

1 **Drought tolerance as an evolutionary precursor to frost and winter tolerance in**
2 **grasses**

3

4 Laura Schat^{1,2}, Marian Schubert^{1,2,§}, Siri Fjellheim³ & Aelys M. Humphreys^{1,2}

5

6 ¹Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm,
7 Sweden

8 ²Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

9 ³Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway

10 [§]Present address: Department of Plant Sciences, Norwegian University of Life Sciences, Ås,
11 Norway

12 Corresponding authors: Aelys Humphreys, aelys.humphreys@su.se; Laura Schat,
13 laura.schat@su.se

14

15 **Author contributions**

16 L.S., M.S., S.F. and A.M.H. designed the study. L.S. compiled the data and performed the
17 analyses, and all authors contributed to the interpretation of the results. L.S. and A.M.H.
18 wrote the manuscript with input from M.S. and S.F.

19

20 **Funding**

21 This research has been funded by the Carl Trygger Foundation (CTS 18:156) and the Bolin
22 Centre for Climate Research, Stockholm University.

23

24 **Conflict of interest statement**

25 The authors declare no conflict of interest.

26

27 **Acknowledgements**

28 We are grateful to B. Gehrke for fruitful discussions, and we thank L. Gren for assistance
29 with putting together Figure 2.

30

31 **Abstract**

32 Accumulating evidence is suggesting more frequent tropical-to-temperate transitions than
33 previously thought. This raises the possibility that biome transitions could be facilitated by
34 precursor traits. A wealth of ecological, genetic and physiological evidence suggests overlap
35 between drought and frost stress responses, but the origin of this overlap, i.e. the evolution
36 of these responses relative to each other, is poorly known. Here, we test whether
37 adaptation to frost and/or severe winters in grasses (Poaceae) was facilitated by ancestral
38 adaptation to drought. We used occurrence patterns across Köppen-Geiger climate zones to
39 classify species as drought, frost and/or winter tolerant, followed by comparative analyses.

40 Ancestral state reconstructions revealed different evolutionary trajectories in different
41 clades, suggesting both drought-first and frost-first scenarios. A model of correlated
42 evolution was not supported when transition rate heterogeneity was taken into account or
43 compared to traits simulated under independent evolution. Our findings provide some
44 support for ancestral drought tolerance facilitating transitions to cold, temperate biomes, at
45 least in some clades. Different scenarios in different clades is consistent with present-day

46 grasses being either cold or drought specialists, possibly as a consequence of trade-offs

47 between different stress tolerance responses.

48

49 *Keywords: biome transition, correlated evolution, GBIF data, Köppen-Geiger, rate-*

50 *heterogeneity, severe winter*

51

52 **Introduction**

53

54 A general pattern of plant diversity is that it is highest in the warm, wet tropics and declines
55 towards the poles, where conditions become colder and more seasonally variable. Most
56 major angiosperm clades originated in the tropics, as tropical climates predate temperate
57 ones (e.g. Judd et al. 1994; Ricklefs and Renner 1994; Zanne et al. 2014). When temperate
58 biomes expanded after the Eocene, tropical lineages in emerging temperate biomes had to
59 adapt to drier, colder and more seasonal climates to persist (Eldrett et al., 2009; Kerkhoff et
60 al., 2014; Zachos et al., 2001). Yet, many clades do not occur at higher latitudes, despite
61 plenty of evolutionary opportunity and time to become established there (Donoghue, 2008).

62 Causes of this latitudinal diversity gradient have been the subject of a debate spanning
63 decades (Fine & Ree, 2006; Hillebrand, 2004; Jansson et al., 2013; Kerkhoff et al., 2014;
64 Mittelbach et al., 2007; Rohde, 1992; Wiens & Donoghue, 2004; Wiens & Graham, 2005).

65 One prevalent explanation assumes that tropical-to-temperate transitions have been
66 infrequent because adapting to novel, and especially freezing, climates is difficult (e.g.
67 Wiens and Donoghue 2004; Wiens and Graham 2005; Donoghue 2008; Wiens et al. 2010;
68 Körner 2016). As a result, temperate clades are expected to be clustered phylogenetically
69 and nested within tropical clades (Kerkhoff et al., 2014).

70 Previous reviews have suggested that approximately 40% - 50% of all angiosperm
71 families have temperate lineages (Preston & Sandve, 2013; Stevens, 2001), and indeed, on a
72 global scale, biome shifts are thought to have been rare (Crisp et al., 2009). However, recent
73 research is indicating that tropical-to-temperate transitions may have been more frequent
74 than currently thought (Donoghue & Edwards, 2014; Jansson et al., 2013; Nürk et al., 2018;
75 Zizka et al., 2020), apparently having occurred multiple times independently, even within

76 single families (e.g. Poaceae; Edwards and Smith 2010, Schubert et al. 2020;
77 Amaranthaceae; Cousins-Westerberg et al. 2023) and genera (e.g. *Viburnum*; Schmerler et
78 al. 2012; Spriggs et al. 2015). This raises the possibility that such transitions are not
79 necessarily as difficult as widely assumed, which in turn could imply that biome transitions
80 are facilitated by evolutionary precursor trait(s) (also referred to as “pre-adaptations” or
81 “enabler traits”; Edwards and Donoghue 2013; Donoghue and Edwards 2014). For tropical-
82 to-temperate transitions, such precursors could be related to ancient stress tolerance
83 mechanisms that have been repurposed for the specific challenges of a cold, temperate
84 climate (Preston & Sandve, 2013). If so, we would expect adaptations to frost and long
85 winters to have arisen more frequently in clades with such evolutionary precursor(s) than in
86 clades without them, leading to a pattern of multiple apparent “independent” transitions to
87 a temperate climate in those clades.

88 Temperate plants are confronted by a range of abiotic stresses. For example, frost
89 impacts plants on many levels, ranging from dehydration stress caused by the lack of fluid
90 water, to damage to the structural integrity of cells and biomembranes caused by ice crystal
91 formation (Preston & Sandve, 2013; Sakai & Larcher, 1987). Additionally, plant growth slows
92 down at temperatures below 5 °C and comes to a near standstill at freezing (Körner, 2016;
93 Nievola et al., 2017). Overcoming these abiotic stresses and evolving frost tolerance
94 requires major physiological innovations (Donoghue, 2008; Lancaster & Humphreys, 2020;
95 Sakai & Larcher, 1987; Wiens & Donoghue, 2004).

96 Plants in freezing areas can be exposed to frost episodically (e.g. diurnally), or
97 periodically (i.e. during prolonged periods of seasonal or even permanent frost).
98 Temperatures can drop below freezing occasionally in the tropics (e.g. on tropical
99 mountains) and across the temperate zone, but plants in areas with long, cold winters are in

100 addition confronted by seasonal variation in precipitation, temperature and day length and
101 must endure long periods of low (but not necessarily freezing) temperatures. Frost
102 tolerance alone is thus insufficient to survive cold, temperate winters, which requires a suite
103 of physiological and phenological adjustments in response to seasonal change (cold
104 acclimation and vernalisation) and a short (and possibly cold) growing season. To capture
105 some of the stress tolerance mechanisms required by temperate plants, we separately
106 consider exposure to both frost and severe winters in this study.

107 There is strong ecological, genetic and physiological evidence that adaptations to low
108 temperature and drought stress are not independent. On a cellular level, the dehydration
109 caused by extracellular ice is virtually identical to dehydration stress caused by drought
110 (Körner, 2016; Sakai & Larcher, 1987), and several genes involved in responses to cold and
111 frost stress are also expressed during drought stress (Birkeland et al., 2021; Das et al., 2023;
112 Schubert, Grønvold, et al., 2019; Zhong et al., 2018). Both periodic drought and winter
113 present long periods without possibilities for photosynthesis, and plants need storage
114 carbohydrates that can be hydrolysed to provide fuel to survive both of these conditions.
115 Further, plants from dry mountains are more frost tolerant than those from wet ones
116 (Sierra-Almeida et al., 2016), and water-deficiency pre-treatment can increase frost
117 tolerance whereas pre-treatment with heat does not affect subsequent frost tolerance
118 (Sumner et al., 2022). However, while there is plenty of evidence for a correlation between
119 responses to frost and drought stress, much less is known about how the overlap among
120 different abiotic stress responses evolved. One hypothesis is that ancient stress tolerance
121 mechanisms might have been beneficial to surviving in both cold and dry areas (Folk et al.,
122 2020; Preston & Sandve, 2013). Another hypothesis is that lineages that transitioned to
123 freezing areas might have been predisposed to do so thanks to precursor traits that are

124 beneficial in a freezing environment but evolved in response to aridity in the tropics (e.g.

125 small conduits and a herbaceous habit; Zanne et al. 2014).

126 In general, some strategy for avoiding dehydration is thought to be more ancient

127 than any adaptation to low temperature stress. Early land plants (Embryophyta)

128 transitioning to terrestrial environments ca. 500 million years (Ma) ago were most likely

129 desiccation tolerant; thus desiccation tolerance is thought to be an ancestral trait in land

130 plants and a key component of adaptation to life on land (Bowles et al., 2021; Oliver, 1917;

131 Preston & Sandve, 2013; Sakai & Larcher, 1987). However, desiccation tolerance is less

132 common in vascular plants (Tracheophyta); their origin saw the evolution of vascular tissue

133 and other regulatory and morphological complexities that enabled them to tolerate dry

134 conditions (Bowles et al., 2021; Harrison, 2017). Thus, desiccation tolerance was probably

135 lost in the ancestor of vascular plants and replaced by early forms of drought tolerance

136 (Bowles et al., 2021). In contrast, while cool-climate pockets may have been present in mid-

137 latitude mountain areas in the Northern Hemisphere in the Eocene (56–34 Ma; Hagen et al.

138 2019), the emergence of cold and freezing environments of today is not thought to have

139 begun until the late Eocene or early Oligocene (i.e. mainly in the past ca. 34 Ma; Eldrett et

140 al., 2009; Liu et al., 2009; Pound & Salzmann, 2017; Zachos et al., 2001). Thus, strategies for

141 dealing with low temperature stress across living land plants are thought to have evolved by

142 independent repurposing of ancestral stress pathways (e.g. related to dehydration; Preston

143 & Sandve, 2013; Schubert et al., 2020; Schubert, Grønvold, et al., 2019), rather than

144 representing ancestral traits.

145 Here we explore the idea of existing stress responses facilitating adaptation to

146 freezing environments in grasses (Poaceae), by testing whether there is evidence that

147 drought tolerance could have acted as the evolutionary precursor that facilitated

148 persistence in the emerging cold environments of the Oligocene. Poaceae is one of the five
149 largest angiosperm families, with over 11,000 species and 800 genera distributed largely in
150 two main clades: the BOP clade (Bambusoideae, Oryzoideae, Pooideae) and PACMAD clade
151 (Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, Danthonioideae;
152 Kellogg 2001; Clayton et al. 2006; Hodkinson 2018; Figure 1). They are well suited for testing
153 our hypothesis of precursor traits due to their cosmopolitan distribution, occurring from
154 moist tropical forests and tropical savannahs to arctic tundras and alpine meadows,
155 including some of the harshest environments on Earth (e.g. hot and cold deserts, saline
156 environments and Antarctica; Bannister 2007; Gibson 2009; Strömberg 2011; Bennett et al.
157 2013; Visser et al. 2013; Kellogg 2015; Linder et al. 2018).

158 Grasses are thought to have originated in the Cretaceous (ca. 93–125 Ma ago; Huang
159 et al. 2016; Gallaher et al. 2019; Schubert et al. 2020), most likely in deep shade, as
160 understorey plants of moist, warm forests (Bouchenak-Khelladi et al., 2010; Gallaher et al.,
161 2019; Kellogg, 2001; Strömberg, 2011). Such habitats are today characteristic of a few small
162 lineages that are successively sister to the rest of the family (Anomochloideae, Pharoideae
163 and Puelloideae), the bamboos (Bambusoideae) and *Brachyelytrum*, which is sister to the
164 rest of the Pooideae. However, the vast majority of grasses today occupy open
165 environments (Elliott et al., 2023).

166 Transitions from closed to open environments are thought to have happened
167 multiple times, certainly independently in the BOP and PACMAD clades, but exactly how
168 many times and in which lineages is still unclear. Estimates range from one to as many as
169 four independent transitions in the BOP clade, mainly in Pooideae, and one or possibly two
170 in the PACMAD clade (Bouchenak-Khelladi et al., 2010; Elliott et al., 2023; Kellogg, 2001;
171 Zhang et al., 2022). Both fossil and phylogenetic evidence suggests grasses began

172 transitioning to open habitats around 67–58 Ma (Gallaher et al., 2019; Schubert, Marcussen,
173 et al., 2019; Strömberg, 2011), at different times on different continents (Edwards et al.,
174 2010; Strömberg, 2011). These transitions most likely occurred in response to increased
175 aridity combined with altered disturbance regimes (seasonality, fire and herbivory), with
176 less support for a role for global cooling (Edwards et al., 2010; Kellogg, 2015; Strömberg,
177 2011).

178 Similarly, grasses have transitioned from tropical to temperate climates multiple
179 times independently, most notably leading to the radiation of two distantly related lineages
180 into cool temperate zones, the Pooideae and Danthonioideae. However, frost tolerance has
181 never been reconstructed as deeply as the nodes at which transitions to open habitats are
182 implied (Edwards & Smith, 2010; Elliott et al., 2023; Humphreys & Linder, 2013; Linder et al.,
183 2018; Sandve & Fjellheim, 2010; Schubert, Grønvold, et al., 2019). This suggests that grasses
184 adapted to aridity before cold and frost and sets up predictions for which clades may have
185 been predisposed to adapting to low temperatures under the hypothesis tested here. The
186 level of cold and drought experienced by present-day grasses varies tremendously, e.g., with
187 certain bamboos and PACMAD grasses also occurring in cold climates and cold temperate
188 grasses occurring in both mesic (e.g. *Glyceria*) and dry (e.g. *Triticum*) habitats (Edwards &
189 Smith, 2010; Humphreys & Linder, 2013; Schubert et al., 2020; Schubert, Marcussen, et al.,
190 2019; Visser et al., 2013; Watcharamongkol et al., 2018; Zhang et al., 2022). Thus, the
191 hypothesis that drought tolerance was a precursor trait to frost tolerance requires detailed
192 analysis.

193 We use occurrence in areas that experience frost, severe winter and drought,
194 according to the Köppen Geiger climate classification (Beck et al., 2018; Köppen, 2011), as a
195 proxy for tolerance of each of these stresses. We refer to these stress tolerances in their

196 broadest sense, e.g. ‘frost tolerance’ includes frost escape (e.g. spring annuals), frost
197 avoidance or resistance (e.g. supercooling) and true frost tolerance (e.g. control of ice
198 crystal formation). We then use phylogenetic comparative methods to test for evidence
199 consistent with drought tolerance as a precursor for adapting to a temperate climate,
200 specifically, to frost and severe winters. We first reconstruct ancestral states for drought,
201 frost and winter tolerance separately to visually assess whether 1) frost and/or winter
202 tolerant clades are nested within drought tolerant clades, or appear to arise more
203 frequently in clades that were ancestrally drought tolerant. Next, because evolutionary
204 transitions happen along branches and not at nodes, we model evolutionary transitions
205 between sensitive and tolerant states simultaneously for two traits to test whether 2)
206 drought tolerance evolves first and transitions to frost and winter tolerance are more
207 frequent in drought tolerant than drought sensitive lineages. Finally, we 3) verify the models
208 of correlated evolution with alternative null models and simulated data, and 4) test the
209 effect of different species distribution thresholds for scoring species as drought, frost or
210 winter tolerant.

211

212 **Methods**

213

214 *Geographical and phylogenetic data*

215 Geographical data were obtained from the Global Biodiversity Information Facility (GBIF,
216 www.gbif.org). All GBIF entries with the family name “Poaceae” were downloaded on 25-02-
217 2020 (<https://doi.org/10.15468/dl.26b2o8>), resulting in over 28 million observations. To
218 remove erroneous and inaccurate observations, the following filtering steps were then
219 followed. Observations that had coordinates with fewer than two decimals in either the

220 latitude or longitude were removed. The CoordinateCleaner package (v. 2.0-15; Zizka et al.,
221 2019) in R (v 3.6.3; R Core Team, 2020) was used to filter out observations with invalid
222 coordinates, with equal or zero latitude and longitude coordinates, observations located in
223 oceans, biodiversity institutions, GBIF headquarters, capital cities, country or province
224 centroids and observations where the coordinates did not match the country code. Several
225 major crop and horticultural species were removed manually, as these are likely to occur far
226 outside their native ranges (and potentially climate niches). These were: wheat (*Triticum*
227 *aestivum* L.), barley (*Hordeum vulgare* L.), sugarcane (*Saccharum officinarum* L.), corn (*Zea*
228 *mays* L.), oats (*Avena sativa* L.), rice (*Oryza sativa* L.), sorghum (*Sorghum bicolor* (L.)
229 Moench), rye (*Secale cereal* L.), ryegrasses (*Lolium multiflorum* Lam. and *Lolium perenne* L.),
230 silvergrasses (*Misanthus sinensis* Andersson and *Misanthus giganteas* J.M.Greef & Deuter
231 ex Hodk. & Renvoize), pampas grass (*Cortaderia selloana* (Schult. & Schult.f.) Asch. &
232 Graebn.), switchgrass (*Panicum virgatum* L.) and several millets (*Setaria italica* (L.) P.Beauv.,
233 *Eleusine coracana* (L.) Gaertn., *Cenchrus americanus* (L.) Morrone and *Panicum*
234 *dichotomiflorum* Michx.).

235 Next, the geographical observations were matched to a phylogenetic tree comprising
236 of 3595 species (Spriggs et al. 2014), using both the currently accepted species name
237 (“species”) and the name used in the original GBIF entry (“verbatimScientificName”). This
238 was done to minimise the chance of omitting species due to synonymy differences (e.g. if
239 two species were previously considered separate but have now been synonymised, and are
240 represented by two tips in the tree). We chose this method as currently synonymous tips
241 were not always each other’s closest relatives, and we did not want to make (arbitrary)
242 decisions on pruning one of these tips. However, this approach also opens the possibility of
243 a single GBIF observation being matched to two different tips in the tree; however, this was

244 true for only a tiny fraction of all data: in the final dataset 19,924 observations (0.33%) were
245 matched to two species (tips). Overall, 2531 species with GBIF data could be matched to the
246 tree using currently accepted names and 2546 using the name in the original GBIF entry. In
247 the end, the filtering and species matching steps resulted in a dataset comprising of
248 phylogenetic information and at least ten GBIF observations for 2731 species.

249 As part of our filtering process, we deemed geographical information based on fewer
250 than ten GBIF observations per species unreliable and those species were therefore
251 removed from the dataset (428 species). However, low taxon sampling may be at least as
252 big of a limitation as few geographical occurrence records, and recent studies have included
253 fewer or less precise geographical occurrence data (Pironon et al., 2024; Smith et al., 2023).
254 To include as many species as possible, we therefore retained species with 5-9 GBIF
255 observations if they are also known only from a single botanical country or first-level
256 province, as defined under the World Geographical Scheme for Recording Plant
257 Distributions by the Taxonomic Databases Working Group (TDWG; Brummitt et al. 2001).
258 Information on the distribution of grass species among TDWG regions was obtained from
259 GrassBase (Clayton et al. 2006 onwards). This resulted in the inclusion of an additional 69
260 species, considered endemic (Supplementary Text, Supplementary Table 1), bringing the
261 final total to 2800 species (Supplementary Figure 1). The number of geographical
262 occurrence records per species in this dataset ranged from 5 to just over 1 million (for
263 *Holcus lanatus* L. and *Dactylis glomerata* L.).

264 Finally, to prevent a bias when linking the geographical data to climate data due to
265 high sampling in certain areas, and to remove duplicate GBIF entries, the geographical
266 dataset was reduced to one observation per tile (in a 30 arc-second grid) per species using
267 the raster package (v. 3.1-5; Hijmans, 2020). Following this, the number of unique

268 observations per species ranged from 1 to 175,810, averaging at 2152 unique observations
269 per species. The final dataset consisted of 2800 species with both geographical and
270 phylogenetic data and just over 6 million GBIF observations.

271

272 *Defining areas experiencing drought, frost and severe winter using Köppen-Geiger climate*
273 *zones*

274 It is notoriously difficult to define drought in an ecologically meaningful way, and to delimit
275 areas that experience drought (Slette et al., 2019). Because of this, we used Köppen-Geiger
276 climate zones to define geographical areas experiencing drought, frost and severe winter
277 (Supplementary Table 2). Köppen-Geiger zones divide the world into five main climate zones
278 based on their vegetation composition: Tropical (A), Arid (B), Temperate (C), Continental (D)
279 and Polar (E), and each zone is then further divided into subzones based on temperature
280 and precipitation criteria (Köppen 2011; Beck et al. 2018). Each zone was scored as
281 experiencing drought, frost and/or winter as follows. Zones *B* (arid and semi-arid climates),
282 *Aw* and *As* (tropical savannahs) were scored as experiencing drought. Additionally, zone *Csa*
283 was scored as experiencing drought due to its combination of high temperatures and low
284 precipitation during the summer months (e.g. Los Angeles, Perth and Valencia).

285 For consistency, we also used Köppen-Geiger zones to define areas experiencing
286 frost and severe winters (Supplementary Table 2). Köppen-Geiger zones classified as
287 experiencing frost were defined as having one or more months averaging below 0 °C; the *D*
288 and *E* zones fulfilled this criterion. Although zones *Bxk*, *Cxb*, and *Cxc* do not have any months
289 averaging below 0 °C, they do experience occasional to regular frost during the winter
290 months (e.g. Reno [Nevada, USA] and the Patagonian Desert for *Bxk*; Cape Town, Mexico
291 City and Plymouth [UK] for *Cxb*; and Balmaceda [Chile], Bodø [Norway] and the Faroe

292 Islands for *Cxc*). Therefore, they were also scored as experiencing frost. Zones with severe
293 winter were defined as those experiencing frost and a cool, short growing season with a
294 maximum of three months averaging above 10 °C. This included zones *Cxc*, *Dxc*, *Dxd* and *E*
295 (Supplementary Table 2).

296

297 *Species distribution thresholds and sensitivity analyses*

298 Following the scoring of which geographical areas experience drought, frost and severe
299 winter, the GBIF geographical occurrence records were linked to this scoring to determine
300 which species are exposed to drought, frost or severe winter in their native ranges using the
301 R packages kgc (v. 1.0.0.2; Bryant et al., 2017) and raster (v. 3.1-5; Hijmans, 2020). We
302 acknowledge that inferring physiological tolerances from occurrence patterns can both
303 underestimate and overestimate true tolerances, e.g. if species distributions are strongly
304 structured according to microclimatic variation (Greiser et al., 2020). However, it is still a
305 useful approach at macroevolutionary scales (Humphreys & Linder, 2013).

306 We considered species drought, frost and/or winter tolerant if at least 20% of their
307 geographical observations fell in Köppen-Geiger zones scored accordingly. We chose this
308 threshold to remove species occurring, but not established, in areas with drought, frost or
309 severe winter, with an emphasis on representing each species' optimal climate niche rather
310 than its extremes. These species will hereafter be referred to as "drought tolerant", "frost
311 tolerant" and "(severe) winter tolerant", respectively. We also tested whether our results
312 are contingent on the use of this threshold by creating two alternative datasets in which
313 species were considered "tolerant" if at least 5% or 50% of their occurrence records fell in
314 an area experiencing drought, frost and/or winter. Analyses were run on data compiled

315 using all three thresholds (20%, the “main” dataset; 5% and 50%, the “sensitivity” datasets),
316 making nine datasets in total (3 traits x 3 thresholds).

317

318 *Ancestral state reconstructions of drought, frost, and winter tolerance*
319 To visualise the pattern of evolution for each of drought, frost and winter tolerance
320 separately, we performed ancestral state reconstructions using the “hidden rates” Markov
321 models implemented in the R package corHMM (Beaulieu et al., 2013, 2020). This method
322 takes rate heterogeneity during the course of evolution and among clades into account, and
323 has been shown to perform similarly to other rate-variable methods (King & Lee, 2015) . In
324 the simplest corHMM model, the one-rate category model, a binary trait evolves with the
325 same rate across the entire tree. This is equivalent to a standard model for a binary trait
326 with one rate of gain and one rate of loss (all rates different; Beaulieu et al., 2013). The
327 constraints on the model are then relaxed, stepwise, to generate increasingly complex
328 models by adding additional rate categories. The two-rate category model thus allows each
329 state to evolve in a fast and a slow rate category, with each rate category having its own
330 rate of both gain and loss, as well as a rate of moving to the other rate category. In the
331 three-rate category model, there are fast, medium, and slow rate categories, and so on,
332 until the most complex model currently implemented in corHMM, the five-rate category
333 model (Beaulieu et al., 2013). The models do not allow for both the trait and transition rate
334 category to change simultaneously (e.g. from “sensitive-slow” to “tolerant-fast”), but
335 multiple shifts of either type can happen along a single branch. The rate of changing from
336 one rate category to another is independent of the trait (e.g. the rate of moving from the
337 “fast” to the “slow” rate category is the same irrespective of whether the state is “sensitive”
338 or “tolerant”). We fitted models with different numbers of transition rate categories, with

339 the states “tolerant” and “sensitive”, across all nine datasets using maximum likelihood (ML)
340 criteria and 100 random restarts. Model fit was assessed using Akaike’s sample-size
341 corrected information criterion (Burnham & Anderson, 2002; AICc). The estimated
342 parameters of the best-fitting model were used to calculate the marginal probabilities of the
343 most likely tolerant and sensitive state and rate at each internal node. Most interpretations
344 of model inferences were based on nodes with a marginal probability ≥ 0.75 for either
345 tolerance or sensitivity (Beaulieu et al., 2013).

346

347 *Testing for correlated evolution between drought and frost/winter tolerance*
348 To test for correlated evolution between drought tolerance and each of frost and winter
349 tolerance, we tested whether the evolution of one trait (rate of gains and losses of frost and
350 winter tolerance) is dependent on the state of the second trait (drought tolerance) by
351 comparing the likelihood fit of two models (Pagel, 1994). The first model, the independent
352 model, has four transition rate parameters, meaning that the rate of change in one trait is
353 independent of the state of the second trait (Supplementary Figure 2a). The second model,
354 the correlated model, has eight possible rate parameters, meaning that the rate of change
355 in one trait may differ depending on the state of the second trait (Supplementary Figure 2b).
356 If drought tolerance was a precursor for frost and/or winter tolerance, we would expect
357 support for the correlated model, such that drought tolerance evolves first from the
358 ancestral state (sensitive to drought, frost and severe winter) and transitions to frost and/or
359 winter tolerance are more frequent in drought tolerant than drought sensitive lineages. We
360 fitted the independent and correlated models using the one-rate category corHMM models
361 as above for both trait combinations (drought-frost and drought-winter) and all three
362 thresholds (six analyses in total). Drought-winter tolerance based on the 50% dataset was

363 tested against a reduced model (Supplementary Text, Supplementary Figure 2c). Model fit
364 was assessed using AICc.

365 As with several macroevolutionary methods, models of correlated evolution have
366 been shown to have high type I error rates, i.e., rejection of a null hypothesis that is true
367 (Boyko & Beaulieu, 2023; Humphreys et al., 2016; Maddison & FitzJohn, 2015; Rabosky &
368 Goldberg, 2015). There can be several underlying causes of this, so we addressed this in two
369 ways:

370 *I. Testing for correlated evolution using a null model with rate heterogeneity* – False
371 rejection of the null model may be because it is too trivial to serve as a meaningful null. This
372 has been suggested for the independent model used here, specifically, because it fails to
373 take rate heterogeneity into account (Boyko & Beaulieu, 2023). Thus, we compared the
374 model of correlated evolution to an alternative null model: the independent model with two
375 rate categories (the two-rate model). This model is formulated as two paired independent
376 models, with four transition rates in each of the two rate categories (Supplementary Figure
377 2d). Additionally, there are two transition rates for transitioning between rate categories.
378 Thus, the two-rate independent model has ten rate parameters. We fitted the two-rate
379 model across all six trait and threshold combinations using corHMM as before
380 (Supplementary Text, Supplementary Figures 2d,e). Model fit was assessed using AICc.

381 *II. Testing for correlated evolution using simulated data* – False rejection of the null
382 model may be due to it not adequately explaining the evolution of the traits over the tree –
383 but may be unrelated to any hypothesised correlation between the two traits. Therefore,
384 we compared support for the correlated and independent models using data simulated to
385 represent a binary trait that has evolved independently of either frost or winter tolerance.
386 We expect that the null (independent) model should not be rejected in favour of the

387 alternative (correlated) model for simulated data. If it is, then the difference in fit between
388 the correlated and independent models needs to be significantly smaller for simulated than
389 observed (empirical) data for any observed correlation to remain statistically significant.

390 We simulated 1000 continuous traits on the observed phylogenetic tree under
391 Brownian motion, using 'bmPlot' in the R package phytools (Revell, 2012). Trait values were
392 drawn from a normal distribution centred around zero. Each trait was then converted to a
393 binary trait with the same proportions of sensitive and tolerant species as for the observed
394 drought tolerance data (20% threshold; Supplementary Table S3), by scoring the 1549
395 species with the highest values as tolerant, and the 1251 remaining species as sensitive.
396 Independent and correlated models with one transition rate category were then fitted to
397 each simulated trait plus frost and winter tolerance in turn (20% threshold), using the
398 Discrete independent and Discrete dependent functions in BayesTraits (available from
399 www.evolution.rdg.ac.uk; Pagel et al. 2004). First, exploratory models were fitted using
400 1000 ML iterations. Next, the models were fitted using a Bayesian version of the method
401 (Pagel et al., 2004). The models were run for 1 million Markov chain Monte Carlo (MCMC)
402 generations, all with 1000 stones with 10,000 iterations each using default settings. Model
403 support was determined using Bayes Factors (BFs).

404

405 **Results**

406

407 *Distribution of sampled species and occurrence records among clades and Köppen-Geiger*
408 *climate zones*

409 Grasses have been recorded from every Köppen-Geiger zone. Of all filtered GBIF
410 observations, 64% occurred in the *Cfb* zone (temperate oceanic climate), which covers large
411 parts of Western Europe, New Zealand and South-East Australia. The zones with the second
412 and third most records were *Cfa* (humid subtropical climate) and *Dfc* (subarctic climate),
413 accounting for only 5.8% and 5.5% of the observations, respectively. Of the 2800 species in
414 the dataset, 1549 species occur in areas experiencing drought, 1759 species occur in areas
415 experiencing frost, 375 species occur in areas with severe winters, 828 species are exposed
416 to both drought and frost and 57 species to both drought and severe winter (20% threshold
417 dataset; Supplementary Table 3). The phylogeny includes around 25% of all Poaceae
418 species, but species sampling is unevenly distributed among subfamilies (Supplementary
419 Text, Supplementary Table 4), and GBIF records are unevenly distributed among species
420 (Supplementary Text, Supplementary Figure 3).

421

422 *Ancestral state reconstructions*

423 We report the results for the 20% threshold dataset. Results for the 5% and 50% threshold
424 datasets are summarized below. Under the 20% threshold dataset, *Pharus latifolius* L., sister
425 to all other species sampled here, is scored as sensitive to drought, frost and severe winter
426 (Figure 1).

427

428 *Drought tolerance* – All major clades contain species scored as drought tolerant (Figure 1),
429 however, three clades stand out as having fewer drought tolerant species: Pooideae
430 (specifically Poeae), Bambusoideae (specifically Arundinarieae) and Danthonioideae (the
431 clade sister to *Pentameris*). The two best-fitting models for drought tolerance were the
432 three-rate and four-rate models ($\Delta\text{AICc} \geq 13.24$), which were statistically indistinguishable
433 from each other ($\Delta\text{AICc} = 0.24$; Table 1). Therefore, we accepted the simpler three-rate
434 model. Under this model, the ancestors of the PACMAD clade and all its constituent
435 subfamilies were most likely drought tolerant (Figure 1), with the highest marginal
436 probabilities ($>=0.75$) for ancestral drought tolerance for PACMAD as a whole and all
437 subfamilies except Panicoideae and Danthonioideae (Supplementary Figure S4). However,
438 several clades within Panicoideae (e.g. subtribe Boivinellinae) and Danthonioideae were
439 reconstructed as being ancestrally drought tolerant (Supplementary Figure S4). The
440 reconstruction for the ancestors of the BOP clade and Poaceae as a whole was uncertain
441 (Figure 1, Supplementary Figure 4). Within the BOP clade, no deeper nodes were
442 reconstructed as being drought tolerant, but certain clades within Pooideae (e.g. *Aegilops*
443 and within Stipeae), Bambusoideae and Oryzoideae were reconstructed as drought tolerant.
444 The ancestors of Pooideae (except *Brachyelytrum* that is sister to the rest) and
445 Bambusoideae were most likely drought sensitive, as was the ancestor of Oryzoideae but
446 with less certainty (Figure 1, Supplementary Figure 4).

447 Based on the sum of the gains and losses of tolerance, we identified a fast (R1),
448 medium (R2), and slow (R3) rate category (Table 2). Drought tolerance in the fast and slow
449 rate categories are reconstructed throughout the tree (Figure 1): the fast category is
450 reconstructed in all major clades, notably in much of Panicoideae, half of Danthonioideae
451 (*Pentameris*), parts of Chloridoideae, Bambusoideae, Oryzoideae and parts of Pooideae

452 (tribes Stipeae and Triticeae); the slow rate category is primarily reconstructed in the
453 Aristidoideae, Chloridoideae, a small number of lineages in Panicoideae (e.g. subtribe
454 Boivinellinae), and *Aegilops* (Triticeae, Pooideae). Drought sensitivity is inferred mainly in the
455 medium (R2) and slow (R3) rate categories, with the medium category being prevalent in
456 the Pooideae (especially Poeae) and the slow category reconstructed in Bambusoideae
457 (Arundinarieae) and Danthonioideae (sister clade to *Pentameris*).

458

459 *Frost tolerance* – Species belonging to all subfamilies were scored as being frost tolerant,
460 with the Danthonioideae, Chloridoideae and Pooideae having the most frost tolerant
461 species (Figure 1a). The three-rate category model was the best fit ($\Delta\text{AICc} \geq 11.06$; Table 1).
462 Under this model, reconstructed ancestral states deeper in the tree are equivocal, but more
463 certain for some of the subfamilies. Pooideae, Danthonioideae and part of Chloridoideae
464 (*Muhlenbergiinae* *sensu* Peterson et al. 2010) were most likely ancestrally frost tolerant and
465 Bambusoideae and Panicoideae (excluding two small clades successively sister to the rest)
466 most likely ancestrally frost sensitive (marginal probability ≥ 0.75 ; Figure 1a,
467 Supplementary Figure 4a).

468 Based on the sum of gains and losses, we distinguish fast (R1), medium (R3) and slow
469 (R2) rate categories (Table 2). Frost tolerance in the medium rate category is inferred in the
470 Pooideae, Oryzoideae (*Ehrharta*), Danthonioideae and Chloridoideae (*Muhlenbergiinae*
471 *sensu* Peterson et al. 2010; Figure 1a). Frost tolerance in the slow category is less frequently
472 occurring and distributed more sporadically throughout the tree, notably being inferred in
473 the Chloridoideae (*Zoysieae*, *Eragrostidinae*) and Panicoideae. Frost tolerance in the slow
474 category is more easily lost than frost tolerance in the medium category (relative rate of loss
475 0.77 compared to 0.42, Table 2). For frost sensitive clades, the fast rate category (R1) is

476 most common but the slow category is often reconstructed equivocally at the same nodes

477 as frost tolerance in the slow category.

478

479 *Severe winter tolerance* – Species scored as tolerant of severe winter are clustered mainly in

480 Pooideae and Danthonioideae, but a few winter tolerant species occur also in other

481 subfamilies (Figure 1b). The three-rate category model had the best fit for winter tolerance

482 ($\Delta\text{AICc} \geq 3$; Table 1). Poaceae as a whole, the BOP and PACMAD clades and each of the

483 subfamilies were all inferred as being ancestrally winter sensitive (marginal probability

484 ≥ 0.75 ; Figure 1b, Supplementary Figure 4b). Very few internal nodes were reconstructed as

485 winter tolerant, the exceptions being scattered clades within Danthonioideae (e.g

486 *Chionochloa*) and Pooideae (in Poeae, Triticeae and Stipeae; marginal probability ≥ 0.75 ;

487 Figure 1b, Supplementary Figure 4b).

488 Based on the sum of gains and losses, we define the rate categories fast (R1),

489 medium (R2) and slow (R3; Table 2). Winter tolerance is mostly found in the fast rate

490 category (Figure 1b) . This winter tolerance is often associated with, and evolves from,

491 winter sensitivity in the medium and fast rate categories but never in the slow rate

492 category. Lineages in the medium rate sensitive state are found in Pooideae and parts of

493 Danthonioideae (sister to *Pentameris*) but also, notably, in *Muhlenbergiinae* *sensu* Peterson

494 et al. 2010 (Chloridoideae) and the neotropical woody bamboos (Bambusoideae). Most

495 other clades are not tolerant of severe winters and ancestral states are inferred to be

496 sensitive in the slow category.

497

498 *Models of correlated evolution between drought and frost/winter tolerance*

499 The correlated model was a better fit than the independent model for both drought-frost
500 and drought-winter ($\Delta\text{AICc} > 59$; Table 3). However, the two-rate independent model was
501 much better than either of the single-rate models, for both drought-frost and drought-
502 winter ($\Delta\text{AICc} > 234$; Table 3). Both ML and Bayesian analyses of simulated data and frost
503 tolerance revealed that the difference in fit between the independent and correlated
504 models for the simulated data overlapped with the difference in fit between the two models
505 for the observed data (Figures 2a,b). For simulated data and winter tolerance, the difference
506 in fit between the correlated and independent models was greater in the observed
507 compared to simulated data (Figures 2b,c; the observed BF was outside the 95% confidence
508 of intervals of BFs for the simulated data). However, the nature of the correlation inferred
509 from the best-fitting model was higher rates of gains of winter tolerance in drought
510 sensitive than tolerant lineages.

511

512 *Sensitivity analyses*

513 The main results were the same across all datasets, with six exceptions (Supplementary
514 Text; Tables 1, 3, Supplementary Table 3). Four differences were for the 50% threshold
515 datasets and two were for the 5% threshold datasets. The differences concerned scoring of
516 drought tolerance for *Pharus latifolius*, scoring of severe winter tolerance in Bambusoideae
517 and model fit. None of these differences affected the overall reconstructed evolutionary
518 scenario underlying the conclusions.

519

520 **Discussion**

521

522 We tested for a signature of evolutionary precursors in adaptation to a temperate climate.
523 The importance of precursors in the formation of biomes and assembly of regional floras is
524 known in the biogeographical literature as ‘biome conservatism’ (Crisp et al., 2009) or the
525 ‘temperate element’ of high alpine floras (Gehrke and Linder 2009; Gehrke 2018; but see
526 Nürk et al. 2018). Biome transitions require complex structural, physiological and
527 phenological adjustments, and it is reasonable to assume that not all such changes
528 happened simultaneously. Instead, it is more plausible that present-day adaptations were
529 acquired gradually, with the gradual accumulation of multiple new traits providing
530 opportunities for persisting in one changing environment, as well as colonising other
531 emerging environments.

532 Despite some research (e.g. Sakai and Larcher 1987; Judd et al. 1994; Zanne et al.
533 2014; Spriggs et al. 2015; Edwards et al. 2017), little is known, however, about the order in
534 which adaptations to freezing and seasonal conditions originated in present-day temperate
535 clades. Little is also known about the extent to which individual lineages still hold signatures
536 of any ancient precursor traits that may have facilitated their biome transitioning journey.
537 To address this, we used a comparative approach to test the idea that tropical-to-temperate
538 transitions were facilitated by precursor trait(s). Specifically, we tested for evidence that
539 drought tolerance acted as a precursor to frost and winter tolerance in grasses. That is, that
540 drought tolerance evolved first and frost and winter tolerance originated more frequently in
541 ancestrally drought tolerant lineages, suggesting that ancestral drought tolerance facilitated
542 transitions into cold temperate environments (Preston & Sandve, 2013; Sakai & Larcher,
543 1987).

544

545 *Ancestral state reconstructions reveal both drought-first and frost-first scenarios*

546 Drought tolerance is inferred to have evolved early in the PACMAD clade, with the ancestor
547 most likely being drought tolerant (Figure 1; Supplementary Figure 4). This is consistent with
548 drought tolerance evolving simultaneously with the transition from closed to open
549 environments in the ancestor of the PACMAD clade (Elliott et al., 2023; Kellogg, 2001;
550 Strömberg, 2011). In contrast, drought tolerance was not reconstructed deep in the BOP
551 clade. This is consistent with multiple independent transitions to open habitats in the BOP
552 clade, although our reconstruction of drought tolerance suggests it evolved long after
553 transitions to open environments occurred (Elliott et al., 2023; Kellogg, 2001; Zhang et al.,
554 2022). The relatively late evolution of drought tolerance in Pooideae is consistent with the
555 “tippy” distribution of xerophytes and high evolutionary lability of drought responses found
556 previously for this clade (Pal Stolsmo et al., 2024; Zhang et al., 2022).

557 Overall, our reconstruction suggested a later origin of frost tolerance than drought
558 tolerance (Figure 1a; Supplementary Figure 4a). Frost tolerance was not inferred as
559 ancestral in either the BOP or PACMAD clades, but the ancestors of Pooideae,
560 Danthonioideae and part of Chloridoideae (*Muhlenbergiinae*; Peterson et al. 2018) were
561 reconstructed as frost tolerant. The overall deeper origin of drought than frost tolerance
562 supports the view that grasses were exposed to drought before frost during their
563 evolutionary history (Linder et al., 2018; Strömberg, 2011). Deep origins of frost tolerance in
564 Pooideae and Danthonioideae is also consistent with previous studies (Humphreys & Linder,
565 2013; Schubert, Marcussen, et al., 2019). However, upon scrutiny, it is clear that frost
566 tolerant lineages in the BOP and PACMAD clades have undergone different evolutionary
567 trajectories; drought tolerance most likely preceded frost tolerance in Danthonioideae and
568 Chloridoideae but not in Pooideae. In other words, frost tolerance evolved in ancestrally

569 drought tolerant lineages in Danthonioideae and Chloridoideae, but in ancestrally drought
570 sensitive lineages in Pooideae.

571 Tolerance of severe winters was reconstructed ancestrally for certain clades within
572 Danthonioideae (especially *Chionochloa*) and Pooideae (within tribes Poeae, Triticeae and
573 Stipeae; Figure 1b). In addition, scattered occurrences of winter tolerance were found in
574 Bambusoideae, Chloridoideae and Panicoideae (Figure 1b). In all these clades except
575 Panicoideae, winter tolerance is preceded by sensitivity in the medium rate category,
576 suggesting that this state may represent a precursor trait (Figure 1b; but see Supplementary
577 Text for the reconstruction in Bambusoideae). Tolerance of severe winters encompasses
578 both physiological and phenological adaptations, and a plausible prerequisite is adaptation
579 to periodic (seasonal) frost. Our results corroborate this, at least for Pooideae and parts of
580 Danthonioideae and Chloridoideae (Supplementary Text, Supplementary Figure 5). Since we
581 found patterns consistent with drought tolerance as a precursor to frost tolerance in the
582 latter two clades, drought tolerance could indirectly be a precursor to severe winter
583 tolerance in those clades as well.

584

585 *Models of correlated evolution unsupported – with important caveats*

586 The above discussion is based on comparison of separate analyses for each of drought, frost
587 and winter tolerance. The explicitly simultaneous modelling of drought-frost and drought-
588 winter tolerance showed that the initial rejection of the model of independent evolution in
589 favour of the correlated model is due to a type I error. This is because: 1) the correlated
590 model was not a better fit than the alternative null model that allowed for rate
591 heterogeneity (Table 3); and 2) the difference in fit between the correlated and
592 independent models for the observed frost-drought data overlapped with the difference in

593 fit for data simulated under independent evolution (Figure 2). For drought-winter, the
594 difference in fit was significantly greater for the observed than simulated data but the best-
595 fitting correlated model suggested that winter tolerance evolved in drought sensitive
596 lineages, not drought tolerant ones (not shown). Taken at face value, these results imply
597 that evolution of drought and frost tolerances were not correlated and that drought
598 tolerance is unlikely to have acted as a precursor to either frost or winter tolerance.

599 However, there are two caveats to this interpretation. The first is technical. The two-
600 rate model fitted here is formulated as two paired independent models with a total of ten
601 transition rates (Supplementary Figure 2d). Increasing model complexity to fully address the
602 question of correlated evolution while adequately accounting for rate heterogeneity (Boyko
603 & Beaulieu, 2023; King & Lee, 2015) would likely improve model fit, but such models would
604 soon become prohibitively complex and computationally demanding for a dataset of this
605 size. This means we are unlikely to have found the best models for evolution of drought-
606 frost or drought-winter, we have only demonstrated that the initial rejection of the
607 independent model was likely due to statistical error.

608 The second caveat is biological. Our ancestral state reconstructions reveal different
609 evolutionary trajectories in different clades (cf. the BOP and PACMAD clades, Figure 1,
610 Supplementary Figure 4). Modelling the Poaceae as a whole may have obscured these
611 different trajectories. A straightforward solution would be to analyse the BOP and PACMAD
612 clades separately; however, our results point to a single deep origin of drought tolerance in
613 the PACMAD clade, followed by repeated origins of frost tolerance. This scenario thus
614 reduces to a single evolutionary event that lacks the comparison of ancestrally drought
615 sensitive clades (Maddison & FitzJohn, 2015; Uyeda et al., 2018). This leaves the option of
616 addressing the question at even broader phylogenetic scales (e.g. the Poales), but this

617 approach is marred by the challenge of accurately modelling the many diverse histories that
618 are inevitable at such broad scales. Thus, in lieu of more complex modelling in carefully
619 selected clades (Donoghue & Edwards, 2014), our conclusion based on separate ancestral
620 state reconstructions for each trait separately is a drought-first scenario in the PACMAD
621 clade but a frost-first scenario in the BOP clade.

622

623 **Conclusions**

624 Two different evolutionary trajectories are evident from our results. Drought tolerance most
625 likely evolved first in the PACMAD clade, followed by repeated entries into freezing climates,
626 followed in Danthonioideae by adaptation to severe winters. In the BOP clade, frost
627 tolerance most likely evolved first, followed by adaptation to severe winters in some clades
628 and dry environments in other clades. The drought-first scenario for the PACMAD clade is
629 consistent with our expectations and evidence that grasses were exposed to dry before
630 freezing conditions (e.g. Strömberg 2011; Linder et al. 2018). In light of this, the frost-first
631 scenario for the BOP clade is surprising, but consistent with recent evidence from
632 ecophysiological experiments and gene expression patterns in Pooideae (Das et al., 2023;
633 Pal Stolsmo et al., 2024), and suggestions that Pooideae originated in emerging cool climate
634 pockets present as early as the Late Cretaceous (Das et al., 2023; Hagen et al., 2019;
635 Schubert et al., 2020). Therefore, it is likely that frost tolerance evolved before drought
636 tolerance in the BOP clade. Alternatively, high evolutionarily lability of drought tolerance
637 (Table 2; Pal Stolsmo et al. 2024) limits the accuracy with which we can reconstruct how
638 cold and drought traits evolved relative to each other in this clade (Bromham, 2015). Thus,
639 although it is likely that modern-day stress responses originated from shared ancient

640 pathways (Das et al., 2023; Folk et al., 2020; Preston & Sandve, 2013), it is possible that the
641 signature of those pathways is no longer be present in some clades.

642 The different reconstructed evolutionary trajectories reveal a mirrored pattern, with
643 clades occupying either predominantly dry or very cold environments. This mirrored pattern
644 can be seen throughout the grasses (cf. the two main clades of Danthonioideae (*Pentameris*
645 vs. its sister clade), several clades in Pooideae (e.g. Stipeae, *Aegilops* and *Triticum*), and the
646 PACMAD versus BOP clades; Figure 1, Supplementary Figure 4), and is consistent with
647 modern-day grasses being either drought or cold specialists (Visser et al., 2013). This
648 suggests a trade-off, such that species tend not to be equally well adapted to both drought
649 and cold, as has been found for woody temperate plants (Puglielli et al., 2022).

650 Finally, what is the consequence of relying on geographical occurrences instead of
651 inherent physiological tolerances? While the relative tolerances of species are likely related
652 to their distributions (Humphreys & Linder, 2013), absence from a region experiencing
653 drought, frost or severe winter, as defined here, does not necessarily equate to an inability
654 to withstand those stresses. As such, our method may be underestimating the prevalence of
655 each adaptation across the family (Humphreys & Linder, 2013; Zanne et al., 2014). Further,
656 if species distributions follow microclimatic variation, our reliance on coarse-grid occurrence
657 records could both underestimate and overestimate the prevalence of drought and frost
658 tolerant species. Severe winter tolerance, as defined here, should be less affected by
659 microclimatic specialisations as seasonal cold and frost coupled with short growing seasons
660 occur across large, high-latitude areas. Overall, however, our reconstructions captured the
661 patterns seen in previous ancestral state reconstrucitons for grasses (e.g. Edwards & Smith,
662 2010; Elliott et al., 2023; Humphreys & Linder, 2013; Schubert et al., 2020; Schubert,
663 Marcussen, et al., 2019; Watcharamongkol et al., 2018; Zhang et al., 2022), are robust to

664 alternative treatments of the data (Supplementary Text) and corroborate findings for
665 Pooideae, based on measured ecophysiological responses to frost and drought exposure
666 (Pal Stolsmo et al., 2024) . Future research addressing these concerns is needed but they are
667 unlikely to be biasing our results here.

668

669 **Author contributions**

670 L.S., M.S., S.F. and A.M.H. designed the study. L.S. compiled the data and performed the
671 analyses, and all authors contributed to the interpretation of the results. L.S. and A.M.H.
672 wrote the manuscript with input from M.S. and S.F.

673 **Funding**

674 This research has been funded by the Carl Trygger Foundation (CTS 18:156) and the Bolin
675 Centre for Climate Research, Stockholm University.

676

677 **Conflict of interest statement**

678 The authors declare no conflict of interest.

679

680 **Acknowledgements**

681 We are grateful to B. Gehrke for fruitful discussions, and we thank L. Gren for assistance
682 with putting together Figure 2.

683

684 **References**

685

686 Bannister, P. (2007). Godley review: A touch of frost? Cold hardiness of plants in the

687 southern hemisphere. *New Zealand Journal of Botany*, 45(1), 1–33.

688 <https://doi.org/10.1080/00288250709509700>

689 Beaulieu, J. M., O'Meara, B. C., & Donoghue, M. J. (2013). Identifying Hidden Rate Changes

690 in the Evolution of a Binary Morphological Character: The Evolution of Plant Habit in

691 Campanulid Angiosperms. *Systematic Biology*, 62(5), 725–737.

692 <https://doi.org/10.1093/sysbio/syt034>

693 Beaulieu, J. M., O'Meara, B., Oliver, J., & Boyko, J. (2020). *corHMM: Hidden Markov Models*

694 *of Character Evolution* [Computer software].

695 Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F.

696 (2018). Present and future Köppen-Geiger climate classification maps at 1-km

697 resolution. *Scientific Data*, 5(1), 180214. <https://doi.org/10.1038/sdata.2018.214>

698 Bennett, T. H., Flowers, T. J., & Bromham, L. (2013). Repeated evolution of salt-tolerance in

699 grasses. *Biology Letters*, 9(2), 20130029. <https://doi.org/10.1098/rsbl.2013.0029>

700 Birkeland, S., Slotte, T., Brysting, A. K., Gustafsson, A. L. S., Hvidsten, T. R., Brochmann, C., &

701 Nowak, M. D. (2021). *What can the cold-induced transcriptomes of Arctic*

702 *Brassicaceae tell us about the evolution of cold tolerance?* (p. 2021.12.04.471218).

703 bioRxiv. <https://doi.org/10.1101/2021.12.04.471218>

704 Bouchenak-Khelladi, Y., Verboom, G. A., Savolainen, V., & Hodkinson, T. R. (2010).

705 Biogeography of the grasses (Poaceae): A phylogenetic approach to reveal

706 evolutionary history in geographical space and geological time. *Botanical Journal of*

- 707 *the Linnean Society*, 162(4), 543–557. <https://doi.org/10.1111/j.1095->
- 708 8339.2010.01041.x
- 709 Bowles, A. M. C., Paps, J., & Bechtold, U. (2021). Evolutionary Origins of Drought Tolerance
- 710 in Spermatophytes. *Frontiers in Plant Science*, 12.
- 711 <https://www.frontiersin.org/articles/10.3389/fpls.2021.655924>
- 712 Boyko, J. D., & Beaulieu, J. M. (2023). Reducing the Biases in False Correlations Between
- 713 Discrete Characters. *Systematic Biology*, 72(2), 476–488.
- 714 <https://doi.org/10.1093/sysbio/syac066>
- 715 Bromham, L. (2015). Macroevolutionary patterns of salt tolerance in angiosperms. *Annals of*
- 716 *Botany*, 115(3), 333–341. <https://doi.org/10.1093/aob/mcu229>
- 717 [dataset] Brummitt, R., Pando, F., Hollis, S., & Brummitt, N. (2001). *World geographical*
- 718 *scheme for recording plant distributions*. <http://rs.tdwg.org/wgsrpd/doc/data/>
- 719 Bryant, C., Wheeler, N. R., Rubel, F., & French, R. H. (2017). *kgc: Koeppen-Geiger Climatic*
- 720 *Zones* [Computer software]. <https://CRAN.R-project.org/package=kgc>
- 721 Burnham, K. P., & Anderson, D. R. (2002). *Model Selection and Multimodel Inference* (2nd
- 722 ed.). Springer. <https://doi.org/10.1007/b97636>
- 723 [dataset] Clayton, W. D., Vorontsova, M. S., Harman, K. T., & Williamson, H. (2006,
- 724 onwards). *GrassBase—The Online World Grass Flora*.
- 725 <http://www.kew.org/data/grasses-db.html>
- 726 Cousins-Westerberg, R., Dakin, N., Schat, L., Kadereit, G., & Humphreys, A. M. (2023).
- 727 Evolution of cold tolerance in the highly stress-tolerant samphires and relatives
- 728 (Salicornieae: Amaranthaceae). *Botanical Journal of the Linnean Society*, 203(1), 20–
- 729 36. <https://doi.org/10.1093/botlinnean/boad009>

- 730 Crisp, M. D., Arroyo, M. T. K., Cook, L. G., Gandolfo, M. A., Jordan, G. J., McGlone, M. S.,
731 Weston, P. H., Westoby, M., Wilf, P., & Linder, H. P. (2009). Phylogenetic biome
732 conservatism on a global scale. *Nature*, 458(7239), 754–756.
733 <https://doi.org/10.1038/nature07764>
- 734 Das, A., Dedon, N., Enders, D. J., Fjellheim, S., & Preston, J. C. (2023). Testing the chilling-
735 before drought-tolerance hypothesis in Pooideae grasses. *Molecular Ecology*, 32(4),
736 772–785. <https://doi.org/10.1111/mec.16794>
- 737 Donoghue, M. J. (2008). A phylogenetic perspective on the distribution of plant diversity.
738 *Proceedings of the National Academy of Sciences*, 105(Supplement 1), 11549–11555.
739 <https://doi.org/10.1073/pnas.0801962105>
- 740 Donoghue, M. J., & Edwards, E. J. (2014). Biome Shifts and Niche Evolution in Plants. *Annual
741 Review of Ecology, Evolution, and Systematics*, 45(Volume 45, 2014), 547–572.
742 <https://doi.org/10.1146/annurev-ecolsys-120213-091905>
- 743 Edwards, E. J., Chatelet, D. S., Chen, B.-C., Ong, J. Y., Tagane, S., Kanemitsu, H., Tagawa, K.,
744 Teramoto, K., Park, B., Chung, K.-F., Hu, J.-M., Yahara, T., & Donoghue, M. J. (2017).
745 Convergence, Consilience, and the Evolution of Temperate Deciduous Forests. *The
746 American Naturalist*, 190(S1), S87–S104. <https://doi.org/10.1086/692627>
- 747 Edwards, E. J., & Donoghue, M. J. (2013). Is it easy to move and easy to evolve? Evolutionary
748 accessibility and adaptation. *Journal of Experimental Botany*, 64(13), 4047–4052.
749 <https://doi.org/10.1093/jxb/ert220>
- 750 Edwards, E. J., Osborne, C. P., Strömberg, C. A. E., Smith, S. A., C4 GRASSES CONSORTIUM,
751 Bond, W. J., Christin, P.-A., Cousins, A. B., Duvall, M. R., Fox, D. L., Freckleton, R. P.,
752 Ghannoum, O., Hartwell, J., Huang, Y., Janis, C. M., Keeley, J. E., Kellogg, E. A., Knapp,
753 A. K., Leakey, A. D. B., ... Tipple, B. (2010). The Origins of C4 Grasslands: Integrating

- 754 Evolutionary and Ecosystem Science. *Science*, 328(5978), 587–591.

755 <https://doi.org/10.1126/science.1177216>

756 Edwards, E. J., & Smith, S. A. (2010). Phylogenetic analyses reveal the shady history of C4
757 grasses. *Proceedings of the National Academy of Sciences*, 107(6), 2532–2537.

758 <https://doi.org/10.1073/pnas.0909672107>

759 Eldrett, J. S., Greenwood, D. R., Harding, I. C., & Huber, M. (2009). Increased seasonality
760 through the Eocene to Oligocene transition in northern high latitudes. *Nature: International Weekly Journal of Science*, 459(7249), 969.

761 <https://doi.org/10.1038/nature08069>

762 Elliott, T. L., Spalink, D., Larridon, I., Zuntini, A. R., Escudero, M., Hackel, J., Barrett, R. L.,
763 Martín-Bravo, S., Márquez-Corro, J. I., Mendoza, C. G., Mashau, A. C., Romero-Soler,
764 K. J., Zhigila, D. A., Gehrke, B., Andriño, C. O., Crayn, D. M., Vorontsova, M. S., Forest,
765 F., Baker, W. J., ... Muasya, A. M. (2023). *Global analysis of Poales diversification – parallel evolution in space and time into open and closed habitats* (p.
766 2023.09.14.557735). bioRxiv. <https://doi.org/10.1101/2023.09.14.557735>

767 Fine, P. V. A., & Ree, R. H. (2006). Evidence for a Time-Integrated Species-Area Effect on the
768 Latitudinal Gradient in Tree Diversity. *The American Naturalist*, 168(6), 796–804.

769 <https://doi.org/10.1086/508635>

770 Folk, R. A., Siniscalchi, C. M., & Soltis, D. E. (2020). Angiosperms at the edge: Extremity,
771 diversity, and phylogeny. *Plant, Cell & Environment*, 43(12), 2871–2893.

772 <https://doi.org/10.1111/pce.13887>

773 Gallaher, T. J., Adams, D. C., Attigala, L., Burke, S. V., Craine, J. M., Duvall, M. R., Klahs, P. C.,
774 Sherratt, E., Wysocki, W. P., & Clark, L. G. (2019). Leaf shape and size track habitat

775

776

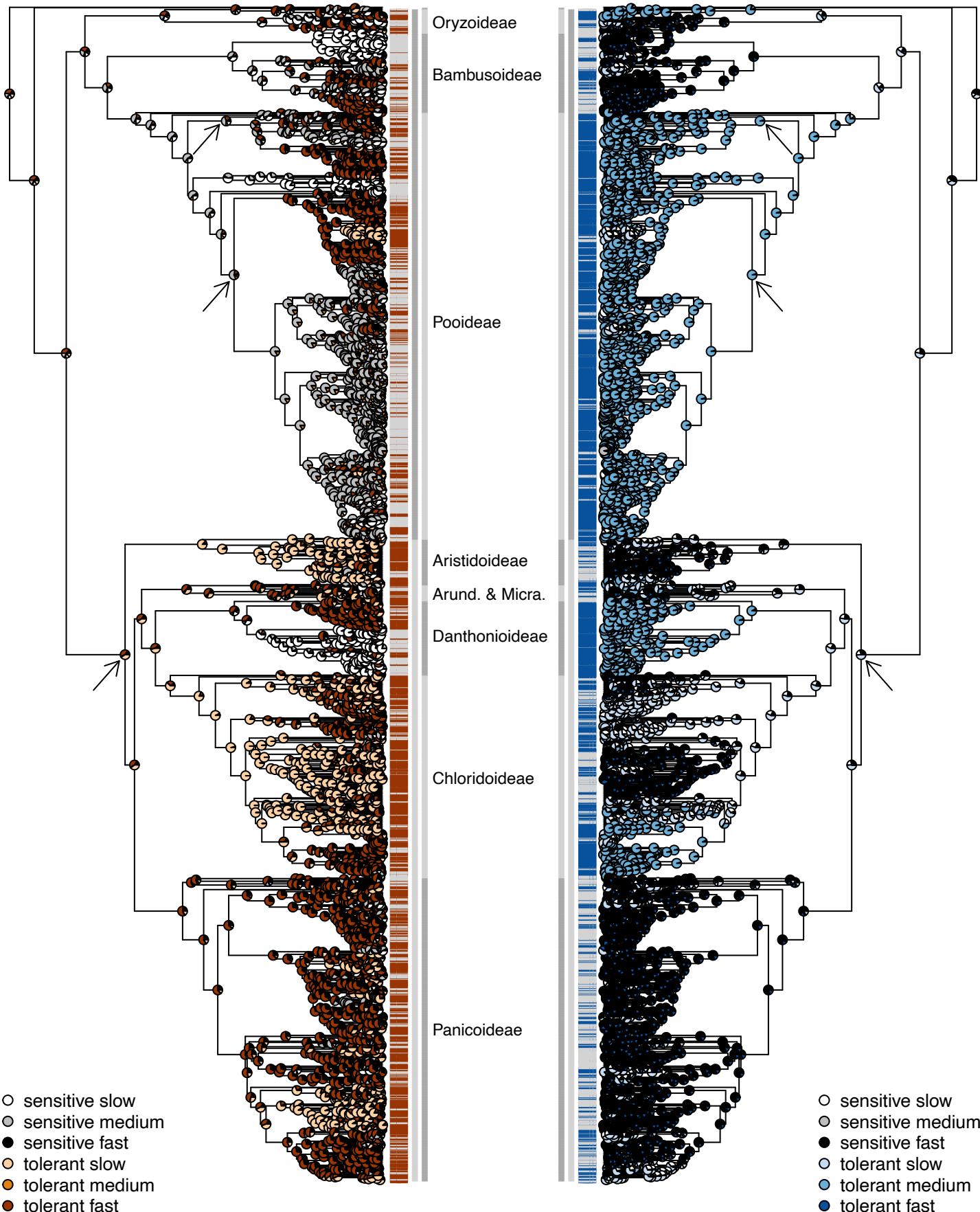
- 777 transitions across forest–grassland boundaries in the grass family (Poaceae).
- 778 *Evolution*, 73(5), 927–946. <https://doi.org/10.1111/evo.13722>
- 779 Gehrke, B. (2018). Staying cool: Preadaptation to temperate climates required for colonising
- 780 tropical alpine-like environments. *PhytoKeys*, 96, 111–125.
- 781 <https://doi.org/10.3897/phytokeys.96.13353>
- 782 Gehrke, B., & Linder, H. P. (2009). The scramble for Africa: Pan-temperate elements on the
- 783 African high mountains. *Proceedings of the Royal Society B: Biological Sciences*,
- 784 276(1667), 2657–2665. <https://doi.org/10.1098/rspb.2009.0334>
- 785 Gibson, D. J. (2009). *Grasses and grassland ecology*. Oxford University Press.
- 786 Greiser, C., Ehrlén, J., Meineri, E., & Hylander, K. (2020). Hiding from the climate:
- 787 Characterizing microrefugia for boreal forest understory species. *Global Change*
- 788 *Biology*, 26(2), 471–483. <https://doi.org/10.1111/gcb.14874>
- 789 Hagen, O., Vaterlaus, L., Albouy, C., Brown, A., Leugger, F., Onstein, R. E., Santana, C. N. de,
- 790 Scotese, C. R., & Pellissier, L. (2019). Mountain building, climate cooling and the
- 791 richness of cold-adapted plants in the Northern Hemisphere. *Journal of*
- 792 *Biogeography*, 46(8), 1792–1807. <https://doi.org/10.1111/jbi.13653>
- 793 Harrison, C. J. (2017). Development and genetics in the evolution of land plant body plans.
- 794 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 372(1713),
- 795 20150490. <https://doi.org/10.1098/rstb.2015.0490>
- 796 Hijmans, R. J. (2020). *raster: Geographic Data Analysis and Modeling* [Computer software].
- 797 <https://CRAN.R-project.org/package=raster>
- 798 Hillebrand, H. (2004). On the Generality of the Latitudinal Diversity Gradient. *The American*
- 799 *Naturalist*, 163(2), 192–211. <https://doi.org/10.1086/381004>

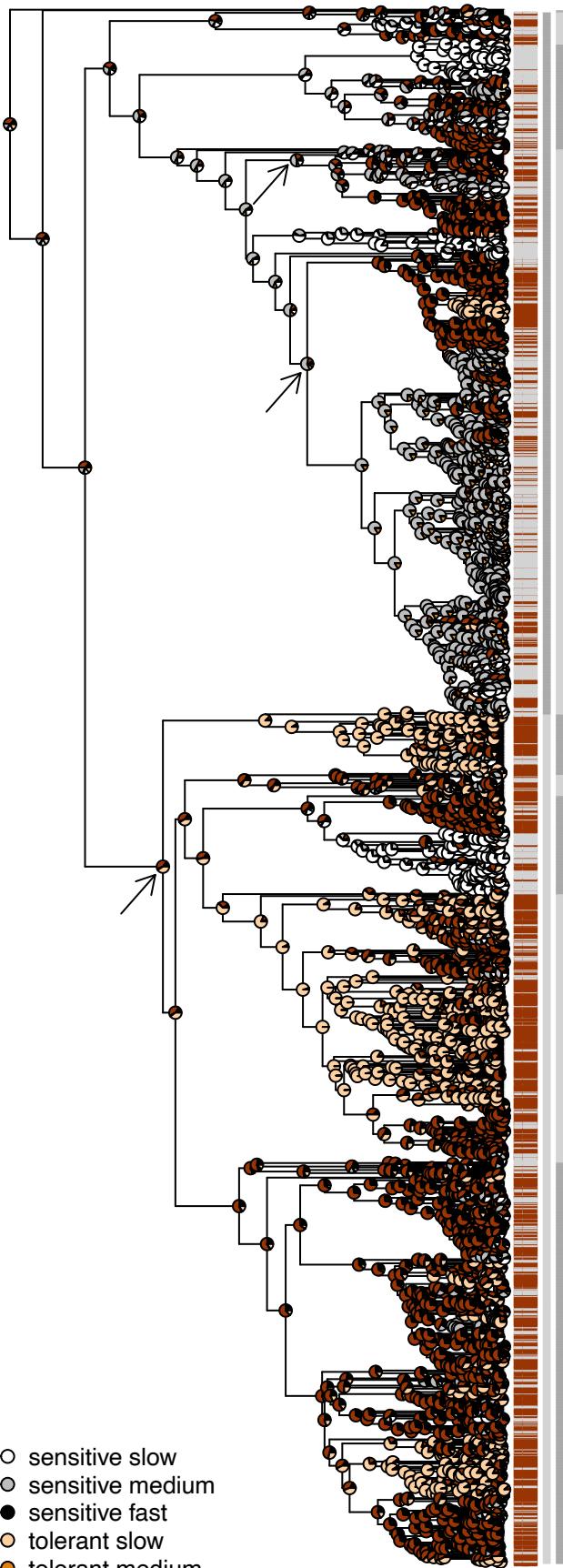
- 800 Hodkinson, T. R. (2018). Evolution and Taxonomy of the Grasses (Poaceae): A Model Family
801 for the Study of Species-Rich Groups. In *Annual Plant Reviews online* (pp. 255–294).
802 John Wiley & Sons, Ltd. <https://doi.org/10.1002/9781119312994.apr0622>
- 803 Huang, C.-H., Sun, R., Hu, Y., Zeng, L., Zhang, N., Cai, L., Zhang, Q., Koch, M. A., Al-Shehbaz,
804 I., Edger, P. P., Pires, J. C., Tan, D.-Y., Zhong, Y., & Ma, H. (2016). Resolution of
805 Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and
806 Supports Convergent Morphological Evolution. *Molecular Biology and Evolution*,
807 33(2), 394–412. <https://doi.org/10.1093/molbev/msv226>
- 808 Humphreys, A. M., & Linder, H. P. (2013). Evidence for recent evolution of cold tolerance in
809 grasses suggests current distribution is not limited by (low) temperature. *New
810 Phytologist*, 198(4), 1261–1273. <https://doi.org/10.1111/nph.12244>
- 811 Humphreys, A. M., Rydin, C., Jönsson, K. A., Alsop, D., Callender-Crowe, L. M., &
812 Barracough, T. G. (2016). Detecting evolutionarily significant units above the species
813 level using the generalised mixed Yule coalescent method. *Methods in Ecology and
814 Evolution*, 7(11), 1366–1375. <https://doi.org/10.1111/2041-210X.12603>
- 815 Jansson, R., Rodríguez-Castañeda, G., & Harding, L. E. (2013). What Can Multiple
816 Phylogenies Say About the Latitudinal Diversity Gradient? A New Look at the Tropical
817 Conservatism, Out of the Tropics, and Diversification Rate Hypotheses. *Evolution*,
818 67(6), 1741–1755. <https://doi.org/10.1111/evo.12089>
- 819 Judd, W. S., Sanders, R. W., & Donoghue, M. J. (1994). Angiosperm family pairs: Preliminary
820 phylogenetic analyses. *Harvard Papers in Botany*, 1(5), 1–51. JSTOR.
- 821 Kellogg, E. A. (2001). Evolutionary History of the Grasses. *Plant Physiology*, 125(3), 1198–
822 1205. <https://doi.org/10.1104/pp.125.3.1198>

- 823 Kellogg, E. A. (2015). *Flowering Plants. Monocots: Poaceae*. Springer International
824 Publishing. <https://doi.org/10.1007/978-3-319-15332-2>
- 825 Kerkhoff, A. J., Moriarty, P. E., & Weiser, M. D. (2014). The latitudinal species richness
826 gradient in New World woody angiosperms is consistent with the tropical
827 conservatism hypothesis. *Proceedings of the National Academy of Sciences*, 111(22),
828 8125–8130. <https://doi.org/10.1073/pnas.1308932111>
- 829 King, B., & Lee, M. S. Y. (2015). Ancestral State Reconstruction, Rate Heterogeneity, and the
830 Evolution of Reptile Viviparity. *Systematic Biology*, 64(3), 532–544.
831 <https://doi.org/10.1093/sysbio/syv005>
- 832 Köppen, W. (2011). The thermal zones of the Earth according to the duration of hot,
833 moderate and cold periods and to the impact of heat on the organic world.
834 *Meteorologische Zeitschrift*, 20(3), 351–360. <https://doi.org/10.1127/0941-2948/2011/105>
- 836 Körner, C. (2016). Plant adaptation to cold climates. *F1000Research*, 5.
837 <https://doi.org/10.12688/f1000research.9107.1>
- 838 Lancaster, L. T., & Humphreys, A. M. (2020). Global variation in the thermal tolerances of
839 plants. *Proceedings of the National Academy of Sciences*, 117(24), 13580–13587.
840 <https://doi.org/10.1073/pnas.1918162117>
- 841 Linder, H. P., Lehmann, C. E. R., Archibald, S., Osborne, C. P., & Richardson, D. M. (2018).
842 Global grass (Poaceae) success underpinned by traits facilitating colonization,
843 persistence and habitat transformation. *Biological Reviews*, 93(2), 1125–1144.
844 <https://doi.org/10.1111/brv.12388>

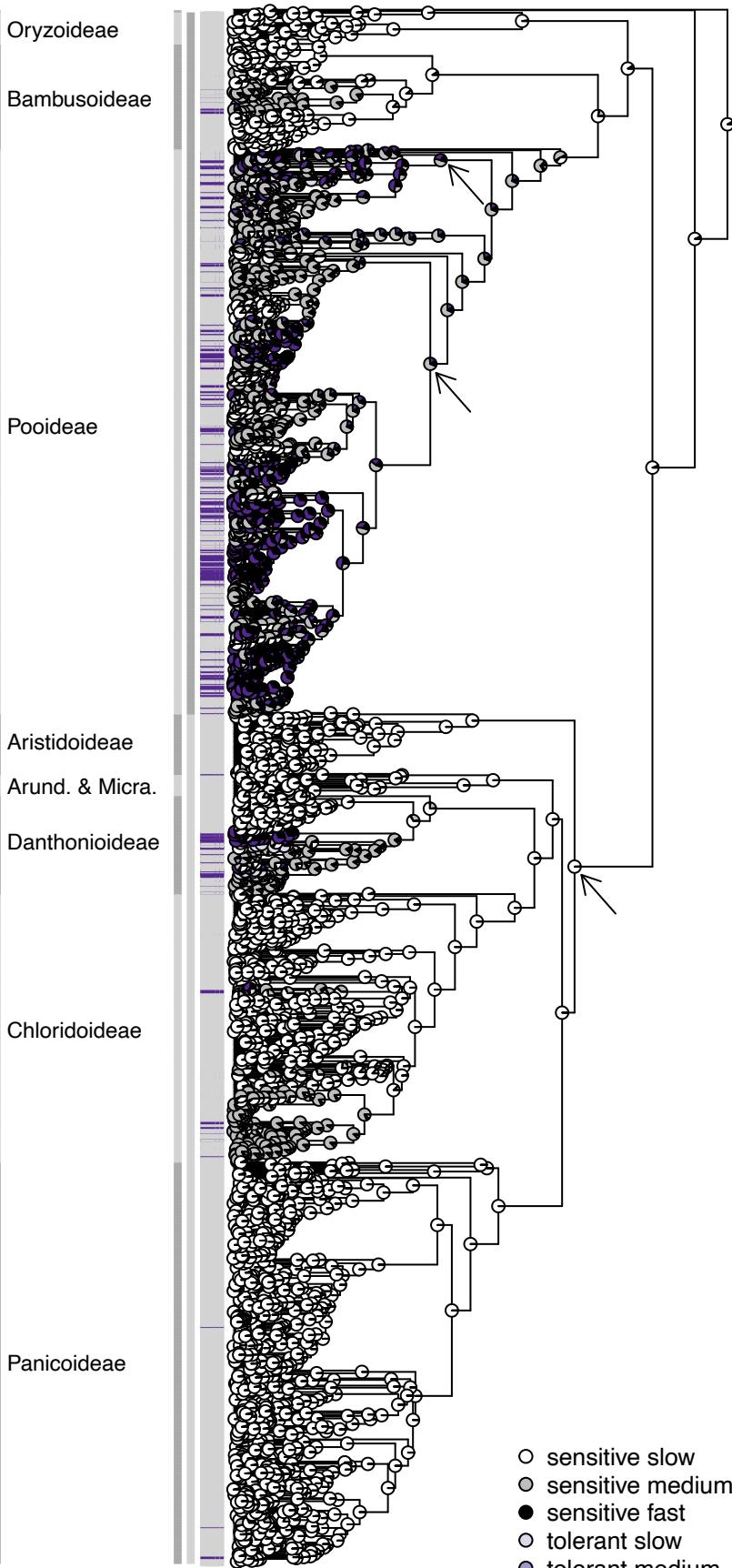
- 845 Liu, Y., Xiong, Y., & Bassham, D. C. (2009). Autophagy is required for tolerance of drought
846 and salt stress in plants. *Autophagy*, 5(7), 954–963.
847 <https://doi.org/10.4161/auto.5.7.9290>
- 848 Maddison, W. P., & FitzJohn, R. G. (2015). The Unsolved Challenge to Phylogenetic
849 Correlation Tests for Categorical Characters. *Systematic Biology*, 64(1), 127–136.
850 <https://doi.org/10.1093/sysbio/syu070>
- 851 Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B.,
852 Harrison, S. P., Hurlbert, A. H., Knowlton, N., Lessios, H. A., McCain, C. M., McCune,
853 A. R., McDade, L. A., McPeek, M. A., Near, T. J., Price, T. D., Ricklefs, R. E., Roy, K.,
854 Sax, D. F., ... Turelli, M. (2007). Evolution and the latitudinal diversity gradient:
855 Speciation, extinction and biogeography. *Ecology Letters*, 10(4), 315–331.
856 <https://doi.org/10.1111/j.1461-0248.2007.01020.x>
- 857 Nievola, C. C., Carvalho, C. P., Carvalho, V., & Rodrigues, E. (2017). Rapid responses of plants
858 to temperature changes. *Temperature*, 4(4), 371–405.
859 <https://doi.org/10.1080/23328940.2017.1377812>
- 860 Nürk, N. M., Michling, F., & Linder, H. P. (2018). Are the radiations of temperate lineages in
861 tropical alpine ecosystems pre-adapted? *Global Ecology and Biogeography*, 27(3),
862 334–345. <https://doi.org/10.1111/geb.12699>
- 863 Oliver, D. (1917). *Flora of tropical Africa* (Vol. 9, pp. 1–784). L. Reeve and Co.
864 <https://www.biodiversitylibrary.org/item/231746>
- 865 Pagel, M. (1994). Detecting correlated evolution on phylogenies: A general method for the
866 comparative analysis of discrete characters. *Proceedings of the Royal Society of
867 London. Series B: Biological Sciences*, 255(1342), 37–45.
868 <https://doi.org/10.1098/rspb.1994.0006>

- 869 Pagel, M., Meade, A., & Barker, D. (2004). Bayesian Estimation of Ancestral Character States
870 on Phylogenies. *Systematic Biology*, 53(5), 673–684.
871 <https://doi.org/10.1080/10635150490522232>
- 872 Pal Stolsmo, S., Lindberg, C. L., Ween, R. E., Schat, L., Preston, J. C., Humphreys, A. M., &
873 Fjellheim, S. (2024). *Evolution of frost and drought responses in cool season grasses*
874 (*Pooideae*): Was drought tolerance a precursor to frost tolerance? (p.
875 2024.04.19.590374). bioRxiv. <https://doi.org/10.1101/2024.04.19.590374>
- 876 Peterson, P. M., Arrieta, Y. H., & Romaschenko, K. (2018). Phylogeny of Muhlenbergia subg.
877 Pseudosporobolus, including M. spatha (Poaceae, Chloridoideae, Cynodonteae,
878 Muhlenbergiinae) now found in Zacatecas, Mexico. *PhytoKeys*, 103, 83–94.
879 <https://doi.org/10.3897/phytokeys.103.26162>
- 880 Peterson, P. M., Romaschenko, K., & Johnson, G. (2010). A phylogeny and classification of
881 the Muhlenbergiinae (Poaceae: Chloridoideae: Cynodonteae) based on plastid and
882 nuclear DNA sequences. *American Journal of Botany*, 97(9), 1532–1554.
883 <https://doi.org/10.3732/ajb.0900359>
- 884 Pironon, S., Ondo, I., Diazgranados, M., Allkin, R., Baquero, A. C., Cámara-Leret, R., Canteiro,
885 C., Dennehy-Carr, Z., Govaerts, R., Hargreaves, S., Hudson, A. J., Lemmens, R.,
886 Milliken, W., Nesbitt, M., Patmore, K., Schmelzer, G., Turner, R. M., van Andel, T. R.,
887 Ulian, T., ... Willis, K. J. (2024). The global distribution of plants used by humans.
888 *Science*, 383(6680), 293–297. <https://doi.org/10.1126/science.adg8028>
- 889 Pound, M. J., & Salzmann, U. (2017). Heterogeneity in global vegetation and terrestrial
890 climate change during the late Eocene to early Oligocene transition. *Scientific*
891 *Reports*, 7(1), 43386. <https://doi.org/10.1038/srep43386>

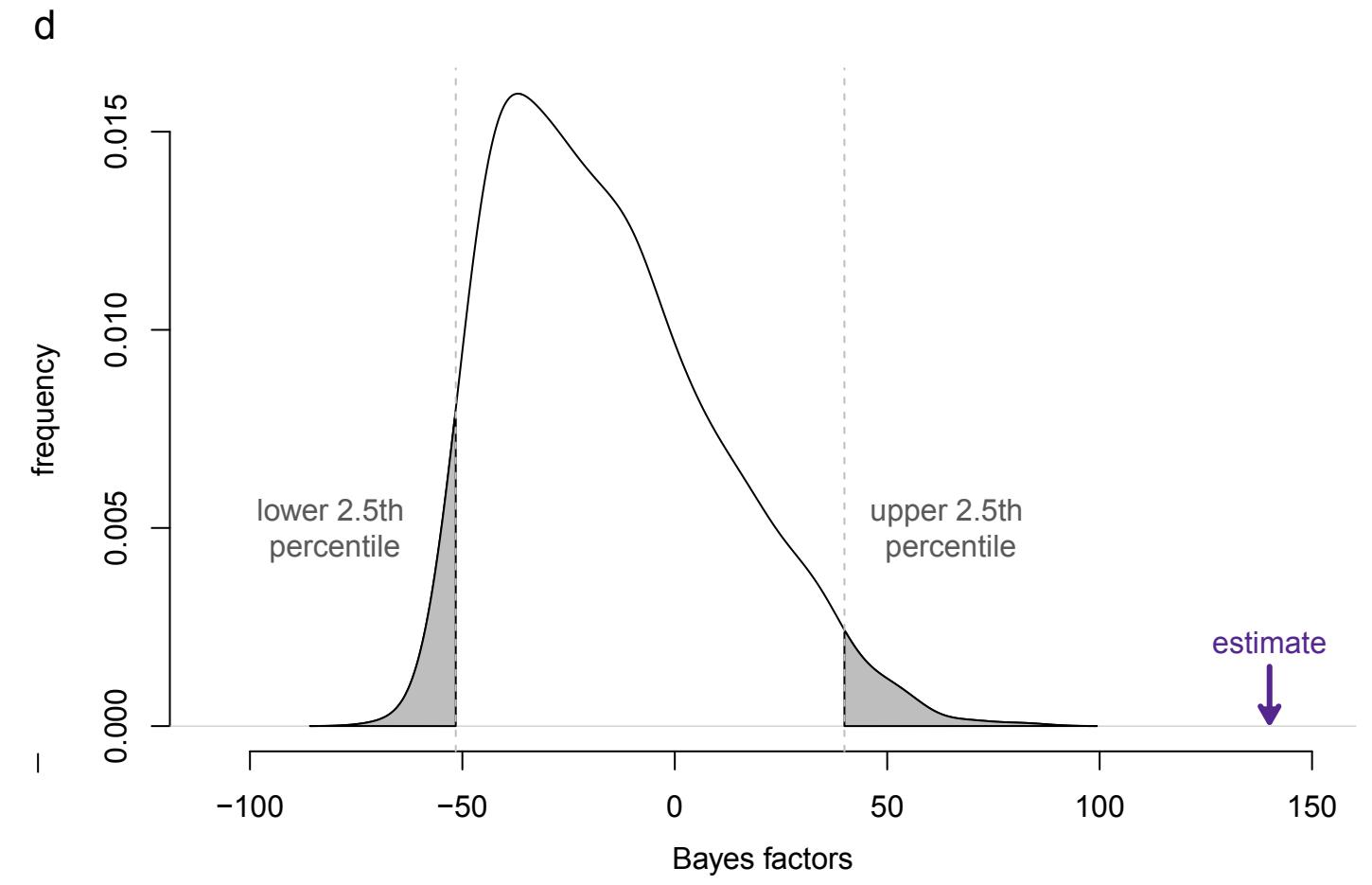
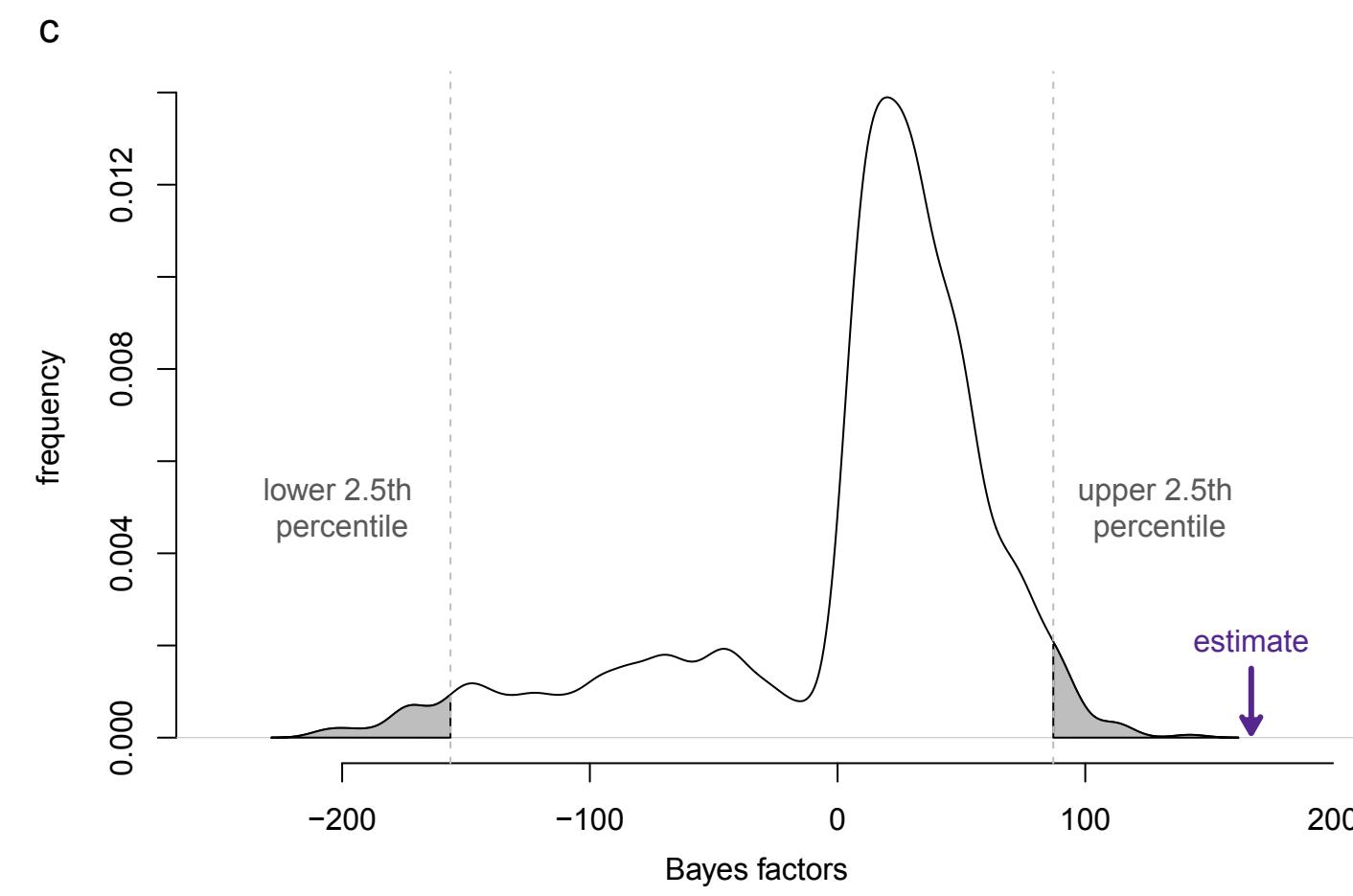
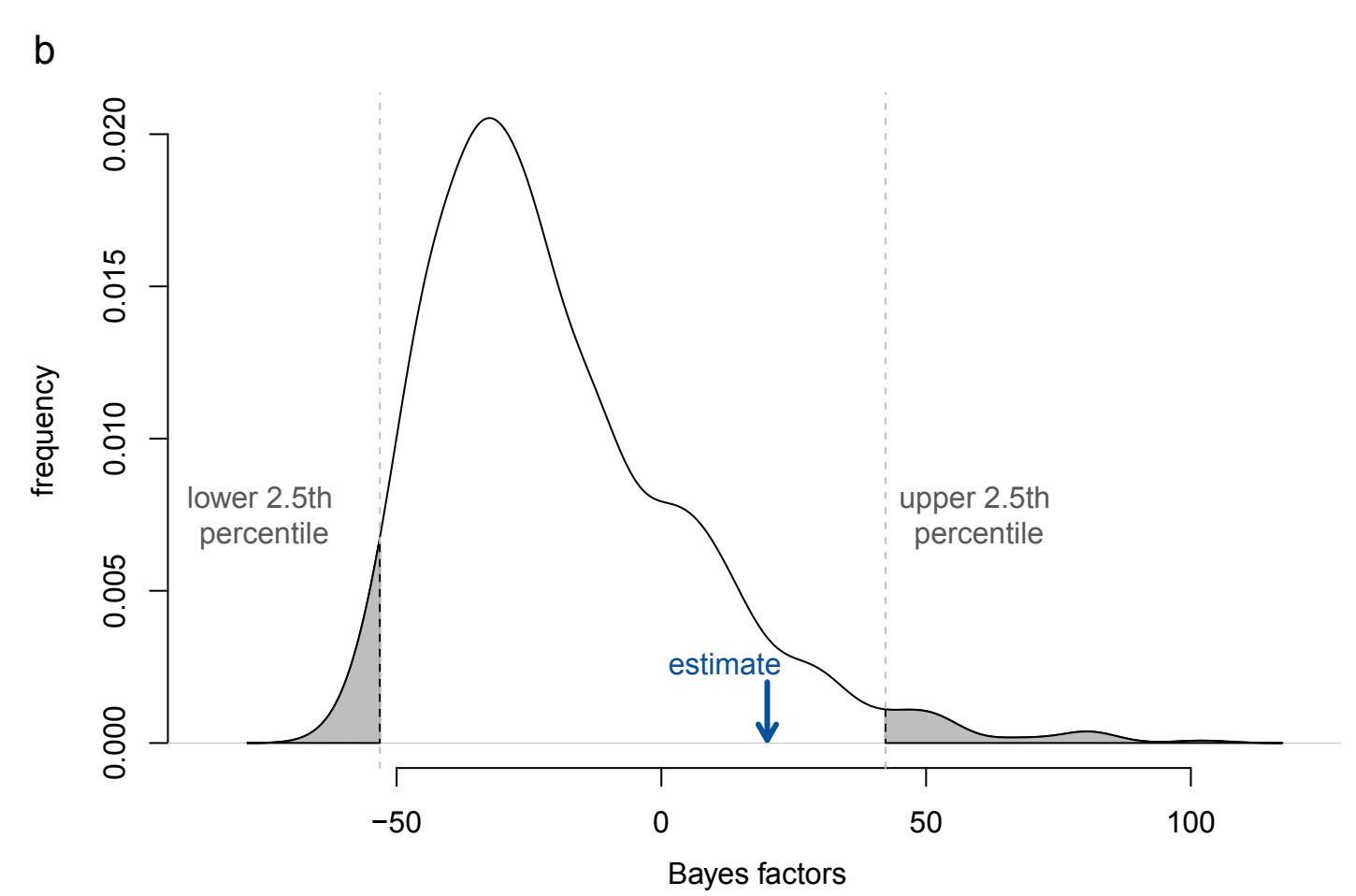
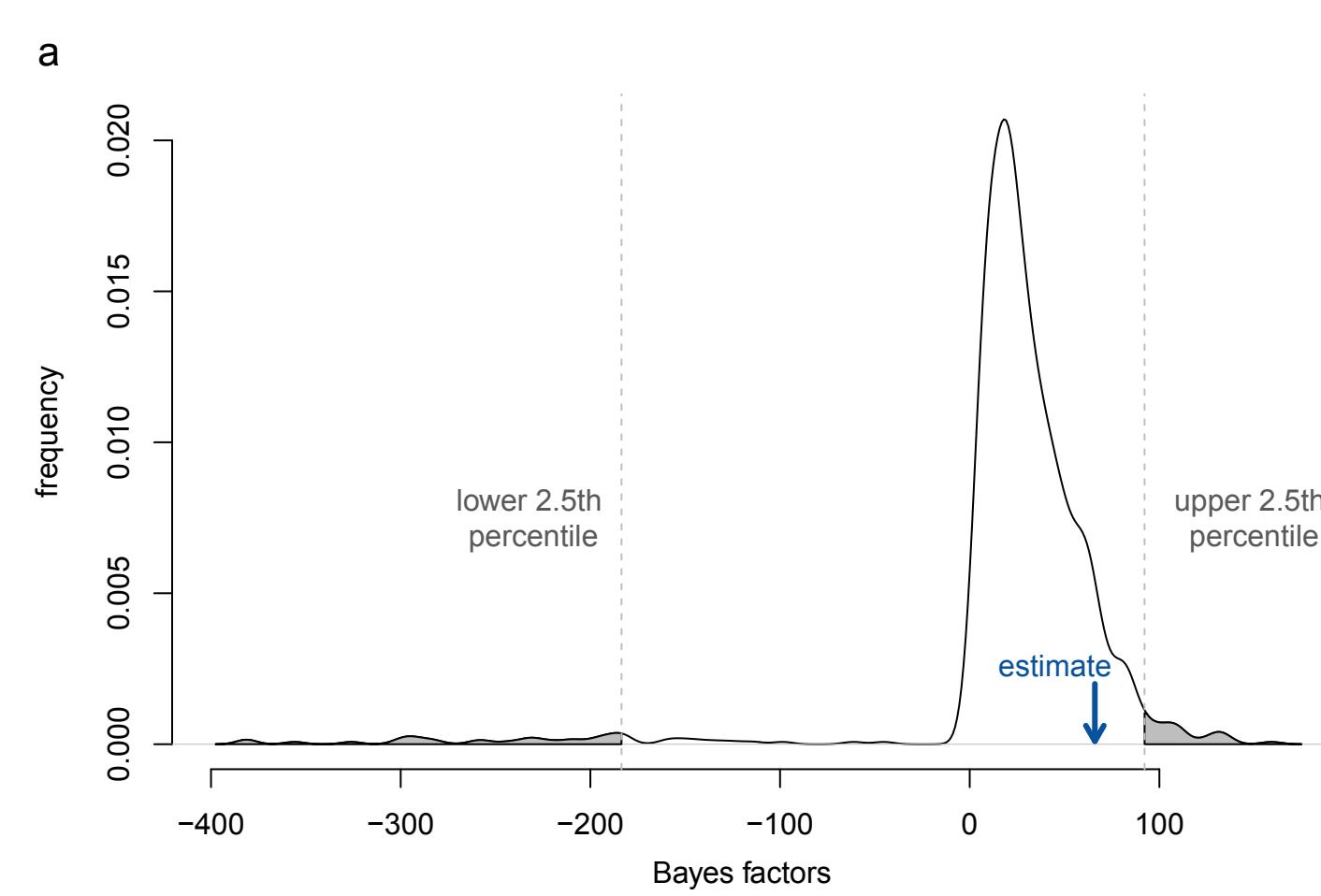

- 892 Preston, J. C., & Sandve, S. R. (2013). Adaptation to seasonality and the winter freeze.
- 893 *Frontiers in Plant Science*, 4. <https://doi.org/10.3389/fpls.2013.00167>
- 894 Puglielli, G., Tordoni, E., Humphreys, A. M., Kalwij, J. M., Hutchings, M. J., & Laanisto, L.
- 895 (2022). *The cold-drought tolerance trade-off in temperate woody plants constrains*
- 896 *range size, but not range filling* (p. 2021.07.24.453622). bioRxiv.
- 897 <https://doi.org/10.1101/2021.07.24.453622>
- 898 R Core Team. (2020). *R: A Language and Environment for Statistical Computing* (3.6.3)
- 899 [Computer software]. R Foundation for Statistical Computing. [https://www.R-](https://www.R-project.org/)
- 900 [project.org/](https://www.R-project.org/)
- 901 Rabosky, D. L., & Goldberg, E. E. (2015). Model Inadequacy and Mistaken Inferences of Trait-
- 902 Dependent Speciation. *Systematic Biology*, 64(2), 340–355.
- 903 <https://doi.org/10.1093/sysbio/syu131>
- 904 Revell, L. J. (2012). phytools: An R package for phylogenetic comparative biology (and other
- 905 things). *Methods in Ecology and Evolution*, 3(2), 217–223.
- 906 <https://doi.org/10.1111/j.2041-210X.2011.00169.x>
- 907 Ricklefs, R. E., & Renner, S. S. (1994). Species Richness Within Families of Flowering Plants.
- 908 *Evolution*, 48(5), 1619–1636. JSTOR. <https://doi.org/10.2307/2410252>
- 909 Rohde, K. (1992). Latitudinal Gradients in Species Diversity: The Search for the Primary
- 910 Cause. *Oikos*, 65(3), 514–527. JSTOR. <https://doi.org/10.2307/3545569>
- 911 Sakai, A., & Larcher, W. (1987). *Frost survival of plants*. Springer-Verlag.
- 912 Sandve, S. R., & Fjellheim, S. (2010). Did gene family expansions during the Eocene-
- 913 Oligocene boundary climate cooling play a role in Pooideae adaptation to cool
- 914 climates? *Molecular Ecology*, 19(10), 2075–2088. <https://doi.org/10.1111/j.1365-294X.2010.04629.x>


- 916 Schmerler, S. B., Clement, W. L., Beaulieu, J. M., Chatelet, D. S., Sack, L., Donoghue, M. J., &
917 Edwards, E. J. (2012). Evolution of leaf form correlates with tropical–temperate
918 transitions in Viburnum (Adoxaceae). *Proceedings of the Royal Society B: Biological
919 Sciences*, 279(1744), 3905–3913. <https://doi.org/10.1098/rspb.2012.1110>
- 920 Schubert, M., Grønvold, L., Sandve, S. R., Hvidsten, T. R., & Fjellheim, S. (2019). Evolution of
921 Cold Acclimation and Its Role in Niche Transition in the Temperate Grass Subfamily
922 Pooideae. *Plant Physiology*, 180(1), 404–419. <https://doi.org/10.1104/pp.18.01448>
- 923 Schubert, M., Humphreys, A. M., Lindberg, C. L., Preston, J. C., & Fjellheim, S. (2020). TO
924 COLDLY GO WHERE NO GRASS HAS GONE BEFORE: A MULTIDISCIPLINARY REVIEW
925 OF COLD ADAPTATION IN POACEAE: EVOLUTION OF COLD ADAPTATIONS IN
926 GRASSES. *Annual Plant Reviews*, 3, 1–40.
- 927 Schubert, M., Marcussen, T., Meseguer, A. S., & Fjellheim, S. (2019). The grass subfamily
928 Pooideae: Cretaceous–Palaeocene origin and climate-driven Cenozoic diversification.
929 *Global Ecology and Biogeography*, 28(8), 1168–1182.
930 <https://doi.org/10.1111/geb.12923>
- 931 Sierra-Almeida, A., Reyes-Bahamonde, C., & Cavieres, L. A. (2016). Drought increases the
932 freezing resistance of high-elevation plants of the Central Chilean Andes. *Oecologia*,
933 181(4), 1011–1023. <https://doi.org/10.1007/s00442-016-3622-5>
- 934 Slette, I. J., Post, A. K., Awad, M., Even, T., Punzalan, A., Williams, S., Smith, M. D., & Knapp,
935 A. K. (2019). How ecologists define drought, and why we should do better. *Global
936 Change Biology*, 25(10), 3193–3200. <https://doi.org/10.1111/gcb.14747>
- 937 Smith, A. B., Murphy, S. J., Henderson, D., & Erickson, K. D. (2023). Including imprecisely
938 georeferenced specimens improves accuracy of species distribution models and

- 939 estimates of niche breadth. *Global Ecology and Biogeography*, 32(3), 342–355.
- 940 <https://doi.org/10.1111/geb.13628>
- 941 Spriggs, E. L., Christin, P.-A., & Edwards, E. J. (2014). C4 Photosynthesis Promoted Species
- 942 Diversification during the Miocene Grassland Expansion. *PLoS ONE*, 9(5), e97722.
- 943 <https://doi.org/10.1371/journal.pone.0097722>
- 944 Spriggs, E. L., Clement, W. L., Sweeney, P. W., Madriñán, S., Edwards, E. J., & Donoghue, M.
- 945 J. (2015). Temperate radiations and dying embers of a tropical past: The
- 946 diversification of Viburnum. *New Phytologist*, 207(2), 340–354.
- 947 <https://doi.org/10.1111/nph.13305>
- 948 Stevens, P. F. (2001, onwards). *Angiosperm phylogeny Website. Version 14, July 2017*.
- 949 <http://www.mobot.org/MOBOT/research/APweb/>
- 950 Strömberg, C. A. E. (2011). Evolution of Grasses and Grassland Ecosystems. *Annual Review of*
- 951 *Earth and Planetary Sciences*, 39(1), 517–544. <https://doi.org/10.1146/annurev-earth-040809-152402>
- 953 Sumner, E. E., Williamson, V. G., Gleadow, R. M., Wevill, T., & Venn, S. E. (2022). Acclimation
- 954 to water stress improves tolerance to heat and freezing in a common alpine grass.
- 955 *Oecologia*, 199(4), 831–843. <https://doi.org/10.1007/s00442-022-05245-1>
- 956 Uyeda, J. C., Zenil-Ferguson, R., & Pennell, M. W. (2018). Rethinking phylogenetic
- 957 comparative methods. *Systematic Biology*, 67(6), 1091–1109.
- 958 <https://doi.org/10.1093/sysbio/syy031>
- 959 Visser, V., Clayton, W. D., Simpson, D. A., Freckleton, R. P., & Osborne, C. P. (2013).
- 960 Mechanisms driving an unusual latitudinal diversity gradient for grasses. *Global*
- 961 *Ecology and Biogeography*, 23(1), 61–75. <https://doi.org/10.1111/geb.12107>


- 962 Watcharamongkol, T., Christin, P.-A., & Osborne, C. P. (2018). C4 photosynthesis evolved in
963 warm climates but promoted migration to cooler ones. *Ecology Letters*, 21(3), 376–
964 383. <https://doi.org/10.1111/ele.12905>
- 965 Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen,
966 E. I., Jonathan Davies, T., Grytnes, J.-A., Harrison, S. P., Hawkins, B. A., Holt, R. D.,
967 McCain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle
968 in ecology and conservation biology. *Ecology Letters*, 13(10), 1310–1324.
969 <https://doi.org/10.1111/j.1461-0248.2010.01515.x>
- 970 Wiens, J. J., & Donoghue, M. J. (2004). Historical biogeography, ecology and species
971 richness. *Trends in Ecology & Evolution*, 19(12), 639–644.
972 <https://doi.org/10.1016/j.tree.2004.09.011>
- 973 Wiens, J. J., & Graham, C. H. (2005). Niche Conservatism: Integrating Evolution, Ecology, and
974 Conservation Biology. *Annual Review of Ecology, Evolution, and Systematics*, 36(1),
975 519–539. <https://doi.org/10.1146/annurev.ecolsys.36.102803.095431>
- 976 Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, Rhythms, and
977 Aberrations in Global Climate 65 Ma to Present. *Science*, 292(5517), 686–693.
978 <https://doi.org/DOI: 10.1126/science.1059412>
- 979 Zanne, A. E., Tank, D. C., Cornwell, W. K., Eastman, J. M., Smith, S. A., FitzJohn, R. G.,
980 McGlinn, D. J., O'Meara, B. C., Moles, A. T., Reich, P. B., Royer, D. L., Soltis, D. E.,
981 Stevens, P. F., Westoby, M., Wright, I. J., Aarssen, L., Bertin, R. I., Calaminus, A.,
982 Govaerts, R., ... Beaulieu, J. M. (2014). Three keys to the radiation of angiosperms
983 into freezing environments. *Nature*, 506(7486), 89–92.
984 <https://doi.org/10.1038/nature12872>

- 985 Zhang, L., Zhu, X., Zhao, Y., Guo, J., Zhang, T., Huang, W., Huang, J., Hu, Y., Huang, C.-H., &
986 Ma, H. (2022). Phylotranscriptomics Resolves the Phylogeny of Pooideae and
987 Uncovers Factors for Their Adaptive Evolution. *Molecular Biology and Evolution*,
988 39(2), msac026. <https://doi.org/10.1093/molbev/msac026>
- 989 Zhong, J., Robbett, M., Poire, A., & Preston, J. C. (2018). Successive evolutionary steps drove
990 Pooideae grasses from tropical to temperate regions. *New Phytologist*, 217(2), 925–
991 938. <https://doi.org/10.1111/nph.14868>
- 992 Zizka, A., Carvalho-Sobrinho, J. G., Pennington, R. T., Queiroz, L. P., Alcantara, S., Baum, D.
993 A., Bacon, C. D., & Antonelli, A. (2020). Transitions between biomes are common and
994 directional in Bombacoideae (Malvaceae). *Journal of Biogeography*, 47(6), 1310–
995 1321. <https://doi.org/10.1111/jbi.13815>
- 996 Zizka, A., Silvestro, D., Andermann, T., Azevedo, J., Ritter, C. D., Edler, D., Farooq, H.,
997 Herdean, A., Ariza, M., Scharn, R., Svantesson, S., Wengström, N., Zizka, V., &
998 Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records
999 from biological collection databases. *Methods in Ecology and Evolution*, 10(5), 744–
1000 751. <https://doi.org/10.1111/2041-210X.13152>
- 1001

- sensitive slow
- sensitive medium
- sensitive fast
- tolerant slow
- tolerant medium
- tolerant fast

- sensitive slow
- sensitive medium
- sensitive fast
- tolerant slow
- tolerant medium
- tolerant fast

Figure 1. Ancestral state reconstructions for drought, frost and severe winter tolerance, displayed on facing trees for (a) drought-frost and (b) drought-winter. Ancestral states were inferred from the best-fitting hidden rates model (Tables 1 and 2). Pie charts indicate the marginal probabilities of the most likely state and rate at each node (the darker the shade, the higher the transition rate). Drought and frost tolerance in different rate categories are interpreted as representing different “types” of tolerance, corresponding to warm/cool climate drought tolerance and periodic/episodic frost tolerance, respectively (Supporting Text). Tolerance/sensitivity of the sampled species is labelled at the tips (red = drought tolerant, blue = frost tolerant, purple = winter tolerant, grey = sensitive). Outer grey vertical line: Subfamilies (“Arund. & Micra.” = Arundinoideae and Micrairoideae). Inner grey vertical line: the BOP clade (dark grey; Bambusoideae, Oryzoideae, Pooideae) and the PACMAD clade (light grey; Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, Danthonioideae). The two successive sisters to the rest sampled here (*Puelia olyriformis* and *Pharus latifolius*) are not part of any labelled subfamily or clade. Arrows indicate ancestral nodes where transitions from closed to open habitats may have occurred (Kellogg 2001; Bouchenak-Khelladi et al. 2010; Zhang et al. 2022; Elliott et al. 2023).

Figure 2. Difference in fit between independent and correlated models of evolution. (a,b) Models fitted to 1000 simulated traits and observed frost tolerance data using maximum likelihood (a) and Bayesian (b) methods. (c,d) Models fitted to 1000 simulated traits and observed winter tolerance data using maximum likelihood (c) and Bayesian (d) methods. The difference-in-fit 95% confidence intervals (CI) for simulated data are indicated by vertical, dashed lines, with the area outside the CI shaded. Arrows indicate the difference in fit for the observed drought-frost (a,b) and drought-winter (c,d) data.

Table 1: Likelihood and AICc scores for ancestral state reconstructions with different numbers of hidden rate categories (CorHMM) for each of the three datasets^a

Number of rate categories	Drought			Frost			Winter		
20% threshold	Log-likelihood	AICc	ΔAICc	Log-likelihood	AICc	ΔAICc	Log-likelihood	AICc	ΔAICc
One-rate	-1703.06	3410.12	340.06	-1450.15	2904.31	415.81	-891.76	1787.53	258.88
Two-rate	-1542.86	3097.75	27.69	-1262.47	2536.98	48.48	-778.66	1569.36	40.71
Three-rate	-1523.09	3070.30	0.24	-1232.19	2488.50	0	-752.27	1528.65	0
Four-rate	-1514.88	3070.06	0	-1229.63	2499.56	11.06	-745.91	1532.13	3.48
Five-rate	-1511.31	3083.30	13.24	-1227.03	2514.74	26.24	-743.61	1547.90	19.25
5% threshold									
One-rate	-1479.34	2962.68	347.24	-1311.25	2626.50	355.91	-1116.55	2237.10	326.34
Two-rate	-1329.05	2670.13	54.69	-1143.39	2298.80	28.21	-977.41	1966.85	56.09
Three-rate	-1295.66	2615.44	0	-1123.21	2270.59	0	-943.41	1910.93	0.17
Four-rate	-1289.51	2619.32	3.88	-1120.57	2281.45	10.86	-935.23	1910.76	0
Five-rate	-1288.19	2637.06	21.62	-1120.32	2301.31	30.72	-931.14	1922.96	12.20
50% threshold									
One-rate	-1629.85	3263.70	317.52	-1388.07	2780.17	388.47	-581.44	1166.89	165.37
Two-rate	-1467.73	2947.50	1.32	-1208.63	2433.32	41.62	-499.67	1015.40	13.88
Three-rate	-1461.04	2946.18	0	-1185.64	2399.43	7.73	-488.70	1001.52	0
Four-rate	-1456.42	2953.14	6.96	-1175.70	2391.70	0	-482.10	1004.51	2.99
Five-rate	-1454.33	2969.34	23.16	-1171.75	2404.18	12.48	-481.73	1024.13	22.61

^aShading denotes the best-fitting models ($\Delta\text{AICc} < 2$; Burnham & Anderson, 2002).

Table 2: Rate matrix for the best-fitting hidden rates models (three-rate model) for the 20% threshold dataset^a

a) Drought tolerance

	Rate	Fast (R1)		Medium (R2)		Slow (R3)	
Rate	Tolerance	0	1	0	1	0	1
Fast (R1)	0	-	100.00	0.02	-	0.03	-
	1	40.76	-	-	0.02	-	0.03
Medium (R2)	0	0.03	-	-	7.81	0.02	-
	1	-	0.03	40.76	-	-	0.02
Slow (R3)	0	0.04	-	0.00	-	-	0.00
	1	-	0.04	-	0.00	0.00	-

R

b) Frost tolerance

	Rate	Fast (R1)		Slow (R2)		Medium (R3)	
Rate	Tolerance	0	1	0	1	0	1
Fast (R1)	0	-	2.77	0.02	-	0.00	-
	1	13.21	-	-	0.02	-	0.00
Slow (R2)	0	0.04	-	-	1.78	0.02	-
	1	-	0.04	0.77	-	-	0.02
Medium (R3)	0	0.00	-	0.01	-	-	8.78
	1	-	0.00	-	0.01	0.42	-

c) Winter tolerance

	Rate	Fast (R1)		Medium (R2)		Slow (R3)	
Rate	Tolerance	0	1	0	1	0	1
Fast (R1)	0	-	100.00	0.09	-	0.02	-
	1	50.66	-	-	0.09	-	0.02
Medium (R2)	0	0.03	-	-	1.35	0.02	-
	1	-	0.03	14.28	-	-	0.02
Slow (R3)	0	0.00	-	0.01	-	-	0.00
	1	-	0.00	-	0.01	0.02	-

^aRates have been rounded off to two decimal places

Table 3: Likelihood and AICc scores for the one-rate independent, one-rate correlated, and two-rate independent models for each of the three datasets^a

Number of rate cats.	Frost-Drought			Winter-Drought		
	-lnL	AICc		-lnL	AICc	ΔAICc
20% threshold						
Independent	-3153.21	6314.43	414.25	-2594.82	5197.65	403.66
Correlated	-3119.91	6255.89	355.71	-2506.20	5028.46	234.47
Two-rate	-2940.05	5900.18	0	-2386.95	4793.99	0
5% threshold						
Independent	-2790.59	5589.19	357.81	-2595.89	5199.79	464.14
Correlated	-2781.61	5579.27	347.89	-2520.76	5057.56	321.91
Two-rate	-2605.65	5231.38	0	-2357.79	4735.65	0
50% threshold						
Independent	-3017.92	6043.86	482.34	-2141.79 ^b	4291.59 ^b	320.87 ^b
Correlated	-2910.24	5836.54	275.02	NA ^b	NA ^b	NA ^b
Two-rate	-2770.72	5561.52	0	-1975.32	3970.72	0

^aShading denotes the best-fitting models ($\Delta\text{AICc}<2$; Burnham & Anderson, 2002).

^bFor winter-drought based on the 50% threshold, we ran a reduced one-rate model instead of the full independent and correlated models (see Supplementary Text).