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Abstract 26 

Elucidating the spatiotemporal dynamics of gene expression is essential for understanding 27 

complex physiological and pathological processes. Traditional technologies like in situ 28 

hybridization (ISH) and immunostaining have been restricted to analyzing expression 29 

patterns of a limited number of genes. Spatial transcriptomics (ST) has emerged as a robust 30 

alternative, enabling the investigation of spatial patterns of thousands of genes 31 

simultaneously. However, current ST methods are hindered by low read depths and limited 32 

gene detection capabilities. Here, we introduce Palette, a pipeline that infers detailed 33 

spatial gene expression patterns from bulk RNA-seq data, utilizing existing ST data as only 34 

reference. This method identifies more precise expression patterns by smoothing, imputing 35 

and adjusting gene expressions. We applied Palette to construct the Danio rerio 36 

SpatioTemporal Expression Profiles (DreSTEP) by integrating 53-slice serial bulk RNA-seq 37 

data from three developmental stages with existing ST references and 3D zebrafish embryo 38 

images. DreSTEP provides a comprehensive cartographic resource for examining gene 39 

expression and spatial cell-cell interactions within zebrafish embryos. Utilizing machine 40 

learning-based screening, we identified key morphogens and transcription factors (TFs) 41 

essential for anteroposterior (AP) axis development and characterized their dynamic 42 

distribution throughout embryogenesis. In addition, among these TFs, Hox family genes 43 

were found to be pivotal in AP axis refinement. Their expression was closely correlated with 44 

cellular AP identities, and hoxb genes may act as central regulators in this process.  45 

 46 
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Introduction 47 

Model organisms such as zebrafish have long been valuable tools for studying 48 

developmental biology and human diseases. Understanding the spatiotemporal patterns of 49 

gene expression in these models is crucial for gaining insights into the physiological and 50 

pathological mechanisms in normal development and related diseases. Thus, great efforts 51 

are ongoing to construct gene expression maps of these models with higher resolution, 52 

depth, and comprehensiveness.  53 

Traditional technologies, such as ISH and immunostaining, have been widely used for 54 

investigating the spatiotemporal expression patterns of specific genes. However, these 55 

approaches are limited in their ability to simultaneously detect the expression of a large 56 

number of genes. In recent years, significant progress has been made in developing 57 

technologies for obtaining transcriptomics with spatial information. Techniques such as 58 

laser capture microdissection/microscopy (LCM) combined with bulk RNA-seq1, 2, Tomo-seq3, 59 

and Geographical positional sequencing (Geo-seq)4 have allowed the generation of spatially 60 

resolved transcriptomic data5. Additionally, methods like seqFISH6, MERFISH7, Slide-seq8, 61 

10x Visium9, 10, and Stereo-seq11-13 have further improved the spatial resolution.  62 

While these spatial transcriptomics (ST) techniques have advanced the spatial 63 

resolution of transcriptomic data, bulk RNA-seq remains the preferred choice for most 64 

studies due to limitations associated with ST techniques such as low read depth, suboptimal 65 

gene detection capability, and high cost5, 14. Consequently, tools have been developed to 66 

infer cell features or spatial gene expression from bulk RNA-seq data, including TIMER15, 67 

MuSiC16, DWLS17, and Bulk2Space18.  68 

In this study, we introduce Palette, a pipeline designed to allocate gene expression from 69 

bulk RNA-seq data to spatial spots using ST data as the only reference. Palette has 70 
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demonstrated its effectiveness in inferring spatial expression patterns in both Drosophila 71 

and zebrafish sections. We performed bulk RNA-seq on serial cryosections of zebrafish 72 

embryos along the left-right axis at three developmental stages. By applying Palette to the 73 

obtained data with the Stereo-seq data12 as references, we inferred the spatial gene 74 

expression patterns. We then projected the constructed 3D ST maps onto the zebrafish 75 

embryo images with 3D coordinates19 to correct the deformation during cryosectioning and 76 

construct a 3D spatial gene expression cartograph that more accurately reflects embryonic 77 

morphology. We named this cartograph DreSTEP, which enables the visualization of gene 78 

expression patterns in the context of the 3D morphology of the zebrafish embryos. Finally, 79 

leveraging the capabilities of DreSTEP, we characterized potential roles of morphogens and 80 

TFs in AP refinement during the progression of the primary body axis. 81 

 82 

Results 83 

Design concept of Palette 84 

The overall working pipeline of Palette is depicted in Figure 1, illustrating the key steps 85 

involved in our approach. The pipeline firstly incorporates spatial clustering and 86 

deconvolution processes to account for differences in cluster abundances between bulk 87 

RNA-seq and ST data. Then, a variable factor is introduced to adjust expression differences 88 

between the two types of data. Subsequently, the pipeline estimates gene expression in 89 

each spot using a loop algorithm that takes into account regional gene expression, spot 90 

characteristics, and spot-spot distances. This iterative process allows for the inference of 91 

spatially resolved gene expression from bulk transcriptome data with relatively stable gene 92 

expression. The pipeline outlined in Figure 1 represents the sequential steps employed in 93 
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Palette to accurately allocate gene expression to spatial spots using the information 94 

provided by the bulk RNA-seq data. 95 

The detailed procedures of Palette can be divided into the following three steps. First, 96 

spot clusters are defined in the ST data and the proportion of each defined cluster is 97 

inferred in bulk RNA-seq data (Fig. 1a). Specifically, highly expressed genes in both ST and 98 

bulk RNA-seq data are used for spatial clustering of the ST data. Here, BayesSpace20, and 99 

MuSiC16 are employed for deconvolution to estimate cluster abundances in bulk data. This 100 

step can effectively eliminate the batch effect caused by technical differences in sampling, 101 

mRNA capture, platform, etc. between the two experiments. Second, a variable factor is 102 

introduced to adjust the cluster expression matrix (Fig. 1b). To obtain the variation of each 103 

gene in ST and bulk data, a pseudo bulk vector is achieved as the cross product of the 104 

cluster expression matrix of ST data and the cluster proportions of bulk data, so that the 105 

variable factor vector can be calculated by the ratio of the input bulk to the pseudo bulk 106 

vector. Consequently, the stable genes and variable genes can be distinguished by the 107 

distribution of the variable factor vector. The adjusted matrix is obtained by taking the dot 108 

product of the cluster expression matrix of ST slice and the variable factor. This step can 109 

effectively overcome the common sparsity problem in spatial transcriptomics technologies, 110 

and the adjusted matrix not only contains the cluster composition information but also fully 111 

retains the accuracy of the bulk transcriptome in the detection of lowly expressed genes. 112 

Third, the expression of each spot is estimated through an iteration algorithm (Fig. 1c). In 113 

each iteration, the procedure begins by selecting one random spot (i) and its nearest 114 

neighbouring spots (Local i). The expression of spots belonging to the same cluster is 115 

aggregated to form a pseudo-cluster expression data called local ST (LST). Assuming the 116 

ratio of LST to the reference ST data is equal to the ratio of the adjusted LST to the adjusted 117 
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matrix derived from the previous step, the expression of adjusted LST can be calculated and 118 

evenly allocated into the selected spots of this cluster. The loop then proceeds to the next 119 

iteration (iteration j), and after multiple iterations, typically thousands of times, the average 120 

expression of each spot is almost stable, which is considered as the output estimated 121 

expression. 122 

The expression patterns on Palette reconstructed ST show enhanced spatial specificity 123 

and continuity (Fig. 1c). Our algorithm incorporates spot characteristics and spot-spot 124 

distances, emphasizing cluster-specific expression, while leveraging expression from bulk 125 

data to adjust gene expression in the ST spots. Additionally, the assumption that the 126 

neighbouring spots of the same cluster share similar gene expression enables imputation 127 

based on gene expression in neighbouring spots. This strategy partially mitigates the 128 

limitation of low detected gene numbers in each spot. Overall, the Palette pipeline serves as 129 

a valuable tool for inferring spatial gene expression patterns from bulk RNA-seq data, 130 

striving to generate accurate predictions of spatial gene expression that closely resemble 131 

the expression patterns in bona fide tissues. 132 
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 133 

Fig. 1 Working pipeline of Palette. a, Defining spot clusters in ST reference and estimating cluster 134 

abundances in bulk transcriptome data. Bulk transcriptome data and ST reference are taken as input. 135 

Highly expressed genes in both datasets are used for spatial clustering through BayesSpace20. The 136 

cluster expression matrix obtained from spatial clustering is then used as the reference for 137 

performing deconvolution on bulk transcriptome data, resulting in the estimated cluster abundances 138 

of bulk transcriptome data. b, Adjusting cluster expression matrix by employing the variable factor. 139 

The variable factor represents the expression differences between bulk RNA-seq data and ST 140 

reference. c, Estimating the expression in each spot through a loop algorithm. The expression of LST 141 

is adjusted and then evenly allocated to each spot of this cluster. After the looping steps, the 142 

average expression of each spot is taken as the estimated expression. 143 

 144 

Palette enables the prediction of gene expression patterns with higher spatial specificity 145 

and accuracy 146 

To assessed the performance of Palette, we first utilized two consecutive slices (referred to 147 

slices 4 and 5) from the Stereo-seq data13 of Drosophila E14-16 (14-16 hours post egg laying) 148 

serial sections (Fig. 2a). We converted slice 5 into a pseudo bulk and used it as Palette's 149 
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input, with slice 4 serving as the ST reference. We observed that Palette-implemented slice 150 

4 did not result in considerable changes in the molecule numbers of each spot, as the gene 151 

expression levels of slice 4 and slice 5 were similar. However, there was a significant 152 

increase in the feature numbers (gene numbers) of each spot (Fig. 2b). This increase was 153 

attributed to the supplementation by Palette, which leveraged the gene expression of 154 

neighbouring spots belonging to the same cluster.  155 

Furthermore, we observed strong correlations in the expression of top marker genes 156 

between the same annotated clusters of Palette-implemented slice 4 and slice 5 ST data (Fig. 157 

2c), indicating that Palette successfully preserved the molecular characteristics of each spot. 158 

Notably, Palette-implemented slice 4 exhibited similar gene expression patterns to the slice 159 

5 ST data, with these patterns being even more spatially specific and closely resembling the 160 

in vivo expression patterns observed through ISH (Fig. 2d, Fig. S1a and Fig. S1b). These 161 

results suggest that Palette's ability of gene supplementation contributed to improved 162 

continuity in the expression patterns of the implemented slices. Moreover, since Palette 163 

considered the gene expression levels within each cluster, genes with highly differential 164 

expression among clusters exhibited more specific expression patterns. 165 
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 166 

Fig. 2 The implementation of Palette resulting in more specific gene expression patterns. a, The 167 

clustering and annotation of two adjacent slices from the Stereo-seq data13 of E14-16 Drosophila 168 

embryo. b, Boxplots showing the numbers of molecules and genes in each spot before and after 169 

implementing Palette. The substantial increase in gene number is due to the supplementation from 170 

neighbouring spots, based on the assumption that neighbouring spots within the same cluster 171 

exhibit similar gene expression patterns. c, Heatmap showing the expression correlation of marker 172 

genes for each cluster before and after implementing Palette. The colour bar represents the Pearson 173 

correlation coefficient with positive correlation in red and negative correlation in blue. d, Spatial 174 

expression patterns of marker genes on the Drosophila Stereo-seq slices. Intensity of colour 175 

represents the expression levels of each marker gene. For each gene, the spatial patterns from the 176 

Stereo-seq S05 slice and the Palette-implemented S04 slice are shown on the left, and the ISH 177 

images from BDGP database are shown in the middle. The intensities of signals along the AP axis are 178 
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shown on the right. e, The clustering and annotation of the selected slice from the Stereo-seq data12 179 

of 5.25 hpf zebrafish embryo. f, Circle plot showing the expression correlation network between the 180 

serial bulk data of 6 hpf zebrafish embryo and the pseudo bulk of the Stereo-seq slice. Stroke weight 181 

indicates the strength of the Pearson correlation coefficient. g, Palette inferring spatial expression 182 

patterns of 6 hpf zebrafish embryo bulk data on the 5.25 hpf zebrafish Stereo-seq slice. Since 183 

zebrafish embryos at 5.25 hpf and 6 hpf exhibited similar expression patterns, we used Palette to 184 

infer spatial gene expression from the 6 hpf zebrafish embryo bulk data using the 5.25 hpf ST data as 185 

a reference. Intensity of colour represents the gene expression levels. For each gene, the spatial 186 

patterns from the Stereo-seq S10 slice and the Palette-implemented S10 slice are shown on the left, 187 

and the correlated ISH images shown on the right are from ZFIN and published data21, 22.  188 

 189 

To further evaluate Palette's performance, we applied it to two additional datasets of 190 

zebrafish embryos3, 12: we selected one middle slice from a Stereo-seq data as the ST 191 

reference (Fig. 2e), and the slice 10 from a bulk data was selected as the corresponding 192 

input slice based on a correlation test (Fig. 2f). We then compared the expression pattern of 193 

genes on the original ST slice and the Palette-implemented slice (Fig. 2g and Fig. S1c). It was 194 

evident that the Palette-implemented slice exhibited more spatially specific expression 195 

patterns, which were more similar to the patterns observed through ISH. 196 

Overall, Palette successfully inferred spatial gene expression from the bulk data of real 197 

biological samples, generating expression patterns with improved continuity and higher 198 

spatial specificity. 199 

 200 

Using Palette to infer spatial gene expression from bulk RNA-seq data of zebrafish serial 201 

cryosections  202 

To generate a more precise 3D ST dataset of zebrafish embryos, we first performed serial 203 

cryosections of embryos at three developmental stages along the left-right axis and 204 
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conducted high-depth bulk RNA-seq (Fig. 3a, Fig. 3b and Fig. S2). Then, Palette was applied 205 

to create a more accurate zebrafish spatial transcriptomic atlas.  206 

Before implementing Palette, we aligned the ST data with the bulk RNA-seq data using 207 

three midline genes—gsc, lft1, and tbxta—as metrics of alignment accuracy (Fig. 3c). 208 

Analysis revealed that the slice cutting lines were not parallel to the embryonic midline in 209 

both the Stereo-seq and our bulk RNA-seq data (Fig. 3d and Fig. 3f). The anterior midline 210 

gene gsc and the posterior midline gene tbxta appeared on different slices, and the tilt 211 

directions differed between the Stereo-seq data and the bulk RNA-seq data, as indicated by 212 

the positional relationships of gsc and tbxta (Fig. 3d-f) along the left-to-right direction.  213 

To align these two datasets, we first adjusted and orientated the ST slices (Fig. 3g). We 214 

then overlaid them sequentially at consistent intervals (Fig. 3h), creating a 3D ST dataset 215 

that could be rotated and re-segmented to facilitate alignment. The efficacy of alignment 216 

was evaluated using a correlation coefficient derived from the expression patterns of genes 217 

with known AP differentiation (See Methods). Through continuous adjustments—rotating, 218 

re-segmenting, and recalculating correlations—we identified the configuration with the 219 

highest mean correlation coefficient. This configuration was deemed optimal for aligning 220 

the re-segmented slices with those from the bulk RNA-seq (Fig. 3i). The expression patterns 221 

of midline genes in the re-segmented Stereo-seq slices closely aligned with those in the bulk 222 

RNA-seq slices (Fig. 3j).  223 
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 224 

Fig.3 Processing the serial bulk RNA-seq data and the Stereo-seq data. a, Schematic representation 225 

of the workflow for generating the serial bulk RNA-seq data of zebrafish embryos. b, Cresyl violet 226 

staining of the cryosectioned slices. Each slice is 20 µm thick. The regions stained by cresyl violet 227 

correspond to cells. c, ISH images showing the expression patterns of midline genes, gsc, lft1 and 228 

tbxta, from dorsal view. d, f, Expression plot showing the expression patterns of midline genes along 229 

left-right axis in the Stereo-seq data (d) and the bulk RNA-seq data (f). e, Diagram illustrating the 230 

midline of the Stereo-seq data tilted towards the left. g, The adjusted Stereo-seq slices. Poor-quality 231 

and severely damaged slices were discarded. Each spot is labelled with cell type annotations. h, 3D 232 

construction of the Stereo-seq slices. i, Correlation heatmap between the bulk RNA-seq data and the 233 

re-segmented Stereo-seq slices. The colour bar represents the Pearson correlation coefficient. j, 234 
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Expression plots showing the comparison of gene expression patterns before and after slice 235 

alignment. Scale bar: 100 µm (b), 200 µm (c). 236 

 237 

Integrating zebrafish spatial transcriptomics data and imaging data to construct DreSTEP  238 

Palette was applied to reconstruct a 3D zebrafish ST atlas. However, the ST sections 239 

exhibited extrusion and deformation (Fig. 3g and Fig. 3h), resulting in spatial distortions. To 240 

generate a 3D ST atlas that enables accurate visualization of gene expression patterns 241 

within zebrafish embryos while preserving their comprehensive morphology, we projected 242 

the ST spots onto 3D zebrafish embryo imaging data19. This approach utilized the detailed 243 

morphological representation provided by the 3D imaging, where each cell is assigned a 244 

spatial coordinate, serving as a precise reference for the projection of ST spots. 245 

Prior to spot projection, the ST data and the 3D imaging data was initially aligned. We 246 

scaled the embryo to similar sizes in both datasets, and selected three spots located at the 247 

head, tail and middle of the midline from each dataset. These three paired spots were then 248 

utilized for alignment using the Kabsch algorithm23, 24, which is a method for calculating the 249 

optimal rotation matrix that minimizes the root mean squared deviation (RMSD) between 250 

two paired sets of spots. This resulted in the alignment between the ST data and the 251 

imaging data (Fig. 4a). 252 

Following the alignment, the projection from ST spots to imaging spots was achieved 253 

using a loop algorithm inspired by the conception of Greedy algorithm25 (Fig. 4b and Fig. 4c). 254 

The entire process resulted in the spatial gene expression atlas of zebrafish embryos of 255 

three developmental stages, which was named DreSTEP (Fig. 4d). DreSTEP encompassed 256 

zebrafish embryos at 10 hpf, 12 hpf and 16 hpf, and these stages corresponded to post-257 

gastrulation and tail elongation processes. Consequently, DreSTEP precisely allocated cell 258 
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clusters and gene expression on a bona fide zebrafish embryo with 3D coordinates (Figs. 4d-259 

4f). 260 

 261 

 262 

Fig. 4 Projection of ST spots on 3D images and analysis of spatial cell-cell communication. a, 263 

Diagram showing the overall alignment between the ST data and the imaging data using the Kabsch 264 

algorithm. b, Diagram indicating the pairing principle for the ST coordinates and the imaging 265 

coordinates. In each interaction, the ST spot and the imaging spot closest to each other are paired, 266 

which is considered as the optimal solution of this interaction. Paired spots are removed from 267 

subsequent interactions, and the loop continues until each ST spot is paired with an imaging spot. c, 268 
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Flow chart showing the process of the pairing. d, Lateral view of DreSTEP. Each spot is coloured with 269 

cell type annotation. e, Stacked area plot showing cell proportions in each stage. f, Expression 270 

patterns of cdx4 on DreSTEP. Intensity of colour represents the gene expression levels. g, Schematic 271 

showing the in silico sections cut for spatial cell-cell communication analysis. h, i, Analysis of FGF 272 

signalling pathway network in the midline (h) and tail sections (i). Each spot is coloured with cell type 273 

annotation. The stroke weights indicate the interaction strength. YSL: Yolk syncytial layer; LPM: 274 

Lateral plate mesoderm; Seg P, TB: Segmental plate, Tail bud. 275 

 276 

Exploration of spatial cell-cell interactions in DreSTEP 277 

DreSTEP enables the visualization of gene expression patterns in 3D view of zebrafish 278 

embryos, along with their comprehensive morphology (Fig. 4f and Figs. S4a-S4c), which 279 

allows for the freewheeling selection of specific regions of embryos for spatial cell-cell 280 

interaction (CCI) analysis.  281 

We extracted the midline and tail sections from DreSTEP and employed CellChat26, 27 for 282 

spatial cell-cell communication analysis (Fig. 4g). At 10 hpf, we observed strong interactions 283 

between tail bud/segmental plate cells and notochord cells in both sections, with the FGF 284 

signalling pathway playing a significant role in mediating this interaction (Fig. 4h and Fig. 4i). 285 

Additionally, tail bud/segmental plate cells were found to send FGF signals to neural cells, 286 

and these cell-cell interactions persisted at 12 hpf and 16 hpf, with tail bud/segmental plate 287 

cells continuing to send FGF signals to both notochord and neural cells (Fig. 4h and Fig. 4i). 288 

Notably, the strength of FGF signalling from tail bud/segmental plate cells to neural cells 289 

increased at 16 hpf. These results indicated that tail bud/segmental plate cells served as a 290 

strong FGF signalling centre regulating neighbouring cells, which can be evidenced by the 291 

reported roles of FGF signalling in somite development28-30, caudal spinal cord 292 

development31 and posterior notochord development30.  293 
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Beyond FGF signalling, we also observed that other signalling pathways significantly 294 

contributed to the cell-cell interactions in the midline and tail sections. Throughout all three 295 

developmental stages, we detected strong interactions between neural cells with 296 

neighbouring cells through Wnt/β-catenin signalling (Fig. S4d). Additionally, we found that 297 

tail bud/segmental plate cells consistently emitted BMP signals to adjacent cells including 298 

notochord, adaxial, and erythroid lineage cells (Fig. S4e). These findings aligned with prior 299 

knowledge indicating that Wnt/β-catenin signalling was involved in regulating the neural 300 

plate patterning32, and BMP signalling was activated in tail bud region, contributing to tail 301 

formation33.  302 

Our spatial cell-cell communication analysis suggests that different morphogens 303 

mediated diverse CCIs during embryonic development. The complex cellular networks 304 

formed by these CCIs may guide the formation of organ collectives and ensure the robust of 305 

organogenesis. In summary, DreSTEP proves to be an excellent zebrafish spatial atlas for 306 

visualizing gene expression patterns and investigating CCIs in specific regions of the embryo. 307 

 308 

Investigating morphogen distributions and cell fate specification in DreSTEP 309 

During embryonic development, a group of signalling molecules, known as morphogens 310 

diffuse from localized sources, forming concentration gradients that provide spatial 311 

information to responding cells and guide their differentiation34, 35. The intersections of 312 

different morphogens with antiparallel gradients generate diverse cell types, contributing to 313 

the formation of precise patterns and structures36, 37 (Fig. 5a).  314 

The establishment of the AP axis involves the intricate interactions among morphogen 315 

gradients22, 38, 39. During tail elongation, morphogen gradients collectively regulate the 316 

extension and confinement of the AP axis, resulting in the precise specification and 317 
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arrangement of tubular organ primordium along the body axis38, 40, 41. DreSTEP provides an 318 

appropriate platform to comprehensively analyse the expressing patterns of morphogens 319 

along the AP axis and investigate the relationships between the morphogen gradients and 320 

cell type distributions. We linearized the DreSTEP (Fig. 5b, See Methods) and focused on 321 

ligands involved in canonical Wnt, noncanonical Wnt, Notch, Sonic hedgehog (SHH), RA, FGF, 322 

and TGF-β signalling, visualizing their expression intensities along the linearized AP axis (Figs. 323 

5c-f and Figs. S5-S8). We observed two adjacent regions along the linearized AP axis at all 324 

three time points, and each enriched with distinct group of ligands (Fig. 5g). These regions, 325 

designated as Zone1 and Zone2, were subjected to Gene Ontology (GO) enrichment analysis 326 

using sets of differentially expressed (DE) genes to investigate the functional characteristics 327 

of cells within each zone (Fig. 5g and Fig. 5h, Data S1-S9). 328 

At the end of the gastrulation (10 hpf), tail elongation commenced with various cell 329 

types, beginning to be specified along the AP axis (Fig. 5g left). Notably, Zone1 consisted of 330 

paraxial mesoderm cells, while Zone2 predominantly comprised segmental plate/tail bud 331 

cells. GO enrichment analysis revealed terms related to somite development for both zones, 332 

such as “skeletal system”, “somite development”, and “somitogenesis” (Fig. 5h left). 333 

Furthermore, Zone2 encompassed the entire tail region, displaying GO terms associated 334 

with posterior development, such as “endoderm development” and “mesoderm 335 

morphogenesis”. 336 

At 12 hpf and 16 hpf, as tail elongation progressed, more cell types were specified along 337 

the AP axis. The boundary between Zone1 and Zone2 shifted posteriorly. Zone1 primarily 338 

consisted of trunk region cells, such as somite cells, with GO terms related to muscle 339 

development, such as “muscle structure development”, “muscle cell development”, and 340 

“skeletal muscle tissue development”. Zone2 continued to predominantly consist of 341 
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segmental plate/tail bud cells, with GO terms including “somitogenesis”, “somite 342 

development”, and “mesenchyme development”, indicating these cells’ high mobility and 343 

contribution to somitogenesis and tail elongation (Fig. 5h mid and right). The boundary 344 

between Zone1 and Zone2 coincided with the position of somite cells, highlighting the 345 

essential roles of antiparallel morphogen gradients in somitogenesis. Additionally, 346 

pronephros and erythroid lineage cells were specified at 16 hpf and distributed in both 347 

Zone1 and Zone2, with Zone1 containing a higher proportion of pronephros cells and Zone2 348 

exhibiting a higher abundance of erythroid lineage cells (Fig. 5g).  349 

Based on the observed transcriptional morphogen gradients and cell type distributions 350 

along AP axis in Zone1 and Zone2 at the three developmental stages, we created a diagram 351 

to summarize those findings (Fig. 5i). Assuming that the transcriptional level of a 352 

morphogen reflects its activity level, our model demonstrated the presentence of opposing 353 

concentration gradients, which could guide the cell type specification along the AP axis. Our 354 

analysis showed that Zone1 enriched aldehyde dehydrogenase aldh1a2 (Fig. 5d); while 355 

Zone2 showed a high expression of wnt3a and fgf8a (Fig. 5c and Fig. S5). These observations 356 

were consistent with previous studies42-46 demonstrating the role of anterior RA signalling 357 

and posterior Wnt&FGF signalling in establishing the determination front of newly formed 358 

somites. In addition to these ligands, Zone2 exhibited enrichment of other FGF ligands, such 359 

as fgf10a, fgf4 and fgf13b (Fig. 5g), suggesting their collective roles in regulating zebrafish 360 

embryonic posterior development. Interestingly, Zone1 also showed enrichment of certain 361 

FGF ligands, including fgf17 and fgf18b (Fig. 5g), suggesting another FGF signalling cascade 362 

probably participated in somite development. Moreover, Zone2 enriched the ligands 363 

associated with TGF-β signalling, including bmp2b, bmp4, bmp7a and gdf11, aligned with 364 

the well-studied roles of BMP signalling in tail development47-50. Zone1 and Zone2 also 365 
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exhibited enrichment of different noncanonical Wnt signalling ligands, wnt11 and wnt5b, 366 

respectively, suggesting their important roles in regulating the pattern formation in these 367 

zones. Another interesting observation was that the expression of the Notch signalling 368 

ligand jag1a shifted from high expression in Zone2 at 10 hpf and 12 hpf to high expression 369 

in Zone1, along with dll4, at 16 hpf, suggesting changes in the zones where Notch signalling 370 

functions during zebrafish development. 371 

In summary, our work systematically assessed the dynamic transcriptional profiles of 372 

morphogens along the AP axis and highlighted the interactions between adjacent zones 373 

exhibiting antiparallel morphogen gradients. These findings underscored the crucial roles of 374 

these morphogens in orchestrating pattern formation during zebrafish development, laying 375 

the foundation for investigating the regulation of AP refinement in further studies. 376 
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 377 

Fig. 5 Morphogen gradients regulate the establishment of AP axis. a, Schematic diagram showing 378 

that role of antiparallel morphogen gradients in governing cell fate determination. b, Schematic 379 

diagram showing the linearization of DreSTEP. c-f, Plots displaying the expression patterns and 380 

intensities of representative ligands along the AP axis in FGF (c), RA (d), noncanonical Wnt (e) and 381 

TGF-β (f) signalling. The selected ligands show differential expression patterns in Zone1 and Zone2. g, 382 

Plots of gene expression intensities, cell types and cell type proportions along AP axis. The thick 383 

dashed lines in red and blue indicate the expression trends of trunk-enriched and tail-enriched genes; 384 

the thin dashed lines sperate Zone1 and Zone2 for GO enrichment analysis. h, Enriched GO terms in 385 

Zone1 and Zone2 respectively. i, Model diagrams showing the relationships between morphogen 386 

gradients and cell type specification in Zone1 and Zone2 at different developmental stages. Paraxial 387 
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Meso: Paraxial mesoderm; LPM: Lateral plate mesoderm; Seg P, TB: Segmental plate, Tail bud; Eryth. 388 

Lineage: Erythroid Lineage; ncWnt: noncanonical Wnt.  389 

 390 

Identification of key transcriptional regulatory cascades during the AP axis canalization 391 

Diverse morphogen signals intricately interact to instruct the refinement of AP axis, 392 

involving cross-regulation of their intracellular pathways and downstream transcription 393 

factors (TFs)51, 52. To identify key morphogens and their downstream TFs that are essential 394 

for accurately determining the AP fate of various cell types within the embryo, we employed 395 

a random forest model (Fig. 6a), where we considered the expression levels of all 396 

morphogens and TFs as variable factors, to identify which ones are crucial for establishing 397 

the AP identities. We found that several morphogen ligands from the FGF, Wnt, RA, Notch 398 

and BMP signalling pathways as key determinants of AP identities (Fig. 6b and Fig. S9). The 399 

regulatory potential of these morphogens in AP axis formation have been substantiated by 400 

previous studies47-50, 53, 54, reinforcing the validity of our approach. 401 

Interestingly, ligands within the same signalling pathway can exhibit distinct 402 

distributions along AP axis, suggesting their dominant roles in refining AP axis at different 403 

developmental stages. For instance, fgf3, anteriorly distributed, was a key morphogen at 404 

the 10 hpf stage, while fgf17 and fgf8a, located in the posterior trunk and tail regions, 405 

respectively, were critical at both the 12 hpf and 16 hpf stages (Fig. 6b). This emphasizes the 406 

need to interpret morphogen gradients within a spatiotemporal context. 407 

Among the identified key TFs, the Hox gene family genes emerged as significant 408 

regulators, underscoring their vital roles in AP axis regulation (Fig. 6b and Fig. S10). The Hox 409 

genes, a subset of conserved homeobox genes, exhibit both temporal collinearity and 410 

spatial collinearity in their expression, allowing them to specify regions along the AP axis 411 

and contribute to body plan formation55-57 (Fig. 6c). To further investigate the relationships 412 
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between Hox gene expression and AP axis refinement, we defined a “Hox score”, which 413 

serves as an estimation for the most probable Hox gene expressed in each spot (Fig. 6d). We 414 

performed correlation analysis between Hox scores and physical AP identities across three 415 

developmental stages (Fig. 6e). Our results revealed a positive correlation between the Hox 416 

score and physical AP identities, with this correlation strengthening as development 417 

progressed. This trend was consistently observed in both the neural system and paraxial 418 

mesoderm, where Hox genes were independently expressed along the AP axis. 419 

Interestingly, the neural system exhibited a lower Hox score compared to paraxial 420 

mesoderm (Fig. 6g), suggesting a “time discrepancy” between these two systems in 421 

canalizing their AP “avenue”. These observations highlight the increasingly significant 422 

regulatory role of Hox genes in AP axis refinement. Furthermore, we examined the 423 

expression patterns of four Hox clusters: hoxa, hoxb, hoxc, and hoxd, along the AP axis (Fig. 424 

6f and Fig. S11). The hoxb cluster exhibited the most pronounced correlation with the 425 

physical AP identities, suggesting that the hoxb family genes may serve as master regulators 426 

in refining the AP identities during development.  427 
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 428 

Fig. 6 Establishment of AP axis. a, Schematic diagram showing the training for the random forest 429 

model. b, Heatmaps showing the expression intensities of key morphogens and transcription factors 430 

along AP axis at 10 hpf, 12 hpf and 16 hpf. c, Schematic diagram illustrating the spatial distribution of 431 

hox genes in neural and somatic systems. d, Schematic diagram showing the calculation of the Hox 432 

score of each cell and the assessment of correlations between Hox scores and AP positions. e, The 433 

correlations between Hox scores and physical AP positions. Colour indicates the spot density, with 434 

high in red and low in blue. f, Heatmaps showing the expression levels of hoxb genes along AP axis at 435 

10 hpf, 12 hpf and 16 hpf. Intensity of colour represents z-score with high in red and low in blue. g, 436 

The Hox score distributions in neural system and paraxial mesoderm. Colour scale: Expression 437 

intensity (b), Z-score (f).  438 

 439 
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Discussion  440 

In this study, we present Palette, a pipeline that utilize existing ST data as the only reference 441 

to infer precise spatial gene expression patterns from bulk RNA-seq data. The gene 442 

expression patterns predicted by Palette exhibit enhanced spatial continuity and improved 443 

spatial specificity, closely resembling experimentally observed patterns (Figs. 2d, 2g and Figs. 444 

S1b, S1c). Furthermore, Palette can incorporate spot characteristics directly from 445 

histological images of tissue slices, enabling more accurate spot characterization compared 446 

to reliance on spatial clustering alone (Fig. S12b). Palette is also applicable to comparative 447 

analyses of spatial gene expression patterns in different conditions, as demonstrated using 448 

human pancreatic ductal adenocarcinoma (PDAC) data58. Here, Palette inferred spatial gene 449 

expression patterns from bulk RNA-seq datasets59 of normal and tumour tissue slices, 450 

revealing a notable decrease in tumour-specific gene expression in the normal tissue slice 451 

(Fig. S12). Ongoing research aims to expand Palette’s application scenarios and explore 452 

further possibilities for analysing and interpreting spatial gene expression patterns. 453 

Leveraging the capabilities of Palette, we constructed a comprehensive spatial gene 454 

expression atlas, DreSTEP, by integrating transcriptomics from serial sections and 3D images 455 

of zebrafish embryos19. DreSTEP not only facilitates the visualization of gene expression 456 

patterns in 3D morphology of zebrafish embryos, but also allowed for the flexible selection 457 

of sections for spatial cell-cell interaction analyses. As a 3D spatial gene expression atlas, 458 

DreSTEP holds great potential for studying the intricate 3D spatial cell-cell interactions 459 

during zebrafish development.  460 

We utilized a linearized version of DreSTEP to investigate the relationships between 461 

morphogen distributions and cell type specification along the AP axis during development. 462 
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We identified two adjacent zones with antiparallel morphogen gradients, with the boundary 463 

of these two zones appearing to act as the determinant front for somite formation.  464 

In addition, by employing a random forest model, we explored the correlations 465 

between morphogen/TF expression and the developing AP patterns. This analysis identified 466 

critical morphogens and downstream TFs essential for determining AP position at different 467 

developmental stages. Notably, the Hox family genes were identified as dominant TFs, with 468 

strong correlations between the expression patterns of hox genes and the cell physical AP 469 

positions. Importantly, our findings suggest that hoxb cluster likely plays a more significant 470 

role in AP axis formation compared to other hox clusters.  471 

During the development of DreSTEP, we encountered several limitations that warrant 472 

future improvements. Firstly, the manual adjustment and alignment of Stereo-seq slices 473 

during 3D ST data construction were labour-intensive and introduce potential bias. Although 474 

tools like PASTE60 were employed, their performance was unsatisfactory, possibly due to the 475 

hollow circle shape of ST slices leading to tilted alignments. Newly developed tools such as 476 

STitch3D61 and Spateo62 could be worth exploring for assisting the alignment. Secondly, the 477 

Palette algorithm currently excluded genes not detected in any spot of the ST data. 478 

Leveraging serial bulk RNA-seq data, could enable the construction of gene co-expression 479 

networks along the cutting direction. This approach has the potential to assist in predicting 480 

the expression patterns in ST data. Thirdly, the performance of Palette and DreSTEP heavily 481 

relied on the quality of ST data. In this study, for example, the Stereo-seq data of 12 hpf 482 

zebrafish embryo had fewer slices on the right side (Fig. S3b), resulting in more blank spots 483 

in the right part of DreSTEP for the 12 hpf embryo. Therefore, with the development and 484 

improvements in ST techniques, Palette and DreSTEP will have even greater potential for 485 

analysing spatiotemporal gene expression. 486 
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Methods 487 

Animal ethics  488 

Wild-type zebrafish strain was maintained following the standard procedures, and the 489 

experimental procedures were approved by the Institutional Review Board of Zhejiang 490 

University. The approval number is ZJU20220375. 491 

 492 

The Palette algorithm 493 

ST data was used as the reference for inferring spatial gene expression from bulk RNA-seq 494 

data. The input bulk expression matrix is S ∈ R
n×1, which contains the expression 495 

information of n genes. BayesSpace20 was first employed to perform spatial clustering on 496 

the ST data using the genes highly expressed in both the ST data and the bulk data. There 497 

are m clusters identified through spatial clustering, and the average expression of each 498 

cluster is C ∈ Rn×m. MuSiC16 was then employed to obtain the proportions of each defined 499 

cluster in the bulk data, A ∈ Rm×1, through deconvolution. A pseudo bulk vector, P ∈ Rn×1 is 500 

constructed by taking the cross product of the cluster expression matrix of ST data and the 501 

cluster abundances of bulk data.  502 

P = C × A 503 

Each gene is assigned with a variable factor to adjust its expression. The variable factor 504 

vector, K ∈ Rn×1, can be calculated as the ratio of the input bulk to the pseudo bulk vector. 505 

S = P ⋅ K 506 

The adjusted matrix M ∈ Rn×m is generated by the dot product of the cluster expression 507 

matrix of the ST slice and the variable factor. 508 
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M = C ⋅ K 509 

The pseudo bulk data of the reference ST slice is T ∈ Rn×1. One random spot and its 510 

nearest neighbouring spots are selected, and the expression of spots belonging to the 511 

cluster i is aggregated to form a pseudo-cluster expression data LST, L ∈ Rn×1. The regional 512 

cluster factor R ∈ Rn×1 is defined as the proportion of LST in the entire ST slice. 513 

L = T ⋅ R 514 

The ratio of LST to the reference ST data is equal to the ratio of the adjusted LST to the 515 

adjusted matrix, and thus the adjusted LST can be calculated by the dot product of the 516 

expression matrix of cluster i in the adjusted matrix Mi and the regional cluster factor R. The 517 

expression of each spot in cluster i, D ∈ Rn×1, is achieved through evenly allocation of the 518 

adjusted LST. N is the numbers of spots belonging to cluster i in this region.  519 

𝑫 =
𝑴𝒊  ⋅  𝑹

𝑵
 

The average expression 𝐃  ∈  R
n×1 after multiple iterations is considered as the 520 

estimated expression of the spot. Here p means that the spot has been selected for p times 521 

during iterations. 522 

𝑫 =
∑ 𝑫

𝒑
𝒊=𝟏

𝒑
 

 523 

Palette performance assessment on Drosophila slices 524 

Two consecutive slices (referred to slices 4 and 5) were taken from the Stereo-seq data13 of 525 

Drosophila E14-16 serial sections. Given their adjacency, these two slices should exhibit 526 

similar gene expression levels and patterns. Slice 5 was then converted into a pseudo bulk 527 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 3, 2024. ; https://doi.org/10.1101/2024.07.01.601472doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.01.601472
http://creativecommons.org/licenses/by/4.0/


and used as Palette's input, with slice 4 serving as the ST reference. The predicted spatial 528 

expression patterns of slice 5 were compared to the actual ST data from slice and ISH 529 

images from BDGP database (www.fruitfly.org) for evaluating Palette’s performance.  530 

 531 

Palette performance assessment on zebrafish slices 532 

One middle slice of zebrafish Stereo-seq data was selected as the ST reference12. A 533 

corresponded slice was selected as an input for Palette from the serial bulk RNA-seq data3 534 

of zebrafish embryo using a correlation test. The correlation was calculated based on the 535 

expression of genes showing differential expression along the dorsal-ventral axis. The 536 

predicted expression patterns were compared to the ISH images from ZFIN (www.zfin.org) 537 

and published data21, 22 for evaluating Palette’s performance. 538 

 539 

Sample preparation for bulk RNA-seq  540 

Live embryos at the required developmental stages of 10 hpf, 12 hpf and 16 hpf were 541 

rapidly embedded in optimal cutting temperature compound (OCT) and oriented in the 542 

bottom of steel embedding cassettes. Embedded embryos were rapidly frozen at -80°C for 543 

10 minutes, and then transferred into a cryostat (Leica) at -20°C. In the cryostat, embedded 544 

embryos were removed from the steel embedding cassettes and cryosectioned at a 545 

thickness of 20 µm. Each slice was collected and placed on the PEN membrane slides (Leica) 546 

in the correct order. Membrane slides were stained using 1% (wt/vol) cresyl violet 547 

(dissolved in 70% ethanol) to roughly check cell number and ensure slice integrity. Each slice 548 

was extracted from membrane slides through laser capture microdissection system (Leica 549 

LMD6) and collected into a 1.5 mL Eppendorf tube containing 40 µL of PicoPureTM lysis 550 

buffer (Thermo Fisher). Collected samples were incubated at 42°C for 30 minutes and then 551 
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sent to Shanghai Ouyi Biology Medical Science Technology Co., Ltd. (Shanghai, China) for 552 

RNA extraction, cDNA library construction and sequencing. Paired-end sequencing at 150 bp 553 

read length was performed on a Novaseq 6000 instrument. 554 

 555 

Bulk RNA-seq data processing 556 

Reads were aligned to the Danio rerio genome Ensembl Release 92 (GRCz11) using STAR 557 

v2.7.1a63. The aligned reads were assigned to each gene using featureCounts v1.6.064. For 558 

each embryo, the gene counts of each slice were merged into a count matrix, and the genes 559 

that received more than 0.5 counts per million reads (CPM) in at least 3 slices were retained. 560 

The count matrices with slice position information were constructed into DGEList objects 561 

using edgeR65-67 for the following analysis.  562 

 563 

3D embryo reconstruction 564 

The spatiotemporal transcriptomics date used for 3D embryo reconstruction was obtained 565 

from the zebrafish Stereo-seq dataset12 available for download at 566 

https://db.cngb.org/stomics/zesta/download/. Each section was fitted into a 2D coordinate 567 

system, with the section centre serving as the origin. Before the reconstruction, severely 568 

broken slices and outlier spots were removed from the dataset. The position of each section 569 

on the 2D coordinate system was manually adjusted and aligned based on the section 570 

shapes and spot annotations. Additionally, the distance between neighbouring sections on 571 

the z-axis was estimated, and the corresponding z-axis coordinates were assigned to each 572 

section. By combining the spatial transcriptomics data and with the 3D coordinates, 573 

reconstructed embryos were generated.  574 

 575 
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Alignment between bulk RNA-seq slices and re-segmented pseudo ST slices  576 

Reconstructed embryos were rotated along x-axis and y-axis separately, and then re-577 

segmented into section slices. Each of re-segmented slices was transformed into pseudo 578 

bulk data, which represented an aggregate expression profile for that slice. To determine 579 

embryo orientation, several genes exhibiting AP differential expression patterns were 580 

selected. The scaled expression levels of these genes across slices were generated for both 581 

bulk RNA-seq slices and pseudo bulk slices. To assess the alignment between bulk RNA-seq 582 

slices and pseudo bulk slices, Pearson correlation coefficients were calculated across these 583 

genes. The alignment with the highest mean Pearson correlation coefficient along the slices 584 

was considered as the optimal alignment. 585 

 586 

3D projection of ST spots to imaging spots 587 

The live imaging data of zebrafish embryos were obtained from the study by Shah et al., 588 

201919 available for download at https://idr.openmicroscopy.org under accession code 589 

idr0068. Both the centres of the ST data and the live imaging data were set as the origin, 590 

and the embryo size in the imaging data was scaled to a similar embryo size in the ST data. 591 

Three specific spots (head, mid of midline and tail) were selected from the both datasets. 592 

The Kabsch algorithm23, 24 was used to achieve the optimal alignment between the two 593 

paired sets using these three spot pairs. This algorithm involved rotating and transforming 594 

the coordinates of the three ST spots to align them with the corresponding spots in the live 595 

imaging data. By applying the rotation matrix obtained from the optimal alignment, the 596 

entire set of the ST spot coordinates was transformed. A transform matrix was obtained by 597 

calculating the difference between the coordinate of the head spot achieved from the spot 598 

alignment and the coordinate of the head spot after applying the rotation. The transform 599 
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matrix was then applied to the coordinates of all the ST spots, which had undergone 600 

rotation. Through this process, the alignment between the ST data and the imaging data 601 

was achieved. 602 

The pairing between the ST spots and the imaging spots was achieved through a looping 603 

algorithm based on the Greedy algorithm25. In each interaction of the loop, the ST spot and 604 

the imaging spot that were closest to each other were paired, which was considered as the 605 

optimal solution of the interaction. Paired spots were removed from subsequent 606 

interactions, while unpaired spots moved on to the next loop. The looping process 607 

continued until each ST spot was paired with an imaging spot. The expression information 608 

from the ST spots was then assigned to their corresponding imaging spots. The remained 609 

unpaired imaging spots were retained to preserve the overall morphology of the embryo. 610 

 611 

Spatial cell-cell communication analysis using CellChat 612 

CellChat26, 27 was employed to analyse spatial cell-cell communication based on prior known 613 

zebrafish ligand-receptor interaction database CellChatDB. The section of interest was 614 

extracted from DreSTEP for analysis, which provided 2D section ST data. In the Stereo-seq 615 

data, each spot contained 15 × 15 DNA nanoball (DNB) spots. Consequently, in the section 616 

ST data, the spot diameter was set as 15, and the number of pixels spanning the spot size 617 

diameter was set as 225. The expression data of section ST data was pre-processed to 618 

identify over-expressed ligands and receptors for each cell group. Setting distance as 619 

constraints, CellChat inferred communication probability between two interacting cell 620 

groups. This inference was based on the average gene expression of a ligand in one cell 621 

group and the average gene expression of a receptor in another cell group. The 622 

communication probabilities of all ligands-receptors interactions associated with each 623 
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pathway were summarized for analysis of the communication probabilities within in 624 

signalling pathways.  625 

Linearizing the AP axis in DreSTEP 626 

The lateral view of DreSTEP was projected onto a 2D plane. The spots were fitted into a 627 

cycle. Each spot was then projected onto the cycle, with the projected spot representing the 628 

closest spot on the cycle to the original spot. By designating the most anterior spot as the 629 

origin, the AP position of each spot was determined by calculating the arc length from its 630 

projected spot to the origin. The AP value of each spot was then divided by the maximum 631 

AP value in the dataset to achieve the normalized AP value. 632 

 633 

Employing random forest model for prediction 634 

For each cell, the normalized expression of morphogens or TFs was set as variable factors, 635 

while the cell’s normalized physical AP position was set as observed factor. We took 70% of 636 

the data to train a random forest model using the randomForest68 package. The importance 637 

of the variables to AP position was assessed by both increase in mean square error (IncMSE) 638 

and increase in node purity (IncNodePurity). Cross-validation was used to evaluate the 639 

number of variables. The top 6 important variables were selected, and the correlations 640 

between their expression and AP positions were visualized.  641 

 642 

Calculating Hox score of each spot  643 

For each hox gene, its expression in each spot was divided by the maximum expression of 644 

that gene in the dataset, indicating the expression probability of that gene in that spot. Then, 645 

the expression of hox genes in spots can be converted to a repeated representation, where 646 

the number of repetitions corresponded to the expression probability of the gene in that 647 
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spot. In our analysis, we made an assumption that the expression of hox genes in each spot 648 

followed a normal distribution. This assumption enabled generating a fitting curve of the 649 

normal distribution on the density plot of the hox genes. The Hox score was determined as 650 

the hox value at the peak of the normal distribution. The Hox score of each spot was then 651 

divided by thirteen, resulting in the normalized Hox score. 652 

 653 

In situ hybridization (ISH) 654 

ISH was performed following the published protocol69. Embryos of required developmental 655 

stages were fixed in 4% PFA/PBS overnight at 4°C, and then transferred into 100% methanol 656 

(MeOH) for dehydration overnight at -20°C. Embryos were washed through 75%, 50% and 657 

25% MeOH/PBST for 5 minutes each at room temperature and then three times for 5 658 

minutes in PBST. Embryos older than 10 hpf were treated with proteinase K (10 μg/mL in 659 

PBST) for 30 s and then fixed in 4% PFA/PBS for 20 minutes at room temperature. 660 

Proteinase K treated embryos were washed four times for 5 minutes each in PBST. Embryos 661 

were transferred into Hybridization Mix (HM) and incubated at 70°C for 2-5 hours, and then 662 

the buffer was replaced by HM containing digoxigenin-11-UTP (Sigma-Aldrich, 11277073910) 663 

labelled probe. After overnight incubation at 70°C, embryos were washed through 75%, 50% 664 

and 25% HM/2xSSC at 70°C for 20 minutes each. Embryos were then washed in 2x SSC at 665 

70°C for 20 minutes and washed in 0.2xSSC twice at 70°C for 40 minutes. 0.2xSSC were then 666 

progressively replaced by PBST at room temperature. Embryos were blocked in blocking 667 

buffer at 4°C for 3 hours, and incubated in blocking buffer with anti-DIG-AP antibody 668 

(1:10000 dilution, Sigma-Aldrich, 11093274910) at 4°C overnight on a low speed shaker. 669 

Embryos were washed 6 times for 15 minutes each in PBST to remove excess antibodies. 670 
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Embryos were stained in NBT/BCIP staining solution, and the staining was stopped by 671 

washing twice in PBST when the expected staining patterns were observed.  672 

 673 

Data availability 674 

The raw data of serial bulk RNA-seq has been deposited to the Gene Expression Omnibus 675 

(GEO) under accession number “GSE262578”. The published data used in this study can be 676 

accessed through the following links or accession number: (1) Stereo-seq data of Drosophila 677 

embryos13 (https://db.cngb.org/stomics/flysta3d/download/); (2) Stereo-seq data of 678 

zebrafish embryos12 (https://db.cngb.org/stomics/zesta/download/); (3) live imaging data of 679 

zebrafish embryos19 (idr0068 from https://idr.openmicroscopy.org); (4) Spatial 680 

transcriptomics data of human PDAC: GEO accession: “GSE111672”58; (5) Bulk RNA-seq data 681 

of human PDAC: GEO accession: “GSE171485”59. 682 

 683 

Code availability 684 

The codes for Palette pipeline and bioinformatics analyses are deposited on GitHub 685 

(https://github.com/ldo2zju/DreSTEP). Any other custom code and data are available from 686 

the authors upon request.  687 

 688 

Additional information 689 

Supplemental Information Supplementary Figures 1-12 and Supplementary Data 1-9. 690 

 691 
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