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Abstract

Aging is the primary risk factor for many individual cancer types, including lung adenocarcinoma
(LUAD). To understand how aging-related alterations in the regulation of key cellular processes
might affect LUAD risk and survival outcomes, we built individual (person)-specific gene
regulatory networks integrating gene expression, transcription factor protein-protein
interaction, and sequence motif data, using PANDA/LIONESS algorithms, for both non-cancerous
lung tissue samples from the Genotype Tissue Expression (GTEx) project and LUAD samples from
The Cancer Genome Atlas (TCGA). In GTEx, we found that pathways involved in cell proliferation
and immune response are increasingly targeted by regulatory transcription factors with age;
these aging-associated alterations are accelerated by tobacco smoking and resemble oncogenic
shifts in the regulatory landscape observed in LUAD and suggests that dysregulation of aging
pathways might be associated with an increased risk of LUAD. Comparing normal adjacent
samples from individuals with LUAD with healthy lung tissue samples from those without LUAD,
we found that aging-associated genes show greater aging-biased targeting patterns in younger
individuals with LUAD compared to their healthy counterparts of similar age, a pattern suggestive
of age acceleration. This implies that an accelerated aging process may be responsible for tumor
incidence in younger individuals. Using drug repurposing tool CLUEreg, we found small molecule
drugs with potential geroprotective effects that may alter the accelerating aging profiles we
found. We also observed that, in contrast to chronological age, a network-informed aging

signature was associated with survival and response to chemotherapy in LUAD.
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Introduction

Lung cancer is second only to breast cancer worldwide in annual incidence and is the leading
cause of cancer death. Lung cancer risk increases with age and as the average age of the
population increases worldwide, the prevalence of lung cancer is expected to continue growing
[1]. In 2021, 75% of lung cancer fatalities were reported in individuals aged 65 and older [2].
While lung adenocarcinoma (LUAD) in younger adults is often diagnosed at more advanced
stages compared to those in older adults [3], elderly individuals have more comorbidities and
tend to be less tolerant of certain cancer therapeutics than younger individuals [4]. These
differences are likely the result of aging-induced alterations in the regulation of key cellular
processes [5], but the mechanism by which age shifts the gene regulatory landscape to alter lung
cancer risk and survival outcome is largely unknown. In this paper we address this critical gap in
our understanding by building individual (person)-specific gene regulatory networks to gain
insights into aging related changes in gene regulation that might influence the risk and prognosis
of LUAD across all age groups. Additionally, we explore how aging-associated regulatory changes
are further accelerated by tobacco smoking history, since lung diseases including LUAD are more
prevalent among individuals with a history of smoking, compared to individuals who have never

smoked in their lifetime [6].

As transcription factors (TF) have been established as known drivers of aging [7], to understand
aging-associated heterogeneity in the gene regulatory landscape of LUAD tumors, we identified
biological pathways that are differentially regulated by TFs in tumors from individuals of different
ages and investigated if any of these age-associated changes in regulatory networks might
influence survival and the response to chemotherapy, potentially favoring individuals exhibiting
regulatory signatures akin to those found in younger individuals. We further validated our

findings in two independent datasets of non-cancerous lung tissue and LUAD tumors.

Most studies investigating the role of aging in lung adenocarcinoma have focused on the

mutational landscape of tumor among individuals across various age groups [8, 9]. Tumor
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mutations in several genes, including CDKN2A, KRAS, MDM2, MET, and PIK3CA, have been found
toincrease in frequency with the individual’s age, while the frequencies of mutation in ALK, ROS1,
RET and ERBB2 show a decreasing trend with age [10]. ALK and EGFR mutations are high among
younger individuals with LUAD, especially among females and nonsmokers [11, 12, 13]. Analysis
of somatic interactions has indicated that EGFR-positive samples in younger individuals are more
prone to concurrent mutations in PIK3CA, MET, TP53, and RB1 when compared to older
individuals [10]. Age may influence both the number of mutations in a tumor and their
evolutionary timing [14]. While germline mutations are more commonly identified in tumors
from younger individuals, tumors in older individuals appear to be predominantly influenced by
somatic mutations [15]. Such mutations clearly play a role in cancer risk and prognosis, acting in
part, by altering the activity of biological pathways associated with cancer. However, changes in
these pathways can only be partially explained by known mutations, indicating that other

mechanisms of pathway activation might play a significant role [16].

Despite some studies in lung cancer that have reported altered expression of genes linked to
survival [17, 18], as per our knowledge, there has not been any research investigating aging-
associated alterations in gene regulatory networks that influence the risk and prognosis of LUAD
and lung cancer in general. We addressed this gap in understanding by using the network-
modeling approaches, PANDA [19] and LIONESS [20], to derive person-specific gene regulatory
networks for non-cancerous lung tissue samples from the Genotype Tissue Expression project
(GTEx) and LUAD tumor samples from The Cancer Genome Atlas (TCGA), with a focus on
evaluating age-associated genes and their regulation by TFs. This approach was motivated by
multiple earlier network-modeling analyses that identified disease relevant regulatory features

in both healthy tissues as well as in tumor [21, 22, 23].

By analyzing individual-specific regulatory networks, we found increased TF targeting of
pathways related to intracellular adhesion, cell proliferation, and immune response with age in
healthy lung tissue. These aging-associated alterations are further increased by tobacco smoking

and resemble oncogenic shifts in the regulatory landscape observed in LUAD tumors, thereby
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suggesting a potential association between aging-associated dysregulation of biological

pathways and an elevated risk of developing LUAD.

Using a web-based drug repurposing tool CLUEreg, we also found potential geroprotective small
molecule drug candidates that may be useful in reducing the risk of LUAD by reversing the aging-
associated regulatory signatures. By constructing a network-informed aging signature for tumor
samples based on the TF-targeting patterns of key biological pathways significantly changing with
age in LUAD tumors, we found that a lower aging signature is associated with better survival
probability and higher chemotherapy efficacy. In contrast, chronological age was not predictive
of survival, thus demonstrating that the aging signature captures aspects of tumor biology not
captured by chronological age alone. Using CLUEreg, we also found distinct small molecule drug
candidates tailored to LUAD samples with varying aging signatures. In conclusion, our findings
not only highlight the mechanisms underlying increased risk and poorer prognosis of LUAD
associated with aging-induced gene regulatory alterations, but also establish a potential avenue
for leveraging individual-specific gene regulatory networks in designing personalized therapeutic

interventions.

Results

Identifying Aging-associated Gene Regulatory Alterations in Healthy Human Lung and

Geropropective Drug Candidates

We inferred gene regulatory networks linking TFs to target genes using gene expression data
from non-cancerous lung tissue samples from GTEx. By analyzing these networks, we identified
several genes (Figure 2) and biological pathways (Figure 3) that are differentially targeted by TFs
as a function of age, in the lung. Among these genes, there are 1018 that exhibit significantly
increased targeting by TFs with age (p-value <0.05). Most significant among them are NNAT [24],
FBLN7 [25], SH3BP1 [26], CNTN1 [27], THEMS5 [28], and FOXP4 [29]; upregulation of these genes

has been previously reported to be associated with cell proliferation and poorer prognosis in
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88  multiple cancers. We also find 404 genes that exhibit significantly decreased targeting by TFs
89  with age (p-value <0.05) including DUSP15 [30], ALDH1L2 [31], HPD [32], GSTT2 [33], FOXI3 [34],
90 and ZIC2 [35], all of which have been shown to be influential in predicting tumor progression and
91 therapeutic efficacy in various cancer types, including non-small cell lung cancer.

92

93 We performed gene set enrichment analysis (GSEA) with genes, ranked by how much their
94  targeting patterns change with age, and found (Figure 3 leftmost column) that biological
95 pathways associated with intracellular adhesion and cell proliferation, cell growth, and death
96 have increasing TF targeting with age, including pathways annotated to adherens junction,
97 apoptosis, hematopoietic cell lineage, cell adhesion molecules, and pathways in cancer.
98 Pathways associated with immune response, including B-cell receptor signaling pathway,
99  cytokine-cytokine receptor interaction, chemokine signaling pathway and intestinal immune
100 network for IgA production, also show increased TF targeting with age. We confirmed these
101 findings on an independent dataset LGRC (Figure 3 middle column).

102

103  Using genes that are differentially targeted by age as input to a web-based drug repurposing tool
104  CLUEreg [36], we identified 150 small molecule drug candidates (Supplementary Material S2)
105  with potential to reverse the aging-associated regulatory alterations in the gene regulatory
106  networks from non-cancerous lung samples. Some of these drugs, henceforth referred to as
107  “geroprotective drugs”, including Carnosol [37], Curcumin [38], Cucurbitacin B [39],
108 Isonicotinamide [40], Meclofenoxate [41], Scriptaid [42], and Withaferin A [43] have already been
109 shown to have potential geroprotective effects in various animal models, including humans.
110 Among these 150 geroprotective drug candidates, we found several FDA-approved anti-cancer
111  drugs, including Trametinib, Doxorubicin, Alisertib, Actinomycin-d, Toremifene, and Plumbagin,
112 aswell as several investigational drugs with potential anti-tumor effects including Avrainvillamide
113  analogs [44], aurora kinase inhibitors (MK-5108, AT-9283) [45] , Avicins [46], HMN-214 [47],

114  Chaetocin [48], ron kinase inhibitors [49], and Linifanib [50], among others.
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115 Tobacco Smoking is Associated with Accelerated Aging

116

117 To explore whether tobacco smoking is associated with an acceleration of the aging process, we
118 compared the gene regulatory networks from non-cancerous samples, between individuals with
119  a history of smoking and individuals who have never smoked in their lifetime. We split the 1422
120  aging-associated genes we had previously identified into two sets: genes that exhibit increasing
121  TF targeting with age (1018 genes) and those that show decreasing TF targeting (404 genes). For
122  every gene in these two sets, we used limma [51], to compute the age coefficient (Figure 4) in a
123  linear model for individuals with and without a history of smoking.

124

125  We found that for genes with increasing age-associated TF targeting, the t-statistics of the age
126  coefficients among individuals with a history of smoking have significantly greater positive values
127  than among never-smokers (p-value < 2.2e-16). Similarly, for genes with decreasing TF-targeting
128  with age, the t-statistic of the age coefficients among individuals with a history of smoking have
129  significantly (p-value < 2.2e-16) larger negative values than those among individuals who have
130 never smoked. In other words, for both kinds of aging-associated genes, the age gradients are
131  significantly steeper for the individuals with a history of smoking, than those for the individuals
132  who have never smoked in their lifetimes. The steeper age gradients mean that the rate of
133  change in gene regulation with age is faster among individuals with a history of smoking,
134  comparted to individuals who have never smoked.

135

136  To visually represent the continuous changes in gene regulation with age, we plotted the aging
137  trajectories (as described in Methods) for the non-cancerous samples from GTEx (Figure C.1in the
138  Supplementary Material). For the genes which are increasingly targeted by TFs with age (left plot
139  on Figure C.1), the slope of the regression line is steeper among individuals who have a history of
140 smoking, compared to individuals who have never smoked. Although for genes that are
141  decreasingly targeted by TFs with age (right plot of Figure C.1), we do not observe any significant
142  difference between the slopes of the aging trajectories among individuals with or without a

143  history of smoking. Nevertheless, these findings indicate that tobacco smoking is associated with
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144  an acceleration of the aging-induced alterations in gene regulation. We also validated these
145 findings in the non-cancerous lung samples from the independent LGRC (a.k.a. GSE47460)
146  validation dataset (Figure C.2).

147

148 Taken together, we find that even in individuals without evidence of lung cancer, there are aging-
149  associated changes in the TF-targeting of genes that are further accelerated by tobacco smoking,
150  which may be linked to an increased risk of developing LUAD at a younger age among individuals
151  with a history of smoking.

152

153  Aging-associated Gene Regulatory Alterations in Non-cancerous Lung Resemble Oncogenic
154  Gene Regulatory Shifts Observed in LUAD

155

156  To understand how aging-related changes in the topology of gene regulatory networks might be
157  linked to an increased risk of LUAD, we analyzed age-associated changes in network density
158  around the neighborhoods of proto-oncogenes and tumor suppressor genes (downloaded from
159 the COSMIC database [52]). We used linear modeling (implemented in limma) and calculated the
160 t-statistics of the age coefficients (normalized age gradients) for the list of oncogenes and tumor
161  suppressor genes (TSG) (Figure 5) and found that among the healthy samples in GTEx, TF-
162  targeting increases with age on average for both oncogenes and TSGs (Wilcoxon rank sum test
163  gives a p-value of 3.908e-09 for oncogenes and 0.001164 for tumor suppressor genes).

164

165  For comparison, it should be noted that, non-cancer genes (that is, genes not annotated as
166  oncogene or TSG in the COSMIC database) are also increasingly targeted by TFs with age (p-value
167  of Wilcoxon rank sum test is 2.2e-16), meaning that the gene regulatory networks inferred for
168 individuals in GTEx, increase in TF regulatory density as the age of the individual increases.
169 Nevertheless, the mean TF-targeting with aging is the greatest for oncogenes (aging slope of
170  oncogenes is significantly larger than those of non-cancer genes and tumor suppressor genes
171  with p-values being equal to 0.001271 and <2.2e-16 respectively). This indicates that although

172  changes in regulation are a natural consequence of aging, the greatest changes occur in the
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173  regulatory neighborhoods of oncogenes, including genes that are common drug targets [53] in
174  LUAD, such as MYCN, ERBB3, and AKT1 (Figure C.3).

175

176  To explore the association of aging with LUAD risk, we compared the targeting patterns of aging-
177  associated biological pathways between non-cancerous samples from GTEx and LUAD tumor
178 samples from TCGA. We observe that aging-associated pathways involved in cell adhesion, cell
179  proliferation and immune response (except for type | diabetes mellitus and allograft rejection
180 pathways), are also highly targeted in LUAD tumor, compared to non-cancerous lung (Figure 3
181  rightmost column). This indicates that increased TF-targeting of these pathways with age might
182  be a contributing factor to an elevated risk of developing LUAD among older adults and that those
183  with the greatest regulatory targeting of these pathways might be at the greatest risk.

184

185 LUAD among younger individuals, although less frequent, is often detected at more advanced
186  stages compared to their older counterparts [3]. Given that we found age-acceleration of gene
187  targeting to correlate with LUAD, we tested whether LUAD in younger individuals was also
188  associated with patterns of accelerated aging, compared to healthier individuals of similar age.
189 To confirm this hypothesis, we compared the TF-targeting pattern of 1422 aging-associated
190 genes in normal adjacent lung samples from individuals with LUAD (from TCGA) versus non-
191  cancerous lung samples from GTEx (Figure 6). For the 1018 genes that exhibited increased
192  targeting with age, we found that their mean TF-targeting was significantly higher (p-value <2.2e-
193  16) in the normal adjacent lung samples from younger individuals (age less than median age 66)
194  with LUAD, compared to individuals of similar age without LUAD (Figure 6 left). In contrast, for
195  older individuals with LUAD (age greater than median age 66) we did not find a significantly
196  higher mean targeting of aging genes compared to healthy individuals of similar age.

197

198 In other words, the gene regulatory patterns observed in the normal-adjacent lung tissues of
199  vyounger individuals with LUAD are more like those found in older individuals, than they are to

200 their healthy counterparts of the same age. This suggests that LUAD in younger individuals may

10
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201  bedriven, in part, by age-accelerated changes in gene regulation, and that this acceleration may
202  also be associated with more aggressive tumor biology at diagnosis we see in younger individuals.
203

204  Biological Pathways Differentially Regulated in LUAD Tumor across Varying Age

205

206  We analyzed gene regulatory networks of LUAD samples from TCGA and performed GSEA to
207 identify biological pathways that are differentially regulated by TFs with age (Figure 7 left column).
208 We found several pathways involved in cell signaling and cell proliferation that were increasingly
209 targeted by TFs with age. When we compared these differentially targeted pathways to those
210 differentially targeted with age in non-cancerous lung samples from GTEx, we found that both
211  had identified the pathway associated with cell adhesion molecules.

212

213  However, there were many pathways with aging-associated regulatory changes found exclusively
214  in tumor samples and not in healthy lung samples, including the NOD-like receptor signaling
215 pathway, FC-epsilon Rl signaling pathway, toll-like receptor signaling pathway and JAK-STAT
216  signaling pathway — all of which have been associated with LUAD development, progression and
217  outcome. In contrast, we found that metabolic pathways including oxidative phosphorylation,
218 nitrogen metabolism, arginine and proline metabolism, ascorbate and alderate metabolism were
219  decreasingly targeted by TFs with age. These results were validated in an independent dataset
220 GSE68465 (Figure 7 right column).

221

222  Biological pathways associated with immune response that had been previously identified as
223  increasingly targeted (at an FDR cutoff 0.05) with age in non-cancerous lung samples, also
224  showed increased targeting by TFs with age in tumors. We also found several additional immune-
225  related pathways to have age-dependent regulatory patterns in tumor, that were not evident in
226  non-cancerous samples. Such immune-related pathways include those involved in antigen

227  processing and presentation, graft versus host disease, JAK-STAT signaling pathway, natural killer

11
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228  cell mediated cytotoxicity, primary immunodeficiency and T-cell receptor signaling pathway, all
229  of which were increasingly targeting by TFs with age.

230

231  This difference between non-cancerous lung versus LUAD tumor in the age-associated targeting
232  patterns of immune pathways can be partially attributed to differences in immune cell infiltration
233 by age in non-cancerous lung tissue as compared to tumor. Immune infiltration analysis (Figure
234  C.4) showed that the proportion of CD8+ central memory cells increased with age in both non-
235  cancerous lungs, and in tumor. However, aging-related changes in immune cell composition in
236  tumor were distinct from those in healthy lungs for most immune cell types. For example, while
237  the proportions of activated myeloid dendritic cells and B cells increased with age in LUAD
238 tumors, in non-cancerous lung the proportion of these cells did not change significantly with age.
239  The proportion of macrophages also increased with age in tumor; in non-cancerous lung,
240 macrophages were more abundant in younger samples. This higher infiltration of immune cells
241  intumor with age might be associated with a higher targeting of immune pathways among older
242  individuals with LUAD, as evidenced by the positive correlation between immune score and TF-
243  targeting score of immune pathways (Table C.1). In contrast, the proportion of CD8+ naive T-cells
244  and common myeloid progenitors showed a decreasing trend with age in tumor, while exhibiting
245  no significant difference in composition across healthy lung samples of varying age (Figure C.4).
246

247  Gene Regulatory Network-informed Aging Signature of Tumor Predicts Survival and Response
248  to Chemotherapy in LUAD

249

250 We conducted survival analysis using the Cox proportional hazard model to understand whether
251 the aging-associated regulatory patterns of biological pathways have any influence on the
252  prognosis of LUAD for individuals of varying age. We first constructed an “aging signature” for
253  tumor samples, defined by the outputs of the Cox proportional hazard model with inputs being
254  the targeting score (as defined in Methods) of 28 biological pathways (Figure 7) that were
255  discovered to be significantly differentially targeted by TFs as a function of age in tumors. This

256  network-informed “aging signature” of tumors is a linear combination of the TF-targeting scores

12
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257  of 28 biological pathways and is uncorrelated (Figure C.5) with both chronological age (correlation
258 =-0.0114 with p-value = 0.792) and clinical tumor stage (p-value from ANOVA =0.1921).

259

260 We found that samples with a lower aging signature had significantly better survival probability
261  than samples with a higher aging signature (Figure 8 left; p-value = 0.001). For comparison, we
262  split samples into two chronological subgroups based on whether samples were above or below
263  the median chronological age (Figure 8 right) and not find any significant difference (p-value =
264  0.169) in survival probability. This indicates that the aging signature, defined using gene
265  regulatory networks is more informative than chronological age in predicting LUAD survival in
266 TCGA. The results remained consistent even after adjusting for self-reported gender, race,
267  smoking status, clinical tumor stage and therapy status (p-values for the network-informed aging
268  signature and chronological age were 2.8e-06 and 0.171 respectively). We validated (Figure C.6)
269 the efficacy of the network-informed aging signature in predicting survival outcome in LUAD on
270 independent dataset GSE68465 (p-value = 0.013, after adjusting for gender, race, smoking status,
271  tumor stage and therapy status).

272

273  We also performed a Cox proportional hazard analysis using with therapy information and the
274  aging signature as input (Table 2) and found that biological age score captured in the aging
275  signature had significant (p-value = 0.009) interaction with chemotherapy, where a smaller value
276  of the aging signature was associated with higher improvement in survival probability in response
277  to chemotherapy, compared to no therapy. In contrast, using an analogous Cox proportional
278  hazard model with therapy information and chronological age as input, we did not find any
279  significant interaction (p-value = 0.564) between chronological age and chemotherapy response.
280 Intheindependent dataset GSE68465 (Table C.2) as well, the interactions between chemotherapy
281  and the aging signature were in the same direction as in TCGA, although the results (Table C.2)
282  were not statistically significant.

283

284  Drug Repurposing with CLUEreg Identifies Distinct Small Molecule Drugs for Tumor Samples

285  with Lower versus Higher Aging Signature

13
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286

287  To find potential targeted cancer therapeutics that might differ in efficacy depending on aging
288  signatures, we split the TCGA tumor samples into two groups — one above and one below the
289  median value of the network-informed aging signature. For each group, we separately used
290 CLUEreg [36] to identify small molecule drug candidates depending on the differential regulatory
291  patterns between tumor and healthy samples and obtained a list of 150 small molecule drugs
292  each for the two aging signature groups (Figure 9).

293

294  While 59 small-molecule cancer therapeutics including FDA-approved Cisplatin and Amifostine
295  and investigational drugs Timosaponin and Cardamonin appeared as potential drug candidates
296 for both aging-signature groups, several other drugs appeared exclusively in only one of the two
297  groups. Drugs including Homoharringtonine, Ingenol, Vatalanib (investigational), Midostaurin
298 (investigational) and Ubenimex (investigational) appeared only for individuals with lower aging
299  signature. Other drugs including Leucovorin, Actinomycin-d and Plumbagin appeared for the
300 higher aging signature group alone. Several potential geroprotective drug candidates, including
301 Meclofenoxate and Isonicotinamide, also appear in the lists of anti-tumor drugs. It is worth noting
302 that we found 28 geroprotective drugs in the list for higher aging signature group while only 5
303 geroprotective drugs for the lower aging signature group. This suggests that the information
304 captured by the aging signature encompasses disease-relevant processes driving LUAD, which
305 areintertwined with other aging-related processes that also contribute to the development and
306 progression of the disease.

307

308 Discussion

309

310 LUAD, like most other solid tumors, is an age-biased disease in which individuals generally have
311  a greater risk, poorer prognosis and poorer response to most therapies compared to their
312  younger counterparts [4]. However, tumors diagnosed in younger individuals are often detected
313  at more advanced clinical stages implying more severe disease biology. Earlier studies have found

314  that across diverse cancer types, the mutational landscape of tumors in younger individuals is

14


https://doi.org/10.1101/2024.07.02.601689
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.02.601689; this version posted July 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

315 very different from that in older individuals [10]. However, mutational burden alone does not
316  fully explain the mechanisms of disease, driven by the activity of biological pathways that are
317 activated leading up to and during disease. To bridge this gap in our understanding of LUAD, we
318 investigated how regulation of various genes and biological pathways change with age using
319 individual specific gene regulatory networks. Analyzing gene regulatory networks that integrate
320 gene expression, TF-binding motif and TF protein-protein interaction data from both non-
321  cancerous human lung and LUAD samples, we found aging-associated alterations in regulatory
322  mechanisms involving key biological processes.

323

324  Analyzing gene regulatory networks in GTEx lung samples, we found several genes with known
325 relevance to cancer incidence and prognosis that were differentially targeted by TFs with age,
326 including proto-oncogenes AKT1, ERBB3 and MYCN. Using pathway enrichment analysis, we saw
327  a clearer picture of how age affects cancer-related processes in non-cancerous lung tissue,
328 including altered regulation of intracellular adhesion, cell proliferation, and immune response.
329 By conducting a differential targeting analysis on non-cancerous lung samples and LUAD tumor
330 samples, we confirmed that targeting of these same biological processes also changes in tumor
331 incidence and in the same direction as they do in “normal” aging. This suggests that aging-
332  associated alterations in gene regulatory patterns of these pathways might be a contributing
333  factor to a higher risk of LUAD development among older individuals. Further, we found that
334  tobacco smoking was associated with an acceleration in the aging-associated gene regulatory
335 changes, helping to explain the increased the risk of LUAD incidence at a younger age among
336 individuals with a history of smoking.

337

338 Gene regulatory network analysis of LUAD tumor samples identified an age-associated higher
339 targeting of several biological pathways associated with immune response, these associations
340 were not detected in non-cancerous lung samples from GTEx. Greater targeting of immune
341 pathways with age was correlated with a higher infiltration of immune cells including active
342  myeloid progenitors, B cells, macrophages and CD8+ central memory cells. We suspect that a

343  higher targeting of immune pathways in conjunction with a higher proportion of immune cells
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344  among older individuals might contribute to an age-biased response to immunotherapy. This is
345  concordant with evidence from earlier studies which demonstrated that while chemotherapy is
346 more beneficial for younger individuals [5], some immune checkpoint inhibitors provide greater
347  benefit to adults with age 65 or older, compared to younger adults [54, 55].

348

349 We constructed a network-informed "aging signature" for tumor samples, based on the TF-
350 targeting patterns of 28 biological pathways (identified in TCGA and validated in GSE68465) that
351 exhibited significant differential targeting by TFs with age. We found that individuals with a lower
352  aging signature not only had better survival outcomes, but also had significantly better
353 improvements in survival outcomes in response to chemotherapy compared to those with a
354  higher aging signature. Within TCGA LUAD samples, this network-based aging signature appears
355 to be a possibly superior biomarker to chronological age, in distinguishing between individuals
356  with varying potential for chemotherapeutic efficacy.

357

358 The consistent theme of age-associated alterations in regulation being linked to LUAD suggested
359 that network-based aging signatures might identify aging-related tailored therapeutics.
360 Separately analyzing LUAD samples partitioned into low-and-high-aging signature groups, we
361 found 59 small-molecule cancer therapeutics, including FDA-approved Cisplatin and Amifostine,
362 common to both aging-signature groups. But we also found several drugs were exclusive to one
363  aging signature group alone, meaning that considering age-related regulatory changes might be
364  useful in determining personalized therapeutic protocols. Certain potential geroprotective drugs
365 including Meclofenoxate and Isonicotinamide appeared in the lists of anti-tumor drugs, mostly
366 for the higher aging signature group, as did a number of candidate drugs such as Curcumin [38],
367 that have been shown have geroprotective effects. Unfortunately, older adults are severely
368 underrepresented in clinical trials for most cancers including LUAD, thereby impacting the validity
369 of clinical guidelines in diseases with an age effect [56]. Our analysis underscores the importance
370 ofincluding individuals across the spectrum of disease-associated demographics in clinical trials.
371

372
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373 It is important to note that our analysis is based on observational data alone and hence
374  experimental validation is required to establish a causal relationship between the aging-
375 associated regulatory changes identified by our analysis and the manifestation of tumor. Another
376 limitation of our study is that the datasets used for discovery (GTEx and TCGA) and validation
377  primarily consist of individuals of white and African American descent. Despite adjusting for the
378 impact of race in our analysis, the applicability of our findings to other ethnicities may still be
379 constrained due to underrepresentation in our data and the confounding effects of various social
380 determinants of health on lung cancer. Further studies involving more diverse populations are
381 necessary to confirm the validity of our results across a broader range of racial and ethnic
382  backgrounds. Additionally, a more complete inclusion of social determinants such as individual
383  socio-economic background [57], is essential for the generalizability of our findings.

384

385 Despite these limitations, our analysis provides interesting insights into the aging-associated
386 alterations in gene regulation and their relevance in the clinical manifestation of LUAD, including
387 some immediate implications in the context of personalized cancer therapy. Based on our
388 analysis we infer that aging related changes in regulation of key biological processes involved in
389 intra-cellular adhesion, cell proliferation and immune responses are associated with altered risk,
390 prognosis and response to therapy in lung adenocarcinoma among individuals of varying age.
391 Notably, we observed that even among individuals of similar age, individuals with lower network-
392 informed aging signature had better prognostic outcome in response to chemotherapy, than
393 individuals with higher aging signature. This observation implies that chronological age alone
394 does not provide substantial information on prescribing personalized therapy for lung
395 adenocarcinoma and gene regulatory networks can prove to be effective tools in facilitating more
396 efficient personalized therapy design and improving prognosis in lung adenocarcinoma for
397 individuals across varying age.

398

399 What emerges from our analysis is an interesting picture of how ageing influences LUAD.
400 “Normal” aging in the lung is associated with alterations in the regulation of particular biological

401  processes, and indeed, by inferring and analyzing gene regulatory network structure, we
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402 identified genes and biological processes that exhibit altered patterns of regulation with age. But
403  as has been known, not all individuals age at the same rate. When we examine LUAD, we find
404  that greater changes in age-associated patterns of gene regulation are more strongly associated
405 with disease than is chronological age. We also find that smoking results in an apparent
406  acceleration of the aging-associated patterns of gene regulation in both the lungs of “healthy
407  individuals with a history of smoking ” and in “normal adjacent” tissue from individuals suffering
408 from LUAD, consistent with the fact that smoking dramatically increases risk, progression, and
409  severity, and affects response to therapy. This suggests that the regulatory changes that are
410 captured in the aging signature we derived are, at the least, correlated if not causally linked to
411  LUAD disease processes. Looking at younger people with LUAD, we find that they also exhibit age
412  -acceleration in their “normal” lung tissue relative to their peers without LUAD. Differential
413  regulation in tumors of younger people with LUAD represented a subset of the changes we saw
414  inthe tumors of older patients, which suggests that the pathways associated with these changes
415  might be particularly important in understanding the severity of disease in younger individuals.
416  Finally, we found that even among individuals of similar age, those with a lower network-
417  informed aging signature had better prognostic outcome in response to chemotherapy, than
418 individuals with higher aging signature. What all these means is that while chronological aging
419 might have some effect on the risk of developing LUAD and its properties, the changes in aging-
420 related regulation are far more important in estimating disease risk, in understanding disease
421  processes, in identifying candidate therapies, and in designing aging-aware precision treatment
422  protocols. This observation implies that chronological age alone does not provide substantial
423  information on prescribing personalized therapy for lung adenocarcinoma and gene regulatory
424  networks can prove to be effective tools in facilitating more efficient personalized therapy design
425  and improving prognosis in lung adenocarcinoma for individuals across varying age.
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460 Anotebook describing differential targeting analysis and computation of network-informed aging
461  signatures using LUAD tumor samples from TCGA will be available on Netbooks [58]:

462  http://netbooks.networkmedicine.org upon acceptance.

463

464  Methods

465

466  Discovery Dataset

467

468  Uniformly processed RNA-Seq data were downloaded from the Recount3 database [59] for two
469  discovery datasets using R package “recount3” (version 1.4.0): (i) lung tissue samples from the
470  Genotype Tissue Expression (GTEx) Project [60] (version 8) and (ii) lung adenocarcinoma samples
471  from The Cancer Genome Atlas (TCGA) [61] on May 26, 2022. We accessed clinical data for GTEx
472  samples from the dbGap website (https://dbgap.ncbi.nlm.nih.gov/) under study accession
473  phs000424.v8.p2. Clinical data for TCGA samples were downloaded from Recount3. We refer to
474  the GTEx samples as “non-cancerous lung samples” throughout our analysis.

475

476  From 655 lung samples, 71 samples were removed because they were designated as “biological
477  outliers” in the GTEx portal (https://gtexportal.org/) for various reasons (as described in
478  https://gtexportal.org/home/faq). We analyzed the remaining 584 lung samples (187 female and
479 397 male) from GTEx. We removed two recurrent tumor samples from the TCGA data and
480 included the remaining 541 primary tumor samples (293 female and 248 male) and 59 normal
481  adjacent (34 female and 25 male) samples.

482  Table 1 summarizes the clinical characteristics of the datasets.

483

484  Both GTEx and TCGA gene expression data were normalized by transcript per million (TPM), using
485  the “getTPM” function in the Bioconductor package “recount” (version 1.20.0) [62] on R version
486  4.1.2. Lowly expressed genes were filtered out by removing genes with counts <1 TPM in at least
487  10% of the samples (126 samples) in GTEx and TCGA combined, removing 36386 genes, and

488  keeping 27470 genes. To construct gene regulatory networks, we further removed those genes
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489 that were not present in the TF/target gene regulatory prior used for creating the gene regulatory
490 networks (see section “Differential targeting analysis using sample-specific gene regulatory
491  networks”). This filtering left with 27162 genes, including those on allosomes, which were used
492  in subsequent analysis. For female samples in both GTEx and TCGA, gene expression values of all
493 genes on the Y chromosome (36 genes in total) were replaced by “NA”. Principal component
494  analysis did not show any visible batch effect.

495

496  Validation Dataset

497

498 We chose two independent studies for validation from the Gene Expression Omnibus (GEO)
499  repository: GSE47460 [63] (downloaded on Feb 12, 2023) and GSE68465 [64] (downloaded on
500 Jan24,2023). Forvalidating our results on the lung samples from GTEx, we used GSE47460, which
501 consisted of microarray gene expression for 582 samples in total from the Lung Genomics
502  Research Consortium (LGRC). This study used Agilent-014850 Whole Human Genome Microarray
503  4x44K G4112F and Agilent-028004 SurePrint G3 Human GE 8x60K Microarray for sequencing.
504  Among these 582 samples, we used only 108 samples (59 female and 49 male), who have no
505 chronic lung disease by CT or pathology and hence, were designated as “controls” within the
506  study. GSE68465 consists of microarray gene expression for 443 lung adenocarcinoma samples
507 (220 female and 222 male). This study used Affymetrix Human Genome U133A Array for
508 sequencing.

509 Table 1 summarizes the clinical characteristics of the datasets analyzed.

510

511 Normalized expression data and clinical data were downloaded from GEO using R package
512  “GEOquery” version 2.62.2. Within every dataset, for genes with multiple probe sets, we kept
513 the probe set with the highest standard deviation in expression levels across samples. We
514 discarded any genes that were not in the TF/target gene regulatory network prior that we used
515 for creating the gene regulatory networks. This process left 13575 genes in GSE47460 (LGRC)
516 dataset and 11725 genes in GSE68465 dataset, that we used to build gene regulatory network

517 models. The LGRC data were not batch corrected because no visible batch effect was detected
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518 from principal component analysis. The GSE68465 dataset includes lung adenocarcinoma
519 specimens from the following sources: University of Michigan Cancer Center (100 samples),
520  University of Minnesota VA/CALGB (77 samples), Moffitt Cancer Center (79 samples), Memorial
521 Sloan-Kettering Cancer Center (104 samples), and Toronto/Dana-Farber Cancer Institute (82
522  samples). The GSE68465 data were batch corrected for these sources using “ComBat” function
523  implemented in the R package “sva” (version 3.42.0).

524

525 Differential Targeting Analysis using Sample-specific Gene Regulatory Networks

526

527  Gene regulatory networks for each sample were reconstructed by the PANDA [19] and LIONESS
528 [20] algorithms using Python package netZooPy [65] version 0.9.10, in both the discovery and the
529 validation datasets. A schematic diagram of our network construction pipeline is given inFigure 1.
530 Three types of data were integrated to derive the regulatory networks: TF/target gene regulatory
531  prior (obtained by mapping TF motifs from the Catalog of Inferred Sequence Binding Preferences
532  (CIS-BP) [66] to the promoter of their putative target genes), TF protein-protein interaction data
533  (using the interaction scores from StringDb v11.5 [67] between all TFs in the regulatory prior),
534  and gene expression (from the discovery or validation datasets). The TF/target gene regulatory
535  prior contains regulatory edges from 997 TFs to 61485 ensemble gene IDs, corresponding to
536 39618 gene symbols (HGNC, Gencode v39). The protein-protein interaction data contained
537 measures of interactions between the 997 TFs. We used sex-specific motif priors for male and
538 female samples, where the motifs coincided for autosomal genes and genes on the X
539 chromosome and differed for genes on the Y chromosome. The procedure for deriving the motif
540  prior and the PPI priors are described in the Supplementary Material.

541

542  Regulatory networks were constructed independently for each of the discovery and validation
543  datasets, and separately for female and male samples. The final networks contained only genes
544  overlapping between the TF/target gene motif prior and the corresponding gene expression
545  dataset.

546
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547  For each sample’s gene regulatory network, we calculated the targeting score for each gene,
548  equivalent to the gene’s in-degree (defined as the sum of all incoming edge weights from all TFs
549 inthe network). The resulting gene targeting scores were compared across individuals of varying
550 ages, using a linear regression model, while correcting for relevant covariates, using the R
551  package limma (version 3.50.3) [51]. The resulting t-statistics of the age coefficient are then used
552  for a gene set enrichment analysis (GSEA).

553

554  Model 1: To investigate how aging influences the targeting of different genes in the non-
555  cancerous lung samples, we fit a linear model using R package “limma” using the gene targeting
556  score of all genes in GTEx as response and age as covariate, while adjusting for self-reported
557 gender (Male and Female), race (White, Black or African American and others), smoking status
558 (individuals who have never smoked in their lifetime and individuals with a current or past history
559  of smoking ), RNA integrity number (RIN), batch and ischemic time. A similar analysis was
560 replicated in the LGRC validation data where we adjusted for gender and smoking status.

561

562  Model 2: In a separate analysis, to identify biological processes relevant for cancer development,
563  we compared the gene regulatory networks constructed with non-cancerous lung samples from
564  GTEx to the networks constructed from LUAD tumor samples from TCGA with another linear
565 model fit by “limma” using the following covariates: age (“age at diagnosis”), disease status
566 (healthy vs tumor), self-reported gender (Male and Female), race (White, Black or African
567 American and others) and smoking status (individuals who have never smoked in their lifetime
568 and individuals with a current or past history of smoking). The resulting t-statistics corresponding
569 todisease status quantifies the difference between TF-targeting in tumor versus healthy samples
570 and were subsequently used for gene set enrichment analysis (GSEA).

571

572  Model 3: To identify which biological processes are differentially regulated with age among LUAD
573  tumor samples, we fit a linear model on the indegree of genes computed from the GRNs
574  constructed on LUAD tumor samples from TCGA and derive the t-statistics of the regression

575  coefficients corresponding to age (at diagnosis of LUAD), while controlling for clinical variables

23


https://doi.org/10.1101/2024.07.02.601689
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.02.601689; this version posted July 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

576  such as self-reported gender, race, smoking status and tumor stage. A gene set enrichment
577 analysis was performed using the ranked t-statistics of the age coefficients derived from the
578 limma analysis.

579

580 Pathway Enrichment Analysis

581

582  We performed pathway enrichment analysis (Figure 1) with a pre-ranked Gene Set Enrichment
583  Analysis (GSEA) using R package “fgsea” (version 1.20.0) [68] and the gene sets obtained from
584 the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database [69]
585  (“c2.cp.kegg.v2022.1.Hs.symbols.gmt”) that were downloaded from the Molecular Signatures
586 Database (MSigDB) (http://www.broadinstitute.org/gsea/msigdb/collections.jsp). After filtering
587 outthose genes notin the expression dataset, only gene sets of size greater than 15 and less than
588 500 were considered; this restricted our analysis to 176 gene sets. All genes were ranked by the
589 t-statistic produced by the “limma” (version 3.50.3) differential targeting analysis after adjusting
590 for covariates. The resulting ranked set (with gene symbols corresponding to Gencode v39) was
591 used as input to the GSEA. We performed multiple testing corrections using the Benjamini-
592  Hochberg procedure [70].

593

594  Constructing Gene Set and Smoking History-specific Aging Trajectories for Non-cancerous
595 Samples

596

597  From our analysis on non-cancerous lung samples from GTEx, we identified genes of two
598 categories: genes that are increasingly targeted by TFs with age (identified by positive age
599 coefficients in the limma model) and the remaining genes that are decreasingly targeted by TFs
600 with age (identified by negative age coefficients in the limma model). Based on these two gene
601  sets, we construct two aging trajectories.

602

603  For each of these sets of genes, an “aging trajectory” was constructed: for every sample we

604 computed the mean indegree of all the genes in the set and designated this number as the TF-

24


https://doi.org/10.1101/2024.07.02.601689
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.02.601689; this version posted July 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

605 targeting score for that sample. Then we stratified all the samples in a particular dataset into 20
606  consecutive age-groups so that each group contained 5% of all samples in the data. Within each
607 age group, we divided all individuals into subgroups based on their smoking history and
608 computed the medians of the gene targeting scores across individuals in each of the smoking
609  subgroup. For each set of genes, a scatterplot (Figure C.1) of the gene targeting scores (y-axis)
610 over the mid-point of each age-group (x-axis) was drawn and colored by smoking history. The
611  scatterplots also show the linear regression lines computed for individuals in different smoking
612  categories. These lines are referred to as the aging trajectories of that group.

613

614  Immune Infiltration Analysis

615

616  Tumor immune deconvolution analysis was performed on the TCGA data to investigate how
617 immune cell composition varies in tumor samples over different ages. We used “xcell” [71] on
618 the unfiltered TCGA gene expression data with R package “immunedeconv” (version 2.1.0) to
619 infer immune and stromal cell composition in tumor samples. For every cell type, we fit a linear
620 model to predict the corresponding cell proportion on age, while adjusting for other clinical
621  covariates such as gender, race, smoking status, and clinical tumor stage, thus allowing us to
622  quantify how cell proportion in tumor changes with age. To quantify the relation between the
623  proportion of each cell type and TF-targeting score of immune pathways, we used Pearson’s
624  correlation coefficient between the two quantities and test for significance.

625

626  Constructing a Network-based Aging Signature for Tumor Samples

627

628 We constructed a network-based aging signature based on the tumor samples from TCGA as
629 follows. For every biological pathway that was significantly differentially targeted by TFs with age
630 in TCGA dataset, we defined a pathway targeting score as follows. A principal component analysis
631  (PCA) was performed on the indegree of all genes in a particular pathway and the first principal
632 component was defined as an aggregated TF-targeting score for the corresponding pathway. To

633  construct an aging signature for tumor samples, we fit a Cox proportional hazard model to predict
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634  survival probability using pathway targeting scores for all pathways found to be differentially
635 targeted by age in both the TCGA and GSE68465 validation dataset. The resulting prediction from
636  the Cox proportional hazard model was defined to be the aging signature for the corresponding
637  tumor sample.

638

639  Survival analysis with Cox proportional hazard model was implemented using the R package
640  “survival” (version 3.2.13). We also performed Kaplan—Meier survival analysis as implemented in
641 the same R package, and the p-values were computed using the log-rank test. The survival curves
642  were plotted using the R function “ggsurv” on the “GGally” package 2.1.2.

643

644  Small Molecule Drug Repurposing with CLUEreg

645

646  We used a web-based drug repurposing tool CLUEreg [36] (https://grand.networkmedicine.org/),

647  designed to match disease states to potential small molecule therapeutics, based on comparing
648  of input regulatory networks to networks computed using PANDA and LIONESS using data from
649  drug-response assays.

650

651  We used linear models (R package “limma”) on gene targeting scores from GTEx to identify genes
652  that were significantly (p-value < 0.05) either increasingly (1018 genes) or decreasingly (404
653  genes) targeted with age. These differentially targeted genes were used as input to CLUEreg web
654  application. CLUEreg produced a list of 150 small molecule drug candidates most suitable for
655  reversing the alterations in gene targeting patterns associated with aging, which we subsequently
656 refer to as drugs with potential geroprotective (i.e. anti-aging) effects.

657

658 We also used CLUEreg to identify small molecule drugs for reversing the gene regulatory patterns
659 in tumor samples into regulatory patterns akin to those in normal samples and identified two
660  separate lists of 150 small molecule drugs each, for tumor samples with lower versus higher aging
661  signatures. To identify genes differentially targeted between tumor and normal adjacent samples

662 in TCGA, we fit linear models (“limma”) on gene targeting scores on sample type (tumor versus
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normal adjacent), while adjusting for other clinical covariates age, gender, race, smoking status
and clinical tumor stage. We categorized all samples into lower versus higher aging signature
groups by splitting them into two equal parts by median aging signature. We included an
interaction term between sample type and aging signature group in the limma analysis to capture
the tumor-associated gene regulatory changes in the two aging signature groups. The resulting
list of significantly (p-value < 0.05) differentially targeted genes between tumor and normal

adjacent samples were used as input to CLUEreg.
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Table 1: Clinical characteristics of the discovery and validation datasets.

Type
Sample size
Age

Mean # std (range)

Gender

Female (%)

Male (%)

Race

White (%)

Black or African

American (%)

Others (%)

Unknown (%)

Smoking status

History of smoking (%)
No history of smoking
(%)

NA (%)

Tumor stage

GTEx

Healthy

584

54 +11.81
(21-70)

187
(32.02%)
397
(67.98%)

499
(85.44%)
70 (11.99%)

15 (2.57%)

386
(66.10%)
182
(31.16%)
16 (2.74%)

TCGA

Tumor

539

65 +9.91
(33-88)

291
(54.00%)
248
(46.00%)

411
(76.25%)
53 (9.83%)

75
(13.92%)

448
(83.11%)
77
(14.29%)
14 (2.60%)

TCGA

Normal
adjacent

59

66 + 10.83
(42-86)

34
(57.63%)
25
(42.37%)

55
(93.22%)
4 (6.78%)

46
(77.97%)
7 (11.86%)

6 (10.17%)

LGRC

Healthy

108

64 +11.35
(32-87)

59
(54.63%)
49
(45.37%)

65
(60.19%)
32
(29.63%)
12
(10.18%)

GSE68465

Tumor

443

64 +10.1
(33-87)

220
(49.66%)
223
(50.34%)

295

(66.60%)

12 (2.71%)

7 (1.58%)

129
(29.11%)

300
(67.72%)

49 (11.06%)

94 (21.22%)
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1(%) - 295 30 - 150
(54.73%) (50.85%) (33.86%)
11 (%) - 126 13 - 251
(23.38%) (22.03%) (56.66%)
111 (%) - 84 13 - 28 (6.32%)
(15.59%) (22.03%)
1V (%) - 26 (4.82%) 2 (3.39%) - 12 (2.71%)
NA (%) - 8(1.48%)  1(1.69%) - 2 (0.45%)

[schemic time (hours)
Mean # std (range) 8.04 +6.98 - - - -
(0.0-24.4)

Table 2: Cox proportional hazard model in TCGA to predict survival outcome using therapy status and

network-informed aging signature.

Covariate Coefficient z-score P-value

Aging_signature 1.330 6.093 1.1e-09
TherapyChemotherapy 0.445 2.059 0.040
TherapyOther -0.279 -0.277 0.782
Aging_signature: TherapyChemotherapy -0.905 -2.623 0.009
Aging_signature: TherapyOther -1.338 -0.615 0.539
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Figure 1: Schematic overview of the study. Top box, overview of our approach to constructing individual

specific networks using PANDA and LIONESS which integrate information on protein-protein interactions

(PPIs) between transcription factors (TFs), prior information on TF-Gene motif binding, and gene

expression data — in this case, from GTEx lung tissues and TCGA LUAD primary tumor samples -

downloaded from Recount3. Bottom box, overview of the differential targeting analysis.
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Figure 2: Volcano plot of genes that are differentially (increasingly or decreasingly) targeted by TFs over
varying age in lung tissue samples from GTEx. The x-axis represents log fold change (logFC), which is
defined as the change in gene indegree in response to a unit change in age. The y-axis represents negative

of logarithm of p-values (-log10(P.Value)).
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Figure 3: Heatmap of normalized enrichment scores (NES) for pathways that are significantly (at FDR
cutoff 0.05) differentially targeted by transcription factors with age among non-cancerous lung samples
(GTEX). The first two columns exhibit NES from GSEA based on the age coefficients from the limma analysis
of GTEx and LGRC. The third column shows NES from GSEA based on difference between tumor samples

from TCGA and healthy samples from GTEx.
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Figure 4: Boxplot of the rates of change in TF-targeting with age in GTEx (designated by the t-statistics
from the limma analysis with interaction between age and smoking status) (Left) for 1018 genes that are
increasingly targeted with age in healthy human lung (based on evidence from GTEx) and (Right) the same
boxplot for 404 genes that are decreasingly targeted with age in healthy human lung (based on evidence

from GTEx).
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Figure 5: Boxplot of the t-statistics of the age coefficient associated with the oncogenes and tumor
suppressor genes (listed in the COSMIC database) from the limma analysis in GTEx. Positive value means
these genes are targeted more with age on average and negative value means these genes are targeted
less with age on average. For comparison, we also show the same t-statistics for non-cancer genes (genes
that are not annotated as oncogenes and/or tumor suppressor genes in the COSMIC database). Each
boxplot ranges from the upper and lower quartiles with the median as the horizontal line. Outliers are
marked by points. In our analysis we include genes that are explicitly marked as either “Oncogene”
or “TSG” respectively in the COSMIC database, thus excluding all the genes that can work either
as an oncogene or as a tumor suppressor gene, depending on the mutation. The reported p-values
correspond to the hypothesis testing with respect to alternative hypotheses reported in parentheses. The

alternative hypotheses “<” or “>” denote the hypotheses “mean > 0” and “mean < 0” respectively.
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Figure 6: Boxplot of the difference in TF-targeting of genes in TCGA normal adjacent samples compared
to GTEx non-cancerous lung for (Left) 1018 genes that are increasingly targeted with age in healthy human
lung (based on evidence from GTEx) and (Right) for 404 genes that are decreasingly targeted with age in
healthy human lung (based on evidence from GTEx). The reported p-values correspond to the hypothesis
testing with respect to alternative hypotheses reported in parentheses. The alternative hypotheses “<” or

“>" denote the hypotheses “mean > 0” and “mean < 0” respectively.
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Figure 7: Normalized enrichment scores (NES) of the biological pathways that are significantly (at an FDR
cutoff 0.05) differentially targeted with age by transcription factors in tumor samples from TCGA. Left
column shows NES from GSEA on TCGA samples, and the right column shows NES for the same pathways

from GSEA on GSE68465 samples.
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Figure 8: Kaplan-Meier plot for survival outcome in TCGA, split by median network-informed aging

signature (left) and by median chronological age into younger and older tumor samples (right).
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Figure 9: Venn Diagram of Number of Small Molecule Drug Candidates Derived from CLUEreg as (green)

geroprotective drugs, (blue) LUAD drugs for individuals with lower aging signature and (red) LUAD drugs

for individuals with higher aging signature.
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Supplementary Material

A. Designing Sex-specific Transcription Factor-Gene Motif Prior

The prior regulatory network used in PANDA is a bipartite network consisting of transcription
factors and their target genes, where the edges (0 or 1) indicate whether a transcription factor
motif exists in a target gene’s promoter region. To create the prior regulatory network, we
downloaded Homo sapiens transcription factor motifs with direct/inferred evidence from the
Catalog of Inferred Sequence Binding Preferences CIS-BP Build 2.0
(http://cisbp.ccbr.utoronto.ca). We mapped these transcription factor position weight matrices
(PWM) to the human genome (hg38) using FIMO [72] and retained highly significant matches
(p<10-5) that occurred within the promoter regions of Ensembl genes (Gencode v39; annotations
downloaded from http://genome.ucsc.edu/cgi-bin/hgTables); promoter regions were defined as
[-750; +250] base pairs around the transcription start site (TSS). This process produced an initial
map of potential regulatory interactions involving 997 transcription factors targeting 61,485
genes. To statistically compare networks, the same set of edge combinations need to be included
in both sexes, therefore we created sex-informed transcription factor regulatory priors to
account for the lack of Y chromosome genes in females. In the female regulatory prior, edges

from or to Y chromosome genes were downweighed to zero, which consisted of 52,266 edges.

B. Designing Protein-protein Interaction Prior

We used the STRINGdb Bioconductor package [73] to access and download PPl data from the
StringDB database (STRING.version 11.5). We filtered the PPI data to keep only those interactions
present between transcription factors in the prior network (score threshold index of 0). PPl scores
were normalized by dividing them by 1000 to have a uniform range between 0 and 1 for the PPI
and the prior network. We set transcription factor self-interaction equal to one for all 997 TFs.

Since PPl are undirected, we converted the data into a symmetric form.
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C. Additional Tables and Figures

Table C.1: Correlation between pathway targeting score of immune pathways and immune score

|II

computed by “xcell”. Only significant correlations (p-value < 0.05) are reported.

Pathway correlation P-value

Primary immunodeficiency 0.171 6.5e-05

T-cell receptor signaling pathway 0.160 1.0e-04

Hematopoietic cell lineage 0.150 4.0e-04
Intestinal immune network for IGA production 0.136 0.002
Allograft rejection 0.136 0.002
Cytokine cytokine receptor interaction -0.135 0.002
Asthma 0.134 0.002
Autoimmune thyroid disease 0.132 0.002
Type | diabetes mellitus -0.132 0.002
Graft versus host disease 0.129 0.003
Systemic lupus erythematosus -0.128 0.003
Natural killer cell mediated cytotoxicity 0.125 0.004
Viral myocarditis 0.119 0.006
Leishmania infection 0.118 0.006
Antigen processing and presentation 0.114 0.008
Chemokine signaling pathway 0.106 0.013

Table C.2: Cox proportional hazard model in GSE68465 to predict survival outcome using therapy status

and network-informed aging signature.

Covariate Coefficient z-score P-value
Aging_signature 0.119 2.375 0.018
TherapyChemotherapy 0.467 3.123 0.002
TherapyUnknown 0.369 1.074 0.283
Aging_signature: TherapyChemotherapy -0.037 -0.516 0.606
Aging_signature: TherapyOther -0.289 -1.906 0.057
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Figure C.1: Aging trajectories for the GTEx samples based on two sets of genes. The plot on the left shows
an aging trajectory for smokers (current and past smokers with smoking status = “yes”) and lifelong
nonsmokers (smoking status = “No”) constructed based on 1018 genes that are significantly increasingly
targeted with age by transcription factors. The plot on the right shows an aging trajectory for smokers
(current and past smokers with smoking status = “yes”) and lifelong nonsmokers (smoking status = “No”)

constructed based on 404 genes that are significantly decreasingly targeted with age.
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Figure C.2: Aging trajectories for the LGRC samples based on two sets of genes. The plot on the left shows
an aging trajectory for smokers (current and past smokers with smoking status = “Ever”) and lifelong
nonsmokers (smoking status = “Never”) constructed based on 888 genes that are significantly increasingly
targeted with age by transcription factors. The plot on the right shows an aging trajectory for smokers
(current and past smokers with smoking status = “Ever”) and lifelong nonsmokers (smoking status =

“Never”) constructed based on 556 genes that are significantly decreasingly targeted with age.
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Figure C.3: Aging-associated change in TF-targeting patterns of oncogenes ERBB3, MYCN and AKT1 in
GTEx. Weights of edges marked in red increase with age and weights of edges marked in blue decrease

with age. For each gene top 50 TFs are shown for which the targeting pattern changes most with age.
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Figure C.4: Change in immune and stromal cell composition with age in GTEx and TCGA: for each cell type,
the bar lengths correspond to the t-statistics of the age coefficients from linear models with cell type
proportion as response and age as covariate, while adjusting for other clinical covariates. Vertical red
dotted lines show the 2.5% and 97.5% quantiles of the standard normal distribution. Cell types for which
the corresponding bars cross these lines are inferred to be significantly (p-value < 0.05) changing in

composition with age.
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Figure C.5: Network-informed aging score versus chronological age, in tumor samples from TCGA (left)

and GSE68465 (right), colored by clinical tumor stage.
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Figure C.6: Kaplan-Meier plot for survival outcome in GSE68465, split by lower and higher network-

informed aging signature.
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