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Single-cell analysis of human diversity in circulating immune cells
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Summary

Lack of diversity and proportionate representation in genomics datasets and databases
contributes to inequity in healthcare outcomes globally'2. The relationships of human diversity
with biological and biomedical phenotypes are pervasive®, yet remain understudied,
particularly in a single-cell genomics context. Here we present the Asian Immune Diversity
Atlas (AIDA), a multi-national single-cell RNA-sequencing (scRNA-seq) healthy reference
atlas of human immune cells. AIDA comprises 1,265,624 circulating immune cells from 619
healthy donors and 6 controls, spanning 7 population groups across 5 countries. AIDA is one
of the largest healthy blood datasets in terms of number of cells, and also the most diverse in

terms of number of population groups. Though population groups are frequently compared at
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the continental level, we identified a pervasive impact of sub-continental diversity on cellular
and molecular properties of immune cells. These included cell populations and genes
implicated in disease risk and pathogenesis as well as those relevant for diagnostics. We
detected single-cell signatures of human diversity not apparent at the level of cell types, as
well as modulation of the effects of age and sex by self-reported ethnicity. We discovered
functional genetic variants influencing cell type-specific gene expression, including context-
dependent effects, which were under-represented in analyses of non-Asian population groups,
and which helped contextualise disease-associated variants. We validated our findings using
multiple independent datasets and cohorts. AIDA provides fundamental insights into the
relationships of human diversity with immune cell phenotypes, enables analyses of multi-
ancestry disease datasets, and facilitates the development of precision medicine efforts in

Asia and beyond.

Introduction

Humans are diverse in all respects. Our molecular diversity drives differences in our cellular
traits, which in turn feeds into differences in how our bodies develop, function, and respond to
disease. Molecular variation across individuals is not random; rather, it correlates with
ancestry, age, genetics, sex, environment, and lifestyle!, though in ways we do not fully
understand. One consequence is that molecular diagnostics that work in one population may
not be as effective in another*. Moreover, disease risk, pathological processes, and drug
responses can vary across populations, due to a complex combination of genetic and
environmental differences’3. Consequently, an understanding of human molecular and
cellular variation is essential not merely for understanding human biology, but also for

personalised medical care and equitable outcomes from biomedical research®.


https://doi.org/10.1101/2024.06.30.601119
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.30.601119; this version posted July 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

The study of diversity in immune cells across humans is of great interest, since blood cell
proportions are routinely used for diagnosis, variation in blood traits is associated with disease
risk®, and immunophenotyping is utilised to monitor diseases such as HIV/AIDS, leukaemias,
and lymphomas’. Haematological traits vary across ancestries®'°, at least partly due to
population-specific genetic variants''. However, most existing studies provide limited detail on

molecular and gene expression profiles, particularly at single-cell resolution.

Recently, single-cell RNA-sequencing (scRNA-seq) studies have examined ancestry-specific
immunological traits of US-based populations for lupus and in vitro viral infection'?'4. In
addition, cohort-scale scRNA-seq analyses have identified cell type-specific expression
quantitative trait loci (eQTL) linked to GWAS variants'®'”. However, each of these studies
focused on a single country and at most two ancestries. More broadly, despite the pressing
need, there is a lack of diversity in genomics datasets’. For example, individuals of European
ancestry, constituting ~15% of the world’s population, represented ~86% of the NHGRI-EBI
GWAS Catalog in 20212 and ~85% of the GTEx v8 dataset'®. To maximise benefit to global
communities, it is important to incorporate and characterise human diversity within reference

cell atlases and genomics resources.

To address this challenge, we performed scRNA-seq on peripheral blood mononuclear cells
(PBMCs) from 619 healthy donors spanning 7 population groups in 5 countries across Asia, a
continent inhabited by 60% of the global population?. Our Asian Immune Diversity Atlas (AIDA)
cohort includes donors from India, Japan, South Korea, and Thailand, as well as Singapore
donors of Chinese (SG_Chinese), Malay (SG_Malay), or Indian (SG_Indian) self-reported
ethnicities, and thus encompasses a wide range of ancestries’®?*. The AIDA cohort
incorporates a balance of female and male sex and a wide range of adult ages. We
characterised the relationships of human diversity with cellular and molecular variation in
immune phenotypes, including cell type proportions, cell neighbourhood abundance, and cell

type-specific gene expression profiles. Self-reported ethnicity and sex had comparable effects
5
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on cell subtype proportions, while the variance explained by age or body mass index (BMI)
was typically lower. Moreover, self-reported ethnicity modulated the effects of age and sex on
cellular and molecular profiles. Of the variants we identified by cell type-specific eQTL
analysis, ~7% were present at <56% minor allele frequency in the non-Asian 1,000 Genomes
super-populations; these included multiple variants colocalising with Asian GWAS loci. Our
datasets are available via the Human Cell Atlas (HCA) and Chan Zuckerberg (C2)
CELLXGENE? data portals and have been used for algorithm development in the context of
human diversity?®. Our datasets have also facilitated analyses of biological pathways, such as
escape from X-chromosome inactivation (XCI)?, and genetic effects on alternative splicing
(Tian et al., submitted). Our findings provide fundamental insights into the relationships of age,
self-reported ethnicity, sex, and genetic variants with disease-relevant immune phenotypes,

and strengthen the scientific case for functional genomics analyses of diverse populations.

Results

scRNA-seq atlas of circulating immune cells from diverse population groups

We examined the CZ CELLXGENE Census (version 2023-12-15)?°, which comprises the
largest collection of standardised single-cell data, including healthy reference datasets
important for disease comparisons. Across all 26 healthy blood primary datasets (excluding
AIDA), 62.4% of cells were annotated as being from European donors, while self-reported
ethnicity information was unknown for 32.1% of cells (Figure 1A). This is indicative of both
the paucity of proportionate representation of the global population in the incipiency of single-
cell reference collections, as well as a lack of granularity in examining population groups. We
sought to understand the impact of human diversity, focusing on variation across sub-
continental population groups, on single-cell genomics profiles of the AIDA cohort. For each
of the 619 AIDA donors (Tables 1,S1), we performed 5 scRNA-seq, B-cell receptor

6
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sequencing (BCR-seq), T-cell receptor sequencing (TCR-seq), and genotyping (Methods,

Figure 1B,S1A,B). To minimise technical confounders, we harmonised donor selection

criteria, sample processing, and experimental protocols across the 5 study sites (Figure 1C),
generated single-cell libraries from pooled samples using genetic multiplexing, and adopted a
centralised data processing pipeline (Figure 1B). Donors spanned an age range of 19 to 77

years (Table 1, Figure 1D) and were largely balanced in female and male sex (Table 1).

Principal component analysis (PCA) of donor lllumina GSAv3 genotype data highlighted the

diversity of ancestries in the AIDA cohort (Fiqure 1E).
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Figure 1: Human diversity in the Asian Immune Diversity Atlas (AIDA) cohort. (A) Frequencies of human

cells from healthy blood (excluding umbilical cord blood and venous blood) primary datasets in the CZ
CELLxGENE Census (version 2023-12-15)25, without AIDA, categorised by their self-reported ethnicity
metadata. (B) AIDA workflow. (C) Study site locations. Map adapted from BioRender template
(Publication licence agreement number KZ26TPRFSH). (D) Histogram of AIDA donor ages, coloured
by country (IN:India, JP:Japan, KR:South Korea, SG:Singapore, TH:Thailand). (E) Plot of the first three
principal components (PCs) from principal component analysis (PCA) of AIDA donor Illlumina GSAv3
genotype data, with variance explained by each PC indicated on axis labels. Colours indicate donor
self-reported ethnicity. (F) Pie charts representing cells in the AIDA dataset, as well as cells from other
healthy blood (excluding umbilical cord blood and venous blood) primary datasets in the CZ

8


https://doi.org/10.1101/2024.06.30.601119
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.30.601119; this version posted July 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

CELLXGENE Census (version 2023-12-15)%5. Circle radii are proportional to the numbers of cells in the

corresponding datasets; each slice in each pie chart is coloured by the self-reported ethnicity metadata.

Table 1: AIDA donor demographics.

Donor demographics Number of donors

Japan 149
Singaporean Chinese (SG_Chinese) 85
Singaporean Malay (SG_Malay) 61
Singaporean Indian (SG_Indian) 70
South Korea 165
Thailand 59
India 30
Total 619

Female 348 (56.2%)

Male 271 (43.8%)

Age range (years) 19 to 77 (median=40)

After doublet removal and cell type-specific quality control (Methods) to remove low-quality
cells, we obtained 1,265,624 circulating immune cells. AIDA is one of the largest healthy blood
datasets in terms of number of cells, and also the most diverse in terms of number of
population groups, relative to existing healthy blood primary datasets in the CZ CELLXGENE
Census (version 2023-12-15, Figure 1F). We clustered these cells into 8 major immune cell
types: B, CD34* haematopoietic stem and progenitor cell (HSPC), myeloid, natural killer (NK),

plasma cell, plasmacytoid dendritic cell (pDC), platelet, and T (Eigure 2A). The distributions
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of cells in batch-corrected?® gene expression space were broadly consistent across all study

sites (Figure S$1C).
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Figure 2: The impact of age, sex, and self-reported ethnicity on AIDA PBMCs. (A) Gene expression

UMAP of AIDA Data Freeze v2: 1,265,624 PBMCs labelled by major cell type. Data integration was
performed using scRNA-seq library as the batch label. (B) Scatterplot of plasmacytoid dendritic cell
(pDC) proportions against donor age. Linear regression line in blue; grey band indicates the 95%
confidence interval. Boxplots depicting distributions of cell type proportions of (C) B and (D) NK cells in
females versus males, relative to all PBMCs per donor. Two-tailed t-test p-values are indicated for the
sex covariate in a model of log1o(Proportion)~Age+Sex+Self_reported_ethnicity. Boxplots depicting (E)
B, (F) myeloid, (G) NK, and (H) T cell proportions. In this and all subsequent figures unless otherwise
indicated, boxplots depict the median via the thickest centre horizontal line, the first and third quartiles
as the bottom and top of the box respectively, and 1.5x the interquartile range through whiskers; outliers
are depicted as single points. Two-tailed t-test p-values are indicated for the self-reported ethnicity
covariate in a model of logio(Proportion)~Age+Sex+Individual_Self reported_ethnicity. Gene
expression UMAPs with cells coloured by logz(fold-enrichment) within a 500-cell neighbourhood, for (1)
females versus males, (J) donors 50-77 years old versus other donors, and (K) SG_Malay donors

relative to all other donors. Cell types of interest are indicated by dashed lines.

Based on the above cell types, we examined the relationship of age, female / male sex, and
self-reported ethnicity with cell type proportions (cell counts relative to all PBMCs per donor,
using a generalised linear model: logio(Proportion)~Age+Sex+Self_reported_ethnicity). pDC
proportions decreased with age (N=438, degrees of freedom (df)=430, t-value=-4.93, two-
tailed t-test p-value=1.2e-06, Figure 2B). We confirmed that B cells were more abundant in
females (N=562, df=554, t-value=-6.76, two-tailed t-test p-value=3.56e-11; Figure 2C), while
NK cell proportions were higher in males (N=562, df=554, t-value=4.41, two-tailed t-test p-
value=1.26e-05; Figure 2D). Thus, the AIDA dataset recapitulated known age®® and sex®°

differences in circulating immune cells.

We then tested for differences across population groups in major cell type proportions,

focusing on populations with 250 donors. One caveat for such analyses is that genetic
1
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variation and environmental factors are often confounded?'. Here, the effects of self-reported
ethnicity may represent a combination of genetic effects as well as correlated environmental
and lifestyle factors (e.g., diet and geography), all of which can contribute to phenotypic
variation. SG_Malay donors showed elevated B cell proportions relative to other population
groups (logio(Proportion)~Age+Sex+Individual_Self_reported_ethnicity (e.g., SG_Malay),
N=562, df=558, t-value=3.02, two-tailed t-test p-value=0.00269; Fiqure 2E), while Thai donors
had lower myeloid cell proportions (N=562, df=558, t-value=-3.21, two-tailed t-test p-
value=0.00139; Figure 2F). NK cells were less abundant in SG_Indian donors (N=562,
df=558, t-value=-4.57, two-tailed t-test p-value=5.91e-06; Figure 2G), while Korean donors
had lower T cell proportions (N=562, df=558, t-value=-2.98, two-tailed t-test p-value=0.00298;
Figure 2H). These results suggest systematic differences in major cell type proportions across

population groups.

The proportions of peripheral blood cell types can serve as diagnostic markers for diseases,
such as the ratio of monocytes to lymphocytes (for active tuberculosis®?), relative monocyte
proportion (for chronic myelomonocytic leukaemia and acute myeloid leukaemia®®), as well as
lymphocyte abundance (for lupus™). We found that the proportions of monocytes were lower
on average in Thai donors than in donors of other population groups in both our scRNA-seq
data (two-tailed Wilcoxon rank-sum p-value=3.08e-04, Figure S1D) as well as our complete
blood count data (two-tailed Wilcoxon rank-sum p-value=3.28e-07, Fiqure S1E). Our findings
suggest the importance of factoring in self-reported ethnicity in determining diagnostic

baselines.

A major advantage of scRNA-seq is that differentially abundant cell populations can be
characterised at high resolution. Through enrichment analysis of transcriptomic
neighbourhoods, we identified more fine-grained trends than were apparent in the above
analyses of major cell types. For example, although B cells were more abundant in female

donors (Figure 2C), this trend was not uniform, and was more pronounced for naive B cell
12
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populations (Figure 2I). In contrast, CD8" T naive cell populations were uniformly depleted in
individuals =50-years-old (Figqure 2J). The enrichment of gamma-delta T (ydT) cell
populations in SG_Malay donors was also not uniform (Figure 2K). In these initial analyses,
we examined the effects of sex, age, or self-reported ethnicity individually rather than in
combination. Nevertheless, our results suggest that cell neighbourhood analyses illuminate

biological differences not apparent at coarser resolutions.

Cell type annotation and transcriptomic gradients

To interrogate more granular cell identities, we analysed three broad cell populations — B
(Figure 3A), pDC and myeloid (Figure 3B), and ILC, NK, and T (Eiqure 3C,D) — separately.
For each population, we performed feature selection, data integration, and sub-clustering
independently to utilise features relevant for distinguishing the cell subtypes of interest

(Methods, Figure 3A-D,S2A,B). We performed one round of sub-clustering for the first two

populations. For ILC, NK, and T cells, after one round of sub-clustering, we separated CD4* T
and double-negative T (dnT) cells (Eigure 3C) from all other ILC, NK, and T cells (Eigure 3D),
and integrated and re-clustered these two groups separately. All sub-clusters of all cell

populations were then annotated based on marker genes (Fiqures S2A,B, Table $2) and

presence of TCR barcodes (Figure S1B). We defined cluster identities as descriptions of
individual sub-clusters, and cell subtypes as the manual merging of these sub-clusters into

known subtypes.
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Figure 3: Relationships of human diversity with cell subtype proportions. Gene expression UMAPs

depicting (A) B, (B) pDC and myeloid, (C) CD4* T and dnT, and (D) CD8* T, yoT, ILC, and NK sub-
clusters labelled by cell subtype. (E) Boxplots depicting the variance in cell subtype proportions in
Singapore donors explained by age, self-reported ethnicity, BMI, or sex when examined individually,
annotated with all pairwise two-tailed Wilcoxon rank-sum p-values. Scatterplots depicting (F) CD8* T
naive cell proportions against donor age for all AIDA donors, and (G) linear regression coefficient
estimates for self-reported ethnicity in the SLAS-2 dataset (y-axis) versus the AIDA dataset (x-axis).
Each point in (G) represents a combination of one of 18 cell subtype proportions regressed against one

of the 3 Singapore self-reported ethnicities (log1o(Proportion)~Age+Sex+
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Individual_Self _reported_ethnicity). Boxplots depicting cell subtype proportions for (H) /IGHM® memory
B, (I) cDC2, and (J) regulatory T (Treg) cells across all population groups. Boxplots depicting (K) naive
B and (L) CD16* NK proportions across self-reported ethnicity and female / male sex. (M) Scatterplot
depicting CD4* T naive proportions against donor age. Scatterplots are overlaid with linear regression
lines for their respective data points; grey bands indicate the 95% confidence intervals. Two-tailed t-test
p-values in (H-J) pertain to the self-reported ethnicity covariate in a model of
log1o(Proportion)~Age+Sex+Individual_Self _reported_ethnicity. Two-tailed t-test p-values adjacent to
lines indicate comparisons of two population groups in (M), and pertain to the interaction terms between

sex and individual population groups in (K,L).

We identified rare cell subtypes such as dnT (0.04% of all cells), cDC1 (0.04%), and atypical

B3 (0.4%) cells (Figure 3A-C,S2A-C). We further identified rare cluster identities, such as

SCART1" ILC (0.02%) and XCL 1" ILC (0.03%) (Figure S$2D). The identification of these rare

cell populations attests to the resolution of our scRNA-seq atlas.

To complement this discrete, categorical approach towards cell annotation, we examined
continuous transcriptomic gradients. These included an /IGHM gradient in memory B cells®®
(Figure S2E); opposing GZMB and GZMK gradients in both CD8* T memory®” and y3T cells,
with heighted GZMB levels marking more cytotoxic T cell subsets; as well as opposing
FCER1G and KLRC?2 gradients in CD16"* NK cells*® (Figure S2F). These continuous gene
expression gradients may correlate with the effects of age, sex, and genetic variation in our

cohort, which we describe below.

Relationships of human diversity with cell subtype proportions

Haematological properties and immune cell subtype proportions are of broad interest as
disease markers'**, but these may be confounded by patient demographics. We therefore

investigated the relationships of human diversity with cell subtype proportions. As a control,
15
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we confirmed that monocyte proportions in our scRNA-seq dataset were consistent with

matched complete blood counts (Figures S3A-C), indicating that cell type proportion

inferences from our scRNA-seq data were rooted in actual haematological proportions.

We first evaluated the relative impact of human demographics, by analysing the correlation of
cell subtype proportions with covariates: age, BMI, self-reported ethnicity, or sex. For this
analysis, we focused on donors profiled in Singapore to minimise the influence of technical
variation across study sites. We examined the variance explained by a covariate of interest

(Methods; Figure 3E). The highest variance explained for any human diversity-cell subtype

combination was the decrease of CD8" T naive cell proportions with age (R-squared=0.290,
N=200, df=198, t-value=-9.00, two-tailed t-test p-value<2e-16), consistent with previous
reports (Fiqure 3F)*4'. More broadly, the proportions of multiple cell subtypes were
significantly correlated with age. For example, CD4* T cytotoxic cell proportions increased with
age (N=501, df=499, t-value=4.86, p-value=1.57e-06 for a model of log+o(Proportion)~Age for
all AIDA donors; Figure S3D); cytotoxic CD4"* T cells have been of interest for their heightened
abundance in supercentenarians*2. Overall, however, self-reported ethnicity and sex each
explained more variance in subtype proportions than age or BMI (N=22, pairwise two-tailed

Wilcoxon rank-sum p-values<0.05; Figure 3E).

To corroborate the associations between self-reported ethnicity and immune subtype
proportions, we analysed published flow cytometry data (Table S3) from an independent
cohort (Singapore Longitudinal Aging Study wave-2 (SLAS-2)*3, Methods). First, we confirmed
that MAIT cells were significantly higher in proportions in SG_Chinese than SG_Indian donors
in both datasets (AIDA: SG_Indian coefficient estimate (versus SG_Chinese)=-0.315, N=198,
df=193, t=-4.71, two-tailed t-test p-value=4.67e-06; SLAS-2: SG_Indian coefficient estimate
(versus SG_Chinese)=-0.274, N=814, df=809, t=-3.46, two-tailed t-test p-value=5.7e-04;
Figure S3E). Next, we examined effect size concordance of 54 coefficient estimates of self-

reported ethnicity from linear models for cell subtype proportions
16
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(log1o(Proportion)~Age+Sex+Individual_Self reported_ethnicity, ie., SG_Chinese,
SG_Malay, or SG_Indian). Effect sizes were well-correlated between AIDA and SLAS-2
(Pearson correlation r=0.652, N=54, df=52, t=6.20, two-tailed t-test p-value=9.41e-08, Figure
3G). This concordance across two modalities and independent cohorts supports our findings

of self-reported ethnicity-associated cell subtype signatures in circulating immune cells.

We found numerous examples of self-reported ethnicity being associated with differential cell
subtype proportions when we examined all AIDA population groups with 250 donors. Relative
to all PBMCs per donor, IGHM"° memory B proportions were higher in SG_Malay donors than
in other population groups (logio(Proportion)~Age+Sex+Individual_Self _reported_ethnicity
(e.g., SG_Malay), N=562, df=558, t-value=2.74, two-tailed t-test p-value=0.00628; Figure
3H), while cDC2 proportions were lower in Thai donors (N=560, df=556, t-value=-3.71, two-
tailed t-test p-value=2.31e-04; Figure 3l). Most strikingly, we found much lower regulatory T
(Treg) proportions in Korean donors (N=562, df=558, t-value=-14.8, two-tailed t-test p-
value<2e-16; Figure 3J). This effect remained when we controlled for possible differences in
T cell proportions across population groups by assessing Treg proportions relative to CD4* T
cells (t-value=-14.4, two-tailed t-test p-value<2e-16, Figqure S3F). We also observed a similar
result when we re-clustered and re-annotated cells following data integration using a different
algorithm (Harmony**; t-value=-14.4, two-tailed t-test p-value<2e-16, Figure S3G). We
provide the associations of cell subtype proportions with self-reported ethnicity, controlling for
age and sex, as a human diversity reference for the healthy ranges of immune cell subtypes
across diverse population groups (Table S4), which may be incorporated as healthy baselines

for diagnostics.

We hypothesised that interactions between self-reported ethnicity, age, and sex could affect
cell subtype proportions. We extended the above linear models to include all pairwise
interaction terms and found several examples. Interactions between sex and self-reported

ethnicity could exacerbate female-male cell proportion differences: although naive B cells
17
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were typically less abundant in males versus females, this disparity was greatest in SG_Indian
donors (N=559, df=552, t-value=-2.52, two-tailed t-test p-value=0.0119 for interaction term in
a model of SG_Indian donors versus all other donors; Figure 3K). In contrast, while CD16*
NK proportions were typically higher in males, this effect was not present in Thai donors
(N=562, df=555, t-value=-4.27, two-tailed t-test p-value=2.25e-05 for interaction term in a
model of Thai donors versus all other donors; Figure 3L,S4A). Similar to our Treg analyses
above, we recapitulated these interactions after cell type re-annotation following data
integration using the Harmony** algorithm (naive B: t-value=-2.51, two-tailed t-test p-
value=0.0125, Figure S$4B; CD16* NK: t-value=-4.27, two-tailed t-test p-value=2.27e-05,
Figure S4C). These results raise the intriguing possibility of cell type-specific differential sex

hormone activity or sex chromosome gene regulation across population groups.

We also identified interactions between self-reported ethnicity and age: Korean and SG_Malay
donors showed sharper decreases in CD4* T naive cell proportions with increasing age
compared to SG_Chinese donors (N=562, df=543; t-value=-3.15, two-tailed t-test p-
value=0.00174 for the age-Korean interaction; t-value=-3.07, two-tailed t-test p-
value=0.00222 for the age-SG_Malay interaction, both compared against SG_Chinese
donors; Figure 3M,S4A). Reduced CD4* T naive cell levels have been reported in hepatitis C
virus-infected patients*® and SLE patients'. Given this disparity in CD4* T naive proportions
across population groups and ages, these dimensions of human diversity need to be
considered when assessing reference ranges and diseases where perturbed CD4* T naive

cell proportions can serve as a biomarker.

Single-cell signatures of human diversity

We harnessed the resolution afforded by our scRNA-seq atlas by investigating for single-cell
signatures of human diversity in multiple cell populations (B; pDC and myeloid; CD4* T and
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dnT; CD8* T, ydT, ILC, and NK). We used MiloR*, implementing a model that incorporated
multiple covariates (self-reported ethnicity, age, and female / male sex) for differential
abundance testing of MiloR cell neighbourhoods in gene expression space. As a control, we
examined cell neighbourhood abundances in males versus females. In males, the majority of
naive B cell neighbourhoods were depleted (MiloR neighbourhoods with MiloR spatial
FDR<0.1, Figure S5A), while numerous CD16* NK cell neighbourhoods were enriched

(spatial FDR<0.1, Figure 4A,S5B). This was consistent with our cell subtype analyses (Figure

3K,L,S4B,C) and the patterns of B and NK cell type abundance reported previously3>#’. As an
additional positive control, we examined the most male-enriched B cell neighbourhood
(logo(fold-change)=2.45, spatial FDR=4.80e-75), and found upregulation of non-

pseudoautosomal region Y-chromosome genes, including RPS4Y1, EIF1AY, and DDX3Y

(Eigure S5C).
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Figure 4: Single-cell signatures of human diversity. Gene expression UMAPs depicting enrichment of

CD8* T, yoT, ILC, and NK cell neighbourhoods in (A) males versus females, and (B) (left) donors =50-
years-old versus younger donors, as well as (B) (right) enrichment of CD4* T and dnT cell
neighbourhoods in donors 250-years-old versus younger donors. (C) Dot plot of top 5 upregulated and
top 5 downregulated genes (as compared to all other CD4* T naive cells) of the most depleted CD4* T
cell neighbourhood in donors =50-years-old versus younger donors. (D,E) (Left) UMAPs depicting
enrichment of cell neighbourhoods in a cell population, (middle) beeswarm plots depicting enrichment
of cell neighbourhoods, and (right) dot plots of top 5 upregulated and top 5 downregulated genes (as
compared to all other cells of the cell type of interest) of the most enriched cell neighbourhood in the
cell population. (D) pDC and myeloid cell neighbourhood enrichment for SG_Malay donors; a CD14*
monocyte neighbourhood shows the highest enrichment. (E) B cell neighbourhood enrichment for

SG_Indian donors; a naive B neighbourhood shows the highest enrichment. For UMAPs depicting cell
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neighbourhood enrichment, each cell is coloured by its logz(mean fold-change) value for all overlapping
MiloR cell neighbourhoods that the cell was grouped in. Cell types of interest are indicated by dashed
lines. In (A-C), the analysis was performed using all AIDA donors; orange hues indicate cell
neighbourhood enrichment, while blue hues indicate cell neighbourhood depletion; darker hues
correspond to higher magnitudes of enrichment or depletion, capped at log2(mean fold-change)=|2|. In
(D,E), the analysis was performed on Singapore donors only; yellow-green hues indicate cell
neighbourhood enrichment, while vermillion hues indicate cell neighbourhood depletion; darker hues
correspond to higher magnitudes of enrichment or depletion, capped at logz(mean fold-change)=|1|.
For beeswarm plots, each point corresponds to one cell neighbourhood; cell neighbourhoods are
classified by the majority cell type annotation within the neighbourhood. Points coloured in red
(depletion of neighbourhood for the dimension of human diversity of interest) and in blue (enrichment

of neighbourhood) correspond to spatial FDR values<0.1.

We identified biases in cell neighbourhood abundance that were not evident in analyses of
cell types or subtypes. For example, the lower abundance of B cells in males was not uniform
across cell neighbourhoods, particularly for memory B cell neighbourhoods (Figure S5A).
Similarly, NK cell neighbourhoods showed variable enrichment. While STMN71" NK cell
neighbourhoods were enriched in males, CD56* NK and IFN" CD16* NK cell neighbourhoods
were depleted in males (spatial FDR<0.1, Figure S5B). Furthermore, multiple SOX4" CD4* T

naive cell neighbourhoods were enriched in females (spatial FDR<0.1, Figure S5D).

As additional controls, we examined the differential abundance of cell neighbourhoods in
donors =50-years-old (~25% of our cohort, Figure 1D) versus younger donors. We identified
cell neighbourhoods that were enriched amongst CD16" monocytes and depleted amongst

pDCs and CD8" T naive cells in these older donors (spatial FDR<0.1, Figure 4B,S6A,B),

concordant with our cell type and subtype analyses (Figure 2B,3F) and previous reports*®4°.
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We then identified age-associated single-cell signatures beyond those described in the
literature. Multiple CD16* NK cell neighbourhoods were significantly enriched in older donors
(spatial FDR<0.1, Fiqure 4B,S6B), particularly cell neighbourhoods that were FCER1G" and
KLRC2". Our analyses suggest an age bias in a subset of NK cells that were recently

characterised at an scRNA-seq level as being adaptive NK cells®.

Furthermore, we found that a CD4* T naive cell neighbourhood with heightened SOX4
expression (relative to other CD4* T naive cells) was the most depleted CD4* T cell
neighbourhood in donors =50-years-old (logz(fold-change)=-1.50, spatial FDR=1.61e-12,

Figure 4B,C,S6C). This cell neighbourhood-based result was a more refined CD4" T naive

aging signature than both that reported in the literature*”*® and seen in our cell subtype
analyses (Figure 3M). This was also concordant with a finding from the OneK1K scRNA-seq
study of European-ancestry donors in Australia, that cell counts of a particular CD4* T cell
subtype, with heightened SOX4 expression and transcriptionally distinct from CD4* T naive
and central memory cells, declined with age'. We note two coincidences in sex and age
biases. CD4* T naive SOX4" cell neighbourhoods were depleted in donors 250-years-old and

enriched in females (spatial FDR<0.1, Figure 4B,S5D,S6C). In addition to the enrichment of

FCER1G" KLRC2" CD16* NK cell neighbourhoods in donors 250-years-old (spatial FDR<0.1,
Figure S6B), multiple NK cell neighbourhoods were enriched in males (spatial FDR<O0.1,
Figure S5B). These results suggest the importance of considering multiple dimensions of

human diversity in cellular and molecular analyses.

We tested for hitherto unexplored single-cell signatures of self-reported ethnicity, focusing on
Singapore donors to minimise confounding by technical variation across study sites.
SG_Malay donors showed enrichment of a CD14" monocyte cell neighbourhood (logx(fold-
change)=1.97, spatial FDR=2.28e-07; Figure 4D) with heightened expression of GBP1,
GBP4, GBP5, and WARS (interferon-induced genes®*%') and CXCL 10 (an interferon-induced

chemokine) relative to other CD14* monocytes (Figure 4D). The majority of ydT GZMB" cell
22
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neighbourhoods (Figure 2K,S2C) were enriched in SG_Malay donors (spatial FDR<0.1,
Figure S6D). SG_Indian donors showed enrichment of a naive B cell neighbourhood
(logz(fold-change)=0.938, spatial FDR=1.00e-03, Figure 4E) with heightened expression of
ACTG1 and PLD4, and lowered CD69 levels (Figure 4E). PLD4 is a marker gene for IGM"
transitional B cells®?, while CD69 is an early marker of lymphocyte activation®, suggesting that

cells in this SG_Indian-enriched neighbourhood may be in a progenitor-like state.

These examples highlight sex, age, and self-reported ethnicity differences discernible only at
the level of cell neighbourhood abundance rather than at the resolution of cell types or
subtypes. Collectively, through these analyses, we have identified single-cell signatures of
human diversity, which point to fundamental differences in immune cell phenotypes across
diverse donors. These results demonstrate the importance of considering sex, self-reported
ethnicity, and age in the inference of disease signatures to avoid the confounding of disease

with diversity.

Molecular variation across population groups

Having elucidated numerous cell type, subtype, and neighbourhood signatures associated
with multiple dimensions of human diversity, we investigated the influence of self-reported
ethnicity on cell subtype-specific gene expression. We used edgeR> to test for population
group-specific differentially expressed genes (DEGs) based on pseudobulk transcriptomes
aggregated per cell subtype per donor (Methods). We incorporated age, sex, and scRNA-seq
experimental batch as covariates in this analysis, and focused on the Singapore donors to
minimise the confounding of self-reported ethnicity differences with technical variation across

study sites.

We identified genes that showed a consistent pattern of self-reported ethnicity-associated

expression across most subtypes. For example, UTS2 (a gene encoding a cyclic peptide with
23
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strong vasoconstrictor activity®®) was differentially expressed in the highest number of cell
subtypes (16 subtypes, alongside KANSL1, NSF, and PPDPF; Table S5) out of all genes
tested. UTS2 showed consistent upregulation in SG_Chinese donors (edgeR log2(fold-
change) 1.01 to 1.60) and downregulation in SG_Indian donors (edgeR log2(fold-change) -
2.86 to -0.918) across major immune cell types (FDR<0.05 for SG_Indian in 16 cell subtypes

and SG_Chinese in 9 cell subtypes; Figure 5A, Table S5). This self-reported ethnicity-specific

expression pattern was also observed in a microarray-based study of RNA extracted from
whole blood, which ranked UTS2 amongst the top significantly differential probe sets across

the Singapore population groups®®.
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Figure 5: Self-reported ethnicity-associated variation in gene expression. (A) Scatterplot of edgeR-

logz(fold-change versus other population groups) against edgeR-
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UTS2 expression in cell subtypes for each Singapore self-reported ethnicity. (B) Boxplots of log1o
transformation of per-donor pseudobulk FCER1A expression values normalised by total UMIs (with
added pseudocount of 1e-07) in CD14* monocytes across the Singapore self-reported ethnicities. Each
dot represents a donor. Volcano plots of edgeR -logio(p-value) versus edgeR logz(fold-change) of
differentially expressed genes in (C) (left) CD16* NK cells in SG_Chinese donors, (D) (left) MAIT cells
in SG_Indian donors, and (E) (left) CD14* monocytes in SG_Malay donors, each versus all other
Singapore donors. Points coloured in red have FDR<0.05, computed from Benjamini-Hochberg
correction®” of p-values for genes analysed in the self-reported ethnicity-cell subtype combination.
Points labelled with gene names have FDR<0.05 for (C-E), and also |logz(fold-change) values|=0.75 for
(C). (C-E) (Right) Gene set enrichment analysis (GSEA) dot plots of the top ~5 (based on GSEA p-
value) upregulated or downregulated (positive or negative enrichment score, respectively) Gene
Ontology (GO) Biological Process gene sets. Dot size (“Count”) indicates number of core enrichment
genes; dots are coloured by FDR (Benjamini-Hochberg-corrected®” p-values). (F,G) (Left to right)
Transcription factor (TF) binding site motif from CIS-BP%8, and boxplots depicting the distributions of the
median TF regulon AUCell score across all cells of the subtype of interest per donor for each of the
indicated Singapore population groups. (F) ZBTB7A (M02914_2.00) in regulatory T (Treg) cells; (G)
YBX1 (M04661_2.00) in CD4* T effector memory (em) cells. FDR values of comparisons between
males versus females in (F,G) were computed from Benjamini-Hochberg correction®” of all two-tailed
Wilcoxon rank-sum p-values for a regulon across the SCENIC GRNBoost2 trial-AUCell analysis
combinations. Boxplots depict the output from one SCENIC GRNBoost2 trial-AUCell analysis

combination.

Furthermore, FCER 1A was upregulated in SG_Indian donors (edgeR logx(fold-change)=1.45,
FDR=2.92e-05) and downregulated in SG_Chinese (edgeR logx(fold-change)=-1.16,
FDR=0.0108) in CD14" monocytes (Fiqure 5B). FCER1A expression in monocytes has been
implicated in risk of allergic disease, with a GWAS SNP for allergic disease risk, rs2427837,
associated with FCER1A gene expression and protein levels in a Singaporean Chinese

cohort®®. Genetic variation associated with FCER1A may also be predictive for treatment
26
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response in adult East Asian patients with chronic hepatitis B®. The self-reported ethnicity-
specific expression patterns of FCER1A may be explained in part by differences in the allele
frequency of rs2427837 (chr1_159288755 G _A) across the Singapore population groups
(Eigure S7A). Differential expression of disease-associated genes across population groups,
such as FCER1A, at a level akin to the magnitude of gene expression variation linked with
eQTLs, may highlight genes of interest for investigating differential disease risk and

susceptibility across population groups.

Across 21 cell subtypes and in comparison to the other Singapore self-reported ethnicities,
we identified 1,915 DEGs for SG_Chinese donors and 1,968 for SG_Indian donors, but only
97 for SG_Malay donors (FDR<0.05, Table S5). The low number of SG_Malay DEGs may
reflect the intermediate position of this population group in the genotype PCA between
SG_Chinese and SG_Indian (Figure 1E), and suggests that the SG_Malay donor group may
also occupy an intermediate position in gene expression space. In CD16" NK cells, genes
upregulated in SG_Chinese donors were enriched for a Wnt signalling-associated gene set
(FDR<0.05, Figure 5C); Wnt signalling has been implicated in NK-cell differentiation and
function®’. For MAIT cells, SG_Indian donors showed upregulation of cytotoxicity-related gene
sets and downregulation of a TGFB-response gene set (FDR<0.05, Figqure 5D), which is
intriguing considering the lower proportions of these innate immune system-like® cells in
SG_Indian versus SG_Chinese donors (Fiqure S3E). SG_Malay donors showed upregulation
of gene sets associated with inflammatory and host-pathogen defence responses in CD14*
monocytes (FDR<0.05, Figure 5E), which is concordant with the enrichment of CD14*
monocyte cell neighbourhoods with elevated expression of interferon-associated genes in
SG_Malay donors (Figure 4D). These results suggest cell subtype-specific expression
differences that may underlie variation in the activity levels of biological pathways across

population groups.
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We further hypothesised that differences in gene regulatory networks could contribute to
expression variation across population groups. We used a SCENIC-based® workflow to
identify transcription factor regulons (comprising a transcription factor and its target genes)
whose activities differed across dimensions of human diversity. For example, we observed
that ZBTB7A regulon activity in Treg cells was heightened in male versus female donors of
SG_Indian self-reported ethnicity (regulon-specific FDR<0.05, Figure 5F), but this sex
difference was not apparent in other Singapore self-reported ethnicities. ZBTB7A may have
both transcriptional activator and repressor properties®, and has been reported as a repressor
of genes involved in glycolysis® and foetal globin gene expression®. In contrast, NFYC did
not show sex-specific regulon activity in Treg cells for any Singapore self-reported ethnicity
(Figure S7B). We further identified a possible sex bias in YBX7 regulon activity in CD4* T
effector memory (em) cells across all Singapore self-reported ethnicities (regulon-specific
FDR<0.05, Figure 5G); YBX1 represses interferon gamma-induction of human major

histocompatibility complex (MHC) class Il genes®®.

Together, these analyses suggest a possible relationship between self-reported ethnicity
(including its correlated environmental and lifestyle factors) and cell type-specific molecular
phenotypes, such as gene expression levels, as well as gene set and gene regulatory network
activity. Such molecular variation may contribute to physiological and disease-related variation
across population groups, such as variation in immune responses and haematological

features.

eQTL analyses identify population-specific functional variants and contextualise disease-

associated loci

To investigate additional influences of human diversity on cell type-specific phenotypes, we

performed pseudobulk eQTL analysis for 20 immune cell subtypes (Methods). Our cell
28
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subtype-specific eQTL analyses circumvent the confounding between differential cell
proportions versus differential gene expression that eQTL analyses of bulk tissues (e.g., whole
blood) suffer from®”. We identified 11,431 unique genes with at least one cis-eQTL (within 1
Mb of the gene) with FDR<0.05 in a cell subtype (eGene), out of 12,187 unique autosomal
genes analysed across all subtypes (Figure 6A). The number of eGenes discovered per cell
subtype correlated with the number of donors analysed for the corresponding subtype (Figure
6A,S8A), with a median of 2,342 such eGenes per cell subtype (range: 366 to 6,444). We also
implemented eigenMT?® for p-value correction from our eQTL analyses to nominate one lead

SNP per gene (Table S6).
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Figure 6: Population-specific and context-dependent eQTL effects. (A) Bar charts of numbers of eGenes

(Matrix eQTL FDR<0.05 for each cell subtype) and non-eGenes per cell subtype, ordered by number
of donors analysed per cell subtype. Scatterplots of (B) DICE®® (y-axis) and (C) ImmuNexUT7° (y-axis)
versus AIDA (x-axis) CD4* T naive eQTL effect size (beta) values of SNP-gene pairs with AIDA eQTL
FDR<0.05 per cell subtype. Percentages of all SNP-gene pairs that lie within a quadrant are indicated.
(D) Histogram of minor allele frequencies (maf) in the 1000 Genomes East Asian (EAS) super-
population, for AIDA eQTLs that were low frequency (maf 1%-5%) or rare (maf<1%) in at least one of
the 1000 Genomes African (AFR), Admixed American (AMR), or European (EUR) super-populations.
(E) Bar charts of (left to right) eQTLs identified in AIDA only, eQTLs identified in both AIDA and GTEx
v8 whole blood'®, and eQTLs identified in GTEx v8 whole blood only; SNPs examined were present in
both datasets. Bars depict percentages of eQTLs in the respective category with maf=0.05 or maf<0.05

in the 1000 Genomes EUR super-population. (F) Feature plots depicting (left) blue module scores and
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(right) IGHM expression coloured on gene expression UMAPs of AIDA IGHM" and IGHM° memory B
cells. (G) Ridge plots depicting the distributions of blue module scores across AIDA population groups.
(H) Boxplots depicting CYB5A expression in AIDA IGHM" and /IGHM'"° memory B cells, categorised by

the magnitude of a cell’'s blue module score, and by donor genotype of the chr18 74269229 G_Alocus.

We corroborated our eQTLs using datasets from the DICE project, which profiled 91 healthy
donors in the San Diego area, California, USA®. AIDA eQTLs (FDR<0.05 per subtype) were
84.1% to 87.1% concordant in effect size direction for 5 immune cell subtypes (CD4* T naive,

naive B, CD14" monocyte, CD8" T naive, and CD16* NK; Figure 6B,S8B). This indicated a

substantial degree of replication in eQTL identification for the AIDA eQTL set. We observed
an enhancement in eQTL replication when comparing AIDA eQTLs (FDR<0.05 per subtype)
against ImmuNexUT eQTLs (derived from purified immune cell subsets from 416 Japanese
donors) for the same 5 cell subtypes’™ (92.0% to 93.9% concordance, Figure 6C,S8C). This
improvement in replication may be attributable to the larger size of the ImmuNexUT cohort
versus the DICE cohort, as well as the closer genetic similarity between the AIDA and

ImmuNexUT cohorts than that for the AIDA and DICE cohorts.

We examined the allele frequencies of AIDA eQTLs present in the 1000 Genomes Phase 3
(ENSEMBL release 105) dataset”". 6.94% of such variants were low frequency or rare (minor
allele frequency (maf) 1%-5%, and maf<1%, respectively) in each of the African (AFR),
Admixed American (AMR), and European (EUR) super-populations. 2.24% of AIDA eQTL
variants were entirely absent in the EUR super-population. 31.6% of AIDA eQTL variants were
low-frequency or rare in at least one of the aforementioned super-populations, with many of
these being common in the East Asian (EAS) and South Asian (SAS) super-populations
(Figure 6D,S8D). In addition, we compared the set of AIDA eQTLs with FDR<0.05 (Benjamini-
Hochberg-adjusted®” p-values) across all tests in all cell subtypes against eQTLs (Benjamini-

Hochberg-adjusteds’” p-value<0.05) found in the GTEx v8 whole blood dataset'® (Figure 6E),
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focusing on SNPs tested in both studies. Of the variants identified as eQTLs only in AIDA,
20.9% were present at maf<0.05 in the 1000 Genomes EUR super-population, but were
common in the AIDA cohort (Figure 6E). This was much higher than the corresponding
proportion (3.46%) for eQTLs found in both AIDA and the GTEx v8 whole blood dataset
(Figure 6E). These allele frequency differences are consistent with the existence of functional
population-specific variants, and demonstrate the importance of studying diverse populations

for characterising the full spectrum of genetic variants relevant to humanity.

We leveraged the single-cell resolution of our dataset to elucidate context-dependent eQTL
effects (Methods), which can go beyond cell type-specific analyses to pinpoint cellular
mechanisms and cell states modulating gene expression variation’>. We modelled such
cellular contexts using gene modules identified through gene-gene correlation analyses, such
as a gene module (“blue”) corresponding to the /IGHM gradient in memory B cells (Figure
6F.G,S2E), which may relate to B cell activation”®. We identified 7,597 (13.9%) out of 54,798
SNP-gene pairs tested that showed eQTL effects dependent on the blue module cellular
context (FDR<0.05 from Benjamini-Hochberg-adjusted>” p-values). For example, the impact
of rs7239151 (chr18_74269229 G_A) on CYBbA expression varied with the magnitude of a
cell’s blue module score. Higher module scores correlated with higher CYB5A expression for
the GG genotype, but not for the AA genotype (Figure 6H), indicative of the modulation of
variant effects by B cell activation status. 7.25% of variants showing context-dependent eQTL
effects are common in AIDA but low-frequency or rare in the 1000 Genomes EUR super-
population (Figure S8E), suggesting the presence of context-dependent effects that can only

be discovered by studying diverse population groups.

In parallel, we performed colocalisation analyses for the AIDA eQTLs with immune-related
disease GWAS featuring Asian cohorts (Table S7). We identified 1,025 cases of high posterior

probabilities (PP) of colocalisation across 20 cell subtypes (colocalisation PP>0.8; Methods;
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Table S88). For example, we identified rs56750287, an AIDA eQTL for ORMDL3 in CD8* T

GZMK" cells (N=458, df=431, t-value=-17.7, two-tailed t-test p-value=4.20e-53) and a trans-

ancestry GWAS variant for rheumatoid arthritis™ (GWAS p-value=7.1e-13; colocalisation

PP=0.810, Figure 7A).

inflammatory diseases such as childhood-onset asthma’™.
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frequencies of variant of interest in the 1000 Genomes super-populations (African (AFR), Admixed
American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS)). (Bottom right) Boxplots
of eGene expression in the implicated cell subtype (y-axis) against AIDA donor genotypes (x-axis). (A)
rs56750287 as an AIDA eQTL for ORMDL3 in CD8* T GZMK" cells and a rheumatoid arthritis trans-
ancestry GWAS variant. (B) rs57631119 as an AIDA eQTL for SMAD2 in CD4* T cm cells and an asthma
GWAS variant. (C) rs2230500 as an AIDA eQTL for HIF1A in IGHM*° memory B cells and a rheumatoid
arthritis EAS GWAS variant. (D) rs74416240 as an AIDA eQTL for TCHP in CD14* monocytes and a

Graves’ disease GWAS variant.

We then investigated possible population-specific causal variants, akin to the pathogenic
transthyretin V122I missense variant found in patients of African ancestry’® and implicated in
an under-diagnosed cause of heart failure amongst African American individuals. We identified
numerous examples of population-specific variants in our colocalisation analyses across all
major cell populations and spanning multiple diseases. rs57631119, an eQTL for SMADZ in
CD4* T cm cells (N=461, df=434, t-value=-8.54, two-tailed t-test p-value=2.19e-16) and a
GWAS variant for asthma’” (GWAS p-value=5.29e-07; colocalisation PP=0.951), was a low-
frequency (1-5%) variant in the 1000 Genomes AFR and EUR super-populations but common
in all other super-populations (Fiqure 7B). TGFB-SMAD?2 signalling is active in the airways of
asthmatic individuals’. rs2230500, an eQTL for HIF1A in IGHM"° memory B cells (N=435,
df=408, t-value=-6.28, two-tailed t-test p-value=8.77e-10) and also a variant identified in both
a trans-ancestry and in particular an East Asian ancestry GWAS for rheumatoid arthritis’™
(GWAS p-value=2.03e-08; colocalisation PP=0.864), was rare (<1% minor allele frequency)
in non-EAS and non-SAS super-populations (Figure 7C). HIF1A has been implicated in
angiogenesis and inflammatory activity in the synovium tissue of patients with rheumatoid

arthritis™.
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Furthermore, a variant identified only in the EAS super-population, rs74416240, was an AIDA
eQTL for TCHP in CD14* monocytes (N=460, df=433, t-value=-8.36, two-tailed t-test p-
value=8.48e-16) as well as a variant implicated in Graves’ disease® (GWAS p-value=8.61e-
14; colocalisation PP=0.983, Figure 7D). Though little is known about TCHP in disease, with
no disease reports in OMIM8" or UniProt??, this result suggests that TCHP may be a candidate

for functional investigation for Graves’ disease.

Collectively, our genetic analyses provide a rich resource for understanding cellular and
molecular mechanisms that may underlie disease risk, disease biology, and human phenotypic
variation. Our QTLs facilitate the prioritisation of loci, genes, cell subtypes, and cellular
contexts, including those relating to population-specific variants, for variant analysis and

interpretation.

Discussion

We have generated and assembled an scRNA-seq immune cell atlas from healthy donors
spanning diverse population groups across 5 countries, which is a resource that is one of the
largest healthy blood datasets in terms of number of cells, and also the most diverse in terms
of number of population groups. We observed a substantial influence of human diversity on
cellular and molecular traits. In our data, the impact of self-reported ethnicity on cell subtype
proportions was comparable to that of female / male sex, and explained more variance than
age or BMI. We found that the effects of age and sex could be modulated by self-reported
ethnicity, highlighting the importance of studying these factors in combination. We identified
scRNA-seq signatures of human diversity, including enrichment or depletion discernible only
at the resolution of cell neighbourhoods, rather than cell types or subtypes. Human diversity-
associated variation in cell subtype proportions, cell neighbourhood abundance, and cell type-
specific gene expression overlapped with traits relevant to disease signatures and diagnostics.

35


https://doi.org/10.1101/2024.06.30.601119
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.30.601119; this version posted July 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

These included population-specific functional variants, including context-dependent eQTLs,
which could only be elucidated and characterised by studying diverse cohorts. Our findings
underline how studying human diversity is both a pressing equity issue and of scientific
importance. All the dimensions of human diversity we investigated influence fundamental
phenotypes, and would ideally be incorporated in scRNA-seq reference atlases to facilitate

accurate inferences from comparisons involving disease datasets.

Since genetic variation and environmental factors are often confounded®', the self-reported
ethnicity associations we discovered are not necessarily genetic effects. Such associations
may represent the combined effects of systematic genetic and environmental differences
between populations, including variation in diet and geography. Further research is needed in
cohorts with comprehensive metadata on environment and lifestyle, to begin to understand
the individual impact of these factors. Regardless of their aetiology, these self-reported
ethnicity-associated cellular and molecular profiles can contribute towards defining healthy
baselines important for disease diagnoses, and facilitate the analysis of human physiology

and pathophysiology.

Technical variation across experimental batches and study sites can introduce statistical
biases confounded with the biological variation of interest. We adopted a suite of experimental
and computational techniques to ameliorate against this, by harmonising experimental
workflows and unifying data analysis across our study sites. In addition, we confirmed that key

results remained consistent across two data integration methods (Figqure 3J-L,S3G,S4B,C).

To further reduce the impact of site-specific technical biases on our analyses of self-reported
ethnicity, we performed internal comparisons within population groups, such as female-male
or age differences within each population group, and focused several analyses on our
Singapore cohort, for whom SG_Chinese, SG_Malay, and SG_Indian donors were batch-

randomised. Lastly, we validated our findings in independent cohorts and datasets beyond our
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AIDA scRNA-seq atlas. These strategies may be relevant for future multi-national single-cell

studies of diverse cohorts.

In our scRNA-seq atlas, UTS2, KANSL1, and ANKRD36B were the most commonly
upregulated genes across multiple cell subtypes for SG_Chinese, SG_Indian, and SG_Malay
donors, respectively (Table S5). UTS2 was associated with multiple traits in a transcriptome-
wide association study of the UK Biobank cohort®®, including basal metabolic rate, body fat
percentage, and diastolic blood pressure. Notably, the Singapore 2022 National Population
Health Survey® reported differences across Singapore self-reported ethnicities in the crude
prevalence of abdominal obesity, hyperlipidaemia, type 2 diabetes, and hypertension,
motivating future studies of the relationships between single-cell molecular variation and

phenotypic variation across population groups.

Our findings of differential cell subtype proportions, such as the lower Treg proportions in

Korean donors (Figure 3J,S3F,G), may have implications for our understanding of population-

specific disease susceptibility. Treg cell depletion has been observed in the pathogenesis of
autoimmune diseases®®, motivating further studies of autoimmune disease prevalence in
Korean populations, and more broadly comparative studies of disease prevalence across
ancestries. For example, a study focusing on Manhattan, New York, USA, found that the
prevalence of lupus was higher among non-Hispanic Asian women than non-Hispanic white
women®, The combined analysis of detailed immune phenotypes elucidated from scRNA-seq
datasets with studies of disease prevalence across diverse population groups can help

nominate mechanisms of interest for understanding and treating diseases.

Given the resolution of our dataset, we could identify cell neighbourhood differences that were
not apparent at the coarser cell type or subtype levels, such as the enrichment of CD14*
monocyte neighbourhoods with heightened expression of interferon-induced genes in

SG_Malay donors (Figure 4D). Our findings both encourage further studies on the possibility
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of differential cell activities across population groups as well as warn against interpreting cell
neighbourhood enrichment without accounting for human diversity. Such population-specific
features should be factored into the analysis of disease scRNA-seq datasets. Comparisons of
disease datasets against scRNA-seq reference atlases can nominate disease-associated cell
neighbourhoods. However, if the reference atlases are not well-matched for dimensions of
human diversity, such differentially abundant cell populations may be confounded with single-
cell signatures specific to donor or patient demographics. With the possible applications of
scRNA-seq technologies in precision medicine®®, scRNA-seq reference atlases should be

diverse from their inception to maximise the global benefit to all population groups.
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Singapore, South Korea, Thailand) in every aspect of the research process, including study
design, study implementation, data ownership, and authorship. Community engagement has
been led by our authors and long-standing collaborators in each country with expertise in

epidemiology, population genetics, and human disease studies.

Data availability

The AIDA Data Freeze v2 gene-cell matrix (1,265,624 cells from 619 India, Japan,
Singaporean Chinese, Singaporean Malay, Singaporean Indian, South Korea, and Thai Asian
donors and 6 distinct Lonza commercial controls) and donor metadata will be available via the
Chan Zuckerberg (CZ) CELLXGENE data portal (we will provide the link upon publication).
The earlier AIDA Data Freeze v1 gene-cell matrix and visualisation is available via the CZ

CELLxGENE data portal at https://cellxgene.cziscience.com/collections/ced320a1-29f3-47¢1-

a735-513c7084d508. The AIDA Data Freeze v2 cell annotation metadata will be available via

the Cell Annotation Platform (CAP at hitps://celltype.info/; we will provide the link upon

publication). The open-access AIDA datasets are available via the Human Cell Atlas Data

Coordination Platform at https://data.humancellatlas.org/explore/projects/f0f89c14-7460-

4bab-9d42-22228a91f185. The managed-access AIDA datasets are available via data access

applications to the corresponding authors. The SLAS-2 dataset we analysed was profiled in a
published study*®, and is available through a data access application to the Gerontology
Research Programme at the National University of Singapore, Singapore, and the Singapore

Immunology Network (SIgN), A*STAR, Singapore.
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Code availability

The code for this manuscript is available at https://github.com/prabhakarlab/AIDA Phase1.

Methods

Healthy donors in the Asian Immune Diversity Atlas

Living healthy human donors from India, Japan, Singapore, South Korea, and Thailand were
profiled for this study. All study protocols were approved by the Institutional Review Boards
(IRBs) of the institutions our laboratories are affiliated with (Genome Institute of Singapore:
IRB 2020-012 and 2022-051; Nanyang Technological University: IRB-2016-11-030-01, IRB-
2016-11-030, and 181C4698; RIKEN: IRB H30-9; Samsung Genome Institute: IRB 2019-09-
121; Faculty of Medicine Siriraj Hospital, Mahidol University: IRB 725/2563(IRB3); National
Institute of Biomedical Genomics: IRB NIBMG/2022/1/0022) prior to dataset generation. Our
sample collection sites were in Kolkata, Yokohama, Singapore, Seoul, and Bangkok,
respectively. All donors provided written informed consent for sample and metadata collection
and subsequent analyses. Donor metadata, such as age, female / male sex, self-reported
ethnicity, height, weight, body mass index (BMI), and medication and dietary supplement
consumption, were collected from donors via questionnaires and clinical measurements. We

closely complied with all ethical regulations and our IRB conditions.

We included healthy donors in our atlas through applying the following exclusion criteria for

donor datasets:

1) A person unable to provide informed consent.

2) A person with active infection or fever.

3) A person on regular medication (consumption of dietary supplements and / or herbal
remedies was not considered in the exclusion of participants from our study).
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4) A person with autoimmune disease.

5) A person with haemoglobin A1c (HbA1¢)=6%.

In addition, we excluded from our reference atlas persons who had received any vaccines in

the 8 weeks prior to the date of blood draw.

We profiled 85 Singaporean Chinese, 70 Singaporean Indian, 61 Singaporean Malay, 149
Japan Japanese, 165 South Korea Korean, 59 Thailand Thai, and 30 India Indian donors for

a total of 619 Asian donors for the AIDA Data Freeze v2 dataset.

We also included control PBMC samples from 6 distinct European donors (Lonza 4W-270,
from lot numbers 3038099, 3038016, 3038097, 3038306, 3030004, and 3061635) in the AIDA

Data Freeze v2 dataset.
Isolation of peripheral blood mononuclear cells (PBMCs)

Eight ml of blood was drawn from each donor for this study using CPT tubes with sodium
heparin (BD Vacutainer CPT, catalogue number 362753). Isolation of peripheral blood
mononuclear cells (PBMCs) was performed according to a standardised protocol across all
study sites. We used foetal bovine serum (FBS; Sigma-Aldrich catalogue number F2442) lot
numbers 19G014 and 20A363 for both the PBMC isolation and the cell pooling and washing
procedures. Briefly, blood samples collected in CPT tubes (standing in room temperature)
were processed within 2 hours of blood collection using density-gradient centrifugation.
Centrifugation steps were performed using a soft setting for centrifuge acceleration and
deceleration. Blood samples were mixed 8-10 times prior to centrifugation at 1,500 x g in a
horizontal rotor with swing-out head for 30 minutes at 20 °C. Plasma was aspirated; the PBMC
layer was then collected, and spun down at 300 x g for 15 minutes at 20 °C. The cell pellet
was resuspended in ACK lysing buffer (Thermo Fisher Scientific, catalogue number A10492)
for lysis of red blood cells. Samples were washed twice with wash buffer (PBS pH 7.4, 1%

FBS, 1 mM EDTA) and centrifuged at 300 x g for 15 minutes at 20 °C. PBMCs were
43


https://doi.org/10.1101/2024.06.30.601119
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.30.601119; this version posted July 1, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

cryopreserved in CryoStor CS10 cell freezing media (STEMCELL Technologies, catalogue
number 079555). Cryovials were stored at -80 °C in controlled-rate cooling containers
overnight before long-term storage in liquid nitrogen. We have made our detailed protocol
harmonised across all study sites available via Protocols.io®” at

https://www.protocols.io/view/pbmcs-isolation-from-cpt-tube-b8r9rv96.

Single-cell experiments: Genetic multiplexing and sample pooling

Thawing and washing of individual PBMC samples and pooling (for genetic multiplexing) of
donor samples were performed according to a standardised protocol across all study sites.
Briefly, individual vials of PBMC donor samples were thawed in a 37 °C water bath for 1-2
minutes until no visible ice crystals were seen, and further thawed using pre-warmed thawing
media (RPMI (Gibco catalogue number 21870076) + 5% Human Serum (Sigma-Aldrich
catalogue number H4522) + 1% Penicillin-Streptomycin (Gibco catalogue number 15140122)
+ 1% L-Glutamine (Gibco catalogue number 25030081)). Individual samples were centrifuged
at 300 x g for 5 minutes at 21 °C, and washed first with pre-warmed washing media (RPMI +
10% FBS + 1% Penicillin-Streptomycin + 1% L-Glutamine), followed by two washes with pre-
warmed (PBS + 0.04% Bovine Serum Albumin (BSA, Capricorn Scientific catalogue number
BSA-1S)). Individual samples were then each filtered through a 30 ym MACS SmartStrainer
(Miltenyi Biotec) to remove cellular clumps and debris; samples were kept on ice for all the
following procedures after filtering. Individual samples were counted with a 1:1 sample-to-
trypan blue mix using an automated cell counter (Thermo Fisher Countess Il FL), and
resuspended to 1.50 x 108 cells per ml in PBS + 0.04% BSA. Equal numbers and volumes of
cells from each donor were pooled per experimental batch, and the pooled sample was
counted using the same cell counting procedure as above prior to the 10x Genomics single-
cell experiments. We have made our detailed protocol harmonised across all study sites

available via Protocols.io®® at https://www.protocols.io/view/demuxlet-cell-preparation-

protocol-b8sdrwab.
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Single-cell experiments: 10x Genomics 5’ v2 RNA-sequencing, B-cell receptor sequencing

(BCR-seq), and T-cell receptor sequencing (TCR-seq)

Fifteen Asian donors and one European control sample (Lonza 4W-270, from lot numbers
3038099, 3038016, 3038097, 3038306, 3030004, and 3061635; the first 5 lot numbers were
used in AIDA Data Freeze v1, while all 6 lot numbers were used in AIDA Data Freeze v2) were
pooled per batch, with two technical replicates (which we term as replicate libraries) performed
for each batch. To allow for comparisons across donors from different population groups in the
Singapore batches, we batch-randomised donors, ensuring that approximately the same
numbers of Singaporean Chinese, Singaporean Malay, and Singaporean Indian donors (and

the same age range and sex balance) were present per Singapore donor batch.

We loaded 40,000 cells from the donor PBMC pool for each technical replicate, and performed
10x Genomics 5’ v2 scRNA-seq, B-cell receptor sequencing (BCR-seq), and T-cell receptor
sequencing (TCR-seq) experiments and library preparation according to the manufacturer’s
protocols. We used a Chromium Controller at each study site for the 10x Genomics partitioning
(generation of gel beads-in-emulsion (GEMs)) and barcoding procedures. We used the
following 10x Genomics reagents for our experiments: Chromium Next GEM Chip K Single
Cell Kit, Chromium Single Cell 5’ v2 Reagent Kit, Dual Index Kit TT Set A, Chromium Single
Cell Human TCR Amplification Kit, and Chromium Single Cell Human BCR Amplification Kit.
We quantified libraries using the Bioanalyzer 2100 with High Sensitivity DNA kits (Agilent
Technologies). We pooled two 5’ v2 gene expression technical replicates (i.e., two libraries)
per lane of an lllumina NovaSeq 6000 S4 flow cell. We pooled 20 BCR and / or TCR libraries
per lane of an lllumina NovaSeq 6000 S4 flow cell. We sequenced the Japan, Singapore,
South Korea, and Thailand libraries using a sequencing configuration of paired-end 150 bp
with 10 bp dual i7 and i5 indices. Our pilot libraries from India were sequenced using a
sequencing configuration of read 1: 26 bases and read 2: 90 bases with 10 bp dual i7 and i5

indices.
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Genomic DNA isolation, genotyping, genotype quality control, and genotype imputation

Genomic DNA was isolated from PBMCs from each donor using the QlAamp DNA Mini Kit
(Qiagen, catalogue number 51306) according to the manufacturer’s protocol. Genotyping was
performed using the lllumina GSAv3.0 array (Infinium Global Screening Array-24 Kit,
catalogue number 20030770). We used the lllumina GenomeStudio version 2.0 software with
the PLINK Input Report Plug-in v2.1.4 and the Infinium Global Screening Array v3.0 manifest
files (BPM Format — GRCh38) to convert the raw data IDAT files to MAP and PED files. We
used StrandScript® to correct the lllumina genotyping data consistently to the GRCh38 human

genome reference forward strand.

For our genetic demultiplexing workflow, we then used PLINK 1.9% to retain autosomal
variants present at a minimum minor allele frequency of 5% and to convert the data to VCF
files. For each AIDA batch of donor samples, we included only SNPs with a 100% genotyping
rate, and excluded indels. We corrected the reference allele base identity using bcftools norm
-1 with the GRCh38 reference genome, and removed any multi-allelic SNPs. We used the
resulting VCF files as our input for genetic demultiplexing of individual single-cell sequencing
libraries. We also used these VCF files for principal component analysis (PCA) of the AIDA

genotype data, using the R prcomp function.

For genotype imputation, we performed both sample-level quality control (QC) and variant-
level QC steps. Samples that had call ratios of below 0.98 (after considering autosomal
variants with call ratios>0.99) were excluded from the imputation procedure. Related donor
samples were identified through computation of the PI_HAT and Z1 identity-by-descent values
using PLINK2%, During variant-level QC, variants with call ratio<0.99 were excluded. Variants
that showed significant association with sex as well as variants with Hardy-Weinberg
equilibrium (HWE) p-value<1e-6 were also excluded. Variants which had allele frequencies in

the AIDA genotype dataset that differed from the 1000 Genomes hg38 dataset by more than
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15% (for variants found in AIDA Singaporean Chinese, Japanese, and Korean donors versus
the 1000 Genomes East Asian super-population, as well as variants found in AIDA Japanese
donors versus the 1000 Genomes Japanese donors) or more than 17.5% (for variants found
in AIDA Singaporean Indian donors versus the 1000 Genomes South Asian super-population)
were excluded. In addition, variants for which we were unable to confidently match strand
orientation to the 1000 Genomes hg38 dataset as well as duplicated variants were excluded
from imputation. After these QC procedures, genotype imputation was performed using the
Michigan Imputation Server®?, utilising the 1000 Genomes hg38 (all populations) high-
coverage reference panel (1000 Genomes Phase 3 (Version 5), with 2,504 samples and

49,143,605 sites on the autosomal chromosomes) as the imputation panel.
Single-cell RNA-sequencing (scRNA-seq) pre-processing and quality control

We performed centralised pre-processing and quality control (QC) of all scRNA-seq datasets.
We used the DRAGEN Single-Cell RNA pipeline in the Illlumina DRAGEN v3.8.4 software
(version 07.021.602.3.8.4-20-g74395e76) for pre-processing of paired-end FASTQ files from
each individual scRNA-seq gene expression library from Japan, Singapore, South Korea, and
Thailand to obtain one gene-cell matrix per library. We utilised the DRAGEN genetic
demultiplexing workflow for detecting genetic doublets and for assigning cells to their donors
based on the donor genotype data VCF file provided to the DRAGEN pipeline. We used
GENCODE Release 32 (GRCh38, Ensembl 98, date 2019-09-05) as our gene annotation
reference, and the associated GRCh38 primary genome assembly as our reference genome,
and set --Aligner.hard-clips=0 and --Aligner.sec-aligns=3. We used the 737K-august-2016.txt
barcode whitelist (corresponding to the list of barcodes relevant for the 10x Genomics Single
Cell 5' v2 assay) from the 10x Genomics Cell Ranger software installation in the DRAGEN
pipeline. For the AIDA BCR-seq and TCR-seq Japan, Singapore, South Korea, and Thailand
datasets, we processed the paired-end FASTQ files per library using Cell Ranger VDJ pipeline

versions cellranger-5.0.0 and cellranger-5.0.1. For the AIDA scRNA-seq India datasets, as
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these could not be processed adequately through the DRAGEN pipeline, we ran Cell Ranger
7.0.1 with the default parameters, with introns included by default in the cellranger count step.
For the AIDA BCR-seq and TCR-seq India datasets, we processed the FASTQ files using Cell
Ranger VDJ pipeline version cellranger-4.0.0. We used the same Cell Ranger V(D)J reference
(vdj_GRCh38_alts_ensembl-5.0.0) for all BCR and TCR datasets, and considered the high-

confidence BCR and TCR contigs from the output files for our analyses.

For Japan, Singapore, South Korea, and Thailand single-cell experimental batches with all
donor genotype data available, we used the DRAGEN genetic demultiplexing output for our
genetic singlet and genetic doublet assignments. For batches with one missing donor
genotype (e.g., due to problems with the genomic DNA extraction procedure), we used

Freemuxlet® (https://github.com/statgen/popscle) on the BAM files from the DRAGEN pipeline

output, with the default Freemuxlet parameters, to assign cells to donors. We then performed
genotype concordance analyses by comparing the Freemuxlet-inferred genotypes against the
lllumina GSAv3 genotyping array data to match the Freemuxlet clusters to donors. For these
Freemuxlet analyses, we used as our input VCF file into the dsc-pileup step the set of exonic
variants that were present at a minor allele frequency 25% in the East Asian and / or the South
Asian super-populations in the 20181203 biallelic SNV GRCh38 version of the 1000
Genomes dataset (EBI European Variation Archive accession PRJEB30460). For the AIDA
India datasets, we ran Demuxlet on the BAM output files from Cell Ranger with the default
parameters, except for setting --group-list as the list of barcodes (barcodes.tsv.gz) from the
unfiltered Cell Ranger output. We excluded any library with excessively high genetic doublet

rates from all downstream analyses.

We performed QC of our scRNA-seq dataset in two stages. We first performed library-level
QC by analysing each individual library. We filtered out cells for which fewer than 300

GENCODE Release 32 genes were detected (number of detected genes (NODG)<300).
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We identified a preliminary cell type annotation for each library for use in our doublet
identification workflow. For AIDA Data Freeze v1, we identified the top 2,000 highly variable
features using the variance-stabilising transformation option in the Seurat 4.1.1 R package®,
scaled the data using all genes, and then performed principal component analysis on these
highly variable features. We performed nearest-neighbour analyses based on the resulting
principal components, and ran Louvain clustering in Seurat at a resolution of 1.0. For AIDA
Data Freeze v2, to guard against batch-to-batch variability in heterotypic doublet identification,
we instead performed reference projection of the scRNA-seq library to a reference panel of
immune cell transcriptomes using the RCAv2 software®, performed nearest-neighbour
analyses based on the principal components of the reference projection coefficients, and ran
Louvain clustering in Seurat at a resolution of 1.0. For both data freezes, we annotated the
resulting clusters based on a majority vote of the major cell type annotation labels assigned

by RCAV2 to cells within each cluster.

We used the genetic doublet proportion for a library (combining the proportions of mixed
genetic identity and ambiguous identity droplets) to estimate the likely total doublet rate for
that library (proportion of genetic doublets in the library out of all cells with NODG=300
multiplied by (number of donor samples)/(number of donor samples-1))*. We used this
estimate of total doublets in a library, as well as the RCAv2 reference projection-based
clustering and annotation of clusters (for estimation of homotypic doublet proportion) as our
input into DoubletFinder, which we used for identifying heterotypic doublets®’. We then
removed cells that had more than 10 (HBA1 UMIs + HBB UMIs), since these cells could be
red blood cells, or cells contaminated with red blood cell RNA transcripts. We checked for any
sample swaps by examining the number of singlets per donor (typically ~1,000 singlets and
almost always >>100 singlets per donor per library, even if a particular donor sample had low
cell viability after thawing). We also examined for concordance of the scRNA-seg-inferred

female / male sex (inferred from the ratio of total counts from non-pseudoautosomal region
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(PAR) Y-chromosome genes to total counts of PAR Y-chromosome genes) with the donor
metadata. By checking for matches between the transcriptomic and genotype data, our
integrative analysis of scRNA-seq reads with genotyping array output through the genetic

demultiplexing workflow helped guard against any inter-batch sample swaps.

After we performed the library-level QC procedures, we performed cell type-specific QC on
our dataset. We removed any cell that was flagged as a doublet by the DRAGEN genetic
demultiplexing workflow or by the DoubletFinder workflow from our downstream analyses, and
included only single cells from healthy donors that had provided written informed consent and
had not withdrawn consent from the study. We then combined single cells from multiple
libraries across countries, performed reference projection of such combinations of cells to a
reference panel of immune cell transcriptomes using the RCAv2 software®, and performed
nearest-neighbour analyses based on the principal components of the reference projection
coefficients. We ran Louvain clustering in Seurat®* at a resolution dependent on the size of the
combination of cells, increasing the resolution for a larger set containing more cells. We
annotated the resulting clusters based on a majority vote of the major cell type annotation
labels assigned by RCAv2 to cells within each cluster. We performed cell type-specific QC on
all single cells across all libraries by applying per-cell NODG and percentage mitochondrial
read (pMito) filters that were manually determined for each major cell type (B, CD34*
haematopoietic stem and progenitor cell (HSPC), myeloid (including both monocyte and
conventional dendritic cell), natural killer (NK), plasma cell, plasmacytoid dendritic cell (pDC),
platelet, T); these major cell types were largely distinct in gene expression space (except for
NK and T cells) in our scRNA-seq analyses. For example, our NODG filters excluded any
myeloid cell with NODG<500, and any other leukocyte with NODG<1,000. Our pMito filters
excluded any cell with pMito>12.5% (for plasma cells and platelets) and pMito>8% (for all
other major cell types). We included only cells within our designated NODG and pMito range

for cell type annotation and downstream analyses.
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Following these two stages of QC, AIDA Data Freeze v1 comprised 1,058,909 PBMCs from
503 Asian donors and 5 European controls profiled in Japan, Singapore, and South Korea,

which we made available to the research community pre-publication (Supplementary Note),

including via the CZ CELLXGENE data portal and as part of the first CZ CELLXxGENE
Census?®. AIDA Data Freeze v2, which we focused on in this study, comprises 1,265,624
PBMCs from 619 Asian donors and 6 European controls (median number of detected genes
(NODG) per library: 1342-2296, median NODG of 93 libraries=2003; median percentage
mitochondrial reads (pMito) per library: 2.07%-4.08%, median pMito of 93 libraries=3.53%)
(Figure S1A). We had a median of 122 high-confidence BCR barcodes and 986 high-

confidence TCR barcodes per donor (Figure S1B).

Cell population-specific quality control, data integration, sub-clustering, and cell type

annotation

We performed cell population-specific quality control (QC), feature selection, data integration,
sub-clustering, and annotation on the following cell populations separately: 1) B cells; 2) pDCs
and myeloid cells; and 3) ILC, NK, and T cells. For the ILC, NK, and T cells, we performed a
second round of data integration as well as re-clustering on the following two cell populations
separately: 3a) CD4* T and dnT cells, and 3b) ILC, NK, and T cells that were neither CD4* T

nor dnT cells.

We utilised genes that were expressed by 20.1% of cells in our cell populations of interest for
our analyses. We first identified genes expressed by 20.1% of cells in each of the following
cell types: B, pDC, myeloid, NK, and T. We retained the union of these genes for the combined
pDC and myeloid cell populations, and also the combined NK and T cell populations. We then
re-normalised the respective gene-cell matrices (B; pDC and myeloid; NK and T) by the total

expression of retained genes.
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We excluded cells with heightened platelet marker gene expression by performing a platelet
marker gene QC step in the first round of the sub-clustering analyses. We separately identified
platelet gene expression distributions in 1) B cells, 2) pDCs and myeloid cells, and 3) ILC, NK,
and T cells. We excluded cells that were amongst the top 30% of cells with a non-zero sum of
expression of four platelet marker genes (ITGA2B, PF4, PPBP, TUBB1) from the first round
of cell population-specific data integration, sub-clustering, and cell type annotation

procedures.

Following the platelet marker gene QC step, we re-identified the genes that were expressed
by 20.1% of cells in our cell populations of interest. This was performed prior to each data

integration procedure.

We performed data integration using the Seurat anchor integration reciprocal principal
component analysis (RPCA) algorithm?8. We integrated across all scRNA-seq libraries and

treated each scRNA-seq library as a batch.

For each library, we performed log-normalisation and identification of the top 2000 highly
variable features using the variance-stabilising transformation option in Seurat. We selected
integration features using the Seurat SelectintegrationFeatures function, scaled each library
and ran PCA on each library using these integration features, and selected the library with the
highest number of cells for the cell population of interest as our reference dataset. We
identified integration anchors via Seurat RPCA using this reference dataset and the first 30
principal components. We then performed data integration using Seurat IntegrateData and its
default parameters (e.g., the first 30 dimensions as well as k.weight=100 for the number of
neighbours considered in the anchor weighting procedure). For control analyses, we
performed Harmony for data integration*, treating each scRNA-seq library as a batch. We

chose highly variable genes (HVG) by their prevalence across the highly variable genes for all
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scRNA-seq libraries (Harmony-HVG), followed by Harmony integration, and sub-clustering

and cell type annotation in the Harmony-HVG embedding.

We performed sub-clustering using the integrated embedding principal components, and
identified marker genes for one cluster versus all other clusters using the implementation of
the single-cell Wilcoxon rank-sum test in the Seurat FindMarkers differential gene expression
function®. We then annotated our cells based on marker genes curated from the literature as
well as through examination of gene expression across clusters in our dataset (Table $2). Our
annotation framework involved four hierarchical levels for annotating sub-clusters (Figures
S2A,B). At the most detailed level (Level 4), we named and described individual sub-clusters,
which we refer to as cluster identities in this study. We manually merged these towards cell
subtypes widely-recognised in the literature at higher hierarchical levels in the PBMC
clustering hierarchy. We used well-defined cell type descriptors from the literature (e.g., naive,
memory) as well as marker genes and their heightened / lowered levels of expression (hi/ lo,
respectively) for nomenclature. We considered the fold-change in expression of marker genes
for a cluster, as well as the proportion of cells within a cluster that expressed the marker genes
of interest, based on single-cell Wilcoxon rank-sum tests, for our annotation nomenclature
(e.g., logz(fold-change)>0.5 and >50% of a cluster expressing a gene for a “hi” annotation of
that gene). For distinguishing T cell clusters, we considered the proportion of cells within a
cluster that had high-confidence TCR barcodes. We annotated clusters in detail, where
possible, but left annotations at a coarser level or described subtypes as “unknown” (e.g.,
CD4+_T_unknown instead of a specific CD4* T subtype) when there was no compelling
evidence in support of a more detailed annotation. We also flagged clusters that appeared to
have 1) heightened platelet gene expression; 2) the combination of (a) a low range of NODG
values, (b) low expression of canonical marker genes that should be expressed in the cell
type, and (c) heightened expression of genes that, relative to other clusters, tend to be highly

expressed in PBMC scRNA-seq datasets (e.g., the long non-coding RNA genes MALATT,
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NEATTY); as well as 3) clusters with heightened expression of marker genes from other
lineages or cell types (e.g., T cells that showed heightened expression of monocyte marker

genes) for caution in downstream interpretation.
Cell type proportion analyses

For our analyses, we focused on population groups with at least 50 donors, donors with at
least 800 cells passing our quality control filters, and cell subtypes with at least ~10 cells per
donor on average. We utilised linear models of self-reported ethnicity, age, female / male sex,
and their two-way interaction terms to examine the correlation of these dimensions of human
diversity with the logo(Proportion) of immune cell types and subtypes. We evaluated several
denominators, including all PBMCs per donor as well as all NK, T, and ILC cells (for NKand T
cell subtypes) to guard against possible changes in overall myeloid or lymphoid cell

abundance across population groups.

To compute the variance in cell subtype proportions explained by a dimension of human
diversity, we examined the multiple R-squared values (equivalent to the variance explained)
from linear regression models in which only a single dimension (e.g., age, self-reported
ethnicity, BMI, or sex) was considered. We focused on Singapore donors for this analysis,
using total PBMCs without platelets as our denominator. For validation of the impact of self-
reported ethnicity on cell subtype proportions, we analysed the Singapore Longitudinal Ageing
Study wave-2 (SLAS-2)% flow cytometry dataset profiled in a published study*. This dataset
included 824 donors spanning 55-94-years, comprising 719 SG_Chinese, 40 SG_Indian, and
65 SG_Malay donors. In the aforementioned study, briefly, flow cytometry data was analysed
using the FlowJo software (BD). Cell populations were gated in FlowJo and the event counts
of each cell population were exported into Microsoft Excel for calculating frequencies of cell
populations. We used a model of

logio(Proportion)~Age+Sex+Individual_Self_reported_ethnicity (e.g., SG_Chinese or
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SG_Indian or SG_Malay), and the PBMCs/Single_Cells/Live_Cells/CD34*CD45"* event count
(total leukocytes) as our denominator for these analyses. This corresponded to the same linear
model featuring total PBMCs without platelets as our denominator in the AIDA scRNA-seq

analyses of the Singapore population groups.

Statistical tests, including computation of two-tailed t-test and two-tailed Wilcoxon rank-sum
test p-values, were performed in R. Plots were generated using the ggplot2 R package® and

the R plotting functions.
Cell neighbourhood enrichment analyses

We performed two types of cell neighbourhood enrichment analyses. We first examined the
impact of single dimensions of human diversity across the whole AIDA atlas. We performed
Seurat RPCA integration for all cells and all libraries according to our Seurat RPCA workflow
described in the Cell population-specific quality control, data integration, sub-clustering, and
cell type annotation Methods section. From the resulting integrated embedding, we considered
only population groups with at least 50 donors for the cell neighbourhood enrichment analysis.
We identified the 500 nearest neighbours for each cell in our atlas using the first 30 principal
components from our integrated embedding, and computed the number of cells corresponding
to our dimension of human diversity of interest (i.e., female or male sex, one of the self-
reported ethnicities, one of the four age ranges for our dataset (in years, ages 19 to 32, 33 to
40, 41 t0 49, 50 to 77) and the number of cells corresponding to the complement (i.e., all other
cells from the other sex considered, the other self-reported ethnicities, or the other age ranges,
respectively). We normalised the ratio of these two values against the ratio of total cells in our
atlas corresponding to the dimension of human diversity of interest, to the total number of cells
corresponding to the complement. We then performed a log. transformation of these values,

and overlaid these values on gene expression UMAPSs.
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Next, we used MiloR version 1.5% to test for differential cell neighbourhood abundance using
models accounting for multiple dimensions of human diversity. The MiloR analysis allowed for
overlapping cell neighbourhoods and computation of spatial false-discovery rates (FDR). We
implemented MiloR for all combinations of cell populations (1) B; 2) pDC and myeloid; 3) CD4*
Tand dnT; and 4) ILC, NK, and T cells that were neither CD4* T nor dnT cells) with dimensions
of human diversity. We performed the MiloR analyses using the Seurat RPCA integrated
embedding from the cell type annotation workflow, following the removal of cells with
heightened platelet gene expression and data integration using the Seurat RPCA anchor
integration procedure. We performed the following workflow for donors with at least 800 cells
per donor. We set k=900, such that the peak in the histogram of neighbourhood sizes was
~3,000, which was a number ~5 times the number of donors analysed through the MiloR
workflow. We used a model of Age+Sex+Self _reported_ethnicity for differential cell
neighbourhood abundance testing, with SG_Chinese, SG_Indian, or SG_Malay substituted
into the self-reported ethnicity term when investigating cell neighbourhood enrichment
associated with a particular self-reported ethnicity. We treated age as a continuous variable
when examining the effects of female / male sex or self-reported ethnicity, and categorised
age into 50-77 years versus <50 years when examining the effects of age. We ran MiloR with
the graph-based sampling refinement scheme for identifying neighbourhoods, and with the
graph-overlap option for the spatial FDR weighting scheme. We identified the most enriched
and least enriched neighbourhoods for each combination of cell population and dimension of
human diversity of interest, paying particular attention to neighbourhoods with spatial
FDR<0.1. We also examined these enrichment patterns in the context of our sub-clustering
annotations for generating beeswarm plots. We performed differential gene expression
analyses for identifying neighbourhood-associated marker genes using the single-cell
Wilcoxon rank-sum test implemented in Seurat FindMarkers, comparing the cells within the

neighbourhood of interest (annotated via a majority vote of the cell subtype annotation of cells
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within the neighbourhood), against all other cells that had been annotated as being of that
same cell subtype. We visualised cell neighbourhood enrichment for each population group
by plotting the log, transformation of the mean fold-change for each cell across all the

overlapping neighbourhoods to which that cell belonged.

To examine the impact of the Singapore self-reported ethnicity covariates, we performed the

above MiloR workflow on the Singapore donors (with at least 800 cells per donor) only.
Differential gene expression analyses

We performed edgeR (R package version 3.38.4)%* analyses of pseudobulk gene expression
data; the edgeR log-likelihood pseudobulk testing workflow was assessed in a benchmarking
study to show good performance in terms of reducing the number of false discoveries'®. We
considered only Singapore donors with at least 800 PBMCs passing quality control for our
edgeR analyses, to minimise confounding with technical variation across study sites. For each
cell subtype, we considered only donors with at least 10 cells for the cell subtype of interest.
We then obtained pseudobulk profiles by aggregating gene-cell count matrices into gene-
donor count matrices for each cell type or subtype of interest. We pre-filtered our gene list to
remove lowly-expressed genes: we retained genes that were expressed in at least 10% of
donors per cell subtype after pseudobulk aggregation, and further filtered out any genes that
had fewer UMIs than the total number of donors considered for differential gene expression

analysis for a cell subtype.

We incorporated age, sex, and scRNA-seq experimental batch in the edgeR generalised linear
model, and tested for one Singapore self-reported ethnicity population group (SG_Chinese,
SG_Malay, or SG_Indian) compared to the other two Singapore groups to analyse differential
gene expression across population groups. We computed false-discovery rates (FDR) by

performing Benjamini-Hochberg correction’” of edgeR p-values per cell type or subtype.
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We used clusterProfiler version 4.4.4'%" for performing gene-set enrichment analyses (GSEA)
and visualisation of GSEA results. We used the fgseaMultilevel option with the Gene Ontology
(GO) Biological Processes terms and Benjamini-Hochberg-corrected false-discovery rates®’
for our GSEA analyses. For each self-reported ethnicity-cell subtype combination, we supplied
a pre-ranked gene list, comprising all genes tested per combination for differential gene
expression, ranked by the -logio(edgeR p-value) multiplied by the sign of the edgeR-log. fold-

change value.
Differential transcription factor activity analyses

We implemented a SCENIC-based®? workflow to investigate differential transcription factor
activity based on our scRNA-seq gene expression data, using the AIDA Data Freeze v1
dataset for these analyses. We used the pySCENIC version of SCENIC'%?, starting with a
curated list of 1,390 transcription factors that was a subset of a list of human transcription
factors'%3, and utilising the Motif2TF v10 annotations and the hg38 refseq_r80 SCENIC+ motif
databases with a search space of 10 kb flanking the transcription start sites of genes. We
performed GRNBoost2 and cisTarget using default parameters to prioritise transcription
factors and their target genes of interest (collectively known as a “regulon” per transcription
factor). We examined the regulon activity per cell type of interest using AUCell, and compared
the distributions of the median of the raw AUCell scores per cell subtype per donor across
different population groups in a cell type-specific manner via two-tailed Wilcoxon rank-sum
tests performed in Python. We computed Benjamini-Hochberg-corrected false-discovery

rates® for all tests performed for a regulon of interest.

For our SCENIC workflow, we assessed several parameters to check the robustness of our
inferences of regulons that we identified as being of interest. We ran a minimum of 10 trials of
GRNBoost2 in determining the regulon sets of target genes. We varied the proportion of the

genes in the gene-ranking of each cell considered by the AUCell computation procedure,
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examining the output from considering the top 5%, 10%, and 15% of genes in the gene-
ranking. We identified GRNBoost2 regulons both using a combined gene-cell matrix spanning
all cells from all Singapore libraries, as well as subsets of cells from each Singapore population
group. We tested regulons from multiple trials of GRNBoost2, as well as the union of regulon
target genes across trials. We also tested both a pseudobulk input (summing, within the gene-
cell matrix, across all cells of a particular cell subtype per donor to obtain a gene-donor matrix
for each cell subtype) as well as the original scRNA-seq input for our AUCell computations. In
this manuscript, we report findings that have been observed in multiple SCENIC GRNBoost2

trial-AUCell analysis combinations.
Single-cell pseudobulk expression quantitative trait loci (eQTL) pipeline

We developed a single-cell pseudobulk expression quantitative trait loci (eQTL) pipeline, using
the AIDA Data Freeze v1 dataset for these analyses. For the gene expression values, we
computed pseudobulk values per cell subtype of interest. We first filtered out genes that were
expressed by <1% of cells in the cell subtype of interest, as well as donors and cells for which
there were fewer than 10 cells per donor of the cell subtype of interest. We normalised each
remaining gene by the total number of UMIs of retained genes per cell, and computed a mean
gene expression value per donor from the cells of the subtype of interest. We performed log1p
transformation with a scale factor of 10,000 to approximate a normal distribution of mean gene
expression values for each donor. For the genetic variants of interest, after the genotype data
quality control and imputation procedures described above, we retained autosomal, biallelic
variants that had minor allele frequencies 25% in the AIDA cohort. We removed related donors
(with this being computed per cell subtype after the above-mentioned donor cell number filters

were applied).

We used Matrix eQTL (version 2.3 R package)'* for association testing and FDR computation

to identify cell type-specific cis-eQTLs within 1 Mb of the gene of interest, retaining the results
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from all tests performed, regardless of p-value, for downstream analyses. We used the Matrix
eQTL additive linear model, which returned t-statistics and two-tailed t-test p-values. Our eQTL
model featured the following as covariates: age, sex, self-reported ethnicity and / or country,
top 10 genotype PCs, and top 10 gene expression PCs (computed per cell subtype). We also
performed eigenMT® to prioritise one lead SNP per gene, using the authors’ default

parameters.

We performed eQTL replication by comparing our AIDA eQTLs against eQTLs identified in the
DICE®® and ImmuNexUT° projects. The DICE eQTLs had been uniformly processed as part
of the EMBL-EBI eQTL Catalogue'®. We compared our AIDA naive B eQTLs against eQTL
Catalogue dataset QTD000474, AIDA CD4* T naive eQTLs against eQTL Catalogue dataset
QTDO000479, AIDA CD8* T naive eQTLs against eQTL Catalogue dataset QTD000489, AIDA
CD14" Monocyte eQTLs against eQTL Catalogue dataset QTD000504, and AIDA CD16" NK
eQTLs against eQTL Catalogue dataset QTDO000509. For eQTL replication using the
ImmuNexUT datasets, we analysed NBDC Human Database dataset E-GEAD-420. For AIDA
eQTLs that had a FDR<0.05 within the cell subtype of interest, we identified data from DICE /
ImmuNexUT with a SNP ID-gene combination match, and compared the beta values from the
AIDA dataset against the corresponding DICE / ImmuNexUT dataset. For the GTEx v8 whole
blood eQTL'" comparison, we analysed eQTL Catalogue dataset QTD000356. Since we were
comparing eQTLs from all 20 AIDA cell subtype datasets against the GTEx v8 whole blood
eQTL dataset, we applied a more stringent criteria for selection of AIDA eQTLs for comparison,
restricting our analysis to the set of AIDA eQTLs with FDR<0.05 (Benjamini-Hochberg-

adjusted®” p-values) across all tests in all cell subtypes.

We obtained the 1000 Genomes Project super-population allele frequencies from ENSEMBL

release 105 (https://ftp.ensembl.org/pub/release-105/variation/vcf/homo sapiens/, file date

20210906), converted these alternate allele frequencies to minor allele frequencies by taking

the lower of the two allele frequencies per reference-alternate pair, and computed allele
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frequencies for any AIDA eQTL for which we were able to identify a SNP ID match in the 1000

Genomes VCF file.

Colocalisation of eQTL with variants identified through genome-wide association studies

(GWAS)

We compiled summary statistics from genome-wide association studies (GWAS) of immune-
related diseases (asthma’’, rheumatoid arthritis™, systemic lupus erythematosus (SLE)'®,
Graves’ disease®, atopic dermatitis and type 1 diabetes'?) versus controls, and hospitalised
COVID-19 cases versus the general population'®, all of which included an Asian cohort within
a trans-ancestry study, or were performed entirely by studying Asian donors (Table S7). We
used coloc version 5.2.3, utilising the approximate Bayes factor'® enumeration
implementation of the coloc R package that assumes at most a single causal variant per
trait'®. We performed colocalisation analyses of GWAS and eQTL (each eGene) traits. We
used coloc to compute the posterior probabilities of each possible scenario of significant
genetic association with traits in the eQTL analysis and in the GWAS analysis. We paid
particular attention to the posterior probability (PP) for the case where both the gene
expression (eQTL) and disease risk (GWAS) traits are associated with and share a single
causal variant, which we abbreviated as “colocalisation PP”. We used LocusCompareR"" to
visualise colocalisation events, setting the population parameter to “EAS” and selecting the

hg38 option, given the format and scope of our GWAS summary statistics.
Context-dependent eQTL analyses

We used the AIDA Data Freeze v1 dataset for these analyses. We examined significant eQTL-
eGene pairs (FDR<0.05 per cell subtype), identified through our Single-cell pseudobulk
expression quantitative trait loci (eQTL) pipeline, for context-dependent eQTL effects. We
intersected eQTL-eGene pairs from naive B, IGHM" memory B, and /GHM° memory B,
analysing a total of 54,798 SNP-gene pairs. We performed the following smoothing and gene-
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gene correlation procedures for memory B cells from each country (Japan, Singapore, and
South Korea) in AIDA Data Freeze v1 separately to minimise the influence of batch effects on
the assembly of gene modules. We conducted k-nearest neighbour-based smoothing of the
gene-cell matrix, calculating smoothed expression values for each cell by averaging the gene
expression of each cell and its nearest 30 neighbours. We performed gene-gene correlation
analyses, and then averaged the gene-gene correlation matrices across the three countries
to obtain a single gene-gene correlation matrix. We thereafter used WGCNA"? to identify gene

modules, which we used to model cellular contexts and cell states.

To identify context-dependent eQTL effects, we obtained module scores per memory B cell by
averaging the expression values of genes belonging to the module of interest. We tested for
the interaction between donor genotype and module score on gene expression per cell using

univariate Poisson models’?, implemented via Ime4::glmer'® in R:

10
Full model: E ~ B, X + By Xage + BooxXsex + Bangosery Xancestry + ) BypcXorc
1

10

+ Z BepcXepc + Bryp Xnums + (941d) + (0,,11ib)
1
+ Bmodule_scoreXmodule_score + Bg*module_scorexg * Xmodule_score

E represents each gene of interest's UMI counts in the cell of interest, g represents donor
genotype, gPC represents genotype PC, ePC represents gene expression PC based on the
PCA of the gene-cell matrix, nUMI represents the cell's total number of UMI counts, d
represents donor, and lib represents scRNA-seq library. All covariates are modelled as fixed

effects, except for donor and library, which are modelled as random effects.

The null model was computed using the same covariates as the full model, leaving out only

the B gemo dute_scoreXg * Xmodule_score t€rm. P-values were calculated for each full model-null
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model pair using the anova function in R. We computed Benjamini-Hochberg-corrected false-

discovery rates®’ across all p-values.

Quantification and statistical analysis

All statistical tests were performed using R, R packages, or Python, with the specific testing

details listed in the individual method sections. All statistical tests performed were two-tailed.
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Supplementary Figures and Figure Legends
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Supplementary Figure S1: An scRNA-seq reference atlas of circulating immune cells from healthy Asian

donors. (A) Distributions of (top) logio(numbers of detected genes (NODG) per cell) and (bottom)

log1o(percentage mitochondrial UMIs out of all UMIs per cell (pMito)) in AIDA Data Freeze v2 libraries.
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(B) Distributions of high-confidence BCR (top) and TCR (bottom) barcodes per donor in each country.
(C) The same UMAP as that in Fiqure 2A, split by country where donors were profiled. Distributions of
log1o(proportion of monocytes out of all lymphocytes plus monocytes per donor) in (D) AIDA scRNA-
seq and (E) complete blood count (CBC) data, categorised by donor self-reported ethnicity. P-values
indicate results from two-tailed Wilcoxon rank-sum tests. Boxplots depict the median via the thickest
centre horizontal line, the first and third quartiles as the bottom and top of the box respectively, and 1.5x

the interquartile range through the whiskers; outliers are depicted as single points.
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Supplementary Figure S2: AIDA cell type annotation metadata. PBMC cell type clustering hierarchy in

AIDA, with major marker genes indicated, for (A) all PBMCs and (B) ILC, NK, and T cell subtypes.
Boxes coloured in orange indicate cell types, boxes coloured in light brown indicate cell subtypes, and
boxes coloured in dark brown indicate more granular cluster identities. (C) Gene expression UMAP of
the AIDA dataset, labelled by AIDA Level 3 cell type annotations. (D) UMAP of CD8* T, yoT, ILC, and
NK cells, labelled by AIDA Level 4 cell type annotations. Feature plots of (E) CD27 and IGHM, overlaid
on UMAPs of B cells, and (F) features representing immune cell gradients (GZMK, GZMB, FCER1G,
and KLRC?2), overlaid on UMAPs of CD8* T, y&T, ILC, and NK cells; intensities of colours correspond

to the log-normalised gene counts per cell.
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Supplementary Figure S3: Impact of human diversity on cell subtype proportions. Scatterplots of

proportion of monocytes (out of all monocytes and lymphocytes) per donor in the scRNA-seq datasets
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(y-axis) versus that in matched complete blood counts (x-axis) for AIDA donors in (A) Singapore, (B)
South Korea, and (C) Thailand. (D) Scatterplot of CD4* T cytotoxic (CD4+_T_cyt) cell proportions
against donor age for all AIDA donors. (E) Boxplots depicting MAIT cell proportions across Singapore
self-reported ethnicities in (left) our AIDA scRNA-seq dataset and (right) the SLAS-2 flow cytometry
dataset; two-tailed t-test p-values adjacent to lines indicate comparisons of two population groups. (F)
Boxplots depicting the proportions of regulatory T (Treg) cells out of all CD4* T cells per donor across
all population groups. (G) Boxplots depicting the proportions of Treg cells out of all PBMCs per donor
across all population groups, after data integration using Harmony“# and re-clustering and re-annotation
of cells. Scatterplots are overlaid with blue linear regression lines; grey bands indicate the 95%
confidence intervals. Boxplots depict the median via the thickest centre horizontal line, the first and third
quartiles as the bottom and top of the box respectively, and 1.5x the interquartile range through the
whiskers; outliers are depicted as single points. Two-tailed t-test p-values in (F,G) are for the self-
reported ethnicity covariate in a model of

log10(Proportion)~Age+Sex+Individual_Self_reported_ethnicity.
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Supplementary Figure S4: Impact of self-reported ethnicity and sex on cell subtype proportions. (A)

Boxplots depicting (left) CD16* NK and (right) CD4* T naive proportions out of all PBMCs per donor
across self-reported ethnicities. Boxplots depicting (B) naive B and (C) CD16* NK proportions out of all
PBMCs per donor across all population groups and female / male sex, after data integration using
Harmony#* and re-clustering and re-annotation of cells. Boxplots depict the median via the thickest
centre horizontal line, the first and third quartiles as the bottom and top of the box respectively, and 1.5x
the interquartile range through the whiskers; outliers are depicted as single points. Two-tailed t-test p-
values in (A) pertain to the self-reported ethnicity covariate in a model of
log1o(Proportion)~Age+Sex+Individual_Self_reported_ethnicity. Two-tailed t-test p-values adjacent to

lines pertain to the interaction terms between sex and individual population groups in (B,C).
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Supplementary Figure S5: Single-cell signatures of sex. (A) (Left) Gene expression UMAP and (right)

beeswarm plot depicting enrichment of B cell neighbourhoods in males versus females. (B) Beeswarm
plot depicting enrichment of CD8* T, yoT, ILC, and NK cell neighbourhoods in males versus females.
(C) (Left) Cells highlighted within a UMAP, corresponding to the most enriched B cell neighbourhood in
males versus females. (Right) Dot plot of top 5 upregulated and top 5 downregulated genes (as
compared to all other naive B cells) of the most enriched B cell neighbourhood in males versus females.
(D) Beeswarm plot depicting enrichment of CD4* T and dnT cell neighbourhoods in females versus
males. For the UMAP depicting cell neighbourhood enrichment, each cell is coloured by their logz(mean
fold-change) value for all overlapping cell neighbourhoods that the cell was grouped in. Orange hues
indicate cell neighbourhood enrichment for the population group, while blue hues indicate cell
neighbourhood depletion; darker hues correspond to higher magnitudes of enrichment or depletion,
capped at logz(mean fold-change)=|2|. For beeswarm plots, each point corresponds to one cell
neighbourhood; cell neighbourhoods are classified by the majority cell type annotation within the
neighbourhood. Points coloured in red (depletion of neighbourhood for the dimension of human diversity

of interest) and in blue (enrichment of neighbourhood) correspond to spatial FDR values<0.1.
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Supplementary Figure S6: Single-cell signatures of age and self-reported ethnicity. (A) (Left) Beeswarm

plot and (right) gene expression UMAP depicting enrichment of pDC and myeloid cell neighbourhoods

in donors =50-years-old versus younger donors. Beeswarm plots depicting enrichment of (B) CD8* T,
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yoT, ILC, and NK, and (C) (left) CD4* T and dnT cell neighbourhoods in donors =50-years-old versus
younger donors. (C) (Right) Cells highlighted within a UMAP, corresponding to the most depleted CD4*
T and dnT cell neighbourhood in donors =50-years-old versus younger donors. (D) (Left) Beeswarm
plot and (right) UMAP depicting enrichment of CD8* T, y&T, ILC, and NK cell neighbourhoods in
SG_Malay donors, based on analysis of all AIDA donors; yOT cells are indicated by dashed lines. For
UMAPs depicting cell neighbourhood enrichment, each cell is coloured by their logz(mean fold-change)
value for all overlapping cell neighbourhoods that the cell was grouped in. Orange hues indicate cell
neighbourhood enrichment for the population group, while blue hues indicate cell neighbourhood
depletion; darker hues correspond to higher magnitudes of enrichment or depletion, capped at
log2(mean fold-change)=|2|. For beeswarm plots, each point corresponds to one cell neighbourhood;
cell neighbourhoods are classified by the majority cell type annotation within the neighbourhood. Points
coloured in red (depletion of neighbourhood for the dimension of human diversity of interest) and in blue

(enrichment of neighbourhood) correspond to spatial FDR values<0.1.
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Supplementary Figure S7: Cell type-specific molecular variation across population groups. (A) Jitter

plots of logio transformation of per-donor pseudobulk normalised FCER1A expression values (with
added pseudocount of 1e-07) in CD14* monocytes across the Singapore self-reported ethnicities, for
donors with imputed genotype data available. Each dot represents a donor; dots are coloured by the
donor genotype for the chr1_159288755_G_A locus. (B) (Top) NFYC transcription factor binding site
motif from CIS-BP3% (M09442_2.00), and (bottom left to bottom right) boxplots depicting the median
NFYC AUCell score across all regulatory T (Treg) cells per donor for each of the indicated Singapore
population groups. Boxplots depict the median via the thickest centre vertical line, the first and third
quartiles as the left side and right side of the box respectively, and 1.5x the interquartile range through
the whiskers; outliers are depicted as single points. These boxplots depict the output from one SCENIC

GRNBoost2 trial-AUCell analysis combination.
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Supplementary Figure S8: Replication of AIDA pseudobulk eQTL analyses and identification of

population-specific eQTLs. (A) Bar charts of the number of donors analysed for AIDA eQTLs per cell

subtype. Scatterplots of (B) DICE®® (y-axis) and (C) ImmuNexUT7° (y-axis) versus AIDA (x-axis) eQTL
effect size (beta) values of SNP-gene pairs with AIDA eQTL FDR<0.05 per cell subtype, for (left to right)
naive B, CD14* monocyte, CD8* T naive, and CD16* NK. Percentages of all SNP-gene pairs that lie
within a quadrant are indicated. (D) Histogram of minor allele frequencies (maf) in the 1000 Genomes
South Asian (SAS) super-population, for AIDA eQTLs that were low frequency (maf 1%-5%) or rare
(maf<1%) in at least one of the 1000 Genomes African, Admixed American, or European (EUR) super-

populations. (E) Scatterplot depicting allele frequency spectra (1000 Genomes EUR super-population
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maf on y-axis, and AIDA Phase 1 cohort maf on x-axis) for AIDA context-dependent eQTLs (modulated
by blue module score). Percentages of eQTLs with 1000 Genomes EUR maf=0.05 and maf<0.05 are

indicated. Bold lines indicate maf=0.05.

Supplementary Tables

Supplementary Table S1: AIDA donor metadata: donor DCP_ID, self-reported ethnicity, age,

country (study site), female / male sex, BMI, and scRNA-seq experimental batch.

Supplementary Table S2: Marker genes used for cell type annotation in AIDA.

Supplementary Table S3: Comparison of AIDA scRNA-seq and SLAS-2 flow cytometry cell

types.

Supplementary Table S4: A diversity atlas reference: the relationships of self-reported ethnicity

(controlling for age and sex) with circulating immune cell subtype proportions.

Supplementary Table S5: List of Singapore self-reported ethnicity-associated differentially

expressed genes identified through edgeR analyses of pseudobulk values per cell type per

donor (FDR<0.05 per cell subtype).

Supplementary Table S6: List of 143,918 SNP-gene pairs that have FDR<0.05 from

Benjamini-Hochberg correction of eigenMT-corrected p-values.

Supplementary Table S7: List of curated disease GWAS summary statistics incorporated in

colocalisation analyses.

Supplementary Table S8: Colocalisation analyses of AIDA eQTL and GWAS: posterior

probability >80% of both traits being associated with and sharing a single causal variant.

Supplementary Table S9: List of SG10K_Health consortia authors.
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Supplementary Note

We released the first AIDA data freeze (“AIDA Data Freeze v1 dataset”) to the community pre-
publication, via the CZ CELLXGENE data portal as well as the Human Cell Atlas Data Portal.
The AIDA Data Freeze v1 dataset was also part of the first CZ CELLXGENE Census
assembled in May 2023. We profiled 75 Singaporean Chinese, 60 Singaporean Indian, 54
Singaporean Malay, 149 Japan Japanese, and 165 South Korea Korean donors for a total of

503 Asian donors for the AIDA Data Freeze v1 dataset.

Going from AIDA Data Freeze v1 to AIDA Data Freeze v2, we excluded 5 Asian donors from
vl (SG_HEL_H141, SG_HEL_H185, SG_HEL_H203, SG_HEL_H239, and SG_HEL_H347)
with ambiguous medication data. We added 121 new Asian donors (32 Singapore donors, 59
Thai donors, and 30 India Indian donors). These new Asian donors included donors
SG_HEL_H262 and SG _HEL H269, as well as donors profiled in experimental batches
SG_HEL_B023, SG_HEL B024, TH_MAH_B001, TH_MAH_B002, TH_MAH_BO003,
TH_MAH_BO004, IN_NIB_B001, and IN_NIB_B002. We also removed two libraries with high

doublet rates (SG_HEL_B011_L002 and SG_HEL_B021_L001).

The AIDA Data Freeze v1 gene-cell matrix (1,058,909 cells from 503 Japan, Singaporean
Chinese, Singaporean Malay, Singaporean Indian, and South Korea Asian donors and 5
distinct Lonza commercial controls), with BCR-seq and TCR-seq metadata, and donor age,
sex, and self-reported ethnicity metadata, is available via the Chan Zuckerberg (CZ)

CELLXxGENE data portal at https://cellxgene.cziscience.com/collections/ced320a1-29f3-47¢c1-

a735-513c7084d508.
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