

1 **Plasmids modulate microindel mutations in *Acinetobacter baylyi* ADP1**

2

3 Mikkel M. Liljegren^{a,1}, João A. Gama^{a,2}, Pål J. Johnsen^a and Klaus Harms^{a*}

4

5 ^aMicrobial Pharmacology and Population Biology Research Group, Department of Pharmacy, UiT

6 The Arctic University of Norway, Tromsø, Norway

7

8 ¹Present Address: Department of Ecosystems of the Barents Region, Norwegian Institute of

9 Bioeconomy Research, Svanhovd, Norway

10 ²Present Address: Department of Microbiology, Ramón y Cajal University Hospital, Ramón y Cajal

11 Institute for Health Research (IRYCIS), Madrid, Spain

12

13 *Corresponding author: klaus.harms@uit.no, Department of Pharmacy, P.O. Box 6050, N-9037

14 Tromsø

15

16

17 **Abstract:**

18 Plasmids can impact the evolution of their hosts, e.g. due to carriage of mutagenic genes, through cross-
19 talk with host genes or as result of SOS induction during transfer. Here we demonstrate that plasmids
20 can cause microindel mutations in the host genome. These mutations are driven by the production of
21 single-stranded DNA molecules that invade replication forks at microhomologies and subsequently get
22 integrated into the genome. Using the gammaproteobacterial model organism *Acinetobacter baylyi*, we
23 show that carriage of broad host range plasmids from different incompatibility groups can cause
24 microindel mutations directly or indirectly. The plasmid pQLICE belonging to the incompatibility group
25 Q (IncQ) and replicating by a characteristic strand displacement mechanism can generate chromosomal
26 microindel mutations directly with short stretches of DNA originating from pQLICE. In addition, the
27 presence of plasmids can increase microindel mutation frequencies indirectly (i.e., with chromosomal
28 ectopic DNA) as shown with the IncP plasmid vector pRK415 (theta replication mechanism),
29 presumably through plasmid-chromosome interactions that lead to DNA damages. These results provide
30 new mechanistic insights into the microindel mutation mechanism, suggesting that single-stranded
31 DNA repair intermediates are the causing agents. By contrast, the IncN plasmid RN3 appears to
32 suppress host microindel mutations. The suppression mechanism remains unknown. Other plasmids in
33 this study confer ambiguous or no quantifiable mutagenic effects.

34

35

36 **Keywords:** *Acinetobacter baylyi*, DNA recombination, illegitimate recombination, microindels,
37 mutation, strand-displacement.

38

39

40 **Introduction**

41 Plasmids are DNA molecules recognized primarily by their ability to transfer horizontally among
42 different hosts, and in that process mobilize accessory genes that can play important roles in bacterial
43 evolution. This is well illustrated by the plasmid-mediated spread of genes responsible for antimicrobial
44 resistance, virulence factors and the ability to degrade xenobiotics (Heuer & Smalla, 2012). Other
45 plasmid accessory genes may promote bacterial adaptation by enhancing mutagenesis instead, an effect
46 that has been linked to plasmid-encoded error-prone polymerases (Woodgate & Sedgwick, 1992;
47 Remigi et al., 2014; Sano et al., 2014; Nguyen et al., 2020). Although plasmids confer new phenotypes
48 directly associated to the accessory genes they encode, they may also collaterally manipulate host
49 behaviour via regulatory cross-talks, which result in the indirect expression of further phenotypic
50 variation (Billane et al., 2021) [e.g., altered host metabolism (Hall et al., 2024)]. In addition, plasmids
51 can also drive the movement of transposons onto the chromosome (Bergstrom et al., 2000; Hall et al.,
52 2017) or the shuffling of integron cassettes (Baharoglu et al., 2010). The latter is a result of conjugative
53 acquisition of plasmid DNA as single-stranded (ss) DNA molecules, which induce the bacterial SOS
54 response. Alternatively, plasmids expressing mechanisms to prevent SOS induction (e.g., plasmidic
55 SOS inhibition protein *psiB*) do not elicit such rearrangements (Baharoglu et al., 2010).

56 Plasmids comprise a wide diversity of autonomously replicating DNA molecules, and their level of
57 autonomy depends on the replication strategy. In Gram-negative bacteria the large majority of known
58 plasmids replicate via a uni- or bidirectional theta mechanism similar to that employed by circular
59 chromosomes (Kim et al., 2020). Replication starts at the plasmid origin of replication, *oriV*, and
60 proceeds from 5' to 3', and while the leading strand replicates continuously the lagging strand is
61 replicated discontinuously (as Okazaki fragments). This process is regulated and initiated by plasmid-
62 encoded factors, but involves the recruitment of parts of the host replication machinery, which are for
63 example involved in unwinding the DNA duplex, controlling supercoiling, processing primers, or
64 stabilizing single-stranded DNA. Some plasmids employ alternative replication mechanisms: rolling-
65 circle and strand displacement replication. Rolling-circle replication is more commonly found among,
66 but not restricted to, small plasmids from Gram-positive bacteria (Ruiz-Masó et al., 2015). This strategy

67 is initiated by the plasmid replication protein Rep binding and nicking a plasmid double-strand origin
68 of replication, that generates a free 3'-end to start leading-strand replication. Consequently, replication
69 of the plus and minus strand is uncoupled and proceeds in two steps. As replication of the plus strand
70 proceeds and DNA is unwound, the minus strand is displaced and covered with the single-stranded
71 DNA binding protein. Upon termination of plus-strand synthesis, the Rep protein is inactivated to
72 prevent sequential rounds of replication and the minus strand is released as a circular ssDNA
73 intermediate molecule. This intermediate is then also replicated as leading strand. This step depends on
74 the plasmid single-strand origin and on host-encoded enzymes. Lastly, the strand displacement
75 replication mechanism is characteristic of the IncQ plasmid family (Meyer, 2009; Loftie-Eaton &
76 Rawlings, 2011). This process is highly host-independent and responsible for the broad host range of
77 IncQ plasmids, which besides the replication initiation protein further encode their own helicase and
78 primase. Replication starts at *oriV*, which contains two single-strand initiation (*ssi*) sites, one in each
79 strand. The plasmid primase recognizes each of these sites and separately initiates replication of both
80 strands, which then will be sustained by the host DNA polymerase III. In this process both strands are
81 replicated as leading strands simultaneously (unlike in rolling-circle replication), although synthesis
82 from both *ssi* may not start exactly at the same time. As the replication forks progress, and the non-
83 replicated strands are displaced, the displaced DNA surrounding the origin remains single-stranded.

84 Plasmid replication, despite being (semi-)autonomous, is not without consequences for the host cell,
85 and the interaction between plasmid- and chromosome-encoded factors may lead to genetic conflicts.
86 Sequestration of the host DNA primase DnaG by the replication-initiation protein RepA of theta-
87 replicating plasmids can stall chromosomal replication forks, and the resulting unpaired ssDNA induces
88 the SOS response and ultimately delays bacterial growth rates (Ingmer et al., 2001). Likewise, similar
89 detrimental effects may result from interactions between plasmids and horizontally acquired accessory
90 helicases (San Millan et al., 2015; Loftie-Eaton et al., 2017), which may be involved in preventing
91 replication fork collisions that cause double-strand (ds) DNA breaks (Merrikh et al., 2012; Epshteyn et
92 al., 2014). These conflicts have however been shown to be resolved during plasmid-host co-evolution
93 (San Millan et al., 2015; Loftie-Eaton et al., 2017; Sota et al., 2010), which may then generally improve

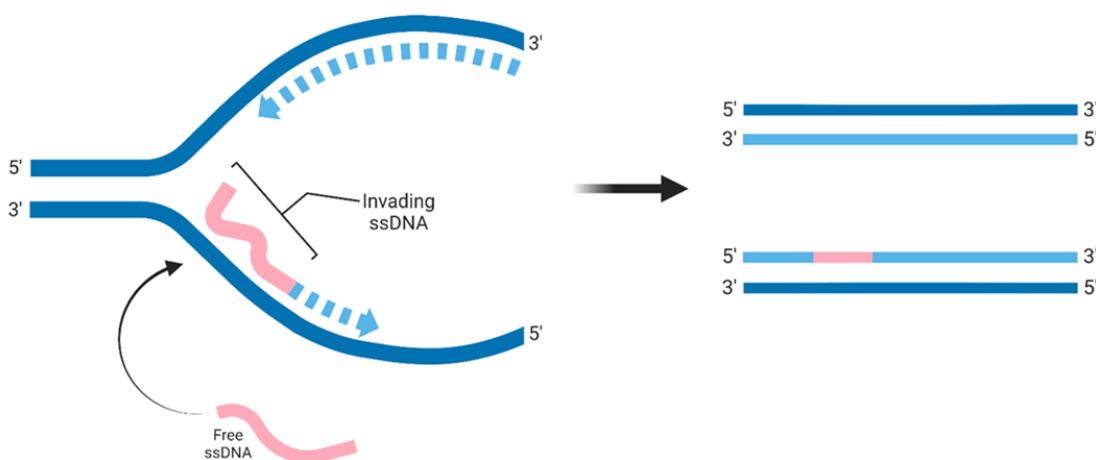
94 plasmid carriage (i.e., of distinct plasmids with which the bacterial host did not evolve with). For non-
95 theta replicating plasmids, not only the interaction with host factors, but also the accumulation of ssDNA
96 replication intermediates, lead to genetic instability and induction of the bacterial stress response
97 (Gigliani et al., 1993; del Solar et al., 1993; Bron et al., 1991; Zhang et al., 2019).

98 It was recently shown that ssDNA can be mutagenic through the Short-Patch Double Illegitimate
99 Recombination (SPDIR) pathway (Harms et al., 2016; Liljegren et al., 2024). SPDIR mutations are
100 caused by ssDNA from intragenomic or external sources (e.g., acquired in the course of horizontal gene
101 transfer), and those ssDNA molecules can anneal with transiently single-stranded chromosomal DNA
102 sections, such as lagging strands at replication forks. The annealing occurs at one or more
103 microhomologies, i.e. short stretches of near-identical DNA sequence and may contain mismatches and
104 gaps (extended microhomologies) in otherwise fully heterologous DNA. It is thought that these
105 annealed ssDNA molecules are extended and eventually integrated into the nascent strand during
106 genomic DNA replication (Fig. 1A), acting in effect as primers for Okazaki fragments (Harms et al.,
107 2016; Liljegren et al., 2024). The resulting mutations are nucleotide polymorphism clusters or
108 microindels of highly variable size and sequence, and the mutation patterns can be traced back to the
109 DNA sequence of the templating single-strand (Fig. 1B, C; Supplemental file S1).

110 SPDIR mutations have been found to be very rare (between 10^{-12} and 10^{-13} per locus and cell in the
111 gamma-proteobacterial model organism *Acinetobacter baylyi*; Liljegren et al., 2024). The SPDIR
112 mutation mechanism is probably widespread and potentially universal, and SPDIR mutations have been
113 identified retrospectively *in silico* in the Gram-positive *Streptococcus pneumoniae* and in the human
114 genome as well (Harms et al., 2016). However, due to the very low frequency and to challenges in
115 detecting microindel mutations (both experimental and bioinformatic), reports are lacking. Remarkably,
116 SPDIR frequencies can increase by orders of magnitude under genotoxic stress, in the course of natural
117 transformation (Harms et al., 2016), or through disruption of specific genome maintenance functions
118 (Harms et al., 2016; Liljegren et al., 2024).

119 The detection and quantification of SPDIR mutations is not trivial. In *A. baylyi*, our lab mainly exploits
120 a modified prototrophy marker gene (*hisC* encoding histidinol phosphate aminotransferase, essential

121 for histidine biosynthesis) to experimentally enrich for naturally occurring SPDIR mutants. In the
122 *hisC::'ND5i'* allele, the *hisC* open reading frame is interrupted by a 228-bp insert containing two
123 consecutive stop codons that prevent its expression (Overballe-Petersen et al., 2013; Harms et al., 2016;
124 Fig. 2). Cells carrying *hisC::'ND5i'* grow normally in rich medium (containing histidine) but cannot
125 form colonies on minimal medium unless supplemented with histidine. Only cells that have the two
126 stop codons removed in frame, or have acquired a new start codon in frame downstream of the stop
127 codons, become His⁺, and subsequent DNA sequencing of the mutant *hisC* allows the classification of
128 the mutation (typically, *in frame* deletions from three to 195 bp, and occasionally SPDIR mutations;
129 Fig. 1B, C).


130 In our recent study, we investigated the roles of ssDNA-binding proteins (DprA and RecA) on SPDIR
131 mutation frequencies in *A. baylyi* knock-out mutants (Liljegren et al., 2024), and one of our (unreported)
132 experimental approaches was the investigation of overexpression of ssDNA-binding functions in *A.*
133 *baylyi* using a broad host range overexpression plasmid vector. Unexpectedly, the carriage of the vector
134 interfered with our experimental setup and boosted the generation of SPDIR mutations in *A. baylyi*.
135 Here we investigated the impact of carriage of broad host-range plasmids on SPDIR mutations. Our
136 results demonstrate that specific plasmids can be mutagenic through direct or indirect interactions with
137 the host genome.

138

139

140

A

B

Parental ... ACT TCA TCC GTG ACT **T**CC **A**TC **A**GC **T**AG **T**GA **A**GG **CCC** **T**AC **CCC** **A**GT **A**TC **A**GC ...

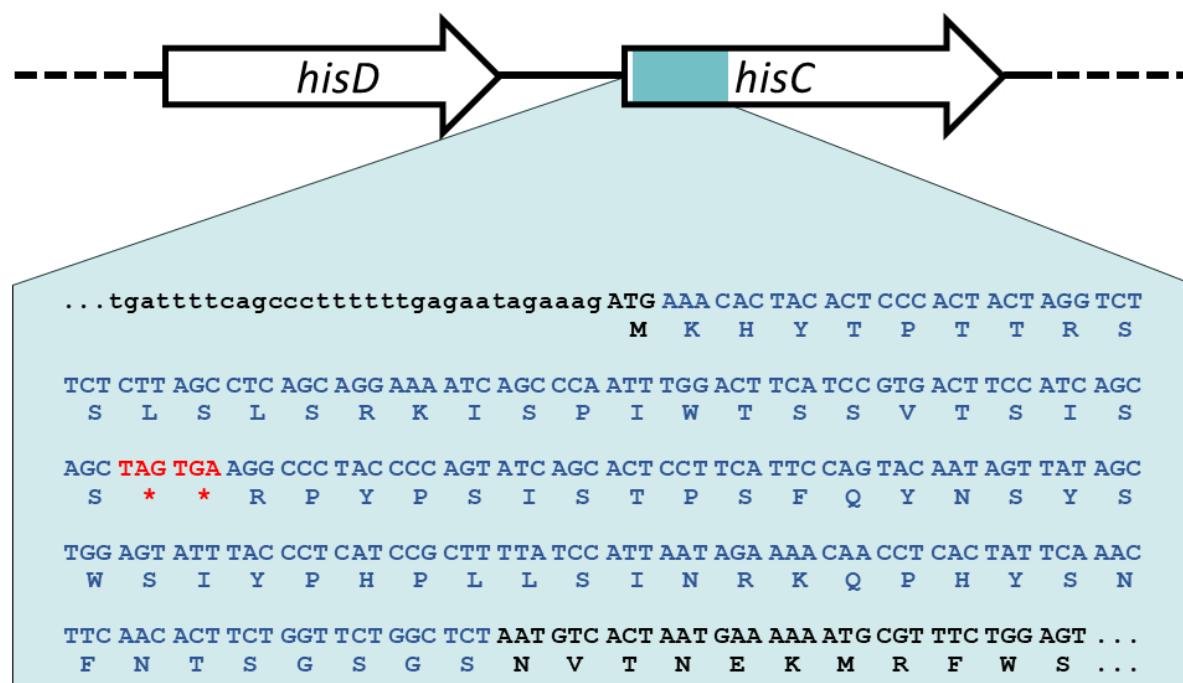
Mutant ... ACT TCA TCC GTG ACT **T**CC **A**CC **T**GC **A**GC **A**T **A**AGG **CCC** **T**AC **CCC** **A**GT **A**TC **A**GC ...

Templating ... ACC AAA AAA GCC CGT **T**CC **A**CC **T**GC **A**GC **A**T **A**AGG **CCC** **T**AC **ACG** **ATA** **A**CT **TTG** ...

C

Parental ... ACT TCA TCC GTG ACT **T**C **C**ATC **A**GC **T**AG **T**GA **A**GG **CCC** **T**AC **CCC** **A**GT **A**TC **A**GC ...

Mutant ... ACT TCA TCC GTG ACT **T**C **C**ATC **A**CC **G**CC **T**GC **A**C **G**CCC **T**AC **CCC** **A**GT **A**TC **A**GC ...


Templating ... ACC CGC CCA CCG CCA TT **C**ATC **A**CC **G**CC **T**GC **A**C **G**CCC **T**TG GGG CGC ACC TCA ...

141 **Fig. 1.** SPDIR mutation mechanism. A: a cytoplasmic DNA single-strand (pink) can anneal with a
142 transiently single-stranded section of the chromosome, e.g. with the discontinuously replicated strand
143 at a replication fork (left). The annealed strand is then extended in the course of DNA replication (light
144 blue dashed arrows) and finally gets integrated into the nascent daughter strand (right). After an
145 additional round of replication, the mutation is fixed. B, C: Examples of experimentally found SPDIR
146 mutations, shown as triple DNA alignments of the parental sequence (top), the resulting mutant
147 sequence (center) and the sequence of the templating DNA (bottom). The microhomologies (determined
148 by ΔG^0_{\min} calculations) are depicted in pink, except for the parental stop codons (red). The two
149 illegitimate crossover joints are highlighted in black. B: recurrent mutation A26 caused with templating
150 DNA from the *A. baylyi* chromosome; C: novel mutation MK45 caused with DNA originating from
151 plasmid pQLICE. Both mutations result in His⁺ reversion through replacement of the two stop codons
152 by the templating DNA. All SPDIR mutations found in this study are reported in Supplemental file S1.
153 Panel A was created using Biorender.com.

154

155

156

157 **Fig. 2.** Genomic detail of the *A. baylyi* *hisC*::'ND5i' detection allele for SPDIR mutations (Overballe-
158 Petersen et al., 2013; Harms et al., 2016). The 'ND5i' insert is shown in blue with DNA sequence and
159 codon details; the stop codons are indicated in red. Lowercase: non-coding DNA.

160

161

162 Materials and Methods

163 **Bacterial strains and plasmids.** The strains used in this study were derived from *A. baylyi* ADP1 and
164 were published previously. Strain AL4 [ADP1 *hisC*::'ND5i' *rpoB1* *alkM*::(*nptII*)' *tg4*]; Harms et al.,
165 2016] was used as wildtype, and strain KOM218 (AL4 *ΔrecJ* *ΔexoX*; Overballe-Petersen et al., 2013)
166 was employed for quantification of SPDIR events above the limit of detection.

167 The plasmids used in this paper are listed in Table 1. In addition, overexpression vectors derived from
168 pQLICE (Harms et al., 2007; Fig. 5A) were constructed as follows: the *dprA* (ACIAD0209), *recA*
169 (ACIAD1385) and *ssb* (ACIAD3449) genes of *A. baylyi* ADP1 (GenBank NC_005966) were amplified
170 with Phusion high-fidelity DNA polymerase using the primers *dprA-M2-fw/dprA-M2-rv*, *recA-*

171 f4/recA-r4 and ssb-f/ssb-r, respectively (Table 2), and inserted into the *SmaI* site of pQLICE, resulting
172 in the plasmids pQLICE-dprA, pQLICE-recA, and pQLICE-ssb, respectively. Cloning steps were
173 performed using *Escherichia coli* DH5 α (Hanahan, 1983). The plasmid constructions were verified by
174 PCR and by restriction analysis.

175 The pQLICE plasmid and its derivatives, as well as pRK415 and pBBR1MCS-3, were introduced into
176 the *A. baylyi* strains by natural transformation as published (Harms et al., 2007) and confirmed by PCR
177 (primers: strA-up3/strB-down3 for pQLICE; cat-r/lacZ-f3 for pBBR1MCS-3; F5/lacZ-f3 for pRK415;
178 Table 2). The remaining plasmids were transferred from *E. coli* MG1655 derivatives (Δ ara or Δ malF)
179 to *A. baylyi* by conjugation (Fig. 3A). Briefly, the donor strains were grown individually in shaking
180 culture tubes [1 mL Lysogeny Broth (LB) broth amended with an appropriate antibiotic; Table 1] at
181 37°C to stationary phase. The recipient strains were grown accordingly with 50 mg/L rifampicin at
182 30°C. The strains were harvested, washed and resuspended in fresh LB. 5 μ L of donor and 5 μ L of
183 recipient were added to 490 μ L of fresh LB, and the mating cultures were incubated at room temperature
184 overnight without shaking. 200 μ L of the mating cultures were plated on double-selective LB media
185 (50 mg/L rifampicin plus plasmid-specific selective antibiotics; Table 1). Colonies were restreaked on
186 appropriate medium and verified by host-specific (recA-f4/recA-r4 targeting the *A. baylyi* *recA* gene)
187 and by plasmid-specific PCR (IncA/C2-f and IncA/C2-r for pK71-77-1-NDM and R16a; bla-int-f/bla-
188 ORF-r for R16a; and intF2/INCINTR targeting the different integrons of pK71-77-1-NDM, RN3 and
189 R388, respectively). All primers are listed in Table 2.

190 **Table 1:** List of plasmids.

Plasmid	Antibiotic selection [mg/L]	Incompatibility group	Replication mechanism	Size [kbp]	Accession number
pQLICE	streptomycin 40	IncQ	strand displacement (Sakai & Komano, 1996))	10.546	EF189157
pBBR1MCS-3	tetracycline 10	pBBR	theta? (Antoine & Locht, 1992)	5.228	XXU25059
pRK415	tetracycline 10	IncP-1 α	theta (Johnson, 2018)	10.690	EF437940
R16a	kanamycin 25	IncA/C ₂	theta (Johnson & Lang, 2012; Johnson, 2018)	173.094	KX156773
pK71-77-1-NDM	ampicillin 100	IncA/C ₂	theta (Johnson & Lang, 2012; Johnson, 2018)	145.272	CP040884
RN3	tetracycline 10	IncN	theta (Johnson, 2018)	54.205	FR850039
R388	trimethoprim 250	IncW	theta (Johnson, 2018)	33.913	NC_028464

191

192 **Table 2:** List of primers.

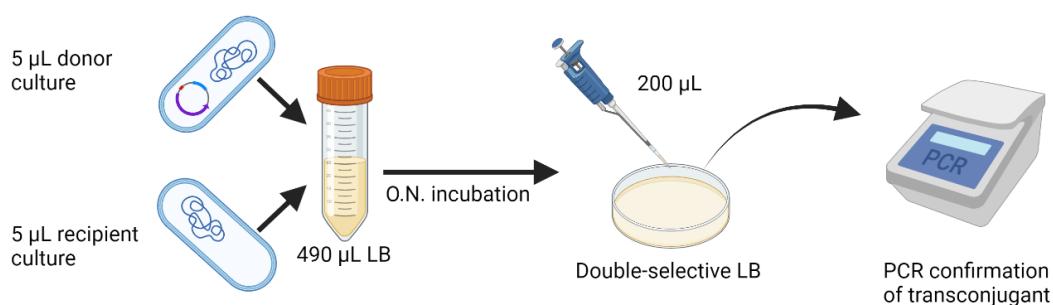
Primer name	DNA sequence	Reference
dprA-M2-fw	CCACCTCGTGAAGAGGGATTAACAC	This study
dprA-M2-rv	TCATTGTGAACCTTAATAGGGGCTT	This study
recA-f4	ACAGTTTGAGGTTGTAAGATGG	This study
recA-r4	CATTGGCGTTAACATTGGATGC	This study
ssb-f	TAGGAAGAAAACAGCTCATG	This study
ssb-r	CTAAAATGGTAAGTCATCGTCT	This study
strA-up3	CGACGGGCTGGCGGTATTGG	This study
strB-down3	ATGTGTTCCCAGGGGATAGG	This study
cat-r	GTAGCACCAAGCGTTAACCG	Domingues et al., 2012
lacZ-f3	CTGGCCGTCGTTTACAACG	This study
F5	CCGTAAAAAGGCCCGCGTTGC	This study
IncA/C2-f	GAGAACCAAAGACAAAGACCTGGA	Gama et al., 2020
IncA/C2-r	ACGACAAACCTGGATTGCTTCCTT	Gama et al., 2020
bla-int-f	GTAAGATCCTTGAGAGTTTCG	Fulsundar et al., 2014
bla-ORF-r	TTACCAATGCTTAATCAGTGA	Fulsundar et al., 2014
intF2	TCCGCCAGGATTGACTTGCG	Starikova et al., 2012
INCINTR	GTCTAAGAGCGGCGCAATAC	Domingues et al., 2012
hisC-ins-f	GACAAGCCATTTTATTACACC	Overballe-Petersen et al., 2013
hisC-ins-r	CAATTACGACTACACGATCG	Overballe-Petersen et al., 2013

193

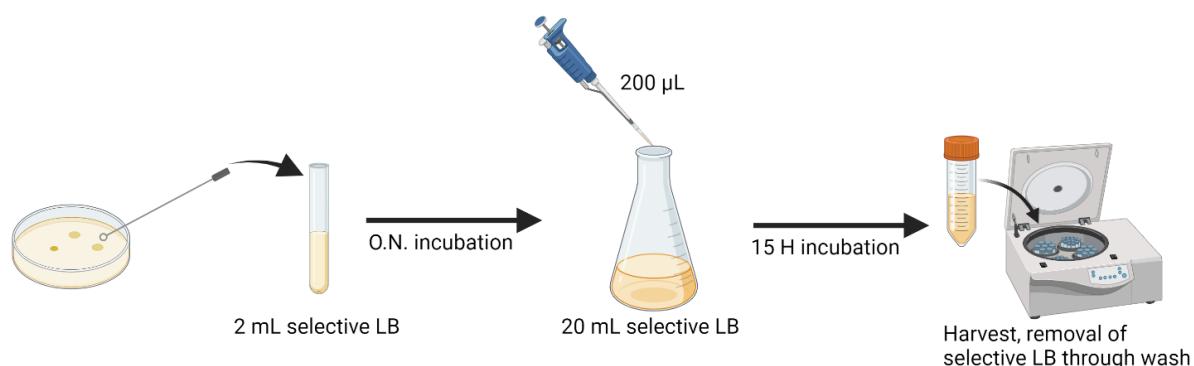
194

195 **Mutation assays.** The mutation assays were conducted as reported previously (Liljegren et al., 2024)

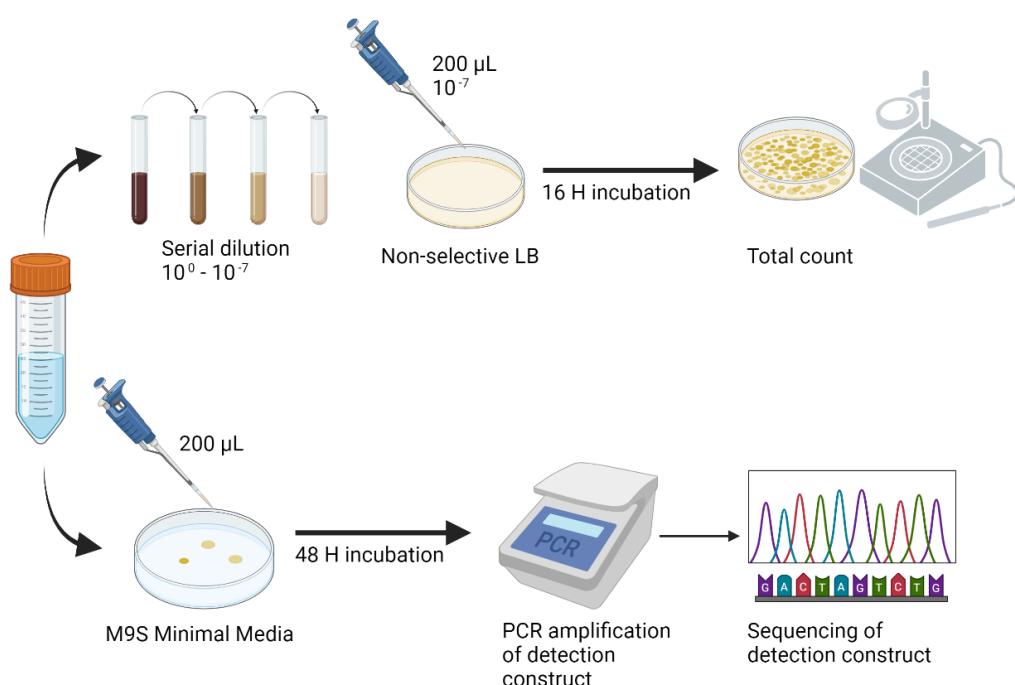
196 and illustrated in Fig. 3B. In brief, *A. baylyi* starter cultures were grown in LB overnight in a shaker (all


197 incubation steps were conducted at 30°C). From each starter culture, a single 20 mL-culture was
198 inoculated in LB 1:100 and incubated with aeration for 15 hours. The cells were harvested, washed
199 twice with ice-cold phosphate-buffered saline (PBS) and resuspended in 2 ml PBS. The cells were then
200 distributed on M9 minimal medium supplemented with 10 mM succinate (M9S; 200 μ l cells per plate;
201 for His⁺ mutant titer determination) and in appropriate dilution on LB (cfu titer determination) (Fig.
202 3C). The plates were incubated for 16 (LB) or 48 hours (M9S). Next, the total cfu and His⁺ titers were
203 determined and the His⁺ frequencies were calculated as mutant titer per cfu titer, and for each group of
204 parallel experiments, we determined the median His⁺ frequency. When strains carried plasmids, both
205 cultures (starter culture and 20 mL 15-hour growth cultures) were amended with selective antibiotics at
206 concentrations given in Table 1 unless indicated otherwise. For some control experiments, 1 mg/L
207 streptomycin (below minimal inhibitory concentration) was added to plasmid-free cultures.

208


209

210


A

B

C

211 **Fig. 3.** Overview of experimental methodology. **A:** Conjugation assay for strain constructions. Donor
212 strains (plasmid-carrying *E. coli*) were mated with recipient *A. baylyi* strains overnight and then plated

213 on double-selective media. Isolates were purified and confirmed by PCR for plasmid DNA and for *A.*
214 *baylyi* genomic DNA. **B:** Mutation assay. *A. baylyi* strains with or without plasmids were pre-grown for
215 16-18 hours, diluted 1:200, and grown in 20 ml cultures under aeration for 15 hours. Plasmid-carrying
216 strains were grown under appropriate antibiotic selection. The cells were then washed twice in PBS
217 and resuspended in 2 mL PBS. **C:** His⁺ frequency determination: 20 µL of the washed cells of step B
218 were diluted 10⁻⁷, plated on LB and incubated for 15 hours (total cfu determination). The rest of the
219 cells (~2 ml) were evenly distributed on ten M9S minimal medium plates (selective for His⁺ mutants)
220 and incubated 48 hours. Colonies were restreaked on M9S, and the *hisC* allele of each isolate was
221 amplified and Sanger-sequenced. Mutations were called using pairwise BLAST. Created with
222 Biorender.com.

223
224
225 **SPDIR frequency determination.** The His⁺ colonies were restreaked on M9S medium and grown for
226 48 hours at 30°C. From each isolate, the recombinant section of the *hisC::'ND5i'* allele was amplified
227 by PCR using DreamTaq (Thermo Scientific) and primers hisC-ins-f/hisC-ins-r (Table 2), purified
228 according to the Exo-SAP procedure (NEB), and Sanger-sequenced by Azenta Life Services GenWiz
229 (sequencing primer: hisC-ins-f). SPDIR mutations were clearly identified and separated from other His⁺
230 mutations (typically, small deletions ranging from 3 to 195 bp in size) with pairwise BLAST against
231 the *A. baylyi* genome (GenBank: NC_005966) and, when appropriate, the plasmid genomes (GenBank
232 column in Table 1) as subject. When identical mutations were identified from the same experiment, the
233 mutants were conservatively regarded as siblings and were scored as a single mutation event. For
234 SPDIR mutations, we identified the templating DNA sections (from the *A. baylyi* chromosome or from
235 the plasmids) and confirmed the SPDIR mechanism by calculating the minimal Free Energy of
236 Hybridization (using the nearest neighbour and mismatch/gap penalty parameters from Wetmur, 2006)
237 at each illegitimate crossover joint. All SPDIR mutations identified in this study are listed in
238 Supplemental file 1. SPDIR frequencies were determined as number of SPDIR events divided by the
239 number of all His⁺ events, multiplied with the overall median His⁺ frequency (“calculated SPDIR

240 frequencies”). For statistical evaluations of experiments with the *A. baylyi* $\Delta recJ \Delta exoX$ strain, we
241 additionally calculated the “median SPDIF frequencies” (regardless of His⁺ events).

242

243 **Plasmid stability determination.** Each *A. baylyi* KOM218 strain containing plasmids was inoculated
244 from a single culture in 2 mL LB and grown for 15 hours at 30°C without antibiotics. The cells were
245 harvested, diluted 10⁻⁷ in PBS, and 200 μ L were plated out on LB with and without selective antibiotic
246 (Supplemental Table S1). Colonies were counted after incubating the plates for 16 hours at 30°C. The
247 plasmid stabilities were determined as colony counts on selective per non-selective medium
248 (Supplemental Table S1).

249

250 **Statistical Analysis.** Statistical analyses were performed in R (R Core Team. 2018) version 4.3.2.
251 Package PMCMRplus (Pohlert. 2023) was required for the Dunn many-to-one post hoc test
252 (kwManyOneDunnTest). Graphs were produced with packages ggplot2 (Wickham, 2016), patchwork
253 (Pedersen, 2020), ggExtra (Attali & Baker, 2023), and rcartocolor (Nowosad, 2023).

254

255

256 **Results**

257 **The overexpression vector pQLICE stimulates SPDIF**

258 We cloned each of the *dprA*, *recA* and *ssb* genes of *A. baylyi* separately into the IncQ plasmid broad
259 host range expression vector pQLICE and inserted the resulting plasmids individually into an *A. baylyi*
260 $\Delta recJ \Delta exoX hisC::ND5i'$ strain to investigate how overexpression of each of these genome
261 maintenance functions affected suppression of microindel mutations caused by SPDIF. Unexpectedly,
262 SPDIF frequencies were increased up to tenfold compared with the plasmid-free *A. baylyi* counterpart
263 (Table 3). We repeated the experiments with the empty pQLICE vector and found that its presence
264 increased the calculated SPDIF frequencies 3.5-fold (Table 3). Comparing the median SPDIF
265 frequencies (Table 3) revealed that the increase was significant (Wilcoxon rank sum test, $p = 0.004$).

266 Moreover, with pQLICE, we found that more than half of the individual His⁺ mutations were caused by
267 SPDIR. In contrast, in absence of the plasmid, the fraction of SPDIR mutations was less than one third
268 (Table 3).

269 We repeated the experiments in the *recJ⁺ exoX⁺* ("wildtype") *A. baylyi hisC::'ND5i'* strain. In this strain,
270 SPDIR frequencies are generally about 30-fold lower than in a $\Delta recJ \Delta exoX$ background (Harms et al.,
271 2016; Liljegren et al., 2024), precluding significance statements due to zero inflation, but the tendencies
272 were very similar to the results observed in the $\Delta recJ \Delta exoX$ strain. Without plasmid, the median His⁺
273 frequency was the lowest, and no SPDIR mutant was recovered. With pQLICE or its derivatives, the
274 His⁺ frequencies were at least 2-fold higher, and altogether three SPDIR events were observed (Table
275 4).

276 pQLICE-carrying strains were grown with 40 mg/L streptomycin to prevent plasmid loss, while
277 plasmid-free strains were not exposed to antibiotics. We performed control experiments to examine
278 whether the increased SPDIR frequencies were due to plasmid carriage or to antibiotic treatment. We
279 cultured the *A. baylyi ΔrecJ ΔexoX* strain at subinhibitory concentrations of streptomycin (1 mg/L) and
280 obtained a median SPDIR frequency of 6.1×10^{-11} (n = 7) that was not significantly different from the
281 experiment without antibiotic (Wilcoxon rank sum test, p = 0.75). Furthermore, experiments with
282 pQLICE-carrying *A. baylyi ΔrecJ ΔexoX* performed in the absence of selection for the plasmid revealed
283 a median SPDIR frequency of 1.4×10^{-10} (n = 9). Despite high plasmid loss (approximately 40%,
284 Supplemental Table S1) the absence of selection did not significantly affect the median SPDIR
285 frequency compared to streptomycin selection (Wilcoxon rank sum test, p = 0.30). In addition, we
286 recovered one SPDIR event in eight experiments with wildtype *A. baylyi hisC::'ND5i'* carrying pQLICE
287 without selection. In contrast, in seven experiments no SPDIR events were detected with plasmid-free
288 *A. baylyi* wildtype when grown with subinhibitory concentrations of streptomycin. Altogether, our
289 results show that pQLICE carriage increases SPDIR frequencies in *A. baylyi*, independently of host
290 genotype and antibiotic treatment.

291

292

293 **Table 3.** SPDIR frequencies of *A. baylyi* Δ *recJ* Δ *exoX* *hisC*::'ND5i' with and without pQLICE plasmid derivatives.

Plasmid vector	Median His ⁺ frequency	SPDIR event per His ⁺ event	Calculated SPDIR frequency	Fold change	Median SPDIR frequency (± interquartile range)*	n
-	2.5×10^{-10}	32% (43/135)	8.0×10^{-11}	=1	$7.6 \times 10^{-11} \pm 1.5 \times 10^{-10}$	39
pQLICE	5.4×10^{-10}	52% (90/172)	2.8×10^{-10}	3.5×	$2.5 \times 10^{-10} \pm 6.3 \times 10^{-10}$	26
pQLICE-dprA	1.5×10^{-9}	59% (42/71)	8.0×10^{-10}	10×	$8.5 \times 10^{-10} \pm 7.7 \times 10^{-10}$	12
pQLICE-recA	1.1×10^{-9}	47% (40/86)	5.2×10^{-10}	6.5×	$5.4 \times 10^{-10} \pm 6.0 \times 10^{-10}$	12
pQLICE(ssb)	1.1×10^{-9}	45% (25/56)	4.8×10^{-10}	6.0×	$4.0 \times 10^{-10} \pm 8.7 \times 10^{-10}$	13

294 * values estimates from N experiments as indicated in Suppl. Fig. S2A.

295

296 **Table 4.** SPDIR frequencies of *A. baylyi* *hisC*::'ND5i' with and without pQLICE plasmid derivatives.

Plasmid vector	Median His ⁺ frequency	SPDIR event per His ⁺ event	Calculated SPDIR frequency	n
-	5.7×10^{-11}	<2.5% (0/39)	< 1.8×10^{-12}	34
pQLICE	2.2×10^{-10}	3.6% (2/56)	7.7×10^{-12}	26
pQLICE-dprA	2.7×10^{-10}	<4.0% (0/25)	< 1.1×10^{-11}	12
pQLICE-recA	2.0×10^{-10}	<4.2% (0/24)	< 8.1×10^{-11}	13
pQLICE(ssb)	1.2×10^{-10}	3.4% (1/29)	4.2×10^{-12}	13

297

298

299 **Distinct plasmids modulate SPDIR differently**

300 The results with pQLICE led us to test six additional broad host-range plasmids (Table 1) to evaluate
301 their effect on SPDIR mutation frequencies, and the results are summarized in Table 5. We observed
302 SPDIR mutants in 15 out of 17 experiments (88%) conducted with *A. baylyi* $\Delta recJ \Delta exoX$ strain carrying
303 the IncP-1 RK2-derived cloning vector pRK415, demonstrating a higher ratio compared to its plasmid-
304 free counterpart (23 out of 39; 59%). Concomitantly, carriage of pRK415 resulted in a calculated SPDIR
305 frequency of 1.2×10^{-9} , indicating a 17-fold increase relative to the plasmid-free strain. pRK415 also
306 appears to stimulate SPDIR in the wildtype strain because we detected a SPDIR mutant in the presence,
307 but not in the absence of pRK415. Therefore, we conclude that the effect of increasing the frequency of
308 SPDIR mutations is not restricted to pQLICE.

309 Carriage of plasmids pBBR1MCS-3, R16a and pK71-77-1-NDM resulted in small (approximately two-
310 fold) changes in the calculated SPDIR frequency of the *A. baylyi* $\Delta recJ \Delta exoX$ strain, and no SPDIR
311 mutants were observed when the wildtype strain carried these plasmids (Table 5). Thus, these three
312 plasmids likely have no quantifiable effects on SPDIR.

313 In contrast, carriage of the IncN plasmid RN3 decreased the calculated SPIDR frequency of *A. baylyi*
314 $\Delta recJ \Delta exoX$ more than 10-fold, and in the wildtype no His⁺ mutants were encountered in six
315 experiments. The IncW plasmid R388 exhibited an ambiguous behaviour as SPDIR mutants were
316 detected in experiments with the wildtype strain but the calculated SPDIR frequency of *A. baylyi* $\Delta recJ$
317 $\Delta exoX$ decreased roughly four-fold (Table 5).

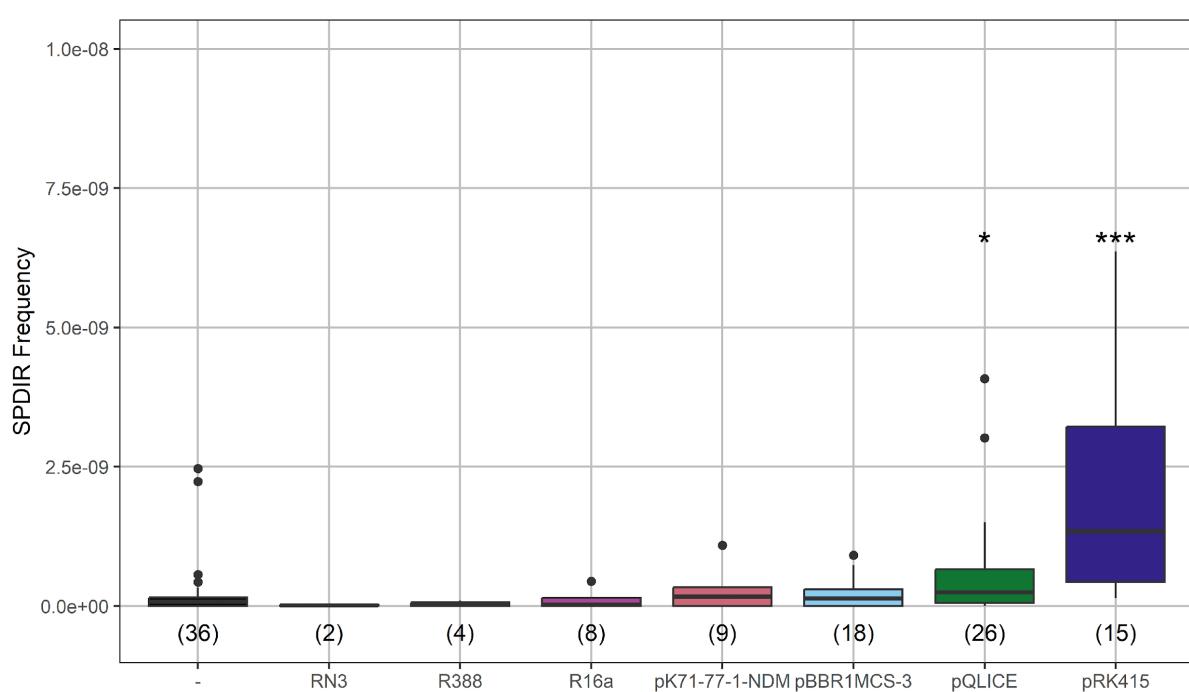
318 We further calculated the median SPDIR frequencies for the plasmid-carrying derivatives of *A. baylyi*
319 $\Delta recJ \Delta exoX$. A comparison against the plasmid-free strain revealed significant differences (Kruskal-
320 Wallis rank sum test, d.f. = 7, $p = 4.61 \times 10^{-6}$, followed by Dunn many-to-one post hoc test) for plasmids
321 pQLICE and pRK415 ($p < 0.02$, Fig. 4). This result strongly suggests that the effect on SPDIR is
322 plasmid-specific, and that both pQLICE and pRK415 increase SPDIR in *A. baylyi* $\Delta recJ \Delta exoX$.

323

324

Table 5. SPDIR frequencies of *A. baylyi hisC::'ND5i'* strains carrying plasmids.

Plasmid	Relevant <i>A. baylyi</i> genotype	Median His ⁺ frequency	SPDIR event per His ⁺ event	Calculated SPDIR frequency	fold change relative to $\Delta recJ \Delta exoX$	Median SPDIR frequency (± interquartile range)*	n
pRK415	$\Delta recJ \Delta exoX$	2.2×10^{-9}	53% (49/93)	1.2×10^{-9}	17×	$1.3 \times 10^{-9} \pm 2.8 \times 10^{-9}$	17
pRK415	wildtype	1.3×10^{-10}	4% (1/25)	5.0×10^{-12}			11
pBBR1MCS-3	$\Delta recJ \Delta exoX$	6.7×10^{-10}	30% (26/87)	2.0×10^{-10}	2.5×	$1.4 \times 10^{-10} \pm 3.1 \times 10^{-10}$	22
pBBR1MCS-3	wildtype	3.0×10^{-10}	<1% (0/100)	$<3.0 \times 10^{-12}$			21
R16a	$\Delta recJ \Delta exoX$	4.3×10^{-10}	30% (6/20)	1.3×10^{-10}	1.6×	$2.4 \times 10^{-11} \pm 1.5 \times 10^{-10}$	10
R16a	wildtype	2.3×10^{-10}	<7% (0/14)	$<1.7 \times 10^{-11}$			10
pK71-77-1-NDM	$\Delta recJ \Delta exoX$	6.4×10^{-10}	27% (8/30)	1.7×10^{-10}	2.1×	$1.7 \times 10^{-10} \pm 3.3 \times 10^{-10}$	10
RN3	$\Delta recJ \Delta exoX$	1.4×10^{-11}	50% (1/2)	7.0×10^{-12}	0.09×	$1.4 \times 10^{-11} \pm 2.8 \times 10^{-11}$	6
RN3	wildtype	$<4.0 \times 10^{-12}$	n.a.	n.a.			6
R388	$\Delta recJ \Delta exoX$	1.0×10^{-10}	19% (3/16)	1.9×10^{-11}	0.24×	$2.5 \times 10^{-11} \pm 7.5 \times 10^{-11}$	8


R388	wildtype	4.2×10^{-11}	20% (1/5)	8.4×10^{-12}			6
------	----------	-----------------------	-----------	-----------------------	--	--	---

326 n.a., not applicable

327 * values estimates from n experiments as indicated in Fig. 4.

328

329

330 **Fig. 4.** Effect of plasmid carriage on SPDIF in *A. baylyi* *ΔrecJ ΔexoX*. SPDIF frequencies were
331 determined only for experiments where His⁺ mutants were detected. The number of experiments is
332 indicated in parenthesis for each plasmid; - indicates the plasmid-free strain. Significant results of a
333 Kruskal-Wallis rank sum test followed by Dunn many-to-one post hoc test (with the plasmid-free strain
334 as reference group) are indicated as * and *** for p = 0.019 and p = 1.89 × 10⁻⁶.

335

336

337

338 **pQLICE but not pRK415 adds to the pool of templating DNA for SPDIF mutations**

339 In this study, we recovered 114 different SPDIF mutations, unique or recurrent (Supplemental files S1
340 and S2). Of these mutations, 101 were produced with chromosomal DNA and 13 with DNA originating
341 from plasmids. Among the plasmids that we found to significantly stimulate SPDIF mutations, we
342 recovered 12 SPDIF mutations formed with ectopic DNA from pQLICE but none from pRK415. In
343 addition, one SPDIF was formed with DNA from pK71-77-1-NDM.

344 The chromosome of *A. baylyi* ADP1 (3.6 Mbp; Barbe et al., 2004) is a much larger resource for
345 templating DNA than the extrachromosomal plasmids (pQLICE: 10.5 kbp; pRK415: 10.7 kbp; pK71-
346 77-1-NDM: 145 kbp; Table 6). We calculated the molecular frequency (density) of SPDIR events
347 formed with the different genomic molecules in relevant *A. baylyi* $\Delta recJ \Delta exoX$ strains. SPDIR with
348 templating pQLICE DNA resulted in a density of 6.6×10^{-2} SPDIR mutations per experiment per kbp of
349 pQLICE DNA. This value exceeds the density of SPDIR events formed with templating chromosomal
350 DNA in the same experiments (7.7×10^{-4}) by 85-fold, and in the plasmid-free *A. baylyi* control
351 experiments by 214-fold (Table 6). For SPDIR mutations templating with pK71-77-1-NDM DNA
352 (altogether one SPDIR recovered), the density is somewhat higher than the density with chromosomal
353 DNA (Table 6). With pRK415 DNA, the SPDIR-causing density was below detection limit (Table 6).
354 Taken together, carriage of both pQLICE or pRK415 increase the SPDIR frequency. However only with
355 pQLICE, the plasmid DNA is frequently used as templating source for SPDIR mutations, exceeding the
356 relative usage of chromosomal templating DNA. Even when accounting for an elevated plasmid copy
357 number (10 to 12 for IncQ plasmid RSF1010; Meyer 2009), pQLICE DNA produces at least seven
358 times more SPDIR mutations than the chromosome. Moreover, the differences between pQLICE and
359 pRK415 suggest different mechanisms for causing SPDIR mutations.

360

361

362

363

364 **Table 6.** Templating density of different molecules in *A. baylyi* $\Delta recJ \Delta exoX hisC::'ND5i'$ with and
365 without plasmids

Plasmid carriage	templating DNA [bp]	templating density [events per kbp per experiment]	SPDIR events	n
none	chromosome (3,598,621)	3.1×10^{-4}	43	39
pQLICE	pQLICE (10,546)	6.6×10^{-2}	18	26
pQLICE	chromosome (3,598,621)	7.7×10^{-4}	72	26
pK71-77-1-NDM	pK71-77-1-NDM (145,272)	6.9×10^{-4}	1	10
pK71-77-1-NDM	chromosome (3,598,621)	1.9×10^{-4}	7	10
pRK415	pRK415 (10,690)	$<5.5 \times 10^{-3}$	0	17
pRK415	chromosome (3,598,621)	7.0×10^{-4}	43	17

366

367

368

369

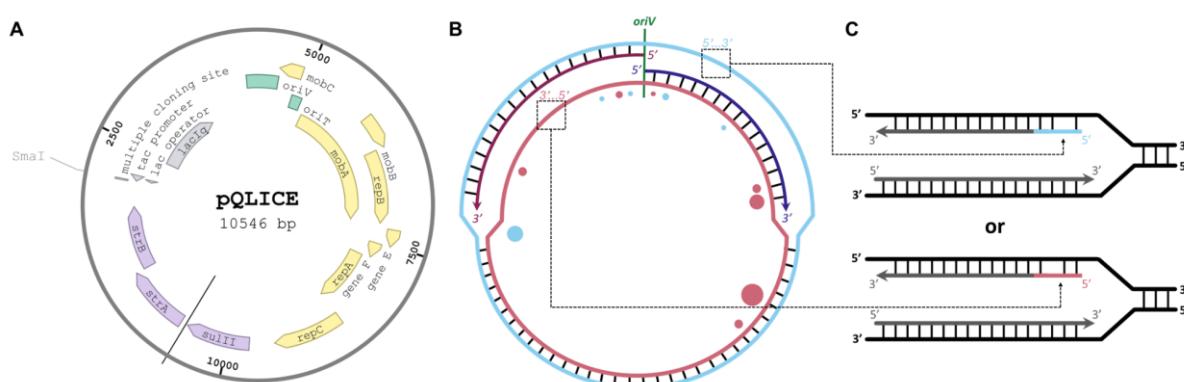
370 **The replication mechanism of pQLICE can explain the contribution to SPDIR mutations**

371 pQLICE (Fig. 5A) belongs to the IncQ family of plasmids (Meyer. 2009) which replicate via the
372 characteristic strand displacement mechanism: both DNA strands (plus and minus) are replicated as
373 leading strands starting from the *oriV* (Fig. 5B). As a result, the displaced strands spend part of their life
374 cycle as single-strand until they are replicated as final stretches of the leading strands, and the single-
375 stranded intermediates are thought to be the substrates for SPDIR mutations (Fig. 5C).

376 We investigated whether we could explain the observed pattern of templating DNA from pQLICE (filled
377 circles in Fig. 5B). In wildtype *A. baylyi* grown under benign conditions, templating DNA for SPDIR
378 mutations preferentially stemmed from a chromosomal section around the terminus of replication
379 (Harms et al., 2016), and we investigated whether the templating segments of pQLICE-derived plasmids
380 displayed a comparable bias. We found that half of the unique SPDIR templates originated instead from
381 a region surrounding the plasmid origin of replication (*oriV*) with apparent diminishing occurrence as
382 the distance to *oriV* increased (Fig. 5B, Suppl. Fig. S1). This result alone, however, cannot explain the
383 full mutation pattern observed.

384 We hypothesized that the time each molecule remained single-stranded contributed to the SPDIR
385 events. Each leading strand is replicated 5' to 3', and therefore the section 3'-oriented of *oriV* is exposed
386 as ssDNA longest. However, the templating ssDNA sources are distributed equally over the 3'- and 5'-
387 segments of *oriV*, suggesting no preference for the time a DNA was rendered as single-strand.

388 The formation of SPDIR mutations depends on the stability of hybridization of complementary DNA
389 single-strands at one or more (extended) microhomologies (Harms et al., 2016). As a proxy for the
390 stability of annealed single-strands, we calculated the minimal Free Energies of Hybridization (ΔG^0_{\min})
391 for each SPDIR event (Supplemental File S1). We found three hotspots for SPDIR events (identical
392 mutations found more than five times in 72 independent experiments), and these were among the group
393 with the lowest ΔG^0_{\min} values reported here (indicating highest hybridization affinity; Suppl. Fig. S1).
394 While the ΔG^0_{\min} values alone cannot explain the frequency of the SPDIR events generated with DNA
395 from pQLICE-derived vectors, there is a significant correlation between the Free Energies of
396 Hybridization and the occurrence of SPDIR events (Spearman's rank correlation, $p = 0.02$, $\rho = -0.65$),
397 suggesting ΔG^0_{\min} likely as a contributing factor.


398 In summary, this result confirms our previous experimental observations that ssDNA can cause SPDIR
399 mutations (Harms et al., 2016; Liljegren et al., 2024). While single-stranded DNA molecules are
400 normally rare in healthy cells, they are frequently generated as part of the replication cycle of IncQ
401 plasmids. This trait can explain the observed mutagenicity of pQLICE for SPDIR mutations.

402

403

404

405

406 **Fig. 5.** Illustration of pQLICE strand-displacement replication and mechanistic implication for SPDIR
407 formation. A. Genetic map of pQLICE. Genes/loci are color coded as: green, origins (*oriV*, replication
408 at the top of the map; *oriT*, transfer); yellow, replication and mobilization; purple, antibiotic resistance;
409 gray, cloning/expression. Black line indicates the start of the plasmid annotation (GenBank: EF189157).
410 The map was drawn with Benchling [Biology Software] (2024), retrieved from <https://benchling.com>.
411 B. Model of the strand-displacement replication mechanism of pQLICE. Circles indicate the positions
412 of the experimentally found templating ssDNA segments; the colors represent the respective DNA
413 strands templating the SPDIR mutation (light blue: plus strand; light pink: minus strand) and the size is
414 proportional to the count of independent events. C. Chromosomal replication fork; the dashed arrows
415 from B to C indicate the ssDNA from pQLICE (light blue: plus strand; light pink: minus strand)
416 annealing with the discontinuously replicated strand. The annealed strand is then integrated in the
417 nascent discontinuously replicated strand, resulting in a chromosomal SPDIR mutation.

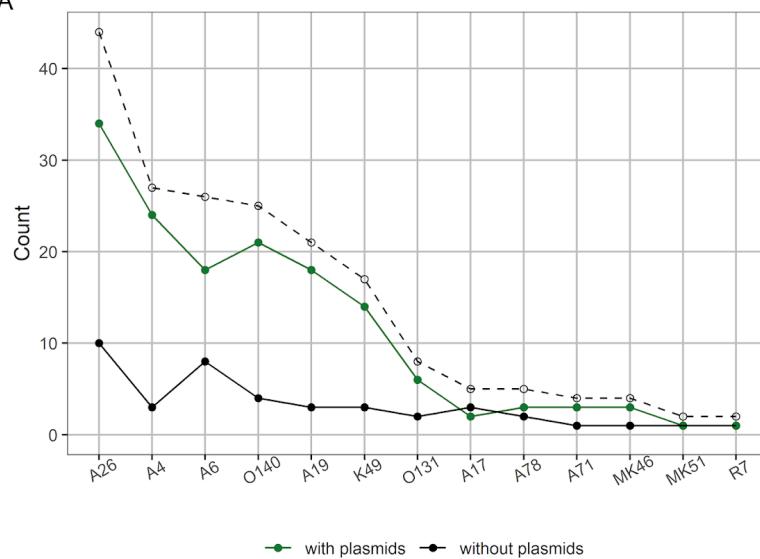
418

419

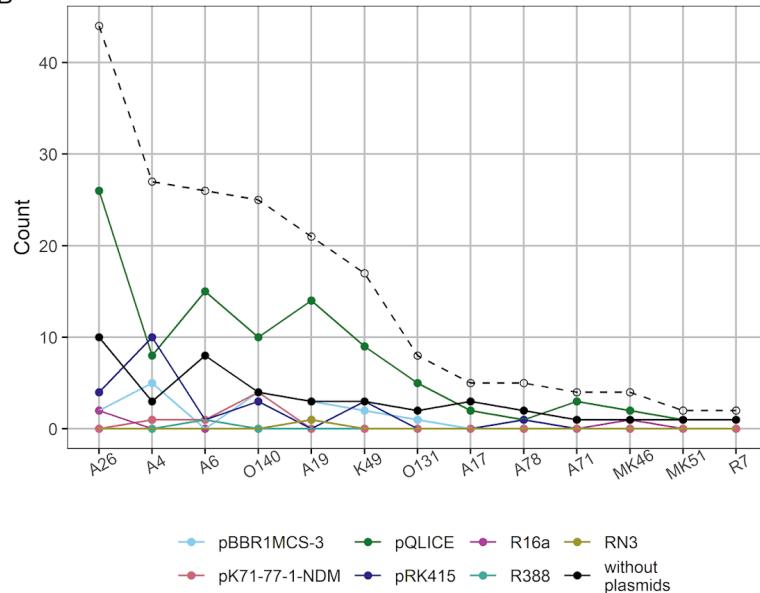
420

421 **Plasmid-carriage does not influence the templating chromosomal DNA pattern for SPDIR**

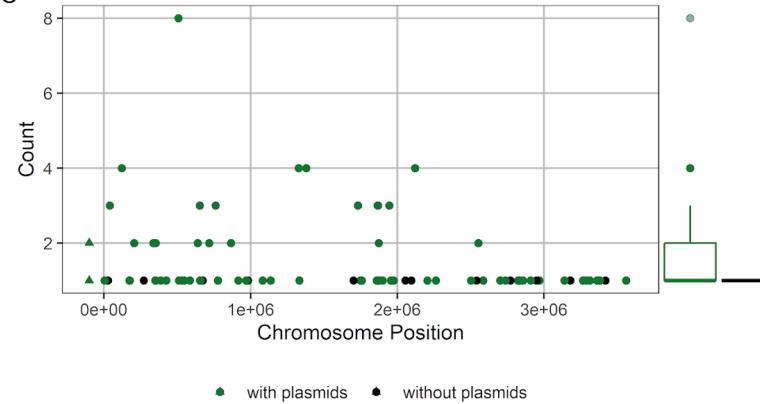
422 We finally investigated whether plasmids could affect the patterns of SPDIR events generated with
423 chromosomal DNA. When considering all experiments, we observed 101 different events generated
424 with chromosomal DNA (a total of 375 individual SPDIR mutation events), of which 13 were observed
425 both in experiments with and without plasmids. The occurrence of these events follows similar trends
426 among experiments (Fig. 6A). The same trend is observed with pQLICE-derived vectors that contribute
427 to most of the events observed in the presence of plasmids (Fig. 6B), and is independent of the gene
428 cloned (Suppl. Fig. S2B). The 12 unique events generated with chromosomal DNA in the absence of
429 plasmids are very rare (median = 1), as are those generated in the presence of plasmids (median = 1)
430 (Fig. 6C). In conclusion, although plasmids modulate the frequency of SPDIR, the source of templating
431 chromosomal DNA used in recombination remains largely unchanged.


432

433



434


A

B

C

435 **Fig. 6.** Number of SPDIR events detected in *A. baylyi* independently of plasmid carriage. A: SPDIR
436 events in experiments with vs. without plasmids. B: SPDIR events among experiments with different
437 plasmids. The x-axis in A and B denotes the individual SPDIR mutations found both in strains with and
438 without plasmids. In both A and B the dashed line indicates the total number of events. C: SPDIR events
439 only detected either in experiments with or without plasmids. Triangles at negative chromosome
440 positions indicate rRNA loci (seven different loci in *A. baylyi* that cannot be located precisely).

441

442

443

444 **Discussion**

445 Plasmids have an important role in bacterial adaptation and the present work expands on the means of
446 how these elements accelerate bacterial evolution. Here, we demonstrate experimentally that carriage
447 of plasmid DNA can be directly mutagenic to the host cell. We observed this finding by investigating
448 the role of plasmids in Short-Patch Double Illegitimate Recombination (SPDIR), exploiting the ability
449 of our model organism *A. baylyi* to revert to a His⁺ phenotype through microindel mutations caused by
450 ssDNA. This mutagenic effect is categorically different from mutagenic traits encoded by plasmids, or
451 from increased mutability occurring during transfer (see introduction).

452 According to Harms et al. (2016), SPDIR mutations occur by ssDNA molecules in the cytoplasm
453 annealing at (simple or extended) microhomologies with the lagging strand at a replication fork. While
454 experimental evidence for this model exists for DNA taken-up from the environment during natural
455 transformation (confirmed with sequence-tagged heteroduplex DNA; Harms et al., 2016), the sources
456 for SPDIR events formed with intragenomic DNA remained unclear. Our study with pQLICE strongly
457 indicates that ssDNA produced in the course of DNA replication can cause SPDIR mutations directly,
458 similar to taken-up DNA single-strands. The characteristic strand-displacement replication of the IncQ
459 plasmid vector pQLICE generates ssDNA intermediates that can directly interact with the chromosomal
460 DNA through hybridization at microhomologies. Moreover, most of the SPDIR mutations were found
461 in a strain lacking the 5'-ssDNA exonuclease RecJ and the 3'-ssDNA exonuclease ExoX. These two
462 exonucleases clear the cytoplasm from linear ssDNA remnants (Overballe-Petersen et al., 2013; Harms

463 et al., 2016) but do not affect circular ssDNA. This result suggests that the ssDNA molecules causing
464 SPDIR mutations are susceptible to the ssDNA exonucleases, and we propose a model that the SPDIR-
465 causing pQLICE molecules have been previously damaged by ssDNA breaks. Taken together, it can be
466 concluded that ssDNA molecules causing SPDIR in general are cytoplasmic ssDNA remnants from
467 double-stranded parental molecules.

468 Besides pQLICE, we determined an increase of SPDIR mutations associated with carriage of pRK415.
469 In contrast to pQLICE, pRK415 DNA did not directly cause SPDIR mutations. However, carriage of
470 either pQLICE or pRK415 increased the frequency of SPDIR mutations originating from chromosomal
471 DNA compared with the isogenic, plasmid-free host (Table 6). These results indicate a different, more
472 indirect mutagenic effect of plasmid carriage on SPDIR, and this effect is not universal, as evident from
473 our experiments with other plasmids. What causes this secondary effect? We speculate that the increase
474 may be a result of interactions between the plasmid and the chromosomal DNA, such as homologous
475 or site-specific recombination attempts, interference of plasmid functions with genomic DNA
476 maintenance, such as error-prone polymerases or attacks by plasmid-encoded functions (see
477 introduction). The expression level of DNA-interacting plasmid genes may also be proportional to the
478 plasmid copy number. While the cloning vectors used here are thought to be low-copy number plasmids,
479 the natural plasmids are monocopy or near-monocopy plasmids. The lower gene dosage for the
480 monocopy plasmids can plausibly explain the lack of increase in SPDIR frequency, however the
481 possibility of them encoding specific (interacting) genes cannot be discarded.

482 An increase in SPDIR mutation frequency, similar to the effect of pRK415 or pQLICE in this study, has
483 been observed previously with taken-up isogenic DNA during natural transformation (Harms et al.,
484 2016). This observation was explained by interactions of the taken-up DNA with the chromosomal
485 DNA, resulting in abortive recombination, and it is conceivable that the corresponding intermediates or
486 remnants from these recombination attempts are the substrates for causing SPDIR mutations in our
487 experiments.

488 A single SPDIR mutation was caused by pK71-77-1-NDM DNA in a strain carrying that plasmid. pK71-
489 77-1-NDM is one of the largest plasmids in our study (approximately equivalent to 4% of the *A. baylyi*
490 genome; Table 1), and when calculating the SPDIR density (as SPDIR events caused with this DNA per

491 kbp per experiment), it was somewhat higher than the density of the chromosome. The plasmid
492 (belonging to the IncA/C₂ group) plausibly replicates by theta replication like the chromosome (Johnson
493 & Lang, 2012), and we hypothesize that the single SPDIR event found is the result of stochastic
494 distribution of SPDIR-causing templating DNA over the entire genome of the plasmid-carrying host.
495 Not all plasmids that modulate the frequency of SPDIR mutations display an incremental effect.
496 Remarkably, carriage of the IncN plasmid RN3 appeared to decrease SPDIR frequency both in the $\Delta recJ$
497 $\Delta exoX$ and wildtype strain of *A. baylyi*. This is the first report of an experimental decrease of SPDIR
498 frequency below wildtype levels and also an interesting example for a plasmid acting as an “anti-
499 mutagen”. Previous experimental setups (using knockout mutants, applying genotoxic stress, adding
500 exogenous DNA for transformation or, in this study, presence of certain plasmids) all resulted in SPDIR
501 increase, and the reason for the decrease associated with RN3 carriage is unclear. We speculate that
502 RN3-encoded functions such as genes for ssDNA-binding proteins that could potentially decrease the
503 free cytoplasmic ssDNA level below wildtype level may be the reason. We reiterate that our initial
504 intention of this study was the investigation of overexpression of genome maintenance functions,
505 including the single-strand-binding protein SSB. While the use of the overexpression vector pQLICE
506 rendered that experimental approach futile, plasmid-free overexpression of *ssb* or of potential gene
507 candidates of RN3 may give further insight into the SPDIR mutation mechanism and its suppression.
508 In conclusion, we show that plasmids can modulate the rate of generation of microindel mutations,
509 which expands their role in promoting bacterial evolution. One of the mechanisms by which plasmids
510 increase SPDIR frequency is through production of ssDNA during replication by strand-displacement.
511 Therefore, future work can delve into how other strategies that produce ssDNA (e.g., rolling-circle
512 replication or conjugative ssDNA-processing) affect SPDIR mutation frequency. The remaining
513 mechanisms, that either increase or decrease SPDIR frequency, speculatively derive from specific gene
514 interactions, which sets up the field for extensive genetic screens. Lastly, like plasmids, other mobile
515 genetic elements may contribute their host cell’s ability to acquire microindel mutations and accelerate
516 bacterial evolution, priming future research avenues.

517

518

519 **References**

520 Antoine, R., and Locht, C., 1992. Isolation and molecular characterization of a novel broad-host-range
521 plasmid from *Bordetella bronchiseptica* with sequence similarities to plasmids from Gram-
522 positive organisms. *Mol Microbiol* 6:1785-99.

523 Attali, D., and Baker, C., 2015. *ggExtra*: Add Marginal Histograms to 'ggplot2', and More 'ggplot2'
524 Enhancements. <https://doi.org/10.32614/CRAN.package.ggExtra>.

525 Baharoglu, Z., Bikard, D., and Mazel, D., 2010. Conjugative DNA Transfer Induces the Bacterial SOS
526 Response and Promotes Antibiotic Resistance Development through Integron Activation. *PLoS*
527 *Genet* 6:e1001165.

528 Barbe, V., Vallenet, D., Fonknechten, N., Kreimeyer, A., Oztas., S., et al., 2004. Unique features
529 revealed by the genome sequence of *Acinetobacter* sp. ADP1, a versatile and naturally
530 transformation competent bacterium. *Nucleic Acids Res* 32:5766-79.

531 Bergstrom, C.T., Lipsitch, M., and Levin, B.R., 2000. Natural Selection, Infectious Transfer and the
532 Existence Conditions for Bacterial Plasmids. *Genetics* 155:1505-19.

533 Billane, K., Harrison, E., Cameron, D., and Brockhurst, M.A., 2021. Why do plasmids manipulate the
534 expression of bacterial phenotypes? *Philos Trans R Soc Lond B Biol Sci* 377:20200461.

535 Bron, S., Meijer, W., Holsappel, S., Haima, P., 1991. Plasmid instability and molecular cloning in
536 *Bacillus subtilis*. *Res Microbiol* 142:875-83.

537 del Solar, G., Kramer, G., Ballester, S., Espinosa, M., 1993. Replication of the promiscuous plasmid
538 pLSI: a region encompassing the minus origin of replication is associated with stable plasmid
539 inheritance. *Mol Gen Genet* 241:97-105.

540 Domingues, S., Harms, K., Fricke, W.F., Johnsen, P.J., da Silva, G.J., and Nielsen., K.M., 2012.
541 Natural Transformation Facilitates Transfer of Transposons, Integrons and Gene Cassettes
542 between Bacterial Species. *PLoS Pathog* 8:e1002837.

543 Epshtain, V., Kamarthapu, V., McGary, K., Svetlov, V., Ueberheide, B., et al., 2014. UvrD facilitates
544 DNA repair by pulling RNA polymerase backwards. *Nature* 505:372-7.

545 Fulsundar, S., Harms, K., Flaten, G.E., Johnsen, P.J., Chopade, B.A., and Nielsen, K.M., 2014. Gene
546 Transfer Potential of Outer Membrane Vesicles of *Acinetobacter baylyi* and Effects of Stress on
547 Vesiculation. *Appl Environ Microbiol* 80:3469-83.

548 Gama, J.A., Kloos, J., Johnsen, P.J., and Samuelsen, Ø., 2020. Host dependent maintenance of a
549 blaNDM-1-encoding plasmid in clinical *Escherichia coli* isolates. *Sci Rep* 10:9332.

550 Gigliani, F., Ciotta, C., del Grosso, M.F., and Battaglia, P.A., 1993. pR plasmid replication provides
551 evidence that single-stranded DNA induces the SOS system in vivo. *Mol Gen Genet* 238:333-8.

552 Hall, J.P.J., Williams, D., Paterson, S., Harrison, E., and Brockhurst, M.A., 2017. Positive selection
553 inhibits gene mobilization and transfer in soil bacterial communities. *Nat Ecol Evol* 1:1348-53.

554 Hall, R.J., Snaith, A.E., Thomas, M.J.N., Brockhurst, M.A., and McNally, A., 2024. Multidrug
555 resistance plasmids commonly reprogram the expression of metabolic genes in *Escherichia coli*.
556 *mSystems* 9:e0119323 .

557 Hanahan, D., 1983. Studies on transformation of *Escherichia coli* with plasmids. *J. Mol Biol* 166:557-
558 80.

559 Harms, K., Lunnan, A., Hütter, N., Mourier, T., Vinner, L., et al., 2016. Substitutions of short
560 heterologous DNA segments of intragenomic or extragenomic origins produce clustered genomic
561 polymorphisms. *Proc Natl Acad Sci U S A* 113:15066-71.

562 Harms, K., Schön, V., Kickstein, E., and Wackernagel, W., 2007. The RecJ DNase strongly
563 suppresses genomic integration of short but not long foreign DNA fragments by homology-
564 facilitated illegitimate recombination during transformation of *Acinetobacter baylyi*. *Mol
565 Microbiol* 64:691-702.

566 Heuer, H., and Smalla, K., 2012. Plasmids foster diversification and adaptation of bacterial
567 populations in soil. *FEMS Microbiol Rev* 36:1083-104.

568 Ingmer, H., Miller, C., and Cohen, S.N., 2001. The RepA protein of plasmid pSC101 controls
569 *Escherichia coli* cell division through the SOS response. *Mol Microbiol* 42:519-26.

570 Johnson, T.J., 2018. Theta-Replicating Plasmids, Large. In: Wells, R.D., Bond, J.S., Klinman, J.,
571 Masters, B.S.S. (eds), *Molecular Life Sciences*. Springer, New York, NY.

572 Johnson, T.J., and Lang, K.S., 2012. IncA/C plasmids. *Mob Genet Elements* 2:55-8.

573 Kim, J.W., Bugata, V., Cortés-Cortés, G., Quevedo-Martínez, G., and Camps, M., 2020. Mechanisms
574 of Theta Plasmid Replication in Enterobacteria and Implications for Adaptation to Its Host.
575 *EcoSal Plus* 9:10.1128/ecosalplus.ESP-0026-2019.

576 Lei, M., and Tye, B.K., 2001. Initiating DNA synthesis: from recruiting to activating the MCM
577 complex. *J Cell Sci* 144:1447-54.

578 Liljegren, M.M., Gama, J.A., Johnsen, P.J., and Harms, K., 2024. The recombination initiation
579 functions DprA and RecFOR suppress microindel mutations in *Acinetobacter baylyi* ADP1. *Mol*
580 *Microbiol* (in print). <https://doi.org/10.1111/mmi.15277>.

581 Loftie-Eaton, W., Bashford, K., Quinn, H., Dong, K., Millstein, J., et al., 2017. Compensatory
582 mutations improve general permissiveness to antibiotic resistance plasmids. *Nat Ecol Evol*
583 1:1354-63.

584 Loftie-Eaton, W., and Rawlings, D.E., 2012. Diversity, biology and evolution of IncQ-family
585 plasmids. *Plasmid* 67:15-34.

586 Merrikh, H., Zhang, Y., Grossman, A.D., and Wang, J.D., 2012. Replication-transcription conflicts in
587 bacteria. *Nat Rev Microbiol* 10:448-58.

588 Meyer, R., 2009. Replication and conjugative mobilization of broad host-range IncQ plasmids.
589 *Plasmid* 62:57-70.

590 Nguyen, A., Maisnier-Patin, S., Yamayoshi, I., Kofoid, E., and Roth, J.R., 2020. Selective Inbreeding:
591 Genetic Crosses Drive Apparent Adaptive Mutation in the Cairns-Foster System of *Escherichia*
592 *coli*. *Genetics* 204:333-54.

593 Nowosad, J., 2023. CARTOCOLOR Palettes. <https://doi.org/10.32614/CRAN.package.rcartocolor>

594 Overballe-Petersen, S., Harms, K., Orlando, L.A.A., Mayar, J.V.M., Rasmussen, S., et al., 2013.
595 Bacterial natural transformation by highly fragmented and damaged DNA. *Proc Natl Acad Sci U*
596 *S A* 110:19860-5.

597 Pedersen, T.L., 2020. The Composer of Plots. <https://doi.org/10.32614/CRAN.package.patchwork>.

598 Pohlert, T., 2023. PMCMRplus: Calculate Pairwise Multiple Comparisons of Mean Rank Sums
599 Extended. <https://doi.org/10.32614/CRAN.package.PMCMRplus>.

600 R Core Team (2018). A Language and Environment for Statistical Computing. <https://www.r-project.org>.

602 Remigi, P., Capela, D., Clerissi, C., Tasse, L., Torchetti, R., et al., 2014. Transient Hypermutagenesis
603 Accelerates the Evolution of Legume Endosymbionts following Horizontal Gene Transfer. *PLoS*
604 *Biol* 12:e1001842.

605 Ruiz-Masó, J.A., MachóN, C., Bordanaba-Ruiseco, L., Espinosa, M., Coll, M., and del Solar, G.,
606 2015. Plasmid Rolling-Circle Replication. *Microbiol Spectr* 3:PLAS-0035-2014.

607 Sakai, H., and Komano, T., 1996. DNA replication of IncQ broad-host-range plasmids in gram-
608 negative bacteria. *Biosci Biotechnol Biochem* 60:377-82.

609 San Millan, A., Toll-Riera, M., Qi, Q., and MacLean, R.C., 2015. Interactions between horizontally
610 acquired genes create a fitness cost in *Pseudomonas aeruginosa*. *Nat Commun* 6:6845.

611 Sano, E., Maisnier-Patin, S., Aboubechara, J.P., Quiñones-Soto, S., and Roth, J.R., 2014. Plasmid
612 copy number underlies adaptive mutability in bacteria. *Genetics* 198:919-33.

613 Sota, M., Yano, H., Hughes, J.M., Daughdrill, G.W., Abdo, Z., et al., 2010. Shifts in the host range of
614 a promiscuous plasmid through parallel evolution of its replication initiation protein. *ISME J*
615 4:1568-80.

616 Starikova, I., Harms, K., Haugen, P., Lunde, T.T.M., Primicerio, R., et al., 2012. A Trade-off between
617 the Fitness Cost of Functional Integrases and Long-term Stability of Integrons. *PLoS Pathog*
618 8:e1003043.

619 Wetmur, J.G., 2006. Nucleic Acid Hybrids, Formation and Structure of.
620 <https://doi.org/10.1002/3527600906.mcb.200400045>.

621 Wickham, H., 2016. *ggplot2*. <https://doi.org/10.1007/978-3-319-24277-4>.

622 Woodgate, R., and Sedgwick, S.G., 1992. Mutagenesis induced by bacterial UmuDC proteins and
623 their plasmid homologues. *Mol Microbiol* 6:2213-8.

624 Zhang, X., Deatherage, D.E., Zheng, H., Georgoulis, S.J., and Barrick, J.E., 2019. Evolution of
625 satellite plasmids can prolong the maintenance of newly acquired accessory genes in bacteria.
626 *Nat Commun* 10:5809.

627

628

629 **Funding**

630 Authors M.M.L. and K.H. were funded by a grant by the Norwegian Research Council (grant number
631 275672).

632