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Abstract

The field of human cognitive neuroscience is increasingly acknowledging inter-individual
differences in the precise locations of functional areas and the corresponding need for individual-
level analyses in fMRI studies. One approach to identifying functional areas and networks within
individual brains is based on robust and extensively validated ‘localizer’ paradigms—contrasts of
conditions that aim to isolate some mental process of interest. Here, we present a new version of a
localizer for the fronto-temporal language-selective network. This localizer is similar to a
commonly-used localizer based on the reading of sentences and nonword sequences (Fedorenko
et al,, 2010) but uses speeded presentation (200ms per word/nonword). Based on a direct
comparison between the standard version (450ms per word/nonword) and the speeded versions of
the language localizer in 24 participants, we show that a single run of the speeded localizer (3.5
min) is highly effective at identifying the language-selective areas: indeed, it is more effective than
the standard localizer given that it leads to an increased response to the critical (sentence) condition
and a decreased response to the control (nonwords) condition. This localizer may therefore become
the version of choice for identifying the language network in neurotypical adults or special
populations (as long as they are proficient readers), especially when time is of essence.


https://doi.org/10.1101/2024.07.02.601683
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.02.601683; this version posted July 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Introduction

Neuroscientific studies of uniquely human abilities rely predominantly on non-invasive
neuroimaging techniques such as functional magnetic resonance imaging (fMRI). A widespread
methodological approach in fMRI studies of human brain function is to average individual
activation maps for some contrast of interest in a template brain space and perform statistical
analyses in each voxel across individuals to derive a group-level whole-brain statistical map.
However, functional regions vary in their precise locations across individuals (Fischl et al., 2008;
Frost & Goebel, 2012; Tahmasebi et al., 2012; Vazquez-Rodriguez et al., 2019; Somers et al.,
2021). Correspondingly, reliance on these group-averaging approaches can lead to low sensitivity
and functional resolution (Brett et al., 2002; Saxe et al., 2006; Nieto-Castafion & Fedorenko,
2012). Inter-individual variability is particularly problematic when functional regions of interest
lie in proximity to functionally distinct regions, as is the case with both frontal and temporal
language regions (e.g., Tomaiuolo et al., 1999; Fedorenko et al., 2012; Tahmasebi et al., 2012;
Deen et al., 2015; Braga et al., 2020; Du et al., 2024; see Fedorenko & Blank, 2020, for discussion
of this issue for ‘Broca’s area’).

One increasingly popular solution that circumvents inter-individual variability in the precise
locations of functional regions is the use of functional ‘localizers’ (Saxe et al., 2006; Nieto-
Castafion & Fedorenko, 2012; Gratton & Braga, 2021). In this approach, a brain region or network
that supports a mental process of interest is identified with a functional contrast in each individual
brain and subsequently, the region’s/network’s responses to some critical condition(s) of interest
are examined. Consistent use of these localizers across studies and labs (and in some cases, species;
Russ et al., 2021) affords greater confidence that the ‘same’ region or set of regions is being
studied, compared to relying on anatomical landmarks alone, and thus facilitates the accumulation
of scientific knowledge.

This functional localization approach has been successful across many domains of perception and
cognition including high-level visual and auditory processing, social cognition, and language
(Kanwisher et al., 1997; Epstein & Kanwisher, 1998; Downing et al., 2001; Belin et al., 2002;
Saxe & Kanwisher, 2003; Baker et al., 2007; Fedorenko et al., 2010, 2013; Overath et al., 2015;
Fischeretal., 2016; Isik et al., 2017). In the domain of language, Fedorenko et al. (2010) developed
a localizer that relies on a contrast between language processing and the processing of a
perceptually similar condition that lacks linguistic structure or meaning (e.g., reading or listening
to sentences vs. nonword lists, or listening to sentences vs. backwards speech or acoustically
degraded sentences; Bedny et al., 2011; Scott et al., 2017; Lipkin et al., 2022; Malik-Moraleda,
Ayyash et al., 2022). Such contrasts target brain areas that support computations related to
accessing words and combining them into complex linguistic structures and meanings. These
‘language localizers’ robustly identify the left-lateralized fronto-temporal language network,
which has long been implicated in language processing based on investigations of patients with
aphasia (e.g., Luria, 1970; Goodglass, 1993; Bates et al., 2003; Fridriksson et al., 2018; Wilson et
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al., 2023) and group-averaging neuroimaging investigations of language processing (e.g., Binder
et al., 1997; Price, 2010; Friederici, 2012). Importantly, language localizers are highly
generalizable, eliciting similar activations across presentation modalities, materials, and tasks (see
Fedorenko et al., 2024). Moreover, the brain regions that this localizer identifies closely
correspond to those that emerge from the bottom-up clustering of voxel time-courses obtained
during task-free resting state data (Braga et al., 2020). This correspondence highlights that the
language network is a ‘natural kind’ in the brain: an ontologically meaningful grouping of a set of
brain regions that show highly synchronized activity over time. Neuroimaging studies of language
that rely on the functional localization approach have produced a number of robust and replicable
findings both about 1) the relationship between language and other perceptual and cognitive
processes (e.g., Fedorenko et al., 2011; Deen et al., 2015; Amalric & Dehaene, 2019; Ivanova et
al., 2020; Jouravlev et al., 2019; Chen et al., 2023; Shain et al., 2023), and ii) the internal
organization of the language system (e.g., Blank et al., 2016; Fedorenko et al., 2020; Shain, Kean
et al., 2024).

One practical concern that researchers often express about the use of localizers is that they take
time. Time is often a precious commodity in neuroimaging research, either because the critical
task is already long and/or because the population of interest may have low tolerance for the
scanner environment. However, given the advantages that localizers provide—including greater
sensitivity, greater functional resolution, more accurate effect size estimation, higher
interpretability of the responses in the critical tasks, and the ability to meaningfully accumulate
knowledge across studies, labs, and species—many researchers continue to adopt this approach.
One recent effort in the field has been to try to optimize localizers so that they can be as short as
possible while still yielding robust individual-level responses (e.g., Dodell-Feder et al., 2011; Lee
et al., 2024; Hutchinson et al., 2024).

In this study, we develop a shorter version of a widely used reading-based language localizer
(Fedorenko et al., 2010). We leverage the fact that humans can read at fast rates, especially when
the need for eye movements is minimized by presenting words one at a time in the center of the
screen in a rapid serial visual presentation (RSVP) paradigm (e.g., Forster, 1970; Potter et al.,
1980, 1986; Potter, 2012; Mollica & Piantadosi, 2017). In these studies, participants can process
linguistic information even when each word is presented for as little as ~80-200ms, as evidenced
by accurate recall of the stimuli and high accuracy in answering comprehension questions about
the content. Moreover, Vagharchakian et al. (2012) found that speeded reading, similar to reading
at slower speeds, activates the language areas, but their study used a group-averaging approach,
leaving open the question of whether speeded reading elicits sufficiently robust responses in
individual participants. This is the question our study aims to address. Although this question is
primarily methodological in nature, our study’s design allows us to additionally ask a theoretically
interesting question about whether the increased processing difficulty due to speeded presentation
affects neural responses in the language-selective network, or instead (or in addition) in the
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domain-general Multiple Demand network, which is sensitive to cognitive effort across diverse
paradigms (e.g., Fedorenko et al., 2013; Duncan et al., 2012; Duncan, 2010; Duncan et al., 2020;
Assem et al., 2020Db).

Methods

Brief overview

24 adults each completed two versions of a language localizer task. In both versions, participants
read sentences and lists of unconnected pronounceable nonwords presented on the screen one
word/nonword at a time. The two versions differed in the presentation speed of each
word/nonword. One localizer version was an extensively validated language localizer task
(Fedorenko et al., 2010; Mahowald & Fedorenko, 2016; see Lipkin et al., 2022 for data from >600
participants on this version) where each word/nonword is presented for 450 ms (‘standard language
localizer’). The other version was a new, speeded version of the task where each word/nonword
was presented for 200 ms (‘speeded language localizer’). 22 of the 24 participants completed the
two versions of the language localizer in the same scanning session; the remaining two—in
separate sessions (1 and 463 days apart). For all participants, the speeded version was run after the
standard version. Each scanning session lasted between 1 and 2 hours and included a variety of
additional tasks for unrelated studies. The materials, scripts, and screen recordings for the two
language localizer versions are available at https://www.evlab.mit.edu/resources-all/download-
localizer-tasks (standard version) and https://github.com/el849/speeded language localizer/
(speeded version).

Participants

24 neurotypical adults (12 female, 12 male), aged 18 to 60 (mean: 28.04; std: 9.25), participated
for payment between June 2021 and December 2022. All participants were native speakers of
English, had normal or corrected-to-normal vision, and no history of neurological, developmental,
or language impairments. 22 participants (~92%) were right-handed, as determined by the
Edinburgh handedness inventory (Oldfield, 1971), 2 participants (~8%) were left-handed. All
participants gave informed written consent in accordance with the requirements of the MIT’s
Committee on the Use of Humans as Experimental Subjects (COUHES).
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fMRI tasks

Language network localizer tasks

Standard language localizer task

A reading task contrasted sentences (e.g., THE SPEECH THAT THE POLITICIAN PREPARED
WAS TOO LONG FOR THE MEETING) and lists of unconnected, pronounceable nonwords
(e.g., LAS TUPING CUSARISTS FICK PRELL PRONT CRE POME VILLPA OLP
WORNETIST CHO) in a standard blocked design with a counterbalanced condition order across
runs, as introduced in Fedorenko et al. (2010). Each stimulus consisted of 12 words/nonwords.
Stimuli were presented in the center of the screen, one word/nonword at a time, at the rate of 450
ms per word/nonword. Each stimulus was preceded by a 100 ms blank screen and followed by a
400 ms screen showing a picture of a finger pressing a button, and a blank screen for another 100
ms, for a total trial duration of 6 s. Participants were instructed to read attentively (silently, to
themselves) and to press a button on the button box whenever they saw the picture of a finger
pressing a button on the screen. The button-pressing task was included to help participants remain
alert. Experimental blocks lasted 18 s (with 3 trials per block) and fixation blocks lasted 14 s. Each
run (consisting of 16 experimental blocks and 5 fixation blocks) lasted 358 s (5 min 58 s).
Participants completed 2 runs.

Speeded language localizer task

The speeded version of the language localizer was identical to the standard version except that
each word/nonword was presented for 200 ms instead of 450 ms (i.e., ~56% faster). Each stimulus
was preceded by a 100 ms blank screen and followed by a 400 ms screen showing a picture of a
finger pressing a button, and a blank screen for another 100 ms, for a total trial duration of 3 s. The
instructions to the participants were the same as in the standard version although they were warned
that the presentation would be somewhat fast, and they were told not to worry if they missed some
button presses. Experimental blocks lasted 9 s (with 3 trials per block) and fixation blocks lasted
14 s. Each run (consisting of 16 experimental blocks and 5 fixation blocks) lasted 214 s (3 min 34
s). Participants completed 2 runs.

Language network localizer experimental materials

Standard language localizer materials

The materials consisted of five sets, each set comprising 48 sentences and 48 nonword sequences,
for a total of 240 sentences and 240 nonword sequences. The sentences were drawn from the
Brown corpus (Bird & Loper, 2004; Francis & Kucera, 1964) and were selected to include a variety
of syntactic constructions and topics. The nonwords were created using the “Wuggy’ software
(https://github.com/WuggyCode/wuggy; the default parameters were used) so as to respect the
phonotactic constraints of English. In cases where Wuggy was unable to generate a nonword
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candidate, we relied on one of the following strategies: i) broke down the word into composite
words (for compound words) or morphemes, matched each composite word/morpheme to a
nonword, and then reassembled those; ii) used one of the nonwords created for another word; or
ii1) created an English-sounding nonword ourselves. Any given participant saw one set of
materials.

Speeded language localizer materials

The first 11 participants were presented with the materials from the standard version (ensuring that
a different set was used). Approximately halfway through data collection, we created a new set of
materials for the speeded language localizer in order to: i) generalize the findings to a new set of
materials, and ii) avoid potential material overlaps between the standard and speeded localizer
materials in future experiments. Hence, for the remaining 13 participants, we created five new sets
each consisting of 48 sentences and 48 nonword sequences, for a total of 240 new sentences and
240 new nonword sequences. The sentences were again selected from the Brown corpus (Bird,
2009). In particular, we sampled 1,000 12 word-long sentences and then selected a set of 240
sentences that were not already included in the original set of materials, were syntactically and
semantically diverse, and did not contain offensive/inappropriate content. The nonword strings
were created as in the standard version.

Multiple Demand network localizer task

In addition to the language tasks, we included a non-linguistic demanding task: a spatial working
memory task. The goal was two-fold. First, including a non-linguistic task allowed us to evaluate
the selectivity of the language fROIs—defined by two versions of the localizer—for language
processing (Fedorenko et al., 2011, 2024). And second, this task allowed us to examine brain
responses to the conditions of the language localizer tasks in another set of functional areas: areas
that comprise the domain-general Multiple Demand (MD) network (Duncan, 2010; Duncan et al.,
2012; Fedorenko et al., 2013). This network supports executive functions like working memory
and cognitive control. The spatial WM task has been previously established to robustly identify
these areas at the individual-participant level (e.g., Blank et al., 2014; Mineroff, Blank et al., 2018;
Shashidhara et al., 2020; Assem et al., 2020a; Malik-Moraleda, Ayyash et al., 2022). Although the
areas of the MD network have been shown to not support any ‘core’ linguistic computations—Ilike
those related to lexical access, syntactic structure building, or semantic composition (e.g., Blank
& Fedorenko, 2017; Diachek, Blank, Siegelmann et al., 2020; Quillen et al., 2021; Shain, Blank
et al., 2020, Shain et al., 2022)—their engagement has been reported for some cases of effortful
perception and comprehension (e.g., Mattys & Wiget, 2011; MacGregor et al., 2022; Liu et al.,
2022; see Discussion). We therefore wanted to evaluate the MD areas’ responses to speeded
comprehension, to see whether this kind of processing difficulty draws on domain-general
resources.
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The spatial working memory task contrasted a hard condition with an easy condition in a standard
blocked design with a counterbalanced condition order across runs (e.g., Fedorenko et al., 2011,
2013; Blank et al., 2014). On each trial (duration = 8 s), participants saw a fixation cross for 500
ms, followed by a 3x4 grid within which randomly generated locations were sequentially flashed
(1s per flash) two at a time for a total of eight locations (hard condition) or one at a time for a total
of four locations (easy condition). Then, participants indicated their memory for these locations in
a two-alternative forced-choice paradigm via a button press (the choices were presented for 1,000
ms, and participants had up to 3 s to respond). Feedback, in the form of a green checkmark (correct
responses) or a red cross (incorrect responses), was provided for 250 ms, with fixation presented
for the remainder of the trial. Experimental blocks lasted 32 s (with 4 trials per block) and fixation
blocks lasted 16 s. Each run (consisting of 12 experimental blocks and 4 fixation blocks) lasted
448 s (7 min 28 s). Participants completed 2 runs.

23 of the 24 participants completed the MD localizer in the same scanning session as the standard
language localizer; the remaining participant—in a separate session (98 days apart).

fMRI data acquisition, preprocessing and first-level analysis

fMRI data acquisition

Structural and functional data were collected on the whole-body, 3 Tesla, Siemens Trio scanner
32-channel head coil, at the Athinoula A. Martinos Imaging Center at the McGovern Institute for
Brain Research at MIT. T1-weighted, Magnetization Prepared RApid Gradient Echo (MP-RAGE)
structural images were collected in 176 sagittal slices with 1 mm isotropic voxels (TR = 2,530 ms,
TE = 3.48 ms, TI = 1100 ms, flip = 8 degrees). Functional, blood oxygenation level dependent
(BOLD) data were acquired using one of three similar sequences (denoted as sequence A, B, C).
The data from the majority of participants (22 out of 24) were acquired using sequence A which
we describe in this paragraph. See specifications of sequences B and C in SI Table 1 (importantly,
scanning sequence is kept constant in all comparisons between the standard and the speeded
versions of the localizer besides in a single participant). Sequence A was an SMS EPI sequence
(with a 90 degree flip angle and using a slice acceleration factor of 2), with the following
acquisition parameters: fifty-two 2 mm thick near-axial slices acquired in the interleaved order
(with 10% distance factor), 2 mm x 2 mm in-plane resolution, FoV in the phase encoding (A > P)
direction 208 mm and matrix size 104 x 104, TR =2,000 ms and TE = 30 ms, and partial Fourier
of 7/8. The first 10 s of each run were excluded to allow for steady state magnetization.
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fMRI preprocessing

fMRI data were analyzed using SPM12 (release 7487), CONN EvLab module (release 19b), and
custom MATLAB scripts. Each participant’s functional and structural data were converted from
DICOM to NIfTT format. All functional scans were coregistered and resampled using B-spline
interpolation to the first scan of the first session (Friston et al., 1995). Potential outlier scans were
identified from the resulting subject-motion estimates as well as from BOLD signal indicators
using default thresholds in CONN preprocessing pipeline (5 standard deviations above the mean
in global BOLD signal change, or framewise displacement values above 0.9 mm; (Nieto-Castanon,
2020). Functional and structural data were independently normalized into a common space (the
Montreal Neurological Institute [MNI] template; IXI549Space) using SPMI12 unified
segmentation and normalization procedure (Ashburner & Friston, 2005) with a reference
functional image computed as the mean functional data after realignment across all timepoints
omitting outlier scans. The output data were resampled to a common bounding box between MNI-
space coordinates (—90, —126, —72) and (90, 90, 108), using 2 mm isotropic voxels and 4th order
spline interpolation for the functional data, and 1 mm isotropic voxels and trilinear interpolation
for the structural data. Last, the functional data were smoothed spatially using spatial convolution
with a 4 mm FWHM Gaussian kernel.

First-level analysis

Effects were estimated using a General Linear Model (GLM) in which each experimental condition
was modeled with a boxcar function convolved with the canonical hemodynamic response
function (HRF) (fixation was modeled implicitly, such that all timepoints that did not correspond
to one of the conditions were assumed to correspond to a fixation period). Temporal
autocorrelations in the BOLD signal timeseries were accounted for by a combination of high-pass
filtering with a 128 s cutoff, and whitening using an AR(0.2) model (first-order autoregressive
model linearized around the coefficient a = 0.2) to approximate the observed covariance of the
functional data in the context of Restricted Maximum Likelihood estimation (ReML). In addition
to experimental condition effects, the GLM design included first-order temporal derivatives for
each condition (included to model variability in the HRF delays), as well as nuisance regressors to
control for the effect of slow linear drifts, subject-motion parameters, and potential outlier scans
on the BOLD signal.

Definition of functional regions of interest (fROIs)

Language and Multiple Demand (MD) fROIs were defined using a group-constrained subject-
specific (GSS) approach (Fedorenko et al., 2010) where a set of spatial masks, or parcels, is
combined with each individual subject’s localizer activation map, to constrain the definition of
individual fROIs. The parcels delineate the expected gross locations of activations for a given
contrast and are sufficiently large to encompass the variability in the locations of individual
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activations. Within each parcel, we selected the top 10% most localizer-responsive voxels, based
on t-values.

To define the language fROIs, we used a set of six parcels derived from a group-level probabilistic
activation overlap map for the sentences > nonwords contrast in 220 independent participants. The
parcels included two regions in the left inferior frontal gyrus (LIFG, LIFGorb), one in the left
middle frontal gyrus (LMFG), two in the left temporal lobe (LAntTemp and LPostTemp), and one
extending into the angular gyrus (LAngG). Following prior work (e.g., Blank et al., 2014), to
define the right-hemisphere RH fROIs, the LH parcels were transposed onto the RH, but the
individual LH and RH fROIs were allowed to differ in their precise locations within the homotopic
parcels. To define the MD fROIs, we used a set of 20 parcels (10 in each hemisphere) derived
from a group-level probabilistic activation overlap map for the hard > easy spatial working
memory contrast (Fedorenko et al., 2013) in 197 independent participants. The parcels included
symmetrical regions in frontal and parietal lobes, as well as a region in the anterior cingulate
cortex. All parcels are available for download from https://evlab.mit.edu/funcloc/.

Extraction of fMRI BOLD responses

We evaluated language and MD networks’ responses by estimating response magnitudes to the
conditions of the standard and speeded language localizers in the individually defined fROIs. For
each fROI in each participant, we averaged the responses across voxels to get a single value per
participant per fROI per condition (i.e., the sentences and nonwords conditions for the language
localizer tasks, and the hard and easy conditions for the MD localizer task). The responses to the
conditions used to localize the areas of interest (e.g., the responses to the sentences and nonwords
conditions in the language fROIs) were estimated using an across-runs cross-validation procedure,
where one run of the standard or speeded language localizer was used to define the fROI and the
other run of the same localizer version was used to estimate the response magnitudes. The
procedure was repeated across run partitions, switching which run was used for fROI definition
vs. response estimation. Finally, the estimates were averaged to derive a single value per
participant per fROI per condition.

Statistical analysis

We used linear mixed effects (LMEs) models to test for statistical significance. All LMEs reported
in the paper were implemented using the /mer function from the Ime4 R package (D. Bates et al.,
2015; version 1.1-31). Statistical significance testing was performed using the /merTest package
(Kuznetsova et al., 2017; version 3.1-3). The R-squared values were obtained using the GLMM
function (MuMlIn; version 1.47.1) in R. The likelihood ratio tests were performed using the anova
function from the /me4 R package. For each LME model reported, we provide (in SI 2D, 3C, 3D,
3E. 4C) tables with model formulae, fixed effects regression coefficients, standard error, random

effects coefficients, and p-values).
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Results

We compared the fMRI BOLD responses from two versions of a language localizer task (a
‘standard language localizer’ and a ‘speeded language localizer’). The results are organized
according to the following two questions: 1) Can speeded reading be used to reliably localize
language-responsive areas in individual participants?, and 2) Does increased processing difficulty
during speeded reading affect brain responses in the domain-general Multiple Demand brain
network?

1. The speeded language localizer can reliably localize language-responsive areas in individual
participants.

1.A. The activation topography is similar between the standard and speeded language localizer
versions.

Twenty-four participants completed a standard language localizer task (Fedorenko et al., 2010)
and a speeded localizer task. In both tasks, they silently read sentences (sentences condition) and
sequences of nonwords (nonwords condition) (see Methods; fMRI tasks).

The activation maps for the sentences > nonwords contrast are visually highly similar between the
standard language localizer and the speeded language localizer (Figure 1A). To quantify this
similarity, we correlated voxel-wise activation patterns (restricted to the LH language parcels; see
SI 2A for whole-brain correlations) across localizer runs and versions. The correlation values were
Fisher-transformed and averaged across the six LH language parcels, leading to a single value for
each comparison.

First, we correlated the activation patterns across the two runs within each localizer version. These
values characterize the stability of the activation patterns for each version and also delimit the
similarity that could be obtained between the two localizer versions. The within-localizer
correlations were high for both versions: 0.881 and 0.887 for the standard and speeded versions,
respectively (Figure 1B; left bars), and did not statistically differ from each other (speeded >
standard; B=0.005, t=0.118, p=0.906 via linear mixed effects (LME) modeling). Next and
critically, we correlated the activation patterns between the two versions of the localizer. To match
the amount of data to the within-version comparisons, we correlated activations for each run of the
standard version with each run of the speeded version (four pairwise combinations, given two runs
of each localizer version; Figure 1B; right bar). The between-localizer correlation was 0.795
(Figure 1B; right bar: the average of the four pairwise combinations of runs between the standard
and speeded localizer versions). To statistically compare the within- vs. between-version
correlations, we modeled the average within-version and between-version correlation coefficients
in an LME model with a fixed effect for comparison type (within vs. between), and random
intercepts for participants and parcels. Although the similarity of the activations within a given
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localizer version was statistically higher than between localizer versions (Figure 1B), the effect
size was relatively small (within > between; =0.089, t=2.629, p=0.009), in line with both within
and between correlations being high.

In a secondary analysis, we quantified the extent of voxel overlap between functional regions of
interest (fROIs) using the Dice coefficient (Dice, 1945). The results mirrored the spatial correlation
analyses above. The overlap between the sentences > nonwords fROIs, defined as the top 10% of
language-responsive voxels, was high for both within and between comparisons (0.704 and 0.670
for the within comparisons for the standard and speeded versions, respectively; and 0.649 for the
between comparison), but slightly higher across the runs within a localizer version than between
localizer versions (=0.038, t=2.453, p=0.015) (Figure 1C). For fROIs of larger size (e.g., fROIs
defined as the top 20% or 30% of most language-responsive voxels), the within vs. between
differences get smaller (20%: =0.022, t=1.775, p=0.077; 30%: f=0.011, t=1.018, p=0.310), which
suggests that although the peaks of the activation topographies are slightly more similar within a
localizer version than between the two versions, the overall topographies are highly similar (see
SI 2B for Dice coefficient comparisons across a larger range of fROI thresholds).
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Figure 1. The activation topographies are highly similar between the standard and speeded language
localizer versions.

(A) Activation maps of the sentences > nonwords contrast in six sample participants for the standard
language localizer (upper row) and the speeded language localizer (lower row). Activation maps are shown
on the surface-inflated fsaverage template brain. The participant identifiers are numbers in the lab internal
database and can be cross-referenced with the data tables on OSF.

(B) The correlation of the voxel-wise activation patterns for the sentences > nonwords contrast within left-
hemisphere (LH) language parcels (see Methods; Definition of fROIs) within and between localizer
versions. The within localizer comparisons were performed by correlating the activation patterns between
the two runs of the same localizer version (dark red bar = standard version; light red bar = speeded version;
the data are averaged across participant and across six LH parcels within each participant), and the between
localizer comparisons were performed by correlating the four pairwise combinations of runs between the
two localizers (given two runs of each localizer; gray bar) and averaging them to obtain a single value. The
dots correspond to the correlation values from individual participants (n=24). Error bars show the standard
error of the mean across participants.
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(C) The Dice overlap coefficient for the sentences > nonwords contrast computed between different runs
of the same localizer version or between different runs across the two localizer versions. The fROIs were
defined as the top 10%, 20%, or 30% of the most language-responsive voxels in the six LH language
parcels. As in panel B, the two red bars show the Dice coefficients within a localizer version (between two
runs of the same localizer; the data are averaged across participants and across six LH parcels within each
participant) and the gray bar shows the Dice coefficient between localizer versions (averaging across four
pairwise between-run comparisons). The dots correspond to the coefficient values from individual
participants (n=24). Error bars show the standard error of the mean across participants.

1.B. The fROIs defined by the speeded language localizer respond at least as strongly and as
selectively during language processing as the fROIs defined by the standard localizer.

Having established that the activation topographies are similar across the localizer versions
(Figure 1), we examined the magnitude of the BOLD responses for the sentences and nonwords
conditions across the two versions in the fROIs defined by the standard approach of selecting top
10% of most language-responsive voxels within six broad, anatomical parcels (Figure 2A; see
Methods:; Extraction of fMRI BOLD responses). Figure 2B shows the average BOLD responses
across the six LH language fROIs and Figure 2C shows the responses for each of the six fROIs
individually. To statistically compare the two localizers, the BOLD responses were modeled in an
LME with fixed effects for condition (sentences vs. nonwords) and localizer version (standard vs.
speeded) and random intercepts for participants and fROIs.

As expected, the effect of condition was highly significant (sentences > nonwords, p=1.698,
t=22.060, p<0.0001) (Figure 2B,C); in contrast, the main effect of localizer version was not
significant (speeded > standard, f=0.011, t=0.142, p=0.887). To further examine whether the
standard and speeded localizer versions differed with respect to their responses to sentences and
nonwords, we used a similar LME as above but also included an interaction term between
condition and localizer version. We tested for significance of the interaction using a likelihood-
ratio test with a Chi Square test statistic (y?). Indeed, the interaction was significant (y2=19.919,
p<0.0001), suggesting that the responses to the two conditions (sentences and nonwords) differed
between localizer versions. To better understand this difference, we examined the effect size of
the sentences > nonwords contrast and found that it was greater in the speeded localizer compared
to the standard localizer (speeded > standard; p=0.681, t=7.858, p<0.0001). As can be seen in
Figure 2B,C, the response to the sentences condition was higher in the speeded localizer compared
to the standard localizer (speeded > standard; p=0.351, t=3.054, p=0.002), and the response to the
nonwords condition was lower in the speeded localizer compared to the standard localizer (speeded
> standard; =-0.329, t=-4.125, p<0.0001). Taken together, these analyses show that the fROIs
defined by the speeded language localizer show a larger sentences > nonwords effect compared to
the standard localizer, due to both higher responses to sentences and lower responses to nonwords
in the speeded version.
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We also examined the selectivity of the language fROIs defined by both the standard and the
speeded localizers for language processing relative to a non-linguistic demanding cognitive task.
Prior work has established that language-responsive brain areas (as defined by standard versions
of the language localizer task) are highly selective for language relative to diverse non-linguistic
inputs and tasks (e.g., Fedorenko et al., 2011; Ivanova et al., 2020, 2021; Chen et al., 2023; for
reviews, see Fedorenko & Blank, 2020; Fedorenko et al., 2024). Here, we investigated whether
the fROIs defined by the speeded language localizer exhibit a similar degree of selectivity. To do
so, we collected brain responses during a spatial working memory task (see Methods; fMRI tasks)
and examined BOLD response magnitudes to the hard and easy conditions in the LH language
regions, defined by the standard versus speeded language localizers (Figure 2D,E). As expected
given the results in Section 1, both sets of fROIs showed selectivity for language, with no response
during the cognitively demanding spatial working memory task (standard localizer: hard: t=-
1.059, p=0.301; easy: t=0.392, p=0.699 via two-sided, one-sample t-test against zero; speeded
localizer: hard: t=0.274, p=0.786; easy: t=1.513, p=0.143). This lack of response in the language
areas is in sharp contrast with the Multiple Demand areas, which respond strongly to both
conditions, and show a clear hard > easy effect (SI 3A).

Finally, in addition to the analyses reported in 1.A and 1.B above, we tested whether the BOLD
response magnitudes from the fROIs defined by the standard versus speeded localizers were stable
over time (across runs (SI 3B) and—for two participants who completed the localizers several
times—across scanning sessions (SI 3C)). This is important to know given that BOLD response
magnitudes are often used in individual-differences investigations that aim to relate neural
measures to behavior (e.g., Mahowald & Fedorenko, 2016; Assem et al., 2020a; Kong et al., 2020).
We found that the magnitudes were indeed highly stable within participants over time.
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Figure 2. The speeded language localizer elicits a greater sentences > nonwords effect than the
standard language localizer and the fROIs defined by the speeded localizer are similarly selective for
language relative to a demanding non-linguistic task.

(A) To define language fROIs, we used a set of masks (‘language parcels’; shown on the volumetric
MNI152 template brain where all analyses were performed) within which most or all individuals in prior
studies showed activity for the language localizer contrast in large samples (e.g., Fedorenko et al., 2010;
Lipkin et al., 2022). We defined the LH language fROIs as the most language-responsive voxels (top 10%)
within the borders of these six parcels for each participant and measured the BOLD response magnitude in
these fROIs in a cross-validated manner (see Methods; Definition of fROIs).

(B) Mean BOLD response to the language localizer conditions (S=sentences, N=nonwords) for the standard
and speeded localizer versions averaged across the six LH language fROIs.

(C) Mean BOLD response to the localizer conditions for each LH language fROI.

(D) Mean BOLD response to a spatial working memory task consisting of two conditions, a hard condition
(H) and an easy condition (E), averaged across the six LH language fROIs defined by the speeded and
standard language localizers. See SI 3A for evidence that the spatial working memory task elicited a robust
hard > easy response in the MD network fROIs.

(E) Mean BOLD response to the hard and easy spatial working memory task conditions for each LH
language fROI.

In all panels, dots correspond to the responses of individual participants. Error bars show the standard error
of the mean across participants. See SI 3E for responses in the right-hemisphere (RH) fROIs (which also
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show a reliable sentences > nonwords effect, similar to the LH fROIs, although the responses are overall
weaker).

2. Speeded sentence reading engages the domain-general Multiple Demand (MD) system more
than standard reading.

In addition to examining responses in the language network (Section 1.B), we investigated
responses in the domain-general Multiple Demand (MD) network. This network supports
computations related to goal-directed behaviors and is recruited during a broad array of cognitively
demanding tasks (e.g., Duncan, 2010; Duncan et al., 2012; Fedorenko et al., 2013; Shashidhara et
al.,2019; Assem et al., 2020b; Duncan et al., 2020). Of most relevance to the current investigation,
the MD network appears to be engaged in some cases of effortful comprehension, including
processing speech in noisy conditions (Mattys & Wiget, 2011; MacGregor et al., 2022; Liu et al.,
2022), processing accented speech (Adank & Janse, 2010; Janse & Adank, 2012; Adank et al.,
2012; Banks et al., 2015), processing non-native languages (Malik-Moraleda, Jouravlev et al.,
2024; Wolna et al., 2024), and processing linguistic inputs that are not syntactically well-formed
(Kuperberg et al., 2003; Nieuwland et al., 2012; Mollica et al., 2020; Tuckute et al., 2024; Kauf et
al., 2024). However, the full range of conditions under which the MD network is recruited during
language processing is not well-understood, yet is critical for understanding the contributions of
this network to comprehension.

Following prior work (e.g., Malik-Moraleda, Ayyash et al., 2024), we defined MD fROIs (10 in
each hemisphere; Figure 3A) using the sard > easy contrast of the spatial working memory task
described in the previous section (Section 1.B; and Methods; fMRI tasks). We then examined the
responses to the sentences and nonwords conditions across the two versions of the language
localizer to test whether speeded reading taxes the MD network. (For validation that the MD fROIs
behave as expected, i.e., show a reliably greater response to the hard spatial working memory
condition compared to the easy one, see SI 3A.)

The BOLD response magnitudes for the sentences and nonwords conditions across both localizer
versions are shown in Figure 3B for the average of the ten left and right hemisphere MD fROlIs
and Figure 3C for each hemisphere separately (see SI 4A for each of the twenty fROIs
individually). In line with prior work (e.g., Fedorenko et al., 2013; Diachek, Blank, Siegelman et
al., 2020), we found that the MD fROIs showed a robust nonwords > sentences effect in the
standard language localizer (=-0.275, t=-7.547, p<0.0001). In contrast, in the speeded language
localizer, reading of nonwords did not engage the MD network to a greater extent than reading of
sentences (sentences > nonwords, p=-0.012, t=-0.283, p=0.777). As evident from Figure 3C, some
participants exhibited higher MD network engagement in the nonwords condition, whereas others
exhibited the opposite pattern. To statistically compare the responses to the two localizers, the
BOLD responses were modeled in an LME with fixed effects for condition (sentences vs.
nonwords) and localizer version (standard vs. speeded) and random intercepts for participants and
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fROIs. Using likelihood ratio tests, we confirmed a significant interaction between condition and
localizer version (y2=18.274, p<0.0001), suggesting that the MD network was engaged differently
by the two localizers. In particular, the MD network was more engaged in the sentences condition
during the speeded localizer compared to the standard localizer (speeded > standard, =0.200,
t=4.584, p<0.0001), whereas the responses to the nonwords condition did not reliably differ
between the two versions (speeded > standard, p=-0.064, t=-1.519, p=0.129). In summary,
speeded sentence reading was more effortful than slower-paced reading, and under the speeded-
reading conditions, no nonwords > sentences effect was observed.

A. Brain ROls B. Responses to sentences and nonwords in the Multiple Demand network
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Figure 3. The Multiple Demand (MD) network is more engaged in speeded sentence reading
compared to standard sentence reading.
(A) To define MD fROIs, we used a set of masks (“MD parcels’; shown on the volumetric MNI152 template
brain) within which most or all individuals in prior studies showed activity for the MD hard > easy spatial
working memory contrast in large samples (e.g., Diachek, Blank, Siegelman et al., 2020). We defined the
LH and RH MD fROlIs as the most working-memory-responsive voxels (top 10%) within the borders of the

17


https://doi.org/10.1101/2024.07.02.601683
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.02.601683; this version posted July 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

twenty parcels for each participant, and measured the BOLD response magnitude in these fROIs in a cross-
validated manner (see Methods; Definition of fROIs).

(B) Mean BOLD response to the language localizer conditions (S=sentences, N=nonwords) for the standard
and speeded localizer versions averaged across the twenty LH/RH MD fROIs (see SI 4A for individual
fROIs).

(C) Mean BOLD response to the language localizer conditions (S=sentences, N=nonwords) for the standard
and speeded localizer versions averaged across the LH and RH MD fROIs. Light gray lines connect the
responses to the two conditions for a given participant and localizer version.

In all panels, dots correspond to the responses of individual participants. Error bars show the standard error
of the mean across participants.
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Discussion

In cognitive neuroscience, there is a growing recognition of inter-individual differences in the
precise functional topographies, especially in the association cortex (e.g., Brett et al., 2002; Saxe
et al., 2006; Nieto-Castafion & Fedorenko, 2012; Fedorenko & Blank, 2020). We here show that
a standard localizer for the language network (Fedorenko et al., 2010) can be halved in time by
using speeded reading, and that the speeded-reading-based contrast is even more robust than the
one based on standard-paced reading. In the remainder of the Discussion, we elaborate on these
findings and their implications.

1. Robustness and generalizability of the language localizer.

The standard language localizer (Fedorenko et al., 2010) investigated in our study has been widely
used over the past decade (e.g., Fedorenko et al., 2010; Mahowald & Fedorenko, 2016; Braga et
al., 2020; Lipkin et al., 2022; Du et al., 2024). The localizer contrasts the reading of well-formed
sentences versus sequences of nonwords. The brain areas identified by this contrast have been
shown to be robust across materials (e.g., Fedorenko et al., 2010) and tasks (e.g., Diachek, Blank,
Siegelmann et al., 2020; Ivanova et al., in prep). Moreover, this contrast generalizes well to the
auditory and audio-visual presentation modalities (e.g., Fedorenko et al., 2010; Scott et al., 2017;
Olson et al., 2023) and works well across typologically diverse languages (Richardson et al., 2020;
Malik-Moraleda et al., 2022; Terhune-Cotter et al., 2023) and for diverse populations, including
children (Ozernov-Palchik, O'Brien et al., 2024), older healthy adults (Billot, Jhingan et al., in
prep), and individuals with stroke aphasia (Billot, 2023; Clercq et al., 2024; Billot et al., in prep).
In the current study, we show that the reading version of the localizer is robust to presentation
speed, in line with past behavioral work showing the ability to understand language at fast speeds
when presented word-by-word in a rapid serial visual presentation (RSVP) paradigm (e.g., Forster,
1970; Potter et al., 1980, 1986; Potter, 2012; Mollica & Piantadosi, 2017). In the speeded version
that we evaluated, each word was presented for 200 ms (compared to 450 ms in the standard
localizer, i.e., ~56% faster), and we demonstrate that language areas in individual participants can
be reliably localized using this version.

2. The speeded language localizer shows at least as strong selectivity for language relative to
the control condition and a non-linguistic demanding task.

In the current work, we first established that the voxel-level activation topographies were highly
similar between the standard and speeded language localizers, and then demonstrated that the
response magnitudes in fROIs defined by each localizer version were highly similar both in their
responses to language and a control condition, and that these fROIs exhibited selectivity for
language processing relative to a non-linguistic demanding spatial working memory task (e.g.,
Duncan, 2010; Fedorenko et al., 2013). Moreover, the speeded localizer is actually more effective
than the standard version given that it better differentiates the critical language condition and the
control condition. Specifically, the speeded localizer elicited a stronger response to the sentences
condition, possibly due to an increase in attentional demands or processing difficulty (but see next
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discussion section), and a weaker response to the control condition (nonwords). The reduced
response to nonwords may be due to the increased challenge of reading nonwords quickly which
in turn might reduce the accessibility of information about their phonotactic properties (e.g., Regev
et al.,, 2024). Thus, the speeded localizer produced a response profile with at least as strong
responses to language as the standard localizer. Additionally, the areas identified by the speeded
localizer were selective for language relative to a non-linguistic spatial working memory task,
similar to the profile of the areas identified using the standard localizer (see Fedorenko & Blank,
2020 and Fedorenko et al., 2024 for reviews).

We also found that the sentences > nonwords response magnitude was stable across runs for the
speeded localizer version, similar to the standard version, which suggests that the speeded localizer
can also be used in studies that relate neural markers to behavior or genetics to study individual
differences (e.g., Mahowald & Fedorenko, 2016; Assem et al., 2020a; Kong et al., 2020).

3. Contributions of the Multiple Demand (MD) network to language comprehension.

The Multiple Demand (MD) network is broadly implicated in cognitively demanding tasks and
goal-directed action, showing strong responses to diverse executive function tasks (Duncan &
Owen, 2000; Duncan, 2010; Duncan et al., 2012; Fedorenko et al., 2013; Shashidhara et al., 2019b;
Assem et al., 2020b; Duncan et al., 2020) as well as during some domains of reasoning, like
arithmetic reasoning (e.g., Monti et al., 2009; Fedorenko et al., 2013; Amalric & Dehaene, 2019)
and understanding computer code (e.g., Ivanova et al., 2020; Liu et al., 2020). Some language
tasks where comprehension/production are accompanied by task demands can also engage the MD
network (e.g., Diachek, Blank, Siegelman et al., 2020). However, during naturalistic
comprehension of even syntactically complex stimuli, the MD network is not engaged, and the
costs of language processing are localized to the language-selective system (Diachek, Blank,
Siegelmann et al., 2020; Quillen et al., 2021; Shain, Blank et al., 2020; Wehbe et al., 2021; see
review, see Fedorenko & Shain, 2021).

In contrast to the costs associated with linguistic processing specifically (e.g., processing
unexpected elements or non-local inter-word dependencies; Shain, Blank et al., 2020; Shain et al.,
2022), some cases of effortful comprehension, even without external task demands, appear to
engage the MD network. Such cases include listening to speech in noisy conditions (Mattys &
Wiget, 2011; MacGregor et al., 2022; Liu et al., 2022), processing accented speech (Adank &
Janse, 2010; Janse & Adank, 2012; Adank et al., 2012; Banks et al., 2015), processing sentences
in non-native languages (Malik-Moraleda, Jouravlev et al., 2024; Wolna et al., 2024), and
processing linguistic inputs that are not syntactically well-formed (Kuperberg et al., 2003;
Nieuwland et al., 2012; Mollica et al., 2020; Tuckute et al., 2024; Kauf et al., 2024). A possible
generalization about these cases is that they all involve difficulty extracting a syntactically parsable
word sequence from perceptual linguistic inputs.
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Here, we present another case where passive language comprehension engages the MD network:
speeded reading (for earlier evidence, see Vagharchakian et al., 2012, although the evidence is
indirect as no independent MD localizer is included). The MD regions’ response during the
sentences condition was ~43% higher in the speeded version compared to the standard version (cf.
a much smaller difference observed in the language regions: a ~16% increase for the speeded
version). Interestingly, in some previously reported cases, the linguistic condition that engages the
MD network to a greater extent elicits a Jlower response in the language areas. For example, Malik-
Moraleda, Jouravlev et al. (2024) show that comprehension of relatively low-proficiency
languages engages the MD network more strongly than higher-proficiency languages, but elicits a
lower response in the language network. In contrast, the speeded sentence reading condition
elicited a higher response compared to the normal-speed reading condition in both the MD network
and the language network. This pattern may be taken to suggest that the generalization above—
that the MD network gets engaged when it is difficult to extract a syntactically parsable word
sequence from perceptual inputs—is not correct: this kind of difficulty should systematically lead
to lower responses in the language network given that partially comprehensible stimuli should not
be able to engage linguistic computations to the full extent (see Malik-Moraleda, Jouravlev et al.,
2024 for discussion). Thus, the precise contributions of the MD network during different kinds of
effortful linguistic processing remain to be determined.

Finally, given the MD network’s stronger response during the speeded sentence reading condition
but a similarly strong response during the nonword reading condition, the speeded localizer does
not elicit a nonwords > sentences effect in the MD regions, in contrast to the standard language
localizer (Fedorenko et al., 2013; Diachek, Blank, Siegelmann et al., 2020). A practical implication
is that it is not possible to use the nonwords > sentences contrast in the speeded version to localize
the MD network (in addition to the language network) as is sometimes done (e.g., Shain, Blank et
al., 2020). Whether the time saved by the speeded language localizer version is worth this trade-
off of not being able to functionally define the MD regions using the same localizer will depend
on the researcher’s goals.

4. Other efforts in cognitive neuroscience to develop efficient localizers.

Functional localizers increase the sensitivity, functional resolution, and interpretability of research
in cognitive neuroscience, but they take up precious time during the study. As a result, there is
growing interest in making localizers more efficient. There are two strategies to make a localizer
shorter: 1) by reducing the number of blocks or making the blocks shorter, or ii) by trying to
increase the size of the critical > control effect (typically, by trying to increase the critical
condition’s response magnitude). Our approach falls into the first category. In particular, by
increasing the speed of (visually) presenting linguistic materials (by ~56%), we shortened
experimental blocks from 18 s (3 6-second trials) to 9 s (3 3-second trials). (Note that although we
retained the original 14 s fixation blocks, the fixation blocks could likely be shortened to 9 s, which
would shave off another 30 s from the run’s duration.) Lee et al. (2024) also took the first approach,
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but instead of changing the presentation speed, they showed that for a standard auditory language
localizer based on the contrast of intact speech > degraded speech (as introduced in Scott et al.,
2017) fewer blocks suffice for localizing the language regions.

The approach of trying to increase the magnitude of the critical condition requires selection of
stimuli that maximally engage the system of interest. For example, Dodell-Feder et al. (2011)
analyzed responses to individual stimuli in a standard Theory of Mind (ToM) network localizer
(Saxe & Kanwisher, 2003) and in a large dataset of a few hundred participants identified a) a subset
of the critical-condition items (false belief stories) that elicit the highest response in the ToM brain
areas, and b) a subset of the control-condition items (false photograph stories) that elicit the lowest
response in the ToM areas. These subsets were used to create a highly efficient ToM localizer (see
Chen, Kamps et al., 2024 for a related approach). Other studies have attempted to select stimuli
that would be especially exciting for particular individuals based on their interests. For example,
Olson, D’Mello et al. (2023) used language materials on topics of interest to different individuals
with autism and found stronger responses in the language areas with those custom-selected stimuli.
Finally, with the advent of neural networks that are predictive of brain responses (e.g., Yamins et
al., 2014; Schrimpf et al., 2021), it is now possible to create or select stimuli that elicit maximal
responses in the target region/network (Bashivan et al., 2019; Xiao & Kreiman, 2020; Ratan Murty
et al., 2021; Gu et al., 2023; Tuckute et al., 2024). To our knowledge, these advances have not yet
been leveraged in the creation of efficient localizers.

In addition to increasing the efficiency of a given localizer, another recent effort is to combine
several localizers into a single experiment. For example, Hutchison et al. (2024) propose a
multimodal localizer with simultaneous presentation of visual and auditory stimuli to target
processing of e.g., faces and scenes, as well as speech, language, and higher-level cognitive areas.

Increasing localizer efficiency in all these ways is valuable given the increasing popularity of
precision imaging approaches in cognitive neuroscience (Gordon et al., 2017; Naselaris et al.,
2021; Gratton & Braga, 2021; Allen et al., 2022).

Data and code availability

The scripts for running the speeded language localizer as well as the associated analyses can be
found here: https://github.com/el849/speeded language localizer/. The data can be found on
OSF: https://osf.io/2vskh/.
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SI 1: Details on fMRI acquisition sequences

A B C

Number Participants | 22* 2% 1
Sequence
Type SMS-EPI EPI with GRAPPA | EPI with GRAPPA
Flip Angle 90 90 90
Acceleration Factor 2 2 2
Acquisition Parameters

Number Slices 52 33 31
Slice Thickness 2mm 4mm 4mm

In-plane Resolution

2mm x 2mm

2.1lmm x 2.1mm

2.1lmm x 2.1lmm

FoV 208mm 200mm 200mm
FoV Matrix Size 104 x 104 96 x 96 96 x 96
TR 2000ms 2000ms 2000ms
TE 30ms 30ms 30ms

SI Table 1. Functional MRI acquisition sequences.

* One participant had the standard language localizer acquired using sequence B, and the speeded
language localizer acquired using sequence A. For all remaining participants, the acquisition sequence
was kept constant in all comparisons between the standard and the speeded versions of the language
localizer. For acquisition of the Multiple Demand (MD) localizer task, all participants besides one,
completed the MD localizer task in the same session as the language localizer tasks. The remaining
participant completed the two language localizer tasks using sequence B, while the MD task was acquired
using sequence A in a later session.
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SI 2: Information related to Results Section 1.A

SI 2A: Whole-brain spatial correlation (supplementing language parcel correlations in Figure 1B
and Figure 1C)

A. Left-hemisphere Fisher-
transformed spatial correlation

B. Right-hemisphere Fisher-
transformed spatial correlation
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SI Figure 2A: Correlation of whole-brain voxel-wise activation patterns and overlap coefficient
within and between language localizer versions (for the left and right hemispheres separately).

(A-B) We quantified the correlation of the voxel-wise activation patterns for the sentences > nonwords
contrast within the whole left hemisphere (panel A) and right hemisphere (panel B) within localizer
versions (between the two runs of the same localizer; red bars) and between localizer versions (for a total
of four such pairwise combinations, given two runs of each localizer version; gray bar). In both panels,
the bars show the average Fisher-transformed correlation coefficient across participants and individual
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points show the correlation values from individual participants (n=24). Error bars show the standard error
of the mean across participants.

(C-D) For an additional metric of the similarity of voxel-wise activation patterns for the sentences >
nonwords contrast between the standard and speeded localizers, we computed the Dice coefficient overlap
within the whole left hemisphere (panel C) and right hemisphere (panel D) within localizer versions
(between the two runs of the same localizer; red bars) and between localizer versions (for a total of four
such pairwise combinations, given two runs of each localizer version; gray bar). The Dice coefficient was
computed as: 2 * |[Standard N Speeded|/ (|Standard| + |Speeded]) for each hemisphere, where
|Standard N Speeded| denotes the number of voxels that were in the top 10% responsive voxels for
both the standard and speeded localizer versions, |Standard| denotes the number of voxels in the top
10% for the standard localizer version, and |Speeded| denotes the number of voxels in the top 10% for
the speeded localizer version (Note: |[Standard| = |Speeded| because the same parcels were used for
both localizer versions). This computation provides a value between 0 and 1, where 0 indicates that the
two localizer versions identified completely non-overlapping regions, and 1 indicates that the two
localizer versions identified completely overlapping regions. In both panels, the bars show the average
Dice coefficient across participants and individual points show the correlation values from individual
participants (n=24). Error bars show the standard error of the mean across participants.

SI 2B: Dice correlation coefficient between the standard and speeded language localizer versions
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SI Figure 2B. Dice coefficient overlap values across a range of fROI definition thresholds.
We quantified the Dice coefficient overlap at a range of fROI definition thresholds. For each participant,
the top 7% most responsive voxels to the sentences > nonwords contrast in each of the LH language
parcels were selected in both the standard and speeded localizer versions. n denotes the percentage
threshold for fROI inclusion, and we show results for n =[5, 10, 15, 20, 25, 30, 35, 40]. The bars above
show the average Dice coefficient across the six LH language fROls.
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Note that in some participants (in particular for larger values of ), not all top #% voxels displayed a
positive sentences > nonwords t-statistic. In this case, the voxels with negative t-statistic (i.e., opposite
selectivity) were excluded from the Dice coefficient analyses. See the number of included voxels across
the range of # in SI Table 2C.

LH_IFGorb LH_IFG LH.MFG LH_AntTemp LH_PostTemp LH_AngG
Mean  StDev Mean  StDev Mean  StDev Mean  StDev Mean  StDev Mean StDev
Firstlevel  Constant Threshold
(top n%)
Standard  S-N 40 145.167  9.412  276.958 67.322 181.875 14.069 651.000  0.000 1179.000  0.000 233.417 107.815
35 128.750 4.484  243.708 57.326  160.083 9.390  570.000 0.000  1032.000 0.000  215.875 104.855
30 111.333 1.857 209.792 47.352 138.042 4.695  488.000 0.000 885.000 0.000 191.917 101.594
25 93.708 3.470  175.875  37.635 116.000 0.000  407.000 0.000 737.000 0.000  169.458 102.549
20 75.500 7.348  141.958  28.440 93.000 0.000  326.000 0.000 590.000 0.000 144.833 105.619
15 56.000 0.000 107.833 20.412 70.000 0.000  244.000 0.000 443.000 0.000 94.625 11.635
10 37.000 0.000 72375 12.860 47.000 0.000  163.000 0.000 295.000 0.000 63.958 5.103
5 19.000 0.000 36.917 5.307 24.000 0.000 82.000 0.000 148.000 0.000 33.000 0.000
ODD_S-N 40 143.750 9.918 273.125 65.409 181.125 11.066  651.000 0.000  1179.000 0.000 237.083 110.543
35 129.292 5.137 242958 54.865 160.792 4.303  570.000 0.000  1032.000 0.000 214.417 107.010
30 112.208 6.359  210.708 45.028 139.000 0.000  488.000 0.000 885.000 0.000 191.042  105.455
25 93.000 0.000 178.083 36.710 116.000 0.000  407.000 0.000 737.000 0.000 167.208 106.025
20 74.000  0.000 143.042  29.190  93.000  0.000 326.000  0.000  590.000  0.000 140.625 108.345
15 56.000 0.000 107.583 21.637 70.000 0.000  244.000 0.000 443.000 0.000 90.708 21.402
10 37.000 0.000 72.125 14.085 47.000 0.000  163.000 0.000 295.000 0.000 61.375 12.430
5 19.000  0.000  36.667  6.532  24.000  0.000  82.000  0.000  148.000  0.000 = 32.042 3.770
EVEN_S-N 40 137.292  25.752  268.500 70.902 174.958 33.146  651.000 0.000 1163.458 47.110 225.542 106.883
35 122,417 19.525  237.667 58238 154.125 26.713 570.000  0.000 1030.417  5.563 210.083 103.220
30 106.292  13.343  206.833  46.400 133.042 20.230 488.000 0.000 885.000 0.000  191.417 101.650
25 90.542  7.763 174917 35466 111.958 13.757 407.000  0.000  737.000  0.000 167.292 101.323
20 73.750 3.926  141.792  25.307 90.875 7.321  326.000 0.000 590.000 0.000 143.708 103.904
15 57.250 5.712  107.875 15.470 69.708 1.429  244.000 0.000 443.000 0.000 96.125 3.530
10 37.000 0.000 73.542 7.144 47.000 0.000  163.000 0.000 295.000 0.000 65.000 0.000
5 19.000 0.000 38.000 0.000 24.000 0.000 82.000 0.000 148.000 0.000 33.000 0.000
Speeded S-N 40 148.000 0.000 294.625 8.272  185.000 0.000  651.000 0.000  1179.000 0.000 264.583 85.489
35 130.000 0.000  260.000 0.000  162.000 0.000  570.000 0.000  1032.000 0.000  236.583 88.374
30 111.000 0.000  223.000 0.000  139.000 0.000  488.000 0.000 885.000 0.000 207.708 92.585
25 93.000 0.000  186.000 0.000  116.000 0.000  407.000 0.000 737.000 0.000 178.917 97.790
20 74.000 0.000  149.000 0.000 93.000 0.000  326.000 0.000 590.000 0.000  149.583  103.640
15 56.000 0.000  112.000 0.000 70.000 0.000 244.042 0.204 443.000 0.000 97.000 0.000
10 37.000 0.000 75.000 0.000 47.000 0.000  163.000 0.000 295.000 0.000 65.000 0.000
5 19.000 0.000 38.000 0.000 24.000 0.000 82.000 0.000 148.000 0.000 33.000 0.000
ODD_S-N 40 148.000  0.000 286.708 38.150 185.000  0.000 651.000  0.000 1179.000  0.000 252.833  92.049
35 130.000 0.000 252.792 28915 162.000 0.000  570.000 0.000  1032.000 0.000  231.083 92.103
30 111.000  0.000 218.750 20.821 139.000  0.000 488.000  0.000  885.000  0.000 205.250  94.702
25 93.000 0.000 183.292 13.268 116.000 0.000 407.000 0.000 737.000 0.000 178.208 99.039
20 74.000 0.000 147.833 5.715 93.000 0.000  326.000 0.000 590.000 0.000 148.875 104.613
15 56.000 0.000  112.000 0.000 70.000 0.000  244.000 0.000 443.000 0.000 96.958 0.204
10 37.000 0.000 75.000 0.000 47.000 0.000  163.000 0.000 295.000 0.000 65.000 0.000
5 19.000 0.000 38.000 0.000 24.000 0.000 82.000 0.000 148.000 0.000 33.000 0.000
EVEN.S-N 40 141.417  24.702  289.875 25.197 185.000 0.000 646.625 21.433 1168.333 52.256 261.292 85.930
35 124.917  20.231  255.958 15.482  162.000 0.000  569.000 4.899 1027.458 22.250 234.625 87.839
30 107.500  15.916  221.500 7.348  139.000 0.000  488.000 0.000 885.000 0.000  206.333 91.517
25 90.500 12.247  186.000 0.000  116.000 0.000  407.000 0.000 737.000 0.000 178.042 96.332
20 72.292 8.369  149.000 0.000 93.000 0.000  326.000 0.000 590.000 0.000 148.708 102.003
15 55.042 4.695  112.000 0.000 70.000 0.000  244.000 0.000 443.000 0.000 97.000 0.000
10 36.833 0.816 75.000 0.000 47.000 0.000  163.000 0.000 295.000 0.000 65.000 0.000
5 19.000 0.000 38.000 0.000 24.000 0.000 82.000 0.000 148.000 0.000 33.000 0.000

SI Table 2C. Number of included voxels across fROI definition thresholds for Dice overlap
analyses.

Mean and standard deviation for the number of voxels across participants in each left-hemisphere
language fROI that were included in the fROIs for the Dice coefficient overlap analyses (i.e., voxels with
a positive t-value corresponding to the sentences > nonwords contrast). For the Dice analyses, voxels that
demonstrate the opposite selectivity (negative t-values) were excluded. The total number of voxels in the
parcels were: LH_IFGorb: 370; LH_IFG: 743, LH MFG: 462, LH_AntTemp: 1627, LH PostTemp:
2948, LH_AngG: 644, and if no participants displayed negative t-values for the sentences > nonwords
contrast the number of voxels included in the Dice analyses would always correspond to a given
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percentage threshold (). As evidenced from the table, in most cases all n % voxels show positive t-
values, but occasionally some voxels are excluded (in particular, for larger »).

SI 2D: Statistics tables for Results Section 1.A

In the tables below, “SpCorr” denotes the Fisher-transformed spatial correlation coefficient.
“within_between” denotes whether a spatial correlation coefficient was computed within
localizer or between localizer versions. “participant” denotes each of the n=24 participants.
“fROI” denotes each of the LH or RH regions of interest (six fROIs in each hemisphere).

SpCorr LH language ~ version + (1|participant) + (1|fROI)

Spcorr comparison of standard and speeded localizer, 72 = 0.4076

Estimate  Std. Error df  t value Pr(>[t])
(Intercept) 0.881 0.100  12.707 8.843 0.000
Conditionspeeded 0.005 0.046  258.883 0.118 0.906

SpCorr LH language ~ within_between + (I|participant) + (1|fROI)

Spcorr within localizer vs. between localizer versions, 72 = 0.5117

Estimate Std. Error df t value Pr(>|t])
(Intercept) 0.795 0.089 11.930 8.951 0.000
Conditionwithin 0.089 0.034  258.924 2.629 0.009

SpCorr language (LH wholebrain) ~ within_between + (I |participant)

Spcorr within localizer vs. between localizer versions (left-hemisphere wholebrain), 72 = 0.7346

Estimate  Std. Error df  t value Pr(>[t])
(Intercept) 0.360 0.050  31.320 7.241 0.000
Conditionwithin 0.065 0.037  24.000 1.781 0.088

SpCorr language (RH wholebrain) ~ within_between + (I|participant)

Spcorr within localizer vs. between localizer versions (right-hemisphere wholebrain), 72 = 0.7033

Estimate  Std. Error df  t value Pr(>|t])
(Intercept) 0.206 0.047 32.124  4.349 0.000
Conditionwithin 0.015 0.036  24.000 0.408 0.687

Dice coefficient ~ within_between + (l|participant) + (1|fROI)
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Dice within localizer vs. between localizer versions (top 10%), r* = 0.4814

Estimate Std. Error df  tvalue Pr(>|t|)
(Intercept) 0.649 0.047 7.571  13.909 0.000
Conditionwithin 0.038 0.015  258.942 2.453 0.015
Dice within localizer vs. between localizer versions (top 20%), > = 0.4506
Estimate Std. Error df  t value Pr(>t])
(Intercept) 0.720 0.035 8.263  20.814 0.000
Conditionwithin 0.022 0.013  258.930 1.775 0.077

Dice within localizer vs. between localizer versions (top 30%), r? = 0.4546

Estimate
0.761
0.011

Std. Error
(Intercept)

Conditionwithin

df  t value Pr(>|t|)
0.028 8.928  27.001 0.000
0.011  258.926 1.018 0.310

Dice coefficient (LH wholebrain) ~ within_between + (1|participant) + (1|fROI)

Dice within localizer vs. between localizer versions (left-hemisphere wholebrain top 10%), r? = 0.0478

Estimate Std. Error df  t value Pr(>|t|)
(Intercept) 0.502 0.036  48.000  13.828 0.000
Conditionwithin 0.079 0.051  48.000 1.536 0.131

Dice within localizer vs. between localizer versions (left-hemisphere wholebrain top 20%), r? = 0.9919

Estimate Std. Error df t value Pr(>|t|)
(Intercept) 0.953 0.016 24.195 61.316 0.000
Conditionwithin -0.003 0.002  24.000 -1.291 0.209

Dice within localizer vs. between localizer versions (left-hemisphere wholebrain top 30%), 72 = 0.4649

Estimate Std. Error df  t value Pr(>|t])
(Intercept) 0.969 0.002  39.764 509.224 0.000
Jonditionwithin -0.002 0.002  24.000 -1.254 0.222

Dice coefficient (RH wholebrain) ~ within_between + (1|participant) + (1|fROI)
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Dice within localizer vs. between localizer versions (right-hemisphere wholebrain top 10%), 72 = 0.0154

Estimate Std. Error df  t value Pr(>|t])
(Intercept) 0.513 0.029  48.000  17.386 0.000
Conditionwithin 0.036 0.042  48.000 0.857 0.395

Dice within localizer vs. between localizer versions (right-hemisphere wholebrain top 20%), 72 = 0.9316

Estimate  Std. Error df  t value Pr(>|t])
(Intercept) 0.944 0.018 25.702  52.989 0.000
Conditionwithin -0.008 0.007  24.000 -1.210 0.238

Dice within localizer vs. between localizer versions (right-hemisphere wholebrain top 30%), 2 = 0.3775

Estimate  Std. Error df  tvalue Pr(>|t])
(Intercept) 0.966 0.002 42270 194.375 0.000
Jonditionwithin -0.002 0.002  24.000 -1.056 0.301

SI 3: Information related to Results Section 1.B

SI 3A: Validation of hard > easy contrast from the MD localizer

A. Responses to hard and easy B. Responses to hard and easy spWM conditions in the Multiple Demand (MD) network
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SI Figure 3A. Responses to the hard and easy spatial working memory (spWM) conditions in the
MD localizer task.

(A) Mean response to the MD localizer conditions (H=hard, E=easy) for each of the standard and speeded
versions of the localizer task averaged across ten Multiple Demand (MD) fROIs in each hemisphere. Dots
show the mean response across fROIs of each individual participant. Error bars show the standard error of
the mean across participants.

(B) Mean response to the MD localizer conditions for each MD fROI. Dots show the mean response in
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the particular fROI of each individual participant. Error bars show the standard error of the mean across
participants.

SI 3B: Sentences > nonwords BOLD response magnitudes are highly correlated across runs for
both the standard and speeded language localizer versions

To investigate how stable the sentences and nonwords BOLD responses were across individual
scanning runs, we quantified the average BOLD response magnitudes of the sentences >
nonwords contrast for each LH language fROI for the odd and even run of each localizer version
separately. Note that independent data were used to localize the fROI (i.e., data from the odd run
were used to define the fROI, and responses were extracted from the even run, and vice versa).

The correlation between the average sentence > nonwords magnitude across LH language fROIs
was greater in the standard language localizer than the speeded language localizer (SI Figure
3B, panel A). The correlation of the sentences > nonwords magnitude between odd and even
runs across the six language fROIs was r = 0.78 (p<0.0001) for the standard language localizer,
and r = 0.57 (p=0.0036) for the speeded language localizer. (Note that without the one outlier
participant-bottom right in SI Figure 3B, panel A—the correlation was r = 0.85 for the speeded
language localizer, p<0.0001).

The odd-even correlation values for individual fROIs were similarly high (SI Figure 3B, panel
B): The average correlation across the six language fROIs was 0.79 (SD across fROIs: 0.10; six
ps<0.005) for the standard language localizer, and 0.72 (SD: 0.08; six ps<0.005) for the speeded
language localizer.

A. Correlation Averaged :
g B. Correlation Across LH Lang fROls
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Odd Run Effect Size
SI Figure 3B. Correlation of sentences > nonwords BOLD magnitudes within LH language fROIs
obtained from odd and even runs.
(A) Correlation between sentences > nonwords BOLD magnitudes (averaged across the six LH language
ROIs) of odd (x-axis) and even (y-axis) runs of the standard language localizer (upper row) and speeded
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language localizer (bottom row). Dots represent the sentences > nonwords BOLD response for each
individual participant (n=24).
(B) Same as in panel A, just for each individual language fROL.

SI 3C: Consistency of localizers within participants across sessions

A. Responses to sentences and nonwords B. Responses to sentences and nonwords
Mean across LH fROls for three sessions in participant 853 Mean across LH fROls for two sessions in participant 837
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SI Figure 3C: Responses to the sentences and nonwords conditions in the standard and speeded
language localizer for two participants across sessions.

Two participants in our dataset completed the two language localizers in different sessions (i.e., different
days): One participant completed three sessions (the three sessions were 5 and 7 days apart, panel A),
another participant completed two sessions (the two sessions were 99 days apart, panel B).

The mean responses to the language localizer conditions (S=sentences, N=nonwords) for each of the
standard and speeded versions of the localizer task averaged across the six LH language fROIs are shown.

SI 3D: Statistics tables for Results Section 1.B (responses to language)

In the tables below, “BOLD response” denotes the BOLD response magnitude for the given
condition (sentences, nonwords, or sentences > nonwords; note that “language” denotes both
sentences and nonwords responses). “condition” denotes the sentences and nonwords conditions
in the LMEs where they are modeled together. “version” denotes the language localizer version,
either standard or speeded. “participant” denotes each of the n=24 participants. “fROI” denotes
each of the six LH fROIs.

(i) BOLD response language ~ condition + version + (l|participant) + (1|fROI)
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Standard vs Speeded Without Interaction (LHLang), r? = 0.6174

Estimate Std. Error df t value Pr(>|t])

(Intercept) 0.290 0.299 7.776 0.972 0.361
Lang_ConditionS 1.698 0.077  546.966  22.060 0.000
Speeded_ConditionSpeeded 0.011 0.077  546.966 0.142 0.887

(i) BOLD response language ~ condition + version + condition:version + (1|participant) + (1|fROI)
Standard vs Speeded With Interaction (LHLang), r* = 0.6311

Estimate Std. Error df  tvalue Pr(>|t])

(Intercept) 0.460 0.301 8.017 1.530 0.165

Lang_ConditionS 1.357 0.107 546.967 12.701 0.000

Speeded_ConditionSpeeded -0.329 0.107 546.967  -3.083 0.002
Lang_ConditionS:Speeded_ConditionSpeeded 0.681 0.151  546.967 4.504 0.000

(ii1) BOLD response sentences>nonwords ~ version + (1|participant) + (1|fROI)
Standard vs Speeded S-N (LHLang), 72 = 0.5508

Estimate Std. Error df t value Pr(>]t])
(Intercept) 1.357 0.253 8.954  5.369 0.000
Speeded_ConditionSpeeded 0.681 0.087  258.939 7.858 0.000

(iv) BOLD response sentences ~ version + (I|participant) + (1|fROI)
Standard vs Speeded S (LHLang), * = 0.5831

Estimate Std. Error df tvalue Pr(>[t|)
(Intercept) 1.818 0.416 7.642 4.373 0.003
Speeded_ConditionSpeeded 0.351 0.115 258.961 3.054 0.002

(v) BOLD response nonwords ~ version + (I |participant) + (1|fROI)

Standard vs Speeded N (LHLang), r? = 0.3757

Estimate Std. Error df tvalue Pr(>|t])
(Intercept) 0.460 0.185 8.154  2.484 0.037
Speeded_ConditionSpeeded -0.329 0.080 258.900 -4.125 0.000
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SI 3E: Language BOLD responses for right hemisphere fROIs

A. Brain fROIs C. Responses to sentences and nonwords for each RH language fROI
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SI Figure 3E: Responses to the language localizer conditions (sentences and nonwords) for the
standard and speeded language localizers in right hemisphere (RH) language fROIs.

(A) We defined the RH language fROIs as the most language-responsive voxels (top 10%) within the
borders of the six anatomical parcels (see Methods; Extraction of fMRI BOLD responses) for each
participant, and measured the BOLD response magnitude in these fROIs in a cross-validated manner (see
Methods; Definition of fROISs).

(B) Mean BOLD response to the language localizer conditions (S=sentences, N=nonwords) for both the

standard and speeded localizer versions averaged across the six RH language fROIs.

(C) Mean BOLD response to the localizer conditions for each RH language fROI. In both panels, dots
show the mean response of each individual participant. Error bars show the standard error of the mean
across participants.

The statistics tables accompanying SI Figure 3E are found below.

(i) BOLD response RH language ~ condition + version + (1|participant) + (1|fROI)
Standard vs Speeded Without Interaction (RHLang), R-Squared = (.34712

Estimate Std. Error df tvalue Pr(>|t])

(Intercept) 0.097 0.178 7.838 0.545 0.601
Lang_ConditionS 0.539 0.061 546.936 8.800 0.000
Speeded_ConditionSpeeded 0.113 0.061 546.936 1.841 0.066

(i) BOLD response RH language ~ condition + version + condition:version + (I|participant) + (1|fROI)
Standard vs Speeded With Interaction (RHLang), R-Squared = 0.3514

Estimate Std. Error df  tvalue Pr(>|t])

(Intercept) 0.155 0.180 8.304 0.857 0.415

Lang_ConditionS 0.424 0.086 546.936 4.907 0.000
Speeded_ConditionSpeeded 0.003 0.086 546.936 0.029 0.977
Lang_ConditionS:Speeded _ConditionSpeeded 0.231 0.122  546.936 1.889 0.059

(iil) BOLD response RH sentences>nonwords delta ~ version + (1|participant) + (1|fROI)
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Standard vs Speeded S-N (RHLang), R-Squared = 0.3658

Estimate  Std. Error df  tvalue Pr(>|t])
(Intercept) 0.424 0.119 12.446 3.563 0.004
Speeded_ConditionSpeeded 0.231 0.061  258.853 3.771 0.000

(iv) BOLD response RH sentences ~ version + (1|participant) + (1|fROI)

Standard vs Speeded S (RHLang), R-Squared = 0.3374

Estimate  Std. Error df  tvalue Pr(>|t])
(Intercept) 0.579 0.217 7.778 2.662 0.029
Speeded_ConditionSpeeded 0.228 0.096  258.896 2.389 0.018

(v) BOLD response RH nonwords ~ version + (1|participant) + (1|fROI)

Standard vs Speeded N (RHLang), R-Squared = 0.2573

Estimate  Std. Error df  tvalue Pr(>|t])
(Intercept) 0.155 0.145 7.785 1.065 0.319
Speeded_ConditionSpeeded -0.003 0.073  258.859  -0.035 0.972

SI 3F: Statistics tables for Results Section 1.B (responses to working memory task)

In the tables below, “BOLD response” denotes the BOLD response magnitude for the given
condition (hard, easy). “version” denotes the language localizer version, either standard or
speeded. “participant” denotes each of the n=24 participants. “fROI” denotes each of the six LH
fROIs.

1) BOLD response hard ~ version + (1|participant) + (1|fROI)

Standard vs Speeded H (LHLang), R-Squared = 0.466

Estimate  Std. Error df  tvalue Pr(>|t))
(Intercept) _ -0.385 0252 13824 -1.528  0.149
Speeded_ConditionSpeeded 0.117 0.108  258.901 1.084 0.280

ii) BOLD response easy ~ version + (l|participant) + (1|fROI)

Standard vs Speeded E (LHLang), R-Squared = (.4622

Estimate  Std. Error df  twvalue Pr(>|t))
(Intercept) -0.068 0.145 20.179  -0.470 0.644
Speeded_ConditionSpeeded 0.113 0.070 258.874 1.631 0.104
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SI 4: Information related to Results Section 2 (Multiple Demand network)

SI 4A: MD responses to the language localizer versions across fROIs

BOLD response (mean +- SEM across participants)

Responses to sentences and nonwords in the Multiple Demand (MD) network
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SI Figure 4A. Responses to the standard and speeded localizer tasks in the Multiple Demand
Region across all 10 left and right hemispheric MD fROIs. Mean BOLD response to the language
localizer conditions (S=sentences, N=nonwords) for each of the standard and speeded versions of the
localizer task for each Multiple Demand (MD) fROI in the left and right hemispheres. Dots show the
mean response across fROIs of each individual participant. Error bars show the standard error of the mean

across participants.

SI 4B: Statistics tables for Results Section 2

In the tables below, “BOLD response” denotes the BOLD response magnitude for the given
condition (sentences, nonwords; note that “language” denotes both sentences and nonwords
responses). “condition” denotes the sentences and nonwords conditions in the LMEs where they
are modeled together. “version” denotes the language localizer version, either standard or
speeded. “participant” denotes each of the n=24 participants. “fROI” denotes each of the twenty
LH/RH MD fROls.

BOLD response standard language ~ condition + (1 |participant) + (1|fROI)
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S-N Standard (MD), R-Squared = 0.5257

Estimate  Std. Error df  t value Pr(>|t])
(Intercept) 0.541 0.125  42.783 4325 0.000
Lang_ConditionS -0.275 0.036 916.956  -7.547 0.000

BOLD response speeded language ~ condition + (1|participant) + (1|fROI)

S-N Speeded (MD), R-Squared = 0.44

Estimate  Std. Error df  t value Pr(>|t])
(Intercept) 0.477 0.123 42.998 3.864 0.000
Lang_ConditionS -0.012 0.041 916.942  -0.283 0.777

BOLD response language ~ condition + version + condition:version + (l|participant) + (1|fROI)

Standard vs. Speeded With Interaction (MD), R-Squared = 0.3504

Estimate  Std. Error df t value Pr(>|t])

(Intercept) 0.541 0.108 45.171 5.002 0.000

Lang_ConditionS -0.275 0.044 1876.956  -6.328 0.000

Speeded_ConditionSpeeded -0.064 0.044  1876.956  -1.470 0.142
Lang_ConditionS:Speeded _ConditionSpeeded 0.264 0.062  1876.956 4.285 0.000

BOLD response sentences ~ version + (l|participant) + (1|fROI)

Standard vs. Speeded S (MD), R-Squared = 0.3263

Estimate  Std. Error df  tvalue Pr(>|t])
(Intercept) 0.266 0.104 36.377 2.549 0.015
Speeded_ConditionSpeeded 0.200 0.044  916.907 4.584 0.000

BOLD response nonwords ~ version + (l|participant) + (1|fROI)

Standard vs. Speeded N (MD), R-Squared = 0.4024

Estimate  Std. Error df  t value Pr(>|t])
(Intercept) 0.541 0.117  42.660 4.634 0.000
Speeded_ConditionSpeeded -0.064 0.042 916.932 -1.519 0.129
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