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Summary 

Lack of diversity and proportionate representation in genomics datasets and databases 

contributes to inequity in healthcare outcomes globally1,2. The relationships of human diversity 

with biological and biomedical phenotypes are pervasive3, yet remain understudied, 

particularly in a single-cell genomics context. Here we present the Asian Immune Diversity 

Atlas (AIDA), a multi-national single-cell RNA-sequencing (scRNA-seq) healthy reference 

atlas of human immune cells. AIDA comprises 1,265,624 circulating immune cells from 619 

healthy donors and 6 controls, spanning 7 population groups across 5 countries. AIDA is one 

of the largest healthy blood datasets in terms of number of cells, and also the most diverse in 

terms of number of population groups. Though population groups are frequently compared at 
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the continental level, we identified a pervasive impact of sub-continental diversity on cellular 

and molecular properties of immune cells. These included cell populations and genes 

implicated in disease risk and pathogenesis as well as those relevant for diagnostics. We 

detected single-cell signatures of human diversity not apparent at the level of cell types, as 

well as modulation of the effects of age and sex by self-reported ethnicity. We discovered 

functional genetic variants influencing cell type-specific gene expression, including context-

dependent effects, which were under-represented in analyses of non-Asian population groups, 

and which helped contextualise disease-associated variants. We validated our findings using 

multiple independent datasets and cohorts. AIDA provides fundamental insights into the 

relationships of human diversity with immune cell phenotypes, enables analyses of multi-

ancestry disease datasets, and facilitates the development of precision medicine efforts in 

Asia and beyond. 

 

Introduction 

Humans are diverse in all respects. Our molecular diversity drives differences in our cellular 

traits, which in turn feeds into differences in how our bodies develop, function, and respond to 

disease. Molecular variation across individuals is not random; rather, it correlates with 

ancestry, age, genetics, sex, environment, and lifestyle1, though in ways we do not fully 

understand. One consequence is that molecular diagnostics that work in one population may 

not be as effective in another4. Moreover, disease risk, pathological processes, and drug 

responses can vary across populations, due to a complex combination of genetic and 

environmental differences1-3. Consequently, an understanding of human molecular and 

cellular variation is essential not merely for understanding human biology, but also for 

personalised medical care and equitable outcomes from biomedical research5. 
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The study of diversity in immune cells across humans is of great interest, since blood cell 

proportions are routinely used for diagnosis, variation in blood traits is associated with disease 

risk6, and immunophenotyping is utilised to monitor diseases such as HIV/AIDS, leukaemias, 

and lymphomas7. Haematological traits vary across ancestries8-10, at least partly due to 

population-specific genetic variants11. However, most existing studies provide limited detail on 

molecular and gene expression profiles, particularly at single-cell resolution. 

Recently, single-cell RNA-sequencing (scRNA-seq) studies have examined ancestry-specific 

immunological traits of US-based populations for lupus and in vitro viral infection12-14. In 

addition, cohort-scale scRNA-seq analyses have identified cell type-specific expression 

quantitative trait loci (eQTL) linked to GWAS variants15-17. However, each of these studies 

focused on a single country and at most two ancestries. More broadly, despite the pressing 

need, there is a lack of diversity in genomics datasets1. For example, individuals of European 

ancestry, constituting ~15% of the world’s population, represented ~86% of the NHGRI-EBI 

GWAS Catalog in 20212 and ~85% of the GTEx v8 dataset18. To maximise benefit to global 

communities, it is important to incorporate and characterise human diversity within reference 

cell atlases and genomics resources. 

To address this challenge, we performed scRNA-seq on peripheral blood mononuclear cells 

(PBMCs) from 619 healthy donors spanning 7 population groups in 5 countries across Asia, a 

continent inhabited by 60% of the global population2. Our Asian Immune Diversity Atlas (AIDA) 

cohort includes donors from India, Japan, South Korea, and Thailand, as well as Singapore 

donors of Chinese (SG_Chinese), Malay (SG_Malay), or Indian (SG_Indian) self-reported 

ethnicities, and thus encompasses a wide range of ancestries19-24. The AIDA cohort 

incorporates a balance of female and male sex and a wide range of adult ages. We 

characterised the relationships of human diversity with cellular and molecular variation in 

immune phenotypes, including cell type proportions, cell neighbourhood abundance, and cell 

type-specific gene expression profiles. Self-reported ethnicity and sex had comparable effects 
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on cell subtype proportions, while the variance explained by age or body mass index (BMI) 

was typically lower. Moreover, self-reported ethnicity modulated the effects of age and sex on 

cellular and molecular profiles. Of the variants we identified by cell type-specific eQTL 

analysis, ~7% were present at <5% minor allele frequency in the non-Asian 1,000 Genomes 

super-populations; these included multiple variants colocalising with Asian GWAS loci. Our 

datasets are available via the Human Cell Atlas (HCA) and Chan Zuckerberg (CZ) 

CELLxGENE25 data portals and have been used for algorithm development in the context of 

human diversity26. Our datasets have also facilitated analyses of biological pathways, such as 

escape from X-chromosome inactivation (XCI)27, and genetic effects on alternative splicing 

(Tian et al., submitted). Our findings provide fundamental insights into the relationships of age, 

self-reported ethnicity, sex, and genetic variants with disease-relevant immune phenotypes, 

and strengthen the scientific case for functional genomics analyses of diverse populations.  

 

Results 

scRNA-seq atlas of circulating immune cells from diverse population groups 

We examined the CZ CELLxGENE Census (version 2023-12-15)25, which comprises the 

largest collection of standardised single-cell data, including healthy reference datasets 

important for disease comparisons. Across all 26 healthy blood primary datasets (excluding 

AIDA), 62.4% of cells were annotated as being from European donors, while self-reported 

ethnicity information was unknown for 32.1% of cells (Figure 1A). This is indicative of both 

the paucity of proportionate representation of the global population in the incipiency of single-

cell reference collections, as well as a lack of granularity in examining population groups. We 

sought to understand the impact of human diversity, focusing on variation across sub-

continental population groups, on single-cell genomics profiles of the AIDA cohort. For each 

of the 619 AIDA donors (Tables 1,S1), we performed 5’ scRNA-seq, B-cell receptor 
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sequencing (BCR-seq), T-cell receptor sequencing (TCR-seq), and genotyping (Methods, 

Figure 1B,S1A,B). To minimise technical confounders, we harmonised donor selection 

criteria, sample processing, and experimental protocols across the 5 study sites (Figure 1C), 

generated single-cell libraries from pooled samples using genetic multiplexing, and adopted a 

centralised data processing pipeline (Figure 1B). Donors spanned an age range of 19 to 77 

years (Table 1, Figure 1D) and were largely balanced in female and male sex (Table 1). 

Principal component analysis (PCA) of donor Illumina GSAv3 genotype data highlighted the 

diversity of ancestries in the AIDA cohort (Figure 1E).  
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Figure 1: Human diversity in the Asian Immune Diversity Atlas (AIDA) cohort. (A) Frequencies of human 

cells from healthy blood (excluding umbilical cord blood and venous blood) primary datasets in the CZ 

CELLxGENE Census (version 2023-12-15)25, without AIDA, categorised by their self-reported ethnicity 

metadata. (B) AIDA workflow. (C) Study site locations. Map adapted from BioRender template 

(Publication licence agreement number KZ26TPRFSH). (D) Histogram of AIDA donor ages, coloured 

by country (IN:India, JP:Japan, KR:South Korea, SG:Singapore, TH:Thailand). (E) Plot of the first three 

principal components (PCs) from principal component analysis (PCA) of AIDA donor Illumina GSAv3 

genotype data, with variance explained by each PC indicated on axis labels. Colours indicate donor 

self-reported ethnicity. (F) Pie charts representing cells in the AIDA dataset, as well as cells from other 

healthy blood (excluding umbilical cord blood and venous blood) primary datasets in the CZ 
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CELLxGENE Census (version 2023-12-15)25. Circle radii are proportional to the numbers of cells in the 

corresponding datasets; each slice in each pie chart is coloured by the self-reported ethnicity metadata. 

 

Table 1: AIDA donor demographics. 

Donor demographics Number of donors 

Japan 149 

Singaporean Chinese (SG_Chinese) 85 

Singaporean Malay (SG_Malay) 61 

Singaporean Indian (SG_Indian) 70 

South Korea 165 

Thailand 59 

India 30 

Total 619 

  

Female 348 (56.2%) 

Male 271 (43.8%) 

Age range (years) 19 to 77 (median=40) 

 

After doublet removal and cell type-specific quality control (Methods) to remove low-quality 

cells, we obtained 1,265,624 circulating immune cells. AIDA is one of the largest healthy blood 

datasets in terms of number of cells, and also the most diverse in terms of number of 

population groups, relative to existing healthy blood primary datasets in the CZ CELLxGENE 

Census (version 2023-12-15, Figure 1F). We clustered these cells into 8 major immune cell 

types: B, CD34+ haematopoietic stem and progenitor cell (HSPC), myeloid, natural killer (NK), 

plasma cell, plasmacytoid dendritic cell (pDC), platelet, and T (Figure 2A). The distributions 
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of cells in batch-corrected28 gene expression space were broadly consistent across all study 

sites (Figure S1C). 
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Figure 2: The impact of age, sex, and self-reported ethnicity on AIDA PBMCs. (A) Gene expression 

UMAP of AIDA Data Freeze v2: 1,265,624 PBMCs labelled by major cell type. Data integration was 

performed using scRNA-seq library as the batch label. (B) Scatterplot of plasmacytoid dendritic cell 

(pDC) proportions against donor age. Linear regression line in blue; grey band indicates the 95% 

confidence interval. Boxplots depicting distributions of cell type proportions of (C) B and (D) NK cells in 

females versus males, relative to all PBMCs per donor. Two-tailed t-test p-values are indicated for the 

sex covariate in a model of log10(Proportion)~Age+Sex+Self_reported_ethnicity. Boxplots depicting (E) 

B, (F) myeloid, (G) NK, and (H) T cell proportions. In this and all subsequent figures unless otherwise 

indicated, boxplots depict the median via the thickest centre horizontal line, the first and third quartiles 

as the bottom and top of the box respectively, and 1.5x the interquartile range through whiskers; outliers 

are depicted as single points. Two-tailed t-test p-values are indicated for the self-reported ethnicity 

covariate in a model of log10(Proportion)~Age+Sex+Individual_Self_reported_ethnicity. Gene 

expression UMAPs with cells coloured by log2(fold-enrichment) within a 500-cell neighbourhood, for (I) 

females versus males, (J) donors 50-77 years old versus other donors, and (K) SG_Malay donors 

relative to all other donors. Cell types of interest are indicated by dashed lines. 

 

Based on the above cell types, we examined the relationship of age, female / male sex, and 

self-reported ethnicity with cell type proportions (cell counts relative to all PBMCs per donor, 

using a generalised linear model: log10(Proportion)~Age+Sex+Self_reported_ethnicity). pDC 

proportions decreased with age (N=438, degrees of freedom (df)=430, t-value=-4.93, two-

tailed t-test p-value=1.2e-06, Figure 2B). We confirmed that B cells were more abundant in 

females (N=562, df=554, t-value=-6.76, two-tailed t-test p-value=3.56e-11; Figure 2C), while 

NK cell proportions were higher in males (N=562, df=554, t-value=4.41, two-tailed t-test p-

value=1.26e-05; Figure 2D). Thus, the AIDA dataset recapitulated known age29 and sex30 

differences in circulating immune cells.  

We then tested for differences across population groups in major cell type proportions, 

focusing on populations with ≥50 donors. One caveat for such analyses is that genetic 
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variation and environmental factors are often confounded31. Here, the effects of self-reported 

ethnicity may represent a combination of genetic effects as well as correlated environmental 

and lifestyle factors (e.g., diet and geography), all of which can contribute to phenotypic 

variation. SG_Malay donors showed elevated B cell proportions relative to other population 

groups (log10(Proportion)~Age+Sex+Individual_Self_reported_ethnicity (e.g., SG_Malay), 

N=562, df=558, t-value=3.02, two-tailed t-test p-value=0.00269; Figure 2E), while Thai donors 

had lower myeloid cell proportions (N=562, df=558, t-value=-3.21, two-tailed t-test p-

value=0.00139; Figure 2F). NK cells were less abundant in SG_Indian donors (N=562, 

df=558, t-value=-4.57, two-tailed t-test p-value=5.91e-06; Figure 2G), while Korean donors 

had lower T cell proportions (N=562, df=558, t-value=-2.98, two-tailed t-test p-value=0.00298; 

Figure 2H). These results suggest systematic differences in major cell type proportions across 

population groups. 

The proportions of peripheral blood cell types can serve as diagnostic markers for diseases, 

such as the ratio of monocytes to lymphocytes (for active tuberculosis32), relative monocyte 

proportion (for chronic myelomonocytic leukaemia and acute myeloid leukaemia33), as well as 

lymphocyte abundance (for lupus14). We found that the proportions of monocytes were lower 

on average in Thai donors than in donors of other population groups in both our scRNA-seq 

data (two-tailed Wilcoxon rank-sum p-value=3.08e-04, Figure S1D) as well as our complete 

blood count data (two-tailed Wilcoxon rank-sum p-value=3.28e-07, Figure S1E). Our findings 

suggest the importance of factoring in self-reported ethnicity in determining diagnostic 

baselines. 

A major advantage of scRNA-seq is that differentially abundant cell populations can be 

characterised at high resolution. Through enrichment analysis of transcriptomic 

neighbourhoods, we identified more fine-grained trends than were apparent in the above 

analyses of major cell types. For example, although B cells were more abundant in female 

donors (Figure 2C), this trend was not uniform, and was more pronounced for naïve B cell 
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populations (Figure 2I). In contrast, CD8+ T naïve cell populations were uniformly depleted in 

individuals ≥50-years-old (Figure 2J). The enrichment of gamma-delta T (γδT) cell 

populations in SG_Malay donors was also not uniform (Figure 2K). In these initial analyses, 

we examined the effects of sex, age, or self-reported ethnicity individually rather than in 

combination. Nevertheless, our results suggest that cell neighbourhood analyses illuminate 

biological differences not apparent at coarser resolutions.  

 

Cell type annotation and transcriptomic gradients 

To interrogate more granular cell identities, we analysed three broad cell populations – B 

(Figure 3A), pDC and myeloid (Figure 3B), and ILC, NK, and T (Figure 3C,D) – separately. 

For each population, we performed feature selection, data integration, and sub-clustering 

independently to utilise features relevant for distinguishing the cell subtypes of interest34 

(Methods, Figure 3A-D,S2A,B). We performed one round of sub-clustering for the first two 

populations. For ILC, NK, and T cells, after one round of sub-clustering, we separated CD4+ T 

and double-negative T (dnT) cells (Figure 3C) from all other ILC, NK, and T cells (Figure 3D), 

and integrated and re-clustered these two groups separately. All sub-clusters of all cell 

populations were then annotated based on marker genes (Figures S2A,B, Table S2) and 

presence of TCR barcodes (Figure S1B). We defined cluster identities as descriptions of 

individual sub-clusters, and cell subtypes as the manual merging of these sub-clusters into 

known subtypes. 
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Figure 3: Relationships of human diversity with cell subtype proportions. Gene expression UMAPs 

depicting (A) B, (B) pDC and myeloid, (C) CD4+ T and dnT, and (D) CD8+ T, γδT, ILC, and NK sub-

clusters labelled by cell subtype. (E) Boxplots depicting the variance in cell subtype proportions in 

Singapore donors explained by age, self-reported ethnicity, BMI, or sex when examined individually, 

annotated with all pairwise two-tailed Wilcoxon rank-sum p-values. Scatterplots depicting (F) CD8+ T 

naïve cell proportions against donor age for all AIDA donors, and (G) linear regression coefficient 

estimates for self-reported ethnicity in the SLAS-2 dataset (y-axis) versus the AIDA dataset (x-axis). 

Each point in (G) represents a combination of one of 18 cell subtype proportions regressed against one 

of the 3 Singapore self-reported ethnicities (log10(Proportion)~Age+Sex+ 
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Individual_Self_reported_ethnicity). Boxplots depicting cell subtype proportions for (H) IGHMlo memory 

B, (I) cDC2, and (J) regulatory T (Treg) cells across all population groups. Boxplots depicting (K) naïve 

B and (L) CD16+ NK proportions across self-reported ethnicity and female / male sex. (M) Scatterplot 

depicting CD4+ T naïve proportions against donor age. Scatterplots are overlaid with linear regression 

lines for their respective data points; grey bands indicate the 95% confidence intervals. Two-tailed t-test 

p-values in (H-J) pertain to the self-reported ethnicity covariate in a model of 

log10(Proportion)~Age+Sex+Individual_Self_reported_ethnicity. Two-tailed t-test p-values adjacent to 

lines indicate comparisons of two population groups in (M), and pertain to the interaction terms between 

sex and individual population groups in (K,L).  

 

We identified rare cell subtypes such as dnT (0.04% of all cells), cDC1 (0.04%), and atypical 

B35 (0.4%) cells (Figure 3A-C,S2A-C). We further identified rare cluster identities, such as 

SCART1hi ILC (0.02%) and XCL1hi ILC (0.03%) (Figure S2D). The identification of these rare 

cell populations attests to the resolution of our scRNA-seq atlas. 

To complement this discrete, categorical approach towards cell annotation, we examined 

continuous transcriptomic gradients. These included an IGHM gradient in memory B cells36 

(Figure S2E); opposing GZMB and GZMK gradients in both CD8+ T memory37 and γδT cells, 

with heighted GZMB levels marking more cytotoxic T cell subsets; as well as opposing 

FCER1G and KLRC2 gradients in CD16+ NK cells38 (Figure S2F). These continuous gene 

expression gradients may correlate with the effects of age, sex, and genetic variation in our 

cohort, which we describe below. 

 

Relationships of human diversity with cell subtype proportions 

Haematological properties and immune cell subtype proportions are of broad interest as 

disease markers14,39, but these may be confounded by patient demographics. We therefore 

investigated the relationships of human diversity with cell subtype proportions. As a control, 
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we confirmed that monocyte proportions in our scRNA-seq dataset were consistent with 

matched complete blood counts (Figures S3A-C), indicating that cell type proportion 

inferences from our scRNA-seq data were rooted in actual haematological proportions. 

We first evaluated the relative impact of human demographics, by analysing the correlation of 

cell subtype proportions with covariates: age, BMI, self-reported ethnicity, or sex. For this 

analysis, we focused on donors profiled in Singapore to minimise the influence of technical 

variation across study sites. We examined the variance explained by a covariate of interest 

(Methods; Figure 3E). The highest variance explained for any human diversity-cell subtype 

combination was the decrease of CD8+ T naïve cell proportions with age (R-squared=0.290, 

N=200, df=198, t-value=-9.00, two-tailed t-test p-value<2e-16), consistent with previous 

reports (Figure 3F)40,41. More broadly, the proportions of multiple cell subtypes were 

significantly correlated with age. For example, CD4+ T cytotoxic cell proportions increased with 

age (N=501, df=499, t-value=4.86, p-value=1.57e-06 for a model of log10(Proportion)~Age for 

all AIDA donors; Figure S3D); cytotoxic CD4+ T cells have been of interest for their heightened 

abundance in supercentenarians42. Overall, however, self-reported ethnicity and sex each 

explained more variance in subtype proportions than age or BMI (N=22, pairwise two-tailed 

Wilcoxon rank-sum p-values<0.05; Figure 3E). 

To corroborate the associations between self-reported ethnicity and immune subtype 

proportions, we analysed published flow cytometry data (Table S3) from an independent 

cohort (Singapore Longitudinal Aging Study wave-2 (SLAS-2)43, Methods). First, we confirmed 

that MAIT cells were significantly higher in proportions in SG_Chinese than SG_Indian donors 

in both datasets (AIDA: SG_Indian coefficient estimate (versus SG_Chinese)=-0.315, N=198, 

df=193, t=-4.71, two-tailed t-test p-value=4.67e-06; SLAS-2: SG_Indian coefficient estimate 

(versus SG_Chinese)=-0.274, N=814, df=809, t=-3.46, two-tailed t-test p-value=5.7e-04; 

Figure S3E). Next, we examined effect size concordance of 54 coefficient estimates of self-

reported ethnicity from linear models for cell subtype proportions 
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(log10(Proportion)~Age+Sex+Individual_Self_reported_ethnicity, i.e., SG_Chinese, 

SG_Malay, or SG_Indian). Effect sizes were well-correlated between AIDA and SLAS-2 

(Pearson correlation r=0.652, N=54, df=52, t=6.20, two-tailed t-test p-value=9.41e-08, Figure 

3G). This concordance across two modalities and independent cohorts supports our findings 

of self-reported ethnicity-associated cell subtype signatures in circulating immune cells. 

We found numerous examples of self-reported ethnicity being associated with differential cell 

subtype proportions when we examined all AIDA population groups with ≥50 donors. Relative 

to all PBMCs per donor, IGHMlo memory B proportions were higher in SG_Malay donors than 

in other population groups (log10(Proportion)~Age+Sex+Individual_Self_reported_ethnicity 

(e.g., SG_Malay), N=562, df=558, t-value=2.74, two-tailed t-test p-value=0.00628; Figure 

3H), while cDC2 proportions were lower in Thai donors (N=560, df=556, t-value=-3.71, two-

tailed t-test p-value=2.31e-04; Figure 3I). Most strikingly, we found much lower regulatory T 

(Treg) proportions in Korean donors (N=562, df=558, t-value=-14.8, two-tailed t-test p-

value<2e-16; Figure 3J). This effect remained when we controlled for possible differences in 

T cell proportions across population groups by assessing Treg proportions relative to CD4+ T 

cells (t-value=-14.4, two-tailed t-test p-value<2e-16, Figure S3F). We also observed a similar 

result when we re-clustered and re-annotated cells following data integration using a different 

algorithm (Harmony44; t-value=-14.4, two-tailed t-test p-value<2e-16, Figure S3G). We 

provide the associations of cell subtype proportions with self-reported ethnicity, controlling for 

age and sex, as a human diversity reference for the healthy ranges of immune cell subtypes 

across diverse population groups (Table S4), which may be incorporated as healthy baselines 

for diagnostics. 

We hypothesised that interactions between self-reported ethnicity, age, and sex could affect 

cell subtype proportions. We extended the above linear models to include all pairwise 

interaction terms and found several examples. Interactions between sex and self-reported 

ethnicity could exacerbate female-male cell proportion differences: although naïve B cells 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.06.30.601119doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.30.601119
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 
 

 

were typically less abundant in males versus females, this disparity was greatest in SG_Indian 

donors (N=559, df=552, t-value=-2.52, two-tailed t-test p-value=0.0119 for interaction term in 

a model of SG_Indian donors versus all other donors; Figure 3K). In contrast, while CD16+ 

NK proportions were typically higher in males, this effect was not present in Thai donors 

(N=562, df=555, t-value=-4.27, two-tailed t-test p-value=2.25e-05 for interaction term in a 

model of Thai donors versus all other donors; Figure 3L,S4A). Similar to our Treg analyses 

above, we recapitulated these interactions after cell type re-annotation following data 

integration using the Harmony44 algorithm (naïve B: t-value=-2.51, two-tailed t-test p-

value=0.0125, Figure S4B; CD16+ NK: t-value=-4.27, two-tailed t-test p-value=2.27e-05, 

Figure S4C). These results raise the intriguing possibility of cell type-specific differential sex 

hormone activity or sex chromosome gene regulation across population groups. 

We also identified interactions between self-reported ethnicity and age: Korean and SG_Malay 

donors showed sharper decreases in CD4+ T naïve cell proportions with increasing age 

compared to SG_Chinese donors (N=562, df=543; t-value=-3.15, two-tailed t-test p-

value=0.00174 for the age-Korean interaction; t-value=-3.07, two-tailed t-test p-

value=0.00222 for the age-SG_Malay interaction, both compared against SG_Chinese 

donors; Figure 3M,S4A). Reduced CD4+ T naïve cell levels have been reported in hepatitis C 

virus-infected patients45 and SLE patients14. Given this disparity in CD4+ T naïve proportions 

across population groups and ages, these dimensions of human diversity need to be 

considered when assessing reference ranges and diseases where perturbed CD4+ T naïve 

cell proportions can serve as a biomarker. 

 

Single-cell signatures of human diversity 

We harnessed the resolution afforded by our scRNA-seq atlas by investigating for single-cell 

signatures of human diversity in multiple cell populations (B; pDC and myeloid; CD4+ T and 
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dnT; CD8+ T, γδT, ILC, and NK). We used MiloR46, implementing a model that incorporated 

multiple covariates (self-reported ethnicity, age, and female / male sex) for differential 

abundance testing of MiloR cell neighbourhoods in gene expression space. As a control, we 

examined cell neighbourhood abundances in males versus females. In males, the majority of 

naïve B cell neighbourhoods were depleted (MiloR neighbourhoods with MiloR spatial 

FDR<0.1, Figure S5A), while numerous CD16+ NK cell neighbourhoods were enriched 

(spatial FDR<0.1, Figure 4A,S5B). This was consistent with our cell subtype analyses (Figure 

3K,L,S4B,C) and the patterns of B and NK cell type abundance reported previously30,47. As an 

additional positive control, we examined the most male-enriched B cell neighbourhood 

(log2(fold-change)=2.45, spatial FDR=4.80e-75), and found upregulation of non-

pseudoautosomal region Y-chromosome genes, including RPS4Y1, EIF1AY, and DDX3Y 

(Figure S5C). 
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Figure 4: Single-cell signatures of human diversity. Gene expression UMAPs depicting enrichment of 

CD8+ T, γδT, ILC, and NK cell neighbourhoods in (A) males versus females, and (B) (left) donors ≥50-

years-old versus younger donors, as well as (B) (right) enrichment of CD4+ T and dnT cell 

neighbourhoods in donors ≥50-years-old versus younger donors. (C) Dot plot of top 5 upregulated and 

top 5 downregulated genes (as compared to all other CD4+ T naïve cells) of the most depleted CD4+ T 

cell neighbourhood in donors ≥50-years-old versus younger donors. (D,E) (Left) UMAPs depicting 

enrichment of cell neighbourhoods in a cell population, (middle) beeswarm plots depicting enrichment 

of cell neighbourhoods, and (right) dot plots of top 5 upregulated and top 5 downregulated genes (as 

compared to all other cells of the cell type of interest) of the most enriched cell neighbourhood in the 

cell population. (D) pDC and myeloid cell neighbourhood enrichment for SG_Malay donors; a CD14+ 

monocyte neighbourhood shows the highest enrichment. (E) B cell neighbourhood enrichment for 

SG_Indian donors; a naïve B neighbourhood shows the highest enrichment. For UMAPs depicting cell 
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neighbourhood enrichment, each cell is coloured by its log2(mean fold-change) value for all overlapping 

MiloR cell neighbourhoods that the cell was grouped in. Cell types of interest are indicated by dashed 

lines. In (A-C), the analysis was performed using all AIDA donors; orange hues indicate cell 

neighbourhood enrichment, while blue hues indicate cell neighbourhood depletion; darker hues 

correspond to higher magnitudes of enrichment or depletion, capped at log2(mean fold-change)=|2|. In 

(D,E), the analysis was performed on Singapore donors only; yellow-green hues indicate cell 

neighbourhood enrichment, while vermillion hues indicate cell neighbourhood depletion; darker hues 

correspond to higher magnitudes of enrichment or depletion, capped at log2(mean fold-change)=|1|. 

For beeswarm plots, each point corresponds to one cell neighbourhood; cell neighbourhoods are 

classified by the majority cell type annotation within the neighbourhood. Points coloured in red 

(depletion of neighbourhood for the dimension of human diversity of interest) and in blue (enrichment 

of neighbourhood) correspond to spatial FDR values<0.1. 

 

We identified biases in cell neighbourhood abundance that were not evident in analyses of 

cell types or subtypes. For example, the lower abundance of B cells in males was not uniform 

across cell neighbourhoods, particularly for memory B cell neighbourhoods (Figure S5A). 

Similarly, NK cell neighbourhoods showed variable enrichment. While STMN1hi NK cell 

neighbourhoods were enriched in males, CD56+ NK and IFNhi CD16+ NK cell neighbourhoods 

were depleted in males (spatial FDR<0.1, Figure S5B). Furthermore, multiple SOX4hi CD4+ T 

naïve cell neighbourhoods were enriched in females (spatial FDR<0.1, Figure S5D).  

As additional controls, we examined the differential abundance of cell neighbourhoods in 

donors ≥50-years-old (~25% of our cohort, Figure 1D) versus younger donors. We identified 

cell neighbourhoods that were enriched amongst CD16+ monocytes and depleted amongst 

pDCs and CD8+ T naïve cells in these older donors (spatial FDR<0.1, Figure 4B,S6A,B), 

concordant with our cell type and subtype analyses (Figure 2B,3F) and previous reports48,49.  
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We then identified age-associated single-cell signatures beyond those described in the 

literature. Multiple CD16+ NK cell neighbourhoods were significantly enriched in older donors 

(spatial FDR<0.1, Figure 4B,S6B), particularly cell neighbourhoods that were FCER1Glo and 

KLRC2hi. Our analyses suggest an age bias in a subset of NK cells that were recently 

characterised at an scRNA-seq level as being adaptive NK cells38.  

Furthermore, we found that a CD4+ T naïve cell neighbourhood with heightened SOX4 

expression (relative to other CD4+ T naïve cells) was the most depleted CD4+ T cell 

neighbourhood in donors ≥50-years-old (log2(fold-change)=-1.50, spatial FDR=1.61e-12, 

Figure 4B,C,S6C). This cell neighbourhood-based result was a more refined CD4+ T naïve 

aging signature than both that reported in the literature47,49 and seen in our cell subtype 

analyses (Figure 3M). This was also concordant with a finding from the OneK1K scRNA-seq 

study of European-ancestry donors in Australia, that cell counts of a particular CD4+ T cell 

subtype, with heightened SOX4 expression and transcriptionally distinct from CD4+ T naïve 

and central memory cells, declined with age17. We note two coincidences in sex and age 

biases. CD4+ T naïve SOX4hi cell neighbourhoods were depleted in donors ≥50-years-old and 

enriched in females (spatial FDR<0.1, Figure 4B,S5D,S6C). In addition to the enrichment of 

FCER1Glo KLRC2hi CD16+ NK cell neighbourhoods in donors ≥50-years-old (spatial FDR<0.1, 

Figure S6B), multiple NK cell neighbourhoods were enriched in males (spatial FDR<0.1, 

Figure S5B). These results suggest the importance of considering multiple dimensions of 

human diversity in cellular and molecular analyses. 

We tested for hitherto unexplored single-cell signatures of self-reported ethnicity, focusing on 

Singapore donors to minimise confounding by technical variation across study sites. 

SG_Malay donors showed enrichment of a CD14+ monocyte cell neighbourhood (log2(fold-

change)=1.97, spatial FDR=2.28e-07; Figure 4D) with heightened expression of GBP1, 

GBP4, GBP5, and WARS (interferon-induced genes50,51) and CXCL10 (an interferon-induced 

chemokine) relative to other CD14+ monocytes (Figure 4D). The majority of γδT GZMBhi cell 
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neighbourhoods (Figure 2K,S2C) were enriched in SG_Malay donors (spatial FDR<0.1, 

Figure S6D). SG_Indian donors showed enrichment of a naïve B cell neighbourhood 

(log2(fold-change)=0.938, spatial FDR=1.00e-03, Figure 4E) with heightened expression of 

ACTG1 and PLD4, and lowered CD69 levels (Figure 4E). PLD4 is a marker gene for IGMhi 

transitional B cells52, while CD69 is an early marker of lymphocyte activation53, suggesting that 

cells in this SG_Indian-enriched neighbourhood may be in a progenitor-like state.  

These examples highlight sex, age, and self-reported ethnicity differences discernible only at 

the level of cell neighbourhood abundance rather than at the resolution of cell types or 

subtypes. Collectively, through these analyses, we have identified single-cell signatures of 

human diversity, which point to fundamental differences in immune cell phenotypes across 

diverse donors. These results demonstrate the importance of considering sex, self-reported 

ethnicity, and age in the inference of disease signatures to avoid the confounding of disease 

with diversity. 

 

Molecular variation across population groups 

Having elucidated numerous cell type, subtype, and neighbourhood signatures associated 

with multiple dimensions of human diversity, we investigated the influence of self-reported 

ethnicity on cell subtype-specific gene expression. We used edgeR54 to test for population 

group-specific differentially expressed genes (DEGs) based on pseudobulk transcriptomes 

aggregated per cell subtype per donor (Methods). We incorporated age, sex, and scRNA-seq 

experimental batch as covariates in this analysis, and focused on the Singapore donors to 

minimise the confounding of self-reported ethnicity differences with technical variation across 

study sites.  

We identified genes that showed a consistent pattern of self-reported ethnicity-associated 

expression across most subtypes. For example, UTS2 (a gene encoding a cyclic peptide with 
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strong vasoconstrictor activity55) was differentially expressed in the highest number of cell 

subtypes (16 subtypes, alongside KANSL1, NSF, and PPDPF; Table S5) out of all genes 

tested. UTS2 showed consistent upregulation in SG_Chinese donors (edgeR log2(fold-

change) 1.01 to 1.60) and downregulation in SG_Indian donors (edgeR log2(fold-change) -

2.86 to -0.918) across major immune cell types (FDR<0.05 for SG_Indian in 16 cell subtypes 

and SG_Chinese in 9 cell subtypes; Figure 5A, Table S5). This self-reported ethnicity-specific 

expression pattern was also observed in a microarray-based study of RNA extracted from 

whole blood, which ranked UTS2 amongst the top significantly differential probe sets across 

the Singapore population groups56. 
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Figure 5: Self-reported ethnicity-associated variation in gene expression. (A) Scatterplot of edgeR-

log2(fold-change versus other population groups) against edgeR-log2(average counts per million) of 
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UTS2 expression in cell subtypes for each Singapore self-reported ethnicity. (B) Boxplots of log10 

transformation of per-donor pseudobulk FCER1A expression values normalised by total UMIs (with 

added pseudocount of 1e-07) in CD14+ monocytes across the Singapore self-reported ethnicities. Each 

dot represents a donor. Volcano plots of edgeR -log10(p-value) versus edgeR log2(fold-change) of 

differentially expressed genes in (C) (left) CD16+ NK cells in SG_Chinese donors, (D) (left) MAIT cells 

in SG_Indian donors, and (E) (left) CD14+ monocytes in SG_Malay donors, each versus all other 

Singapore donors. Points coloured in red have FDR<0.05, computed from Benjamini-Hochberg 

correction57 of p-values for genes analysed in the self-reported ethnicity-cell subtype combination. 

Points labelled with gene names have FDR<0.05 for (C-E), and also |log2(fold-change) values|≥0.75 for 

(C). (C-E) (Right) Gene set enrichment analysis (GSEA) dot plots of the top ~5 (based on GSEA p-

value) upregulated or downregulated (positive or negative enrichment score, respectively) Gene 

Ontology (GO) Biological Process gene sets. Dot size (“Count”) indicates number of core enrichment 

genes; dots are coloured by FDR (Benjamini-Hochberg-corrected57 p-values). (F,G) (Left to right) 

Transcription factor (TF) binding site motif from CIS-BP58, and boxplots depicting the distributions of the 

median TF regulon AUCell score across all cells of the subtype of interest per donor for each of the 

indicated Singapore population groups. (F) ZBTB7A (M02914_2.00) in regulatory T (Treg) cells; (G) 

YBX1 (M04661_2.00) in CD4+ T effector memory (em) cells. FDR values of comparisons between 

males versus females in (F,G) were computed from Benjamini-Hochberg correction57 of all two-tailed 

Wilcoxon rank-sum p-values for a regulon across the SCENIC GRNBoost2 trial-AUCell analysis 

combinations. Boxplots depict the output from one SCENIC GRNBoost2 trial-AUCell analysis 

combination. 

 

Furthermore, FCER1A was upregulated in SG_Indian donors (edgeR log2(fold-change)=1.45, 

FDR=2.92e-05) and downregulated in SG_Chinese (edgeR log2(fold-change)=-1.16, 

FDR=0.0108) in CD14+ monocytes (Figure 5B). FCER1A expression in monocytes has been 

implicated in risk of allergic disease, with a GWAS SNP for allergic disease risk, rs2427837, 

associated with FCER1A gene expression and protein levels in a Singaporean Chinese 

cohort59. Genetic variation associated with FCER1A may also be predictive for treatment 
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response in adult East Asian patients with chronic hepatitis B60. The self-reported ethnicity-

specific expression patterns of FCER1A may be explained in part by differences in the allele 

frequency of rs2427837 (chr1_159288755_G_A) across the Singapore population groups 

(Figure S7A). Differential expression of disease-associated genes across population groups, 

such as FCER1A, at a level akin to the magnitude of gene expression variation linked with 

eQTLs, may highlight genes of interest for investigating differential disease risk and 

susceptibility across population groups. 

Across 21 cell subtypes and in comparison to the other Singapore self-reported ethnicities, 

we identified 1,915 DEGs for SG_Chinese donors and 1,968 for SG_Indian donors, but only 

97 for SG_Malay donors (FDR<0.05, Table S5). The low number of SG_Malay DEGs may 

reflect the intermediate position of this population group in the genotype PCA between 

SG_Chinese and SG_Indian (Figure 1E), and suggests that the SG_Malay donor group may 

also occupy an intermediate position in gene expression space. In CD16+ NK cells, genes 

upregulated in SG_Chinese donors were enriched for a Wnt signalling-associated gene set 

(FDR<0.05, Figure 5C); Wnt signalling has been implicated in NK-cell differentiation and 

function61. For MAIT cells, SG_Indian donors showed upregulation of cytotoxicity-related gene 

sets and downregulation of a TGFβ-response gene set (FDR<0.05, Figure 5D), which is 

intriguing considering the lower proportions of these innate immune system-like56 cells in 

SG_Indian versus SG_Chinese donors (Figure S3E). SG_Malay donors showed upregulation 

of gene sets associated with inflammatory and host-pathogen defence responses in CD14+ 

monocytes (FDR<0.05, Figure 5E), which is concordant with the enrichment of CD14+ 

monocyte cell neighbourhoods with elevated expression of interferon-associated genes in 

SG_Malay donors (Figure 4D). These results suggest cell subtype-specific expression 

differences that may underlie variation in the activity levels of biological pathways across 

population groups. 
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We further hypothesised that differences in gene regulatory networks could contribute to 

expression variation across population groups. We used a SCENIC-based62 workflow to 

identify transcription factor regulons (comprising a transcription factor and its target genes) 

whose activities differed across dimensions of human diversity. For example, we observed 

that ZBTB7A regulon activity in Treg cells was heightened in male versus female donors of 

SG_Indian self-reported ethnicity (regulon-specific FDR<0.05, Figure 5F), but this sex 

difference was not apparent in other Singapore self-reported ethnicities. ZBTB7A may have 

both transcriptional activator and repressor properties63, and has been reported as a repressor 

of genes involved in glycolysis64 and foetal globin gene expression65. In contrast, NFYC did 

not show sex-specific regulon activity in Treg cells for any Singapore self-reported ethnicity 

(Figure S7B). We further identified a possible sex bias in YBX1 regulon activity in CD4+ T 

effector memory (em) cells across all Singapore self-reported ethnicities (regulon-specific 

FDR<0.05, Figure 5G); YBX1 represses interferon gamma-induction of human major 

histocompatibility complex (MHC) class II genes66.  

Together, these analyses suggest a possible relationship between self-reported ethnicity 

(including its correlated environmental and lifestyle factors) and cell type-specific molecular 

phenotypes, such as gene expression levels, as well as gene set and gene regulatory network 

activity. Such molecular variation may contribute to physiological and disease-related variation 

across population groups, such as variation in immune responses and haematological 

features. 

 

eQTL analyses identify population-specific functional variants and contextualise disease-

associated loci 

To investigate additional influences of human diversity on cell type-specific phenotypes, we 

performed pseudobulk eQTL analysis for 20 immune cell subtypes (Methods). Our cell 
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subtype-specific eQTL analyses circumvent the confounding between differential cell 

proportions versus differential gene expression that eQTL analyses of bulk tissues (e.g., whole 

blood) suffer from67. We identified 11,431 unique genes with at least one cis-eQTL (within 1 

Mb of the gene) with FDR<0.05 in a cell subtype (eGene), out of 12,187 unique autosomal 

genes analysed across all subtypes (Figure 6A). The number of eGenes discovered per cell 

subtype correlated with the number of donors analysed for the corresponding subtype (Figure 

6A,S8A), with a median of 2,342 such eGenes per cell subtype (range: 366 to 6,444). We also 

implemented eigenMT68 for p-value correction from our eQTL analyses to nominate one lead 

SNP per gene (Table S6). 
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Figure 6: Population-specific and context-dependent eQTL effects. (A) Bar charts of numbers of eGenes 

(Matrix eQTL FDR<0.05 for each cell subtype) and non-eGenes per cell subtype, ordered by number 

of donors analysed per cell subtype. Scatterplots of (B) DICE69 (y-axis) and (C) ImmuNexUT70 (y-axis) 

versus AIDA (x-axis) CD4+ T naïve eQTL effect size (beta) values of SNP-gene pairs with AIDA eQTL 

FDR<0.05 per cell subtype. Percentages of all SNP-gene pairs that lie within a quadrant are indicated. 

(D) Histogram of minor allele frequencies (maf) in the 1000 Genomes East Asian (EAS) super-

population, for AIDA eQTLs that were low frequency (maf 1%-5%) or rare (maf<1%) in at least one of 

the 1000 Genomes African (AFR), Admixed American (AMR), or European (EUR) super-populations. 

(E) Bar charts of (left to right) eQTLs identified in AIDA only, eQTLs identified in both AIDA and GTEx 

v8 whole blood18, and eQTLs identified in GTEx v8 whole blood only; SNPs examined were present in 

both datasets. Bars depict percentages of eQTLs in the respective category with maf≥0.05 or maf<0.05 

in the 1000 Genomes EUR super-population. (F) Feature plots depicting (left) blue module scores and 
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(right) IGHM expression coloured on gene expression UMAPs of AIDA IGHMhi and IGHMlo memory B 

cells. (G) Ridge plots depicting the distributions of blue module scores across AIDA population groups. 

(H) Boxplots depicting CYB5A expression in AIDA IGHMhi and IGHMlo memory B cells, categorised by 

the magnitude of a cell’s blue module score, and by donor genotype of the chr18_74269229_G_A locus. 

 

We corroborated our eQTLs using datasets from the DICE project, which profiled 91 healthy 

donors in the San Diego area, California, USA69. AIDA eQTLs (FDR<0.05 per subtype) were 

84.1% to 87.1% concordant in effect size direction for 5 immune cell subtypes (CD4+ T naïve, 

naïve B, CD14+ monocyte, CD8+ T naïve, and CD16+ NK; Figure 6B,S8B). This indicated a 

substantial degree of replication in eQTL identification for the AIDA eQTL set. We observed 

an enhancement in eQTL replication when comparing AIDA eQTLs (FDR<0.05 per subtype) 

against ImmuNexUT eQTLs (derived from purified immune cell subsets from 416 Japanese 

donors) for the same 5 cell subtypes70 (92.0% to 93.9% concordance, Figure 6C,S8C). This 

improvement in replication may be attributable to the larger size of the ImmuNexUT cohort 

versus the DICE cohort, as well as the closer genetic similarity between the AIDA and 

ImmuNexUT cohorts than that for the AIDA and DICE cohorts.  

We examined the allele frequencies of AIDA eQTLs present in the 1000 Genomes Phase 3 

(ENSEMBL release 105) dataset71. 6.94% of such variants were low frequency or rare (minor 

allele frequency (maf) 1%-5%, and maf<1%, respectively) in each of the African (AFR), 

Admixed American (AMR), and European (EUR) super-populations. 2.24% of AIDA eQTL 

variants were entirely absent in the EUR super-population. 31.6% of AIDA eQTL variants were 

low-frequency or rare in at least one of the aforementioned super-populations, with many of 

these being common in the East Asian (EAS) and South Asian (SAS) super-populations 

(Figure 6D,S8D). In addition, we compared the set of AIDA eQTLs with FDR<0.05 (Benjamini-

Hochberg-adjusted57 p-values) across all tests in all cell subtypes against eQTLs (Benjamini-

Hochberg-adjusted57 p-value<0.05) found in the GTEx v8 whole blood dataset18 (Figure 6E), 
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focusing on SNPs tested in both studies. Of the variants identified as eQTLs only in AIDA, 

20.9% were present at maf<0.05 in the 1000 Genomes EUR super-population, but were 

common in the AIDA cohort (Figure 6E). This was much higher than the corresponding 

proportion (3.46%) for eQTLs found in both AIDA and the GTEx v8 whole blood dataset 

(Figure 6E). These allele frequency differences are consistent with the existence of functional 

population-specific variants, and demonstrate the importance of studying diverse populations 

for characterising the full spectrum of genetic variants relevant to humanity. 

We leveraged the single-cell resolution of our dataset to elucidate context-dependent eQTL 

effects (Methods), which can go beyond cell type-specific analyses to pinpoint cellular 

mechanisms and cell states modulating gene expression variation72. We modelled such 

cellular contexts using gene modules identified through gene-gene correlation analyses, such 

as a gene module (“blue”) corresponding to the IGHM gradient in memory B cells (Figure 

6F,G,S2E), which may relate to B cell activation73. We identified 7,597 (13.9%) out of 54,798 

SNP-gene pairs tested that showed eQTL effects dependent on the blue module cellular 

context (FDR<0.05 from Benjamini-Hochberg-adjusted57 p-values). For example, the impact 

of rs7239151 (chr18_74269229_G_A) on CYB5A expression varied with the magnitude of a 

cell’s blue module score. Higher module scores correlated with higher CYB5A expression for 

the GG genotype, but not for the AA genotype (Figure 6H), indicative of the modulation of 

variant effects by B cell activation status. 7.25% of variants showing context-dependent eQTL 

effects are common in AIDA but low-frequency or rare in the 1000 Genomes EUR super-

population (Figure S8E), suggesting the presence of context-dependent effects that can only 

be discovered by studying diverse population groups. 

In parallel, we performed colocalisation analyses for the AIDA eQTLs with immune-related 

disease GWAS featuring Asian cohorts (Table S7). We identified 1,025 cases of high posterior 

probabilities (PP) of colocalisation across 20 cell subtypes (colocalisation PP>0.8; Methods; 
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Table S8). For example, we identified rs56750287, an AIDA eQTL for ORMDL3 in CD8+ T 

GZMKhi cells (N=458, df=431, t-value=-17.7, two-tailed t-test p-value=4.20e-53) and a trans-

ancestry GWAS variant for rheumatoid arthritis74 (GWAS p-value=7.1e-13; colocalisation 

PP=0.810, Figure 7A). Variants affecting ORMDL3 expression have been linked with 

inflammatory diseases such as childhood-onset asthma75.  

 

 

Figure 7: eQTL analyses contextualise disease-associated loci. Locus plots in (A-D) of variants 

investigated in GWAS (top left) and AIDA eQTL analyses (bottom left). (Top right) Minor allele 
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frequencies of variant of interest in the 1000 Genomes super-populations (African (AFR), Admixed 

American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS)). (Bottom right) Boxplots 

of eGene expression in the implicated cell subtype (y-axis) against AIDA donor genotypes (x-axis). (A) 

rs56750287 as an AIDA eQTL for ORMDL3 in CD8+ T GZMKhi cells and a rheumatoid arthritis trans-

ancestry GWAS variant. (B) rs57631119 as an AIDA eQTL for SMAD2 in CD4+ T cm cells and an asthma 

GWAS variant. (C) rs2230500 as an AIDA eQTL for HIF1A in IGHMlo memory B cells and a rheumatoid 

arthritis EAS GWAS variant. (D) rs74416240 as an AIDA eQTL for TCHP in CD14+ monocytes and a 

Graves’ disease GWAS variant. 

 

We then investigated possible population-specific causal variants, akin to the pathogenic 

transthyretin V122I missense variant found in patients of African ancestry76 and implicated in 

an under-diagnosed cause of heart failure amongst African American individuals. We identified 

numerous examples of population-specific variants in our colocalisation analyses across all 

major cell populations and spanning multiple diseases. rs57631119, an eQTL for SMAD2 in 

CD4+ T cm cells (N=461, df=434, t-value=-8.54, two-tailed t-test p-value=2.19e-16) and a 

GWAS variant for asthma77 (GWAS p-value=5.29e-07; colocalisation PP=0.951), was a low-

frequency (1-5%) variant in the 1000 Genomes AFR and EUR super-populations but common 

in all other super-populations (Figure 7B). TGFβ-SMAD2 signalling is active in the airways of 

asthmatic individuals78. rs2230500, an eQTL for HIF1A in IGHMlo memory B cells (N=435, 

df=408, t-value=-6.28, two-tailed t-test p-value=8.77e-10) and also a variant identified in both 

a trans-ancestry and in particular an East Asian ancestry GWAS for rheumatoid arthritis74 

(GWAS p-value=2.03e-08; colocalisation PP=0.864), was rare (<1% minor allele frequency) 

in non-EAS and non-SAS super-populations (Figure 7C). HIF1A has been implicated in 

angiogenesis and inflammatory activity in the synovium tissue of patients with rheumatoid 

arthritis79.  
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Furthermore, a variant identified only in the EAS super-population, rs74416240, was an AIDA 

eQTL for TCHP in CD14+ monocytes (N=460, df=433, t-value=-8.36, two-tailed t-test p-

value=8.48e-16) as well as a variant implicated in Graves’ disease80 (GWAS p-value=8.61e-

14; colocalisation PP=0.983, Figure 7D). Though little is known about TCHP in disease, with 

no disease reports in OMIM81 or UniProt82, this result suggests that TCHP may be a candidate 

for functional investigation for Graves’ disease. 

Collectively, our genetic analyses provide a rich resource for understanding cellular and 

molecular mechanisms that may underlie disease risk, disease biology, and human phenotypic 

variation. Our QTLs facilitate the prioritisation of loci, genes, cell subtypes, and cellular 

contexts, including those relating to population-specific variants, for variant analysis and 

interpretation. 

 

Discussion 

We have generated and assembled an scRNA-seq immune cell atlas from healthy donors 

spanning diverse population groups across 5 countries, which is a resource that is one of the 

largest healthy blood datasets in terms of number of cells, and also the most diverse in terms 

of number of population groups. We observed a substantial influence of human diversity on 

cellular and molecular traits. In our data, the impact of self-reported ethnicity on cell subtype 

proportions was comparable to that of female / male sex, and explained more variance than 

age or BMI. We found that the effects of age and sex could be modulated by self-reported 

ethnicity, highlighting the importance of studying these factors in combination. We identified 

scRNA-seq signatures of human diversity, including enrichment or depletion discernible only 

at the resolution of cell neighbourhoods, rather than cell types or subtypes. Human diversity-

associated variation in cell subtype proportions, cell neighbourhood abundance, and cell type-

specific gene expression overlapped with traits relevant to disease signatures and diagnostics. 
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These included population-specific functional variants, including context-dependent eQTLs, 

which could only be elucidated and characterised by studying diverse cohorts. Our findings 

underline how studying human diversity is both a pressing equity issue and of scientific 

importance. All the dimensions of human diversity we investigated influence fundamental 

phenotypes, and would ideally be incorporated in scRNA-seq reference atlases to facilitate 

accurate inferences from comparisons involving disease datasets. 

Since genetic variation and environmental factors are often confounded31, the self-reported 

ethnicity associations we discovered are not necessarily genetic effects. Such associations 

may represent the combined effects of systematic genetic and environmental differences 

between populations, including variation in diet and geography. Further research is needed in 

cohorts with comprehensive metadata on environment and lifestyle, to begin to understand 

the individual impact of these factors. Regardless of their aetiology, these self-reported 

ethnicity-associated cellular and molecular profiles can contribute towards defining healthy 

baselines important for disease diagnoses, and facilitate the analysis of human physiology 

and pathophysiology. 

Technical variation across experimental batches and study sites can introduce statistical 

biases confounded with the biological variation of interest. We adopted a suite of experimental 

and computational techniques to ameliorate against this, by harmonising experimental 

workflows and unifying data analysis across our study sites. In addition, we confirmed that key 

results remained consistent across two data integration methods (Figure 3J-L,S3G,S4B,C). 

To further reduce the impact of site-specific technical biases on our analyses of self-reported 

ethnicity, we performed internal comparisons within population groups, such as female-male 

or age differences within each population group, and focused several analyses on our 

Singapore cohort, for whom SG_Chinese, SG_Malay, and SG_Indian donors were batch-

randomised. Lastly, we validated our findings in independent cohorts and datasets beyond our 
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AIDA scRNA-seq atlas. These strategies may be relevant for future multi-national single-cell 

studies of diverse cohorts. 

In our scRNA-seq atlas, UTS2, KANSL1, and ANKRD36B were the most commonly 

upregulated genes across multiple cell subtypes for SG_Chinese, SG_Indian, and SG_Malay 

donors, respectively (Table S5). UTS2 was associated with multiple traits in a transcriptome-

wide association study of the UK Biobank cohort83, including basal metabolic rate, body fat 

percentage, and diastolic blood pressure. Notably, the Singapore 2022 National Population 

Health Survey84 reported differences across Singapore self-reported ethnicities in the crude 

prevalence of abdominal obesity, hyperlipidaemia, type 2 diabetes, and hypertension, 

motivating future studies of the relationships between single-cell molecular variation and 

phenotypic variation across population groups. 

Our findings of differential cell subtype proportions, such as the lower Treg proportions in 

Korean donors (Figure 3J,S3F,G), may have implications for our understanding of population-

specific disease susceptibility. Treg cell depletion has been observed in the pathogenesis of 

autoimmune diseases85, motivating further studies of autoimmune disease prevalence in 

Korean populations, and more broadly comparative studies of disease prevalence across 

ancestries. For example, a study focusing on Manhattan, New York, USA, found that the 

prevalence of lupus was higher among non-Hispanic Asian women than non-Hispanic white 

women86. The combined analysis of detailed immune phenotypes elucidated from scRNA-seq 

datasets with studies of disease prevalence across diverse population groups can help 

nominate mechanisms of interest for understanding and treating diseases.  

Given the resolution of our dataset, we could identify cell neighbourhood differences that were 

not apparent at the coarser cell type or subtype levels, such as the enrichment of CD14+ 

monocyte neighbourhoods with heightened expression of interferon-induced genes in 

SG_Malay donors (Figure 4D). Our findings both encourage further studies on the possibility 
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of differential cell activities across population groups as well as warn against interpreting cell 

neighbourhood enrichment without accounting for human diversity. Such population-specific 

features should be factored into the analysis of disease scRNA-seq datasets. Comparisons of 

disease datasets against scRNA-seq reference atlases can nominate disease-associated cell 

neighbourhoods. However, if the reference atlases are not well-matched for dimensions of 

human diversity, such differentially abundant cell populations may be confounded with single-

cell signatures specific to donor or patient demographics. With the possible applications of 

scRNA-seq technologies in precision medicine39, scRNA-seq reference atlases should be 

diverse from their inception to maximise the global benefit to all population groups. 
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Inclusion and Ethics 

Our research included local researchers across all study sites in the 5 countries (India, Japan, 

Singapore, South Korea, Thailand) in every aspect of the research process, including study 

design, study implementation, data ownership, and authorship. Community engagement has 

been led by our authors and long-standing collaborators in each country with expertise in 

epidemiology, population genetics, and human disease studies. 

 

Data availability 

The AIDA Data Freeze v2 gene-cell matrix (1,265,624 cells from 619 India, Japan, 

Singaporean Chinese, Singaporean Malay, Singaporean Indian, South Korea, and Thai Asian 

donors and 6 distinct Lonza commercial controls) and donor metadata will be available via the 

Chan Zuckerberg (CZ) CELLxGENE data portal (we will provide the link upon publication). 

The earlier AIDA Data Freeze v1 gene-cell matrix and visualisation is available via the CZ 

CELLxGENE data portal at https://cellxgene.cziscience.com/collections/ced320a1-29f3-47c1-

a735-513c7084d508. The AIDA Data Freeze v2 cell annotation metadata will be available via 

the Cell Annotation Platform (CAP at https://celltype.info/; we will provide the link upon 

publication). The open-access AIDA datasets are available via the Human Cell Atlas Data 

Coordination Platform at https://data.humancellatlas.org/explore/projects/f0f89c14-7460-

4bab-9d42-22228a91f185. The managed-access AIDA datasets are available via data access 

applications to the corresponding authors. The SLAS-2 dataset we analysed was profiled in a 

published study43, and is available through a data access application to the Gerontology 

Research Programme at the National University of Singapore, Singapore, and the Singapore 

Immunology Network (SIgN), A*STAR, Singapore. 
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Code availability 

The code for this manuscript is available at https://github.com/prabhakarlab/AIDA_Phase1. 

 

Methods 

Healthy donors in the Asian Immune Diversity Atlas 

Living healthy human donors from India, Japan, Singapore, South Korea, and Thailand were 

profiled for this study. All study protocols were approved by the Institutional Review Boards 

(IRBs) of the institutions our laboratories are affiliated with (Genome Institute of Singapore: 

IRB 2020-012 and 2022-051; Nanyang Technological University: IRB-2016-11-030-01, IRB-

2016-11-030, and 18IC4698; RIKEN: IRB H30-9; Samsung Genome Institute: IRB 2019-09-

121; Faculty of Medicine Siriraj Hospital, Mahidol University: IRB 725/2563(IRB3); National 

Institute of Biomedical Genomics: IRB NIBMG/2022/1/0022) prior to dataset generation. Our 

sample collection sites were in Kolkata, Yokohama, Singapore, Seoul, and Bangkok, 

respectively. All donors provided written informed consent for sample and metadata collection 

and subsequent analyses. Donor metadata, such as age, female / male sex, self-reported 

ethnicity, height, weight, body mass index (BMI), and medication and dietary supplement 

consumption, were collected from donors via questionnaires and clinical measurements. We 

closely complied with all ethical regulations and our IRB conditions. 

We included healthy donors in our atlas through applying the following exclusion criteria for 

donor datasets: 

1) A person unable to provide informed consent. 

2) A person with active infection or fever. 

3) A person on regular medication (consumption of dietary supplements and / or herbal 

remedies was not considered in the exclusion of participants from our study). 
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4) A person with autoimmune disease. 

5) A person with haemoglobin A1c (HbA1c)≥6%. 

In addition, we excluded from our reference atlas persons who had received any vaccines in 

the 8 weeks prior to the date of blood draw. 

We profiled 85 Singaporean Chinese, 70 Singaporean Indian, 61 Singaporean Malay, 149 

Japan Japanese, 165 South Korea Korean, 59 Thailand Thai, and 30 India Indian donors for 

a total of 619 Asian donors for the AIDA Data Freeze v2 dataset. 

We also included control PBMC samples from 6 distinct European donors (Lonza 4W-270, 

from lot numbers 3038099, 3038016, 3038097, 3038306, 3030004, and 3061635) in the AIDA 

Data Freeze v2 dataset. 

Isolation of peripheral blood mononuclear cells (PBMCs) 

Eight ml of blood was drawn from each donor for this study using CPT tubes with sodium 

heparin (BD Vacutainer CPT, catalogue number 362753). Isolation of peripheral blood 

mononuclear cells (PBMCs) was performed according to a standardised protocol across all 

study sites. We used foetal bovine serum (FBS; Sigma-Aldrich catalogue number F2442) lot 

numbers 19G014 and 20A363 for both the PBMC isolation and the cell pooling and washing 

procedures. Briefly, blood samples collected in CPT tubes (standing in room temperature) 

were processed within 2 hours of blood collection using density-gradient centrifugation. 

Centrifugation steps were performed using a soft setting for centrifuge acceleration and 

deceleration. Blood samples were mixed 8-10 times prior to centrifugation at 1,500 x g in a 

horizontal rotor with swing-out head for 30 minutes at 20 °C. Plasma was aspirated; the PBMC 

layer was then collected, and spun down at 300 x g for 15 minutes at 20 °C. The cell pellet 

was resuspended in ACK lysing buffer (Thermo Fisher Scientific, catalogue number A10492) 

for lysis of red blood cells. Samples were washed twice with wash buffer (PBS pH 7.4, 1% 

FBS, 1 mM EDTA) and centrifuged at 300 x g for 15 minutes at 20 °C. PBMCs were 
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cryopreserved in CryoStor CS10 cell freezing media (STEMCELL Technologies, catalogue 

number 079555). Cryovials were stored at -80 °C in controlled-rate cooling containers 

overnight before long-term storage in liquid nitrogen. We have made our detailed protocol 

harmonised across all study sites available via Protocols.io87 at 

https://www.protocols.io/view/pbmcs-isolation-from-cpt-tube-b8r9rv96. 

Single-cell experiments: Genetic multiplexing and sample pooling 

Thawing and washing of individual PBMC samples and pooling (for genetic multiplexing) of 

donor samples were performed according to a standardised protocol across all study sites. 

Briefly, individual vials of PBMC donor samples were thawed in a 37 °C water bath for 1-2 

minutes until no visible ice crystals were seen, and further thawed using pre-warmed thawing 

media (RPMI (Gibco catalogue number 21870076) + 5% Human Serum (Sigma-Aldrich 

catalogue number H4522) + 1% Penicillin-Streptomycin (Gibco catalogue number 15140122) 

+ 1% L-Glutamine (Gibco catalogue number 25030081)). Individual samples were centrifuged 

at 300 x g for 5 minutes at 21 °C, and washed first with pre-warmed washing media (RPMI + 

10% FBS + 1% Penicillin-Streptomycin + 1% L-Glutamine), followed by two washes with pre-

warmed (PBS + 0.04% Bovine Serum Albumin (BSA, Capricorn Scientific catalogue number 

BSA-1S)). Individual samples were then each filtered through a 30 µm MACS SmartStrainer 

(Miltenyi Biotec) to remove cellular clumps and debris; samples were kept on ice for all the 

following procedures after filtering. Individual samples were counted with a 1:1 sample-to-

trypan blue mix using an automated cell counter (Thermo Fisher Countess II FL), and 

resuspended to 1.50 × 106 cells per ml in PBS + 0.04% BSA. Equal numbers and volumes of 

cells from each donor were pooled per experimental batch, and the pooled sample was 

counted using the same cell counting procedure as above prior to the 10x Genomics single-

cell experiments. We have made our detailed protocol harmonised across all study sites 

available via Protocols.io88 at https://www.protocols.io/view/demuxlet-cell-preparation-

protocol-b8sdrwa6.  
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Single-cell experiments: 10x Genomics 5’ v2 RNA-sequencing, B-cell receptor sequencing 

(BCR-seq), and T-cell receptor sequencing (TCR-seq) 

Fifteen Asian donors and one European control sample (Lonza 4W-270, from lot numbers 

3038099, 3038016, 3038097, 3038306, 3030004, and 3061635; the first 5 lot numbers were 

used in AIDA Data Freeze v1, while all 6 lot numbers were used in AIDA Data Freeze v2) were 

pooled per batch, with two technical replicates (which we term as replicate libraries) performed 

for each batch. To allow for comparisons across donors from different population groups in the 

Singapore batches, we batch-randomised donors, ensuring that approximately the same 

numbers of Singaporean Chinese, Singaporean Malay, and Singaporean Indian donors (and 

the same age range and sex balance) were present per Singapore donor batch. 

We loaded 40,000 cells from the donor PBMC pool for each technical replicate, and performed 

10x Genomics 5’ v2 scRNA-seq, B-cell receptor sequencing (BCR-seq), and T-cell receptor 

sequencing (TCR-seq) experiments and library preparation according to the manufacturer’s 

protocols. We used a Chromium Controller at each study site for the 10x Genomics partitioning 

(generation of gel beads-in-emulsion (GEMs)) and barcoding procedures. We used the 

following 10x Genomics reagents for our experiments: Chromium Next GEM Chip K Single 

Cell Kit, Chromium Single Cell 5’ v2 Reagent Kit, Dual Index Kit TT Set A, Chromium Single 

Cell Human TCR Amplification Kit, and Chromium Single Cell Human BCR Amplification Kit. 

We quantified libraries using the Bioanalyzer 2100 with High Sensitivity DNA kits (Agilent 

Technologies). We pooled two 5’ v2 gene expression technical replicates (i.e., two libraries) 

per lane of an Illumina NovaSeq 6000 S4 flow cell. We pooled 20 BCR and / or TCR libraries 

per lane of an Illumina NovaSeq 6000 S4 flow cell. We sequenced the Japan, Singapore, 

South Korea, and Thailand libraries using a sequencing configuration of paired-end 150 bp 

with 10 bp dual i7 and i5 indices. Our pilot libraries from India were sequenced using a 

sequencing configuration of read 1: 26 bases and read 2: 90 bases with 10 bp dual i7 and i5 

indices. 
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Genomic DNA isolation, genotyping, genotype quality control, and genotype imputation 

Genomic DNA was isolated from PBMCs from each donor using the QIAamp DNA Mini Kit 

(Qiagen, catalogue number 51306) according to the manufacturer’s protocol. Genotyping was 

performed using the Illumina GSAv3.0 array (Infinium Global Screening Array-24 Kit, 

catalogue number 20030770). We used the Illumina GenomeStudio version 2.0 software with 

the PLINK Input Report Plug-in v2.1.4 and the Infinium Global Screening Array v3.0 manifest 

files (BPM Format – GRCh38) to convert the raw data IDAT files to MAP and PED files. We 

used StrandScript89 to correct the Illumina genotyping data consistently to the GRCh38 human 

genome reference forward strand.  

For our genetic demultiplexing workflow, we then used PLINK 1.990 to retain autosomal 

variants present at a minimum minor allele frequency of 5% and to convert the data to VCF 

files. For each AIDA batch of donor samples, we included only SNPs with a 100% genotyping 

rate, and excluded indels. We corrected the reference allele base identity using bcftools norm 

-f91 with the GRCh38 reference genome, and removed any multi-allelic SNPs. We used the 

resulting VCF files as our input for genetic demultiplexing of individual single-cell sequencing 

libraries. We also used these VCF files for principal component analysis (PCA) of the AIDA 

genotype data, using the R prcomp function. 

For genotype imputation, we performed both sample-level quality control (QC) and variant-

level QC steps. Samples that had call ratios of below 0.98 (after considering autosomal 

variants with call ratios>0.99) were excluded from the imputation procedure. Related donor 

samples were identified through computation of the PI_HAT and Z1 identity-by-descent values 

using PLINK290. During variant-level QC, variants with call ratio<0.99 were excluded. Variants 

that showed significant association with sex as well as variants with Hardy-Weinberg 

equilibrium (HWE) p-value<1e-6 were also excluded. Variants which had allele frequencies in 

the AIDA genotype dataset that differed from the 1000 Genomes hg38 dataset by more than 
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15% (for variants found in AIDA Singaporean Chinese, Japanese, and Korean donors versus 

the 1000 Genomes East Asian super-population, as well as variants found in AIDA Japanese 

donors versus the 1000 Genomes Japanese donors) or more than 17.5% (for variants found 

in AIDA Singaporean Indian donors versus the 1000 Genomes South Asian super-population) 

were excluded. In addition, variants for which we were unable to confidently match strand 

orientation to the 1000 Genomes hg38 dataset as well as duplicated variants were excluded 

from imputation. After these QC procedures, genotype imputation was performed using the 

Michigan Imputation Server92, utilising the 1000 Genomes hg38 (all populations) high-

coverage reference panel (1000 Genomes Phase 3 (Version 5), with 2,504 samples and 

49,143,605 sites on the autosomal chromosomes) as the imputation panel. 

Single-cell RNA-sequencing (scRNA-seq) pre-processing and quality control 

We performed centralised pre-processing and quality control (QC) of all scRNA-seq datasets. 

We used the DRAGEN Single-Cell RNA pipeline in the Illumina DRAGEN v3.8.4 software 

(version 07.021.602.3.8.4-20-g74395e76) for pre-processing of paired-end FASTQ files from 

each individual scRNA-seq gene expression library from Japan, Singapore, South Korea, and 

Thailand to obtain one gene-cell matrix per library. We utilised the DRAGEN genetic 

demultiplexing workflow for detecting genetic doublets and for assigning cells to their donors 

based on the donor genotype data VCF file provided to the DRAGEN pipeline. We used 

GENCODE Release 32 (GRCh38, Ensembl 98, date 2019-09-05) as our gene annotation 

reference, and the associated GRCh38 primary genome assembly as our reference genome, 

and set --Aligner.hard-clips=0 and --Aligner.sec-aligns=3. We used the 737K-august-2016.txt 

barcode whitelist (corresponding to the list of barcodes relevant for the 10x Genomics Single 

Cell 5' v2 assay) from the 10x Genomics Cell Ranger software installation in the DRAGEN 

pipeline. For the AIDA BCR-seq and TCR-seq Japan, Singapore, South Korea, and Thailand 

datasets, we processed the paired-end FASTQ files per library using Cell Ranger VDJ pipeline 

versions cellranger-5.0.0 and cellranger-5.0.1. For the AIDA scRNA-seq India datasets, as 
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these could not be processed adequately through the DRAGEN pipeline, we ran Cell Ranger 

7.0.1 with the default parameters, with introns included by default in the cellranger count step. 

For the AIDA BCR-seq and TCR-seq India datasets, we processed the FASTQ files using Cell 

Ranger VDJ pipeline version cellranger-4.0.0. We used the same Cell Ranger V(D)J reference 

(vdj_GRCh38_alts_ensembl-5.0.0) for all BCR and TCR datasets, and considered the high-

confidence BCR and TCR contigs from the output files for our analyses. 

For Japan, Singapore, South Korea, and Thailand single-cell experimental batches with all 

donor genotype data available, we used the DRAGEN genetic demultiplexing output for our 

genetic singlet and genetic doublet assignments. For batches with one missing donor 

genotype (e.g., due to problems with the genomic DNA extraction procedure), we used 

Freemuxlet93 (https://github.com/statgen/popscle) on the BAM files from the DRAGEN pipeline 

output, with the default Freemuxlet parameters, to assign cells to donors. We then performed 

genotype concordance analyses by comparing the Freemuxlet-inferred genotypes against the 

Illumina GSAv3 genotyping array data to match the Freemuxlet clusters to donors. For these 

Freemuxlet analyses, we used as our input VCF file into the dsc-pileup step the set of exonic 

variants that were present at a minor allele frequency ≥5% in the East Asian and / or the South 

Asian super-populations in the 20181203_biallelic_SNV GRCh38 version of the 1000 

Genomes dataset (EBI European Variation Archive accession PRJEB30460). For the AIDA 

India datasets, we ran Demuxlet on the BAM output files from Cell Ranger with the default 

parameters, except for setting --group-list as the list of barcodes (barcodes.tsv.gz) from the 

unfiltered Cell Ranger output. We excluded any library with excessively high genetic doublet 

rates from all downstream analyses. 

We performed QC of our scRNA-seq dataset in two stages. We first performed library-level 

QC by analysing each individual library. We filtered out cells for which fewer than 300 

GENCODE Release 32 genes were detected (number of detected genes (NODG)<300).  
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We identified a preliminary cell type annotation for each library for use in our doublet 

identification workflow. For AIDA Data Freeze v1, we identified the top 2,000 highly variable 

features using the variance-stabilising transformation option in the Seurat 4.1.1 R package94, 

scaled the data using all genes, and then performed principal component analysis on these 

highly variable features. We performed nearest-neighbour analyses based on the resulting 

principal components, and ran Louvain clustering in Seurat at a resolution of 1.0. For AIDA 

Data Freeze v2, to guard against batch-to-batch variability in heterotypic doublet identification, 

we instead performed reference projection of the scRNA-seq library to a reference panel of 

immune cell transcriptomes using the RCAv2 software95, performed nearest-neighbour 

analyses based on the principal components of the reference projection coefficients, and ran 

Louvain clustering in Seurat at a resolution of 1.0. For both data freezes, we annotated the 

resulting clusters based on a majority vote of the major cell type annotation labels assigned 

by RCAv2 to cells within each cluster. 

We used the genetic doublet proportion for a library (combining the proportions of mixed 

genetic identity and ambiguous identity droplets) to estimate the likely total doublet rate for 

that library (proportion of genetic doublets in the library out of all cells with NODG≥300 

multiplied by (number of donor samples)/(number of donor samples-1))96. We used this 

estimate of total doublets in a library, as well as the RCAv2 reference projection-based 

clustering and annotation of clusters (for estimation of homotypic doublet proportion) as our 

input into DoubletFinder, which we used for identifying heterotypic doublets97. We then 

removed cells that had more than 10 (HBA1 UMIs + HBB UMIs), since these cells could be 

red blood cells, or cells contaminated with red blood cell RNA transcripts. We checked for any 

sample swaps by examining the number of singlets per donor (typically ~1,000 singlets and 

almost always >>100 singlets per donor per library, even if a particular donor sample had low 

cell viability after thawing). We also examined for concordance of the scRNA-seq-inferred 

female / male sex (inferred from the ratio of total counts from non-pseudoautosomal region 
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(PAR) Y-chromosome genes to total counts of PAR Y-chromosome genes) with the donor 

metadata. By checking for matches between the transcriptomic and genotype data, our 

integrative analysis of scRNA-seq reads with genotyping array output through the genetic 

demultiplexing workflow helped guard against any inter-batch sample swaps. 

After we performed the library-level QC procedures, we performed cell type-specific QC on 

our dataset. We removed any cell that was flagged as a doublet by the DRAGEN genetic 

demultiplexing workflow or by the DoubletFinder workflow from our downstream analyses, and 

included only single cells from healthy donors that had provided written informed consent and 

had not withdrawn consent from the study. We then combined single cells from multiple 

libraries across countries, performed reference projection of such combinations of cells to a 

reference panel of immune cell transcriptomes using the RCAv2 software95, and performed 

nearest-neighbour analyses based on the principal components of the reference projection 

coefficients. We ran Louvain clustering in Seurat94 at a resolution dependent on the size of the 

combination of cells, increasing the resolution for a larger set containing more cells. We 

annotated the resulting clusters based on a majority vote of the major cell type annotation 

labels assigned by RCAv2 to cells within each cluster. We performed cell type-specific QC on 

all single cells across all libraries by applying per-cell NODG and percentage mitochondrial 

read (pMito) filters that were manually determined for each major cell type (B, CD34+ 

haematopoietic stem and progenitor cell (HSPC), myeloid (including both monocyte and 

conventional dendritic cell), natural killer (NK), plasma cell, plasmacytoid dendritic cell (pDC), 

platelet, T); these major cell types were largely distinct in gene expression space (except for 

NK and T cells) in our scRNA-seq analyses. For example, our NODG filters excluded any 

myeloid cell with NODG<500, and any other leukocyte with NODG<1,000. Our pMito filters 

excluded any cell with pMito>12.5% (for plasma cells and platelets) and pMito>8% (for all 

other major cell types). We included only cells within our designated NODG and pMito range 

for cell type annotation and downstream analyses. 
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Following these two stages of QC, AIDA Data Freeze v1 comprised 1,058,909 PBMCs from 

503 Asian donors and 5 European controls profiled in Japan, Singapore, and South Korea, 

which we made available to the research community pre-publication (Supplementary Note), 

including via the CZ CELLxGENE data portal and as part of the first CZ CELLxGENE 

Census25. AIDA Data Freeze v2, which we focused on in this study, comprises 1,265,624 

PBMCs from 619 Asian donors and 6 European controls (median number of detected genes 

(NODG) per library: 1342-2296, median NODG of 93 libraries=2003; median percentage 

mitochondrial reads (pMito) per library: 2.07%-4.08%, median pMito of 93 libraries=3.53%) 

(Figure S1A). We had a median of 122 high-confidence BCR barcodes and 986 high-

confidence TCR barcodes per donor (Figure S1B). 

Cell population-specific quality control, data integration, sub-clustering, and cell type 

annotation 

We performed cell population-specific quality control (QC), feature selection, data integration, 

sub-clustering, and annotation on the following cell populations separately: 1) B cells; 2) pDCs 

and myeloid cells; and 3) ILC, NK, and T cells. For the ILC, NK, and T cells, we performed a 

second round of data integration as well as re-clustering on the following two cell populations 

separately: 3a) CD4+ T and dnT cells, and 3b) ILC, NK, and T cells that were neither CD4+ T 

nor dnT cells.  

We utilised genes that were expressed by ≥0.1% of cells in our cell populations of interest for 

our analyses. We first identified genes expressed by ≥0.1% of cells in each of the following 

cell types: B, pDC, myeloid, NK, and T. We retained the union of these genes for the combined 

pDC and myeloid cell populations, and also the combined NK and T cell populations. We then 

re-normalised the respective gene-cell matrices (B; pDC and myeloid; NK and T) by the total 

expression of retained genes.  
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We excluded cells with heightened platelet marker gene expression by performing a platelet 

marker gene QC step in the first round of the sub-clustering analyses. We separately identified 

platelet gene expression distributions in 1) B cells, 2) pDCs and myeloid cells, and 3) ILC, NK, 

and T cells. We excluded cells that were amongst the top 30% of cells with a non-zero sum of 

expression of four platelet marker genes (ITGA2B, PF4, PPBP, TUBB1) from the first round 

of cell population-specific data integration, sub-clustering, and cell type annotation 

procedures.  

Following the platelet marker gene QC step, we re-identified the genes that were expressed 

by ≥0.1% of cells in our cell populations of interest. This was performed prior to each data 

integration procedure. 

We performed data integration using the Seurat anchor integration reciprocal principal 

component analysis (RPCA) algorithm28. We integrated across all scRNA-seq libraries and 

treated each scRNA-seq library as a batch.  

For each library, we performed log-normalisation and identification of the top 2000 highly 

variable features using the variance-stabilising transformation option in Seurat. We selected 

integration features using the Seurat SelectIntegrationFeatures function, scaled each library 

and ran PCA on each library using these integration features, and selected the library with the 

highest number of cells for the cell population of interest as our reference dataset. We 

identified integration anchors via Seurat RPCA using this reference dataset and the first 30 

principal components. We then performed data integration using Seurat IntegrateData and its 

default parameters (e.g., the first 30 dimensions as well as k.weight=100 for the number of 

neighbours considered in the anchor weighting procedure). For control analyses, we 

performed Harmony for data integration44, treating each scRNA-seq library as a batch. We 

chose highly variable genes (HVG) by their prevalence across the highly variable genes for all 
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scRNA-seq libraries (Harmony-HVG), followed by Harmony integration, and sub-clustering 

and cell type annotation in the Harmony-HVG embedding.  

We performed sub-clustering using the integrated embedding principal components, and 

identified marker genes for one cluster versus all other clusters using the implementation of 

the single-cell Wilcoxon rank-sum test in the Seurat FindMarkers differential gene expression 

function94. We then annotated our cells based on marker genes curated from the literature as 

well as through examination of gene expression across clusters in our dataset (Table S2). Our 

annotation framework involved four hierarchical levels for annotating sub-clusters (Figures 

S2A,B). At the most detailed level (Level 4), we named and described individual sub-clusters, 

which we refer to as cluster identities in this study. We manually merged these towards cell 

subtypes widely-recognised in the literature at higher hierarchical levels in the PBMC 

clustering hierarchy. We used well-defined cell type descriptors from the literature (e.g., naïve, 

memory) as well as marker genes and their heightened / lowered levels of expression (hi / lo, 

respectively) for nomenclature. We considered the fold-change in expression of marker genes 

for a cluster, as well as the proportion of cells within a cluster that expressed the marker genes 

of interest, based on single-cell Wilcoxon rank-sum tests, for our annotation nomenclature 

(e.g., log2(fold-change)>0.5 and >50% of a cluster expressing a gene for a “hi” annotation of 

that gene). For distinguishing T cell clusters, we considered the proportion of cells within a 

cluster that had high-confidence TCR barcodes. We annotated clusters in detail, where 

possible, but left annotations at a coarser level or described subtypes as “unknown” (e.g., 

CD4+_T_unknown instead of a specific CD4+ T subtype) when there was no compelling 

evidence in support of a more detailed annotation. We also flagged clusters that appeared to 

have 1) heightened platelet gene expression; 2) the combination of (a) a low range of NODG 

values, (b) low expression of canonical marker genes that should be expressed in the cell 

type, and (c) heightened expression of genes that, relative to other clusters, tend to be highly 

expressed in PBMC scRNA-seq datasets (e.g., the long non-coding RNA genes MALAT1, 
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NEAT1); as well as 3) clusters with heightened expression of marker genes from other 

lineages or cell types (e.g., T cells that showed heightened expression of monocyte marker 

genes) for caution in downstream interpretation. 

Cell type proportion analyses 

For our analyses, we focused on population groups with at least 50 donors, donors with at 

least 800 cells passing our quality control filters, and cell subtypes with at least ~10 cells per 

donor on average. We utilised linear models of self-reported ethnicity, age, female / male sex, 

and their two-way interaction terms to examine the correlation of these dimensions of human 

diversity with the log10(Proportion) of immune cell types and subtypes. We evaluated several 

denominators, including all PBMCs per donor as well as all NK, T, and ILC cells (for NK and T 

cell subtypes) to guard against possible changes in overall myeloid or lymphoid cell 

abundance across population groups.  

To compute the variance in cell subtype proportions explained by a dimension of human 

diversity, we examined the multiple R-squared values (equivalent to the variance explained) 

from linear regression models in which only a single dimension (e.g., age, self-reported 

ethnicity, BMI, or sex) was considered. We focused on Singapore donors for this analysis, 

using total PBMCs without platelets as our denominator. For validation of the impact of self-

reported ethnicity on cell subtype proportions, we analysed the Singapore Longitudinal Ageing 

Study wave-2 (SLAS-2)98 flow cytometry dataset profiled in a published study43. This dataset 

included 824 donors spanning 55-94-years, comprising 719 SG_Chinese, 40 SG_Indian, and 

65 SG_Malay donors. In the aforementioned study, briefly, flow cytometry data was analysed 

using the FlowJo software (BD). Cell populations were gated in FlowJo and the event counts 

of each cell population were exported into Microsoft Excel for calculating frequencies of cell 

populations. We used a model of 

log10(Proportion)~Age+Sex+Individual_Self_reported_ethnicity (e.g., SG_Chinese or 
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SG_Indian or SG_Malay), and the PBMCs/Single_Cells/Live_Cells/CD34+CD45+ event count 

(total leukocytes) as our denominator for these analyses. This corresponded to the same linear 

model featuring total PBMCs without platelets as our denominator in the AIDA scRNA-seq 

analyses of the Singapore population groups. 

Statistical tests, including computation of two-tailed t-test and two-tailed Wilcoxon rank-sum 

test p-values, were performed in R. Plots were generated using the ggplot2 R package99 and 

the R plotting functions. 

Cell neighbourhood enrichment analyses 

We performed two types of cell neighbourhood enrichment analyses. We first examined the 

impact of single dimensions of human diversity across the whole AIDA atlas. We performed 

Seurat RPCA integration for all cells and all libraries according to our Seurat RPCA workflow 

described in the Cell population-specific quality control, data integration, sub-clustering, and 

cell type annotation Methods section. From the resulting integrated embedding, we considered 

only population groups with at least 50 donors for the cell neighbourhood enrichment analysis. 

We identified the 500 nearest neighbours for each cell in our atlas using the first 30 principal 

components from our integrated embedding, and computed the number of cells corresponding 

to our dimension of human diversity of interest (i.e., female or male sex, one of the self-

reported ethnicities, one of the four age ranges for our dataset (in years, ages 19 to 32, 33 to 

40, 41 to 49, 50 to 77) and the number of cells corresponding to the complement (i.e., all other 

cells from the other sex considered, the other self-reported ethnicities, or the other age ranges, 

respectively). We normalised the ratio of these two values against the ratio of total cells in our 

atlas corresponding to the dimension of human diversity of interest, to the total number of cells 

corresponding to the complement. We then performed a log2 transformation of these values, 

and overlaid these values on gene expression UMAPs. 
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Next, we used MiloR version 1.546 to test for differential cell neighbourhood abundance using 

models accounting for multiple dimensions of human diversity. The MiloR analysis allowed for 

overlapping cell neighbourhoods and computation of spatial false-discovery rates (FDR). We 

implemented MiloR for all combinations of cell populations (1) B; 2) pDC and myeloid; 3) CD4+ 

T and dnT; and 4) ILC, NK, and T cells that were neither CD4+ T nor dnT cells) with dimensions 

of human diversity. We performed the MiloR analyses using the Seurat RPCA integrated 

embedding from the cell type annotation workflow, following the removal of cells with 

heightened platelet gene expression and data integration using the Seurat RPCA anchor 

integration procedure. We performed the following workflow for donors with at least 800 cells 

per donor. We set k=900, such that the peak in the histogram of neighbourhood sizes was 

~3,000, which was a number ~5 times the number of donors analysed through the MiloR 

workflow. We used a model of Age+Sex+Self_reported_ethnicity for differential cell 

neighbourhood abundance testing, with SG_Chinese, SG_Indian, or SG_Malay substituted 

into the self-reported ethnicity term when investigating cell neighbourhood enrichment 

associated with a particular self-reported ethnicity. We treated age as a continuous variable 

when examining the effects of female / male sex or self-reported ethnicity, and categorised 

age into 50-77 years versus <50 years when examining the effects of age. We ran MiloR with 

the graph-based sampling refinement scheme for identifying neighbourhoods, and with the 

graph-overlap option for the spatial FDR weighting scheme. We identified the most enriched 

and least enriched neighbourhoods for each combination of cell population and dimension of 

human diversity of interest, paying particular attention to neighbourhoods with spatial 

FDR<0.1. We also examined these enrichment patterns in the context of our sub-clustering 

annotations for generating beeswarm plots. We performed differential gene expression 

analyses for identifying neighbourhood-associated marker genes using the single-cell 

Wilcoxon rank-sum test implemented in Seurat FindMarkers, comparing the cells within the 

neighbourhood of interest (annotated via a majority vote of the cell subtype annotation of cells 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.06.30.601119doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.30.601119
http://creativecommons.org/licenses/by-nc-nd/4.0/


57 
 
 

 

within the neighbourhood), against all other cells that had been annotated as being of that 

same cell subtype. We visualised cell neighbourhood enrichment for each population group 

by plotting the log2 transformation of the mean fold-change for each cell across all the 

overlapping neighbourhoods to which that cell belonged. 

To examine the impact of the Singapore self-reported ethnicity covariates, we performed the 

above MiloR workflow on the Singapore donors (with at least 800 cells per donor) only. 

Differential gene expression analyses 

We performed edgeR (R package version 3.38.4)54 analyses of pseudobulk gene expression 

data; the edgeR log-likelihood pseudobulk testing workflow was assessed in a benchmarking 

study to show good performance in terms of reducing the number of false discoveries100. We 

considered only Singapore donors with at least 800 PBMCs passing quality control for our 

edgeR analyses, to minimise confounding with technical variation across study sites. For each 

cell subtype, we considered only donors with at least 10 cells for the cell subtype of interest. 

We then obtained pseudobulk profiles by aggregating gene-cell count matrices into gene-

donor count matrices for each cell type or subtype of interest. We pre-filtered our gene list to 

remove lowly-expressed genes: we retained genes that were expressed in at least 10% of 

donors per cell subtype after pseudobulk aggregation, and further filtered out any genes that 

had fewer UMIs than the total number of donors considered for differential gene expression 

analysis for a cell subtype.  

We incorporated age, sex, and scRNA-seq experimental batch in the edgeR generalised linear 

model, and tested for one Singapore self-reported ethnicity population group (SG_Chinese, 

SG_Malay, or SG_Indian) compared to the other two Singapore groups to analyse differential 

gene expression across population groups. We computed false-discovery rates (FDR) by 

performing Benjamini-Hochberg correction57 of edgeR p-values per cell type or subtype. 
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We used clusterProfiler version 4.4.4101 for performing gene-set enrichment analyses (GSEA) 

and visualisation of GSEA results. We used the fgseaMultilevel option with the Gene Ontology 

(GO) Biological Processes terms and Benjamini-Hochberg-corrected false-discovery rates57 

for our GSEA analyses. For each self-reported ethnicity-cell subtype combination, we supplied 

a pre-ranked gene list, comprising all genes tested per combination for differential gene 

expression, ranked by the -log10(edgeR p-value) multiplied by the sign of the edgeR-log2 fold-

change value. 

Differential transcription factor activity analyses 

We implemented a SCENIC-based62 workflow to investigate differential transcription factor 

activity based on our scRNA-seq gene expression data, using the AIDA Data Freeze v1 

dataset for these analyses. We used the pySCENIC version of SCENIC102, starting with a 

curated list of 1,390 transcription factors that was a subset of a list of human transcription 

factors103, and utilising the Motif2TF v10 annotations and the hg38 refseq_r80 SCENIC+ motif 

databases with a search space of 10 kb flanking the transcription start sites of genes. We 

performed GRNBoost2 and cisTarget using default parameters to prioritise transcription 

factors and their target genes of interest (collectively known as a “regulon” per transcription 

factor). We examined the regulon activity per cell type of interest using AUCell, and compared 

the distributions of the median of the raw AUCell scores per cell subtype per donor across 

different population groups in a cell type-specific manner via two-tailed Wilcoxon rank-sum 

tests performed in Python. We computed Benjamini-Hochberg-corrected false-discovery 

rates57 for all tests performed for a regulon of interest. 

For our SCENIC workflow, we assessed several parameters to check the robustness of our 

inferences of regulons that we identified as being of interest. We ran a minimum of 10 trials of 

GRNBoost2 in determining the regulon sets of target genes. We varied the proportion of the 

genes in the gene-ranking of each cell considered by the AUCell computation procedure, 
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examining the output from considering the top 5%, 10%, and 15% of genes in the gene-

ranking. We identified GRNBoost2 regulons both using a combined gene-cell matrix spanning 

all cells from all Singapore libraries, as well as subsets of cells from each Singapore population 

group. We tested regulons from multiple trials of GRNBoost2, as well as the union of regulon 

target genes across trials. We also tested both a pseudobulk input (summing, within the gene-

cell matrix, across all cells of a particular cell subtype per donor to obtain a gene-donor matrix 

for each cell subtype) as well as the original scRNA-seq input for our AUCell computations. In 

this manuscript, we report findings that have been observed in multiple SCENIC GRNBoost2 

trial-AUCell analysis combinations. 

Single-cell pseudobulk expression quantitative trait loci (eQTL) pipeline 

We developed a single-cell pseudobulk expression quantitative trait loci (eQTL) pipeline, using 

the AIDA Data Freeze v1 dataset for these analyses. For the gene expression values, we 

computed pseudobulk values per cell subtype of interest. We first filtered out genes that were 

expressed by <1% of cells in the cell subtype of interest, as well as donors and cells for which 

there were fewer than 10 cells per donor of the cell subtype of interest. We normalised each 

remaining gene by the total number of UMIs of retained genes per cell, and computed a mean 

gene expression value per donor from the cells of the subtype of interest. We performed log1p 

transformation with a scale factor of 10,000 to approximate a normal distribution of mean gene 

expression values for each donor. For the genetic variants of interest, after the genotype data 

quality control and imputation procedures described above, we retained autosomal, biallelic 

variants that had minor allele frequencies ≥5% in the AIDA cohort. We removed related donors 

(with this being computed per cell subtype after the above-mentioned donor cell number filters 

were applied). 

We used Matrix eQTL (version 2.3 R package)104 for association testing and FDR computation 

to identify cell type-specific cis-eQTLs within 1 Mb of the gene of interest, retaining the results 
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from all tests performed, regardless of p-value, for downstream analyses. We used the Matrix 

eQTL additive linear model, which returned t-statistics and two-tailed t-test p-values. Our eQTL 

model featured the following as covariates: age, sex, self-reported ethnicity and / or country, 

top 10 genotype PCs, and top 10 gene expression PCs (computed per cell subtype). We also 

performed eigenMT68 to prioritise one lead SNP per gene, using the authors’ default 

parameters. 

We performed eQTL replication by comparing our AIDA eQTLs against eQTLs identified in the 

DICE69 and ImmuNexUT70 projects. The DICE eQTLs had been uniformly processed as part 

of the EMBL-EBI eQTL Catalogue105. We compared our AIDA naïve B eQTLs against eQTL 

Catalogue dataset QTD000474, AIDA CD4+ T naïve eQTLs against eQTL Catalogue dataset 

QTD000479, AIDA CD8+ T naïve eQTLs against eQTL Catalogue dataset QTD000489, AIDA 

CD14+ Monocyte eQTLs against eQTL Catalogue dataset QTD000504, and AIDA CD16+ NK 

eQTLs against eQTL Catalogue dataset QTD000509. For eQTL replication using the 

ImmuNexUT datasets, we analysed NBDC Human Database dataset E-GEAD-420. For AIDA 

eQTLs that had a FDR<0.05 within the cell subtype of interest, we identified data from DICE / 

ImmuNexUT with a SNP ID-gene combination match, and compared the beta values from the 

AIDA dataset against the corresponding DICE / ImmuNexUT dataset. For the GTEx v8 whole 

blood eQTL18 comparison, we analysed eQTL Catalogue dataset QTD000356. Since we were 

comparing eQTLs from all 20 AIDA cell subtype datasets against the GTEx v8 whole blood 

eQTL dataset, we applied a more stringent criteria for selection of AIDA eQTLs for comparison, 

restricting our analysis to the set of AIDA eQTLs with FDR<0.05 (Benjamini-Hochberg-

adjusted57 p-values) across all tests in all cell subtypes.  

We obtained the 1000 Genomes Project super-population allele frequencies from ENSEMBL 

release 105 (https://ftp.ensembl.org/pub/release-105/variation/vcf/homo_sapiens/, file date 

20210906), converted these alternate allele frequencies to minor allele frequencies by taking 

the lower of the two allele frequencies per reference-alternate pair, and computed allele 
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frequencies for any AIDA eQTL for which we were able to identify a SNP ID match in the 1000 

Genomes VCF file. 

Colocalisation of eQTL with variants identified through genome-wide association studies 

(GWAS) 

We compiled summary statistics from genome-wide association studies (GWAS) of immune-

related diseases (asthma77, rheumatoid arthritis74, systemic lupus erythematosus (SLE)106, 

Graves’ disease80, atopic dermatitis and type 1 diabetes107) versus controls, and hospitalised 

COVID-19 cases versus the general population108, all of which included an Asian cohort within 

a trans-ancestry study, or were performed entirely by studying Asian donors (Table S7). We 

used coloc version 5.2.3, utilising the approximate Bayes factor109 enumeration 

implementation of the coloc R package that assumes at most a single causal variant per 

trait110. We performed colocalisation analyses of GWAS and eQTL (each eGene) traits. We 

used coloc to compute the posterior probabilities of each possible scenario of significant 

genetic association with traits in the eQTL analysis and in the GWAS analysis. We paid 

particular attention to the posterior probability (PP) for the case where both the gene 

expression (eQTL) and disease risk (GWAS) traits are associated with and share a single 

causal variant, which we abbreviated as “colocalisation PP”. We used LocusCompareR111 to 

visualise colocalisation events, setting the population parameter to “EAS” and selecting the 

hg38 option, given the format and scope of our GWAS summary statistics. 

Context-dependent eQTL analyses 

We used the AIDA Data Freeze v1 dataset for these analyses. We examined significant eQTL-

eGene pairs (FDR<0.05 per cell subtype), identified through our Single-cell pseudobulk 

expression quantitative trait loci (eQTL) pipeline, for context-dependent eQTL effects. We 

intersected eQTL-eGene pairs from naïve B, IGHMhi memory B, and IGHMlo memory B, 

analysing a total of 54,798 SNP-gene pairs. We performed the following smoothing and gene-
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gene correlation procedures for memory B cells from each country (Japan, Singapore, and 

South Korea) in AIDA Data Freeze v1 separately to minimise the influence of batch effects on 

the assembly of gene modules. We conducted k-nearest neighbour-based smoothing of the 

gene-cell matrix, calculating smoothed expression values for each cell by averaging the gene 

expression of each cell and its nearest 30 neighbours. We performed gene-gene correlation 

analyses, and then averaged the gene-gene correlation matrices across the three countries 

to obtain a single gene-gene correlation matrix. We thereafter used WGCNA112 to identify gene 

modules, which we used to model cellular contexts and cell states. 

To identify context-dependent eQTL effects, we obtained module scores per memory B cell by 

averaging the expression values of genes belonging to the module of interest. We tested for 

the interaction between donor genotype and module score on gene expression per cell using 

univariate Poisson models72, implemented via lme4::glmer113 in R: 

Full model: E ~ β𝑔X𝑔 + β𝑎𝑔𝑒X𝑎𝑔𝑒 + β𝑠𝑒𝑥X𝑠𝑒𝑥 + β𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦X𝑎𝑛𝑐𝑒𝑠𝑡𝑟𝑦 + ∑ β𝑔𝑃𝐶X𝑔𝑃𝐶

10

1

+ ∑ β𝑒𝑃𝐶X𝑒𝑃𝐶

10

1

+ β𝑛𝑈𝑀𝐼X𝑛𝑈𝑀𝐼 + (ϕ𝑑|𝑑) + (ϕ𝑙𝑖𝑏|𝑙𝑖𝑏)

+ β𝑚𝑜𝑑𝑢𝑙𝑒_𝑠𝑐𝑜𝑟𝑒X𝑚𝑜𝑑𝑢𝑙𝑒_𝑠𝑐𝑜𝑟𝑒 + β𝑔∗𝑚𝑜𝑑𝑢𝑙𝑒_𝑠𝑐𝑜𝑟𝑒X𝑔 ∗ X𝑚𝑜𝑑𝑢𝑙𝑒_𝑠𝑐𝑜𝑟𝑒 

E represents each gene of interest’s UMI counts in the cell of interest, g represents donor 

genotype, gPC represents genotype PC, ePC represents gene expression PC based on the 

PCA of the gene-cell matrix, nUMI represents the cell’s total number of UMI counts, d 

represents donor, and lib represents scRNA-seq library. All covariates are modelled as fixed 

effects, except for donor and library, which are modelled as random effects. 

The null model was computed using the same covariates as the full model, leaving out only 

the β𝑔∗𝑚𝑜𝑑𝑢𝑙𝑒_𝑠𝑐𝑜𝑟𝑒X𝑔 ∗ X𝑚𝑜𝑑𝑢𝑙𝑒_𝑠𝑐𝑜𝑟𝑒 term. P-values were calculated for each full model-null 
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model pair using the anova function in R. We computed Benjamini-Hochberg-corrected false-

discovery rates57 across all p-values. 

 

Quantification and statistical analysis 

All statistical tests were performed using R, R packages, or Python, with the specific testing 

details listed in the individual method sections. All statistical tests performed were two-tailed. 
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Supplementary Figures and Figure Legends 

 

Supplementary Figure S1: An scRNA-seq reference atlas of circulating immune cells from healthy Asian 

donors. (A) Distributions of (top) log10(numbers of detected genes (NODG) per cell) and (bottom) 

log10(percentage mitochondrial UMIs out of all UMIs per cell (pMito)) in AIDA Data Freeze v2 libraries. 
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(B) Distributions of high-confidence BCR (top) and TCR (bottom) barcodes per donor in each country. 

(C) The same UMAP as that in Figure 2A, split by country where donors were profiled. Distributions of 

log10(proportion of monocytes out of all lymphocytes plus monocytes per donor) in (D) AIDA scRNA-

seq and (E) complete blood count (CBC) data, categorised by donor self-reported ethnicity. P-values 

indicate results from two-tailed Wilcoxon rank-sum tests. Boxplots depict the median via the thickest 

centre horizontal line, the first and third quartiles as the bottom and top of the box respectively, and 1.5x 

the interquartile range through the whiskers; outliers are depicted as single points. 
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Supplementary Figure S2: AIDA cell type annotation metadata. PBMC cell type clustering hierarchy in 

AIDA, with major marker genes indicated, for (A) all PBMCs and (B) ILC, NK, and T cell subtypes. 

Boxes coloured in orange indicate cell types, boxes coloured in light brown indicate cell subtypes, and 

boxes coloured in dark brown indicate more granular cluster identities. (C) Gene expression UMAP of 

the AIDA dataset, labelled by AIDA Level 3 cell type annotations. (D) UMAP of CD8+ T, γδT, ILC, and 

NK cells, labelled by AIDA Level 4 cell type annotations. Feature plots of (E) CD27 and IGHM, overlaid 

on UMAPs of B cells, and (F) features representing immune cell gradients (GZMK, GZMB, FCER1G, 

and KLRC2), overlaid on UMAPs of CD8+ T, γδT, ILC, and NK cells; intensities of colours correspond 

to the log-normalised gene counts per cell. 
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Supplementary Figure S3: Impact of human diversity on cell subtype proportions. Scatterplots of 

proportion of monocytes (out of all monocytes and lymphocytes) per donor in the scRNA-seq datasets 
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(y-axis) versus that in matched complete blood counts (x-axis) for AIDA donors in (A) Singapore, (B) 

South Korea, and (C) Thailand. (D) Scatterplot of CD4+ T cytotoxic (CD4+_T_cyt) cell proportions 

against donor age for all AIDA donors. (E) Boxplots depicting MAIT cell proportions across Singapore 

self-reported ethnicities in (left) our AIDA scRNA-seq dataset and (right) the SLAS-2 flow cytometry 

dataset; two-tailed t-test p-values adjacent to lines indicate comparisons of two population groups. (F) 

Boxplots depicting the proportions of regulatory T (Treg) cells out of all CD4+ T cells per donor across 

all population groups. (G) Boxplots depicting the proportions of Treg cells out of all PBMCs per donor 

across all population groups, after data integration using Harmony44 and re-clustering and re-annotation 

of cells. Scatterplots are overlaid with blue linear regression lines; grey bands indicate the 95% 

confidence intervals. Boxplots depict the median via the thickest centre horizontal line, the first and third 

quartiles as the bottom and top of the box respectively, and 1.5x the interquartile range through the 

whiskers; outliers are depicted as single points. Two-tailed t-test p-values in (F,G) are for the self-

reported ethnicity covariate in a model of 

log10(Proportion)~Age+Sex+Individual_Self_reported_ethnicity.  
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Supplementary Figure S4: Impact of self-reported ethnicity and sex on cell subtype proportions. (A) 

Boxplots depicting (left) CD16+ NK and (right) CD4+ T naïve proportions out of all PBMCs per donor 

across self-reported ethnicities. Boxplots depicting (B) naïve B and (C) CD16+ NK proportions out of all 

PBMCs per donor across all population groups and female / male sex, after data integration using 

Harmony44 and re-clustering and re-annotation of cells. Boxplots depict the median via the thickest 

centre horizontal line, the first and third quartiles as the bottom and top of the box respectively, and 1.5x 

the interquartile range through the whiskers; outliers are depicted as single points. Two-tailed t-test p-

values in (A) pertain to the self-reported ethnicity covariate in a model of 

log10(Proportion)~Age+Sex+Individual_Self_reported_ethnicity. Two-tailed t-test p-values adjacent to 

lines pertain to the interaction terms between sex and individual population groups in (B,C). 
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Supplementary Figure S5: Single-cell signatures of sex. (A) (Left) Gene expression UMAP and (right) 

beeswarm plot depicting enrichment of B cell neighbourhoods in males versus females. (B) Beeswarm 

plot depicting enrichment of CD8+ T, γδT, ILC, and NK cell neighbourhoods in males versus females. 

(C) (Left) Cells highlighted within a UMAP, corresponding to the most enriched B cell neighbourhood in 

males versus females. (Right) Dot plot of top 5 upregulated and top 5 downregulated genes (as 

compared to all other naïve B cells) of the most enriched B cell neighbourhood in males versus females. 

(D) Beeswarm plot depicting enrichment of CD4+ T and dnT cell neighbourhoods in females versus 

males. For the UMAP depicting cell neighbourhood enrichment, each cell is coloured by their log2(mean 

fold-change) value for all overlapping cell neighbourhoods that the cell was grouped in. Orange hues 

indicate cell neighbourhood enrichment for the population group, while blue hues indicate cell 

neighbourhood depletion; darker hues correspond to higher magnitudes of enrichment or depletion, 

capped at log2(mean fold-change)=|2|. For beeswarm plots, each point corresponds to one cell 

neighbourhood; cell neighbourhoods are classified by the majority cell type annotation within the 

neighbourhood. Points coloured in red (depletion of neighbourhood for the dimension of human diversity 

of interest) and in blue (enrichment of neighbourhood) correspond to spatial FDR values<0.1. 
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Supplementary Figure S6: Single-cell signatures of age and self-reported ethnicity. (A) (Left) Beeswarm 

plot and (right) gene expression UMAP depicting enrichment of pDC and myeloid cell neighbourhoods 

in donors ≥50-years-old versus younger donors. Beeswarm plots depicting enrichment of (B) CD8+ T, 
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γδT, ILC, and NK, and (C) (left) CD4+ T and dnT cell neighbourhoods in donors ≥50-years-old versus 

younger donors. (C) (Right) Cells highlighted within a UMAP, corresponding to the most depleted CD4+ 

T and dnT cell neighbourhood in donors ≥50-years-old versus younger donors. (D) (Left) Beeswarm 

plot and (right) UMAP depicting enrichment of CD8+ T, γδT, ILC, and NK cell neighbourhoods in 

SG_Malay donors, based on analysis of all AIDA donors; γδT cells are indicated by dashed lines. For 

UMAPs depicting cell neighbourhood enrichment, each cell is coloured by their log2(mean fold-change) 

value for all overlapping cell neighbourhoods that the cell was grouped in. Orange hues indicate cell 

neighbourhood enrichment for the population group, while blue hues indicate cell neighbourhood 

depletion; darker hues correspond to higher magnitudes of enrichment or depletion, capped at 

log2(mean fold-change)=|2|. For beeswarm plots, each point corresponds to one cell neighbourhood; 

cell neighbourhoods are classified by the majority cell type annotation within the neighbourhood. Points 

coloured in red (depletion of neighbourhood for the dimension of human diversity of interest) and in blue 

(enrichment of neighbourhood) correspond to spatial FDR values<0.1. 
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Supplementary Figure S7: Cell type-specific molecular variation across population groups. (A) Jitter 

plots of log10 transformation of per-donor pseudobulk normalised FCER1A expression values (with 

added pseudocount of 1e-07) in CD14+ monocytes across the Singapore self-reported ethnicities, for 

donors with imputed genotype data available. Each dot represents a donor; dots are coloured by the 

donor genotype for the chr1_159288755_G_A locus. (B) (Top) NFYC transcription factor binding site 

motif from CIS-BP58 (M09442_2.00), and (bottom left to bottom right) boxplots depicting the median 

NFYC AUCell score across all regulatory T (Treg) cells per donor for each of the indicated Singapore 

population groups. Boxplots depict the median via the thickest centre vertical line, the first and third 

quartiles as the left side and right side of the box respectively, and 1.5x the interquartile range through 

the whiskers; outliers are depicted as single points. These boxplots depict the output from one SCENIC 

GRNBoost2 trial-AUCell analysis combination. 
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Supplementary Figure S8: Replication of AIDA pseudobulk eQTL analyses and identification of 

population-specific eQTLs. (A) Bar charts of the number of donors analysed for AIDA eQTLs per cell 

subtype. Scatterplots of (B) DICE69 (y-axis) and (C) ImmuNexUT70 (y-axis) versus AIDA (x-axis) eQTL 

effect size (beta) values of SNP-gene pairs with AIDA eQTL FDR<0.05 per cell subtype, for (left to right) 

naïve B, CD14+ monocyte, CD8+ T naïve, and CD16+ NK. Percentages of all SNP-gene pairs that lie 

within a quadrant are indicated. (D) Histogram of minor allele frequencies (maf) in the 1000 Genomes 

South Asian (SAS) super-population, for AIDA eQTLs that were low frequency (maf 1%-5%) or rare 

(maf<1%) in at least one of the 1000 Genomes African, Admixed American, or European (EUR) super-

populations. (E) Scatterplot depicting allele frequency spectra (1000 Genomes EUR super-population 
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maf on y-axis, and AIDA Phase 1 cohort maf on x-axis) for AIDA context-dependent eQTLs (modulated 

by blue module score). Percentages of eQTLs with 1000 Genomes EUR maf≥0.05 and maf<0.05 are 

indicated. Bold lines indicate maf=0.05. 

 

Supplementary Tables 

Supplementary Table S1: AIDA donor metadata: donor DCP_ID, self-reported ethnicity, age, 

country (study site), female / male sex, BMI, and scRNA-seq experimental batch. 

Supplementary Table S2: Marker genes used for cell type annotation in AIDA. 

Supplementary Table S3: Comparison of AIDA scRNA-seq and SLAS-2 flow cytometry cell 

types. 

Supplementary Table S4: A diversity atlas reference: the relationships of self-reported ethnicity 

(controlling for age and sex) with circulating immune cell subtype proportions. 

Supplementary Table S5: List of Singapore self-reported ethnicity-associated differentially 

expressed genes identified through edgeR analyses of pseudobulk values per cell type per 

donor (FDR<0.05 per cell subtype). 

Supplementary Table S6: List of 143,918 SNP-gene pairs that have FDR<0.05 from 

Benjamini-Hochberg correction of eigenMT-corrected p-values. 

Supplementary Table S7: List of curated disease GWAS summary statistics incorporated in 

colocalisation analyses. 

Supplementary Table S8: Colocalisation analyses of AIDA eQTL and GWAS: posterior 

probability >80% of both traits being associated with and sharing a single causal variant. 

Supplementary Table S9: List of SG10K_Health consortia authors. 
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Supplementary Note 

We released the first AIDA data freeze (“AIDA Data Freeze v1 dataset”) to the community pre-

publication, via the CZ CELLxGENE data portal as well as the Human Cell Atlas Data Portal. 

The AIDA Data Freeze v1 dataset was also part of the first CZ CELLxGENE Census 

assembled in May 2023. We profiled 75 Singaporean Chinese, 60 Singaporean Indian, 54 

Singaporean Malay, 149 Japan Japanese, and 165 South Korea Korean donors for a total of 

503 Asian donors for the AIDA Data Freeze v1 dataset. 

Going from AIDA Data Freeze v1 to AIDA Data Freeze v2, we excluded 5 Asian donors from 

v1 (SG_HEL_H141, SG_HEL_H185, SG_HEL_H203, SG_HEL_H239, and SG_HEL_H347) 

with ambiguous medication data. We added 121 new Asian donors (32 Singapore donors, 59 

Thai donors, and 30 India Indian donors). These new Asian donors included donors 

SG_HEL_H262 and SG_HEL_H269, as well as donors profiled in experimental batches 

SG_HEL_B023, SG_HEL_B024, TH_MAH_B001, TH_MAH_B002, TH_MAH_B003, 

TH_MAH_B004, IN_NIB_B001, and IN_NIB_B002. We also removed two libraries with high 

doublet rates (SG_HEL_B011_L002 and SG_HEL_B021_L001). 

The AIDA Data Freeze v1 gene-cell matrix (1,058,909 cells from 503 Japan, Singaporean 

Chinese, Singaporean Malay, Singaporean Indian, and South Korea Asian donors and 5 

distinct Lonza commercial controls), with BCR-seq and TCR-seq metadata, and donor age, 

sex, and self-reported ethnicity metadata, is available via the Chan Zuckerberg (CZ) 

CELLxGENE data portal at https://cellxgene.cziscience.com/collections/ced320a1-29f3-47c1-

a735-513c7084d508. 
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