

89. Perez-Favila, A. et al. Antifibrotic Drugs against Idiopathic Pulmonary Fibrosis and Pulmonary 
Fibrosis Induced by COVID-19: Therapeutic Approaches and Potential Diagnostic Biomarkers. 
Int. J. Mol. Sci. 25, 1562 (2024). 

90. Li, Y. et al. Exploring therapeutic targets for molecular therapy of idiopathic pulmonary fibrosis. 
Sci. Prog. 107, 368504241247402 (2024). 

91. Sansores, R.H. et al. Prolonged-release pirfenidone in patients with pulmonary fibrosis as a 
phenotype of post-acute sequelae of COVID-19 pneumonia. Safety and efficacy. Respir. Med. 
217, 107362 (2023). 

92. Landi, C. et al. Idiopathic Pulmonary Fibrosis Serum proteomic analysis before and after 
nintedanib therapy. Sci. Rep. 10, 9378 (2020). 

93. Umemura, Y. et al. Efficacy and safety of nintedanib for pulmonary fibrosis in severe pneumonia 
induced by COVID-19: An interventional study. Int. J. Infect. Dis. 108, 454-460 (2021). 

94. Patnaik, A. et al. A First-in-Human Phase I Study of the Oral p38 MAPK Inhibitor, Ralimetinib 
(LY2228820 Dimesylate), in Patients with Advanced Cancer. Clin. Cancer Res. 22, 1095-102 
(2016). 

95. Judge D.P. et al. Long-Term Efficacy and Safety of ARRY-371797 (PF-07265803) in Patients 
With Lamin A/C-Related Dilated Cardiomyopathy. Am. J. Cardiol. 183, 93-98 (2022). 

96. Lécuyer, D. et al. The purinergic receptor P2X7 and the NLRP3 inflammasome are druggable 
host factors required for SARS-CoV-2 infection. Front Immunol. 14, 1270081 (2023). 

97. Diarimalala R.O. et al. Inflammasomes during SARS-CoV-2 infection and development of their 
corresponding inhibitors. Front. Cell Infect. Microbiol. 13, 1218039 (2023). 

98. Uttarkar, S. Frampton, J. & Klempnauer, K.H. Targeting the transcription factor Myb by small-
molecule inhibitors. Exp. Hematol. 47, 31-35 (2017). 

99. Samy, A. et al. SARS-CoV-2 potential drugs, drug targets, and biomarkers: a viral-host 
interaction network-based analysis. Sci. Rep. 12, 11934 (2022). 

100. Mellett, L. & Khader, S.A. S100A8/A9 in COVID-19 pathogenesis: Impact on clinical 
outcomes. Cytokine Growth Factor Rev. 63, 90-97 (2022). 

101. Guo, Q. et al. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in 
the pathogenesis of COVID-19. Cell Host Microbe. 29, 222-235.e4 (2021). 

102. Malar, D.S. et al. Network analysis-guided drug repurposing strategies targeting LPAR 
receptor in the interplay of COVID, Alzheimer's, and diabetes. Sci. Rep. 14, 4328 (2024). 

 

Figure Legends 

 

Figure1: Study design and spatial transcriptomics profiling of fatal COVID-19. A) 

Overview of the study design, including sample processing workflow and spatial 

transcriptomics data analysis pipeline. B) UMAP representing sample integration and 

spot-wise most abundant cell type assignment. C) Mapping cell type deconvolution 

results on top of VisiumST brightfield images stained with H&E across disease 

progression. Illustrative examples of lung structures are shown matching cell types to 

expected structures. D) Bar plot showing cell type lineage abundance per condition. E) 

Immunohistochemistry staining with H&E and specific markers of the four main cell type 
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lineages: CK7 (alveolar epithelial cells), CD34 (endothelial cells), CD68 (alveolar 

macrophages) and trichrome (fibrosis).  

 

Figure 2: Cell type assignment and cellular compartments. A) Bar plot showing the 

proportion of the 45 cell types identified across disease progression. Significance values 

indicate credible differences between conditions (FDR < 0.05). B) UMAP representation 

of representative cell types for the different conditions and mapping of cell type 

deconvolution results on histological images across disease progression. An illustrative 

example showing cell type density matching expected lung structures is shown. C) 

Cellular compartments identified across disease progression are represented as factors 

on the x-axis. Cell type loadings are represented by both dot size and color for cell types 

annotated. D) Cell type specific subgraph comparison using the portrait method across 

condition pairs. Dot size is indicative of the similarity score variance over samples. E) 

Filtration curves for three cell types. A filtration curve is plotted for every sample as well 

as the mean curve for every condition identified by the thicker and darker line. Large 

vertical steps towards the left of the plot indicate low density, whereas large vertical steps 

towards the right of the plot indicate high density.  

 

 

Figure 3: Intercellular and intracellular communication programs in fatal COVID-

19. A) Heatmap representing average factor scores per lung tissue slide according to 

ligand-receptor interaction scores. Ward clustering method and Euclidean distance were 

used to attach samples hierarchical clustering. B) Pathway enrichment analysis of 

ligand-receptor loadings. Statistically significant enrichment scores (p-value < 0.05) are 

denoted with a star (*). C) Factor 1, Factor 2 and Factor 3 scores in selected samples 

across disease progression. D) Heatmap representing transcription factor activity 

enrichment score. Top 10 transcription factors are shown per condition. Enrichment 

scores were Z-scaled for comparison purposes. E) SMAD3, SMAD7 and ETV5 

transcription factor enrichment scores in selected samples across disease progression. 

F) Cell type abundance variance explained by means of R2 according to ligand-receptor 

interactions and transcription factor activity combined predictive performance. 

Additionally, the contribution of ligand-receptor interactions and transcription factor 

activity to the predictive performance is shown. Lastly, the top 10 predictors of 

peribronchial fibroblasts abundance with their corresponding importances as defined by 

t-values in the predictive model are shown. G) Causal intracellular signaling network in 

peribronchial fibroblasts connecting deregulated intercellular events with downstream 

transcription factors.  
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Figure 4: Spatial local dependencies in ligand-receptor interactions and between 

cell types and transcription factor activity. A) Local bivariate similarity metrics score, 

including spatially-weighted cosine similarity and bivariate Moran´s R for the top 25 

ligand-receptor loadings defining Factor 3 in all studied samples. B) Mapping of Factor 

3 scores, cosine similarity, permutation based p-values and local categories for 

TIMP1^CD63 interaction in selected samples across disease progression. C) Local 

bivariate similarity metrics score, including spatially-weighted cosine similarity and 

bivariate Moran´s R for the top 10 transcription factor activity and peribronchial 

fibroblasts abundance in all studied samples. D) Mapping of SMAD3 and SMAD7 local 

interactions with peribronchial fibroblasts according to cosine similarity and local 

categories in selected samples across disease progression. 

 

Figure 5: Intercellular dependencies as a function of niche composition and 

spatio-temporal trajectories. A) Type coupling analysis with edge proportional to 

strength of directional dependencies by means of fold changes of differentially expressed 

genes for each pair of sender and receiver cell types. Only edges with at least 500 genes 

are shown. Results for intercellular dependencies across disease progression are 

shown. B) Sender effect analysis of the CD8 T cells – NK cells axis in control samples, 

AT1-CD4 T cells axis in acute DAD lungs, and non-classical monocytes and CD4 T cells 

in proliferative DAD lungs. Shown is the estimated fold change that the sender cell type 

on the y-axis induces in the gen on the x-axis in receiving cells. Additionally, a sender 

similarity analysis based on a correlation of the coefficient vectors of each sender type 

with respect to CD4 T cell receivers across disease progression is shown. C) Spatio-

temporal trajectory of AT2 to AT1 cell type differentiation in a proliferative DAD lung 

tissue identified two clades of transdifferentiating cells. Transition genes positively (blue) 

or negatively (red) correlated with the predicted trajectory and extracted by Spearman 

correlation test with adjusted p-value <0.05 and correlation coefficient > 0.4 or < -0.4 are 

shown for each transitioning clade. A comparison between clade markers is additionally 

shown. Lastly, total and cell type specific gene expression of CAV1 is shown for AT1, 

AT2 and AT0 cells. 
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Table 1. Clinicopathological characteristics of the studied COVID-19 patients and 
control group. 

Abbreviations: DAD, diffuse alveolar damage; NA, Not applicable. aInclusion criteria for the COVID-19 cohort: Patients  
>18 years old, PCR positive for SARS-CoV-2 with complete clinical information of disease history, comorbidities and 
follow-up, showing clinical pulmonary involvement and COVID-19-related death; bInclusion criteria for the control cohort: 
>18 years old individuals with complete clinical information about comorbidities, without clinical evidence of SARS-CoV-
2 infection, and sudden death due to cardiopathies, except one case died due to cancer dissemination and one post-
surgery; cChronic obstructive pulmonary disease or asthma; dCoronary artery disease, heart failure or atrial fibrillation; 
eImmunocompromised state due to autoimmune disease or other cause; fAcute myocardial infarction, cardiac fibrosis, 
aortic dissection, hemopericardium or myocarditis; gA normal lung biopsy was included in the Control group.*p-values 
were calculated using Fisher's exact test or Mann-Whitney test for dichotomous or continuous variables, respectively. p-
values under 0.05 represent statistical significant association between co-variables.  

 

Characteristics 
COVID-19 

cohort 
Control 
cohort p-value* 

(N = 19)a (N = 4)b 

Gender - Frequency (%)  
 

 
Female 5 (26.3) 2 (50.0) p=0.557 

Male 14 (73.7) 2 (50.0)  

Age (years) - Median [range] 68.0 [52 - 91] 65.5 [39 - 72] p=0.409 
Underlying conditions - Frequency (%)  

 
 

Smoking  5 (38.5) 1 (25.0) p=1.000 
Hypertension  12 (63.2) 2 (50.0) p=1.000 

Diabetes mellitus  3 (15.8) 1 (25.0) p=1.000 
Obesity 9 (52.9) 1 (25.0) p=0.586 

Respiratory diseasec 5 (26.3) 0 (0.00) p=0.539 
Cardiac diseased 13 (68.4) 0 (0.00) p=0.024 

 Chronic kidney disease 2 (10.5) 0 (0.00) p=1.000 
Chronic neurological or neuromuscular disease 5 (26.3) 1 (25.0) p=1.000 

Cancer  7 (36.8) 2 (50.0) p=1.000 
Immunocompromised statee 3 (15.8) 2 (50.0) p=0.194  

 
 

 
Number of comorbidities - Frequency (%)  

 
 

0-2 6 (31.6) 2 (50.0) p=0.589 
3-6 13 (68.4) 2 (50.0)   

 
 

 
Pulmonary disease - Frequency (%)  

 
 

Acute  7 (36.8) NA  
Proliferative 12 (63.2) NA   

 
 

 
Cause of death - Frequency (%)  

 
 

Multiorgan failure/Respiratory distress  14 (73.7) 0 (0) p=0.014 
Pancreatitis 2 (10.5) 0 (0) p=1.000 

Intestinal necrosis 1 (5.3) 0 (0) p=1.000 
Cardiopathyf 1 (5.3) 1 (25.0) p=0.324 

Pyelonephritis 1 (5.3) 0 (0) p=1.000 
Cancer dissemination 0 (0) 1 (25.0) p=0.174 

Acute pulmonary embolism 0 (0) 1 (25.0) p=0.174 
Aliveg  0 (0) 1 (25.0) NA 
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Methods 

Generation of Visium Spatial Transcriptomics data from Formalin Fixed Paraffin 

Embedded fatal COVID-19 lung samples 

First, the RNA integrity of the FFPE samples was assessed by extracting RNA from 

freshly collected tissue sections and evaluating the percentage of RNA fragments above 

200 base pairs (DV200). Briefly, Tissue blocks were placed in the microtome 

(ThermoScientific HM340E) and trimmed to expose the tissue. 4 sections 10 µm thick 

were placed in a chilled Eppendorf tube and the RNA was extracted using a protocol 

from Qiagen (Rneasy FFPE Kit 73504), following extraction, the product was analyzed 

by TapeStation.  Samples with DV200 ≥ 22% were selected for experiments.  

 

Selected samples were placed in the microtome and sectioned 7 µm thick, each section 

was then placed in a water bath floating at 42 °C, sections were collected and mounted 

onto a 6.5 × 6.5 mm capture area of the Visium Spatial Gene Expression slide (2000233, 

10X Genomics). Capture areas contain approximately 5000 barcoded spots, providing 

an average resolution of 1–10 cells. After sectioning, the slides were dried at 42°C for 3 

hours. The slides were then placed inside a slide mailer, sealed with parafilm, and left 

overnight at Room temperature.  

 

At the next day, the slides were deparaffinized by successive immersions in xylene and 

ethanol followed by H&E staining according to Demonstrated Protocol (CG000409, 10X 

Genomics). Brightfield images were taken using a 10X objective (Plan APO) on a Nikon 

Eclipse Ti2, images were stitched together using NIS-Elements software (Nikon) and 

exported as tiff files. After imaging, the glycerol and cover glass were carefully removed 

from the Visium slides by holding the slides in an 800 ml water beaker and letting the 

glycerol diffuse until the cover glass detached and density changes were no longer 

visible in the water. The slides were then dried at 37°C and Incubated for descrosslinking 

for 60 min. 

 

Following decrosslinking step, over-night probe hybridization was performed, and 

libraries were prepared according to the Visium Spatial Gene Expression for FFPE User 

Guide (CG000407, 10X Genomics). Libraries were sent for sequencing in Macrogen 

Korea using 1 lane of HiSeq X 150PE (2x 150bp) per sample, applying 1% Phix. 

Sequencing was performed using the specific for FFPE following read protocol: read 1: 

28 cycles; i7 index read: 10 cycles; i5 index read: 10 cycles; read 2: 50 cycles. 

 

Immunohistochemistry analysis 



FFPE tissue sections were analyzed using standard IHC techniques. The primary 

antibodies used were anti-CD34 (clone QBEnd 10, Agilent Technologies, Santa Clara, 

CA, USA), anti-CD68 (clone KP1, Agilent Technologies, Santa Clara, CA, USA) and anti-

CK7 (clone OV-TL 12/30, Agilent Technologies, Santa Clara, CA, USA). Immunostaining 

was performed automatically using a DAKO Autostainer Link 48 machine (Agilent 

Technologies, Santa Clara, CA, USA). Anti-CD34 was positive in endothelial cells, anti-

CD68 was expressed in the cytoplasm of intraalveolar macrophages and CK7 was used 

as a marker for pneumocytes.  

 

Computational analysis 

Visium Spatial Gene Expression libraries mapping 

Visium Spatial Gene Expression libraries for Formalin Fixed Paraffin Embedded (FFPE) 

tissue samples were analyzed with spaceranger count pipeline using Space Ranger 

version 2.0.0 from 10x Genomics. First, a manual fiducial alignment and tissue boundary 

identification, including manual selection of spots covering tissue regions, were 

performed for each single library FFPE sample using Loupe Browser version 6.0 on the 

brightfield image. A probe set reference file compatible with FFPE workflow and human 

reference genome GRCh38 were downloaded from 10x Genomics and used to map 

Visium gene expression libraries.  

 

Visium ST data preprocessing 

We performed quality control (QC) steps including filtering of low-quality spots defined 

by a low number of detected genes with positive counts, low number of counts (library 

size) and high proportion of mitochondrial counts. These metrics were computed using 

scanpy (Wolf et al., 2018). As QC automatic filtering threshold, we utilized median 

absolute deviations (MAD) to identify outliers, as defined by differences in 5 MADs for 

number of detected genes and library size and 3 MADs for mitochondrial counts 

(including mitochondrial counts exceeding 8%) per tissue slide (Heumos et al., 2023).  

 

We next applied normalization to the raw counts by scaling the counts followed by the 

shifted logarithm transformation to stabilize variance in gene expression between cells. 

To filter out uninformative genes with mostly zero counts, we performed feature selection 

using deviance to select informative genes (Heumos et al., 2023) using scry R package 

and selecting the top 6,000 highly deviant genes, as inspired by the preprocessing 

workflow utilized by the Human Lung Cell Atlas (Sikkema et al., 2023).  

 



Finally, we performed dimensionality reduction using principal component analysis 

(PCA), t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold 

approximation and projection (UMAP) with scanpy default parameters to reduce data 

complexity and for visualization purposes. To identify cellular structure, we cluster cells 

applying the Leiden algorithm to the previously computed neighborhood graph using 

different resolution parameters (0.25, 0.5, 1) with scanpy. Lastly, individual sample 

objects were joined into a single object using the anndata concat() function. After the 

concatenation, we re-normalized raw counts on the joined object using global scaling by 

the total counts per barcode and applying the shifted logarithm transformation, followed 

by feature selection using deviance to select the top 6,000 highly deviant genes, 

dimensionality reduction and clustering as previously described. A total of 91,068 spots, 

including 77,580 spots from fatal COVID-19 samples and 13,488 spots from control 

samples were profiled after QC.  

 

Human Lung Cell Atlas (HLCA) reference processing 

We leveraged the HLCA (Sikkema et al., 2023) single-cell RNA sequencing (scRNA-seq) 

reference dataset and consensus cell type annotations for spatial mapping and 

annotation. To this end, we downloaded and processed the HLCA core anndata object, 

selected lung parenchyma tissue cell types with at least 150 total cells at the finest level 

of annotation for a more robust and reliable reference model training, including a total of 

333,011 cells in the filtered dataset. The mitochondrial genes were removed for spatial 

mapping.  

 

Spatial mapping of cell types with cell2location 

Both, our joined Visium ST and the filtered HLCA reference datasets, were subset to the 

same gene set as baseline for the mapping between single cell and spatial data, using 

default parameters to select a total number of 5,850 ENSEMBL gene identifiers. First, a 

reference model was fitted to estimate the reference cell type signature derived from the 

HLCA scRNA-seq data with cell2location (Kleshchevnikov et al., 2022) and using the 

finest level of cell type annotation reported.  Cell2location uses a Negative Binomial 

regression model to estimate signatures, while accounting for batch effect and 

covariates. Hence, we included the following variables from the HLCA core object as 

covariates in our model: “assay”, “donor_id”, “tissue_sampling_method” and 

“tissue_dissociation_protocol”. To train the regression model we used default 

parameters to perform training on all cells in the dataset.  A maximum number of 250 

epochs were sufficient to achieve convergence.  

 



For the subsequent spatial mapping, cell2location requires two user-provided 

hyperparameters based on the tissue and experiment QC, including expected number 

of cells per spot, that we set to 20, and regularization parameter of within slide or batch 

variation in RNA detection sensitivity, set to 20 (default), as previously described for the 

profiling of human lung tissue with Visium ST (Madissoon et al., 2023). The model was 

trained using full data until convergence with 40,000 iterations and loss function (ELBO) 

was used. Reconstruction accuracy plots were inspected to assess model quality. Cell 

abundance mapped to spatial coordinates was derived using the 5% quantile of the 

posterior distribution. To ease visualization of cell type abundances, the most abundant 

cell type per spot, including aggregation by cell type lineage, were represented. Marker 

gene selection was performed for every cell type by ranking genes using scanpy tool 

rank_genes_groups() function with default parameters using the t-test and computing a 

hierarchical clustering based on gene expression values for visualization with scaled 

expression for easier identification of differences. Additionally, cell-type specific 

expression of every gene at every spatial location was computed and used as input for 

cell-cell communication analysis with NCEM and for inferring intracellular signaling 

networks in peribronchial fibroblasts. 

 

Lastly, we used non-negative matrix factorization (NMF) on cell2location mapping results 

to identify spatial co-occurrence of cell types. NMF was trained for a range of factors, 

selecting 8 factors for cellular compartments identification and visualization per condition 

with NMF factor loadings being represented.  

 

Differential analysis of cell populations  

To evaluate how cell populations changer across the studied biological conditions, we 

used scCODA model (Büttner et al., 2021) that employs a Bayesian model to perform 

compositional data analysis on the estimated cell-type abundances. The scCODA model 

determine statistically credible effects. We set the cutoff between credible and non-

credible effects on a false discovery rate level (FDR) < 0.05. Estimated cell type 

abundances were used, including abundance aggregation by cell type lineage, and 

compositional data visualization was performed using stacked barplots and boxplots. To 

find a reference cell type that preserves changes in relative abundance across samples 

we used automatic reference cell type estimation, and Migratory dendritic cells (DCs) 

were deemed as reference category. Differences between conditions were computed 

using control samples as control group for control vs acute DAD and control vs 

proliferative DAD comparisons, whereas acute DAD samples were used as control group 

for acute DAD vs proliferative DAD comparisons. 



  

Analysis of the spatial arrangement of cell types  

A comparison of tissue architecture across conditions was performed leveraging novel 

statistical and computational approaches to compare cell spatial organization at the level 

of cell types and samples using GraphCompass (Ali et al., 2024). Samples are modelled 

as graphs of cells and cell-type specific graphs between conditions were compared with 

distances being computed using the portrait method and cell-type specific similarity 

scores were jointly visualized. Furthermore, comparisons between entire sample graphs 

for each cell type and condition were performed using filtration curves as previously 

described (Ali et al., 2024). For computing spatial graphs, we used default parameters 

for Visium ST samples and defined the cluster key as the spot-wise most abundant cell-

type. 

 

Cell-cell communication (CCC) analysis 

To analyze intercellular communication events, we looked for potential ligand-receptor 

interactions (LRI) on our Visium ST slides using LIANA+ (Dimitrov et al., 2022; Dimitrov 

et al., 2023). To assess the spatial co-occurrence of LRIs we used spatially-informed 

local (individual spot-level) bivariate similarity metrics, including spatially-weighted 

Cosine similarity and local Moran´s R (Dimitrov et al., 2023). These metrics use weights 

based on the spatial connectivity between spots, defined as radial kernels using the 

inverse Euclidean distance. Since we are assessing LRIs, we only considered 

interactions in which ligands, receptors and their subunits were expressed in at least 5% 

of the spots.  

 

Furthermore, local interactions were categorized according to their magnitude and sign, 

allowing identification of local categories, where interactions are further classified into 

high-high (both variables are highly expressed) or high-low (one variable is highly and 

the other lowly expressed) interactions. Additionally, we used spot label permutations 

(N=100) to generate a Null distribution and to compute empirical local p-values to assess 

statistical significance of local metrics. 

 

In addition to the local bivariate scores and to obtain “global” summaries of the local 

interaction results, we obtained global scores for each pair of variables, including Global 

mean (average) Cosine similarity and Global Moran´s R (Dimitrov et al., 2023), to identify 

pairs of variables that cluster together or apart and to select the best candidates for 

visualization and downstream analysis. 

 



Beyond LRIs, we applied the same approach to assess spatial relationships between 

transcription factors (TFs) activity (see below) and cell type abundances. To make the 

distributions comparable, we z-scaled TF activities and cell type abundances using zero-

inflated minmax. 

 

To identify coordinated cell-cell communication signatures, we used NMF on the local 

LRI scores. The heuristic elbow procedure selected three factors as the optimal 

component number. Average NMF factor scores per tissue slide clustered samples 

according to disease status and were visualized using a heatmap representation and 

hierarchical clustering using Euclidean distances and Ward´s method.  

 

Pathway enrichment analysis of LRI loadings was performed to biologically characterize 

the three identified factors. To this end, pathway annotations from the PROGENy 

resource (Schubert M. et al., 2018) were converted into ligand-receptor sets as 

previously described (Dimitrov et al., 2023), assigning LRIs to specific pathways. Next, 

we performed enrichment using multivariate linear regression with decoupleR (Badia-i-

Mompel et al., 2022). For LRI analysis we used LIANA+ consensus resource. 

 

Transcription factor activity analysis 

To infer TF activity based on prior knowledge, we used CollecTRI resource (Müller-Dott 

et al., 2023) containing a curated collection of TFs and their transcriptional targets with 

interactions weighted by their regulation mode (activation or inhibition).  To estimate TF 

enrichment scores, we run a multivariate regression model using decoupleR for each 

spot and each TF, and a linear model was fitted to predict gene expression based on the 

interaction weights. The obtained t-value of the slope is the score, indicating activation 

or inactivation of the TF if positive or negative, respectively.  

 

TFs enriched in each condition were identified using decoupleR rank_sources_groups() 

function with a t-test that overestimates variance of each group. The top 10 TFs per 

condition were extracted and represented in a heatmap using Z-scaled TF enrichment 

scores by standardizing scores to a comparable scale between 0 and 1, meaning for 

each TF, subtract the minimum and divide each by its maximum. Moreover, 

unstandardized TF enrichment scores were represented on top of illustrative Visium ST 

slides.  

 

Learning spatial relationships between LRIs and TFs activity with cell type 

abundance 



To learn spatial dependencies between local LRIs, TFs activity and cell types 

abundance, we used MISTy (Tanevski et al., 2022), an explainable multi-modelling 

approach, as previously described (Dimitrov et al., 2023). We selected the top 25 local 

ligand-receptor loadings from Factor 3 and the enrichment scores of the top 10 TFs per 

condition, to jointly modelled in a spatially informed manner the estimated cell types 

abundances in each spot. We specifically utilize a linear model, since the coefficients’ t-

values (predictor importances), as calculated by ordinary least squares (OLS), are 

signed and comparable. Importantly, we bypassed predicting the intraview (intra spot), 

and for each target (cell type) we assessed not only the predictor importance, but how 

well LRIs and TFs explained cell type abundance using the joined multi-view R2 

(goodness of fit) and evaluated their relative contribution to the joint predictive 

performance.  

 

Intracellular signaling network in peribronchial fibroblasts 

We inferred intracellular signaling networks from prior knowledge by linking identified 

LRIs and TF activity scores. LIANA+ approach (Dimitrov et al., 2023) considers the 

direction of deregulation, including activation and inhibition of receptors and TFs, and the 

sign and direction of edges (activating or inhibiting) from prior knowledge of protein-

protein interactions and of TFs and their targets obtained from Omnipath (Turei et al., 

2021). Using CORNETO, a putative causal network connecting LRIs to TFs was inferred 

for peribronchial fibroblasts. Hence, we used the coefficients´ t-values of the predictive 

linear model for peribronchial fibroblasts abundance as input (LRIs) and output (TFs) 

nodes of the intracellular signaling network. To this end, we computed the median of the 

t-values across samples and ranked them by absolute median value. For LRIs, the 

receptors were selected and when the same receptor was involved in multiple LRIs, the 

largest absolute median t-value was kept for that receptor and used as input node.  

Additionally, we obtained a prior knowledge network (PKN) with signed protein-protein 

interactions from Omnipath and used peribronchial fibroblasts specific gene expression 

computed with cell2location to calculate gene expression proportions within our target 

cell type, using those to generate weights for the nodes in the PKN. 

 

Analysis of intercellular dependencies as a function of spot composition  

Since cell-cell communications events are not limited to LRIs, we further assessed 

spot/niche composition effects on all genes using NCEM (Fischer et al., 2023). To this 

end, we utilized cell-type specific gene expression computed with cell2location. Hence, 

NCEM models expression variation within cell types across spots as function of the 

inferred spot composition. To focus the analysis on biologically relevant genes, we 



selected gene sets described in the WikiPathways database from the Molecular 

Signature Database (MSigDB) using decoupleR. We filtered out lineage specific marker 

genes computed using rank_genes_groups_df() function in scanpy using  adjusted p-

value < 0.05 and minimum log fold change > 2. Finally, 1614 genes were shared within 

our dataset. Additionally, 22 cell types were considered for NCEM analysis, including cell 

types with credible differential abundances computed by scCODA and the most 

abundant cell types.  

 

Type coupling analysis was performed on the filtered dataset to compute sender and 

receiver effects based on a Wald test on the parameters learned by the linear NCEM 

model, using the full dataset and optimized with OLS. We further dissected these 

couplings based on gene-wise effects of particular interactions, including effects of all 

senders on one receiver (receiver effect analysis), reporting dependencies with at least 

500 differentially expressed with q-value < 0.05 and absolute log fold change > 0.8. 

Finally, a sender similarity analysis was performed to characterize sender profiles on 

CD4 T cells across conditions. 

 

Spatio-temporal trajectories analysis 

To characterize AT2-AT1 differentiation process, we leveraged stLearn tool (Pham et al. 

2023) that employs a spatial graph-based method named pseudo-time-space (PSTS) 

that combines spatial and imaging information with gene expression to map spatial 

changes cell states, modelling and reconstructing their spatio-temporal trajectories. To 

accurately identify transition genes positively or negatively correlated with the predicted 

trajectory for AT2-AT1 differentiation, we reported genes with a Spearman correlation <-

0.4 or > 0.4. Furthermore, we only selected spots enriched in AT1 and AT2 cells, where 

these cell types represented at least 70% of the maximum abundance of the inferred 

spot composition.  
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Supplementary Figure 1: Marker gene expression of reference signatures derived from the HLCA core for all 45 cell types identified. Gene
expression was normalized such that the maximum group expression of cells for each marker was set to 1. Dot size indicates the fraction of cells in group.
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Supplementary Figure 2: Transcription factors activity across disease progression. Enrichment scores of selected transcription factors across
disease progression in illustrative Visium ST lung samples are shown.



Supplementary Figure 3: Variance of cell type abundance explained by the predictive multi-view model. The joint LRI and TF multi-view R2
contributing to explain cell type abundance variance across disease porgression is shown.



A B

Supplementary Figure 4: Local spatial relationships of ligand-receptor interactions across disease progression. A) Global mean Cosine similarity
and B) Global Moran´s R for the top 25 LRI defining DAD associated Factor 3 across disease progression are shown.
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Supplementary Figure 5: Local spatial relationship of APP^AGER ligand-receptor interaction. Cosine similarity, permutation p-values, local categories
and AT1 cell type abundance on illustrative Visium ST lung samples across disease progression are shown. High-high interactions (red) and high-low or low-
high interactions (blue) are depicted in local categories plots.
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Supplementary Figure 5: Local spatial relationship of S100A9^CD68 ligand-receptor interaction. Cosine similarity, local categories, myeloid and T
cells proliferating cell type abundance on illustrative Visium ST lung samples across disease progression are shown. High-high interactions (red) and high-
low or low-high interactions (blue) are depicted in local categories plots.
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Supplementary Figure 7: S100A9^CD68 and MYB predictive performance for myeloid and T cells proliferating cell types abundance. The top 10
predictors of myeloid cell types and T cells proliferating abundances are shown. Additionally, S100A9^CD68 LRI and MYB TF predictor importances for the
same cell types across disease progression are shown.
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Supplementary Figure 8: Local spatial relationship of MYB transcription factor. A) Global mean Cosine similarity and Global Moran´s R for myeloid cell
types and T cells proliferating with MYB are shown across disease progression. B) Top 10 predictors of NK cells, Global mean Cosine similarity and Global
Moran´s R for spatial co-clustering of NK cells with the top 10 TFs enrichment scores per condition, and NK cells spatial co-occurrence across disease
progression are shown.
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