

1 **De novo cancer mutations frequently associate with recurrent chromosomal
2 abnormalities during long-term human pluripotent stem cell culture**

3 Diana Al Delbany¹, Manjusha S Ghosh¹, Nusa Krivec¹, Anfien Huygebaert¹, Marius Regin¹, Chi Mai
4 Duong¹, Yingnan Lei¹, Karen Sermon¹, Catharina Olsen^{2,3,4}, Claudia Spits^{1,*}

5 * To whom correspondence should be addressed: claudia.spits@vub.be

6 1 Research Group Genetics, Reproduction and Development, Vrije Universiteit Brussel, Laarbeeklaan
7 103, 1090, Jette, Belgium

8 2 Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, research
9 group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090
10 Jette, Belgium

11 3 Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore), Vrije Universiteit Brussel
12 (VUB), Université Libre de Bruxelles (ULB), Laarbeeklaan 101, 1090 Brussels, Belgium

13 4 Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles (ULB) - Vrije
14 Universiteit Brussel (VUB), Brussels, Belgium

15 **ABSTRACT**

16 Human pluripotent stem cells (hPSC) are pivotal in regenerative medicine, yet their *in vitro* expansion
17 often leads to genetic abnormalities, raising concerns about their safety in clinical applications. This
18 study analyzed ten human embryonic stem cell lines across multiple passages to elucidate the dynamics
19 of chromosomal abnormalities and single nucleotide variants (SNVs) in 380 cancer-related genes.
20 Prolonged *in vitro* culture resulted in 80% of the lines acquiring gains of chromosomes 20q or 1q, both
21 known for conferring *in vitro* growth advantage. 70% of lines also acquired other copy number variants
22 (CNVs) outside the recurrent set. Additionally, we detected 122 SNVs in 88 genes, with all lines acquiring
23 at least one *de novo* SNV during culture. Our findings show higher loads of both CNVs and SNVs at later
24 passages which are due to the cumulative acquisition of mutations over a longer time in culture and not
25 to an increased rate of mutagenesis over time. Importantly, we observed that SNVs and rare CNVs
26 follow the acquisition of chromosomal gains in 1q and 20q, while most of the low-passage and
27 genetically balanced samples were devoid cancer-associated mutations. This suggests that the recurrent
28 chromosomal abnormalities are the potential drivers for the acquisition of other mutations.

29 **Keywords:** human pluripotent stem cells, genetic instability, copy number variation, single nucleotide
30 variants, cancer-related genes.

31

32 INTRODUCTION

33 hPSCs are an invaluable resource for regenerative medicine, with over 100 clinical trials currently
34 ongoing (Kobold et al., 2023). At low passages, most hPSC lines maintain a normal diploid karyotype.
35 However, during *in vitro* expansion, hPSCs frequently acquire genetic aberrations, commonly involving
36 full or segmental gains of chromosomes 1, 12, 17, and 20 (Amps et al., 2011; Baker et al., 2016). These
37 genetic aberrations are reminiscent of those seen in cancers, raising concerns about the potential for
38 oncogenic transformation in transplanted hPSC-derived cell products (Andrews et al., 2022). Four
39 studies have addressed this concern by investigating the incidence of point mutations in cancer-related
40 genes (Avior et al., 2021; Lezmi et al., 2024; Merkle et al., 2017, 2022), and confirmed that hPSCs carry
41 potentially deleterious variants in these genes, with *TP53* being the most commonly mutated. While
42 these studies provided valuable insights into the mutational landscape of hPSCs, they could not reliably
43 determine the timing of the appearance of these variants or their association with other mutational
44 events such as the acquisition of CNVs. In this work, we close this gap in knowledge by studying multiple
45 passages of ten hESC lines using simultaneous targeted gene sequencing with a panel of 380 cancer-
46 associated genes and CNV analysis via shallow whole-genome sequencing to investigate the timing and
47 association of these genetic variants. This approach provides insight into the temporal evolution of
48 genetic changes within each hESC line.

49 RESULTS

50 Figure 1A shows an overview of all the gains and losses identified, Figure 2 shows the genetic variants
51 identified per cell line and passage, and a complete list of CNV breakpoints is provided in Supplementary
52 Table 1. Of the 10 cell lines, only VUBe005 showed a balanced genetic content at all tested passages
53 (P39, P75 and P89). One line (VUBe026) already carried CNVs at the earliest passage tested (P11), and
54 the other 9 lines acquired different chromosomal abnormalities during extended culture. Overall, gains
55 were more common than losses (39 gains vs. 8 losses). We found that 80% of our lines (8/10 lines, 13/33
56 samples) acquired a gain of chromosome 20q and 60% (6/10 lines, 8/33 samples) a gain of 1q, both well-
57 known highly recurrent chromosomal abnormalities that confer a growth advantage to hPSCs *in vitro*
58 (Avery et al., 2013; Krivec et al., 2023; Nguyen et al., 2014; Stavish et al., 2023). All gains on 20q included
59 the driver gene *BCL2L1*, had a common proximal breakpoint and varying distal breakpoints, with sizes
60 ranging 1.075 Mb to 46.925 Mb. The proximal breakpoints for the gains of 1q were specific to each line
61 and were telomeric, their sizes ranging 0.725 Mb to 103.7 Mb and spanning the driver gene *MDM4*.
62 These findings fully align with previous reports on these recurrent abnormalities (Amps et al., 2011;
63 Halliwell et al., 2021; Merkle et al., 2022). Two lines also carried losses of 18q, a recurrent but less
64 common chromosomal abnormality in hPSCs (Amps et al., 2011; Baker et al., 2016; Spits et al., 2008;
65 Stavish et al., 2023). Further, we found an array of other abnormalities, including duplications of 1p13.2,
66 1q21.3, 3q26.22q27.3, 7p22.3pter, 9p24.3p13.3, 15q26.1q26.2, Xp11.3p11.23 and losses of 2q37.1,
67 6p21.33, 16p12.2p12.1 and 20p13, none of them being typically observed aneuploidies in hPSCs. These
68 genetic changes do not appear to contain any genes with functions that would make them obvious
69 driver genes for an *in vitro* selective advantage (listed in supplementary table 1). In all but one case, they
70 appeared together with the recurrent genetic changes, suggesting that they may be passenger events.
71 The analysis of datapoints of all lines combined shows that the later the sampling, the higher the load of
72 acquired CNVs ($p<0.001$, Poisson Loglinear Regression, Figure 1B). This association is not retained when
73 considering the absolute passage number ($p=0.07$, Figure 1C), but if the two latest passages are
74 removed as outliers (passages 285 and 353), the association becomes statistically significant ($p=0.032$).

75 Conversely, later passages did not have a higher risk of acquiring a *de novo* CNV as such (p=0.102, Binary
76 Logistic Regression, Data not shown). This suggests that the higher loads of CNVs seen at later passages
77 are due to the cumulative acquisition of mutations over a longer time in culture and not to an increased
78 rate of mutagenesis over time.

79 With regards to the results of the cancer-associated gene sequencing, we identified a total of 122 single
80 nucleotide variants (SNVs) in 88 genes across the different passages of the 10 lines (listed in
81 supplementary table 2 and overview in Figure 2). While all 122 SNVs were different, 25 of the 88 genes
82 were found to carry two or more SNVs. Since we sequenced samples of multiple passages of the same
83 line, we could determine which of the SNVs were there from the onset of the establishment of the cell
84 line (N=96, assumed to be germline SNVs) and which appeared *de novo* during cell culture (N=28). The
85 allelic frequency of 95.8% of the detected germline SNVs (92 of 96) was around 0.5, as expected for
86 heterozygous alleles, two of the germline SNVs were homozygous, and three SNVs had allelic
87 frequencies of 0.25, 0.7 and 0.63 respectively (Figure 1D). *De novo* SNVs had a peak in allelic frequency
88 at around 0.5, but also frequently appeared with lower allelic frequencies, and once as homozygous
89 (Figure 1E). All our hESC lines carried germline SNVs, ranging from 6 to 17 SNVs per line, with a similar
90 distribution in type of functional impact across lines (Figure 1F). From the 96 germline SNVs, 52 were
91 missense SNVs, 29 of which predicted to be deleterious mutations by SIFT prediction tool
92 (<https://sift.bii.a-star.edu.sg/>). We also found 28 synonymous mutations, 1 stop-gain mutation, 5 SNVs
93 in a splice site, 1 in the 5' untranslated region, 2 in-frame deletions and 7 mutations in introns.

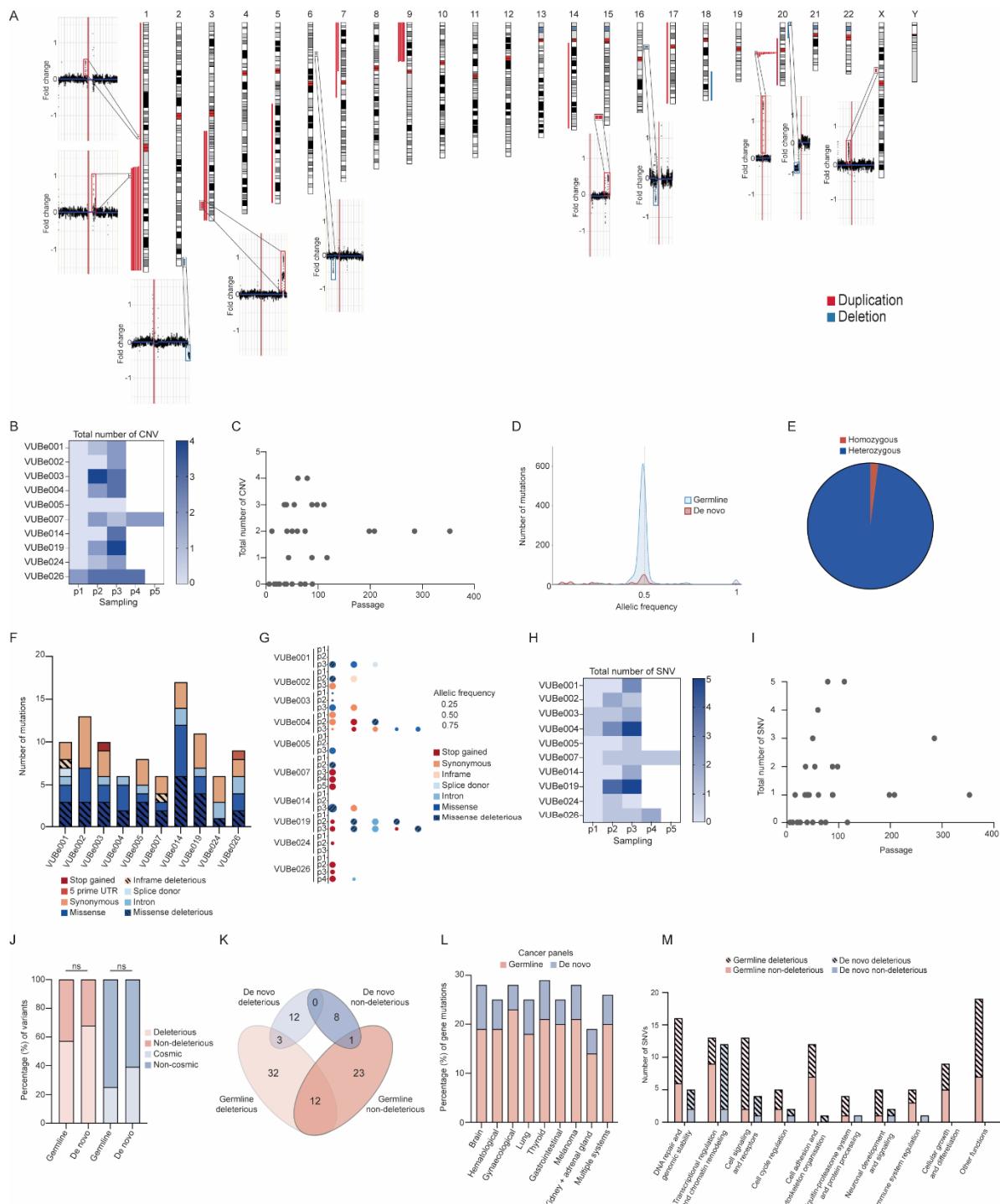
94 All hESC lines acquired at least one *de novo* SNV, with a maximum of 5 SNVs in the later passages (Figure
95 1G and Figure 2). Only two out of the ten lines showed *de novo* SNVs at the earliest passage tested
96 (VUBe003 and VUBe004). Overall, the SNVs were predominantly found in samples that had been
97 extensively passaged (mid and late passages), indicating that hESCs are more likely to acquire *de novo*
98 variants during prolonged *in vitro* culture (p=0.002, Poisson Loglinear regression Figure 1H). The
99 absolute passage number did not significantly associate to the number of *de novo* SNVs, even after
100 removal of the outlier passage numbers (p=0.101, Poisson LogLinear Regression, Figure 1I). Similarly, the
101 rate of *de novo* mutagenesis does not increase with time in culture (p=0.771 for passage number,
102 p=0.152 for sample rank, Binary Logistic Regression, Data not shown), suggesting that the SNV mutation
103 rate stays constant with time in culture. Overall, of the 40 *de novo* SNVs, 16 were missense mutations, of
104 which 13 predicted to be deleterious mutations, 7 synonymous changes, 12 stop-gain mutations, 1 in
105 splice site region variant, 1 in-frame deletions and 3 SNVs in introns. None of the *de novo* SNVs we found
106 progressively increased in allelic frequency across the passages we tested. While some SNVs appeared
107 at low frequency in the earlier passages, their frequency over extended passaging did not change,
108 suggesting that the cell fraction carrying the variant did not increase. Other variants decreased in
109 frequency, or they disappeared entirely in subsequent passages of the same line (Figure 2).

110 We categorized the mutations based on their potential deleterious effect, including stop gains and
111 missense variants, and assessed their clinical relevance by checking if they had been previously reported
112 in the Catalog of Somatic Mutations in Cancer (COSMIC: <https://cancer.sanger.ac.uk/cosmic>),
113 irrespective of their tier. Remarkably, most of the identified germline and *de novo* variants were
114 potentially deleterious, with no statistically significant differences between the two groups 57.3%
115 (55/96) vs 67.85% (19/28) respectively (two-tailed Fisher's exact test, p=0.3842, Figure 1J). Likewise,
116 39.28% (11/28) of the *de novo* mutations had been reported in COSMIC, compared to 25% (24/96) of

117 the germline mutations, which was also not statistically significant (two-tailed Fisher's exact test,
118 p=0.1568, Figure 1J). We next investigated similarities or differences between germline and *de novo*
119 variants in terms of affected genes. Twelve genes carried both deleterious and non-deleterious germline
120 SNVs, whereas in the *de novo* SNVs, the genes with deleterious mutations were unique and distinct from
121 those with non-deleterious variants. Additionally, the germline and *de novo* SNVs had four genes in
122 common (Figure 1K). Taken together, this shows that the germline and *de novo* SNVs differ in terms of
123 potential functional impact. We then classified all the SNVs based on the cancer types to which the gene
124 mutations typically associate. The results show that there is not an especially enriched mutational
125 profile associating with specific types of cancer in germline nor *de novo* SNVs (Figure 1L). Lastly, we
126 categorized the variants according to the gene's function. Notably, *de novo* SNVs were predominantly
127 affecting genes involved in transcriptional regulation and chromatin remodelling and were statistically
128 significantly more often deleterious than their germline counterparts (p=0.0154, Fisher's exact test,
129 Figure 1M).

130 Mutations in cancer-related genes have been previously identified in hPSCs (Avior et al., 2021; Lezmi et
131 al., 2024; Merkle et al., 2017, 2022). These studies used various approaches to screen hPSC lines,
132 focusing on Tier 1 COSMIC-reported variants. In a seminal report, Merkle et al. highlighted the recurrent
133 acquisition of *TP53* mutations in hPSCs (Merkle et al., 2017). Similarly, Avior et al. identified *TP53*
134 mutations as the most frequent in the H1 and H9 lines, along with mutations in *EGFR*, *PATZ1*, and *CDK12*
135 (Avior et al., 2021). In a more recent large-scale follow-up study, Merkle et al. found 382 Tier 1 cancer-
136 associated mutations across 143 lines via whole genome sequencing, though they could not determine
137 the mutation origins since only a single sample per hPSC line was tested (Merkle et al., 2022). Lezmi et
138 al. conducted an in-depth analysis of mRNA sequencing data and reported that 25% of the 146 hPSC
139 lines they studied carry cancer-associated mutations (Lezmi et al., 2024). In 70% of cases, they find the
140 mutations to appear *de novo* in culture or during differentiation. In our work, the study of multiple
141 passages of the same line has allowed us to establish with certainty if a variant appeared *de novo*, and
142 when in time in culture this occurred, a data point that was missing in the previously published work. In
143 our cohort, we find that eight of the *de novo* and fourteen of the germline SNVs are Tier 1 COSMIC
144 mutations. 65% of our lines carried a Tier 1 COSMIC variant, 70% of them having acquired the variant in
145 culture. When looking at which genes bear the mutations and the overlap with previous work, we also
146 find *TP53* as most recurrent, but also *KMT2C* (appearing twice in our study and identified by Lezmi et al
147 and Merkle et al.). In our study, both *TP53* variants are COSMIC-reported variants, one decreases in
148 frequency with time in culture and the second is homozygous, suggesting a loss of heterozygosity. Other
149 genes in common with previous reports are *CREBBP*, *FAT1*, *PMS2*, *BRCA2* and *APC*, the last four
150 appearing as germline variants in our study. *BCOR* mutations that have been reported in hiPSC (Rouhani
151 et al., 2022) were not found in our study nor previous work (Avior et al., 2021; Lezmi et al., 2024; Merkle
152 et al., 2022). Sporadic mutations in hPSCs can have significant phenotypic effects, limiting their utility in
153 clinical applications. Amir et al. showed that hESCs with *TP53* mutations gained a selective advantage
154 under stressful culture conditions and retained a higher percentage of cells expressing the pluripotency
155 marker *OCT4* after differentiation, resulting in increased cell proliferation and survival rates (Amir et al.,
156 2017). Further, Lezmi et al. showed that *TP53*-mutated hPSCs had decreased neural differentiation
157 capacities (Lezmi et al., 2024).

158 In the last step of analysis, we integrated the CNV and SNV data, to test for associations between the
159 two. In previously published work that tested for chromosomal abnormalities (Avior et al., 2019; Merkle
160 et al., 2022), identifying a link between CNV and SNV proved challenging because of either the relatively
161 lower resolution of e-karyotyping (Avior et al., 2021) or the lack of multiple passages of the same line
162 (Merkle et al., 2022). In our study, it is important to bear in mind that we do not always have a perfectly
163 maintained single lineage within the lines because some of the later passages of our lines are from
164 historically frozen vials. Also, although some lines were maintained in culture continuously for years,
165 they clearly drifted into genetically different sublines.


166 A first finding from integrating the CNV and SNV data is that the three germline variants that had
167 frequencies that were at odds with being heterozygous or homozygous (indicated with a triangle in
168 Figure 2) were in fact located in a duplicated chromosomal region. VUBe026 carried at the earliest
169 passage tested (Passage 11) a duplication of 9p24.3p13.3. This region contains *CDKN2B* that carries a
170 SNV with an allelic frequency of 0.7 as well as a deleterious and COSMIC-reported *DOCK8* mutation with
171 an allelic frequency of 0.25. The duplication of 9p24.3p13.3 explains the increased frequency of the
172 *CDKN2B* SNV, as the line was likely heterozygous at the start, and the region with the variant was
173 duplicated. The frequency of the *DOCK8* mutation suggests that it may be a *de novo* mutation that
174 occurred shortly after or concurrently with the gain of 9p24.3p13.3, and in linkage with the *CDKN2B*
175 variant, explaining its frequency as a single copy in a triplicated locus. VUBe014 carries a *PMS2* variant
176 with an allelic frequency of 0.63 by passage 88 and has simultaneously acquired an abnormal karyotype
177 with a gain of the 7p arm, spanning the *PMS2* gene. A second and significant finding is that majority of
178 *de novo* SNV appear to be following the acquisition of chromosomal abnormalities, especially those
179 known to confer a growth advantage to the cells. Four of the 13 karyotypically normal samples carried a
180 *de novo* SNV, in contrast to 17 of the 20 karyotypically abnormal passages (30.7% vs 85% respectively,
181 p=0.0028, Fisher's exact test). In all but three of the latter 17 instances, the abnormal karyotypes
182 included gains of 20q11.21 and 1q, making it challenging to determine whether any of these SNVs
183 individually confer a growth advantage to the cells or if they are merely passengers or complementary
184 to the chromosomal abnormality. In VUBe024 and VUBe026 SNVs associated to CNVs other than the
185 gain of 20q or 1q. VUB024 carried a small gain of 1q spanning genes with no obvious beneficial effect if
186 duplicated as well as a low frequency deleterious variant in *ASLX1*. Both were lost in later passages,
187 suggesting they did not confer a growth advantage to the cells. VUBe026 is a more notable exception,
188 where a gain of a deleterious variant in *EP300* occurred between passages 11 and 35 and persists in
189 different sublines that acquired an array of different chromosomal abnormalities. This suggests that this
190 specific variant may be conferring an *in vitro* advantage to the cells. By comparison, Avior et al identified
191 only one trisomy 17 concurrently with one of the TP53 mutations (Avior et al., 2019), but their method
192 focussed on detecting trisomies of 1, 12, 17 and 20, and would not have detected any of the gains of
193 20q found in our study, and only one of gains of chromosome 1. In the large study by Merkle et al, half
194 of the 14 SNVs they identified as with highest oncogenic potential were associated to aneuploidies
195 (Merkle et al., 2022). In our study, five SNVs are not concurring with CNVs, two are COSMIC-reported
196 mutations (c.15461G>A in *KMT2D* (VUBe002) and c.2926G>A in *KMT2C* (VUBe003)), two are potentially
197 deleterious (c.5934_5935dup in *FAT3* (VUBe002) and c.238C>A in *CYSLTR2* (VUBe005)) and the last one
198 is a non-deleterious variant (c.4071G>C in *MET* (VUBe004)). The variant observed in *CYSLTR2* is the sole
199 abnormality acquired by the VUBe005 line at a latest passage tested, whereas the other variants
200 disappeared in the later passage of the lines. It is possible that the mutations in the *KMT2D* and *FAT3*

201 genes persisted in an alternative subline of VUBe002, as they were detected at passage 36, with the
202 next and final passage tested being passage 353, corresponding to a prolonged period in culture.
203 Whether variants in these genes can have a role in promoting *in vitro* growth advantage in hPSCs
204 remains to be elucidated.

205 **CONCLUSIONS**

206 Our comprehensive analysis of the hESC lines across multiple passages provides insights into the
207 dynamics of genomic alterations during *in vitro* culture. We observed frequent emergence of both *de*
208 *novo* CNVs and SNVs in cancer-related genes throughout culture, with mutation rates remaining stable
209 over time, indicating that the higher mutational burden in later passages is cumulative due to prolonged
210 culture rather than increased mutagenesis. Notably, the *de novo* SNVs often affected genes involved in
211 transcriptional regulation and chromatin remodelling, with a higher proportion being deleterious and
212 reported in COSMIC compared to germline SNVs. Integration of the CNV and SNV data revealed that
213 CNVs that are not typically recurrent in hPSC cultures frequently emerge in association with known CNVs
214 that confer a growth advantage to hPSCs, such as the gains of 1q and 20q11.21, and that many *de novo*
215 SNVs appeared after the acquisition of these recurrent chromosomal abnormalities. These associations
216 suggest two potential scenarios: either rare CNVs and the majority of the SNVs were passengers during
217 the culture takeover of the recurrent CNVs or they potentially interact and enhance these CNVs. While
218 functional experiments are necessary to fully understand their impact in regenerative medicine, it is
219 rather reassuring that most of the low-passage and genetically balanced samples were devoid of *de*
220 *novo* Tier 1 COSMIC mutations, ensuring their safety for use in research and therapeutic applications.

221 **FIGURES**

222
223
224
225
226
227
228
229
230
231
232

Figure 1. CNVs and point mutations identified in hESC samples from 10 different lines at multiple passage. **A.** Ideogram showing the location of all gains (red) and losses (blue) found in the 10 hESC lines, as well as the shallow sequencing results of samples in which we found unique CNVs, such as gains on chromosomes 1, 3, 7, 9, 15, X, and losses on chromosomes 2, 6, 16 and 20 that are not recurrent in hPSCs. **B.** Heatmap of the total CNV across different passages for each cell line. Each column (P1, P2, P3, P4, P5) represents the sequential sampling points (first, second, third, fourth, and fifth passages tested, respectively). **C.** Total number of CNV vs culture period *in vitro* across all the hESCs lines. **D.** Histogram representing the distribution of allelic frequencies of all mutations grouped by mutation origin (germline, and *de novo*). **E.** Distribution of detected germline mutations by zygosity. The pie chart illustrates the proportion of homozygous (red) vs heterozygous (blue) mutations identified in the samples. **F.** Bar chart showing the number of mutations for each cell line across different sampling points (p1 to p5). **G.** Scatter plot showing the total number of SNVs across all hESC lines. **H.** Heatmap of the total number of SNVs across different passages for each cell line (VUBE001 to VUBE026). **I.** Total number of SNVs vs culture period *in vitro* across all the hESCs lines. **J.** Bar chart showing the percentage of variants for each cell line across different sampling points (p1 to p5). **K.** Venn diagram showing the overlap of deleterious variants between Germline deleterious, De novo deleterious, and Germline non-deleterious variants. **L.** Bar chart showing the percentage of gene mutations for different cancer panels. **M.** Bar chart showing the number of SNVs for different cancer panels.

233 samples. **F.** The bars represent the distribution of mutation categories for germline SNPs and the
234 number of events detected in each hESC lines. **G.** Overview of *de novo* SNPs, the type of mutations
235 detected in each passage of each hESC line, and the read frequency of each variant. Large bubble: high
236 allelic frequency; average bubble: intermediate allelic frequency; small bubble: low allelic frequency; no
237 bubble, no variant. **H.** The heatmap shows the incidence and the number of *de novo* mutations found in
238 hESC lines depending on their culture period *in vitro* (Poisson regression **P=0.003). **I.** Total number of
239 SNV vs culture period *in vitro* across all the hESCs lines. **J.** Proportion of deleterious and non-deleterious
240 variants (%) found among both germline and *de novo* variants and whether they are reported in the
241 COSMIC database. **K.** Diagram showing the number of genes with germline (pink) or *de novo* (blue)
242 mutations, and their pathogenic effect. **L.** The distribution of gene mutations (%) across different cancer
243 panels, categorized into germline (pink) and *de novo* mutations (blue). The y-axis represents the
244 percentage of gene mutations, while the x-axis lists the various cancer types. **M.** The bar graph
245 illustrates the number of SNVs across various functional categories, differentiating between germline
246 and *de novo* mutations, as well as their deleterious and non-deleterious effects.

247

250 **Figure 2. Distribution of chromosomal abnormalities and point mutations in cancer related genes,**
251 **with a focus on their functional impact in hESC lines.** Chromosomal abnormalities acquired at a specific
252 passage are shown for each hESC line, with their locations (left section). Point mutations found are
253 shown in the middle (*de novo*) and right (germline) sections of the figure. Each mutation is annotated
254 with the affected gene, the nature of the mutation, and its functional category, as shown by the function
255 colour key at the top of the figure. The allelic frequency (AF, scale 0 to 1) of *de novo* variations is
256 indicated for each gene. Mutations reported in COSMIC database are marked with (□), mutations not
257 reported in the database are marked with (●). Mutations that are expected to be harmful (deleterious)
258 are denoted (✗). Mutations found in duplicated regions of the genome are marked with (□).

259 **SUPPLEMENTARY MATERIAL**

260 **Supplementary Table 1.** Overview table of the genes mutated and type of variants: general, all lines
261 together, overview of the detected mutations, variant load/frequency.

262 **Supplementary Table 2.** Table with the sequenced genes: genes panel.

263 **Supplementary Table 3.** Table showing the panel of 380 cancer-associated genes used in the analysis.

264

265

266 **MATERIALS AND METHODS**

267 **Institutional Review Board Statement**

268 For all parts of this study, the design and conduct complied with all relevant regulations regarding the
269 use of human materials. Ethical review and approval were waived for this study because it involved work
270 on existing in-house derived hESC lines.

271 **hESCs lines and cell culture**

272 All hESC lines were derived and characterized as reported previously (Geens et al., 2009; Mateizel et al.,
273 2006, 2010), details on the characterization of the lines can also be found at the open science
274 framework (<https://osf.io/esmz8/>) and are registered in the EU hPSC registry (<https://hpscreg.eu/>). The
275 cells were cryopreserved in freezing medium composed of 90% knock-out serum (Thermo Fisher
276 Scientific) and 10% dimethyl sulfoxide (Sigma-Aldrich). In the past, our hESC lines were cultured on 0.1%
277 gelatin-coated (Sigma-Aldrich, Schnelldorf, Germany) culture dishes containing mitomycin C inactivated
278 CF1 mouse embryonic fibroblast (MEF) feeders, in hES medium culture medium supplemented with 20%
279 KO-serum replacement (Mateizel et al., 2006). Cells were passaged by manual dissection of
280 undifferentiated cell colonies. Currently, hESCs are cultured on tissue culture dishes coated with 10
281 µg/mL Biolaminin 521 (Biolamina®) and maintained in NutriStem hESC XF medium (NS medium;
282 Biological Industries) with 100 U/mL penicillin/streptomycin (P/S) (Thermo Fisher Scientific). Cells are
283 passaged as single cells using TrypLE Express (Thermo Fisher Scientific) and split at a ratio of 1:10 to
284 1:100 as needed at 70-90% confluence. Cells were fed daily with NutriStem hESC XF medium in a 37 °C
285 incubator with 5% CO₂. All cultures are monthly tested for the presence of mycoplasma. For this study,
286 hESC that had been cryopreserved from MEF cultures, were thawed on Biolaminin-521 and NS medium
287 and expanded for few passages to obtain sufficient cells to extract DNA for the analysis. The identity of
288 all samples in this study was authenticated by fingerprinting on the same DNA sample used for
289 sequencing. Supplementary table S1 indicates which lines were kept on MEF prior to their
290 cryopreservation and thawing for this study. We studied a total of 33 samples collected across 10 hESC
291 lines: VUBe001 (passages 66, 117, 285), VUBe002 (passages 6, 36, 353), VUBe003 (passages 16, 61, 98),
292 VUBe004 (passages 16, 50, 111), VUBe005 (passages 39, 75, 89), VUBe007 (passages 26, 40, 88, 198,
293 208), VUBe014 (passages 20, 50, 88), VUBe019 (passages 26, 60, 79), VUBe024 (passages 25, 43, 75),
294 and VUBe026 (passages 11, 35, 39, 54).

295 **Fingerprinting**

296 DNA fingerprinting was done with the Devyser Complete v2 kit (Devyser). Briefly, a multiplex PCR was
297 carried out which interrogates 32 STR markers on chromosomes 13, 18, 21, X and Y. Separation of the
298 different amplicons was done on a Genetic Analyzer 3500 (ABI) and Genemapper v6 (Themo Fischer
299 Scientific) was used for subsequent data interpretation.

300

301 **Whole-genome shallow sequencing**

302 The genetic content of the hESCs was assessed through shallow whole-genome sequencing by the
303 BRIGHTcore of UZ Brussels, Belgium, as previously described (Bayindir et al., 2015). 5 µl of purified DNA
304 is processed using the KAPA HyperPlus kit (Roche Sequencing, CA, USA) according to manufacturer's
305 recommendations, with five modifications: (1) an enzymatic fragmentation for 45 min at 37°C to obtain
306 DNA insert sizes of on average 200 bp, (2) the usage of 15 µM of our in-house designed UDI/UMI
307 adapters (Integrated DNA Technologies, Coralville, IA, USA), (3) a 0.8x post-ligation AMPure bead
308 cleanup, (4) a total of 6 PCR cycles are applied to get sufficient library and (5) a 1x post-PCR AMPure

309 bead cleanup. The final library is quantified and qualified with resp. the Qubit 2.0 using the Promega
310 Quantifluor ONE kit (Promega, WI, USA) and the AATI Fragment Analyzer (Agilent Technologies Inc.,
311 Santa Clara, CA, USA) using the DNF-474 High Sensitivity NGS Fragment Analysis Kit (Agilent
312 Technologies Inc., CA, USA). The final library is diluted to 1,5 nM prior to denaturation for analysis on a
313 NovaSeq S1 100 cycles run (Illumina Inc., CA, USA), generating on average 7 million 2x50bp reads.
314 Following demultiplexing with bcl2fastq (v2.19.1.403) all reads are mapped to the human genome (UCSC
315 b37) using BWA aln v.0.7.10. The aligned reads are sorted based on genomic coordinates using samtools
316 sort (v0.1.19) and duplicates are removed with the Picard markduplicates tool (v.1.97). Following
317 removal of blacklisted regions (in-house table), the coverage is calculated in bins of 50 kb with bedtools
318 coverageBed (v2-2.25.0). Following GC correction, Z score, fold change and log2ratio calculation using
319 in-house developed R scripts, the data is visualized in an in-house developed tool called BRIGHTCNV.
320 Part of the data visualization in BRIGHTCNV is making use of JBrowse v1.0.1.

321 **Gene-panels for cancer-associated genes**

322 Libraries were constructed on 150 ng of input DNA with the KAPA HyperPlus kit (Roche Sequencing, CA,
323 USA) according to manufacturer's recommendations, with three modifications: (1) an enzymatic
324 fragmentation for 20 min at 37°C was used to obtain DNA insert sizes of on average 200 bp, (2) the
325 usage of 15 µM of our in-house designed UDI/UMI adapters and (3) a total of 8 PCR cycles were applied
326 to get sufficient library for target enrichment. Target enrichment was performed according to version
327 5.0 of the manufacturer's instructions with a homebrew (STHT v3) KAPA HyperChoice probemix (Roche
328 Sequencing, CA, USA). Pre-capture pooling was limited to max. 8 samples for a total of 1,2 µg of pooled
329 library. In contrast to the instructions, the xGen Universal Blockers TS Mix (Integrated DNA Technologies,
330 Coralville, IA, USA) replaced the sequence-specific blocking oligos and the final PCR was limited to 11
331 PCR cycles. Final libraries were qualified on the AATI Fragment Analyzer (Agilent Technologies Inc., Santa
332 Clara, CA, USA), using the DNF-474 High Sensitivity NGS Fragment Analysis Kit (Agilent Technologies Inc.,
333 CA, USA) and quantified on the Qubit 2.0 with the Qubit dsDNA HS Assay Kit (Life Technologies, CA,
334 USA). Per sample, a minimum of 14,5 million 2x100 bp reads were generated on the Illumina NovaSeq
335 6000 system (Illumina Inc., CA, USA), with the NovaSeq 6000 S4 Reagent Kit (200 cycles) kit. For this, 1
336 nM libraries were denatured according to manufacturer's instruction.

337 The raw basecall files were converted to .fastq files with Illuminas bcl-convert algorithm. Reads were
338 aligned to the human reference genome (hg19) with bwa (version 0.7.10-r789). Duplicate reads were
339 marked with picard (version 1.97). Further post-processing of the aligned reads was done with the
340 Genome Analysis Toolkit (GATK) (version 3.3). This post-processing consisted of realignment around
341 insertions/deletions (indels) and base quality score recalibration. Quality control on the post-processed
342 aligned reads was done with samtools flagstat(version 0.1-19) and picard HsMetrics(version 1.97). Those
343 tools were used to investigate the total number of reads, the percentage of duplicate reads, the mean
344 coverage on target and the percentage of on-target, near-target, and off-target bases). Variants were
345 called using GATK Mutect2 (version 4) in tumor-only mode and annotated using annovar (version
346 2018Apr16). Variants with population frequency higher than 1% in gnomad, 1000g and esp6500 were
347 filtered out. Furthermore, non-hotspot variants with an allele frequency below 3% were filtered out.

348 The called variants in VCF files were visualized using Basespace Variant Interpreter online tool
349 (<https://variantinterpreter.informatics.illumina.com>). Recurrent variants defined as variants
350 occurring in > 0.01% of samples sequenced over time at BrightCORE facility using the same gene panel
351 were filtered out. A variant read count of ≥ 25 was used as cutoff to keep a variant in the analysis. After
352 filtering the variants were manually inspected on IGV (<https://igv.org>). Any suspected genomic regions

353 such as GC repeats, indels at microsatellite regions etc. were removed from analysis. The gene CDC27
354 was excluded from analysis due to high prevalence of pseudogenes (Kazemi-Sefat et al., 2021).

355 **Materials and availability statement**

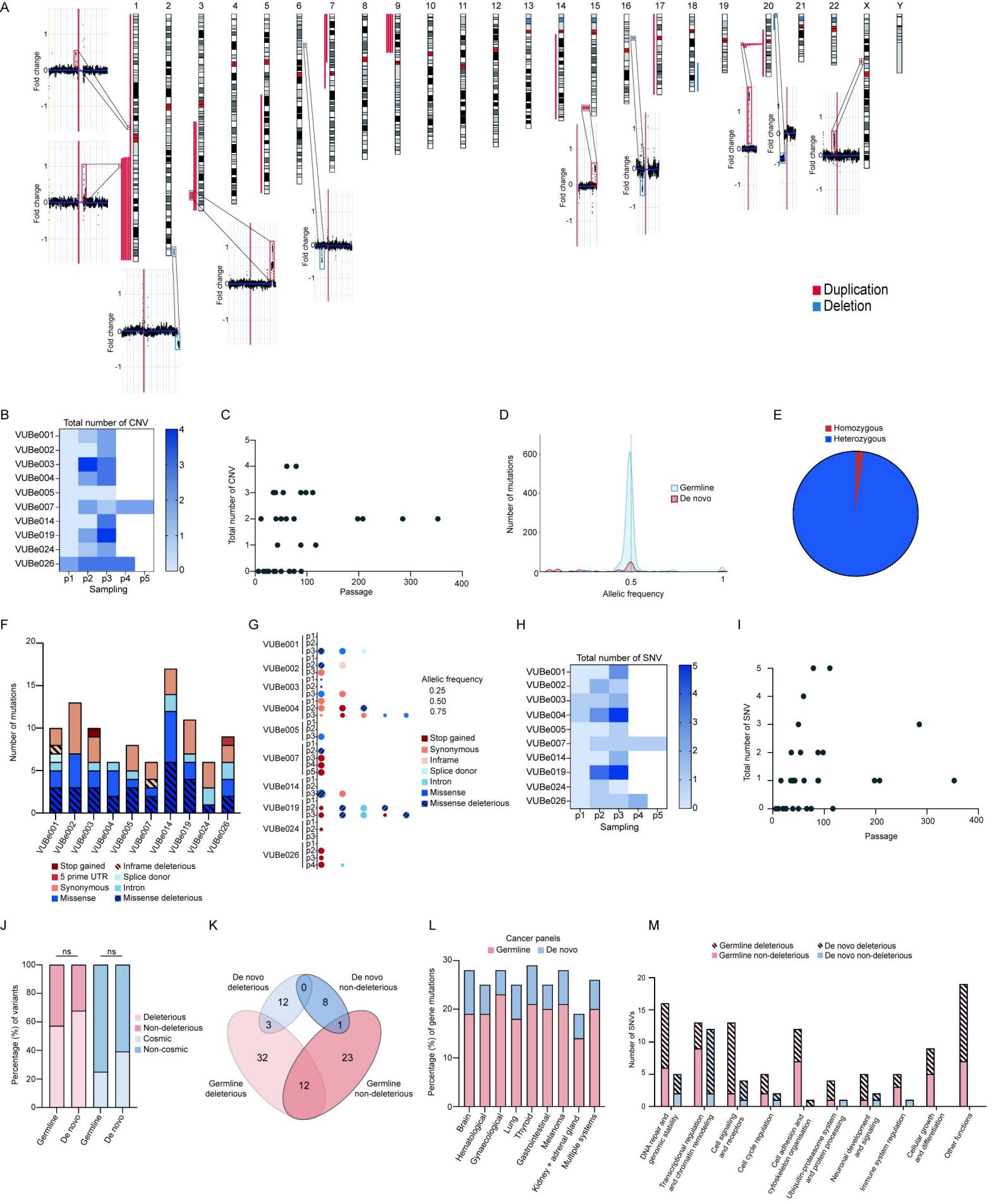
356 All VUB stem cell lines in this study are available upon request and after signing a material transfer
357 agreement. Raw sequencing data of human samples is considered personal data by the General Data
358 Protection Regulation of the European Union (Regulation (EU) 2016/679). The data can be obtained
359 from the corresponding author upon reasonable request and after signing a Data Use Agreement. The
360 source data for all figures is available as a supplementary table. The data supporting all figures in this
361 paper can be found at the Open Science Framework repository (<https://osf.io/y8tzh/>).

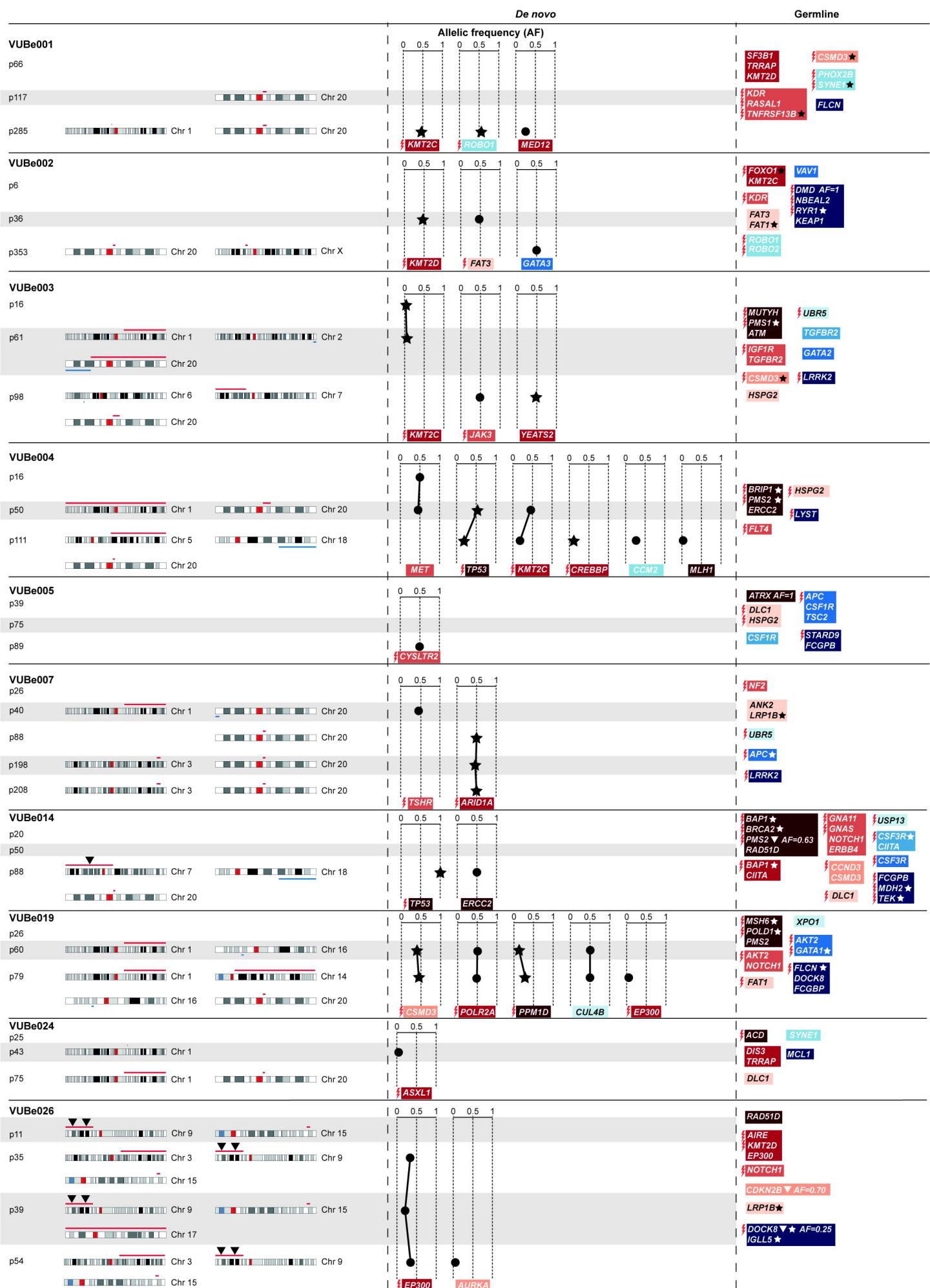
362 **Funding**

363 Y.L. is a predoctoral fellow supported by the China Scholarship Council (CSC). M.R. and N.K. were
364 supported by predoctoral fellowships from the Fonds voor Wetenschappelijk Onderzoek Vlaanderen
365 (FWO, grant number 1133622N and 1169023N respectively). This research was supported by the FWO
366 (grant number G078423N) and the Methusalem Grant to Karen Sermon and to Claudia Spits (Vrije
367 Universiteit Brussel).

368 **Acknowledgments**

369 The authors wish to thank An Verloes and Brecht Ghesquiere for their technical and logistical support in
370 the laboratory.


371 **Author Contributions**


372 Conceptualization, C.S.; Methodology, D.A.D., M.S.G., N.K., A.H., M.R., C.M.D and Y.L.; Software, C.O.,
373 D.A.D. and M.S.G.; Validation, D.A.D, M.S.G. and C.O.; Formal Analysis, D.A.D, C.S. and M.S.G.;
374 Investigation, D.A.D, C.S. and M.S.G.; Resources, C.S. and K.S.; Data Curation, D.A.D, M.S.G. and C.O.;
375 Writing – Original Draft Preparation, D.A.D and C.S.; Writing – Review & Editing, D.A.D, K.S. and C.S.;
376 Visualization, M.R., D.A.D. and C.S.; Supervision, C.S.; Project Administration, C.S.; Funding Acquisition,
377 C.S. and K.S.

378 **Conflicts of Interest**

379 The authors declare no conflict of interest.

380

