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14 Abstract

15  Time-of-day variation in the molecular profile of biofluids and tissues is a well-described phenomenon,
16 but — especially for proteomics — is rarely considered in terms of the challenges this presents to
17 reproducible biomarker identification. In this work we demonstrate these confounding issues using a
18  small-scale proteomics analysis of male participants in a constant routine protocol following an 8-day
19 laboratory study, in which sleep-wake, light-dark and meal timings were controlled. We provide a case
20  study analysis of circadian and ultradian rhythmicity in proteins in the complement and coagulation
21 cascades, as well as apolipoproteins, and demonstrate that rhythmicity increases the risk of Type Il
22 errors due to the reduction in statistical power from increased variance. For the proteins analysed
23 herein we show that to maintain statistical power if chronobiological variation is not controlled for, n
24 should be increased (by between 9% and 20%); failure to do so would increase B, the chance of Type
25 Il error, from a baseline value of 20% to between 22% and 28%. Conversely, controlling for rhythmic
26  time-of-day variation in study design offers the opportunity to improve statistical power and reduce
27  the chances of Type Il errors. Indeed, control of time-of-day sampling is a more cost-effective strategy
28  than increasing sample sizes. We recommend that best practice in proteomics study design should
29  account for temporal variation as part of sampling strategy where possible. Where this is impractical,
30 we recommend that additional variance from chronobiological effects be considered in power
31 calculations, that time of sampling be reported as part of study metadata, and that researchers
32 reference any previously identified rhythmicity in biomarkers and pathways of interest. These
33 measures would mitigate against both false and missed discoveries, and improve reproducibility,
34  especially in studies looking at biomarkers, pathways or conditions with a known chronobiological

35 component.

36
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39 Introduction

40 Investigating time of day variation in different human biofluids and tissues has been a growing focus
41  of research over the past decade. ! This variation can be driven by endogenous circadian rhythms,
42 which are influenced by central and/or peripheral clocks, as well as by exogenous diurnal rhythms
43 resulting from behavioural and environmental cycles. In turn, dysregulation or disruption of these
44  chronobiological variations has been associated to a wide range of diseases and conditions. 2® These
45 rhythms are well described in terms of metabolomics and transcriptomics; "*° however,
46  chronobiological variations in proteomic expression are less well mapped. 1¥22 This is in part due to
47  the sheer range of proteins and the relatively high costs of untargeted proteomic experiments; the
48 precise number is unknown but a count of around 10,000 distinct proteins has been suggested for
49 peripheral blood, ranging in concentration over at least 9 orders of magnitude. ** This diversity has
50 resulted in substantial gaps in current knowledge about which proteins and pathways exhibit diurnal

51  or endogenous rhythmicity.

52  The rhythmicity of protein expression is relevant beyond analysis of circadian rhythm disorders, as
53  temporal variation increases the potential for study design error and reduces statistical power. On the
54  firstissue, if a protein has a rhythmic component, this creates the potential for confounding if studies
55 are designed without taking rhythmicity into account. This might occur, for example through selection
56  /sampling bias, such as in a case / control study if all cases were to be measured in a hospital setting
57  during a ‘morning round’, and controls were to be measured by convenience sampling, perhaps later
58 in the working day. This bias would increase the risks of Type | errors, i.e. false positive identification
59  of biomarkers as differentiating between cases and controls, with the risks of bias proportionate to the
60 rhythm amplitude. Rhythmicity also increases the risk of Type Il errors, by reducing statistical power.
61  This reduction in statistical power for a given study follows naturally from the increase in variance in
62  thefeatures (here proteins) being measured. These challenges to study design can, however, also offer
63 opportunities. By controlling for chronobiological variation through — for example — controlled time-
64  of-day sampling, variance can be reduced and statistical power improved. Such study design steps are

65 likely to be much more cost-effective than simply increasing the number of participants.

66 In this work, we provide a case study of the significance of rhythmicity for a small set of high-
67  abundance proteins in human serum, by measuring protein concentration at a two-hourly resolution
68  across 30 sequential hours and identifying rhythmic features alongside their acrophase (peak) values

69  andamplitudes. We use these data to provide a real-world illustration of the challenges to study design
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70  that rhythmicity presents, in terms of increased n to maintain statistical power (or the opportunity to
71 reduce n and maintain statistical power, if rhythmicity is controlled for). Finally, we set out four
72 suggested mitigation steps against both Type | and Type Il errors driven by chronobiology in proteomic
73 analyses. These include incorporating time of sampling in study design; giving consideration to
74  chronobiological issues in statistical power calculations; reporting time of sampling for cases and
75 controls (with p-values) as metadata; and reporting any literature identified rhythmicity in any

76 biomarkers of interest, to help provide context for readers.

77 Method and Materials

78  Experimental model and subject details

79  The samples analysed in this work were selected from a previous study as described in Isherwood et
80  al. ¥ Briefly, 24 healthy male volunteers were recruited by the Surrey Clinical Research Facility (CRF);
81 the study was given a favourable ethical opinion from the University of Surrey ethics committee and
82  all participants gave written informed consent. Participants’ blood was sampled during constant
83 routine (60 blood draws: every 30 minutes for 30 sequential hours). Inclusion criteria included being
84  male; aged between 18 and 35 years; BMI between 18 and 30 kg/m? (inclusive) at screening; and
85 habitual (at least 5 days per week) hours in bed per night between 7-9 hours which included a bedtime
86 between 22:00-01:00 and waketime between 06:00-09:00. An ESS (Epworth Sleepiness Scale) score <9
87  was treated as indicative of normal range daytime sleepiness, an HO (Horne-Ostberg; diurnal
88 preference) score between 30-70 was taken as the normal range and a PSQI (Pittsburgh Sleep Quality
89 Index) score <5 was considered indicative of satisfactory sleep quality and sleep. Shift workers involved
90 in night work within the past six months and volunteers that had travelled across more than two time
91  zones within a month before the study were excluded. Additional exclusion criteria were, smokers or
92 nicotine products users within the 6 months prior to screening, and any regular use of medication
93 known to influence circadian rhythm. A 10-day pre-laboratory routine, a previously validated standard
94  for our human chronobiology experiments, was employed. 18 The full details of both the pre-
95 laboratory protocol and the laboratory protocol are set out in Isherwood et al.,*® including allowed
96 sleep windows, motion and light measurement via Actiwatches [Cambridge Neurotechnology,
97 Cambridge, UK] and diet diaries, supplemented by continuous glucose monitors (CGMs) [Freestyle
98 Libre 2, Abbott Laboratories Limited]. Compliance with the pre-laboratory routine was monitored by
99 CGM confirmed compliance to the meal eating times. Upon admission in the CRF in the afternoon of
100 Day 0, the participants were assessed to confirm compliance to the pre-laboratory routine and a review
101  of medication, an alcohol breath test and a urine sample for analysis of cotinine and drugs of abuse
102 were performed. Participants were supervised throughout the laboratory sessions by medical/clinical

103 research staff. Laboratory environmental conditions and meals are again set out in Isherwood et al. **

Page 3


https://doi.org/10.1101/2024.06.28.601121
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.28.601121; this version posted June 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

104 During the laboratory period 12 participants consumed hourly small meals throughout the waking
105 period and 12 consumed two large daily meals. Following the diet regimes, all participants underwent
106  a constant routine protocol with 30-60 min blood sampling. From the dataset of 12 individuals on the
107  small-meal regime 11 were selected at random. The samples from the constant routine were taken

108  forward for this proteomics analysis.
109 Sample preparation

110 Human sera (50 puL) were aliquoted into fresh Eppendorf tubes prior to denaturing with 5 pL of 0.1%
111 (w/v) RapiGest™ (Waters Corporation, Milford, MA) in 50 mM ammonium bicarbonate and incubated
112 at 80°C for 45 min. Following incubation, 100 mM DTT (3 uL) was added and incubated for a further
113 30 mins at 60°C to reduce the proteins, before being alkylated with 200 mM iodoacetamide (3 L) at
114 room temperature for 30 min. Trypsin 1:50 (w/w) (Gold Mass Spectrometry grade, Promega, Madison,
115 WI, USA) was added to each sample for proteolytic digestion and left incubating overnight at 37°C. TFA
116  was added to a final concentration of 0.5% (v/v) to hydrolyse the RapiGest and heated for a further 45
117 min at 37°C, before centrifuging for 25 min at 18,000 g. The supernatant was collected and 3 pL
118  aliquoted for LC-MS analysis. Aliquoted samples were diluted 1:250 (v/v) with 750 pL of 0.1% FA (v/v)
119  and 19 pL of MassPREP™ Digestion Standard Mix 1 (Waters Corporation, Milford, MA) was added as

120 an internal reference.
121 LC-MS analyses

122 Peptides resulting from the tryptic digests were analyzed using the Evosep One EV-1000 (Odense,
123 Denmark) coupled to a SYNAPT™ XS mass spectrometer (Waters Corp., Wilmslow, UK). Samples were
124 loaded onto the Evosep tips as per the manufacturer’s instructions. Peptides were separated using the
125 Evosep 60 SPD method, configured with a EV-1064 column. MS data were collected with the SYNAPT
126 XS mass spectrometer, operated in positive electrospray ionisation (ESI) mode with a nominal
127 resolution of 25,000 FWHM (V optics). The capillary voltage was 3.2 kV, cone voltage was 35 V and
128 source temperature was set at 100 °C. Data were acquired over 50-2000 Da mass range with a scan
129  time of 0.5 s. All mass spectral data were acquired in continuum mode using UDMSE to obtain
130  fragmentation data simultaneously. ¥ Function one (low energy) data were collected using a constant
131  trap and transfer energy of 6 eV whilst the second (high energy) function consisted of a transfer
132 collision energy ramp of 19 to 45 eV. For mass accuracy, [Glul]-fibrinopeptide (m/z = 785.8426) was
133 acquired as lock mass at a concentration of 100 fmol/pL (in 50:50 CH3CN/H,0, 0.1 % formic acid). Lock
134 mass scans were collected every 60 s and averaged over 3 scans to perform mass correction. The time-
135 of-flight was externally calibrated over the acquisition mass range (50-2000 Da) before analysis with a

136 NaCl mixture. These data were collected using MassLynx v 4.1 software (Waters Corp., Wilmslow, UK)

Page 4


https://doi.org/10.1101/2024.06.28.601121
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.28.601121; this version posted June 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

137 in a randomized order with three technical replicates acquired per sample. Lock mass consisting of
138 [Glul]-Fibrinopeptide was delivered to the reference sprayer of the MS source using the M-Class

139  Auxillary Solvent Manager with a flow rate of 1 uL/min.
140 Data analysis

141  The times of sampling were mapped to each participant’s dim light melatonin onset (DLMO) time by a
142 previously described method. % Progenesis QI for Proteomics (Nonlinear Dynamics, Newcastle upon
143  Tyne, UK) was used to process all LC-MS data. Retention time alignment, peak picking and
144 normalization were conducted to produce peak intensities for retention time and m/z data pairs. Data
145 were searched against reviewed entries of a Homo sapiens UniProt database (20,435 reviewed entries,
146 release 2024) to provide protein identifications with a false discovery rate (FDR) of 1%. A decoy
147  database was generated as previously described, 2! allowing for protein/peptide identification rates to
148 be determined. Peptide and fragment ion tolerances were determined automatically, and searches
149  allowed for one missed cleavage site. Carbamidomethyl of cysteines was applied as a fixed
150 modification, whilst oxidation of methionines and deamidation of asparagine/glutamine were set as
151  variable modifications. Following this process, a dataset in the form of an array comprising protein
152 concentrations across features by time by participant was generated. These concentrations were then
153 normalised by standard scaling, i.e. dividing by the per-participant standard deviation to express each
154 concentration as a participant z-score. This generated an array of scaled protein concentrations with

155 dimensions of participant n by DLMO time t by protein identifier p.

156  Cosinor analysis for rhythm detection was performed using CosinorPy (version 3.0) in the Python
157  programming language (version 3.9.18), using the Spyder IDE (version 5.4.3). 2% A single component
158  cosinor model was used in this work. CosinorPy includes functionality for multiple components, and
159  also forinclusion of non-linear factors, but given the small sample size employed here, complex models
160  were rejected due to the risk of overfitting. Proteins that were identified as rhythmic with p-value <
161  0.05 and amplitude > 0.1 were collated and processed for pathway upregulation / downregulation
162 using the STRING online platform, 2% in order to identify clusters of proteins that were significantly

163 altered (enrichment p-value < 0.05, with FDR correction).

164  To assess the impact of rhythmicity on biomarker identification and statistical power, we start with the
165  assumption that the variance of a biomarker measured in a cohort controlled for chronobiological
166  variation is 0, To this base variation, an uncontrolled chronobiological variation represented by a
167  cosine function would add additional variance 2 ;,., plus the covariance a7, as shown in eq. 1. If
168  there is no relationship between base variation and variation due to chronobiology, the covariance

169  term is zero. Furthermore, the chronobiological variance could be expressed solely in terms of the

Page 5


https://doi.org/10.1101/2024.06.28.601121
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.28.601121; this version posted June 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

170  amplitude A of the cosine function, yielding eq. 2. For biomarkers with multiple components, total
171 variance will be the sum of the base variance (excluding any rhythmic component) plus the sum of

172 A?/2 for each additional cosinor component (by the variance sum law). 2
2 _ .2 2 2
173 Ototal = Obase + Ocosine + Opc (1)

AZ

2 _ 2 a-
174 Ototal = Obase + 2

(2)

175 Because variance increases when adding uncorrelated cosinor components, the number of
176 participants n required to maintain statistical power would be increased for given critical values Z and

177  effect size d, as illustrated in eq. 3. The critical values used here were based on a = 0.05 and 3 = 0.20.

2 2
Zg/2+Z * 2 % 0,
178 ( a/2 B) _ total (3)

179 For each rhythmic protein identified here, the increase in n required to maintain statistical power is

180 reported. Additionally, the impact on power (Zs and therefore B) is derived from eq. 4).

nea? \05
181 Zp = (—) — Zas (4)

2% al.?otal
182 Results

183 Cohort analysis

184 11 participants were randomly selected from the small meal cohort of 12 from the original study; 1
185 was excluded from subsequent analysis due to failed LC-MS injections. The key characteristics of the
186 10 study participants analysed in this work are summarised in Table 1. All recruited participants were

187 male.

188 Table 1: Characteristics of study participants (n = 10)

Mean Standard Deviation
25% DLMO (dec. H) 22.77 1.11
Age (years) 28.2 4.3
Height (cm) 180 7.8
Weight (kg) 78.6 9.3
BMI (kg m?) 24.3 2.6
Body fat (%) 14.7 5.5
HO (score) 58.4 4.7
PsQl (score) 35 0.5
ESS (score) 35 2.6

189

190 Rhythm analysis
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191 Proteins (n = 281) were identified across the triplicate injections. All proteins with greater than 10%
192 missing values were excluded from further analysis, leaving 73 proteins for rhythm analysis. Of these,
193 13 proteins were identified as including a 24-hour or 12-hour rhythm based on two criteria: a p-value
194  when fitted to a single component cosinor of < 0.05 and an amplitude > 0.1. Of the 13 proteins, 9
195 showed a 12-hour rhythm and 6 showed a 24-hour rhythm, with an overlap of 2 proteins. The
196 individual proteins identified as rhythmic are shown in Table 2 with their acrophases and amplitudes.
197 These amplitudes are shown in terms of the intra-individual z-scores, i.e. relative to the standard

198  deviation exhibited by each individual.

199 Table 2: Cosinor analysis of proteins identified as having a significant rhythm (p < 0.05) versus Ho of no rhythmicity

Protein (gene) with 12 hour rhythm Uniprot ID g{:n’g'is; p-value Am;;::i;t::)e (z-
Zinc-alpha-2-glycoprotein (AZGP1) P25311 4.4 0.009 0.28
Inter-alpha-trypsin inhibitor heavy chain H2 (ITIH2) P19823 10.0 0.019 0.30
Fibrinogen alpha chain (FGA) P02671 7.9 0.019 0.30
Kininogen-1 (KNG1) P01042 5.0 0.020 0.23
Apolipoprotein A-Il (APOA2)r P02652 10.1 0.021 0.27
Immunoglobulin kappa light chain (IGK) PODOX7 3.7 0.039 0.27
Plasminogen (PLG) P00747 5.8 0.039 0.22
Immunoglobulin heavy constant mu (IGHM) P01871 0.3 0.042 0.31
Immunoglobulin kappa constant (IGKC) P01834 3.5 0.049 0.27

Protein (gene) with 24 hour rhythm Uniprot ID »(A;:ompgis; p-value Amzr;::)e (-
Plasminogen (PLG) P00747 -0.9 0.010 0.37
Apolipoprotein C-1ll (APOC3) P02656 7.5 0.011 0.41
Fibrinogen alpha chain (FGA) P02671 -2.1 0.025 0.32
Fibrinogen beta chain (FGB) P02675 0.0 0.034 0.31
Complement factor H (CFH) P08603 0.2 0.042 0.29
Apolipoprotein E (APOE) P02649 5.4 0.043 0.37

200 *DLMO h is set at 0 which represents a mean clock time of 22:46 h:min

201 Both the 24-hour and 12-hour sets of proteins were subjected to separate pathway analysis using
202 STRING. For the 12-hour set of proteins, one cluster of proteins was identified (Figure 1A) with a p-
203  value of < 0.001 for the overall level of enrichment. The proteins within this cluster were investigated
204  for functional enrichment. Different databases may produce different results, but here showed
205 considerable overlap; enrichment according to GO Biological Processes was significant for fibrinolysis
206 (p=0.020), negative regulation of blood coagulation (p=0.004) and blood coagulation (p=0.020); whilst
207  according to KEGG Pathways, functional enrichment was significant for the complement and
208  coagulation cascades (p < 0.001). The full lists of pathways are shown in Table S1, Supplementary
209 Material. Comparison of acrophases for the proteins identified also showed clustering for PLG, KNG1

210  and AZGP1 around 5 hours after DLMO (= 03.77 (dec. h, clock time) (Figure 1B).

Page 7


https://doi.org/10.1101/2024.06.28.601121
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.28.601121; this version posted June 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

-12112
10 -10

AZGP1

labels

O APOA2
* AZGP1
KNG 6 6 A FGA

* |TIH2
V KNG1
O PLG

0
211 Acrophase
212 Figure 1: (A) Node and edge relationships of proteins identified as having statistically significant 12-hour rhythms (p-value <
213 0.05) and forming a functionally enriched cluster. Network nodes represent proteins and edges represent protein-protein
214 interactions, line thickness indicates the strength of data support (B) polar plot of acrophases of proteins shown in Figure 2A,

215 amplitude is shown in terms of z-score along the radius, DLMO time is shown around the perimeter (DLMO 0 = clock time

216 22:46 h:min). All analyses based on a cohort of n = 10.

217  For the 24-hour set of rhythmic proteins, one cluster of proteins was identified (Figure 2A) with a p-
218  value of p < 0.0001 for the overall level of enrichment. The proteins within this cluster were
219 investigated for functional enrichment in the same way as for the 12-hour set of proteins. Enrichment
220  according to GO Biological Processes was significant for pathways including plasminogen activation
221  (p=0.004), negative regulation of triglyceride metabolism (p=0.004); whilst for KEGG pathways,
222 functional enrichment was again significant for the complement and coagulation cascades (p<0.001),
223 for cholesterol metabolism (p=0.016) and platelet activation (p=0.049). The full lists of pathways are
224 shown in Table S2, Supplementary Material. Comparison of peak timings showed that complement
225  and fibrinolysis-related proteins all had an acrophase between a DLMO time of -2 hours and 0 hours

226 (clock time 20.77-22.77 h)(Figure 2B).

A B

“12/12
10 -10

APOC3

labels

0O APOC3
* APOE
PLG 6 6 A CFH

+ FGA
V FGB

O PLG

CFH 2 -2
0

Acrophase

227

Page 8


https://doi.org/10.1101/2024.06.28.601121
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.28.601121; this version posted June 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

228 Figure 2: (A) Node and edge relationships of proteins identified as having statistically significant 24-hour rhythms (p-value <

229 0.05) and forming a functionally enriched cluster. Network nodes represent proteins and edges represent protein-protein
230 interactions, line thickness indicates the strength of data support (B) polar plot of acrophases of proteins shown in Figure 3A,
231 amplitude is shown in terms of z-score along the radius, DLMO time is shown around the perimeter (DLMO 0 = clock time

232 22:46 h:min). All analyses based on a cohort of n = 10.

233 Finally, the potential impact of rhythmicity on biomarker identification and pathway contribution is
234  summarised in Table 3. This table shows for each protein the amplitude identified in this work, and the
235 increase in n required to maintain statistical power if rhythm is not controlled, or conversely the

236  decrease in n achievable for a given Type Il error rate if rhythm is controlled.

237 Table 3: Statistical implications for proteins identified as rhythmic in this work

Protein (gene) with 12 hour rhythm Amplitude (z-score) In.crea.se in n for B (Type Il error ra:e) if
maintained power uncontrolled
Zinc-alpha-2-glycoprotein (AZGP1) 0.28 9% 23%
Inter-alpha-trypsin inhibitor heavy chain H2 (ITIH2) 0.3 10% 24%
Fibrinogen alpha chain (FGA) 0.3 10% 24%
Kininogen-1 (KNG1) 0.23 6% 22%
Apolipoprotein A-Il (APOA2) 0.27 8% 23%
Immunoglobulin kappa light chain (IGK) 0.27 8% 23%
Plasminogen (PLG) 0.22 5% 22%
Immunoglobulin heavy constant mu (IGHM) 0.31 11% 24%
Immunoglobulin kappa constant (IGKC) 0.27 8% 23%
Protein (gene) with 24 hour rhythm Amplitude (z-score) In.crea.se in n for B (Type Il error rate) if
maintained power uncontrolled
Plasminogen (PLG) 0.37 16% 26%
Apolipoprotein C-11l (APOC3) 0.41 20% 28%
Fibrinogen alpha chain (FGA) 0.32 11% 24%
Fibrinogen beta chain (FGB) 0.31 11% 24%
Complement factor H (CFH) 0.29 9% 24%
Apolipoprotein E (APOE) 0.37 16% 26%
238 1 For baseline calculations a  of 20% was used, or a statistical power of 80%
239 Power and Implications for Statistical Errors
240 In addition to the specific proteins analysed here, the data also provide a case study for calculating the

241 impact of biological rhythmicity on statistical power. Both the Type Il error rate and the number of
242 participants required increase as the amplitude of the rhythmic component increases. The overall
243 relationship is shown in Figure 3. For any given amplitude, there will be a required increase in n needed
244  to maintain statistical power (Figure 3A), or an increased Type Il error rate if n is not increased (Figure
245 3B). Conversely, controlling for rhythmicity allows for the maintenance of statistical power without
246 increasing n. Both functions (for n and for the Type Il error rate) vary with the square of the amplitude,

247  so both charts show the same exponential relationship.
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gl bl oot i Type Il Error Rate, Controlled === Type Ii Error Rate, Uncontrolled

248

249 Figure 3: (A) Relationship between required n and amplitude of rhythm to achieve a 20% Type |l error rate (B) Type Il error

250 rate with fixed n (number of participants) and an increasing independent cosinor rhythmic component

251 Discussion

252  Temporal variation is a key aspect of physiology. Daily variation in the transcriptome and metabolome
253  of humantissues and fluids have been described, 2-2° but rhythms of human proteomic data are poorly
254 understood. Here we provide an analysis of the influence of temporal variation in the human serum
255 proteome. Overall, 13 out of the 73 proteins meeting QC thresholds were identified as rhythmic, 6
256 being statistically significant at 24 hours, and 9 being statistically significant at 12 hours (including 2
257 rhythmic at both). The proportion of proteins identified as rhythmic was 18%. This is broadly consistent
258  with a recent larger proteomics study which found that 15% of analysed proteins exhibited significant
259  daily rhythmicity, ** and is also concordant with metabolomics studies suggesting a range of 15% to
260 20% of features exhibiting circadian rhythmicity in constant routine conditions (in non-constant /
261  entrained conditions this can be higher). ° Rhythmicity of many of the biological functions captured
262 here is already well-described, with immunoglobulins having previously been described as having a
263  circadian component. 32 As well as immunoglobulins, this work also highlights a number of protein
264  clusters and pathways as rhythmic, such as the coagulation and the complement cascade as well as
265 apolipoproteins. Several of the individual proteins here have previously been identified as rhythmic,
266  in particular the apolipoproteins APOA2, APOC3 and APOE. *33 Within the complement and
267  coagulation cascades, FIBA, FIBB and KNG1 have also previously been reported as rhythmic. 3 The
268  other proteins - ZA2G, ITIH2, PLG and CFAH - are to our knowledge identified for the first time as
269 rhythmic in this work.
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270 Circadian variation of fibrinolytic and complement activity in blood is a well-described phenomenon,
271 34 and has for example been reported to contribute to increased risk of cardiovascular events in the
272 morning. 3* The proteins identified here have also been closely associated with conditions known to
273 dysregulate circadian rhythms such as Alzheimer’s disease. For example, CFH within the complement

274  cascade has been identified as a biomarker of Alzheimer’s, 3637

, as have the fibrinolysis pathway
275  proteins FGA and FGB, %3° and indeed as has AZGP1. *° Three apolipoproteins were also identified as
276  rhythmic; the genes governing the expression of many of this family of proteins have previously been

277  demonstrated to show rhythmic expression

and these results are also consistent with lipid
278 metabolism more broadly having a circadian component; > *° Apolipoproteins have also been directly
279 linked to Alzheimer’s disease; especially with regard to APOE4. *** |t should be noted that in some
280  cases, where rhythmic proteins are identified as biomarkers of a condition, there is a risk that they are
281 in fact biomarkers of generic circadian dysregulation, and are not specific to the disease in question.
282  This is a known issue in multivariable analyses such as proteomics or metabolomics, especially when

283 machine learning algorithms are trained on idealised case-control datasets of disease versus healthy

284  participants. ®

285 In terms of limitations, the work presented here is a small case study reviewing only a limited number
286  of proteins. It should be noted that recent analyses of proteomic rhythmicity have identified a much
287  wider range of proteins with a circadian component. *** Nonetheless, the statistical impact on
288 biomarker or pathway identification shown in this case study is relevant for any rhythmic protein,
289 transcript, metabolite, or other chronobiological biomarker of interest. Therefore, we can view
290 chronobiology as representing a potential ‘omics confounder. As presented here, controlling for
291 rhythmic variation allows for a reduction of sample size n whilst maintaining statistical power, whilst
292 conversely failing to control for rhythmicity ceterus paribus increases Type Il error rates. Therefore,
293 rhythmicity represents both a meaningful opportunity (for improved statistical power at relatively low
294 cost) in biomarker research, as well as a cost (in the form of increased error rates and reduced

295 reproducibility), when not controlled for.

296  We see the following suggested measures as helpful in aiding the reader’s understanding of biomarker
297 research in the context of chronobiology, reducing the risks of Type | and Type Il errors, and improving

298 reproducibility.

299 1. The ideal is to control for rhythmicity as part of the study design, especially when the
300 biomarkers being investigated have a known rhythmic component or in untargeted studies
301 that may have a rhythmic component . At the simplest level, time of day of sampling could be
302 controlled; a better approach is to adjust for circadian phase with the gold-standard being the
303 alignment to DLMO, albeit this will be beyond the scope of the vast majority of projects.
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304 Alternatively, single point-in-time methods could be used to calculate and adjust to a DLMO
305 time. 4

306 2. If rhythmicity cannot be controlled for during sampling, statistical power calculations during
307 the study design phase should acknowledge the impact of rhythmicity, and the necessary
308 increase in n or the reduction in .

309 3. We also recommend that time of day of sampling be considered as part of a study’s metadata,
310 and should be reported, alongside for example, the p-value for any difference between case
311 and controls’ time of sampling. This would also be of benefit in biobank data, as researchers
312 would have the option of selecting time-of-day matched data to control for rhythmicity.

313 4. Finally, where rhythmicity in any identified biomarkers has previously been reported, this
314 should be noted, especially in studies reviewing biomarkers, pathways, or conditions which
315 are known to be influenced by the human timing system.

316  In conclusion, the rhythmic protein expressions shown in this work demonstrate the potential for
317  confoundment; biological rhythmicity therefore presents a study design problem for case-control
318  experiments in proteomics and other ‘omics platforms. Whilst aligning rhythms to an individual’s
319 circadian phase using DLMO to remove the confounder is likely to be too costly for the majority of
320  studies, adoption of the recommendations suggested in this work would mitigate against the risks of

321  Typeland Type Il errors and improve reproducibility of biomarker identification.
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447  Supplementary Material

448

449 Table S1: Proteins (genes) with 12 hour rhythm analysed by STRING, pathway outputs

GO term Description Count in Strength FDR p-value
network
G0:0030195 Negative regulation of blood coagulation 3 of 46 2.33 0.0045
G0:0042730 Fibrinolysis 20of 19 2.54 0.0196
G0:0007596 Blood coagulation 30f173 1.76 0.0196
KEGG pathway Description Count in Strength FDR p-value
network
hsa04610 Complement and coagulation cascades 3 of 82 2.08 0.00052
Reactome pathway Description Count in Strength FDR p-value
network
HSA-381426 Regulation of Insulin-like Growth Factor (IGF) 50f 124 2.12 1.52E-07

transport and uptake by Insulin-like Growth
Factor Binding Proteins (IGFBPs)

HSA-8957275 Post-translational protein phosphorylation 4 of 107 2.09 1.62E-05
HSA-114608 Platelet degranulation 30f126 1.89 0.0041
HSA-140877 Formation of Fibrin Clot (Clotting Cascade) 2 of 39 2.23 0.0208
STRING Cluster Description Count in Strength FDR p-value
network
CL:18733 Mixed, incl. COVID-19, thrombosis and 3o0f21 2.67 0.00014

anticoagulation, and Inter-alpha-trypsin
inhibitor heavy chain C-terminus

CL:18726 Complement and coagulation cascades, and 40of 161 1.91 0.00014
Protein-lipid complex

CL:18737 Fibrinogen, and Thrombophilia 20f6 3.04 0.0011

450

451
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452 Table S2: Proteins (genes) with 24 hour rhythm analysed by STRING, pathway outputs

GO term Description Countin Strength FDR p-value
network
G0:0034382 Chylomicron remnant clearance 2 0of 5 3.12 0.0021
G0:0043152 Induction of bacterial agglutination 20f6 3.04 0.0021
G0:0032489 Regulation of Cdc42 protein signal 20f8 291 0.0029

transduction

G0:0090209 Negative regulation of triglyceride metabolic 2 of 10 2.82 0.004
process
G0:0031639 Plasminogen activation 20f11 2.78 0.0045
KEGG pathway Description Count in Strength FDR p-value
network
hsa04610 Complement and coagulation cascades 4 of 82 2.2 1.69E-06
hsa04979 Cholesterol metabolism 20f48 2.14 0.0158
hsa05150 Staphylococcus aureus infection 2 of 86 1.88 0.0327
hsa04611 Platelet activation 20f122 1.73 0.0487
Reactome pathway Description Count in Strength FDR p-value
network
HSA-8964058 HDL remodeling 2 of 10 2.82 0.0116
HSA-8963901 Chylomicron remodeling 2 of 10 2.82 0.0116
HSA-8963888 Chylomicron assembly 2 of 10 2.82 0.0116
HSA-372708 p130Cas linkage to MAPK signaling for 2 0of 15 2.64 0.0116
integrins
HSA-354194 GRB2:S0S provides linkage to MAPK 2 0of 15 2.64 0.0116

signaling for Integrins

STRING Cluster Description Countin Strength FDR p-value
network
CL:18726 Complement and coagulation cascades, and 6 of 161 2.09 1.55E-09

Protein-lipid complex

CL:18737 Fibrinogen, and Thrombophilia 30fb6 3.22 1.20E-06

CL:18728 Complement and coagulation cascades, and 4 of 109 2.08 9.96E-06
Positive regulation of opsonization

CL:18956 Lipoprotein particle, and Assembly of active 2 of 46 2.15 0.0305
LPL and LIPC lipase complexes
453
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