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26 Abstract available under aCC-BY 4.0 International license.

27  Elucidating the spatiotemporal dynamics of gene expression is essential for understanding
28 complex physiological and pathological processes. Traditional technologies like in situ
29  hybridization (ISH) and immunostaining have been restricted to analyzing expression
30 patterns of a limited number of genes. Spatial transcriptomics (ST) has emerged as a robust
31 alternative, enabling the investigation of spatial patterns of thousands of genes
32  simultaneously. However, current ST methods are hindered by low read depths and limited
33 gene detection capabilities. Here, we introduce Palette, a pipeline that infers detailed
34  spatial gene expression patterns from bulk RNA-seq data, utilizing existing ST data as only
35 reference. This method identifies more precise expression patterns by smoothing, imputing
36 and adjusting gene expressions. We applied Palette to construct the Danio rerio
37 SpatioTemporal Expression Profiles (DreSTEP) by integrating 53-slice serial bulk RNA-seq
38 data from three developmental stages with existing ST references and 3D zebrafish embryo
39 images. DreSTEP provides a comprehensive cartographic resource for examining gene
40 expression and spatial cell-cell interactions within zebrafish embryos. Utilizing machine
41  learning-based screening, we identified key morphogens and transcription factors (TFs)
42  essential for anteroposterior (AP) axis development and characterized their dynamic
43  distribution throughout embryogenesis. In addition, among these TFs, Hox family genes
44  were found to be pivotal in AP axis refinement. Their expression was closely correlated with

45  cellular AP identities, and hoxb genes may act as central regulators in this process.

46
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47  Introduction

48 Model organisms such as zebrafish have long been valuable tools for studying
49  developmental biology and human diseases. Understanding the spatiotemporal patterns of
50 gene expression in these models is crucial for gaining insights into the physiological and
51 pathological mechanisms in normal development and related diseases. Thus, great efforts
52  are ongoing to construct gene expression maps of these models with higher resolution,
53  depth, and comprehensiveness.

54 Traditional technologies, such as ISH and immunostaining, have been widely used for
55 investigating the spatiotemporal expression patterns of specific genes. However, these
56 approaches are limited in their ability to simultaneously detect the expression of a large
57 number of genes. In recent years, significant progress has been made in developing
58 technologies for obtaining transcriptomics with spatial information. Techniques such as
59 laser capture microdissection/microscopy (LCM) combined with bulk RNA-seq” %, Tomo-seq’,
60 and Geographical positional sequencing (Geo—seq)4 have allowed the generation of spatially
61 resolved transcriptomic data’. Additionally, methods like seqFISHG, MERFISH’, Slide—squ,
62  10x Visium> ', and Stereo-seqll'13 have further improved the spatial resolution.

63 While these spatial transcriptomics (ST) techniques have advanced the spatial
64  resolution of transcriptomic data, bulk RNA-seq remains the preferred choice for most
65  studies due to limitations associated with ST techniques such as low read depth, suboptimal

66  gene detection capability, and high cost™'*

. Consequently, tools have been developed to
67 infer cell features or spatial gene expression from bulk RNA-seq data, including TIMER®,
68  MuSiC*, DWLS"Y, and Bulk2Space™.

69 In this study, we introduce Palette, a pipeline designed to allocate gene expression from

70  bulk RNA-seq data to spatial spots using ST data as the only reference. Palette has
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71  demonstrated its effectivene® @I frifEFFidg Syt ERpIREI6H Batterns in both Drosophila
72  and zebrafish sections. We performed bulk RNA-seq on serial cryosections of zebrafish
73  embryos along the left-right axis at three developmental stages. By applying Palette to the
74  obtained data with the Stereo-seq data’? as references, we inferred the spatial gene
75  expression patterns. We then projected the constructed 3D ST maps onto the zebrafish
76  embryo images with 3D coordinates™ to correct the deformation during cryosectioning and
77  construct a 3D spatial gene expression cartograph that more accurately reflects embryonic
78 morphology. We named this cartograph DreSTEP, which enables the visualization of gene
79  expression patterns in the context of the 3D morphology of the zebrafish embryos. Finally,
80 leveraging the capabilities of DreSTEP, we characterized potential roles of morphogens and

81  TFsin AP refinement during the progression of the primary body axis.

82

83  Results

84  Design concept of Palette

85 The overall working pipeline of Palette is depicted in Figure 1, illustrating the key steps
86 involved in our approach. The pipeline firstly incorporates spatial clustering and
87  deconvolution processes to account for differences in cluster abundances between bulk
88 RNA-seq and ST data. Then, a variable factor is introduced to adjust expression differences
89 between the two types of data. Subsequently, the pipeline estimates gene expression in
90 each spot using a loop algorithm that takes into account regional gene expression, spot
91 characteristics, and spot-spot distances. This iterative process allows for the inference of
92  spatially resolved gene expression from bulk transcriptome data with relatively stable gene

93  expression. The pipeline outlined in Figure 1 represents the sequential steps employed in
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94 Palette to accurately allocafé®BRREEH IS T agdFeSSots using the information

95  provided by the bulk RNA-seq data.

96 The detailed procedures of Palette can be divided into the following three steps. First,

97  spot clusters are defined in the ST data and the proportion of each defined cluster is

98 inferred in bulk RNA-seq data (Fig. 1a). Specifically, highly expressed genes in both ST and

99  bulk RNA-seq data are used for spatial clustering of the ST data. Here, BayesSpacezo, and
100  MuSiC'® are employed for deconvolution to estimate cluster abundances in bulk data. This
101  step can effectively eliminate the batch effect caused by technical differences in sampling,
102  mRNA capture, platform, etc. between the two experiments. Second, a variable factor is
103  introduced to adjust the cluster expression matrix (Fig. 1b). To obtain the variation of each
104 gene in ST and bulk data, a pseudo bulk vector is achieved as the cross product of the
105  cluster expression matrix of ST data and the cluster proportions of bulk data, so that the
106  variable factor vector can be calculated by the ratio of the input bulk to the pseudo bulk
107  vector. Consequently, the stable genes and variable genes can be distinguished by the
108  distribution of the variable factor vector. The adjusted matrix is obtained by taking the dot
109  product of the cluster expression matrix of ST slice and the variable factor. This step can
110  effectively overcome the common sparsity problem in spatial transcriptomics technologies,
111  and the adjusted matrix not only contains the cluster composition information but also fully
112  retains the accuracy of the bulk transcriptome in the detection of lowly expressed genes.
113  Third, the expression of each spot is estimated through an iteration algorithm (Fig. 1c). In
114  each iteration, the procedure begins by selecting one random spot (i) and its nearest
115 neighbouring spots (Local i). The expression of spots belonging to the same cluster is
116  aggregated to form a pseudo-cluster expression data called local ST (LST). Assuming the

117  ratio of LST to the reference ST data is equal to the ratio of the adjusted LST to the adjusted
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118  matrix derived from the previd@PeE B IEHE &xEr& LG PR [G¥d LST can be calculated and
119 evenly allocated into the selected spots of this cluster. The loop then proceeds to the next
120 iteration (iteration j), and after multiple iterations, typically thousands of times, the average
121  expression of each spot is almost stable, which is considered as the output estimated
122 expression.

123 The expression patterns on Palette reconstructed ST show enhanced spatial specificity
124  and continuity (Fig. 1c). Our algorithm incorporates spot characteristics and spot-spot
125  distances, emphasizing cluster-specific expression, while leveraging expression from bulk
126 data to adjust gene expression in the ST spots. Additionally, the assumption that the
127 neighbouring spots of the same cluster share similar gene expression enables imputation
128 based on gene expression in neighbouring spots. This strategy partially mitigates the
129 limitation of low detected gene numbers in each spot. Overall, the Palette pipeline serves as
130 a valuable tool for inferring spatial gene expression patterns from bulk RNA-seq data,
131  striving to generate accurate predictions of spatial gene expression that closely resemble

132  the expression patterns in bona fide tissues.
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134  Fig. 1 Working pipeline of Palette. a, Defining spot clusters in ST reference and estimating cluster
135 abundances in bulk transcriptome data. Bulk transcriptome data and ST reference are taken as input.
136 Highly expressed genes in both datasets are used for spatial clustering through BayesSpace®. The
137  cluster expression matrix obtained from spatial clustering is then used as the reference for
138  performing deconvolution on bulk transcriptome data, resulting in the estimated cluster abundances
139  of bulk transcriptome data. b, Adjusting cluster expression matrix by employing the variable factor.
140 The variable factor represents the expression differences between bulk RNA-seq data and ST
141 reference. ¢, Estimating the expression in each spot through a loop algorithm. The expression of LST
142 is adjusted and then evenly allocated to each spot of this cluster. After the looping steps, the
143 average expression of each spot is taken as the estimated expression.

144

145  Palette enables the prediction of gene expression patterns with higher spatial specificity
146  and accuracy

147  To assessed the performance of Palette, we first utilized two consecutive slices (referred to
148  slices 4 and 5) from the Stereo-seq data™ of Drosophila E14-16 (14-16 hours post egg laying)

149  serial sections (Fig. 2a). We converted slice 5 into a pseudo bulk and used it as Palette's
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150  input, with slice 4 serving as BY¥1¥° HOPRIRHCEY W EHERIYEASt Palette-implemented slice
151 4 did not result in considerable changes in the molecule numbers of each spot, as the gene
152  expression levels of slice 4 and slice 5 were similar. However, there was a significant
153 increase in the feature numbers (gene numbers) of each spot (Fig. 2b). This increase was
154  attributed to the supplementation by Palette, which leveraged the gene expression of
155 neighbouring spots belonging to the same cluster.

156 Furthermore, we observed strong correlations in the expression of top marker genes
157  between the same annotated clusters of Palette-implemented slice 4 and slice 5 ST data (Fig.
158  2c), indicating that Palette successfully preserved the molecular characteristics of each spot.
159  Notably, Palette-implemented slice 4 exhibited similar gene expression patterns to the slice
160 5 ST data, with these patterns being even more spatially specific and closely resembling the
161 in vivo expression patterns observed through ISH (Fig. 2d, Fig. Sla and Fig. S1b). These
162  results suggest that Palette's ability of gene supplementation contributed to improved
163  continuity in the expression patterns of the implemented slices. Moreover, since Palette
164  considered the gene expression levels within each cluster, genes with highly differential

165  expression among clusters exhibited more specific expression patterns.
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167 Fig. 2 The implementation of Palette resulting in more specific gene expression patterns. a, The
. . . . 1 .
168 clustering and annotation of two adjacent slices from the Stereo-seq data®® of E14-16 Drosophila
169 embryo. b, Boxplots showing the numbers of molecules and genes in each spot before and after
170 implementing Palette. The substantial increase in gene number is due to the supplementation from
171 neighbouring spots, based on the assumption that neighbouring spots within the same cluster
172 exhibit similar gene expression patterns. ¢, Heatmap showing the expression correlation of marker
173  genes for each cluster before and after implementing Palette. The colour bar represents the Pearson
174  correlation coefficient with positive correlation in red and negative correlation in blue. d, Spatial
175  expression patterns of marker genes on the Drosophila Stereo-seq slices. Intensity of colour
176  represents the expression levels of each marker gene. For each gene, the spatial patterns from the
177  Stereo-seq SO5 slice and the Palette-implemented S04 slice are shown on the left, and the ISH
178 images from BDGP database are shown in the middle. The intensities of signals along the AP axis are
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179  shown on the right. e, The clusté¥HBLRYIHEES A BITRELORALEY Sfice from the Stereo-seq data®?
180  of 5.25 hpf zebrafish embryo. f, Circle plot showing the expression correlation network between the
181 serial bulk data of 6 hpf zebrafish embryo and the pseudo bulk of the Stereo-seq slice. Stroke weight
182 indicates the strength of the Pearson correlation coefficient. g, Palette inferring spatial expression
183 patterns of 6 hpf zebrafish embryo bulk data on the 5.25 hpf zebrafish Stereo-seq slice. Since
184  zebrafish embryos at 5.25 hpf and 6 hpf exhibited similar expression patterns, we used Palette to
185 infer spatial gene expression from the 6 hpf zebrafish embryo bulk data using the 5.25 hpf ST data as
186 a reference. Intensity of colour represents the gene expression levels. For each gene, the spatial

187  patterns from the Stereo-seq S10 slice and the Palette-implemented S10 slice are shown on the left,

188 and the correlated ISH images shown on the right are from ZFIN and published data*" %.

189

190 To further evaluate Palette's performance, we applied it to two additional datasets of

191  zebrafish embryoss’ 12,

we selected one middle slice from a Stereo-seq data as the ST
192 reference (Fig. 2e), and the slice 10 from a bulk data was selected as the corresponding
193 input slice based on a correlation test (Fig. 2f). We then compared the expression pattern of
194  genes on the original ST slice and the Palette-implemented slice (Fig. 2g and Fig. S1c). It was
195 evident that the Palette-implemented slice exhibited more spatially specific expression
196  patterns, which were more similar to the patterns observed through ISH.

197 Overall, Palette successfully inferred spatial gene expression from the bulk data of real
198 biological samples, generating expression patterns with improved continuity and higher
199  spatial specificity.

200

201  Using Palette to infer spatial gene expression from bulk RNA-seq data of zebrafish serial
202  cryosections

203  To generate a more precise 3D ST dataset of zebrafish embryos, we first performed serial

204  cryosections of embryos at three developmental stages along the left-right axis and
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205  conducted high-depth bulk RR/ATREYER 255 Brig O3B TAYEIZ°%55: Then, Palette was applied
206  to create a more accurate zebrafish spatial transcriptomic atlas.

207 Before implementing Palette, we aligned the ST data with the bulk RNA-seq data using
208 three midline genes—gsc, Iftl, and tbxta—as metrics of alignment accuracy (Fig. 3c).
209  Analysis revealed that the slice cutting lines were not parallel to the embryonic midline in
210  both the Stereo-seq and our bulk RNA-seq data (Fig. 3d and Fig. 3f). The anterior midline
211 gene gsc and the posterior midline gene tbxta appeared on different slices, and the tilt
212  directions differed between the Stereo-seq data and the bulk RNA-seq data, as indicated by
213  the positional relationships of gsc and tbxta (Fig. 3d-f) along the left-to-right direction.

214 To align these two datasets, we first adjusted and orientated the ST slices (Fig. 3g). We
215 then overlaid them sequentially at consistent intervals (Fig. 3h), creating a 3D ST dataset
216  that could be rotated and re-segmented to facilitate alignment. The efficacy of alignment
217  was evaluated using a correlation coefficient derived from the expression patterns of genes
218  with known AP differentiation (See Methods). Through continuous adjustments—rotating,
219 re-segmenting, and recalculating correlations—we identified the configuration with the
220 highest mean correlation coefficient. This configuration was deemed optimal for aligning
221  the re-segmented slices with those from the bulk RNA-seq (Fig. 3i). The expression patterns
222  of midline genes in the re-segmented Stereo-seq slices closely aligned with those in the bulk

223  RNA-seqslices (Fig. 3j).
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225 Fig.3 Processing the serial bulk RNA-seq data and the Stereo-seq data. a, Schematic representation
226  of the workflow for generating the serial bulk RNA-seq data of zebrafish embryos. b, Cresyl violet
227  staining of the cryosectioned slices. Each slice is 20 um thick. The regions stained by cresyl violet
228  correspond to cells. ¢, ISH images showing the expression patterns of midline genes, gsc, Ift1 and
229 tbxta, from dorsal view. d, f, Expression plot showing the expression patterns of midline genes along
230  left-right axis in the Stereo-seq data (d) and the bulk RNA-seq data (f). e, Diagram illustrating the
231 midline of the Stereo-seq data tilted towards the left. g, The adjusted Stereo-seq slices. Poor-quality
232 and severely damaged slices were discarded. Each spot is labelled with cell type annotations. h, 3D
233 construction of the Stereo-seq slices. i, Correlation heatmap between the bulk RNA-seq data and the

234 re-segmented Stereo-seq slices. The colour bar represents the Pearson correlation coefficient. j,
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235  Expression plots showing the RGHRPSHEEH 3GF BEHS BehigdcHSeterns before and after slice
236  alighment. Scale bar: 100 um (b), 200 um (c).
237

238  Integrating zebrafish spatial transcriptomics data and imaging data to construct DreSTEP
239  Palette was applied to reconstruct a 3D zebrafish ST atlas. However, the ST sections
240  exhibited extrusion and deformation (Fig. 3g and Fig. 3h), resulting in spatial distortions. To
241 generate a 3D ST atlas that enables accurate visualization of gene expression patterns
242 within zebrafish embryos while preserving their comprehensive morphology, we projected
243  the ST spots onto 3D zebrafish embryo imaging data®. This approach utilized the detailed
244  morphological representation provided by the 3D imaging, where each cell is assigned a
245  spatial coordinate, serving as a precise reference for the projection of ST spots.

246 Prior to spot projection, the ST data and the 3D imaging data was initially aligned. We
247  scaled the embryo to similar sizes in both datasets, and selected three spots located at the
248  head, tail and middle of the midline from each dataset. These three paired spots were then

2324 \which is a method for calculating the

249  utilized for alignment using the Kabsch algorithm
250 optimal rotation matrix that minimizes the root mean squared deviation (RMSD) between
251 two paired sets of spots. This resulted in the alignment between the ST data and the
252  imaging data (Fig. 4a).

253 Following the alignment, the projection from ST spots to imaging spots was achieved
254  using a loop algorithm inspired by the conception of Greedy algorithm25 (Fig. 4b and Fig. 4c).
255 The entire process resulted in the spatial gene expression atlas of zebrafish embryos of
256 three developmental stages, which was named DreSTEP (Fig. 4d). DreSTEP encompassed

257  zebrafish embryos at 10 hpf, 12 hpf and 16 hpf, and these stages corresponded to post-

258  gastrulation and tail elongation processes. Consequently, DreSTEP precisely allocated cell
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259  clusters and gene expression 8 3o ReCHHE 763 HIEHBIRBYYS With 3D coordinates (Figs. 4d-
260 4f).
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263 Fig. 4 Projection of ST spots on 3D images and analysis of spatial cell-cell communication. a,
264  Diagram showing the overall alignment between the ST data and the imaging data using the Kabsch
265  algorithm. b, Diagram indicating the pairing principle for the ST coordinates and the imaging
266  coordinates. In each interaction, the ST spot and the imaging spot closest to each other are paired,
267  which is considered as the optimal solution of this interaction. Paired spots are removed from

268 subsequent interactions, and the loop continues until each ST spot is paired with an imaging spot. c,
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269  Flow chart showing the process BY¥REGHIFHECH; Ta e A1GHRRBR AFESPEP. Each spot is coloured with
270  cell type annotation. e, Stacked area plot showing cell proportions in each stage. f, Expression
271 patterns of cdx4 on DreSTEP. Intensity of colour represents the gene expression levels. g, Schematic
272 showing the in silico sections cut for spatial cell-cell communication analysis. h, i, Analysis of FGF
273 signalling pathway network in the midline (h) and tail sections (i). Each spot is coloured with cell type
274 annotation. The stroke weights indicate the interaction strength. YSL: Yolk syncytial layer; LPM:
275 Lateral plate mesoderm; Seg P, TB: Segmental plate, Tail bud.

276

277  Exploration of spatial cell-cell interactions in DreSTEP

278  DreSTEP enables the visualization of gene expression patterns in 3D view of zebrafish
279 embryos, along with their comprehensive morphology (Fig. 4f and Figs. S4a-S4c), which
280 allows for the freewheeling selection of specific regions of embryos for spatial cell-cell
281 interaction (CCI) analysis.

282 We extracted the midline and tail sections from DreSTEP and employed CellChat*® %’ for
283  spatial cell-cell communication analysis (Fig. 4g). At 10 hpf, we observed strong interactions
284  between tail bud/segmental plate cells and notochord cells in both sections, with the FGF
285  signalling pathway playing a significant role in mediating this interaction (Fig. 4h and Fig. 4i).
286  Additionally, tail bud/segmental plate cells were found to send FGF signals to neural cells,
287  and these cell-cell interactions persisted at 12 hpf and 16 hpf, with tail bud/segmental plate
288  cells continuing to send FGF signals to both notochord and neural cells (Fig. 4h and Fig. 4i).
289  Notably, the strength of FGF signalling from tail bud/segmental plate cells to neural cells
290 increased at 16 hpf. These results indicated that tail bud/segmental plate cells served as a
291 strong FGF signalling centre regulating neighbouring cells, which can be evidenced by the
292  reported roles of FGF signalling in somite development®®®*, caudal spinal cord

293  development®! and posterior notochord development™.
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294 Beyond FGF signalling, W& 'SRoUKE5a70E HRATCORIER &gRsting pathways significantly
295  contributed to the cell-cell interactions in the midline and tail sections. Throughout all three
296 developmental stages, we detected strong interactions between neural cells with
297 neighbouring cells through Wnt/B-catenin signalling (Fig. S4d). Additionally, we found that
298 tail bud/segmental plate cells consistently emitted BMP signals to adjacent cells including
299 notochord, adaxial, and erythroid lineage cells (Fig. S4e). These findings aligned with prior
300 knowledge indicating that Wnt/B-catenin signalling was involved in regulating the neural
301 plate patterning®?, and BMP signalling was activated in tail bud region, contributing to tail
302  formation®.

303 Our spatial cell-cell communication analysis suggests that different morphogens
304 mediated diverse CCls during embryonic development. The complex cellular networks
305 formed by these CCls may guide the formation of organ collectives and ensure the robust of
306 organogenesis. In summary, DreSTEP proves to be an excellent zebrafish spatial atlas for

307 visualizing gene expression patterns and investigating CCls in specific regions of the embryo.
308

309 Investigating morphogen distributions and cell fate specification in DreSTEP

310 During embryonic development, a group of signalling molecules, known as morphogens
311 diffuse from localized sources, forming concentration gradients that provide spatial

3% 35 The intersections of

312 information to responding cells and guide their differentiation
313  different morphogens with antiparallel gradients generate diverse cell types, contributing to
314  the formation of precise patterns and structures®®*’ (Fig. 5a).

315 The establishment of the AP axis involves the intricate interactions among morphogen

22, 38, 39

316 gradients . During tail elongation, morphogen gradients collectively regulate the

317 extension and confinement of the AP axis, resulting in the precise specification and


https://doi.org/10.1101/2024.07.01.601472
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.01.601472; this version posted July 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

318  arrangement of tubular orga BIRRTSIIRIAT SR tHEBEEY SRIE™ 4041 DreSTEP provides an
319 appropriate platform to comprehensively analyse the expressing patterns of morphogens
320 along the AP axis and investigate the relationships between the morphogen gradients and
321  cell type distributions. We linearized the DreSTEP (Fig. 5b, See Methods) and focused on
322 ligands involved in canonical Wnt, noncanonical Wnt, Notch, Sonic hedgehog (SHH), RA, FGF,
323  and TGF-B signalling, visualizing their expression intensities along the linearized AP axis (Figs.
324  5c¢-f and Figs. S5-S8). We observed two adjacent regions along the linearized AP axis at all
325 three time points, and each enriched with distinct group of ligands (Fig. 5g). These regions,
326  designated as Zonel and Zone2, were subjected to Gene Ontology (GO) enrichment analysis
327 using sets of differentially expressed (DE) genes to investigate the functional characteristics
328  of cells within each zone (Fig. 5g and Fig. 5h, Data S1-59).

329 At the end of the gastrulation (10 hpf), tail elongation commenced with various cell
330 types, beginning to be specified along the AP axis (Fig. 5g left). Notably, Zonel consisted of
331  paraxial mesoderm cells, while Zone2 predominantly comprised segmental plate/tail bud
332  cells. GO enrichment analysis revealed terms related to somite development for both zones,
333  such as “skeletal system”, “somite development”, and “somitogenesis” (Fig. 5h left).
334  Furthermore, Zone2 encompassed the entire tail region, displaying GO terms associated
335 with posterior development, such as “endoderm development” and “mesoderm
336 morphogenesis”.

337 At 12 hpf and 16 hpf, as tail elongation progressed, more cell types were specified along
338 the AP axis. The boundary between Zonel and Zone2 shifted posteriorly. Zonel primarily
339  consisted of trunk region cells, such as somite cells, with GO terms related to muscle
340 development, such as “muscle structure development”, “muscle cell development”, and

341  “skeletal muscle tissue development”. Zone2 continued to predominantly consist of
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342 segmental plate/tail bud REPSHIER G0 (EHAE MUY STRES “somitogenesis”, “somite

343  development”, and “mesenchyme development”, indicating these cells’ high mobility and
344  contribution to somitogenesis and tail elongation (Fig. 5h mid and right). The boundary
345 between Zonel and Zone2 coincided with the position of somite cells, highlighting the
346  essential roles of antiparallel morphogen gradients in somitogenesis. Additionally,
347  pronephros and erythroid lineage cells were specified at 16 hpf and distributed in both
348 Zonel and Zone2, with Zonel containing a higher proportion of pronephros cells and Zone2
349  exhibiting a higher abundance of erythroid lineage cells (Fig. 5g).

350 Based on the observed transcriptional morphogen gradients and cell type distributions
351 along AP axis in Zonel and Zone2 at the three developmental stages, we created a diagram
352 to summarize those findings (Fig. 5i). Assuming that the transcriptional level of a
353  morphogen reflects its activity level, our model demonstrated the presentence of opposing
354  concentration gradients, which could guide the cell type specification along the AP axis. Our
355 analysis showed that Zonel enriched aldehyde dehydrogenase aldhla2 (Fig. 5d); while
356 Zone2 showed a high expression of wnt3a and fgf8a (Fig. 5¢ and Fig. S5). These observations
357  were consistent with previous studies***® demonstrating the role of anterior RA signalling
358 and posterior Wnt&FGF signalling in establishing the determination front of newly formed
359 somites. In addition to these ligands, Zone2 exhibited enrichment of other FGF ligands, such
360 as fgfl0a, fgf4 and fgfi3b (Fig. 5g), suggesting their collective roles in regulating zebrafish
361 embryonic posterior development. Interestingly, Zonel also showed enrichment of certain
362  FGF ligands, including fgf17 and fgf18b (Fig. 5g), suggesting another FGF signalling cascade
363  probably participated in somite development. Moreover, Zone2 enriched the ligands
364  associated with TGF-B signalling, including bmp2b, bmp4, bmp7a and gdf11, aligned with

47-50

365 the well-studied roles of BMP signalling in tail development™™". Zonel and Zone2 also
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exhibited enrichment of difféY &P hYREAHSHTCT WK UBKAYRHE ligands, wnt11 and wnt5b,
respectively, suggesting their important roles in regulating the pattern formation in these
zones. Another interesting observation was that the expression of the Notch signalling
ligand jagla shifted from high expression in Zone2 at 10 hpf and 12 hpf to high expression
in Zonel, along with dll4, at 16 hpf, suggesting changes in the zones where Notch signalling
functions during zebrafish development.

In summary, our work systematically assessed the dynamic transcriptional profiles of
morphogens along the AP axis and highlighted the interactions between adjacent zones
exhibiting antiparallel morphogen gradients. These findings underscored the crucial roles of
these morphogens in orchestrating pattern formation during zebrafish development, laying

the foundation for investigating the regulation of AP refinement in further studies.
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378  Fig. 5 Morphogen gradients regulate the establishment of AP axis. a, Schematic diagram showing
379 that role of antiparallel morphogen gradients in governing cell fate determination. b, Schematic
380 diagram showing the linearization of DreSTEP. c-f, Plots displaying the expression patterns and
381 intensities of representative ligands along the AP axis in FGF (c), RA (d), noncanonical Wnt (e) and
382  TGF-B (f) signalling. The selected ligands show differential expression patterns in Zonel and Zone2. g,
383 Plots of gene expression intensities, cell types and cell type proportions along AP axis. The thick
384  dashed lines in red and blue indicate the expression trends of trunk-enriched and tail-enriched genes;
385 the thin dashed lines sperate Zonel and Zone2 for GO enrichment analysis. h, Enriched GO terms in
386  Zonel and Zone2 respectively. i, Model diagrams showing the relationships between morphogen

387  gradients and cell type specification in Zonel and Zone2 at different developmental stages. Paraxial
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388  Meso: Paraxial mesoderm; LPM:14{8S P e dSHeYBEP 8 SEgmental plate, Tail bud; Eryth.
389 Lineage: Erythroid Lineage; ncWnt: noncanonical Wnt.
390

391 Identification of key transcriptional regulatory cascades during the AP axis canalization

392 Diverse morphogen signals intricately interact to instruct the refinement of AP axis,
393 involving cross-regulation of their intracellular pathways and downstream transcription
394  factors (TFs)*> 2. To identify key morphogens and their downstream TFs that are essential
395 for accurately determining the AP fate of various cell types within the embryo, we employed
396 a random forest model (Fig. 6a), where we considered the expression levels of all
397 morphogens and TFs as variable factors, to identify which ones are crucial for establishing
398 the AP identities. We found that several morphogen ligands from the FGF, Wnt, RA, Notch
399 and BMP signalling pathways as key determinants of AP identities (Fig. 6b and Fig. S9). The
400 regulatory potential of these morphogens in AP axis formation have been substantiated by

47-30,53,34 reinforcing the validity of our approach.

401  previous studies
402 Interestingly, ligands within the same signalling pathway can exhibit distinct
403  distributions along AP axis, suggesting their dominant roles in refining AP axis at different
404  developmental stages. For instance, fgf3, anteriorly distributed, was a key morphogen at
405 the 10 hpf stage, while fgfi7 and fgf8a, located in the posterior trunk and tail regions,
406  respectively, were critical at both the 12 hpf and 16 hpf stages (Fig. 6b). This emphasizes the
407 need to interpret morphogen gradients within a spatiotemporal context.

408 Among the identified key TFs, the Hox gene family genes emerged as significant
409 regulators, underscoring their vital roles in AP axis regulation (Fig. 6b and Fig. S10). The Hox
410 genes, a subset of conserved homeobox genes, exhibit both temporal collinearity and
411  spatial collinearity in their expression, allowing them to specify regions along the AP axis

55-57

412  and contribute to body plan formation (Fig. 6¢). To further investigate the relationships


https://doi.org/10.1101/2024.07.01.601472
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.07.01.601472; this version posted July 3, 2024. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

413  between Hox gene expressiol 4 KEPRGS PEARHIERIOAEGeFined a “Hox score”, which
414  serves as an estimation for the most probable Hox gene expressed in each spot (Fig. 6d). We
415  performed correlation analysis between Hox scores and physical AP identities across three
416  developmental stages (Fig. 6e). Our results revealed a positive correlation between the Hox
417  score and physical AP identities, with this correlation strengthening as development
418  progressed. This trend was consistently observed in both the neural system and paraxial
419 mesoderm, where Hox genes were independently expressed along the AP axis.

420 Interestingly, the neural system exhibited a lower Hox score compared to paraxial
421 mesoderm (Fig. 6g), suggesting a “time discrepancy” between these two systems in
422  canalizing their AP “avenue”. These observations highlight the increasingly significant
423  regulatory role of Hox genes in AP axis refinement. Furthermore, we examined the
424  expression patterns of four Hox clusters: hoxa, hoxb, hoxc, and hoxd, along the AP axis (Fig.
425  6f and Fig. S11). The hoxb cluster exhibited the most pronounced correlation with the
426  physical AP identities, suggesting that the hoxb family genes may serve as master regulators

427  inrefining the AP identities during development.
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Fig. 6 Establishment of AP axis. a, Schematic diagram showing the training for the random forest
model. b, Heatmaps showing the expression intensities of key morphogens and transcription factors
along AP axis at 10 hpf, 12 hpf and 16 hpf. ¢, Schematic diagram illustrating the spatial distribution of
hox genes in neural and somatic systems. d, Schematic diagram showing the calculation of the Hox
score of each cell and the assessment of correlations between Hox scores and AP positions. e, The
correlations between Hox scores and physical AP positions. Colour indicates the spot density, with
high in red and low in blue. f, Heatmaps showing the expression levels of hoxb genes along AP axis at
10 hpf, 12 hpf and 16 hpf. Intensity of colour represents z-score with high in red and low in blue. g,
The Hox score distributions in neural system and paraxial mesoderm. Colour scale: Expression

intensity (b), Z-score (f).
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440  Discussion

441  In this study, we present Palette, a pipeline that utilize existing ST data as the only reference
442  to infer precise spatial gene expression patterns from bulk RNA-seq data. The gene
443  expression patterns predicted by Palette exhibit enhanced spatial continuity and improved
444  spatial specificity, closely resembling experimentally observed patterns (Figs. 2d, 2g and Figs.
445  S1b, Sic). Furthermore, Palette can incorporate spot characteristics directly from
446  histological images of tissue slices, enabling more accurate spot characterization compared
447  to reliance on spatial clustering alone (Fig. S12b). Palette is also applicable to comparative
448  analyses of spatial gene expression patterns in different conditions, as demonstrated using
449  human pancreatic ductal adenocarcinoma (PDAC) data’®. Here, Palette inferred spatial gene
450  expression patterns from bulk RNA-seq datasets® of normal and tumour tissue slices,
451  revealing a notable decrease in tumour-specific gene expression in the normal tissue slice
452  (Fig. S12). Ongoing research aims to expand Palette’s application scenarios and explore
453  further possibilities for analysing and interpreting spatial gene expression patterns.

454 Leveraging the capabilities of Palette, we constructed a comprehensive spatial gene
455  expression atlas, DreSTEP, by integrating transcriptomics from serial sections and 3D images
456  of zebrafish embryos™. DreSTEP not only facilitates the visualization of gene expression
457  patterns in 3D morphology of zebrafish embryos, but also allowed for the flexible selection
458  of sections for spatial cell-cell interaction analyses. As a 3D spatial gene expression atlas,
459  DreSTEP holds great potential for studying the intricate 3D spatial cell-cell interactions
460  during zebrafish development.

461 We utilized a linearized version of DreSTEP to investigate the relationships between

462  morphogen distributions and cell type specification along the AP axis during development.
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463  We identified two adjacent zdNEEWNitAS TS5 A8I HESRIHSEER Bradients, with the boundary
464  of these two zones appearing to act as the determinant front for somite formation.

465 In addition, by employing a random forest model, we explored the correlations
466  between morphogen/TF expression and the developing AP patterns. This analysis identified
467  critical morphogens and downstream TFs essential for determining AP position at different
468 developmental stages. Notably, the Hox family genes were identified as dominant TFs, with
469  strong correlations between the expression patterns of hox genes and the cell physical AP
470  positions. Importantly, our findings suggest that hoxb cluster likely plays a more significant
471  role in AP axis formation compared to other hox clusters.

472 During the development of DreSTEP, we encountered several limitations that warrant
473  future improvements. Firstly, the manual adjustment and alignment of Stereo-seq slices
474  during 3D ST data construction were labour-intensive and introduce potential bias. Although
475  tools like PASTE®® were employed, their performance was unsatisfactory, possibly due to the
476  hollow circle shape of ST slices leading to tilted alignments. Newly developed tools such as
477  STitch3D®! and Spateo62 could be worth exploring for assisting the alignment. Secondly, the
478  Palette algorithm currently excluded genes not detected in any spot of the ST data.
479  Leveraging serial bulk RNA-seq data, could enable the construction of gene co-expression
480 networks along the cutting direction. This approach has the potential to assist in predicting
481  the expression patterns in ST data. Thirdly, the performance of Palette and DreSTEP heavily
482  relied on the quality of ST data. In this study, for example, the Stereo-seq data of 12 hpf
483  zebrafish embryo had fewer slices on the right side (Fig. S3b), resulting in more blank spots
484  in the right part of DreSTEP for the 12 hpf embryo. Therefore, with the development and
485  improvements in ST techniques, Palette and DreSTEP will have even greater potential for

486  analysing spatiotemporal gene expression.
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487 Methods available under aCC-BY 4.0 International license.

488  Animal ethics

489  Wild-type zebrafish strain was maintained following the standard procedures, and the
490 experimental procedures were approved by the Institutional Review Board of Zhejiang
491  University. The approval number is ZJU20220375.

492

493  The Palette algorithm

494 ST data was used as the reference for inferring spatial gene expression from bulk RNA-seq
495 data. The input bulk expression matrix is S & R™, which contains the expression
496 information of n genes. BayesSpace20 was first employed to perform spatial clustering on

497  the ST data using the genes highly expressed in both the ST data and the bulk data. There

498 are m clusters identified through spatial clustering, and the average expression of each

499  cluster is C € R™™. MuSiC* was then employed to obtain the proportions of each defined

500 cluster in the bulk data, A € R™, through deconvolution. A pseudo bulk vector, P € R™ is

501 constructed by taking the cross product of the cluster expression matrix of ST data and the
502  cluster abundances of bulk data.
503 P=CxA

504 Each gene is assigned with a variable factor to adjust its expression. The variable factor

505 vector, K € R™ can be calculated as the ratio of the input bulk to the pseudo bulk vector.

506 S=P.K

507 The adjusted matrix M € R™ is generated by the dot product of the cluster expression

508 matrix of the ST slice and the variable factor.
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510 The pseudo bulk data of the reference ST slice is T € R™. One random spot and its

511 nearest neighbouring spots are selected, and the expression of spots belonging to the

512  cluster i is aggregated to form a pseudo-cluster expression data LST, L € R™. The regional

513  cluster factor R € R™ is defined as the proportion of LST in the entire ST slice.

514 L=T-R
515 The ratio of LST to the reference ST data is equal to the ratio of the adjusted LST to the
516  adjusted matrix, and thus the adjusted LST can be calculated by the dot product of the

517  expression matrix of cluster i in the adjusted matrix M’ and the regional cluster factor R. The

518  expression of each spot in cluster i, D € R™, is achieved through evenly allocation of the

519  adjusted LST. N is the numbers of spots belonging to cluster i in this region.

_Mi-R

D
N

520 The average expression D € R™ after multiple iterations is considered as the

521 estimated expression of the spot. Here p means that the spot has been selected for p times
522  during iterations.

Ziza D
b

D =

523

524  Palette performance assessment on Drosophila slices

525  Two consecutive slices (referred to slices 4 and 5) were taken from the Stereo-seq data®® of
526  Drosophila E14-16 serial sections. Given their adjacency, these two slices should exhibit

527  similar gene expression levels and patterns. Slice 5 was then converted into a pseudo bulk
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528  and used as Palette's input, WItRFitEY AEHThg HeTHEYR fe¥fence. The predicted spatial

529  expression patterns of slice 5 were compared to the actual ST data from slice and ISH

530 images from BDGP database (www.fruitfly.org) for evaluating Palette’s performance.

531

532  Palette performance assessment on zebrafish slices

533  One middle slice of zebrafish Stereo-seq data was selected as the ST reference™. A
534  corresponded slice was selected as an input for Palette from the serial bulk RNA-seq data®
535 of zebrafish embryo using a correlation test. The correlation was calculated based on the
536 expression of genes showing differential expression along the dorsal-ventral axis. The
537 predicted expression patterns were compared to the ISH images from ZFIN (www.zfin.org)
538  and published data®" ?* for evaluating Palette’s performance.

539

540 Sample preparation for bulk RNA-seq

541  Live embryos at the required developmental stages of 10 hpf, 12 hpf and 16 hpf were
542  rapidly embedded in optimal cutting temperature compound (OCT) and oriented in the
543  bottom of steel embedding cassettes. Embedded embryos were rapidly frozen at -80°C for
544 10 minutes, and then transferred into a cryostat (Leica) at -20°C. In the cryostat, embedded
545 embryos were removed from the steel embedding cassettes and cryosectioned at a
546  thickness of 20 um. Each slice was collected and placed on the PEN membrane slides (Leica)
547 in the correct order. Membrane slides were stained using 1% (wt/vol) cresyl violet
548  (dissolved in 70% ethanol) to roughly check cell number and ensure slice integrity. Each slice
549  was extracted from membrane slides through laser capture microdissection system (Leica
550 LMDS6) and collected into a 1.5 mL Eppendorf tube containing 40 pL of PicoPure™ lysis

551  buffer (Thermo Fisher). Collected samples were incubated at 42°C for 30 minutes and then
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552 sent to Shanghai Ouyi Biologd/AAREHSP SGeRe-TLEHEIBBY eSS Ltd. (Shanghai, China) for
553  RNA extraction, cDNA library construction and sequencing. Paired-end sequencing at 150 bp
554  read length was performed on a Novaseq 6000 instrument.

555

556  Bulk RNA-seq data processing

557 Reads were aligned to the Danio rerio genome Ensembl Release 92 (GRCz11) using STAR
558  v2.7.1a%. The aligned reads were assigned to each gene using featureCounts v1.6.0°*. For
559  each embryo, the gene counts of each slice were merged into a count matrix, and the genes
560 that received more than 0.5 counts per million reads (CPM) in at least 3 slices were retained.
561 The count matrices with slice position information were constructed into DGEList objects
562  using edgeR®® for the following analysis.

563

564 3D embryo reconstruction

565 The spatiotemporal transcriptomics date used for 3D embryo reconstruction was obtained
566 from the zebrafish  Stereo-seq  dataset’>  available for download at

567  https://db.cngb.org/stomics/zesta/download/. Each section was fitted into a 2D coordinate

568 system, with the section centre serving as the origin. Before the reconstruction, severely
569  broken slices and outlier spots were removed from the dataset. The position of each section
570 on the 2D coordinate system was manually adjusted and aligned based on the section
571 shapes and spot annotations. Additionally, the distance between neighbouring sections on
572  the z-axis was estimated, and the corresponding z-axis coordinates were assigned to each
573  section. By combining the spatial transcriptomics data and with the 3D coordinates,
574  reconstructed embryos were generated.

575
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576  Alignment between bulk RNAEH 'SITEEY dndFeseBifenhtad [5e&ido ST slices

577  Reconstructed embryos were rotated along x-axis and y-axis separately, and then re-
578 segmented into section slices. Each of re-segmented slices was transformed into pseudo
579  bulk data, which represented an aggregate expression profile for that slice. To determine
580 embryo orientation, several genes exhibiting AP differential expression patterns were
581 selected. The scaled expression levels of these genes across slices were generated for both
582  bulk RNA-seq slices and pseudo bulk slices. To assess the alignment between bulk RNA-seq
583  slices and pseudo bulk slices, Pearson correlation coefficients were calculated across these
584  genes. The alignment with the highest mean Pearson correlation coefficient along the slices
585  was considered as the optimal alignment.

586

587 3D projection of ST spots to imaging spots

588 The live imaging data of zebrafish embryos were obtained from the study by Shah et al.,

589  2019%° available for download at https://idr.openmicroscopy.org under accession code

590 idr0068. Both the centres of the ST data and the live imaging data were set as the origin,
591 and the embryo size in the imaging data was scaled to a similar embryo size in the ST data.
592  Three specific spots (head, mid of midline and tail) were selected from the both datasets.
593  The Kabsch algorithm® ?* was used to achieve the optimal alignment between the two
594  paired sets using these three spot pairs. This algorithm involved rotating and transforming
595 the coordinates of the three ST spots to align them with the corresponding spots in the live
596 imaging data. By applying the rotation matrix obtained from the optimal alignment, the
597 entire set of the ST spot coordinates was transformed. A transform matrix was obtained by
598 calculating the difference between the coordinate of the head spot achieved from the spot

599 alignment and the coordinate of the head spot after applying the rotation. The transform
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600 matrix was then applied to ¥RECESBAZIASE 6F "SAEHYFe8ots, which had undergone
601 rotation. Through this process, the alignment between the ST data and the imaging data
602  was achieved.

603 The pairing between the ST spots and the imaging spots was achieved through a looping
604  algorithm based on the Greedy algorithm25. In each interaction of the loop, the ST spot and
605 the imaging spot that were closest to each other were paired, which was considered as the
606 optimal solution of the interaction. Paired spots were removed from subsequent
607 interactions, while unpaired spots moved on to the next loop. The looping process
608 continued until each ST spot was paired with an imaging spot. The expression information
609 from the ST spots was then assigned to their corresponding imaging spots. The remained
610 unpaired imaging spots were retained to preserve the overall morphology of the embryo.
611

612  Spatial cell-cell communication analysis using CellChat

613  CellChat®®? was employed to analyse spatial cell-cell communication based on prior known
614  zebrafish ligand-receptor interaction database CellChatDB. The section of interest was
615  extracted from DreSTEP for analysis, which provided 2D section ST data. In the Stereo-seq
616  data, each spot contained 15 x 15 DNA nanoball (DNB) spots. Consequently, in the section
617 ST data, the spot diameter was set as 15, and the number of pixels spanning the spot size
618 diameter was set as 225. The expression data of section ST data was pre-processed to
619 identify over-expressed ligands and receptors for each cell group. Setting distance as
620 constraints, CellChat inferred communication probability between two interacting cell
621 groups. This inference was based on the average gene expression of a ligand in one cell
622 group and the average gene expression of a receptor in another cell group. The

623 communication probabilities of all ligands-receptors interactions associated with each
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624  pathway were summarized ¥8FSHEARRRCGR Y the"EBRIAEATRR S on probabilities within in
625  signalling pathways.

626  Linearizing the AP axis in DreSTEP

627  The lateral view of DreSTEP was projected onto a 2D plane. The spots were fitted into a
628  cycle. Each spot was then projected onto the cycle, with the projected spot representing the
629 closest spot on the cycle to the original spot. By designating the most anterior spot as the
630  origin, the AP position of each spot was determined by calculating the arc length from its
631 projected spot to the origin. The AP value of each spot was then divided by the maximum
632 AP value in the dataset to achieve the normalized AP value.

633

634  Employing random forest model for prediction

635  For each cell, the normalized expression of morphogens or TFs was set as variable factors,
636  while the cell’s normalized physical AP position was set as observed factor. We took 70% of
637 the data to train a random forest model using the randomForest® package. The importance
638  of the variables to AP position was assessed by both increase in mean square error (IncMSE)
639 and increase in node purity (IncNodePurity). Cross-validation was used to evaluate the
640 number of variables. The top 6 important variables were selected, and the correlations
641 between their expression and AP positions were visualized.

642

643  Calculating Hox score of each spot

644  For each hox gene, its expression in each spot was divided by the maximum expression of
645 that gene in the dataset, indicating the expression probability of that gene in that spot. Then,
646  the expression of hox genes in spots can be converted to a repeated representation, where

647 the number of repetitions corresponded to the expression probability of the gene in that
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648  spot. In our analysis, we mad@3RUREH SHGH LA YHEEXBHEENS of hox genes in each spot

649 followed a normal distribution. This assumption enabled generating a fitting curve of the
650 normal distribution on the density plot of the hox genes. The Hox score was determined as
651 the hox value at the peak of the normal distribution. The Hox score of each spot was then
652  divided by thirteen, resulting in the normalized Hox score.

653

654  In situ hybridization (ISH)

655  ISH was performed following the published protocol®

. Embryos of required developmental
656  stages were fixed in 4% PFA/PBS overnight at 4°C, and then transferred into 100% methanol
657 (MeOH) for dehydration overnight at -20°C. Embryos were washed through 75%, 50% and
658 25% MeOH/PBST for 5 minutes each at room temperature and then three times for 5
659  minutes in PBST. Embryos older than 10 hpf were treated with proteinase K (10 pg/mL in
660 PBST) for 30 s and then fixed in 4% PFA/PBS for 20 minutes at room temperature.
661  Proteinase K treated embryos were washed four times for 5 minutes each in PBST. Embryos
662  were transferred into Hybridization Mix (HM) and incubated at 70°C for 2-5 hours, and then
663  the buffer was replaced by HM containing digoxigenin-11-UTP (Sigma-Aldrich, 11277073910)
664 labelled probe. After overnight incubation at 70°C, embryos were washed through 75%, 50%
665 and 25% HM/2xSSC at 70°C for 20 minutes each. Embryos were then washed in 2x SSC at
666  70°C for 20 minutes and washed in 0.2xSSC twice at 70°C for 40 minutes. 0.2xSSC were then
667  progressively replaced by PBST at room temperature. Embryos were blocked in blocking
668 buffer at 4°C for 3 hours, and incubated in blocking buffer with anti-DIG-AP antibody

669  (1:10000 dilution, Sigma-Aldrich, 11093274910) at 4°C overnight on a low speed shaker.

670 Embryos were washed 6 times for 15 minutes each in PBST to remove excess antibodies.
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671 Embryos were stained in NBYYBRFPEELTNREY A INPERCSHE MRS staining was stopped by
672  washing twice in PBST when the expected staining patterns were observed.

673

674  Data availability

675 The raw data of serial bulk RNA-seq has been deposited to the Gene Expression Omnibus
676  (GEO) under accession number “GSE262578”. The published data used in this study can be
677  accessed through the following links or accession number: (1) Stereo-seq data of Drosophila

678 embryos13 (https://db.cngb.org/stomics/flysta3d/download/); (2) Stereo-seq data of

679  zebrafish embryos®? (https://db.cngb.org/stomics/zesta/download/); (3) live imaging data of

680  zebrafish embryos® (idr0068 from https://idr.openmicroscopy.org); (4) Spatial

681 transcriptomics data of human PDAC: GEO accession: “GSE111672"°%; (5) Bulk RNA-seq data
682  of human PDAC: GEO accession: “GSE171485"%°.

683

684  Code availability

685 The codes for Palette pipeline and bioinformatics analyses are deposited on GitHub

686  (https://github.com/ldo2zju/DreSTEP). Any other custom code and data are available from

687  the authors upon request.

688

689  Additional information

690  Supplemental Information Supplementary Figures 1-12 and Supplementary Data 1-9.

691
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