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Abstract 

 

Aging is the primary risk factor for many individual cancer types, including lung adenocarcinoma 

(LUAD). To understand how aging-related alterations in the regulation of key cellular processes 

might affect LUAD risk and survival outcomes, we built individual (person)-specific gene 

regulatory networks integrating gene expression, transcription factor protein-protein 

interaction, and sequence motif data, using PANDA/LIONESS algorithms, for both non-cancerous 

lung tissue samples from the Genotype Tissue Expression (GTEx) project and LUAD samples from 

The Cancer Genome Atlas (TCGA). In GTEx, we found that pathways involved in cell proliferation 

and immune response are increasingly targeted by regulatory transcription factors with age; 

these aging-associated alterations are accelerated by tobacco smoking and resemble oncogenic 

shifts in the regulatory landscape observed in LUAD and suggests that dysregulation of aging 

pathways might be associated with an increased risk of LUAD. Comparing normal adjacent 

samples from individuals with LUAD with healthy lung tissue samples from those without LUAD, 

we found that aging-associated genes show greater aging-biased targeting patterns in younger 

individuals with LUAD compared to their healthy counterparts of similar age, a pattern suggestive 

of age acceleration. This implies that an accelerated aging process may be responsible for tumor 

incidence in younger individuals. Using drug repurposing tool CLUEreg, we found small molecule 

drugs with potential geroprotective effects that may alter the accelerating aging profiles we 

found. We also observed that, in contrast to chronological age, a network-informed aging 

signature was associated with survival and response to chemotherapy in LUAD.  
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Introduction 1 

 2 

Lung cancer is second only to breast cancer worldwide in annual incidence and is the leading 3 

cause of cancer death. Lung cancer risk increases with age and as the average age of the 4 

population increases worldwide, the prevalence of lung cancer is expected to continue growing 5 

[1]. In 2021, 75% of lung cancer fatalities were reported in individuals aged 65 and older [2]. 6 

While lung adenocarcinoma (LUAD) in younger adults is often diagnosed at more advanced 7 

stages compared to those in older adults [3], elderly individuals have more comorbidities and 8 

tend to be less tolerant of certain cancer therapeutics than younger individuals [4]. These 9 

differences are likely the result of aging-induced alterations in the regulation of key cellular 10 

processes [5], but the mechanism by which age shifts the gene regulatory landscape to alter lung 11 

cancer risk and survival outcome is largely unknown. In this paper we address this critical gap in 12 

our understanding by building individual (person)-specific gene regulatory networks to gain 13 

insights into aging related changes in gene regulation that might influence the risk and prognosis 14 

of LUAD across all age groups. Additionally, we explore how aging-associated regulatory changes 15 

are further accelerated by tobacco smoking history, since lung diseases including LUAD are more 16 

prevalent among individuals with a history of smoking, compared to individuals who have never 17 

smoked in their lifetime [6]. 18 

 19 

As transcription factors (TF) have been established as known drivers of aging [7], to understand 20 

aging-associated heterogeneity in the gene regulatory landscape of LUAD tumors, we identified 21 

biological pathways that are differentially regulated by TFs in tumors from individuals of different 22 

ages and investigated if any of these age-associated changes in regulatory networks might 23 

influence survival and the response to chemotherapy, potentially favoring individuals exhibiting 24 

regulatory signatures akin to those found in younger individuals. We further validated our 25 

findings in two independent datasets of non-cancerous lung tissue and LUAD tumors. 26 

 27 

Most studies investigating the role of aging in lung adenocarcinoma have focused on the 28 

mutational landscape of tumor among individuals across various age groups [8, 9]. Tumor 29 
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mutations in several genes, including CDKN2A, KRAS, MDM2, MET, and PIK3CA, have been found 30 

to increase in frequency with the individual’s age, while the frequencies of mutation in ALK, ROS1, 31 

RET and ERBB2 show a decreasing trend with age [10]. ALK and EGFR mutations are high among 32 

younger individuals with LUAD, especially among females and nonsmokers [11, 12, 13]. Analysis 33 

of somatic interactions has indicated that EGFR-positive samples in younger individuals are more 34 

prone to concurrent mutations in PIK3CA, MET, TP53, and RB1 when compared to older 35 

individuals [10]. Age may influence both the number of mutations in a tumor and their 36 

evolutionary timing [14]. While germline mutations are more commonly identified in tumors 37 

from younger individuals, tumors in older individuals appear to be predominantly influenced by 38 

somatic mutations [15]. Such mutations clearly play a role in cancer risk and prognosis, acting in 39 

part, by altering the activity of biological pathways associated with cancer. However, changes in 40 

these pathways can only be partially explained by known mutations, indicating that other 41 

mechanisms of pathway activation might play a significant role [16].  42 

 43 

Despite some studies in lung cancer that have reported altered expression of genes linked to 44 

survival [17, 18], as per our knowledge, there has not been any research investigating aging-45 

associated alterations in gene regulatory networks that influence the risk and prognosis of LUAD 46 

and lung cancer in general. We addressed this gap in understanding by using the network-47 

modeling approaches, PANDA [19] and LIONESS [20], to derive person-specific gene regulatory 48 

networks for non-cancerous lung tissue samples from the Genotype Tissue Expression project 49 

(GTEx) and LUAD tumor samples from The Cancer Genome Atlas (TCGA), with a focus on 50 

evaluating age-associated genes and their regulation by TFs. This approach was motivated by 51 

multiple earlier network-modeling analyses that identified disease relevant regulatory features 52 

in both healthy tissues as well as in tumor [21, 22, 23]. 53 

 54 

By analyzing individual-specific regulatory networks, we found increased TF targeting of 55 

pathways related to intracellular adhesion, cell proliferation, and immune response with age in 56 

healthy lung tissue. These aging-associated alterations are further increased by tobacco smoking 57 

and resemble oncogenic shifts in the regulatory landscape observed in LUAD tumors, thereby 58 
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suggesting a potential association between aging-associated dysregulation of biological 59 

pathways and an elevated risk of developing LUAD.  60 

 61 

Using a web-based drug repurposing tool CLUEreg, we also found potential geroprotective small 62 

molecule drug candidates that may be useful in reducing the risk of LUAD by reversing the aging-63 

associated regulatory signatures. By constructing a network-informed aging signature for tumor 64 

samples based on the TF-targeting patterns of key biological pathways significantly changing with 65 

age in LUAD tumors, we found that a lower aging signature is associated with better survival 66 

probability and higher chemotherapy efficacy. In contrast, chronological age was not predictive 67 

of survival, thus demonstrating that the aging signature captures aspects of tumor biology not 68 

captured by chronological age alone. Using CLUEreg, we also found distinct small molecule drug 69 

candidates tailored to LUAD samples with varying aging signatures. In conclusion, our findings 70 

not only highlight the mechanisms underlying increased risk and poorer prognosis of LUAD 71 

associated with aging-induced gene regulatory alterations, but also establish a potential avenue 72 

for leveraging individual-specific gene regulatory networks in designing personalized therapeutic 73 

interventions. 74 

 75 

Results 76 

 77 

Identifying Aging-associated Gene Regulatory Alterations in Healthy Human Lung and 78 

Geropropective Drug Candidates 79 

 80 

We inferred gene regulatory networks linking TFs to target genes using gene expression data 81 

from non-cancerous lung tissue samples from GTEx. By analyzing these networks, we identified 82 

several genes (Figure 2) and biological pathways (Figure 3) that are differentially targeted by TFs 83 

as a function of age, in the lung. Among these genes, there are 1018 that exhibit significantly 84 

increased targeting by TFs with age (p-value <0.05). Most significant among them are NNAT [24], 85 

FBLN7 [25], SH3BP1 [26], CNTN1 [27], THEM5 [28], and FOXP4 [29]; upregulation of these genes 86 

has been previously reported to be associated with cell proliferation and poorer prognosis in 87 
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multiple cancers.  We also find 404 genes that exhibit significantly decreased targeting by TFs 88 

with age  (p-value <0.05) including DUSP15 [30], ALDH1L2 [31], HPD [32], GSTT2 [33], FOXI3 [34], 89 

and ZIC2 [35], all of which have been shown to be influential in predicting tumor progression and 90 

therapeutic efficacy in various cancer types, including non-small cell lung cancer. 91 

 92 

We performed gene set enrichment analysis (GSEA) with genes, ranked by how much their 93 

targeting patterns change with age, and found (Figure 3 leftmost column) that biological 94 

pathways associated with intracellular adhesion and cell proliferation, cell growth, and death 95 

have increasing TF targeting with age, including pathways annotated to  adherens junction, 96 

apoptosis, hematopoietic cell lineage, cell adhesion molecules, and pathways in cancer. 97 

Pathways associated with immune response, including B-cell receptor signaling pathway, 98 

cytokine-cytokine receptor interaction, chemokine signaling pathway and intestinal immune 99 

network for IgA production, also show increased TF targeting with age. We confirmed these 100 

findings on an independent dataset LGRC (Figure 3 middle column). 101 

 102 

Using genes that are differentially targeted by age as input to a web-based drug repurposing tool 103 

CLUEreg [36], we identified 150 small molecule drug candidates (Supplementary Material S2) 104 

with potential to reverse the aging-associated regulatory alterations in the gene regulatory 105 

networks from non-cancerous lung samples. Some of these drugs, henceforth referred to as 106 

“geroprotective drugs”, including Carnosol [37], Curcumin [38], Cucurbitacin B [39], 107 

Isonicotinamide [40], Meclofenoxate [41], Scriptaid [42], and Withaferin A [43] have already been 108 

shown to have potential geroprotective effects in various animal models, including humans. 109 

Among these 150 geroprotective drug candidates, we found several FDA-approved anti-cancer 110 

drugs, including Trametinib, Doxorubicin, Alisertib, Actinomycin-d, Toremifene, and Plumbagin, 111 

as well as several investigational drugs with potential anti-tumor effects including Avrainvillamide 112 

analogs [44], aurora kinase inhibitors (MK-5108, AT-9283) [45] , Avicins [46], HMN-214 [47], 113 

Chaetocin [48], ron kinase inhibitors [49], and Linifanib [50], among others. 114 
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Tobacco Smoking is Associated with Accelerated Aging 115 

 116 

To explore whether tobacco smoking is associated with an acceleration of the aging process, we 117 

compared the gene regulatory networks from non-cancerous samples, between individuals with 118 

a history of smoking and individuals who have never smoked in their lifetime. We split the 1422 119 

aging-associated genes we had previously identified into two sets: genes that exhibit increasing 120 

TF targeting with age (1018 genes) and those that show decreasing TF targeting (404 genes). For 121 

every gene in these two sets, we used limma [51], to compute the age coefficient (Figure 4) in a 122 

linear model for individuals with and without a history of smoking. 123 

 124 

We found that for genes with increasing age-associated TF targeting, the t-statistics of the age 125 

coefficients among individuals with a history of smoking have significantly greater positive values 126 

than among never-smokers (p-value < 2.2e-16). Similarly, for genes with decreasing TF-targeting 127 

with age, the t-statistic of the age coefficients among individuals with a history of smoking have 128 

significantly (p-value < 2.2e-16) larger negative values than those among individuals who have 129 

never smoked. In other words, for both kinds of aging-associated genes, the age gradients are 130 

significantly steeper for the individuals with a history of smoking, than those for the individuals 131 

who have never smoked in their lifetimes. The steeper age gradients mean that the rate of 132 

change in gene regulation with age is faster among individuals with a history of smoking, 133 

comparted to individuals who have never smoked. 134 

 135 

To visually represent the continuous changes in gene regulation with age, we plotted the aging 136 

trajectories (as described in Methods) for the non-cancerous samples from GTEx (Figure C.1 in the 137 

Supplementary Material). For the genes which are increasingly targeted by TFs with age (left plot 138 

on Figure C.1), the slope of the regression line is steeper among individuals who have a history of 139 

smoking, compared to individuals who have never smoked. Although for genes that are 140 

decreasingly targeted by TFs with age (right plot of Figure C.1), we do not observe any significant 141 

difference between the slopes of the aging trajectories among individuals with or without a 142 

history of smoking. Nevertheless, these findings indicate that tobacco smoking is associated with 143 
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an acceleration of the aging-induced alterations in gene regulation. We also validated these 144 

findings in the non-cancerous lung samples from the independent LGRC (a.k.a. GSE47460) 145 

validation dataset (Figure C.2). 146 

 147 

Taken together, we find that even in individuals without evidence of lung cancer, there are aging-148 

associated changes in the TF-targeting of genes that are further accelerated by tobacco smoking, 149 

which may be linked to an increased risk of developing LUAD at a younger age among individuals 150 

with a history of smoking. 151 

 152 

Aging-associated Gene Regulatory Alterations in Non-cancerous Lung Resemble Oncogenic 153 

Gene Regulatory Shifts Observed in LUAD 154 

 155 

To understand how aging-related changes in the topology of gene regulatory networks might be 156 

linked to an increased risk of LUAD, we analyzed age-associated changes in network density 157 

around the neighborhoods of proto-oncogenes and tumor suppressor genes (downloaded from 158 

the COSMIC database [52]). We used linear modeling (implemented in limma) and calculated the 159 

t-statistics of the age coefficients (normalized age gradients) for the list of oncogenes and tumor 160 

suppressor genes (TSG) (Figure 5) and found that among the healthy samples in GTEx, TF-161 

targeting increases with age on average for both oncogenes and TSGs (Wilcoxon rank sum test 162 

gives a p-value of 3.908e-09 for oncogenes and 0.001164 for tumor suppressor genes). 163 

 164 

For comparison, it should be noted that, non-cancer genes (that is, genes not annotated as 165 

oncogene or TSG in the COSMIC database) are also increasingly targeted by TFs with age (p-value 166 

of Wilcoxon rank sum test is 2.2e-16), meaning that the gene regulatory networks inferred for 167 

individuals in GTEx, increase in TF regulatory density as the age of the individual increases. 168 

Nevertheless, the mean TF-targeting with aging is the greatest for oncogenes (aging slope of 169 

oncogenes is significantly larger than those of non-cancer genes and tumor suppressor genes 170 

with p-values being equal to 0.001271 and <2.2e-16 respectively). This indicates that although 171 

changes in regulation are a natural consequence of aging, the greatest changes occur in the 172 
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regulatory neighborhoods of oncogenes, including genes that are common drug targets [53] in 173 

LUAD, such as MYCN, ERBB3, and AKT1 (Figure C.3). 174 

 175 

To explore the association of aging with LUAD risk, we compared the targeting patterns of aging-176 

associated biological pathways between non-cancerous samples from GTEx and LUAD tumor 177 

samples from TCGA. We observe that aging-associated pathways involved in cell adhesion, cell 178 

proliferation and immune response (except for type I diabetes mellitus and allograft rejection 179 

pathways), are also highly targeted in LUAD tumor, compared to non-cancerous lung (Figure 3 180 

rightmost column). This indicates that increased TF-targeting of these pathways with age might 181 

be a contributing factor to an elevated risk of developing LUAD among older adults and that those 182 

with the greatest regulatory targeting of these pathways might be at the greatest risk. 183 

 184 

LUAD among younger individuals, although less frequent, is often detected at more advanced 185 

stages compared to their older counterparts [3]. Given that we found age-acceleration of gene 186 

targeting to correlate with LUAD, we tested whether LUAD in younger individuals was also 187 

associated with patterns of accelerated aging, compared to healthier individuals of similar age. 188 

To confirm this hypothesis, we compared the TF-targeting pattern of 1422 aging-associated 189 

genes in normal adjacent lung samples from individuals with LUAD (from TCGA) versus non-190 

cancerous lung samples from GTEx (Figure 6). For the 1018 genes that exhibited increased 191 

targeting with age, we found that their mean TF-targeting was significantly higher (p-value <2.2e-192 

16) in the normal adjacent lung samples from younger individuals (age less than median age 66) 193 

with LUAD, compared to individuals of similar age without LUAD (Figure 6 left). In contrast, for 194 

older individuals with LUAD (age greater than median age 66) we did not find a significantly 195 

higher mean targeting of aging genes compared to healthy individuals of similar age. 196 

 197 

In other words, the gene regulatory patterns observed in the normal-adjacent lung tissues of 198 

younger individuals with LUAD are more like those found in older individuals, than they are to 199 

their healthy counterparts of the same age. This suggests that LUAD in younger individuals may 200 
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be driven, in part, by age-accelerated changes in gene regulation, and that this acceleration may 201 

also be associated with more aggressive tumor biology at diagnosis we see in younger individuals. 202 

 203 

Biological Pathways Differentially Regulated in LUAD Tumor across Varying Age  204 

 205 

We analyzed gene regulatory networks of LUAD samples from TCGA and performed GSEA to 206 

identify biological pathways that are differentially regulated by TFs with age (Figure 7 left column). 207 

We found several pathways involved in cell signaling and cell proliferation that were increasingly 208 

targeted by TFs with age. When we compared these differentially targeted pathways to those 209 

differentially targeted with age in non-cancerous lung samples from GTEx, we found that both 210 

had identified the pathway associated with cell adhesion molecules. 211 

 212 

However, there were many pathways with aging-associated regulatory changes found exclusively 213 

in tumor samples and not in healthy lung samples, including the NOD-like receptor signaling 214 

pathway, FC-epsilon RI signaling pathway, toll-like receptor signaling pathway and JAK-STAT 215 

signaling pathway – all of which have been associated with LUAD development, progression and 216 

outcome. In contrast, we found that metabolic pathways including oxidative phosphorylation, 217 

nitrogen metabolism, arginine and proline metabolism, ascorbate and alderate metabolism were 218 

decreasingly targeted by TFs with age. These results were validated in an independent dataset 219 

GSE68465 (Figure 7 right column). 220 

 221 

Biological pathways associated with immune response that had been previously identified as 222 

increasingly targeted (at an FDR cutoff 0.05) with age in non-cancerous lung samples, also 223 

showed increased targeting by TFs with age in tumors. We also found several additional immune-224 

related pathways to have age-dependent regulatory patterns in tumor, that were not evident in 225 

non-cancerous samples. Such immune-related pathways include those involved in antigen 226 

processing and presentation, graft versus host disease, JAK-STAT signaling pathway, natural killer 227 
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cell mediated cytotoxicity, primary immunodeficiency and T-cell receptor signaling pathway, all 228 

of which were increasingly targeting by TFs with age. 229 

 230 

This difference between non-cancerous lung versus LUAD tumor in the age-associated targeting 231 

patterns of immune pathways can be partially attributed to differences in immune cell infiltration 232 

by age in non-cancerous lung tissue as compared to tumor. Immune infiltration analysis (Figure 233 

C.4) showed that the proportion of CD8+ central memory cells increased with age in both non-234 

cancerous lungs, and in tumor. However, aging-related changes in immune cell composition in 235 

tumor were distinct from those in healthy lungs for most immune cell types. For example, while 236 

the proportions of activated myeloid dendritic cells and B cells increased with age in LUAD 237 

tumors, in non-cancerous lung the proportion of these cells did not change significantly with age. 238 

The proportion of macrophages also increased with age in tumor; in non-cancerous lung, 239 

macrophages were more abundant in younger samples. This higher infiltration of immune cells 240 

in tumor with age might be associated with a higher targeting of immune pathways among older 241 

individuals with LUAD, as evidenced by the positive correlation between immune score and TF-242 

targeting score of immune pathways (Table C.1). In contrast, the proportion of CD8+ naïve T-cells 243 

and common myeloid progenitors showed a decreasing trend with age in tumor, while exhibiting 244 

no significant difference in composition across healthy lung samples of varying age (Figure C.4). 245 

 246 

Gene Regulatory Network-informed Aging Signature of Tumor Predicts Survival and Response 247 

to Chemotherapy in LUAD 248 

 249 

We conducted survival analysis using the Cox proportional hazard model to understand whether 250 

the aging-associated regulatory patterns of biological pathways have any influence on the 251 

prognosis of LUAD for individuals of varying age. We first constructed an “aging signature” for 252 

tumor samples, defined by the outputs of the Cox proportional hazard model with inputs being 253 

the targeting score (as defined in Methods) of 28 biological pathways (Figure 7) that were 254 

discovered to be significantly differentially targeted by TFs as a function of age in tumors. This 255 

network-informed “aging signature” of tumors is a linear combination of the TF-targeting scores 256 
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of 28 biological pathways and is uncorrelated (Figure C.5) with both chronological age (correlation 257 

= -0.0114 with p-value = 0.792) and clinical tumor stage (p-value from ANOVA = 0.1921). 258 

 259 

We found that samples with a lower aging signature had significantly better survival probability 260 

than samples with a higher aging signature (Figure 8 left; p-value = 0.001). For comparison, we 261 

split samples into two chronological subgroups based on whether samples were above or below 262 

the median chronological age (Figure 8 right)  and not find any significant difference (p-value = 263 

0.169) in survival probability. This indicates that the aging signature, defined using gene 264 

regulatory networks is more informative than chronological age in predicting LUAD survival in 265 

TCGA. The results remained consistent even after adjusting for self-reported gender, race, 266 

smoking status, clinical tumor stage and therapy status (p-values for the network-informed aging 267 

signature and chronological age were 2.8e-06 and 0.171 respectively). We validated (Figure C.6) 268 

the efficacy of the network-informed aging signature in predicting survival outcome in LUAD on 269 

independent dataset GSE68465 (p-value = 0.013, after adjusting for gender, race, smoking status, 270 

tumor stage and therapy status). 271 

 272 

We also performed a Cox proportional hazard analysis using with therapy information and the 273 

aging signature as input (Table 2) and found that biological age score captured in the aging 274 

signature had significant (p-value = 0.009) interaction with chemotherapy, where a smaller value 275 

of the aging signature was associated with higher improvement in survival probability in response 276 

to chemotherapy, compared to no therapy. In contrast, using an analogous Cox proportional 277 

hazard model with therapy information and chronological age as input, we did not find any 278 

significant interaction (p-value = 0.564) between chronological age and chemotherapy response. 279 

In the independent dataset GSE68465 (Table C.2) as well, the interactions between chemotherapy 280 

and the aging signature were in the same direction as in TCGA, although the results (Table C.2) 281 

were not statistically significant.  282 

 283 

Drug Repurposing with CLUEreg Identifies Distinct Small Molecule Drugs for Tumor Samples 284 

with Lower versus Higher Aging Signature 285 
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 286 

To find potential targeted cancer therapeutics that might differ in efficacy depending on aging 287 

signatures, we split the TCGA tumor samples into two groups – one above and one below the 288 

median value of the network-informed aging signature. For each group, we separately used 289 

CLUEreg [36] to identify small molecule drug candidates depending on the differential regulatory 290 

patterns between tumor and healthy samples and obtained a list of 150 small molecule drugs 291 

each for the two aging signature groups (Figure 9). 292 

 293 

While 59 small-molecule cancer therapeutics including FDA-approved Cisplatin and Amifostine 294 

and investigational drugs Timosaponin and Cardamonin appeared as potential drug candidates 295 

for both aging-signature groups, several other drugs appeared exclusively in only one of the two 296 

groups. Drugs including Homoharringtonine, Ingenol, Vatalanib (investigational), Midostaurin 297 

(investigational) and Ubenimex (investigational) appeared only for individuals with lower aging 298 

signature. Other drugs including Leucovorin, Actinomycin-d and Plumbagin appeared for the 299 

higher aging signature group alone. Several potential geroprotective drug candidates, including 300 

Meclofenoxate and Isonicotinamide, also appear in the lists of anti-tumor drugs. It is worth noting 301 

that we found 28 geroprotective drugs in the list for higher aging signature group while only 5 302 

geroprotective drugs for the lower aging signature group. This suggests that the information 303 

captured by the aging signature encompasses disease-relevant processes driving LUAD, which 304 

are intertwined with other aging-related processes that also contribute to the development and 305 

progression of the disease. 306 

 307 

Discussion 308 

 309 

LUAD, like most other solid tumors, is an age-biased disease in which individuals generally have 310 

a greater risk, poorer prognosis and poorer response to most therapies compared to their 311 

younger counterparts [4]. However, tumors diagnosed in younger individuals are often detected 312 

at more advanced clinical stages implying more severe disease biology. Earlier studies have found 313 

that across diverse cancer types, the mutational landscape of tumors in younger individuals is 314 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2024. ; https://doi.org/10.1101/2024.07.02.601689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.02.601689
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

very different from that in older individuals [10]. However, mutational burden alone does not 315 

fully explain the mechanisms of disease, driven by the activity of biological pathways that are 316 

activated leading up to and during disease. To bridge this gap in our understanding of LUAD, we 317 

investigated how regulation of various genes and biological pathways change with age using 318 

individual specific gene regulatory networks. Analyzing gene regulatory networks that integrate 319 

gene expression, TF-binding motif and TF protein-protein interaction data from both non-320 

cancerous human lung and LUAD samples, we found aging-associated alterations in regulatory 321 

mechanisms involving key biological processes. 322 

 323 

Analyzing gene regulatory networks in GTEx lung samples, we found several genes with known 324 

relevance to cancer incidence and prognosis that were differentially targeted by TFs with age, 325 

including proto-oncogenes AKT1, ERBB3 and MYCN. Using pathway enrichment analysis, we saw 326 

a clearer picture of how age affects cancer-related processes in non-cancerous lung tissue, 327 

including altered regulation of intracellular adhesion, cell proliferation, and immune response. 328 

By conducting a differential targeting analysis on non-cancerous lung samples and LUAD tumor 329 

samples, we confirmed that targeting of these same biological processes also changes in tumor 330 

incidence and in the same direction as they do in “normal” aging. This suggests that aging-331 

associated alterations in gene regulatory patterns of these pathways might be a contributing 332 

factor to a higher risk of LUAD development among older individuals. Further, we found that 333 

tobacco smoking was associated with an acceleration in the aging-associated gene regulatory 334 

changes, helping to explain the increased the risk of LUAD incidence at a younger age among 335 

individuals with a history of smoking. 336 

 337 

Gene regulatory network analysis of LUAD tumor samples identified an age-associated higher 338 

targeting of several biological pathways associated with immune response, these associations 339 

were not detected in non-cancerous lung samples from GTEx. Greater targeting of immune 340 

pathways with age was correlated with a higher infiltration of immune cells including active 341 

myeloid progenitors, B cells, macrophages and CD8+ central memory cells. We suspect that a 342 

higher targeting of immune pathways in conjunction with a higher proportion of immune cells 343 
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among older individuals might contribute to an age-biased response to immunotherapy. This is 344 

concordant with evidence from earlier studies which demonstrated that while chemotherapy is 345 

more beneficial for younger individuals [5], some immune checkpoint inhibitors provide greater 346 

benefit to adults with age 65 or older, compared to younger adults [54, 55]. 347 

 348 

We constructed a network-informed "aging signature" for tumor samples, based on the TF-349 

targeting patterns of 28 biological pathways (identified in TCGA and validated in GSE68465) that 350 

exhibited significant differential targeting by TFs with age. We found that individuals with a lower 351 

aging signature not only had better survival outcomes, but also had significantly better 352 

improvements in survival outcomes in response to chemotherapy compared to those with a 353 

higher aging signature. Within TCGA LUAD samples, this network-based aging signature appears 354 

to be a possibly superior biomarker to chronological age, in distinguishing between individuals 355 

with varying potential for chemotherapeutic efficacy. 356 

 357 

The consistent theme of age-associated alterations in regulation being linked to LUAD suggested 358 

that network-based aging signatures might identify aging-related tailored therapeutics. 359 

Separately analyzing LUAD samples partitioned into low-and-high-aging signature groups, we 360 

found 59 small-molecule cancer therapeutics, including FDA-approved Cisplatin and Amifostine, 361 

common to both aging-signature groups. But we also found several drugs were exclusive to one 362 

aging signature group alone, meaning that considering age-related regulatory changes might be 363 

useful in determining personalized therapeutic protocols. Certain potential geroprotective drugs 364 

including Meclofenoxate and Isonicotinamide appeared in the lists of anti-tumor drugs, mostly 365 

for the higher aging signature group, as did a number of candidate drugs such as Curcumin [38], 366 

that have been shown have geroprotective effects. Unfortunately, older adults are severely 367 

underrepresented in clinical trials for most cancers including LUAD, thereby impacting the validity 368 

of clinical guidelines in diseases with an age effect [56]. Our analysis underscores the importance 369 

of including individuals across the spectrum of disease-associated demographics in clinical trials. 370 

 371 

 372 
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It is important to note that our analysis is based on observational data alone and hence 373 

experimental validation is required to establish a causal relationship between the aging-374 

associated regulatory changes identified by our analysis and the manifestation of tumor. Another 375 

limitation of our study is that the datasets used for discovery (GTEx and TCGA) and validation 376 

primarily consist of individuals of white and African American descent. Despite adjusting for the 377 

impact of race in our analysis, the applicability of our findings to other ethnicities may still be 378 

constrained due to underrepresentation in our data and the confounding effects of various social 379 

determinants of health on lung cancer. Further studies involving more diverse populations are 380 

necessary to confirm the validity of our results across a broader range of racial and ethnic 381 

backgrounds. Additionally, a more complete inclusion of social determinants such as individual 382 

socio-economic background [57], is essential for the generalizability of our findings. 383 

 384 

Despite these limitations, our analysis provides interesting insights into the aging-associated 385 

alterations in gene regulation and their relevance in the clinical manifestation of LUAD, including 386 

some immediate implications in the context of personalized cancer therapy. Based on our 387 

analysis we infer that aging related changes in regulation of key biological processes involved in 388 

intra-cellular adhesion, cell proliferation and immune responses are associated with altered risk, 389 

prognosis and response to therapy in lung adenocarcinoma among individuals of varying age. 390 

Notably, we observed that even among individuals of similar age, individuals with lower network-391 

informed aging signature had better prognostic outcome in response to chemotherapy, than 392 

individuals with higher aging signature. This observation implies that chronological age alone 393 

does not provide substantial information on prescribing personalized therapy for lung 394 

adenocarcinoma and gene regulatory networks can prove to be effective tools in facilitating more 395 

efficient personalized therapy design and improving prognosis in lung adenocarcinoma for 396 

individuals across varying age. 397 

 398 

What emerges from our analysis is an interesting picture of how ageing influences LUAD. 399 

“Normal” aging in the lung is associated with alterations in the regulation of particular biological 400 

processes, and indeed, by inferring and analyzing gene regulatory network structure, we 401 
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identified genes and biological processes that exhibit altered patterns of regulation with age. But 402 

as has been known, not all individuals age at the same rate. When we examine LUAD, we find 403 

that greater changes in age-associated patterns of gene regulation are more strongly associated 404 

with disease than is chronological age. We also find that smoking results in an apparent 405 

acceleration of the aging-associated patterns of gene regulation in both the lungs of “healthy 406 

individuals with a history of smoking ” and in “normal adjacent” tissue  from individuals suffering 407 

from LUAD, consistent with the fact that smoking dramatically increases risk, progression, and 408 

severity, and affects response to therapy. This suggests that the regulatory changes that are 409 

captured in the aging signature we derived are, at the least, correlated if not causally linked to 410 

LUAD disease processes. Looking at younger people with LUAD, we find that they also exhibit age 411 

-acceleration in their “normal” lung tissue relative to their peers without LUAD. Differential 412 

regulation in tumors of younger people with LUAD represented a subset of the changes we saw 413 

in the tumors of older patients, which suggests that the pathways associated with these changes 414 

might be particularly important in understanding the severity of disease in younger individuals. 415 

Finally, we found that even among individuals of similar age, those with a lower network-416 

informed aging signature had better prognostic outcome in response to chemotherapy, than 417 

individuals with higher aging signature. What all these means is that while chronological aging 418 

might have some effect on the risk of developing LUAD and its properties, the changes in aging-419 

related regulation are far more important in estimating disease risk, in understanding disease 420 

processes, in identifying candidate therapies, and in designing aging-aware precision treatment 421 

protocols. This observation implies that chronological age alone does not provide substantial 422 

information on prescribing personalized therapy for lung adenocarcinoma and gene regulatory 423 

networks can prove to be effective tools in facilitating more efficient personalized therapy design 424 

and improving prognosis in lung adenocarcinoma for individuals across varying age. 425 
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Data and Code Availability 451 

 452 

Raw data to construct gene regulatory networks and other analysis were downloaded from open-453 

source databases dbGap, Recount3, GEO, STRINGdb, CIS-BP and GDSC. Processed data are 454 

available upon request. 455 

Sample-specific gene regulatory networks are stored in an Amazon Web Services s3 bucket and 456 

will be made available upon acceptance. 457 

R codes for all downstream analysis are available on a GitHub public repository: 458 

https://github.com/Enakshi-Saha/Aging-LUAD 459 
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A notebook describing differential targeting analysis and computation of network-informed aging 460 

signatures using LUAD tumor samples from TCGA will be available on Netbooks [58]: 461 

http://netbooks.networkmedicine.org upon acceptance. 462 

 463 

Methods 464 

 465 

Discovery Dataset 466 

 467 

Uniformly processed RNA-Seq data were downloaded from the Recount3 database [59]  for two 468 

discovery datasets using R package “recount3” (version 1.4.0): (i) lung tissue samples from the 469 

Genotype Tissue Expression (GTEx) Project [60] (version 8) and (ii) lung adenocarcinoma samples 470 

from The Cancer Genome Atlas (TCGA) [61] on May 26, 2022. We accessed clinical data for GTEx 471 

samples from the dbGap website (https://dbgap.ncbi.nlm.nih.gov/) under study accession 472 

phs000424.v8.p2. Clinical data for TCGA samples were downloaded from Recount3. We refer to 473 

the GTEx samples as “non-cancerous lung samples” throughout our analysis. 474 

 475 

From 655 lung samples, 71 samples were removed because they were designated as “biological 476 

outliers” in the GTEx portal (https://gtexportal.org/) for various reasons (as described in 477 

https://gtexportal.org/home/faq). We analyzed the remaining 584 lung samples (187 female and 478 

397 male) from GTEx. We removed two recurrent tumor samples from the TCGA data and 479 

included the remaining 541 primary tumor samples (293 female and 248 male) and 59 normal 480 

adjacent (34 female and 25 male) samples. 481 

 Table 1 summarizes the clinical characteristics of the datasets. 482 

 483 

Both GTEx and TCGA gene expression data were normalized by transcript per million (TPM), using 484 

the “getTPM” function in the Bioconductor package “recount” (version 1.20.0) [62]  on R version 485 

4.1.2. Lowly expressed genes were filtered out by removing genes with counts <1 TPM in at least 486 

10% of the samples (126 samples) in GTEx and TCGA combined, removing 36386 genes, and 487 

keeping 27470 genes. To construct gene regulatory networks, we further removed those genes 488 
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that were not present in the TF/target gene regulatory prior used for creating the gene regulatory 489 

networks (see section “Differential targeting analysis using sample-specific gene regulatory 490 

networks”). This filtering left with 27162 genes, including those on allosomes, which were used 491 

in subsequent analysis. For female samples in both GTEx and TCGA, gene expression values of all 492 

genes on the Y chromosome (36 genes in total) were replaced by “NA”. Principal component 493 

analysis did not show any visible batch effect. 494 

 495 

Validation Dataset 496 

 497 

We chose two independent studies for validation from the Gene Expression Omnibus (GEO) 498 

repository: GSE47460 [63] (downloaded on Feb 12, 2023) and GSE68465 [64] (downloaded on 499 

Jan 24, 2023). For validating our results on the lung samples from GTEx, we used GSE47460, which 500 

consisted of microarray gene expression for 582 samples in total from the Lung Genomics 501 

Research Consortium (LGRC). This study used Agilent-014850 Whole Human Genome Microarray 502 

4x44K G4112F and Agilent-028004 SurePrint G3 Human GE 8x60K Microarray for sequencing. 503 

Among these 582 samples, we used only 108 samples (59 female and 49 male), who have no 504 

chronic lung disease by CT or pathology and hence, were designated as “controls” within the 505 

study. GSE68465 consists of microarray gene expression for 443 lung adenocarcinoma samples 506 

(220 female and 222 male). This study used Affymetrix Human Genome U133A Array for 507 

sequencing. 508 

 Table 1 summarizes the clinical characteristics of the datasets analyzed. 509 

 510 

Normalized expression data and clinical data were downloaded from GEO using R package 511 

“GEOquery” version 2.62.2. Within every dataset, for genes with multiple probe sets, we kept 512 

the probe set with the highest standard deviation in expression levels across samples. We 513 

discarded any genes that were not in the TF/target gene regulatory network prior that we used 514 

for creating the gene regulatory networks. This process left 13575 genes in GSE47460 (LGRC) 515 

dataset and 11725 genes in GSE68465 dataset, that we used to build gene regulatory network 516 

models. The LGRC data were not batch corrected because no visible batch effect was detected 517 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2024. ; https://doi.org/10.1101/2024.07.02.601689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.02.601689
http://creativecommons.org/licenses/by-nc-nd/4.0/


 22 

from principal component analysis. The GSE68465 dataset includes lung adenocarcinoma 518 

specimens from the following sources: University of Michigan Cancer Center (100 samples), 519 

University of Minnesota VA/CALGB (77 samples), Moffitt Cancer Center (79 samples), Memorial 520 

Sloan-Kettering Cancer Center (104 samples), and Toronto/Dana-Farber Cancer Institute (82 521 

samples). The GSE68465 data were batch corrected for these sources using “ComBat” function 522 

implemented in the R package “sva” (version 3.42.0). 523 

 524 

Differential Targeting Analysis using Sample-specific Gene Regulatory Networks 525 

 526 

Gene regulatory networks for each sample were reconstructed by the PANDA [19] and LIONESS 527 

[20] algorithms using Python package netZooPy [65] version 0.9.10, in both the discovery and the 528 

validation datasets. A schematic diagram of our network construction pipeline is given inFigure 1. 529 

Three types of data were integrated to derive the regulatory networks: TF/target gene regulatory 530 

prior (obtained by mapping TF motifs from the Catalog of Inferred Sequence Binding Preferences 531 

(CIS-BP) [66] to the promoter of their putative target genes), TF protein-protein interaction data 532 

(using the interaction scores from StringDb v11.5 [67] between all TFs in the regulatory prior), 533 

and gene expression (from the discovery or validation datasets). The TF/target gene regulatory 534 

prior contains regulatory edges from 997 TFs to 61485 ensemble gene IDs, corresponding to 535 

39618 gene symbols (HGNC, Gencode v39). The protein-protein interaction data contained 536 

measures of interactions between the 997 TFs. We used sex-specific motif priors for male and 537 

female samples, where the motifs coincided for autosomal genes and genes on the X 538 

chromosome and differed for genes on the Y chromosome. The procedure for deriving the motif 539 

prior and the PPI priors are described in the Supplementary Material.  540 

 541 

Regulatory networks were constructed independently for each of the discovery and validation 542 

datasets, and separately for female and male samples. The final networks contained only genes 543 

overlapping between the TF/target gene motif prior and the corresponding gene expression 544 

dataset. 545 

 546 
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For each sample’s gene regulatory network, we calculated the targeting score for each gene, 547 

equivalent to the gene’s in-degree (defined as the sum of all incoming edge weights from all TFs 548 

in the network). The resulting gene targeting scores were compared across individuals of varying 549 

ages, using a linear regression model, while correcting for relevant covariates, using the R 550 

package limma (version 3.50.3) [51]. The resulting t-statistics of the age coefficient are then used 551 

for a gene set enrichment analysis (GSEA). 552 

 553 

Model 1: To investigate how aging influences the targeting of different genes in the non-554 

cancerous  lung samples, we fit a linear model using R package “limma” using the gene targeting 555 

score of all genes in GTEx as response and age as covariate, while adjusting for self-reported 556 

gender (Male and Female), race (White, Black or African American and others), smoking status 557 

(individuals who have never smoked in their lifetime and individuals with a current or past history 558 

of smoking ), RNA integrity number (RIN), batch and ischemic time. A similar analysis was 559 

replicated in the LGRC validation data where we adjusted for gender and smoking status. 560 

 561 

Model 2: In a separate analysis, to identify biological processes relevant for cancer development, 562 

we compared the gene regulatory networks constructed with non-cancerous lung samples from 563 

GTEx to the networks constructed from LUAD tumor samples from TCGA with another linear 564 

model fit by “limma” using the following covariates: age (“age at diagnosis”), disease status 565 

(healthy vs tumor), self-reported gender (Male and Female), race (White, Black or African 566 

American and others) and smoking status (individuals who have never smoked in their lifetime 567 

and individuals with a current or past history of smoking). The resulting t-statistics corresponding 568 

to disease status quantifies the difference between TF-targeting in tumor versus healthy samples 569 

and were subsequently used for gene set enrichment analysis (GSEA). 570 

 571 

Model 3: To identify which biological processes are differentially regulated with age among LUAD 572 

tumor samples, we fit a linear model on the indegree of genes computed from the GRNs 573 

constructed on LUAD tumor samples from TCGA and derive the t-statistics of the regression 574 

coefficients corresponding to age (at diagnosis of LUAD), while controlling for clinical variables 575 
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such as self-reported gender, race, smoking status and tumor stage. A gene set enrichment 576 

analysis was performed using the ranked t-statistics of the age coefficients derived from the 577 

limma analysis. 578 

 579 

Pathway Enrichment Analysis 580 

 581 

We performed pathway enrichment analysis (Figure 1) with a pre-ranked Gene Set Enrichment 582 

Analysis (GSEA) using R package “fgsea” (version 1.20.0) [68] and the gene sets obtained from 583 

the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database [69] 584 

(“c2.cp.kegg.v2022.1.Hs.symbols.gmt”) that were downloaded from the Molecular Signatures 585 

Database (MSigDB) (http://www.broadinstitute.org/gsea/msigdb/collections.jsp). After filtering 586 

out those genes not in the expression dataset, only gene sets of size greater than 15 and less than 587 

500 were considered; this restricted our analysis to 176 gene sets. All genes were ranked by the 588 

t-statistic produced by the “limma” (version 3.50.3) differential targeting analysis after adjusting 589 

for covariates. The resulting ranked set (with gene symbols corresponding to Gencode v39) was 590 

used as input to the GSEA. We performed multiple testing corrections using the Benjamini-591 

Hochberg procedure [70]. 592 

 593 

Constructing Gene Set and Smoking History-specific Aging Trajectories for Non-cancerous 594 

Samples 595 

 596 

From our analysis on non-cancerous lung samples from GTEx, we identified genes of two 597 

categories: genes that are increasingly targeted by TFs with age (identified by positive age 598 

coefficients in the limma model) and the remaining genes that are decreasingly targeted by TFs 599 

with age (identified by negative age coefficients in the limma model). Based on these two gene 600 

sets, we construct two aging trajectories. 601 

 602 

For each of these sets of genes, an “aging trajectory” was constructed: for every sample we 603 

computed the mean indegree of all the genes in the set and designated this number as the TF- 604 
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targeting score for that sample. Then we stratified all the samples in a particular dataset into 20 605 

consecutive age-groups so that each group contained 5% of all samples in the data. Within each 606 

age group, we divided all individuals into subgroups based on their smoking history and 607 

computed the medians of the gene targeting scores across individuals in each of the smoking 608 

subgroup. For each set of genes, a scatterplot (Figure C.1) of the gene targeting scores (y-axis) 609 

over the mid-point of each age-group (x-axis) was drawn and colored by smoking history. The 610 

scatterplots also show the linear regression lines computed for individuals in different smoking 611 

categories. These lines are referred to as the aging trajectories of that group. 612 

 613 

Immune Infiltration Analysis 614 

 615 

Tumor immune deconvolution analysis was performed on the TCGA data to investigate how 616 

immune cell composition varies in tumor samples over different ages. We used “xcell” [71] on 617 

the unfiltered TCGA gene expression data with R package “immunedeconv” (version 2.1.0) to 618 

infer immune and stromal cell composition in tumor samples. For every cell type, we fit a linear 619 

model to predict the corresponding cell proportion on age, while adjusting for other clinical 620 

covariates such as gender, race, smoking status, and clinical tumor stage, thus allowing us to 621 

quantify how cell proportion in tumor changes with age. To quantify the relation between the 622 

proportion of each cell type and TF-targeting score of immune pathways, we used Pearson’s 623 

correlation coefficient between the two quantities and test for significance. 624 

 625 

Constructing a Network-based Aging Signature for Tumor Samples 626 

 627 

We constructed a network-based aging signature based on the tumor samples from TCGA as 628 

follows. For every biological pathway that was significantly differentially targeted by TFs with age 629 

in TCGA dataset, we defined a pathway targeting score as follows. A principal component analysis 630 

(PCA) was performed on the indegree of all genes in a particular pathway and the first principal 631 

component was defined as an aggregated TF-targeting score for the corresponding pathway. To 632 

construct an aging signature for tumor samples, we fit a Cox proportional hazard model to predict 633 
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survival probability using pathway targeting scores for all pathways found to be differentially 634 

targeted by age in both the TCGA and GSE68465 validation dataset. The resulting prediction from 635 

the Cox proportional hazard model was defined to be the aging signature for the corresponding 636 

tumor sample. 637 

 638 

Survival analysis with Cox proportional hazard model was implemented using the R package 639 

“survival” (version 3.2.13). We also performed Kaplan–Meier survival analysis as implemented in 640 

the same R package, and the p-values were computed using the log-rank test. The survival curves 641 

were plotted using the R function “ggsurv” on the “GGally” package 2.1.2. 642 

 643 

Small Molecule Drug Repurposing with CLUEreg 644 

 645 

We used a web-based drug repurposing tool CLUEreg [36] (https://grand.networkmedicine.org/), 646 

designed to match disease states to potential small molecule therapeutics, based on comparing 647 

of input regulatory networks to networks computed using PANDA and LIONESS using data from 648 

drug-response assays. 649 

 650 

We used linear models (R package “limma”) on gene targeting scores from GTEx to identify genes 651 

that were significantly (p-value < 0.05) either increasingly (1018 genes) or decreasingly (404 652 

genes) targeted with age. These differentially targeted genes were used as input to CLUEreg web 653 

application. CLUEreg produced a list of 150 small molecule drug candidates most suitable for 654 

reversing the alterations in gene targeting patterns associated with aging, which we subsequently 655 

refer to as drugs with potential geroprotective (i.e. anti-aging) effects. 656 

 657 

We also used CLUEreg to identify small molecule drugs for reversing the gene regulatory patterns 658 

in tumor samples into regulatory patterns akin to those in normal samples and identified two 659 

separate lists of 150 small molecule drugs each, for tumor samples with lower versus higher aging 660 

signatures. To identify genes differentially targeted between tumor and normal adjacent samples 661 

in TCGA, we fit linear models (“limma”) on gene targeting scores on sample type (tumor versus 662 
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normal adjacent), while adjusting for other clinical covariates age, gender, race, smoking status 663 

and clinical tumor stage. We categorized all samples into lower versus higher aging signature 664 

groups by splitting them into two equal parts by median aging signature. We included an 665 

interaction term between sample type and aging signature group in the limma analysis to capture 666 

the tumor-associated gene regulatory changes in the two aging signature groups. The resulting 667 

list of significantly (p-value < 0.05) differentially targeted genes between tumor and normal 668 

adjacent samples were used as input to CLUEreg.  669 
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Table 1: Clinical characteristics of the discovery and validation datasets. 

 

 GTEx 

 

TCGA TCGA LGRC GSE68465 

Type Healthy Tumor Normal 

adjacent 

Healthy Tumor 

Sample size 584 539 59 108 443 

Age      

Mean ± std (range) 54 ± 11.81 

(21-70) 

65 ± 9.91 

(33-88) 

66 ± 10.83 

(42-86) 

64 ± 11.35 

(32-87) 

64 ± 10.1 

(33-87) 

Gender      

Female (%) 187 

(32.02%) 

291 

(54.00%) 

34 

(57.63%) 

59 

(54.63%) 

220 

(49.66%) 

Male (%) 397 

(67.98%) 

248 

(46.00%) 

25 

(42.37%) 

49 

(45.37%) 

223 

(50.34%) 

Race      

White (%) 499 

(85.44%) 

411 

(76.25%) 

55 

(93.22%) 

- 295 

(66.60%) 

Black or African 

American (%) 

70 (11.99%) 53 (9.83%) 4 (6.78%) - 12 (2.71%) 

Others (%) 15 (2.57%) 75 

(13.92%) 

0 - 7 (1.58%) 

Unknown (%) - -  - 129 

(29.11%) 

Smoking status      

History of smoking (%) 386 

(66.10%) 

448 

(83.11%) 

46 

(77.97%) 

65 

(60.19%) 

300 

(67.72%) 

No history of smoking 

(%) 

182 

(31.16%) 

77 

(14.29%) 

7 (11.86%) 32 

(29.63%) 

49 (11.06%) 

NA (%) 16 (2.74%) 14 (2.60%) 6 (10.17%) 12 

(10.18%) 

94 (21.22%) 

Tumor stage      
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I (%) - 295 

(54.73%) 

30 

(50.85%) 

- 150 

(33.86%) 

II (%) - 126 

(23.38%) 

13 

(22.03%) 

- 251 

(56.66%) 

III (%) - 84 

(15.59%) 

13 

(22.03%) 

- 28 (6.32%) 

IV (%) - 26 (4.82%) 2 (3.39%) - 12 (2.71%) 

NA (%) - 8 (1.48%) 1 (1.69%) - 2 (0.45%) 

Ischemic time (hours)      

Mean ± std (range) 8.04 ± 6.98  

(0.0-24.4) 

- - - - 

 
 

Table 2: Cox proportional hazard model in TCGA to predict survival outcome using therapy status and 

network-informed aging signature. 

 

Covariate Coefficient z-score P-value 

Aging_signature 1.330 6.093 1.1e-09 

TherapyChemotherapy 0.445 2.059 0.040 

TherapyOther -0.279 -0.277 0.782 

Aging_signature: TherapyChemotherapy -0.905 -2.623 0.009 

Aging_signature: TherapyOther -1.338 -0.615 0.539 
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Figure 1: Schematic overview of the study. Top box, overview of our approach to constructing individual 

specific networks using PANDA and LIONESS which integrate information on protein-protein interactions 

(PPIs) between transcription factors (TFs), prior information on TF-Gene motif binding, and gene 

expression data – in this case, from GTEx lung tissues and TCGA LUAD primary tumor samples - 

downloaded from Recount3. Bottom box, overview of the differential targeting analysis. 
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Figure 2: Volcano plot of genes that are differentially (increasingly or decreasingly) targeted by TFs over 

varying age in lung tissue samples from GTEx. The x-axis represents log fold change (logFC), which is 

defined as the change in gene indegree in response to a unit change in age. The y-axis represents negative 

of logarithm of p-values (-log10(P.Value)). 
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Figure 3: Heatmap of normalized enrichment scores (NES) for pathways that are significantly (at FDR 

cutoff 0.05) differentially targeted by transcription factors with age among non-cancerous lung samples 

(GTEx). The first two columns exhibit NES from GSEA based on the age coefficients from the limma analysis 

of GTEx and LGRC. The third column shows NES from GSEA based on difference between tumor samples 

from TCGA and healthy samples from GTEx.  

 

 

Age Effect 
Non-cancerous samples Tumor Effect 

(TCGA vs GTEx) 
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Figure 4: Boxplot of the rates of change in TF-targeting with age in GTEx (designated by the t-statistics 

from the limma analysis with interaction between age and smoking status) (Left) for 1018 genes that are 

increasingly targeted with age in healthy human lung (based on evidence from GTEx) and (Right) the same 

boxplot for 404 genes that are decreasingly targeted with age in healthy human lung (based on evidence 

from GTEx). 
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Figure 5: Boxplot of the t-statistics of the age coefficient associated with the oncogenes and tumor 

suppressor genes (listed in the COSMIC database) from the limma analysis in GTEx. Positive value means 

these genes are targeted more with age on average and negative value means these genes are targeted 

less with age on average. For comparison, we also show the same t-statistics for non-cancer genes (genes 

that are not annotated as oncogenes and/or tumor suppressor genes in the COSMIC database). Each 

boxplot ranges from the upper and lower quartiles with the median as the horizontal line. Outliers are 

marked by points. In our analysis we include genes that are explicitly marked as either “Oncogene” 

or “TSG” respectively in the COSMIC database, thus excluding all the genes that can work either 

as an oncogene or as a tumor suppressor gene, depending on the mutation. The reported p-values 

correspond to the hypothesis testing with respect to alternative hypotheses reported in parentheses. The 

alternative hypotheses “<” or “>” denote the hypotheses “mean > 0” and “mean < 0” respectively. 
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Figure 6: Boxplot of the difference in TF-targeting of genes in TCGA normal adjacent samples compared 

to GTEx non-cancerous lung for (Left) 1018 genes that are increasingly targeted with age in healthy human 

lung (based on evidence from GTEx) and (Right) for 404 genes that are decreasingly targeted with age in 

healthy human lung (based on evidence from GTEx). The reported p-values correspond to the hypothesis 

testing with respect to alternative hypotheses reported in parentheses. The alternative hypotheses “<” or 

“>” denote the hypotheses “mean > 0” and “mean < 0” respectively. 
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Figure 7: Normalized enrichment scores (NES) of the biological pathways that are significantly (at an FDR 

cutoff 0.05) differentially targeted with age by transcription factors in tumor samples from TCGA. Left 

column shows NES from GSEA on TCGA samples, and the right column shows NES for the same pathways 

from GSEA on GSE68465 samples. 

 

 

TCGA GSE68465

Ascorbate And Aldarate Metabolism

Parkinsons Disease

Arginine And Proline Metabolism

Nitrogen Metabolism

Oxidative Phosphorylation

Ribosome

Drug Metabolism Cytochrome P450

Retinol Metabolism

B Cell Receptor Signaling Pathway

Primary Immunodeficiency

Natural Killer Cell Mediated Cytotoxicity

Antigen Processing And Presentation

T Cell Receptor Signaling Pathway

Jak Stat Signaling Pathway

Toll Like Receptor Signaling Pathway

Fc Epsilon Ri Signaling Pathway

Nod Like Receptor Signaling Pathway

Leishmania Infection

Cell Adhesion Molecules Cams

Chemokine Signaling Pathway

Hematopoietic Cell Lineage

Asthma

Intestinal Immune Network For Iga Production

Viral Myocarditis

Cytokine Cytokine Receptor Interaction

Autoimmune Thyroid Disease

Type I Diabetes Mellitus

Systemic Lupus Erythematosus

Graft Versus Host Disease

Allograft Rejection

−2 0 1 2

NES

Color Key

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2024. ; https://doi.org/10.1101/2024.07.02.601689doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.02.601689
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

Figure 8: Kaplan-Meier plot for survival outcome in TCGA, split by median network-informed aging 

signature (left) and by median chronological age into younger and older tumor samples (right). 

 

 

Figure 9: Venn Diagram of Number of Small Molecule Drug Candidates Derived from CLUEreg as (green) 

geroprotective drugs, (blue) LUAD drugs for individuals with lower aging signature and (red) LUAD drugs 

for individuals with higher aging signature. 
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Supplementary Material 

 

A. Designing Sex-specific Transcription Factor-Gene Motif Prior 

 

The prior regulatory network used in PANDA is a bipartite network consisting of transcription 

factors and their target genes, where the edges (0 or 1) indicate whether a transcription factor 

motif exists in a target gene’s promoter region. To create the prior regulatory network, we 

downloaded Homo sapiens transcription factor motifs with direct/inferred evidence from the 

Catalog of Inferred Sequence Binding Preferences CIS-BP Build 2.0 

(http://cisbp.ccbr.utoronto.ca). We mapped these transcription factor position weight matrices 

(PWM) to the human genome (hg38) using FIMO [72] and retained highly significant matches 

(p<10-5) that occurred within the promoter regions of Ensembl genes (Gencode v39; annotations 

downloaded from http://genome.ucsc.edu/cgi-bin/hgTables); promoter regions were defined as 

[-750; +250] base pairs around the transcription start site (TSS). This process produced an initial 

map of potential regulatory interactions involving 997 transcription factors targeting 61,485 

genes. To statistically compare networks, the same set of edge combinations need to be included 

in both sexes, therefore we created sex-informed transcription factor regulatory priors to 

account for the lack of Y chromosome genes in females. In the female regulatory prior, edges 

from or to Y chromosome genes were downweighed to zero, which consisted of 52,266 edges. 

 

B. Designing Protein-protein Interaction Prior 

 

We used the STRINGdb Bioconductor package [73] to access and download PPI data from the 

StringDB database (STRING.version 11.5). We filtered the PPI data to keep only those interactions 

present between transcription factors in the prior network (score threshold index of 0). PPI scores 

were normalized by dividing them by 1000 to have a uniform range between 0 and 1 for the PPI 

and the prior network. We set transcription factor self-interaction equal to one for all 997 TFs. 

Since PPI are undirected, we converted the data into a symmetric form. 
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C. Additional Tables and Figures 

 

Table C.1: Correlation between pathway targeting score of immune pathways and immune score 

computed by “xcell”. Only significant correlations (p-value < 0.05) are reported. 

 

Pathway correlation P-value 

Primary immunodeficiency 0.171 6.5e-05 

T-cell receptor signaling pathway 0.160 1.0e-04 

Hematopoietic cell lineage 0.150 4.0e-04 

Intestinal immune network for IGA production 0.136 0.002 

Allograft rejection 0.136 0.002 

Cytokine cytokine receptor interaction -0.135 0.002 

Asthma 0.134 0.002 

Autoimmune thyroid disease 0.132 0.002 

Type I diabetes mellitus -0.132 0.002 

Graft versus host disease 0.129 0.003 

Systemic lupus erythematosus -0.128 0.003 

Natural killer cell mediated cytotoxicity 0.125 0.004 

Viral myocarditis 0.119 0.006 

Leishmania infection 0.118 0.006 

Antigen processing and presentation 0.114 0.008 

Chemokine signaling pathway 0.106 0.013 

 

Table C.2: Cox proportional hazard model in GSE68465 to predict survival outcome using therapy status 

and network-informed aging signature. 

Covariate Coefficient z-score P-value 

Aging_signature 0.119 2.375 0.018 

TherapyChemotherapy 0.467 3.123 0.002 

TherapyUnknown 0.369 1.074 0.283 

Aging_signature: TherapyChemotherapy -0.037 -0.516 0.606 

Aging_signature: TherapyOther -0.289 -1.906 0.057 
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Figure C.1: Aging trajectories for the GTEx samples based on two sets of genes. The plot on the left shows 

an aging trajectory for smokers (current and past smokers with smoking status = “yes”) and lifelong 

nonsmokers (smoking status = “No”) constructed based on 1018 genes that are significantly increasingly 

targeted with age by transcription factors. The plot on the right shows an aging trajectory for smokers 

(current and past smokers with smoking status = “yes”) and lifelong nonsmokers (smoking status = “No”) 

constructed based on 404 genes that are significantly decreasingly targeted with age.  

 

Figure C.2: Aging trajectories for the LGRC samples based on two sets of genes. The plot on the left shows 

an aging trajectory for smokers (current and past smokers with smoking status = “Ever”) and lifelong 

nonsmokers (smoking status = “Never”) constructed based on 888 genes that are significantly increasingly 

targeted with age by transcription factors. The plot on the right shows an aging trajectory for smokers 

(current and past smokers with smoking status = “Ever”) and lifelong nonsmokers (smoking status = 

“Never”) constructed based on 556 genes that are significantly decreasingly targeted with age. 
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Figure C.3: Aging-associated change in TF-targeting patterns of oncogenes ERBB3, MYCN and AKT1 in 

GTEx. Weights of edges marked in red increase with age and weights of edges marked in blue decrease 

with age. For each gene top 50 TFs are shown for which the targeting pattern changes most with age. 
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Figure C.4: Change in immune and stromal cell composition with age in GTEx and TCGA: for each cell type, 

the bar lengths correspond to the t-statistics of the age coefficients from linear models with cell type 

proportion as response and age as covariate, while adjusting for other clinical covariates. Vertical red 

dotted lines show the 2.5% and 97.5% quantiles of the standard normal distribution. Cell types for which 

the corresponding bars cross these lines are inferred to be significantly (p-value < 0.05) changing in 

composition with age. 
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Figure C.5: Network-informed aging score versus chronological age, in tumor samples from TCGA (left) 

and GSE68465 (right), colored by clinical tumor stage. 

 

 

 
Figure C.6: Kaplan-Meier plot for survival outcome in GSE68465, split by lower and higher network-

informed aging signature. 
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