

1 Structure of a novel α -synuclein filament fold 2 from multiple system atrophy

3
4 Nicholas L. Yan¹, Francisco Candido¹, Eric Tse^{1,2}, Arthur A. Melo¹, Stanley B. Prusiner^{1,2,3},
5 Daniel A. Mordes^{1,4,5}, Daniel R. Southworth^{1,3}, Nick A. Paras^{1,2}, and Gregory E. Merz^{*1,2}

6
7 ¹ Institute for Neurodegenerative Diseases, University of California San Francisco, San
8 Francisco, CA, USA

9 ² Department of Neurology, University of California San Francisco, San Francisco, CA, USA

10 ³ Department of Biochemistry and Biophysics, University of California San Francisco, San
11 Francisco, CA, USA

12 ⁴ Department of Pathology, University of California San Francisco, San Francisco, CA, USA

13 ⁵ Department of Pathology, Massachusetts General Hospital, Boston, MA, USA

14

15 *Correspondence: Gregory.merz@ucsf.edu

16

17

18

19

20

21

22

23

24

25

26

27 **Abstract**

28 Multiple system atrophy (MSA) is a synucleinopathy, a group of related diseases
29 characterized by the accumulation of α -synuclein aggregates in the brain. In MSA, these
30 aggregates form glial cytoplasmic inclusions, which contain abundant cross- β amyloid filaments.
31 Structures of α -synuclein filaments isolated from MSA patient tissue were determined by cryo–
32 electron microscopy (cryo-EM), revealing three discrete folds that are distinct from α -synuclein
33 filaments associated with other synucleinopathies. Here, we use cryo-EM classification methods
34 to characterize filaments from one individual with MSA and identify a novel, low-populated
35 MSA filament fold (designated Type I₂) in addition to a predominant class comprising MSA Type
36 II₂. The 3.3- \AA resolution structure of the Type I₂ filament reveals a fold consisting of two
37 asymmetric protofilaments. One is identical to a previously solved Type I protofilament, while
38 the second adopts a novel fold that is chimeric between two previously reported Type I and II
39 protofilaments. These results further define disease-specific folds of α -synuclein filaments that
40 develop in MSA and have implications for the design of therapeutic and diagnostic molecules
41 that target disease.

42

43 Keywords: Cryo–electron microscopy, α -synuclein, multiple system atrophy, protein
44 aggregation, neurodegeneration, prion

45

46

47

48

49 **Introduction**

50 Alpha-synuclein is an intrinsically disordered, 140–amino acid protein [7] that localizes
51 primarily to the axon terminals of presynaptic neurons, where it participates in membrane
52 binding, vesicle trafficking, and neurotransmitter release [3, 15]. The misfolding and aggregation
53 of α -synuclein in the brain are hallmarks of a group of neurodegenerative diseases known as
54 synucleinopathies [2, 19], which includes Parkinson’s disease and dementia with Lewy bodies.
55 One such disease, multiple system atrophy (MSA), is clinically characterized by cerebellar
56 dysfunction or parkinsonism and neuropathologically characterized by glial cytoplasmic
57 inclusions (GCIs) in oligodendrocytes [12, 18]. GCIs contain abundant fibrils that appear to be
58 the result of soluble α -synuclein misfolding into self-templating prion conformations that
59 ultimately misassemble as insoluble amyloid filaments [21, 28-31]. Structural studies on
60 filaments isolated from five MSA patients revealed three distinct filament folds (denoted Type I,
61 II₁, and II₂). These findings contrast with Lewy body pathologies, which appear to contain a
62 single α -synuclein filament type, and juvenile-onset synucleinopathy, which contains one α -
63 synuclein fold in either a singlet or doublet association [25, 32, 33].

64 The previously determined MSA filament types each consist of two asymmetric
65 protofilaments (PF-A and PF-B) that associate along an extended interface nearly spanning the
66 width of the filament core (Supplementary Fig. S1) [25]. Also common to each type is a central
67 channel flanked by basic residues (Lys43, Lys45, and His50 of each protofilament) with
68 unassigned density present within the channel. However, major conformational differences lie
69 within the protofilaments that compose each mature fibril core. Type I MSA filaments contain
70 two PFs, one PF-IA and one PF-IB. Residues Gly14 to Phe94 are resolved in PF-IA, and Lys21
71 to Gln99 are resolved in PF-IB. While both PF-IA and PF-IB contain a hairpin motif in the N-

72 terminal region and a three-layered L-shaped motif in the C-terminal region, PF-IA also contains
73 a single-layered L-shaped motif (residues 32–45) joining the N- and C-terminal motifs. Thus, the
74 residues composing the terminal motifs differ in each protofilament, and the fold of the three-
75 layered L-shaped motif also differs in the packing of the inner layer relative to the central layer.

76 The Type II filament subtypes (II₁ and II₂) each have two protofilaments [25] and contain
77 identical PF-IIA, which span residues 14–94. Comparing PF-IA and PF-IIA, the N-terminal
78 regions spanning residues 14–42 are conformationally identical. However, these protofilaments
79 differ in the C-terminal region, including the conformation of the three-layered L-shaped motif.
80 PF-IIA contains a small channel within the filament core, surrounded by Val52, Thr54, Ala56,
81 Thr59, Glu61, Thr72, Gly73, and Val74, that is not present in PF-IIB because these residues form
82 closer contacts with each other. PF-IIB₁ and PF-IIB₂ include residues 36–99 and contain a three-
83 layered L-shaped motif (residues 47–99). In contrast to PF-IB, these protofilaments lack the N-
84 terminal hairpin and contain a shorter one-layer L-shaped motif (residues 36–46) instead. PF-
85 IIB₁ and PF-IIB₂ are distinguished from each other by a change in a surface loop at the C-
86 terminal end of the ordered core (residues 81–90). The surface loop conformation of PF-IIB₁ is
87 similar to the loop in PF-IB, while PF-IIB₂ has a distinct loop conformation that is shifted
88 approximately 4 Å towards the C-terminus of the protofilament core. The overall helical
89 symmetry of each MSA filament type is similar, although Type I filaments have a slightly greater
90 twist (-1.42°) compared to Type II₁/II₂ filaments (-1.34°).

91 MSA filament types are heterogeneously distributed between different patients [25]. For
92 example, in the original report from Schweighauser et al., two patients had almost exclusively
93 Type I filaments, one patient had almost exclusively Type II filaments, and the remaining two
94 patients had both Type I and II filaments in varying ratios. This heterogeneity suggests that there

95 may be a greater variety of folds than previously reported. In this study, we use cryo-EM to
96 obtain high-resolution (3.2–3.3 Å) structures of filaments purified from tissue of another patient
97 with MSA. While the majority (66%) of the data consists of Type II₂ filaments, our results reveal
98 a novel protofilament fold in a subset (5%) of filaments that are related to Type I filaments.

99 **Methods**

100 *MSA filament extraction*

101 Deidentified human tissue was obtained from the Massachusetts Alzheimer's Disease
102 Research Center (ADRC). All donors provided consent to donate brains for research purposes in
103 accordance with the standards of the ADRC. This study was exempt from institutional review
104 board approval in accordance with the institutional review board policy of the University of
105 California San Francisco. Filament extraction was performed using a modified protocol from
106 Schweighauser et al. [25]. In summary, 1–2 g of freshly frozen cerebellum tissue from a patient
107 pathologically diagnosed with MSA was homogenized at 20 mL/g of tissue in 10 mM Tris-HCl
108 (pH 7.4), 800 mM NaCl, 1 mM EGTA, and 10% sucrose. N-lauroylsarcosinate (final
109 concentration of 1% w/v) was added to the homogenate and incubated at 37°C for 30 min.
110 Afterwards, homogenates were centrifuged at 10,000 × g for 10 min. The supernatant was kept
111 and centrifuged at 100,000 × g for 20 min. The pellet was resuspended at 500 µL/g of frozen
112 tissue in 10 mM Tris-HCl (pH 7.4), 800 mM NaCl, 1 mM EGTA, and 10% sucrose. The
113 suspension was then centrifuged at 3,000 × g for 5 min. The supernatant was kept and diluted
114 three-fold with 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 10% sucrose, and 2% sarkosyl. This
115 suspension was then centrifuged at 150,000 × g for 1 h. The filament-enriched pellet was
116 resuspended in 30 mM Tris-HCl (pH 7.4) using 100 µL/g of frozen tissue.

117 *Cryo-EM sample preparation and data collection*

118 Purified filaments (3 μ L) were added to a 200 mesh 1.2/1.3R Au Quantifoil grid coated
119 with a 2-nm thick carbon layer, which was not glow discharged. After 30 seconds, grids were
120 blotted for 7.5 s at room temperature and 100% humidity using a FEI Vitrobot Mark IV, followed
121 by plunge freezing in liquid ethane. A total of 42,224 super-resolution movies were collected at a
122 nominal magnification of 105,000 \times (physical pixel size: 0.417 $\text{\AA}/\text{pixel}$) on a Titan Krios
123 (Thermo Fisher Scientific) operated at 300 kV and equipped with a K3 direct electron detector
124 and BioQuantum energy filter (Gatan, Inc.) set to a slit width of 20 eV. A defocus range of -0.8 to
125 -1.8 μm was used with a total exposure time of 2.024 s fractionated into 0.025-second subframes.
126 The total dose for each movie was 46 electrons/ \AA^2 . Movies were motion-corrected using
127 MotionCor2 [34] in Scipion [6] and were Fourier cropped by a factor of 2 to a final pixel size of
128 0.834 $\text{\AA}/\text{pixel}$. Motion-corrected and dose-weighted micrographs were manually curated in
129 Scipion to remove micrographs lacking filaments, those at low resolution, or those with
130 significant ice contamination, resulting in 4,392 remaining micrographs.

131 *Cryo-EM image processing*

132 A graphical overview of the data processing workflow is provided in Supplementary
133 Figure S2. All image processing was done in RELION 4 [14, 16]. Dose-weighted summed
134 micrographs were imported into RELION 4. The contrast transfer function was estimated using
135 CTFFIND-4.1 [23]. Filaments were manually picked, and segments were extracted with a box
136 size of 900 pixels downscaled to 300 pixels, resulting in 257,982 segments. Reference-free 2D
137 classification was used to remove contaminants and segments contributing to straight filaments,
138 resulting in 255,032 remaining segments. These were re-extracted with a box size of 288 pixels
139 without downscaling, followed by another round of reference-free 2D classification that did not

140 filter out more contaminant segments. One round of 3D classification with image alignment was
141 performed on the segments using a reference map consisting of the existing MSA Type I
142 filaments (PDB code: 6XYO), a regularization parameter (T) of 20, and fixing helical parameters
143 to -1.42° twist and 4.76 Å rise. We were unable to resolve Type I₂ filaments by allowing the
144 helical parameters to vary. One class (12,802 segments) corresponded to Type I₂ filaments. One
145 round of 3D auto-refinement was run using this map low-pass filtered to 10 Å, allowing rise and
146 twist parameters to vary. The map was sharpened using the standard post-processing procedures
147 in RELION. Full statistics are shown in Supplementary Table S1.

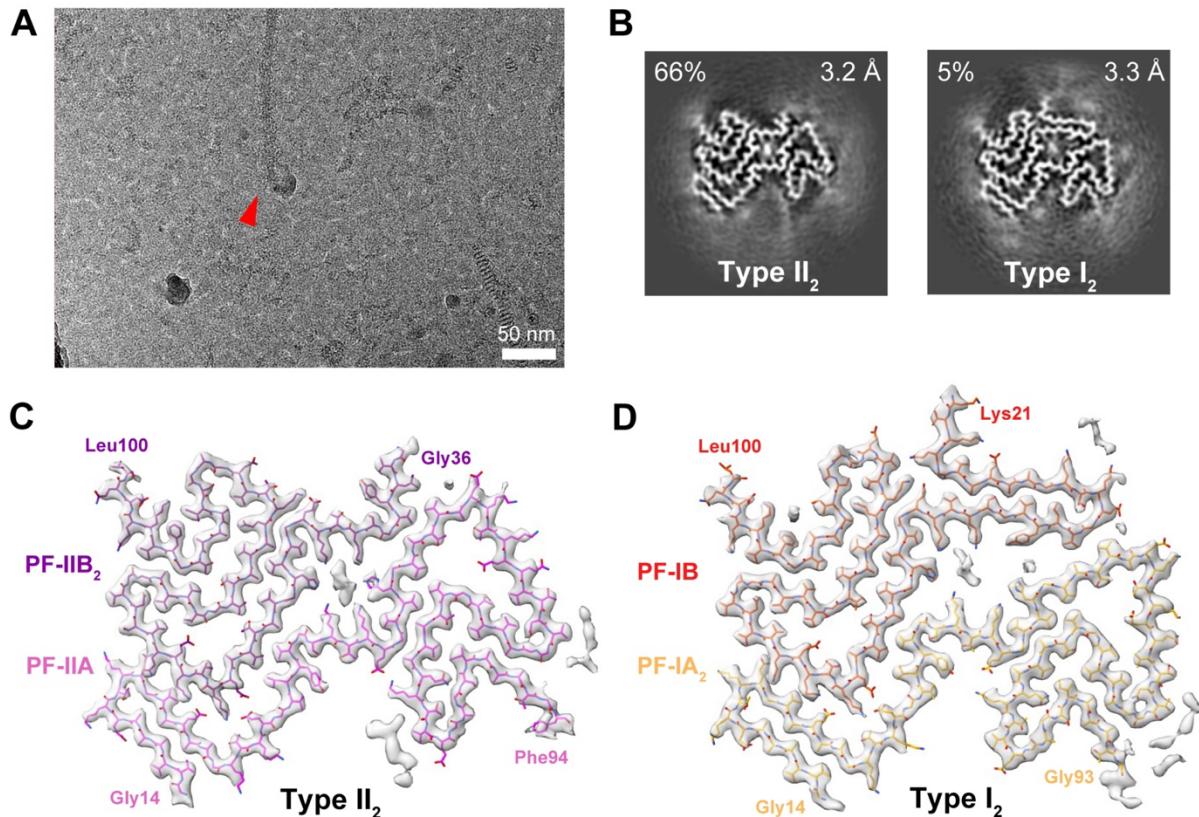
148 Two out of the 12 classes (57,809 segments) corresponded to Type II₂ filaments with no
149 breaks in the polypeptide density. Segments corresponding to these classes were pooled and
150 subjected to one round of 3D classification without image alignment using a reference map
151 consisting of one of these classes (A3; Supplementary Fig. S3), a regularization parameter (T) of
152 20, and fixing helical parameters to -1.34° twist and 4.76 Å rise. The highest resolution class
153 (31,115 segments) was subjected to 3D auto-refinement and post-processing to give a refined
154 Type II₂ filament map.

155 Of the 12 classes, 4 classes (110,255 segments) displayed clear separation between
156 protofilaments in the z-direction but modest resolution in the x- and y-directions, suggesting
157 suboptimal alignment. Segments corresponding to these classes were pooled and subjected to
158 one round of 3D classification with image alignment using a reference map consisting of the
159 existing MSA Type II₂ filaments (PDB code: 6XYQ), a regularization parameter (T) of 20, and
160 fixing helical parameters to -1.34° twist and 4.76 Å rise. Most of these segments (110,071)
161 converged into one class corresponding to Type II₂ filaments, which was not further refined. The

162 remaining classes (74,166 segments) from the initial round of 3D classification were low
163 resolution and excluded from further processing.

164 To eliminate bias in 3D classification and further verify the distribution of filaments, we
165 generated a 3D initial model ab initio from 2D class averages using RELION's
166 `relion_helix_inimodel2d` feature. This initial model was used as a reference map for 3D
167 classification using the otherwise same inputs as the first round of 3D classification described
168 above, resulting in classes corresponding to Type II₂ filaments (206,869 segments, 81% of the
169 data) and Type I₂ filaments (15,369 segments, 6% of the data).

170 *Model building, refinement, and analysis*


171 A single strand of the previously solved MSA Type II₂ (PDB code: 6XYQ) or type I
172 (PDB code: 6XYO) filament structures was placed in the density using Chimera [20].
173 Subsequent model building was performed using COOT [8] and ISOLDE [5] followed by
174 refinement in Phenix [1]. The model was then translated to produce a stack occupying all regions
175 with continuous density on the map. Refinement statistics are shown in Supplementary Table S1.
176 Data were deposited into the Protein Data Bank (PDB) under accession codes 9CD9 (Type II₂)
177 and 9CDA (Type I₂) and into the Electron Microscopy Data Bank (EMDB) under accession
178 codes EMD-45464 (Type II₂) and EMD-45465 (Type I₂).

179 **Results**

180 Partially purified, sarkosyl-insoluble filaments were isolated from the postmortem
181 cerebellum of a 67-year-old male neuropathologically diagnosed with MSA. Negative-stain
182 transmission electron microscopy on this sample revealed filaments that were morphologically
183 similar to those in previous reports (Supplementary Fig. S4) [17, 25]. After cryo-EM imaging

184 using standard collection methods (Fig. 1A; see Methods), reference-free 2D classification
185 resulted in 2D class averages that were similar to those previously reported [25], exhibiting a
186 crossover distance of approximately 600 Å (Supplementary Fig. S5). However, it was unclear
187 whether these 2D classes corresponded to a known filament type. After 3D classification and
188 helical reconstruction, we were able to obtain high-resolution structures of two MSA filament
189 folds (Fig. 1B). The primary fold type (Fig. 1C), refined to 3.2 Å and representing 66% of the
190 data (Supplementary Table S1), was nearly identical to Type II₂ filaments (PDB: 6XYQ), with an
191 all-atom root-mean-square deviation (RMSD) of 0.5 Å (Supplementary Fig. S6). We observed
192 previously reported regions of unknown density, such as non-proteinaceous density within the
193 central channel flanked by basic residues and a peptide-like density contacting residues Lys80–
194 Val82 of PF-IIA [25]. We were able to resolve an additional residue (Leu100) at the C-terminal
195 region of the PF-IIB₂ ordered core.

196
197
198
199
200

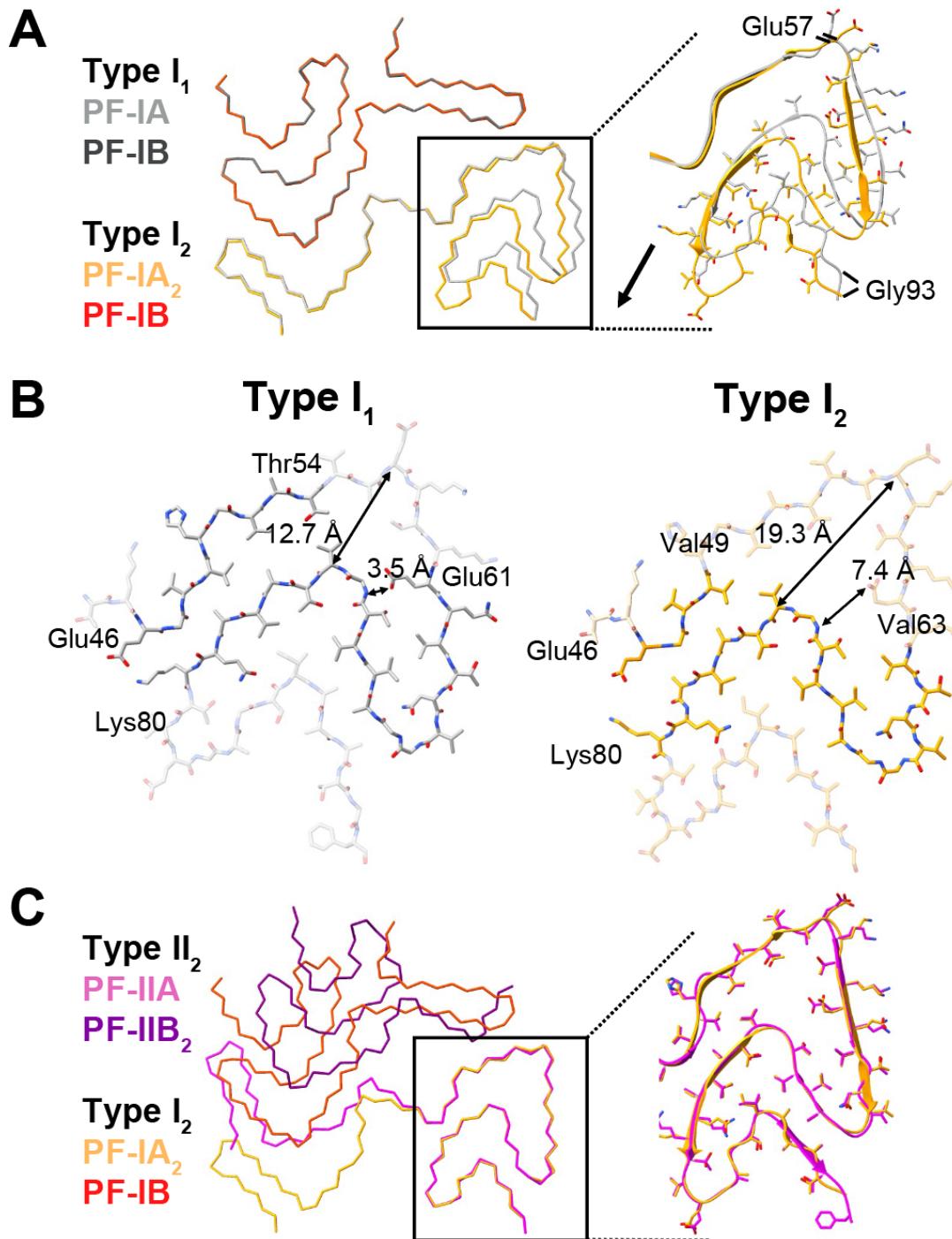
201

202 **Fig. 1** Cryo-EM analysis on ex vivo MSA filaments reveals a novel filament fold: Type I₂
203 filaments. (A) Representative micrograph. The red arrow indicates an MSA filament. (B) Cross-
204 section of two major conformations of MSA filaments, Type II₂ and Type I₂, identified after 3D
205 classification of filament segments. The resolutions of the final reconstructions and abundance in
206 the data are indicated. The remaining 29% of data consisted of low-resolution classes. (C)
207 Density map and model of Type II₂ filaments. The two constituent protofilaments PF-IIA and PF-
208 IIB₂, along with residues at the termini of the ordered core, are labeled and color coded in pink
209 and purple, respectively. Regions of unmodeled density are also shown. (D) Density map and
210 model of Type I₂ filaments. The two constituent protofilaments PF-IA₂ and PF-IB, along with
211 residues at the termini of the ordered core, are labeled and color coded in red and yellow,
212 respectively. Regions of unmodeled density are also shown.

213

214

215


216

217

218

219 In addition to the successful reproduction of the Type II₂ MSA filament, we also resolved
220 a filament exhibiting a conformation of α -synuclein that has not been reported previously. We
221 refer to this low-populated filament fold as a Type I₂ filament, which represents 5% of the data
222 (Fig. 1B and Supplementary Fig. S7). The structure of Type I₂ filaments, refined to 3.3- \AA
223 resolution, resembles Type I (hereafter called Type I₁) and comprises two protofilaments, PF-IA₂
224 and PF-IB (Fig. 1D). The ordered core of these protofilaments includes residues Gly14–Gly93
225 for PF-IA₂ and Lys21–Leu100 for PF-1B. The PF-IB protofilament is common between Type I₁
226 and Type I₂ filaments, with an RMSD of 0.8 \AA to the existing Type I₁ filament model (PDB:
227 6XYO) [25].

228 The differences between Type I₁ and Type I₂ filaments exist within the second
229 protofilament: PF-IA for Type I₁ and PF-IA₂ for Type I₂ (Fig. 2A). While the N-terminal regions
230 comprising residues 14–56 are nearly identical between the two protofilaments, the C-terminal
231 regions of the protofilaments (residues 57–93) adopt distinct conformations. Specifically, this
232 region in PF-IA₂ is shifted outwards and away from the interprotofilament interface. This
233 conformational change shifts the register of the hydrophobic intraprotofilament interface
234 containing residues Val74 and Ala76 by two residues and creates a channel within the filament
235 core, resulting in a net loss of hydrophobic interactions (Fig. 2B). Additionally, potential
236 interstrand polar contacts between the Glu61 sidechain and Gly73 backbone amide are lost.
237 Interestingly, the C-terminal region of PF-IA₂ is virtually identical to the analogous region in PF-
238 IIA found within Type II MSA filaments, although PF-IIA contains the C-terminal Phe94 residue
239 that was not well resolved in PF-IA₂ (Fig. 2C). Comparing PF-IA and PF-IA₂, the average $\text{C}\alpha$
240 displacement of residues 57–93 is 4.8 \AA but is 0.3 \AA between PF-IIA and PF-IA₂.

241

242 **Fig. 2** Comparison of MSA Type I₂ filaments to previously solved MSA filament structures. (A) Overlay of Type I₁ (PDB: 6XYO) and Type I₂ filaments aligned using PF-IB. The black arrow indicates the direction of the conformational change in the C-terminal region. The average C_α displacement of residues 57–93 is 4.8 Å. (B) Comparison of intraprotofilament contacts in the C-terminal regions of PF-IA (Type I₁) and PF-IA₂ (Type I₂). (C) Overlay of Type I₁ and Type II₂ (PDB: 6XYQ) filaments aligned using residues 47–93 of PF-IIA.

248

249 The morphological and helical parameter similarities between Type II₂ and Type I₂ MSA
250 filaments prompted us to inquire whether both folds could coexist within the same filament or if
251 the folds are instead segregated to individual filaments. Previous cryo-EM analysis of Lewy
252 body α -synuclein filaments suggested that multiple morphologies (twisted and untwisted) could
253 coexist within the same filaments based on 2D classification, although a structure of the
254 untwisted morphology was not determined [33]. To address this question, we mapped segments
255 classifying Type I₂ or Type II₂ conformations to the original micrographs (Fig. 3A–C). Due to the
256 13-fold greater abundance of Type II₂ compared to Type I₂ segments in the dataset, we only
257 analyzed micrographs containing at least one Type I₂ segment, corresponding to 437 micrographs
258 out of 4,392 (10%). We found that 71% of the 556 filaments in these micrographs contained
259 segments that classified exclusively or predominantly (90% or higher) to either Type I₂ or Type
260 II₂ (Fig. 3D). The remaining minority of filaments contained a more mixed distribution of folds,
261 although Type I₂ tended to predominate (e.g., Fig. 3A). These results suggest that each MSA type
262 preferentially segregates into separate filaments, though it is possible that a small number of
263 filaments contain mixed types. A precise quantification of this dataset is complicated by the
264 possibility of suboptimal classification, the extent of which is unknown.

265

266 **Fig. 3** Analysis of MSA Type I₂- and II₂-classified segments within individual filaments. (A–C)
267 After one round of 3D classification, segments corresponding to either type are color coded and
268 mapped to the original micrographs. (D) Histogram of the fraction of segments classified as Type
269 I₂ per filament in micrographs containing at least one I₂ segment.

270

271

272

273

274

275

276 **Discussion**

277 Cryo-EM studies have been instrumental in determining the structures of disease-
278 associated amyloid fibrils from synucleinopathies and other neurodegenerative diseases [9, 10,
279 13, 25, 27, 33]. Proteins associated with these diseases adopt numerous polymorphic folds that
280 are associated with specific neurodegenerative diseases [24]. In some diseases, such as MSA, α -
281 synuclein can adopt multiple distinct folds that are heterogeneously distributed between patients
282 [25]. While Type I₁ and II₂ filaments appear to predominate in MSA, the lower-population type
283 II₁ also exists within some patients. Here, we have expanded the spectrum of known MSA
284 filament types to include a fourth type, Type I₂ filaments.

285 Type I₂ filaments share one protofilament fold (PF-IB) with Type I₁ filaments but differ in
286 the PF-IA₂ protofilament, which instead bears similarities with the C-terminal region of the PF-
287 IIA protofilament found in Type II filaments. The chimeric nature of PF-IA₂ suggests that
288 common intermediates may exist in the misfolding and aggregation pathways of α -synuclein in
289 MSA but then diverge, leading to multiple folds. The exact nature of these pathways and the
290 relative contribution of each filament type to disease remains unknown. While MSA has two
291 phenotypes—MSA-C (cerebellar) and MSA-P (parkinsonian) [11]—whether the identity and
292 distribution of filament types correlates to phenotype remains undetermined.

293 We found that MSA Type I₂ and II₂ filaments tended to segregate to individual filaments,
294 but it is possible that a small number of filaments contain a mixed population of both types.
295 These results contrast with previous analyses of morphologically similar filament folds. Lewy
296 body α -synuclein filaments were found to contain a roughly even distribution of both twisted and
297 untwisted segments, although that analysis is limited by the lack of a structure of the untwisted
298 morphology [33]. Another study investigating ex vivo antibody light chain filaments from a

299 patient with systemic AL amyloidosis found two folds that unambiguously coexist in most
300 filaments and differ only slightly in a surface-exposed region of the filament core [22]. The
301 overall high homology allows for the formation of mixed filaments that maintain the favorable
302 interstrand interactions needed for filament growth and stability. In the case of MSA Types I₂ and
303 II₂, the folds are mostly dissimilar from each other except for residues 57–93 of PF-A, likely
304 preventing the formation of a stable interface between both types. We attempted to model one
305 Type I₂ filament rung directly adjacent to a type II₂ filament rung, which were aligned using the
306 homologous residues 57–93 of PF-IIA (Supplementary Fig. S3). However, the model revealed
307 severe steric clashes in the nonhomologous regions of the filaments. We do note the presence of
308 a small number of filaments (11/556 filaments) containing numerous segments (≥ 10) classified
309 into each type, suggesting that some mixed filaments may exist. It is possible that unresolved
310 intermediate folds stabilize the interface between different fibrillar forms.

311 Overall, these results improve our understanding of the α -synuclein structures underlying
312 MSA and provide a framework for developing therapeutics or diagnostics that bind to MSA
313 filaments with high affinity and selectivity. The existence of multiple MSA α -synuclein folds
314 suggests that these putative molecules should target a conserved region of the filament. However,
315 conformation-specific molecules would also be useful for rapidly quantifying each filament type
316 in a tissue sample without needing to resort to cryo-EM [4, 26, 32]. These molecules should help
317 us continue investigating the extent to which multiple folds exist in single filaments.

318

319

320

321 **List of Abbreviations**

322 Alzheimer's Disease Research Center (ADRC); Cryo-electron microscopy (cryo-EM); Electron
323 Microscopy Data Bank (EMDB); Fourier shell correlation (FSC); Glial cytoplasmic inclusions
324 (GCI); Multiple system atrophy (MSA); Protein Data Bank (PDB); Protofilament (PF); Root-
325 mean-square deviation (RMSD)

326

327 **Declarations**

328 *Ethics approval and consent to participate*

329 Not applicable

330

331 *Consent for publication*

332 Not applicable

333

334 *Availability of data and materials*

335 Refined atomic models have been deposited in the Protein Data Bank (PDB) under accession
336 numbers 9CD9 (Type II₂) and 9CDA (Type I₂). Corresponding cryo-EM maps have been
337 deposited in the Electron Microscopy Data Bank (EMDB) with accession numbers EMD-45464
338 (Type II₂) and EMD-45465 (Type I₂). Please address requests for materials to the corresponding
339 author.

340

341 *Competing Interests*

342 S.B.P is the founder of Prio-Pharma, which did not contribute financial or any other support to
343 these studies. All other authors declare that they have no competing interests.

344

345 *Funding*

346 This work was supported by the Henry M. Jackson Foundation (HU0001-21-2-065, subaward
347 5802), the Valour Foundation, and the Sergey Brin Family Foundation. The Massachusetts
348 Alzheimer's Disease Research Center (ADRC) was supported by National Institutes of
349 Health/National Institute on Aging (AG005134).

350

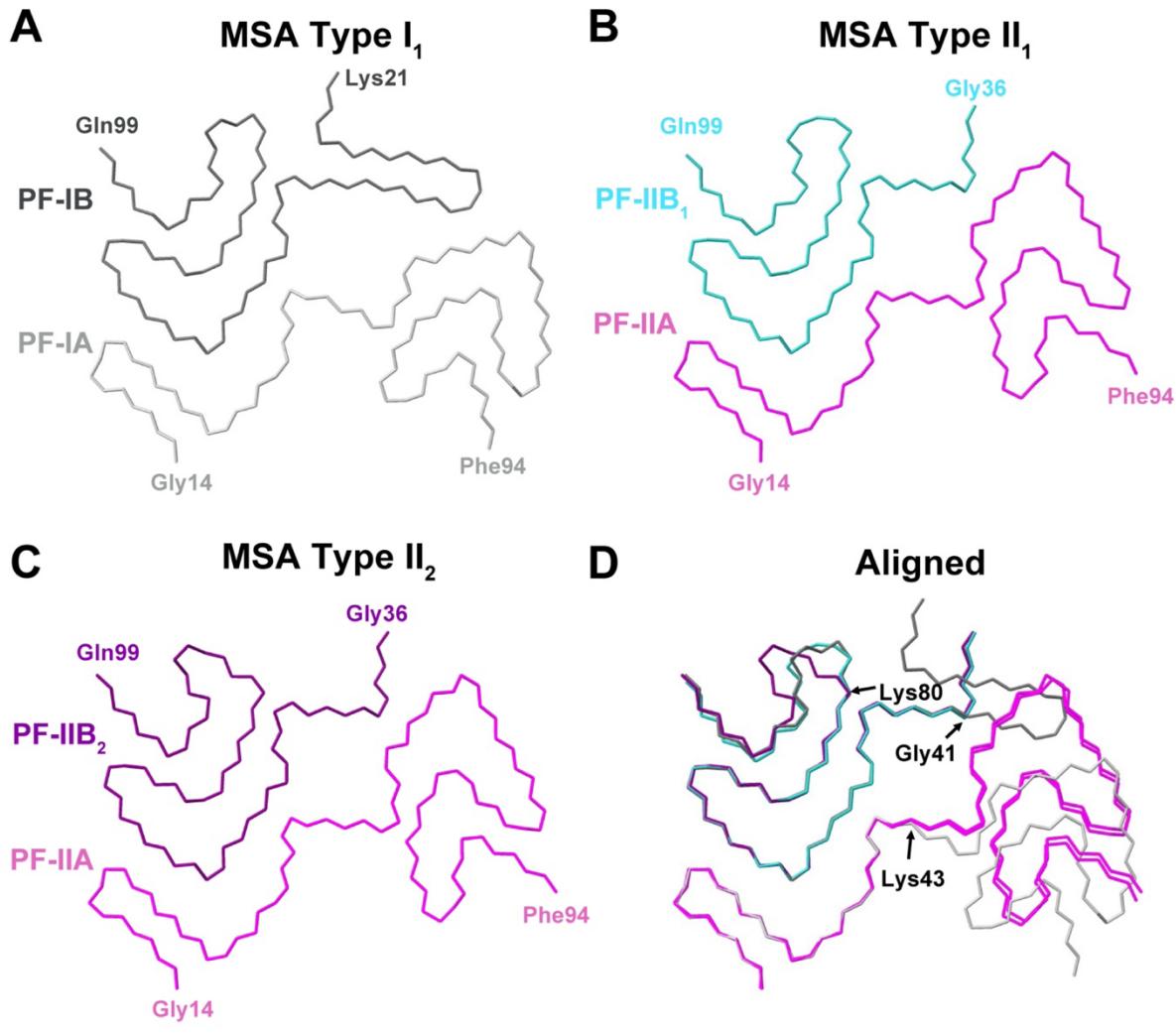
351 *Author Contributions*

352 N.Y., D.R.S., N.A.P, and G.E.M designed the research; N.Y., F.C., E.T., A.M., D.A.M., and
353 G.E.M performed experiments; N.Y., S.B.P., D.R.S., N.A.P., and G.E.M. analyzed the data; N.Y.,
354 D.R.S., N.A.P., and G.E.M. wrote the manuscript. All authors read and approved the final
355 manuscript.

356

357 *Acknowledgements*

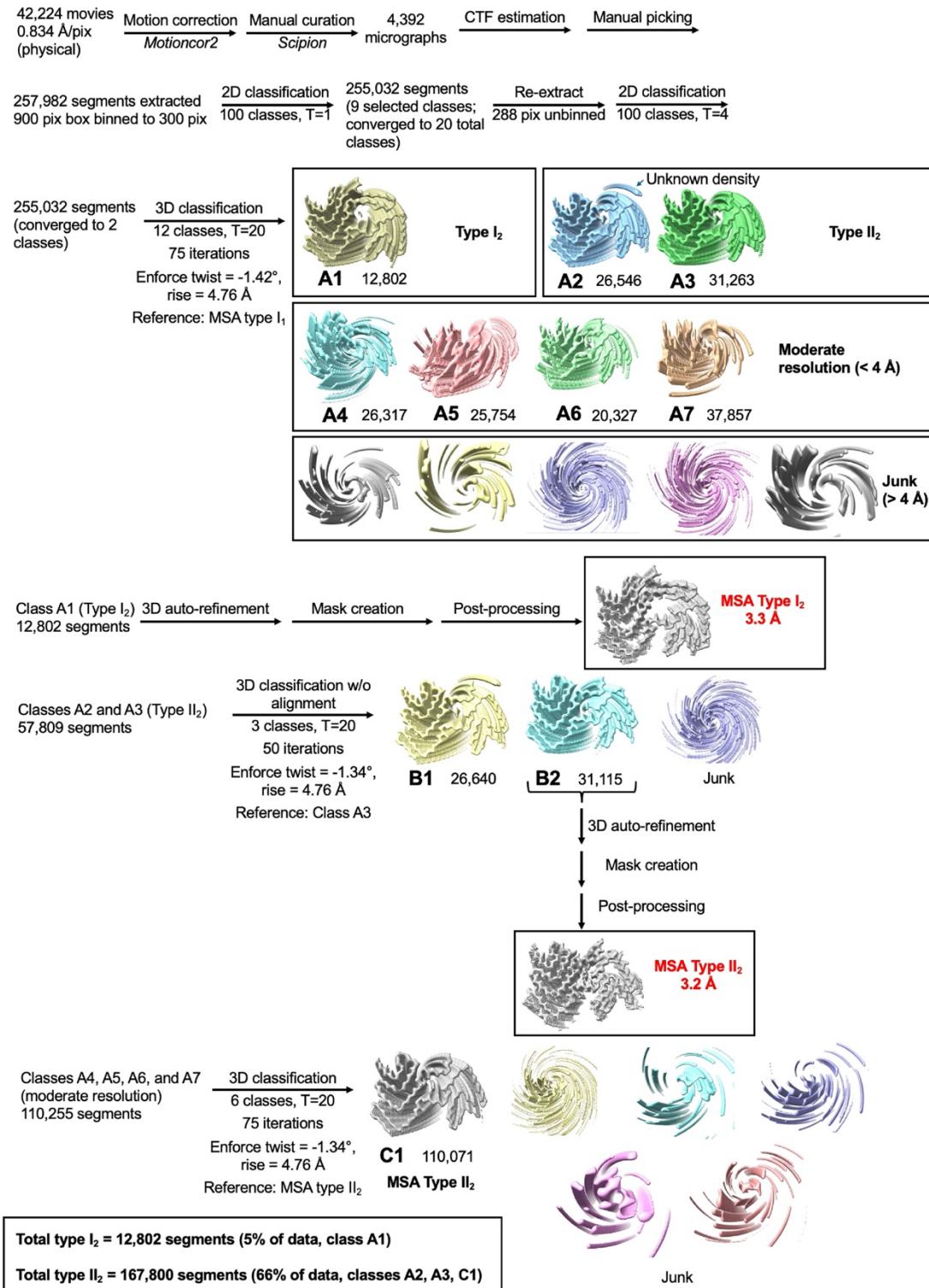
358 We thank the patients' families for donating brain tissue.

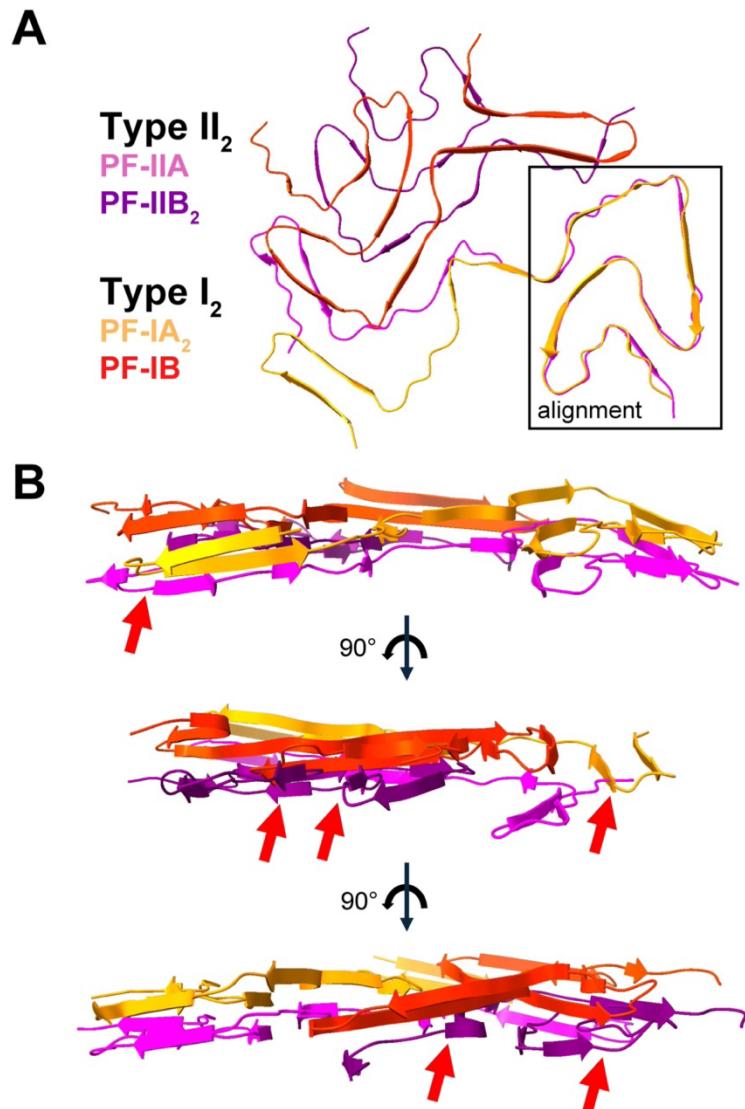

359

360

361 **Supplementary Table S1.** Cryo-EM data collection and model refinement statistics.

362

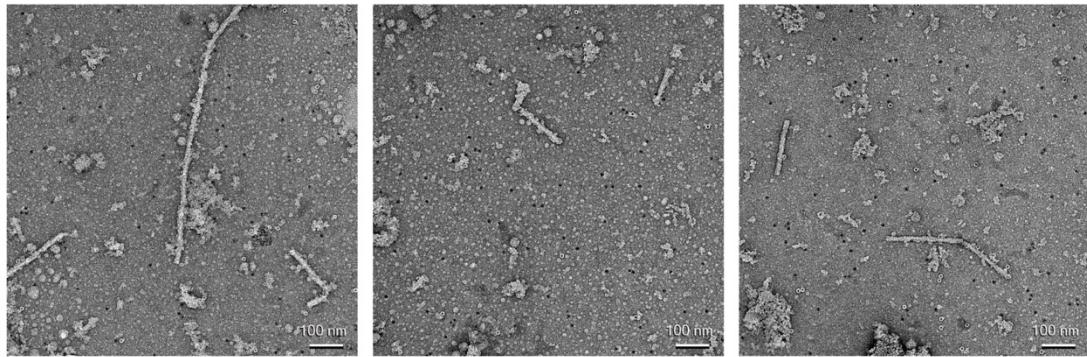

Data collection and processing	MSA Type II₂	MSA Type I₂
Microscope and camera	Titan Krios, K3	
Magnification	105,000	
Voltage (kV)	300	
Electron exposure (e ⁻ /Å ²)	46	
Dose rate (e ⁻ /physical pixel/sec)	16	
Exposure per frame (sec)	0.024	
Defocus range (μm)	-0.8 to -1.8	
Physical pixel size (Å)	0.834	
Movies collected	42,224	
Box size (pixels)	288	
Interbox distance (Å)	28	
Initial segments extracted	257,982	
Final segments	31,115	12,802
Resolution (Å)	3.2	3.3
B-factor (Å ²)	-73.0	-74.8
Helical rise (Å)	4.76	4.76
Helical twist (°)	-1.35	-1.42
Refinement	MSA Type II₂	MSA Type I₂
Model composition		
Non-hydrogen atoms	10,950	10,989
Protein residues	1,600	1,606
Number of chains	20	22
R.M.S. deviations		
Bond lengths (Å)	0.006	0.006
Bond angles (°)	0.586	0.530
Validation		
MolProbity score	2.00	1.50
Clashscore	7.78	9.34
Rotamer outliers (%)	1.94	1.01
Cβ outliers (%)	0	0
Ramachandran plot		
Favored (%)	94.87	98.59
Allowed (%)	5.13	1.41
Outliers (%)	0	0
PDB accession code	9CD9	9CDA
EMDB accession code	EMD-45464	EMD-45465



363

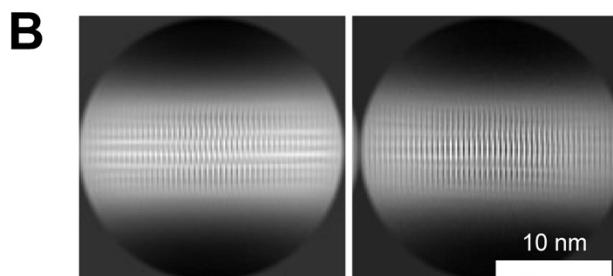
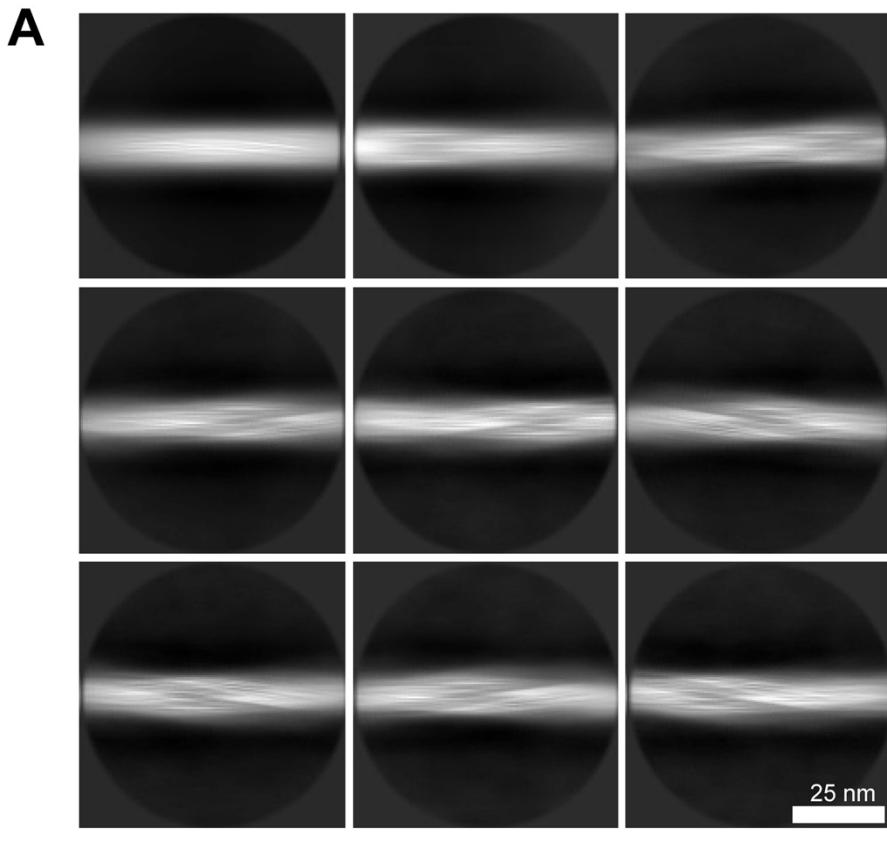
364 **Supplementary Fig S1.** Structures of MSA filaments reported by Schweighauser et al. (A) Type
365 I₁ (PDB: 6XYO), (B) Type II₁ (PDB: 6XYP), and (C) Type II₂ (PDB: 6XYQ). (D) Alignment of
366 the three filament conformations. In (A–C), residues at the termini of the ordered region of each
367 protofilament are labeled. In (D), residues at the start or end of regions where the filament
368 conformations diverge are labeled.

369



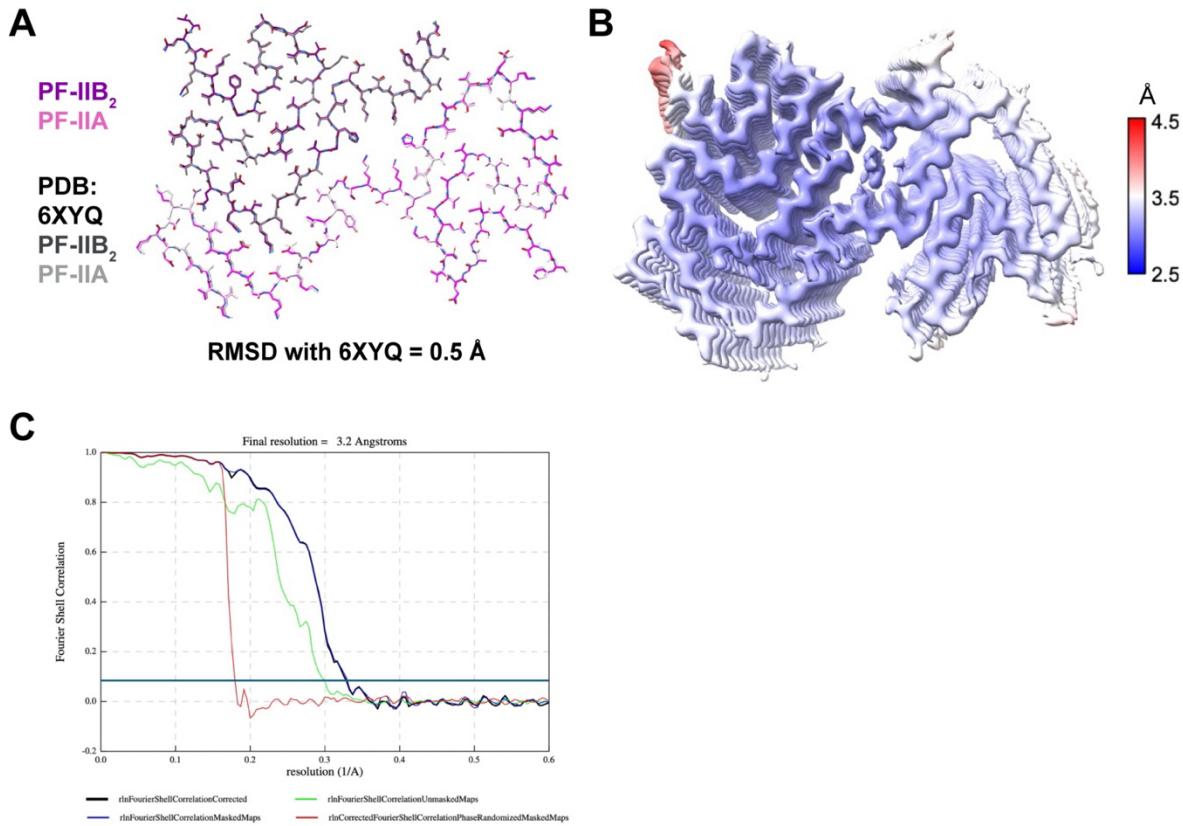
374

375 **Supplementary Fig S3.** Model of MSA Type II₂-I₂ mixed cofilament wherein adjacent Type II₂
376 and Type I₂ rungs were aligned using residues 57–93 of PF-IIA (inset). (A) Cross-section of
377 model. (B) Side-on views demonstrating severe steric clashes (red arrows) between adjacent
378 protofilaments.



379

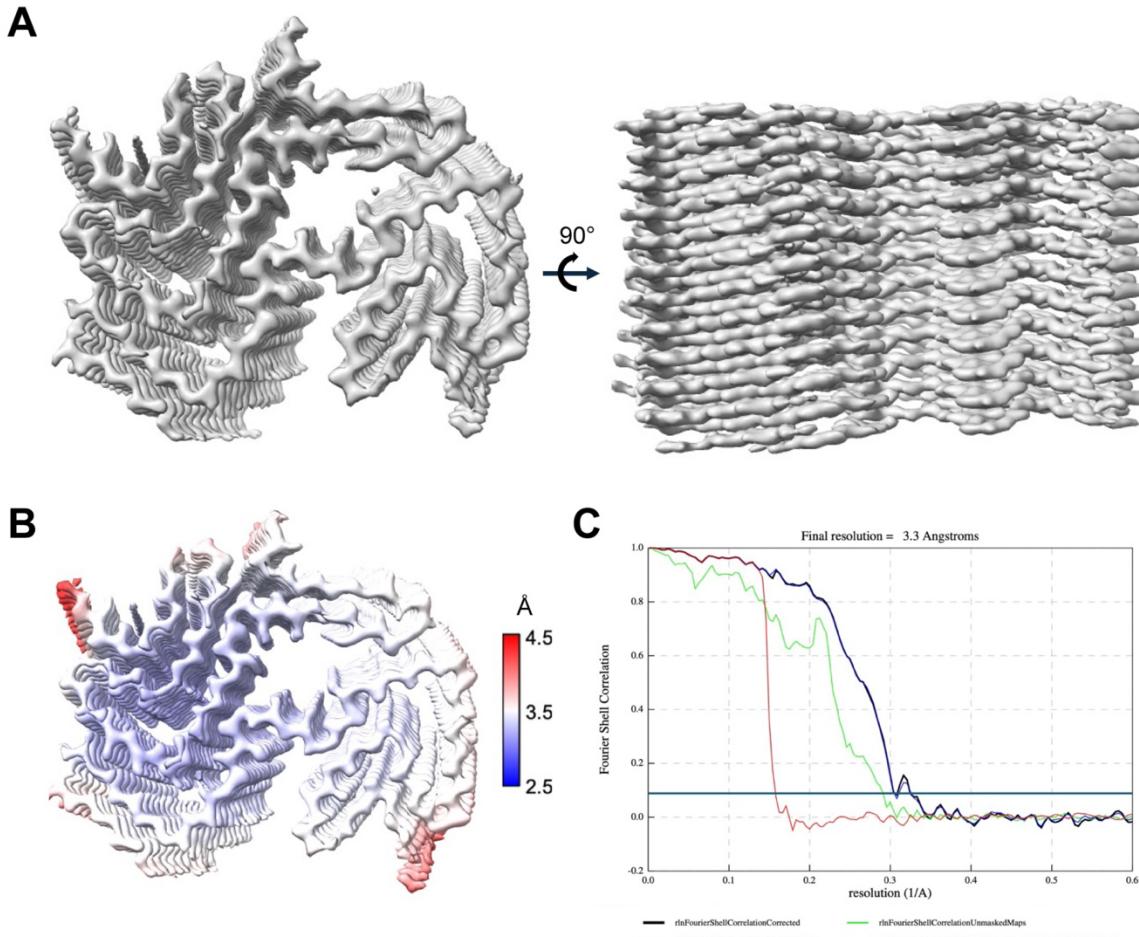
380
381
382

Supplementary Fig S4. Representative negative-stain transmission electron micrographs of ex vivo MSA filaments.


383

384

385 **Supplementary Fig S5.** Two-dimensional class averages of MSA filaments extracted at two
386 different box sizes. **(A)** At 900 pixels downsampled to 300 pixels. **(B)** At 288 pixels. Segments
387 corresponding to these classes were used for 3D classification.


388

389

390 **Supplementary Fig S6.** Characterization of MSA Type II₂ filaments in the dataset. **(A)**
391 Alignment of our Type II₂ filament model with the previously published model (PDB: 6XYQ).
392 **(B)** Local resolution of the Type II₂ filament map. **(C)** Fourier shell correlation (FSC) curves of
393 the Type II₂ filament map. The dark blue line denotes the FSC = 0.143 cutoff used for resolution
394 estimation.

395

396

397 **Supplementary Fig S7.** Characterization of MSA Type I₂ filaments in the dataset. **(A)** Density
398 map of Type I₂ filaments showing separation between protofilaments in the long axis of the
399 filament. **(B)** Local resolution of the Type I₂ filament map. **(C)** FSC curves of the Type I₂
400 filament map. The dark blue line denotes the FSC = 0.143 cutoff used for resolution estimation.

401

402

403

404

405

406

407

408

409 **References**

410 1 Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung
411 LW, Kapral GJ, Grosse-Kunstleve RW et al. (2010) PHENIX: a comprehensive Python-
412 based system for macromolecular structure solution. *Acta Crystallogr D Biol Crystallogr*
413 66: 213-221

414 2 Brás IC, Dominguez-Mejide A, Gerhardt E, Koss D, Lázaro DF, Santos PI, Vasili E,
415 Xylaki M, Outeiro TF (2020) Synucleinopathies: Where we are and where we need to go.
416 *J Neurochem* 153: 433-454

417 3 Burré J, Sharma M, Südhof TC (2017) Cell biology and pathophysiology of α -synuclein.
418 In: Prusiner SB (ed) *Prion Diseases*. Cold Spring Harbor Laboratory Press, City, pp 277-
419 304

420 4 Condello C, Lemmin T, Stöhr J, Nick M, Wu Y, Watts JC, Oehler A, Keene CD, Bird TD,
421 van Duinen SG et al. (2018) Structural heterogeneity and intersubject variability of A β in
422 familial and sporadic Alzheimer's disease. *Proc Natl Acad Sci USA* 115: E782-E791

423 5 Croll TI (2018) ISOLDE: a physically realistic environment for model building into low-
424 resolution electron-density maps. *Acta Crystallogr D Struct Biol* 74: 519-530 DOI
425 10.1107/S2059798318002425

426 6 de la Rosa-Trevin JM, Quintana A, Del Cano L, Zaldivar A, Foche I, Gutierrez J, Gomez-
427 Blanco J, Burguet-Castell J, Cuenca-Alba J, Abrishami V et al. (2016) Scipion: A
428 software framework toward integration, reproducibility and validation in 3D electron
429 microscopy. *J Struct Biol* 195: 93-99

430 7 Dev KK, Hofele K, Barbieri S, Buchman VL, van der Putten H (2003) Part II: alpha-
431 synuclein and its molecular pathophysiological role in neurodegenerative disease.
432 *Neuropharmacology* 45: 14-44

433 8 Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot.
434 *Acta Crystallogr D Biol Crystallogr* 66: 486-501

435 9 Falcon B, Zivanov J, Zhang W, Murzin AG, Garringer HJ, Vidal R, Crowther RA, Newell
436 KL, Ghetti B, Goedert M et al. (2019) Novel tau filament fold in chronic traumatic
437 encephalopathy encloses hydrophobic molecules. *Nature* 568: 420-423

438 10 Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Garringer HJ, Crowther
439 RA, Ghetti B, Goedert M, Scheres SHW (2017) Cryo-EM structures of tau filaments
440 from Alzheimer's disease. *Nature* 547: 185-190

441 11 Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, Wood NW,
442 Colosimo C, Dürr A, Fowler CJ et al. (2008) Second consensus statement on the
443 diagnosis of multiple system atrophy. *Neurology* 71: 670-676

444 12 Graham JG, Oppenheimer DR (1969) Orthostatic hypotension and nicotine sensitivity in
445 a case of multiple system atrophy. *J Neurol Neurosurg Psychiatry* 32: 28-34

446 13 Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli RBG, Tusche M, Lopez-
447 Iglesias C, Hoyer W, Heise H et al. (2017) Fibril structure of amyloid- β (1-42) by cryo-
448 electron microscopy. *Science* 358: 116-119

449 14 He S, Scheres SHW (2017) Helical reconstruction in RELION. *J Struct Biol* 198: 163-
450 176

451 15 Huang M, Wang B, Li X, Fu C, Wang C, Kang X (2019) α -Synuclein: A Multifunctional
452 Player in Exocytosis, Endocytosis, and Vesicle Recycling. *Front Neurosci* 13: 28

453 16 Kimanius D, Dong L, Sharov G, Nakane T, Scheres SHW (2021) New tools for
454 automated cryo-EM single-particle analysis in RELION-4.0. *Biochem J* 478: 4169-4185
455 17 Miake H, Mizusawa H, Iwatsubo T, Hasegawa M (2002) Biochemical characterization of
456 the core structure of α -synuclein filaments. *J Biol Chem* 277: 19213–19219
457 18 Papp MI, Kahn JE, Lantos PL (1989) Glial cytoplasmic inclusions in the CNS of patients
458 with multiple system atrophy (striatonigral degeneration, olivopontocerebellar atrophy
459 and Shy-Drager syndrome). *J Neurol Sci* 94: 79–100
460 19 Peelaerts W, Baekelandt V (2016) α -Synuclein strains and the variable pathologies of
461 synucleinopathies. *J Neurochem* 139: 256–274
462 20 Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE
463 (2004) UCSF Chimera--a visualization system for exploratory research and analysis. *J
464 Comput Chem* 25: 1605-1612
465 21 Prusiner SB, Woerman AL, Mordes DA, Watts JC, Rampersaud R, Berry DB, Patel S,
466 Oehler A, Lowe JK, Kravitz SN et al. (2015) Evidence for α -synuclein prions causing
467 multiple system atrophy in humans with parkinsonism. *Proc Natl Acad Sci USA* 112:
468 E5308–E5317
469 22 Rademaker L, Baur J, Huhn S, Haupt C, Hegenbart U, Schonland S, Bansal A, Schmidt
470 M, Fandrich M (2021) Cryo-EM reveals structural breaks in a patient-derived amyloid
471 fibril from systemic AL amyloidosis. *Nat Commun* 12: 875 Doi 10.1038/s41467-021-
472 21126-2
473 23 Rohou A, Grigorieff N (2015) CTFFIND4: Fast and accurate defocus estimation from
474 electron micrographs. *J Struct Biol* 192: 216-221
475 24 Scheres SH, Zhang W, Falcon B, Goedert M (2020) Cryo-EM structures of tau filaments.
476 *Curr Opin Struct Biol* 64: 17–25
477 25 Schweighauser M, Shi Y, Tarutani A, Kametani F, Murzin AG, Ghetti B, Matsubara T,
478 Tomita T, Ando T, Hasegawa K et al. (2020) Structures of α -synuclein filaments from
479 multiple system atrophy. *Nature* 585: 464–469
480 26 Shahnawaz M, Mukherjee A, Pritzkow S, Mendez N, Rabadia P, Liu X, Hu B,
481 Schmeichel A, Singer W, Wu G et al. (2020) Discriminating α -synuclein strains in
482 Parkinson's disease and multiple system atrophy. *Nature* 578: 273–277
483 27 Shi Y, Zhang W, Yang Y, Murzin AG, Falcon B, Kotecha A, van Beers M, Tarutani A,
484 Kametani F, Garringer HJ et al. (2021) Structure-based classification of tauopathies.
485 *Nature* 598: 359-363
486 28 Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M (1998)
487 Filamentous α -synuclein inclusions link multiple system atrophy with Parkinson's disease
488 and dementia with Lewy bodies. *Neurosci Lett* 251: 205–208
489 29 Tu PH, Galvin JE, Baba M, Giasson B, Tomita T, Leight S, Nakajo S, Iwatsubo T,
490 Trojanowski JQ, Lee VM (1998) Glial cytoplasmic inclusions in white matter
491 oligodendrocytes of multiple system atrophy brains contain insoluble α -synuclein. *Ann
492 Neurol* 44: 415–422
493 30 Wakabayashi K, Yoshimoto M, Tsuji S, Takahashi H (1998) α -Synuclein
494 immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. *Neurosci
495 Lett* 249: 180–182
496 31 Woerman AL, Watts JC, Aoyagi A, Giles K, Middleton LT, Prusiner SB (2017) α -
497 Synuclein: Multiple system atrophy prions. In: Prusiner SB (ed) *Prion Diseases*. Cold
498 Spring Harbor Laboratory Press, City, pp 319–330

499 32 Yang Y, Garringer HJ, Shi Y, Lövestam S, Peak-Chew S, Zhang X, Kotecha A, Bacioglu
500 M, Koto A, Takao M et al. (2023) New SNCA mutation and structures of α -synuclein
501 filaments from juvenile-onset synucleinopathy. *Acta Neuropathol* 145: 561-572
502 33 Yang Y, Shi Y, Schweighauser M, Zhang X, Kotecha A, Murzin AG, Garringer HJ,
503 Cullinane PW, Saito Y, Foroud T et al. (2022) Structures of α -synuclein filaments from
504 human brains with Lewy pathology. *Nature* 610:
505 34 Zheng SQ, Palovcak E, Armache JP, Verba KA, Cheng Y, Agard DA (2017) MotionCor2:
506 anisotropic correction of beam-induced motion for improved cryo-electron microscopy.
507 *Nat Methods* 14: 331-332
508