

== REVIEW COMMONS MANUSCRIPT ==

IMPORTANT:

- Manuscripts submitted to Review Commons are peer reviewed in a journal-agnostic way.
- Upon transfer of the peer reviewed preprint to a journal, the referee reports will be available in full to the handling editor.
- The identity of the referees will NOT be communicated to the authors unless the reviewers choose to sign their report.
- The identity of the referee will be confidentially disclosed to any affiliate journals to which the manuscript is transferred.

GUIDELINES:

- For reviewers: <https://www.reviewcommons.org/reviewers>
- For authors: <https://www.reviewcommons.org/authors>

CONTACT:

The Review Commons office can be contacted directly at: office@reviewcommons.org

1 **Unravelling the progression of the zebrafish primary body axis with reconstructed**

2 **spatiotemporal transcriptomics**

3 Yang Dong^{1,2#}, Tao Cheng^{1,2#}, Xiang Liu^{2#}, Xin-Xin Fu², Yang Hu⁷, Xian-Fa Yang⁵, Ling-En Yang⁶, Hao-Ran

4 Li³, Zhi-Wen Bian³, Naihe Jing⁵, Jie Liao^{3,4*}, Xiaohui Fan^{1,3,4*}, Peng-Fei Xu^{1,2*}

5

6 ¹Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.

7 ²Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine,

8 Hangzhou, China.

9 ³College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.

10 ⁴National Key Laboratory of Chinese Medicine Modernization, Innovation Centre of Yangtze River

11 Delta, Zhejiang University, Jiaxing, China.

12 ⁵Guangzhou National Laboratory, Guangzhou, China.

13 ⁶National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan,

14 China.

15 ⁷Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, Singapore.

16

17 *Corresponding authors: J.L. (e-mail: liaojie@zju.edu.cn), X.F. (e-mail: fanxh@zju.edu.cn) and P.X. (e-mail: pengfei_xu@zju.edu.cn)

19 [#]Yang Dong, Tao Cheng and Xiang Liu contributed equally to this work and should be regarded as
20 joint first authors.

21

22 **Keywords**

23 Spatial transcriptomics, Spatiotemporal gene expression, Spatial deconvolution, Zebrafish, Primary
24 body axis

25

26 **Abstract**

27 Elucidating the spatiotemporal dynamics of gene expression is essential for understanding
28 complex physiological and pathological processes. Traditional technologies like *in situ*
29 hybridization (ISH) and immunostaining have been restricted to analyzing expression
30 patterns of a limited number of genes. Spatial transcriptomics (ST) has emerged as a robust
31 alternative, enabling the investigation of spatial patterns of thousands of genes
32 simultaneously. However, current ST methods are hindered by low read depths and limited
33 gene detection capabilities. Here, we introduce Palette, a pipeline that infers detailed
34 spatial gene expression patterns from bulk RNA-seq data, utilizing existing ST data as only
35 reference. This method identifies more precise expression patterns by smoothing, imputing
36 and adjusting gene expressions. We applied Palette to construct the ***Danio rerio***
37 **SpatioTemporal Expression Profiles (DreSTEP)** by integrating 53-slice serial bulk RNA-seq
38 data from three developmental stages with existing ST references and 3D zebrafish embryo
39 images. *DreSTEP* provides a comprehensive cartographic resource for examining gene
40 expression and spatial cell-cell interactions within zebrafish embryos. Utilizing machine
41 learning-based screening, we identified key morphogens and transcription factors (TFs)
42 essential for anteroposterior (AP) axis development and characterized their dynamic
43 distribution throughout embryogenesis. In addition, among these TFs, Hox family genes
44 were found to be pivotal in AP axis refinement. Their expression was closely correlated with
45 cellular AP identities, and *hoxb* genes may act as central regulators in this process.

47 **Introduction**

48 Model organisms such as zebrafish have long been valuable tools for studying
49 developmental biology and human diseases. Understanding the spatiotemporal patterns of
50 gene expression in these models is crucial for gaining insights into the physiological and
51 pathological mechanisms in normal development and related diseases. Thus, great efforts
52 are ongoing to construct gene expression maps of these models with higher resolution,
53 depth, and comprehensiveness.

54 Traditional technologies, such as ISH and immunostaining, have been widely used for
55 investigating the spatiotemporal expression patterns of specific genes. However, these
56 approaches are limited in their ability to simultaneously detect the expression of a large
57 number of genes. In recent years, significant progress has been made in developing
58 technologies for obtaining transcriptomics with spatial information. Techniques such as
59 laser capture microdissection/microscopy (LCM) combined with bulk RNA-seq^{1,2}, Tomo-seq³,
60 and Geographical positional sequencing (Geo-seq)⁴ have allowed the generation of spatially
61 resolved transcriptomic data⁵. Additionally, methods like seqFISH⁶, MERFISH⁷, Slide-seq⁸,
62 10x Visium^{9,10}, and Stereo-seq¹¹⁻¹³ have further improved the spatial resolution.

63 While these spatial transcriptomics (ST) techniques have advanced the spatial
64 resolution of transcriptomic data, bulk RNA-seq remains the preferred choice for most
65 studies due to limitations associated with ST techniques such as low read depth, suboptimal
66 gene detection capability, and high cost^{5,14}. Consequently, tools have been developed to
67 infer cell features or spatial gene expression from bulk RNA-seq data, including TIMER¹⁵,
68 MuSiC¹⁶, DWLS¹⁷, and Bulk2Space¹⁸.

69 In this study, we introduce Palette, a pipeline designed to allocate gene expression from
70 bulk RNA-seq data to spatial spots using ST data as the only reference. Palette has

71 demonstrated its effectiveness in inferring spatial expression patterns in both *Drosophila*
72 and zebrafish sections. We performed bulk RNA-seq on serial cryosections of zebrafish
73 embryos along the left-right axis at three developmental stages. By applying Palette to the
74 obtained data with the Stereo-seq data¹² as references, we inferred the spatial gene
75 expression patterns. We then projected the constructed 3D ST maps onto the zebrafish
76 embryo images with 3D coordinates¹⁹ to correct the deformation during cryosectioning and
77 construct a 3D spatial gene expression cartograph that more accurately reflects embryonic
78 morphology. We named this cartograph *DreSTEP*, which enables the visualization of gene
79 expression patterns in the context of the 3D morphology of the zebrafish embryos. Finally,
80 leveraging the capabilities of *DreSTEP*, we characterized potential roles of morphogens and
81 TFs in AP refinement during the progression of the primary body axis.

82

83 **Results**

84 **Design concept of Palette**

85 The overall working pipeline of Palette is depicted in Figure 1, illustrating the key steps
86 involved in our approach. The pipeline firstly incorporates spatial clustering and
87 deconvolution processes to account for differences in cluster abundances between bulk
88 RNA-seq and ST data. Then, a variable factor is introduced to adjust expression differences
89 between the two types of data. Subsequently, the pipeline estimates gene expression in
90 each spot using a loop algorithm that takes into account regional gene expression, spot
91 characteristics, and spot-spot distances. This iterative process allows for the inference of
92 spatially resolved gene expression from bulk transcriptome data with relatively stable gene
93 expression. The pipeline outlined in Figure 1 represents the sequential steps employed in

94 Palette to accurately allocate gene expression to spatial spots using the information

95 provided by the bulk RNA-seq data.

96 The detailed procedures of Palette can be divided into the following three steps. First,

97 spot clusters are defined in the ST data and the proportion of each defined cluster is

98 inferred in bulk RNA-seq data (Fig. 1a). Specifically, highly expressed genes in both ST and

99 bulk RNA-seq data are used for spatial clustering of the ST data. Here, BayesSpace²⁰, and

100 MuSiC¹⁶ are employed for deconvolution to estimate cluster abundances in bulk data. This

101 step can effectively eliminate the batch effect caused by technical differences in sampling,

102 mRNA capture, platform, etc. between the two experiments. Second, a variable factor is

103 introduced to adjust the cluster expression matrix (Fig. 1b). To obtain the variation of each

104 gene in ST and bulk data, a pseudo bulk vector is achieved as the cross product of the

105 cluster expression matrix of ST data and the cluster proportions of bulk data, so that the

106 variable factor vector can be calculated by the ratio of the input bulk to the pseudo bulk

107 vector. Consequently, the stable genes and variable genes can be distinguished by the

108 distribution of the variable factor vector. The adjusted matrix is obtained by taking the dot

109 product of the cluster expression matrix of ST slice and the variable factor. This step can

110 effectively overcome the common sparsity problem in spatial transcriptomics technologies,

111 and the adjusted matrix not only contains the cluster composition information but also fully

112 retains the accuracy of the bulk transcriptome in the detection of lowly expressed genes.

113 Third, the expression of each spot is estimated through an iteration algorithm (Fig. 1c). In

114 each iteration, the procedure begins by selecting one random spot (i) and its nearest

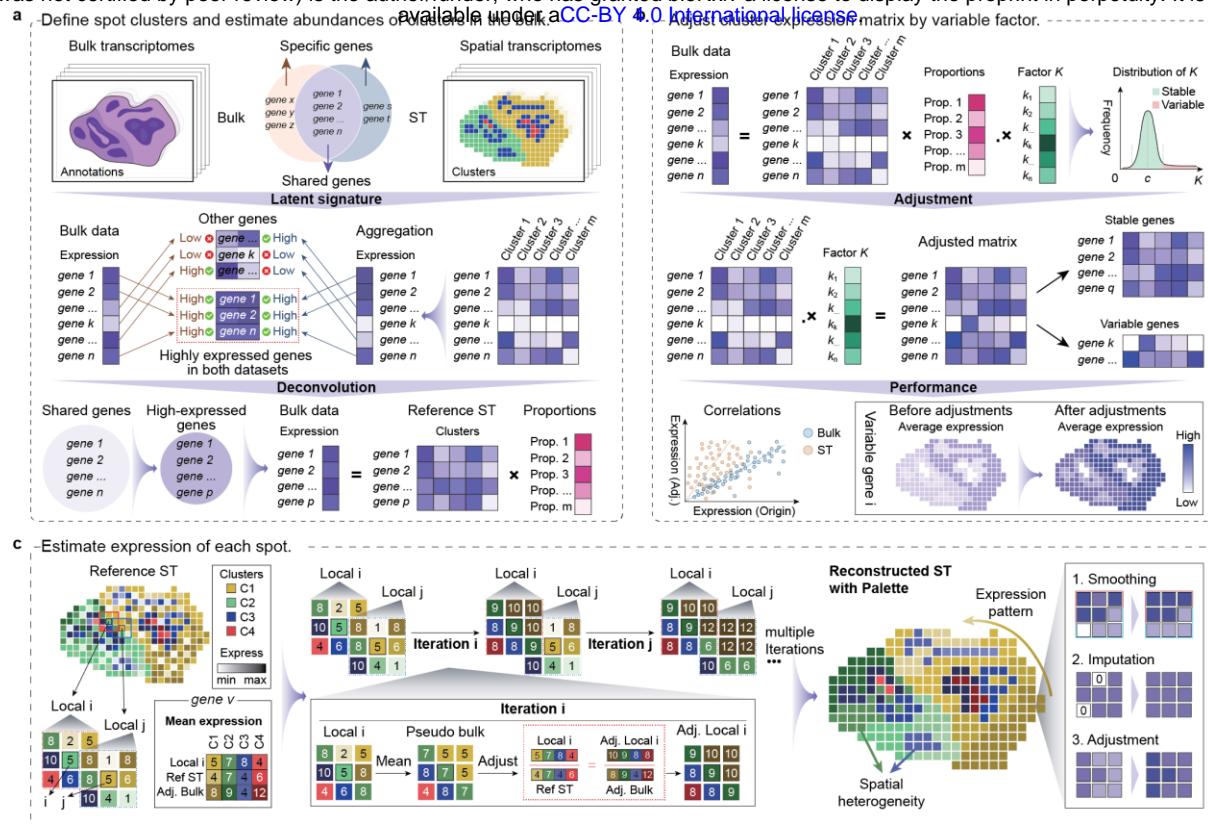
115 neighbouring spots (Local i). The expression of spots belonging to the same cluster is

116 aggregated to form a pseudo-cluster expression data called local ST (LST). Assuming the

117 ratio of LST to the reference ST data is equal to the ratio of the adjusted LST to the adjusted

118 matrix derived from the previous step, the expression of adjusted LST can be calculated and
119 evenly allocated into the selected spots of this cluster. The loop then proceeds to the next
120 iteration (iteration j), and after multiple iterations, typically thousands of times, the average
121 expression of each spot is almost stable, which is considered as the output estimated
122 expression.

123 The expression patterns on Palette reconstructed ST show enhanced spatial specificity
124 and continuity (Fig. 1c). Our algorithm incorporates spot characteristics and spot-spot
125 distances, emphasizing cluster-specific expression, while leveraging expression from bulk
126 data to adjust gene expression in the ST spots. Additionally, the assumption that the
127 neighbouring spots of the same cluster share similar gene expression enables imputation
128 based on gene expression in neighbouring spots. This strategy partially mitigates the
129 limitation of low detected gene numbers in each spot. Overall, the Palette pipeline serves as
130 a valuable tool for inferring spatial gene expression patterns from bulk RNA-seq data,
131 striving to generate accurate predictions of spatial gene expression that closely resemble
132 the expression patterns in bona fide tissues.



133

134 **Fig. 1 Working pipeline of Palette. a**, Defining spot clusters in ST reference and estimating cluster
 135 abundances in bulk transcriptome data. Bulk transcriptome data and ST reference are taken as input.
 136 Highly expressed genes in both datasets are used for spatial clustering through BayesSpace²⁰. The
 137 cluster expression matrix obtained from spatial clustering is then used as the reference for
 138 performing deconvolution on bulk transcriptome data, resulting in the estimated cluster abundances
 139 of bulk transcriptome data. **b**, Adjusting cluster expression matrix by employing the variable factor.
 140 The variable factor represents the expression differences between bulk RNA-seq data and ST
 141 reference. **c**, Estimating the expression in each spot through a loop algorithm. The expression of LST
 142 is adjusted and then evenly allocated to each spot of this cluster. After the looping steps, the
 143 average expression of each spot is taken as the estimated expression.

144

145 **Palette enables the prediction of gene expression patterns with higher spatial specificity**
 146 **and accuracy**

147 To assessed the performance of Palette, we first utilized two consecutive slices (referred to
 148 slices 4 and 5) from the Stereo-seq data¹³ of *Drosophila* E14-16 (14-16 hours post egg laying)
 149 serial sections (Fig. 2a). We converted slice 5 into a pseudo bulk and used it as Palette's

150 input, with slice 4 serving as the ST reference. We observed that Palette-implemented slice

151 4 did not result in considerable changes in the molecule numbers of each spot, as the gene

152 expression levels of slice 4 and slice 5 were similar. However, there was a significant

153 increase in the feature numbers (gene numbers) of each spot (Fig. 2b). This increase was

154 attributed to the supplementation by Palette, which leveraged the gene expression of

155 neighbouring spots belonging to the same cluster.

156 Furthermore, we observed strong correlations in the expression of top marker genes

157 between the same annotated clusters of Palette-implemented slice 4 and slice 5 ST data (Fig.

158 2c), indicating that Palette successfully preserved the molecular characteristics of each spot.

159 Notably, Palette-implemented slice 4 exhibited similar gene expression patterns to the slice

160 5 ST data, with these patterns being even more spatially specific and closely resembling the

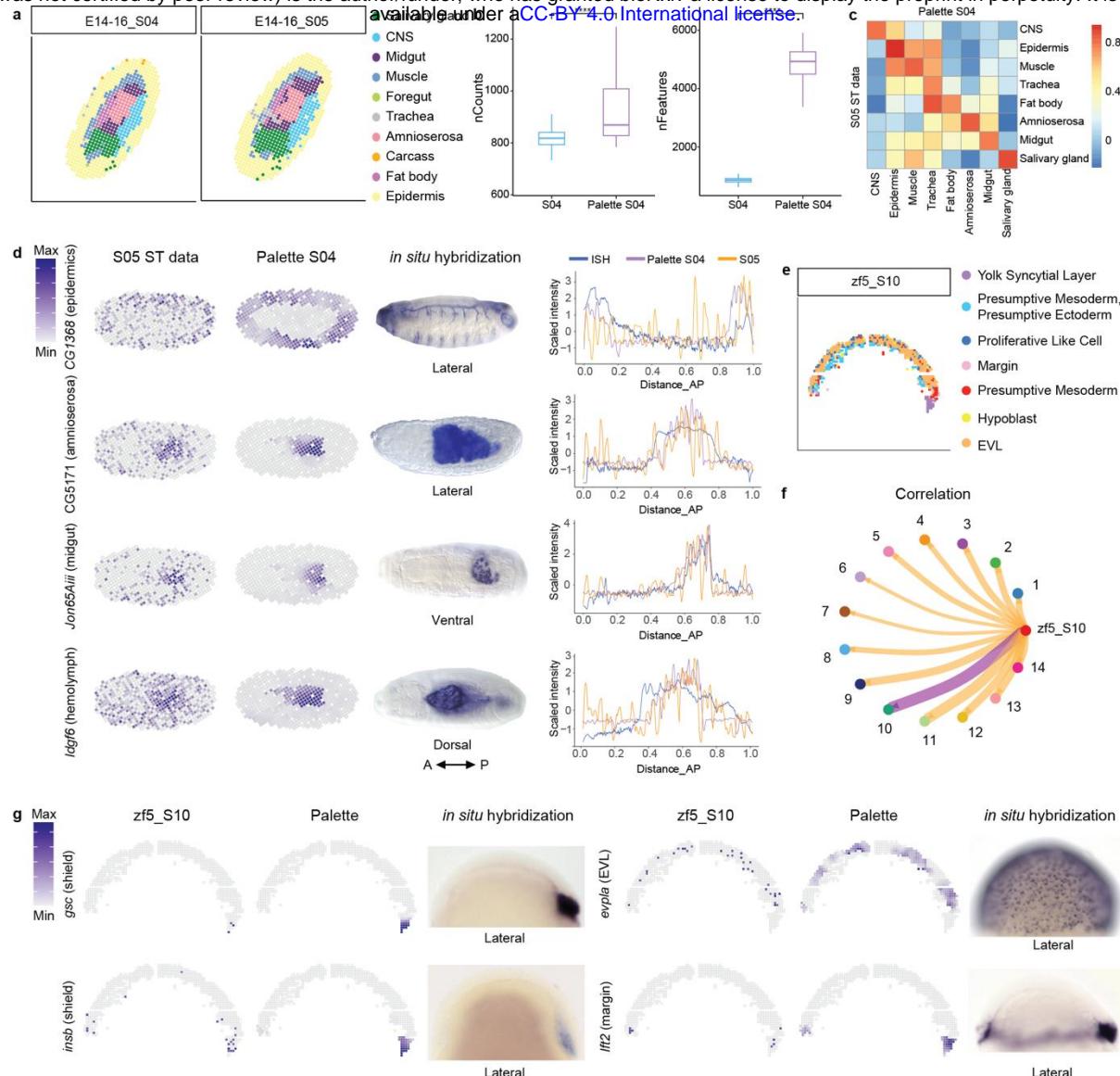
161 *in vivo* expression patterns observed through ISH (Fig. 2d, Fig. S1a and Fig. S1b). These

162 results suggest that Palette's ability of gene supplementation contributed to improved

163 continuity in the expression patterns of the implemented slices. Moreover, since Palette

164 considered the gene expression levels within each cluster, genes with highly differential

165 expression among clusters exhibited more specific expression patterns.



166

167 **Fig. 2 The implementation of Palette resulting in more specific gene expression patterns. a**, The
 168 clustering and annotation of two adjacent slices from the Stereo-seq data¹³ of E14-16 *Drosophila*
 169 embryo. **b**, Boxplots showing the numbers of molecules and genes in each spot before and after
 170 implementing Palette. The substantial increase in gene number is due to the supplementation from
 171 neighbouring spots, based on the assumption that neighbouring spots within the same cluster
 172 exhibit similar gene expression patterns. **c**, Heatmap showing the expression correlation of marker
 173 genes for each cluster before and after implementing Palette. The colour bar represents the Pearson
 174 correlation coefficient with positive correlation in red and negative correlation in blue. **d**, Spatial
 175 expression patterns of marker genes on the *Drosophila* Stereo-seq slices. Intensity of colour
 176 represents the expression levels of each marker gene. For each gene, the spatial patterns from the
 177 Stereo-seq S05 slice and the Palette-implemented S04 slice are shown on the left, and the ISH
 178 images from BDGP database are shown in the middle. The intensities of signals along the AP axis are

179 shown on the right. **e**, The clustering and annotation of the selected slice from the Stereo-seq data¹²
180 of 5.25 hpf zebrafish embryo. **f**, Circle plot showing the expression correlation network between the
181 serial bulk data of 6 hpf zebrafish embryo and the pseudo bulk of the Stereo-seq slice. Stroke weight
182 indicates the strength of the Pearson correlation coefficient. **g**, Palette inferring spatial expression
183 patterns of 6 hpf zebrafish embryo bulk data on the 5.25 hpf zebrafish Stereo-seq slice. Since
184 zebrafish embryos at 5.25 hpf and 6 hpf exhibited similar expression patterns, we used Palette to
185 infer spatial gene expression from the 6 hpf zebrafish embryo bulk data using the 5.25 hpf ST data as
186 a reference. Intensity of colour represents the gene expression levels. For each gene, the spatial
187 patterns from the Stereo-seq S10 slice and the Palette-implemented S10 slice are shown on the left,
188 and the correlated ISH images shown on the right are from ZFIN and published data^{21, 22}.

189

190 To further evaluate Palette's performance, we applied it to two additional datasets of
191 zebrafish embryos^{3, 12}: we selected one middle slice from a Stereo-seq data as the ST
192 reference (Fig. 2e), and the slice 10 from a bulk data was selected as the corresponding
193 input slice based on a correlation test (Fig. 2f). We then compared the expression pattern of
194 genes on the original ST slice and the Palette-implemented slice (Fig. 2g and Fig. S1c). It was
195 evident that the Palette-implemented slice exhibited more spatially specific expression
196 patterns, which were more similar to the patterns observed through ISH.

197 Overall, Palette successfully inferred spatial gene expression from the bulk data of real
198 biological samples, generating expression patterns with improved continuity and higher
199 spatial specificity.

200

201 **Using Palette to infer spatial gene expression from bulk RNA-seq data of zebrafish serial
202 cryosections**

203 To generate a more precise 3D ST dataset of zebrafish embryos, we first performed serial
204 cryosections of embryos at three developmental stages along the left-right axis and

205 conducted high-depth bulk RNA-Seq (Fig. 3a, Fig. 3b and Fig. S2). Then, Palette was applied

206 to create a more accurate zebrafish spatial transcriptomic atlas.

207 Before implementing Palette, we aligned the ST data with the bulk RNA-seq data using

208 three midline genes—*gsc*, *lft1*, and *tbxta*—as metrics of alignment accuracy (Fig. 3c).

209 Analysis revealed that the slice cutting lines were not parallel to the embryonic midline in

210 both the Stereo-seq and our bulk RNA-seq data (Fig. 3d and Fig. 3f). The anterior midline

211 gene *gsc* and the posterior midline gene *tbxta* appeared on different slices, and the tilt

212 directions differed between the Stereo-seq data and the bulk RNA-seq data, as indicated by

213 the positional relationships of *gsc* and *tbxta* (Fig. 3d-f) along the left-to-right direction.

214 To align these two datasets, we first adjusted and orientated the ST slices (Fig. 3g). We

215 then overlaid them sequentially at consistent intervals (Fig. 3h), creating a 3D ST dataset

216 that could be rotated and re-segmented to facilitate alignment. The efficacy of alignment

217 was evaluated using a correlation coefficient derived from the expression patterns of genes

218 with known AP differentiation (See Methods). Through continuous adjustments—rotating,

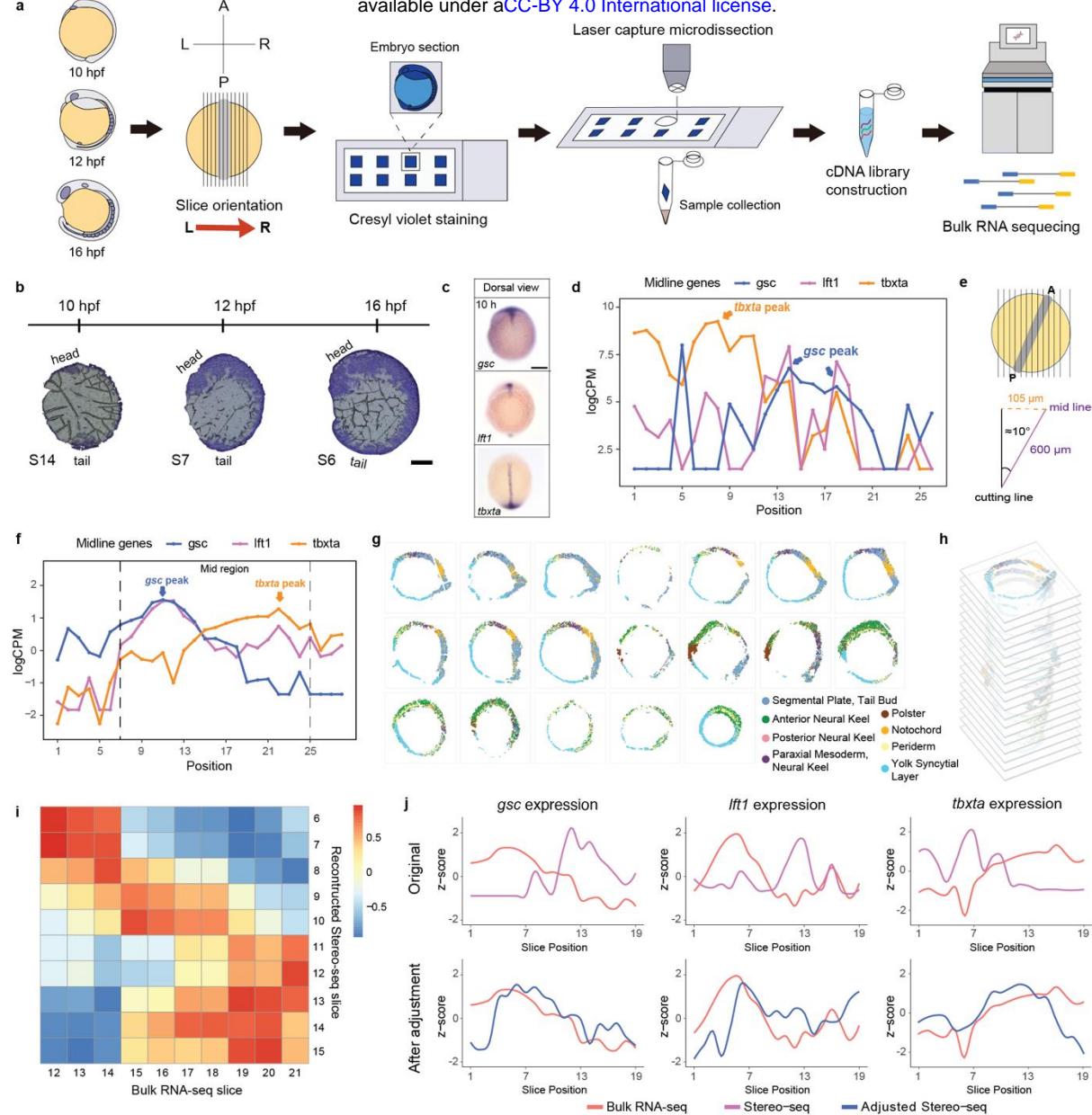
219 re-segmenting, and recalculating correlations—we identified the configuration with the

220 highest mean correlation coefficient. This configuration was deemed optimal for aligning

221 the re-segmented slices with those from the bulk RNA-seq (Fig. 3i). The expression patterns

222 of midline genes in the re-segmented Stereo-seq slices closely aligned with those in the bulk

223 RNA-seq slices (Fig. 3j).



224

225 **Fig.3 Processing the serial bulk RNA-seq data and the Stereo-seq data. a**, Schematic representation
 226 of the workflow for generating the serial bulk RNA-seq data of zebrafish embryos. **b**, Cresyl violet
 227 staining of the cryosectioned slices. Each slice is 20 μ m thick. The regions stained by cresyl violet
 228 correspond to cells. **c**, ISH images showing the expression patterns of midline genes, *gsc*, *lft1* and
 229 *tbxta*, from dorsal view. **d**, **f**, Expression plot showing the expression patterns of midline genes along
 230 left-right axis in the Stereo-seq data (d) and the bulk RNA-seq data (f). **e**, Diagram illustrating the
 231 midline of the Stereo-seq data tilted towards the left. **g**, The adjusted Stereo-seq slices. Poor-quality
 232 and severely damaged slices were discarded. Each spot is labelled with cell type annotations. **h**, 3D
 233 construction of the Stereo-seq slices. **i**, Correlation heatmap between the bulk RNA-seq data and the
 234 re-segmented Stereo-seq slices. The colour bar represents the Pearson correlation coefficient. **j**,

235 Expression plots showing the comparison of gene expression patterns before and after slice
236 alignment. Scale bar: 100 μ m (b), 200 μ m (c).

237

238 **Integrating zebrafish spatial transcriptomics data and imaging data to construct DreSTEP**

239 Palette was applied to reconstruct a 3D zebrafish ST atlas. However, the ST sections
240 exhibited extrusion and deformation (Fig. 3g and Fig. 3h), resulting in spatial distortions. To
241 generate a 3D ST atlas that enables accurate visualization of gene expression patterns
242 within zebrafish embryos while preserving their comprehensive morphology, we projected
243 the ST spots onto 3D zebrafish embryo imaging data¹⁹. This approach utilized the detailed
244 morphological representation provided by the 3D imaging, where each cell is assigned a
245 spatial coordinate, serving as a precise reference for the projection of ST spots.

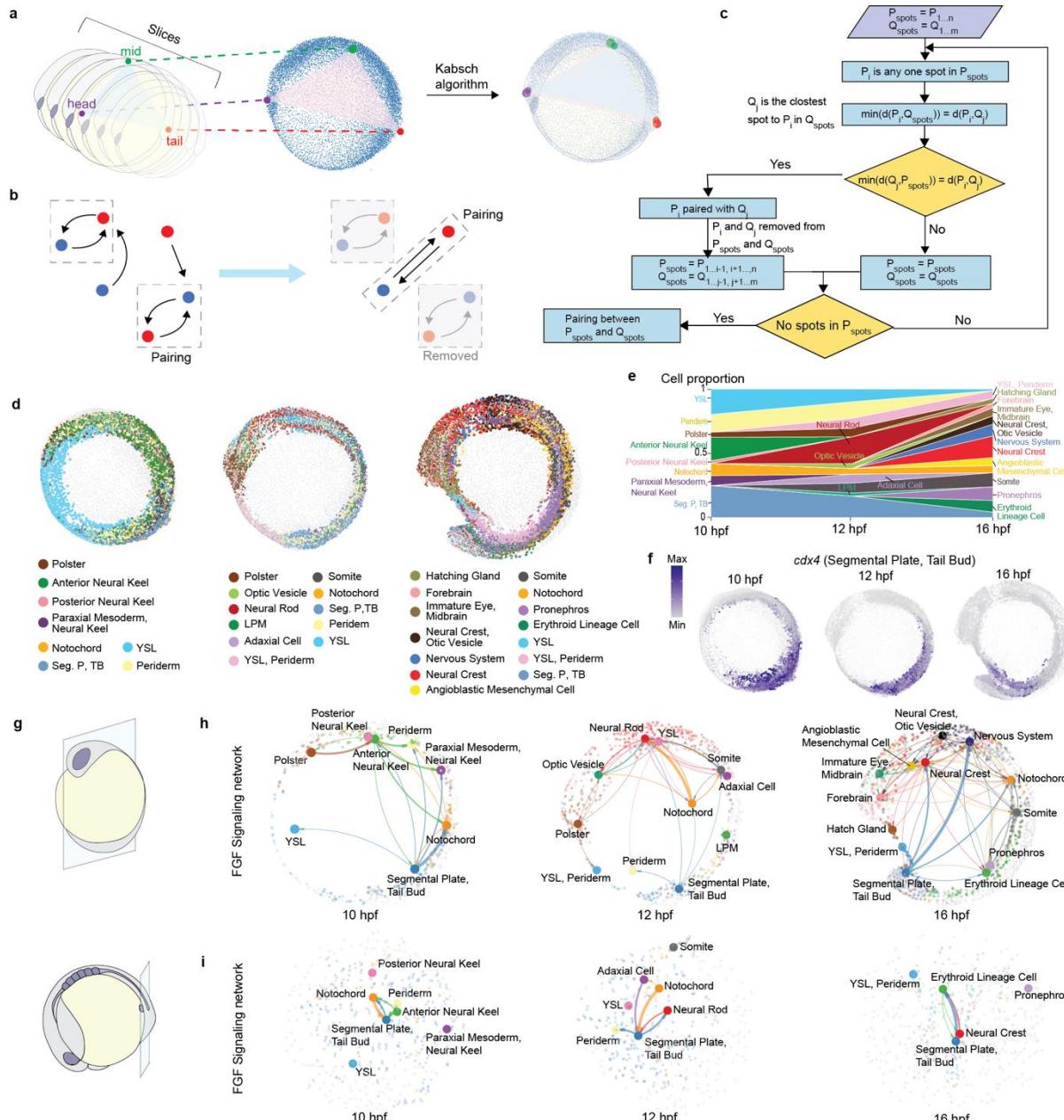
246 Prior to spot projection, the ST data and the 3D imaging data was initially aligned. We
247 scaled the embryo to similar sizes in both datasets, and selected three spots located at the
248 head, tail and middle of the midline from each dataset. These three paired spots were then
249 utilized for alignment using the Kabsch algorithm^{23, 24}, which is a method for calculating the
250 optimal rotation matrix that minimizes the root mean squared deviation (RMSD) between
251 two paired sets of spots. This resulted in the alignment between the ST data and the
252 imaging data (Fig. 4a).

253 Following the alignment, the projection from ST spots to imaging spots was achieved
254 using a loop algorithm inspired by the conception of Greedy algorithm²⁵ (Fig. 4b and Fig. 4c).
255 The entire process resulted in the spatial gene expression atlas of zebrafish embryos of
256 three developmental stages, which was named *DreSTEP* (Fig. 4d). *DreSTEP* encompassed
257 zebrafish embryos at 10 hpf, 12 hpf and 16 hpf, and these stages corresponded to post-
258 gastrulation and tail elongation processes. Consequently, *DreSTEP* precisely allocated cell

259 clusters and gene expression on a bona fide zebrafish embryo with 3D coordinates (Figs. 4d-

260 4f).

261



262

263 **Fig. 4 Projection of ST spots on 3D images and analysis of spatial cell-cell communication.** a,

264 Diagram showing the overall alignment between the ST data and the imaging data using the Kabsch

265 algorithm. b, Diagram indicating the pairing principle for the ST coordinates and the imaging

266 coordinates. In each interaction, the ST spot and the imaging spot closest to each other are paired,

267 which is considered as the optimal solution of this interaction. Paired spots are removed from

268 subsequent interactions, and the loop continues until each ST spot is paired with an imaging spot. c,

269 Flow chart showing the process of the pairing. **d**, Lateral view of *DreSTEP*. Each spot is coloured with
270 cell type annotation. **e**, Stacked area plot showing cell proportions in each stage. **f**, Expression
271 patterns of *cdx4* on *DreSTEP*. Intensity of colour represents the gene expression levels. **g**, Schematic
272 showing the *in silico* sections cut for spatial cell-cell communication analysis. **h**, **i**, Analysis of FGF
273 signalling pathway network in the midline (h) and tail sections (i). Each spot is coloured with cell type
274 annotation. The stroke weights indicate the interaction strength. YSL: Yolk syncytial layer; LPM:
275 Lateral plate mesoderm; Seg P, TB: Segmental plate, Tail bud.

276

277 **Exploration of spatial cell-cell interactions in *DreSTEP***

278 *DreSTEP* enables the visualization of gene expression patterns in 3D view of zebrafish
279 embryos, along with their comprehensive morphology (Fig. 4f and Figs. S4a-S4c), which
280 allows for the freewheeling selection of specific regions of embryos for spatial cell-cell
281 interaction (CCI) analysis.

282 We extracted the midline and tail sections from *DreSTEP* and employed CellChat^{26, 27} for
283 spatial cell-cell communication analysis (Fig. 4g). At 10 hpf, we observed strong interactions
284 between tail bud/segmental plate cells and notochord cells in both sections, with the FGF
285 signalling pathway playing a significant role in mediating this interaction (Fig. 4h and Fig. 4i).
286 Additionally, tail bud/segmental plate cells were found to send FGF signals to neural cells,
287 and these cell-cell interactions persisted at 12 hpf and 16 hpf, with tail bud/segmental plate
288 cells continuing to send FGF signals to both notochord and neural cells (Fig. 4h and Fig. 4i).
289 Notably, the strength of FGF signalling from tail bud/segmental plate cells to neural cells
290 increased at 16 hpf. These results indicated that tail bud/segmental plate cells served as a
291 strong FGF signalling centre regulating neighbouring cells, which can be evidenced by the
292 reported roles of FGF signalling in somite development²⁸⁻³⁰, caudal spinal cord
293 development³¹ and posterior notochord development³⁰.

294 Beyond FGF signalling, we also observed that other signalling pathways significantly
295 contributed to the cell-cell interactions in the midline and tail sections. Throughout all three
296 developmental stages, we detected strong interactions between neural cells with
297 neighbouring cells through Wnt/β-catenin signalling (Fig. S4d). Additionally, we found that
298 tail bud/segmental plate cells consistently emitted BMP signals to adjacent cells including
299 notochord, adaxial, and erythroid lineage cells (Fig. S4e). These findings aligned with prior
300 knowledge indicating that Wnt/β-catenin signalling was involved in regulating the neural
301 plate patterning³², and BMP signalling was activated in tail bud region, contributing to tail
302 formation³³.

303 Our spatial cell-cell communication analysis suggests that different morphogens
304 mediated diverse CCIs during embryonic development. The complex cellular networks
305 formed by these CCIs may guide the formation of organ collectives and ensure the robust of
306 organogenesis. In summary, *DreSTEP* proves to be an excellent zebrafish spatial atlas for
307 visualizing gene expression patterns and investigating CCIs in specific regions of the embryo.

308

309 **Investigating morphogen distributions and cell fate specification in *DreSTEP***

310 During embryonic development, a group of signalling molecules, known as morphogens
311 diffuse from localized sources, forming concentration gradients that provide spatial
312 information to responding cells and guide their differentiation^{34, 35}. The intersections of
313 different morphogens with antiparallel gradients generate diverse cell types, contributing to
314 the formation of precise patterns and structures^{36, 37} (Fig. 5a).

315 The establishment of the AP axis involves the intricate interactions among morphogen
316 gradients^{22, 38, 39}. During tail elongation, morphogen gradients collectively regulate the
317 extension and confinement of the AP axis, resulting in the precise specification and

318 arrangement of tubular organ primordium along the body axis³⁸. *DreSTEP* provides an
319 appropriate platform to comprehensively analyse the expressing patterns of morphogens
320 along the AP axis and investigate the relationships between the morphogen gradients and
321 cell type distributions. We linearized the *DreSTEP* (Fig. 5b, See Methods) and focused on
322 ligands involved in canonical Wnt, noncanonical Wnt, Notch, Sonic hedgehog (SHH), RA, FGF,
323 and TGF- β signalling, visualizing their expression intensities along the linearized AP axis (Figs.
324 5c-f and Figs. S5-S8). We observed two adjacent regions along the linearized AP axis at all
325 three time points, and each enriched with distinct group of ligands (Fig. 5g). These regions,
326 designated as Zone1 and Zone2, were subjected to Gene Ontology (GO) enrichment analysis
327 using sets of differentially expressed (DE) genes to investigate the functional characteristics
328 of cells within each zone (Fig. 5g and Fig. 5h, Data S1-S9).

329 At the end of the gastrulation (10 hpf), tail elongation commenced with various cell
330 types, beginning to be specified along the AP axis (Fig. 5g left). Notably, Zone1 consisted of
331 paraxial mesoderm cells, while Zone2 predominantly comprised segmental plate/tail bud
332 cells. GO enrichment analysis revealed terms related to somite development for both zones,
333 such as “skeletal system”, “somite development”, and “somitogenesis” (Fig. 5h left).
334 Furthermore, Zone2 encompassed the entire tail region, displaying GO terms associated
335 with posterior development, such as “endoderm development” and “mesoderm
336 morphogenesis”.

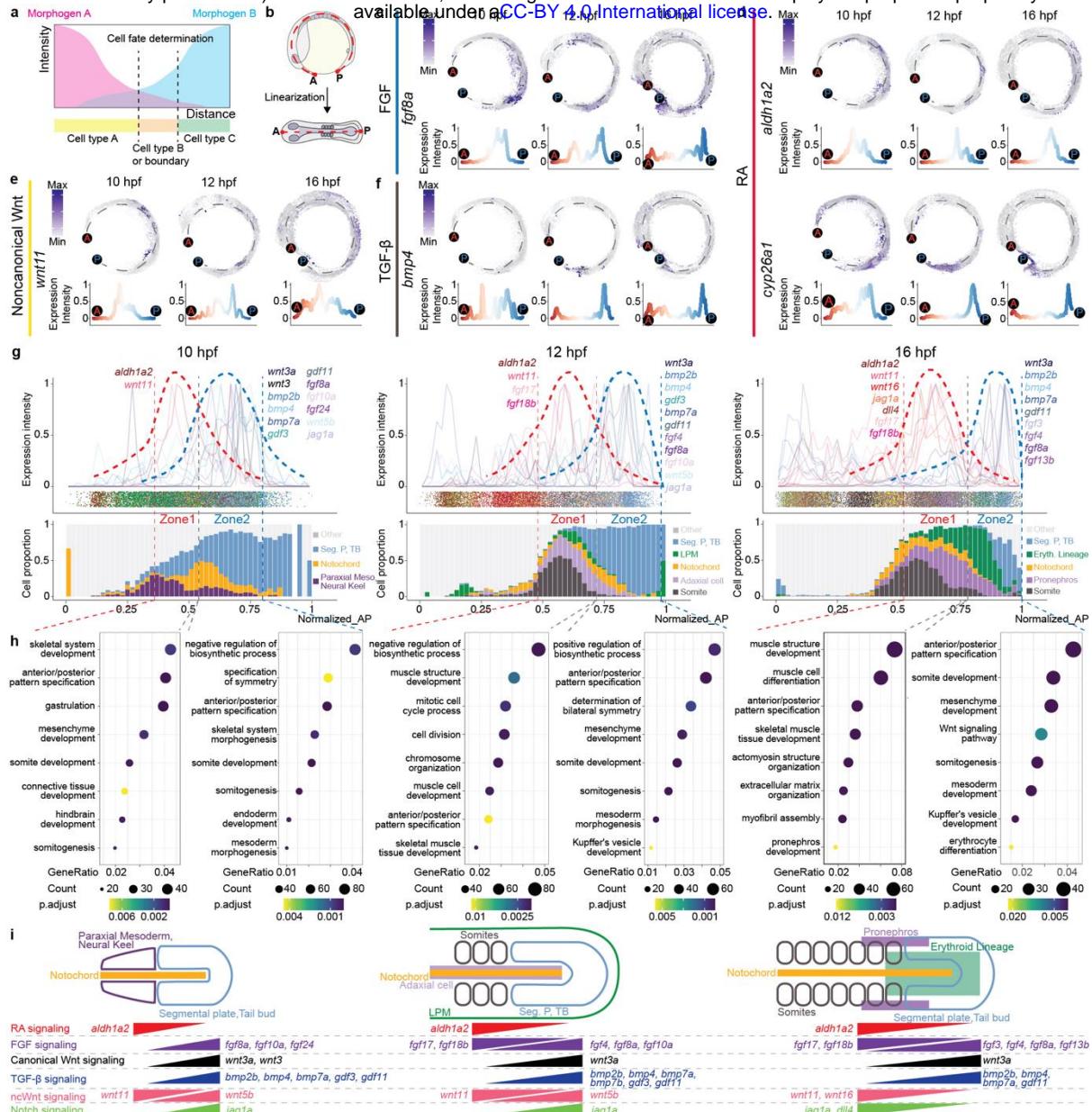
337 At 12 hpf and 16 hpf, as tail elongation progressed, more cell types were specified along
338 the AP axis. The boundary between Zone1 and Zone2 shifted posteriorly. Zone1 primarily
339 consisted of trunk region cells, such as somite cells, with GO terms related to muscle
340 development, such as “muscle structure development”, “muscle cell development”, and
341 “skeletal muscle tissue development”. Zone2 continued to predominantly consist of

342 segmental plate/tail bud cells, with GO terms including “somitogenesis”, “somite
343 development”, and “mesenchyme development”, indicating these cells’ high mobility and
344 contribution to somitogenesis and tail elongation (Fig. 5h mid and right). The boundary
345 between Zone1 and Zone2 coincided with the position of somite cells, highlighting the
346 essential roles of antiparallel morphogen gradients in somitogenesis. Additionally,
347 pronephros and erythroid lineage cells were specified at 16 hpf and distributed in both
348 Zone1 and Zone2, with Zone1 containing a higher proportion of pronephros cells and Zone2
349 exhibiting a higher abundance of erythroid lineage cells (Fig. 5g).

350 Based on the observed transcriptional morphogen gradients and cell type distributions
351 along AP axis in Zone1 and Zone2 at the three developmental stages, we created a diagram
352 to summarize those findings (Fig. 5i). Assuming that the transcriptional level of a
353 morphogen reflects its activity level, our model demonstrated the presence of opposing
354 concentration gradients, which could guide the cell type specification along the AP axis. Our
355 analysis showed that Zone1 enriched aldehyde dehydrogenase *aldh1a2* (Fig. 5d); while
356 Zone2 showed a high expression of *wnt3a* and *fgf8a* (Fig. 5c and Fig. S5). These observations
357 were consistent with previous studies⁴²⁻⁴⁶ demonstrating the role of anterior RA signalling
358 and posterior Wnt&FGF signalling in establishing the determination front of newly formed
359 somites. In addition to these ligands, Zone2 exhibited enrichment of other FGF ligands, such
360 as *fgf10a*, *fgf4* and *fgf13b* (Fig. 5g), suggesting their collective roles in regulating zebrafish
361 embryonic posterior development. Interestingly, Zone1 also showed enrichment of certain
362 FGF ligands, including *fgf17* and *fgf18b* (Fig. 5g), suggesting another FGF signalling cascade
363 probably participated in somite development. Moreover, Zone2 enriched the ligands
364 associated with TGF-β signalling, including *bmp2b*, *bmp4*, *bmp7a* and *gdf11*, aligned with
365 the well-studied roles of BMP signalling in tail development⁴⁷⁻⁵⁰. Zone1 and Zone2 also

366 exhibited enrichment of different noncanonical Wnt signalling ligands, *wnt11* and *wnt5b*,
367 respectively, suggesting their important roles in regulating the pattern formation in these
368 zones. Another interesting observation was that the expression of the Notch signalling
369 ligand *jag1a* shifted from high expression in Zone2 at 10 hpf and 12 hpf to high expression
370 in Zone1, along with *dll4*, at 16 hpf, suggesting changes in the zones where Notch signalling
371 functions during zebrafish development.

372 In summary, our work systematically assessed the dynamic transcriptional profiles of
373 morphogens along the AP axis and highlighted the interactions between adjacent zones
374 exhibiting antiparallel morphogen gradients. These findings underscored the crucial roles of
375 these morphogens in orchestrating pattern formation during zebrafish development, laying
376 the foundation for investigating the regulation of AP refinement in further studies.



377

378 **Fig. 5 Morphogen gradients regulate the establishment of AP axis. a**, Schematic diagram showing
379 that role of antiparallel morphogen gradients in governing cell fate determination. **b**, Schematic
380 diagram showing the linearization of *DreSTEP*. **c-f**, Plots displaying the expression patterns and
381 intensities of representative ligands along the AP axis in FGF (c), RA (d), noncanonical Wnt (e) and
382 TGF- β (f) signalling. The selected ligands show differential expression patterns in Zone1 and Zone2. **g**,
383 Plots of gene expression intensities, cell types and cell type proportions along AP axis. The thick
384 dashed lines in red and blue indicate the expression trends of trunk-enriched and tail-enriched genes;
385 the thin dashed lines separate Zone1 and Zone2 for GO enrichment analysis. **h**, Enriched GO terms in
386 Zone1 and Zone2 respectively. **i**, Model diagrams showing the relationships between morphogen
387 gradients and cell type specification in Zone1 and Zone2 at different developmental stages. Paraxial

388 Meso: Paraxial mesoderm; LPM: Lateral plate mesoderm; Seg P, TB: Segmental plate, Tail bud; Eryth.

389 Lineage: Erythroid Lineage; ncWnt: noncanonical Wnt.

390

391 **Identification of key transcriptional regulatory cascades during the AP axis canalization**

392 Diverse morphogen signals intricately interact to instruct the refinement of AP axis,

393 involving cross-regulation of their intracellular pathways and downstream transcription

394 factors (TFs)^{51, 52}. To identify key morphogens and their downstream TFs that are essential

395 for accurately determining the AP fate of various cell types within the embryo, we employed

396 a random forest model (Fig. 6a), where we considered the expression levels of all

397 morphogens and TFs as variable factors, to identify which ones are crucial for establishing

398 the AP identities. We found that several morphogen ligands from the FGF, Wnt, RA, Notch

399 and BMP signalling pathways as key determinants of AP identities (Fig. 6b and Fig. S9). The

400 regulatory potential of these morphogens in AP axis formation have been substantiated by

401 previous studies^{47-50, 53, 54}, reinforcing the validity of our approach.

402 Interestingly, ligands within the same signalling pathway can exhibit distinct

403 distributions along AP axis, suggesting their dominant roles in refining AP axis at different

404 developmental stages. For instance, *fgf3*, anteriorly distributed, was a key morphogen at

405 the 10 hpf stage, while *fgf17* and *fgf8a*, located in the posterior trunk and tail regions,

406 respectively, were critical at both the 12 hpf and 16 hpf stages (Fig. 6b). This emphasizes the

407 need to interpret morphogen gradients within a spatiotemporal context.

408 Among the identified key TFs, the Hox gene family genes emerged as significant

409 regulators, underscoring their vital roles in AP axis regulation (Fig. 6b and Fig. S10). The Hox

410 genes, a subset of conserved homeobox genes, exhibit both temporal collinearity and

411 spatial collinearity in their expression, allowing them to specify regions along the AP axis

412 and contribute to body plan formation⁵⁵⁻⁵⁷ (Fig. 6c). To further investigate the relationships

413 between Hox gene expression and AP axis refinement, we defined a “Hox score”, which

414 serves as an estimation for the most probable Hox gene expressed in each spot (Fig. 6d). We

415 performed correlation analysis between Hox scores and physical AP identities across three

416 developmental stages (Fig. 6e). Our results revealed a positive correlation between the Hox

417 score and physical AP identities, with this correlation strengthening as development

418 progressed. This trend was consistently observed in both the neural system and paraxial

419 mesoderm, where Hox genes were independently expressed along the AP axis.

420 Interestingly, the neural system exhibited a lower Hox score compared to paraxial

421 mesoderm (Fig. 6g), suggesting a “time discrepancy” between these two systems in

422 canalizing their AP “avenue”. These observations highlight the increasingly significant

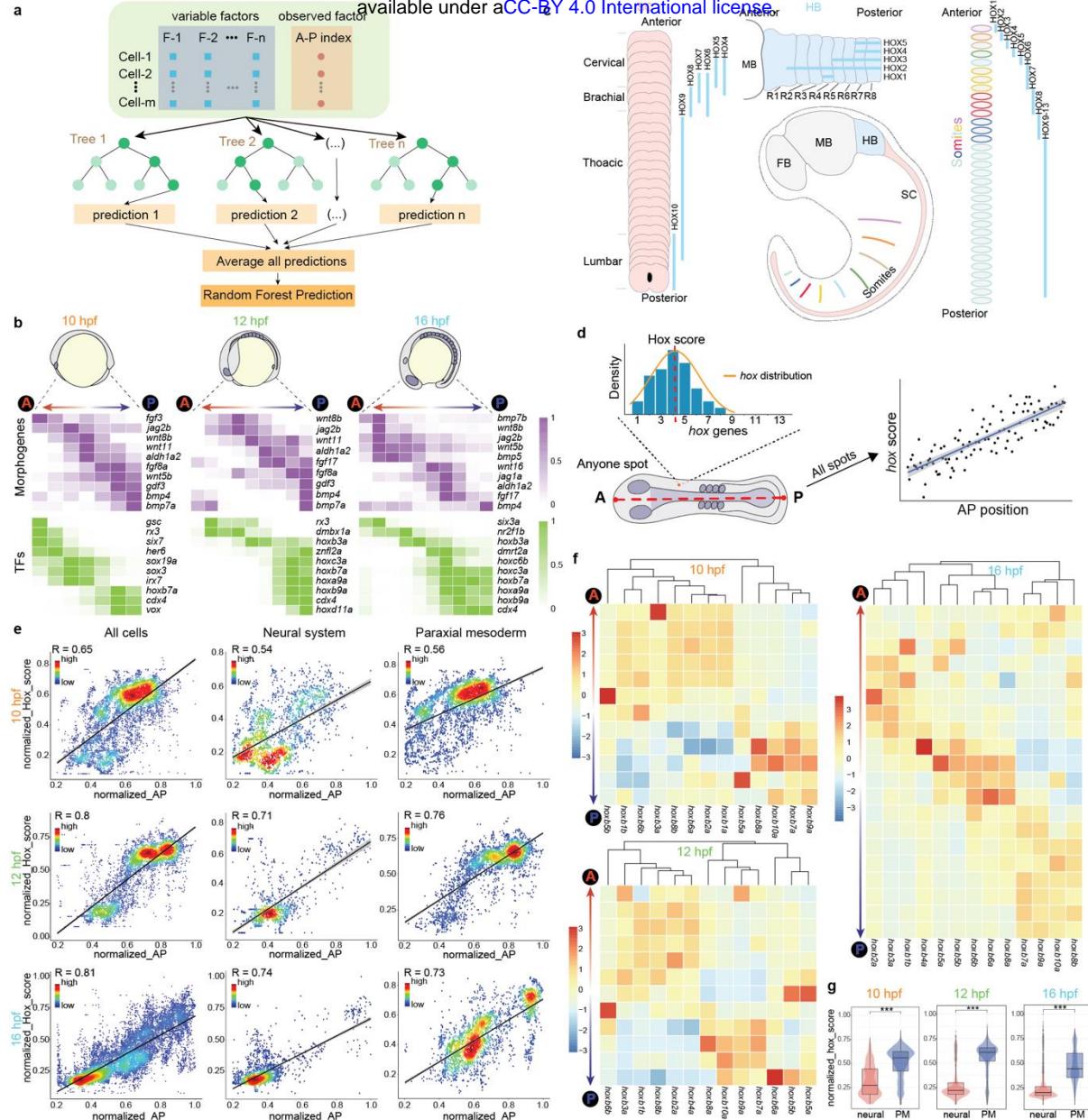
423 regulatory role of Hox genes in AP axis refinement. Furthermore, we examined the

424 expression patterns of four Hox clusters: *hoxa*, *hoxb*, *hoxc*, and *hoxd*, along the AP axis (Fig.

425 6f and Fig. S11). The *hoxb* cluster exhibited the most pronounced correlation with the

426 physical AP identities, suggesting that the *hoxb* family genes may serve as master regulators

427 in refining the AP identities during development.



428

429 **Fig. 6 Establishment of AP axis. a**, Schematic diagram showing the training for the random forest
 430 model. **b**, Heatmaps showing the expression intensities of key morphogens and transcription factors
 431 along AP axis at 10 hpf, 12 hpf and 16 hpf. **c**, Schematic diagram illustrating the spatial distribution of
 432 *hox* genes in neural and somatic systems. **d**, Schematic diagram showing the calculation of the Hox
 433 score of each cell and the assessment of correlations between Hox scores and AP positions. **e**, The
 434 correlations between Hox scores and physical AP positions. Colour indicates the spot density, with
 435 high in red and low in blue. **f**, Heatmaps showing the expression levels of *hoxb* genes along AP axis at
 436 10 hpf, 12 hpf and 16 hpf. Intensity of colour represents z-score with high in red and low in blue. **g**,
 437 The Hox score distributions in neural system and paraxial mesoderm. Colour scale: Expression
 438 intensity (b), Z-score (f).
 439

440 **Discussion**

441 In this study, we present Palette, a pipeline that utilize existing ST data as the only reference
442 to infer precise spatial gene expression patterns from bulk RNA-seq data. The gene
443 expression patterns predicted by Palette exhibit enhanced spatial continuity and improved
444 spatial specificity, closely resembling experimentally observed patterns (Figs. 2d, 2g and Figs.
445 S1b, S1c). Furthermore, Palette can incorporate spot characteristics directly from
446 histological images of tissue slices, enabling more accurate spot characterization compared
447 to reliance on spatial clustering alone (Fig. S12b). Palette is also applicable to comparative
448 analyses of spatial gene expression patterns in different conditions, as demonstrated using
449 human pancreatic ductal adenocarcinoma (PDAC) data⁵⁸. Here, Palette inferred spatial gene
450 expression patterns from bulk RNA-seq datasets⁵⁹ of normal and tumour tissue slices,
451 revealing a notable decrease in tumour-specific gene expression in the normal tissue slice
452 (Fig. S12). Ongoing research aims to expand Palette's application scenarios and explore
453 further possibilities for analysing and interpreting spatial gene expression patterns.

454 Leveraging the capabilities of Palette, we constructed a comprehensive spatial gene
455 expression atlas, *DreSTEP*, by integrating transcriptomics from serial sections and 3D images
456 of zebrafish embryos¹⁹. *DreSTEP* not only facilitates the visualization of gene expression
457 patterns in 3D morphology of zebrafish embryos, but also allowed for the flexible selection
458 of sections for spatial cell-cell interaction analyses. As a 3D spatial gene expression atlas,
459 *DreSTEP* holds great potential for studying the intricate 3D spatial cell-cell interactions
460 during zebrafish development.

461 We utilized a linearized version of *DreSTEP* to investigate the relationships between
462 morphogen distributions and cell type specification along the AP axis during development.

463 We identified two adjacent zones with antiparallel morphogen gradients, with the boundary

464 of these two zones appearing to act as the determinant front for somite formation.

465 In addition, by employing a random forest model, we explored the correlations

466 between morphogen/TF expression and the developing AP patterns. This analysis identified

467 critical morphogens and downstream TFs essential for determining AP position at different

468 developmental stages. Notably, the Hox family genes were identified as dominant TFs, with

469 strong correlations between the expression patterns of *hox* genes and the cell physical AP

470 positions. Importantly, our findings suggest that *hoxb* cluster likely plays a more significant

471 role in AP axis formation compared to other *hox* clusters.

472 During the development of *DreSTEP*, we encountered several limitations that warrant

473 future improvements. Firstly, the manual adjustment and alignment of Stereo-seq slices

474 during 3D ST data construction were labour-intensive and introduce potential bias. Although

475 tools like PASTE⁶⁰ were employed, their performance was unsatisfactory, possibly due to the

476 hollow circle shape of ST slices leading to tilted alignments. Newly developed tools such as

477 STitch3D⁶¹ and Spateo⁶² could be worth exploring for assisting the alignment. Secondly, the

478 Palette algorithm currently excluded genes not detected in any spot of the ST data.

479 Leveraging serial bulk RNA-seq data, could enable the construction of gene co-expression

480 networks along the cutting direction. This approach has the potential to assist in predicting

481 the expression patterns in ST data. Thirdly, the performance of Palette and *DreSTEP* heavily

482 relied on the quality of ST data. In this study, for example, the Stereo-seq data of 12 hpf

483 zebrafish embryo had fewer slices on the right side (Fig. S3b), resulting in more blank spots

484 in the right part of *DreSTEP* for the 12 hpf embryo. Therefore, with the development and

485 improvements in ST techniques, Palette and *DreSTEP* will have even greater potential for

486 analysing spatiotemporal gene expression.

487 **Methods**

488 **Animal ethics**

489 Wild-type zebrafish strain was maintained following the standard procedures, and the
490 experimental procedures were approved by the Institutional Review Board of Zhejiang
491 University. The approval number is ZJU20220375.

492

493 **The Palette algorithm**

494 ST data was used as the reference for inferring spatial gene expression from bulk RNA-seq
495 data. The input bulk expression matrix is $\mathbf{S} \in \mathbb{R}^{n \times 1}$, which contains the expression
496 information of n genes. BayesSpace²⁰ was first employed to perform spatial clustering on
497 the ST data using the genes highly expressed in both the ST data and the bulk data. There
498 are m clusters identified through spatial clustering, and the average expression of each
499 cluster is $\mathbf{C} \in \mathbb{R}^{n \times m}$. MuSiC¹⁶ was then employed to obtain the proportions of each defined
500 cluster in the bulk data, $\mathbf{A} \in \mathbb{R}^{m \times 1}$, through deconvolution. A pseudo bulk vector, $\mathbf{P} \in \mathbb{R}^{n \times 1}$ is
501 constructed by taking the cross product of the cluster expression matrix of ST data and the
502 cluster abundances of bulk data.

503
$$\mathbf{P} = \mathbf{C} \times \mathbf{A}$$

504 Each gene is assigned with a variable factor to adjust its expression. The variable factor
505 vector, $\mathbf{K} \in \mathbb{R}^{n \times 1}$, can be calculated as the ratio of the input bulk to the pseudo bulk vector.

506
$$\mathbf{S} = \mathbf{P} \cdot \mathbf{K}$$

507 The adjusted matrix $\mathbf{M} \in \mathbb{R}^{n \times m}$ is generated by the dot product of the cluster expression
508 matrix of the ST slice and the variable factor.

509

510 The pseudo bulk data of the reference ST slice is $\mathbf{T} \in \mathbb{R}^{n \times 1}$. One random spot and its
511 nearest neighbouring spots are selected, and the expression of spots belonging to the
512 cluster i is aggregated to form a pseudo-cluster expression data \mathbf{LST} , $\mathbf{L} \in \mathbb{R}^{n \times 1}$. The regional
513 cluster factor $\mathbf{R} \in \mathbb{R}^{n \times 1}$ is defined as the proportion of \mathbf{LST} in the entire ST slice.

514

$$\mathbf{L} = \mathbf{T} \cdot \mathbf{R}$$

515 The ratio of \mathbf{LST} to the reference ST data is equal to the ratio of the adjusted \mathbf{LST} to the
516 adjusted matrix, and thus the adjusted \mathbf{LST} can be calculated by the dot product of the
517 expression matrix of cluster i in the adjusted matrix \mathbf{M}^i and the regional cluster factor \mathbf{R} . The
518 expression of each spot in cluster i , $\mathbf{D} \in \mathbb{R}^{n \times 1}$, is achieved through evenly allocation of the
519 adjusted \mathbf{LST} . \mathbf{N} is the numbers of spots belonging to cluster i in this region.

$$\mathbf{D} = \frac{\mathbf{M}^i \cdot \mathbf{R}}{\mathbf{N}}$$

520

521 The average expression $\bar{\mathbf{D}} \in \mathbb{R}^{n \times 1}$ after multiple iterations is considered as the
522 estimated expression of the spot. Here p means that the spot has been selected for p times
during iterations.

$$\bar{\mathbf{D}} = \frac{\sum_{i=1}^p \mathbf{D}}{p}$$

523

524 **Palette performance assessment on *Drosophila* slices**

525 Two consecutive slices (referred to slices 4 and 5) were taken from the Stereo-seq data¹³ of
526 *Drosophila* E14-16 serial sections. Given their adjacency, these two slices should exhibit
527 similar gene expression levels and patterns. Slice 5 was then converted into a pseudo bulk

528 and used as Palette's input, with slice 4 serving as the ST reference. The predicted spatial
529 expression patterns of slice 5 were compared to the actual ST data from slice and ISH
530 images from BDGP database (www.fruitfly.org) for evaluating Palette's performance.

531

532 **Palette performance assessment on zebrafish slices**

533 One middle slice of zebrafish Stereo-seq data was selected as the ST reference¹². A
534 corresponded slice was selected as an input for Palette from the serial bulk RNA-seq data³
535 of zebrafish embryo using a correlation test. The correlation was calculated based on the
536 expression of genes showing differential expression along the dorsal-ventral axis. The
537 predicted expression patterns were compared to the ISH images from ZFIN (www.zfin.org)
538 and published data^{21, 22} for evaluating Palette's performance.

539

540 **Sample preparation for bulk RNA-seq**

541 Live embryos at the required developmental stages of 10 hpf, 12 hpf and 16 hpf were
542 rapidly embedded in optimal cutting temperature compound (OCT) and oriented in the
543 bottom of steel embedding cassettes. Embedded embryos were rapidly frozen at -80°C for
544 10 minutes, and then transferred into a cryostat (Leica) at -20°C. In the cryostat, embedded
545 embryos were removed from the steel embedding cassettes and cryosectioned at a
546 thickness of 20 µm. Each slice was collected and placed on the PEN membrane slides (Leica)
547 in the correct order. Membrane slides were stained using 1% (wt/vol) cresyl violet
548 (dissolved in 70% ethanol) to roughly check cell number and ensure slice integrity. Each slice
549 was extracted from membrane slides through laser capture microdissection system (Leica
550 LMD6) and collected into a 1.5 mL Eppendorf tube containing 40 µL of PicoPure™ lysis
551 buffer (Thermo Fisher). Collected samples were incubated at 42°C for 30 minutes and then

552 sent to Shanghai Ouyi Biology Medical Science Technology Co., Ltd. (Shanghai, China) for

553 RNA extraction, cDNA library construction and sequencing. Paired-end sequencing at 150 bp

554 read length was performed on a Novaseq 6000 instrument.

555

556 **Bulk RNA-seq data processing**

557 Reads were aligned to the *Danio rerio* genome Ensembl Release 92 (GRCz11) using STAR

558 v2.7.1a⁶³. The aligned reads were assigned to each gene using featureCounts v1.6.0⁶⁴. For

559 each embryo, the gene counts of each slice were merged into a count matrix, and the genes

560 that received more than 0.5 counts per million reads (CPM) in at least 3 slices were retained.

561 The count matrices with slice position information were constructed into DGEList objects

562 using edgeR⁶⁵⁻⁶⁷ for the following analysis.

563

564 **3D embryo reconstruction**

565 The spatiotemporal transcriptomics data used for 3D embryo reconstruction was obtained

566 from the zebrafish Stereo-seq dataset¹² available for download at

567 <https://db.cngb.org/stomics/zesta/download/>. Each section was fitted into a 2D coordinate

568 system, with the section centre serving as the origin. Before the reconstruction, severely

569 broken slices and outlier spots were removed from the dataset. The position of each section

570 on the 2D coordinate system was manually adjusted and aligned based on the section

571 shapes and spot annotations. Additionally, the distance between neighbouring sections on

572 the z-axis was estimated, and the corresponding z-axis coordinates were assigned to each

573 section. By combining the spatial transcriptomics data and with the 3D coordinates,

574 reconstructed embryos were generated.

575

576 **Alignment between bulk RNA-seq slices and re-segmented pseudo ST slices**

577 Reconstructed embryos were rotated along x-axis and y-axis separately, and then re-
578 segmented into section slices. Each of re-segmented slices was transformed into pseudo
579 bulk data, which represented an aggregate expression profile for that slice. To determine
580 embryo orientation, several genes exhibiting AP differential expression patterns were
581 selected. The scaled expression levels of these genes across slices were generated for both
582 bulk RNA-seq slices and pseudo bulk slices. To assess the alignment between bulk RNA-seq
583 slices and pseudo bulk slices, Pearson correlation coefficients were calculated across these
584 genes. The alignment with the highest mean Pearson correlation coefficient along the slices
585 was considered as the optimal alignment.

586

587 **3D projection of ST spots to imaging spots**

588 The live imaging data of zebrafish embryos were obtained from the study by Shah et al.,
589 2019¹⁹ available for download at <https://idr.openmicroscopy.org> under accession code
590 idr0068. Both the centres of the ST data and the live imaging data were set as the origin,
591 and the embryo size in the imaging data was scaled to a similar embryo size in the ST data.
592 Three specific spots (head, mid of midline and tail) were selected from the both datasets.
593 The Kabsch algorithm^{23, 24} was used to achieve the optimal alignment between the two
594 paired sets using these three spot pairs. This algorithm involved rotating and transforming
595 the coordinates of the three ST spots to align them with the corresponding spots in the live
596 imaging data. By applying the rotation matrix obtained from the optimal alignment, the
597 entire set of the ST spot coordinates was transformed. A transform matrix was obtained by
598 calculating the difference between the coordinate of the head spot achieved from the spot
599 alignment and the coordinate of the head spot after applying the rotation. The transform

600 matrix was then applied to the coordinates of all the ST spots, which had undergone
601 rotation. Through this process, the alignment between the ST data and the imaging data
602 was achieved.

603 The pairing between the ST spots and the imaging spots was achieved through a looping
604 algorithm based on the Greedy algorithm²⁵. In each interaction of the loop, the ST spot and
605 the imaging spot that were closest to each other were paired, which was considered as the
606 optimal solution of the interaction. Paired spots were removed from subsequent
607 interactions, while unpaired spots moved on to the next loop. The looping process
608 continued until each ST spot was paired with an imaging spot. The expression information
609 from the ST spots was then assigned to their corresponding imaging spots. The remained
610 unpaired imaging spots were retained to preserve the overall morphology of the embryo.

611

612 **Spatial cell-cell communication analysis using CellChat**

613 CellChat^{26, 27} was employed to analyse spatial cell-cell communication based on prior known
614 zebrafish ligand-receptor interaction database CellChatDB. The section of interest was
615 extracted from *DreSTEP* for analysis, which provided 2D section ST data. In the Stereo-seq
616 data, each spot contained 15 × 15 DNA nanoball (DNB) spots. Consequently, in the section
617 ST data, the spot diameter was set as 15, and the number of pixels spanning the spot size
618 diameter was set as 225. The expression data of section ST data was pre-processed to
619 identify over-expressed ligands and receptors for each cell group. Setting distance as
620 constraints, CellChat inferred communication probability between two interacting cell
621 groups. This inference was based on the average gene expression of a ligand in one cell
622 group and the average gene expression of a receptor in another cell group. The
623 communication probabilities of all ligands-receptors interactions associated with each

624 pathway were summarized for analysis of the communication probabilities within in

625 signalling pathways.

626 **Linearizing the AP axis in DreSTEP**

627 The lateral view of DreSTEP was projected onto a 2D plane. The spots were fitted into a
628 cycle. Each spot was then projected onto the cycle, with the projected spot representing the
629 closest spot on the cycle to the original spot. By designating the most anterior spot as the
630 origin, the AP position of each spot was determined by calculating the arc length from its
631 projected spot to the origin. The AP value of each spot was then divided by the maximum
632 AP value in the dataset to achieve the normalized AP value.

633

634 **Employing random forest model for prediction**

635 For each cell, the normalized expression of morphogens or TFs was set as variable factors,
636 while the cell's normalized physical AP position was set as observed factor. We took 70% of
637 the data to train a random forest model using the randomForest⁶⁸ package. The importance
638 of the variables to AP position was assessed by both increase in mean square error (IncMSE)
639 and increase in node purity (IncNodePurity). Cross-validation was used to evaluate the
640 number of variables. The top 6 important variables were selected, and the correlations
641 between their expression and AP positions were visualized.

642

643 **Calculating Hox score of each spot**

644 For each *hox* gene, its expression in each spot was divided by the maximum expression of
645 that gene in the dataset, indicating the expression probability of that gene in that spot. Then,
646 the expression of *hox* genes in spots can be converted to a repeated representation, where
647 the number of repetitions corresponded to the expression probability of the gene in that

648 spot. In our analysis, we made an assumption that the expression of *hox* genes in each spot
649 followed a normal distribution. This assumption enabled generating a fitting curve of the
650 normal distribution on the density plot of the *hox* genes. The Hox score was determined as
651 the *hox* value at the peak of the normal distribution. The Hox score of each spot was then
652 divided by thirteen, resulting in the normalized Hox score.

653

654 ***In situ* hybridization (ISH)**

655 ISH was performed following the published protocol⁶⁹. Embryos of required developmental
656 stages were fixed in 4% PFA/PBS overnight at 4°C, and then transferred into 100% methanol
657 (MeOH) for dehydration overnight at -20°C. Embryos were washed through 75%, 50% and
658 25% MeOH/PBST for 5 minutes each at room temperature and then three times for 5
659 minutes in PBST. Embryos older than 10 hpf were treated with proteinase K (10 µg/mL in
660 PBST) for 30 s and then fixed in 4% PFA/PBS for 20 minutes at room temperature.
661 Proteinase K treated embryos were washed four times for 5 minutes each in PBST. Embryos
662 were transferred into Hybridization Mix (HM) and incubated at 70°C for 2-5 hours, and then
663 the buffer was replaced by HM containing digoxigenin-11-UTP (Sigma-Aldrich, 11277073910)
664 labelled probe. After overnight incubation at 70°C, embryos were washed through 75%, 50%
665 and 25% HM/2xSSC at 70°C for 20 minutes each. Embryos were then washed in 2x SSC at
666 70°C for 20 minutes and washed in 0.2xSSC twice at 70°C for 40 minutes. 0.2xSSC were then
667 progressively replaced by PBST at room temperature. Embryos were blocked in blocking
668 buffer at 4°C for 3 hours, and incubated in blocking buffer with anti-DIG-AP antibody
669 (1:10000 dilution, Sigma-Aldrich, 11093274910) at 4°C overnight on a low speed shaker.
670 Embryos were washed 6 times for 15 minutes each in PBST to remove excess antibodies.

671 Embryos were stained in NBT/BCIP staining solution, and the staining was stopped by

672 washing twice in PBST when the expected staining patterns were observed.

673

674 **Data availability**

675 The raw data of serial bulk RNA-seq has been deposited to the Gene Expression Omnibus

676 (GEO) under accession number "[GSE262578](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE262578)". The published data used in this study can be

677 accessed through the following links or accession number: (1) Stereo-seq data of *Drosophila*

678 embryos¹³ (<https://db.cngb.org/stomics/flysta3d/download/>); (2) Stereo-seq data of

679 zebrafish embryos¹² (<https://db.cngb.org/stomics/zesta/download/>); (3) live imaging data of

680 zebrafish embryos¹⁹ (idr0068 from <https://idr.openmicroscopy.org>); (4) Spatial

681 transcriptomics data of human PDAC: GEO accession: "[GSE111672](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE111672)"⁵⁸; (5) Bulk RNA-seq data

682 of human PDAC: GEO accession: "[GSE171485](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171485)"⁵⁹.

683

684 **Code availability**

685 The codes for Palette pipeline and bioinformatics analyses are deposited on GitHub

686 (<https://github.com/ldo2zju/DreSTEP>). Any other custom code and data are available from

687 the authors upon request.

688

689 **Additional information**

690 Supplemental Information Supplementary Figures 1-12 and Supplementary Data 1-9.

691

692 **References**

- 693 1. Nichterwitz, S., Benitez, J.A., Hoogstraaten, R., Deng, Q. & Hedlund, E. LCM-Seq: A Method for
694 Spatial Transcriptomic Profiling Using Laser Capture Microdissection Coupled with PolyA-
695 Based RNA Sequencing. *Methods Mol Biol* **1649**, 95-110 (2018).
- 696 2. Guo, W. et al. Laser capture microdissection for biomedical research: towards high-
697 throughput, multi-omics, and single-cell resolution. *J Genet Genomics* **50**, 641-651 (2023).
- 698 3. Junker, J.P. et al. Genome-wide RNA Tomography in the zebrafish embryo. *Cell* **159**, 662-675
699 (2014).
- 700 4. Chen, J. et al. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq.
701 *Nat Protoc* **12**, 566-580 (2017).
- 702 5. Wang, R., Peng, G., Tam, P.P.L. & Jing, N. Integration of computational analysis and spatial
703 transcriptomics in single-cell study. *Genomics Proteomics Bioinformatics* (2022).
- 704 6. Lubeck, E., Coskun, A.F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell *in situ* RNA profiling by
705 sequential hybridization. *Nat Methods* **11**, 360-361 (2014).
- 706 7. Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH
707 reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. *Proc
708 Natl Acad Sci U S A* **116**, 19490-19499 (2019).
- 709 8. Rodrigues, S.G. et al. Slide-seq: A scalable technology for measuring genome-wide expression
710 at high spatial resolution. *Science* **363**, 1463-+ (2019).
- 711 9. Wu, S.Z. et al. A single-cell and spatially resolved atlas of human breast cancers. *Nat Genet* **53**,
712 1334-1347 (2021).
- 713 10. Fawkner-Corbett, D. et al. Spatiotemporal analysis of human intestinal development at single-
714 cell resolution. *Cell* **184**, 810-+ (2021).
- 715 11. Chen, A. et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA
716 nanoball-patterned arrays. *Cell* **185**, 1777-1792 e1721 (2022).
- 717 12. Liu, C. et al. Spatiotemporal mapping of gene expression landscapes and developmental
718 trajectories during zebrafish embryogenesis. *Dev Cell* **57**, 1284-1298 e1285 (2022).
- 719 13. Wang, M. et al. High-resolution 3D spatiotemporal transcriptomic maps of developing
720 Drosophila embryos and larvae. *Dev Cell* **57**, 1271-1283 e1274 (2022).
- 721 14. Cable, D.M. et al. Robust decomposition of cell type mixtures in spatial transcriptomics. *Nat
722 Biotechnol* **40**, 517-526 (2022).
- 723 15. Li, B. et al. Comprehensive analyses of tumor immunity: implications for cancer
724 immunotherapy. *Genome Biol* **17**, 174 (2016).
- 725 16. Wang, X., Park, J., Susztak, K., Zhang, N.R. & Li, M. Bulk tissue cell type deconvolution with
726 multi-subject single-cell expression reference. *Nat Commun* **10**, 380 (2019).
- 727 17. Tsoucas, D. et al. Accurate estimation of cell-type composition from gene expression data. *Nat
728 Commun* **10**, 2975 (2019).

729 18. Liao, J. et al. De novo analysis of bulk RNA-seq data at spatially resolved single-cell resolution.
730 *Nat Commun* **13** (2022).

731 19. Shah, G. et al. Multi-scale imaging and analysis identify pan-embryo cell dynamics of
732 germlayer formation in zebrafish. *Nat Commun* **10**, 5753 (2019).

733 20. Zhao, E. et al. Spatial transcriptomics at subspot resolution with BayesSpace. *Nature
734 Biotechnology* **39**, 1375-+ (2021).

735 21. Satija, R., Farrell, J.A., Gennert, D., Schier, A.F. & Regev, A. Spatial reconstruction of single-cell
736 gene expression data. *Nat Biotechnol* **33**, 495-502 (2015).

737 22. Cheng, T. et al. Nodal coordinates the anterior-posterior patterning of germ layers and induces
738 head formation in zebrafish explants. *Cell Rep* **42**, 112351 (2023).

739 23. Kabsch, W. A discussion of the solution for the best rotation to relate two sets of vectors. *Acta
740 Crystallographica Section A* **34**, 827-828 (1978).

741 24. Kabsch, W. A solution for the best rotation to relate two sets of vectors. *Acta
742 Crystallographica Section A* **32**, 922-923 (1976).

743 25. Jungnickel, D. in *Graphs, Networks and Algorithms* 129-153 (Springer Berlin Heidelberg, Berlin,
744 Heidelberg; 1999).

745 26. Jin, S.Q. et al. Inference and analysis of cell-cell communication using CellChat. *Nat Commun*
746 **12** (2021).

747 27. Jin, S., Plikus, M.V. & Nie, Q. CellChat for systematic analysis of cell-cell communication from
748 single-cell and spatially resolved transcriptomics. *bioRxiv*, 2023.2011.2005.565674 (2023).

749 28. Groves, J.A., Hammond, C.L. & Hughes, S.M. Fgf8 drives myogenic progression of a novel
750 lateral fast muscle fibre population in zebrafish. *Development* **132**, 4211-4222 (2005).

751 29. Reifers, F. et al. Fgf8 is mutated in zebrafish acerebellar (ace) mutants and is required for
752 maintenance of midbrain-hindbrain boundary development and somitogenesis. *Development*
753 **125**, 2381-2395 (1998).

754 30. Draper, B.W., Stock, D.W. & Kimmel, C.B. Zebrafish fgf24 functions with fgf8 to promote
755 posterior mesodermal development. *Development* **130**, 4639-4654 (2003).

756 31. del Corral, R.D. & Morales, A.V. The Multiple Roles of FGF Signaling in the Developing Spinal
757 Cord. *Front Cell Dev Biol* **5** (2017).

758 32. Green, D.G. et al. Wnt signaling regulates neural plate patterning in distinct temporal phases
759 with dynamic transcriptional outputs. *Dev Biol* **462**, 152-164 (2020).

760 33. Yang, Y. & Thorpe, C. BMP and non-canonical Wnt signaling are required for inhibition of
761 secondary tail formation in zebrafish. *Development* **138**, 2601-2611 (2011).

762 34. Gurdon, J.B. & Bourillot, P.Y. Morphogen gradient interpretation. *Nature* **413**, 797-803 (2001).

763 35. Stathopoulos, A. & Iber, D. Studies of morphogens: keep calm and carry on. *Development* **140**,
764 4119-4124 (2013).

765 36. Grant, P.K. et al. Interpretation of morphogen gradients by a synthetic bistable circuit. *Nat*
766 *Commun* **11**, 5545 (2020).

767 37. Zagorski, M. et al. Decoding of position in the developing neural tube from antiparallel
768 morphogen gradients. *Science (New York, N.Y.)* **356**, 1379-1383 (2017).

769 38. Kimelman, D. & Martin, B.L. Anterior-posterior patterning in early development: three
770 strategies. *Wiley Interdiscip Rev Dev Biol* **1**, 253-266 (2012).

771 39. Schilling, T.F. Anterior-posterior patterning and segmentation of the vertebrate head. *Integr*
772 *Comp Biol* **48**, 658-667 (2008).

773 40. Anand, G.M. et al. Controlling organoid symmetry breaking uncovers an excitable system
774 underlying human axial elongation. *Cell* **186**, 497-512 e423 (2023).

775 41. Mongera, A., Michaut, A., Guillot, C., Xiong, F. & Pourquie, O. Mechanics of Anteroposterior
776 Axis Formation in Vertebrates. *Annu Rev Cell Dev Biol* **35**, 259-283 (2019).

777 42. Mallo, M. Revisiting the involvement of signaling gradients in somitogenesis. *FEBS J* **283**, 1430-
778 1437 (2016).

779 43. Diez del Corral, R. et al. Opposing FGF and retinoid pathways control ventral neural pattern,
780 neuronal differentiation, and segmentation during body axis extension. *Neuron* **40**, 65-79
781 (2003).

782 44. Simsek, M.F. & Ozbudak, E.M. Spatial Fold Change of FGF Signaling Encodes Positional
783 Information for Segmental Determination in Zebrafish. *Cell Rep* **24**, 66-78 e68 (2018).

784 45. Zhang, W. et al. Fgf8 dynamics and critical slowing down may account for the temperature
785 independence of somitogenesis. *Commun Biol* **5**, 113 (2022).

786 46. Bernheim, S. & Meilhac, S.M. Mesoderm patterning by a dynamic gradient of retinoic acid
787 signalling. *Philos Trans R Soc Lond B Biol Sci* **375**, 20190556 (2020).

788 47. Pyati, U.J., Webb, A.E. & Kimelman, D. Transgenic zebrafish reveal stage-specific roles for Bmp
789 signalling in ventral and posterior mesoderm development. *Development* **132**, 2333-2343
790 (2005).

791 48. Beck, C.W., Whitman, M. & Slack, J.M. The role of BMP signaling in outgrowth and patterning
792 of the Xenopus tail bud. *Dev Biol* **238**, 303-314 (2001).

793 49. Gonzalez, E.M. et al. Head and trunk in zebrafish arise via coinhibition of BMP signaling by
794 bozozok and chordino. *Genes Dev* **14**, 3087-3092 (2000).

795 50. Sharma, R. et al. Bmp signaling maintains a mesoderm progenitor cell state in the mouse
796 tailbud. *Development* **144**, 2982-2993 (2017).

797 51. Takebayashi-Suzuki, K. & Suzuki, A. Intracellular Communication among Morphogen Signaling
798 Pathways during Vertebrate Body Plan Formation. *Genes-Basel* **11** (2020).

799 52. Briscoe, J. & Small, S. Morphogen rules: design principles of gradient-mediated embryo
800 patterning. *Development* **142**, 3996-4009 (2015).

801 53. Boylan, M., Anderson, M.J., Ornitz, D.M. & Lewandoski, M. The Fgf8 subfamily (Fgf8, Fgf17 and
802 Fgf18) is required for closure of the embryonic ventral body wall. *Development* **147** (2020).

803 54. Cao, Y. et al. fgf17b, a novel member of Fgf family, helps patterning zebrafish embryos. *Dev
804 Biol* **271**, 130-143 (2004).

805 55. Moreau, C. et al. Timed Collinear Activation of Hox Genes during Gastrulation Controls the
806 Avian Forelimb Position. *Curr Biol* **29**, 35-50 e34 (2019).

807 56. Durston, A.J. Vertebrate hox temporal collinearity: does it exist and what is it's function? *Cell
808 Cycle* **18**, 523-530 (2019).

809 57. Iimura, T., Denans, N. & Pourquié, O. Establishment of Hox Vertebral Identities in the
810 Embryonic Spine Precursors. *Hox Genes* **88**, 201-+ (2009).

811 58. Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-
812 seq reveals tissue architecture in pancreatic ductal adenocarcinomas. *Nat Biotechnol* **38**, 333-
813 342 (2020).

814 59. Wu, H. et al. Identification and functional analysis of novel oncogene DDX60L in pancreatic
815 ductal adenocarcinoma. *BMC Genomics* **22**, 833 (2021).

816 60. Zeira, R., Land, M., Strzalkowski, A. & Raphael, B.J. Alignment and integration of spatial
817 transcriptomics data. *Nat Methods* **19**, 567-575 (2022).

818 61. Wang, G. et al. Construction of a 3D whole organism spatial atlas by joint modelling of
819 multiple slices with deep neural networks. *Nature Machine Intelligence* **5**, 1200-1213 (2023).

820 62. Qiu, X. et al. Spateo: multidimensional spatiotemporal modeling of single-cell spatial
821 transcriptomics. *bioRxiv*, 2022.2012.2007.519417 (2022).

822 63. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**, 15-21 (2013).

823 64. Liao, Y., Smyth, G.K. & Shi, W. featureCounts: an efficient general purpose program for
824 assigning sequence reads to genomic features. *Bioinformatics (Oxford, England)* **30**, 923-930
825 (2014).

826 65. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential
827 expression analysis of digital gene expression data. *Bioinformatics* **26**, 139-140 (2010).

828 66. Chen, Y., Lun, A.T. & Smyth, G.K. From reads to genes to pathways: differential expression
829 analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline.
830 *F1000Res* **5**, 1438 (2016).

831 67. McCarthy, D.J., Chen, Y.S. & Smyth, G.K. Differential expression analysis of multifactor RNA-
832 Seq experiments with respect to biological variation. *Nucleic Acids Res* **40**, 4288-4297 (2012).

833 68. Liaw, A. & Wiener, M. Classification and Regression by randomForest. *R News* **2**, 18-22 (2002).

834 69. Thisse, B. & Thisse, C. In situ hybridization on whole-mount zebrafish embryos and young
835 larvae. *Methods Mol Biol* **1211**, 53-67 (2014).

836

837

839 **Acknowledgments**

840 We thank Dr. Si-Yu He at Stanford University and the members of Laboratory of
841 Development and Organogenesis (LDO) at Zhejiang University for helpful suggestions and
842 discussions. This work was supported by grants from National Key Research and
843 Development Program of China (2022YFA1103100), the National Natural Science
844 Foundation of China (32050109, 32300677, 32300688, 82204772, U23A20513), the
845 "Pioneer" and "Leading Goose" R&D Program of Zhejiang (2024C03106), and Ningbo Top
846 Medical and Health Research Program (No. 2022030309).

847

848 **Conflict of Interest**

849 The authors declare no competing interests.

850

851 **Author Contributions**

852 PFX, YD, TC, XL, JL and XHF conceived and designed the research; YD, TC and JL designed
853 Palette pipeline, constructed *DreSTEP* and performed analyses; XL, XXF, YH, XFY, LEY, HRL
854 and ZWB performed experiments; YD and TC drafted the manuscript; JL, XHF and PFX edited
855 the manuscript; all authors reviewed and approved the manuscript. PFX and XHF supervised
856 this study. Fundings for the study were provided by PFX, YD, TC, JL and XHF.

857