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Abstract 14 

Time-of-day variaƟon in the molecular profile of biofluids and Ɵssues is a well-described phenomenon, 15 

but – especially for proteomics – is rarely considered in terms of the challenges this presents to 16 

reproducible biomarker idenƟficaƟon. In this work we demonstrate these confounding issues using a 17 

small-scale proteomics analysis of male parƟcipants in a constant rouƟne protocol following an 8-day 18 

laboratory study, in which sleep-wake, light-dark and meal Ɵmings were controlled. We provide a case 19 

study analysis of circadian and ultradian rhythmicity in proteins in the complement and coagulaƟon 20 

cascades, as well as apolipoproteins, and demonstrate that rhythmicity increases the risk of Type II 21 

errors due to the reducƟon in staƟsƟcal power from increased variance. For the proteins analysed 22 

herein we show that to maintain staƟsƟcal power if chronobiological variaƟon is not controlled for, n 23 

should be increased (by between 9% and 20%); failure to do so would increase β, the chance of Type 24 

II error, from a baseline value of 20% to between 22% and 28%. Conversely, controlling for rhythmic 25 

Ɵme-of-day variaƟon in study design offers the opportunity to improve staƟsƟcal power and reduce 26 

the chances of Type II errors. Indeed, control of Ɵme-of-day sampling is a more cost-effecƟve strategy 27 

than increasing sample sizes. We recommend that best pracƟce in proteomics study design should 28 

account for temporal variaƟon as part of sampling strategy where possible. Where this is impracƟcal, 29 

we recommend that addiƟonal variance from chronobiological effects be considered in power 30 

calculaƟons, that Ɵme of sampling be reported as part of study metadata, and that researchers 31 

reference any previously idenƟfied rhythmicity in biomarkers and pathways of interest. These 32 

measures would miƟgate against both false and missed discoveries, and improve reproducibility, 33 

especially in studies looking at biomarkers, pathways or condiƟons with a known chronobiological 34 

component. 35 

 36 
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IntroducƟon 39 

InvesƟgaƟng Ɵme of day variaƟon in different human biofluids and Ɵssues has been a growing focus 40 

of research over the past decade. 1 This variaƟon can be driven by endogenous circadian rhythms, 41 

which are influenced by central and/or peripheral clocks, as well as by exogenous diurnal rhythms 42 

resulƟng from behavioural and environmental cycles. In turn, dysregulaƟon or disrupƟon of these 43 

chronobiological variaƟons has been associated to a wide range of diseases and condiƟons. 2–6 These 44 

rhythms are well described in terms of metabolomics and transcriptomics; 7–10 however, 45 

chronobiological variaƟons in proteomic expression are less well mapped. 11–13 This is in part due to 46 

the sheer range of proteins and the relaƟvely high costs of untargeted proteomic experiments; the 47 

precise number is unknown but a count of around 10,000 disƟnct proteins has been suggested for 48 

peripheral blood, ranging in concentraƟon over at least 9 orders of magnitude. 14 This diversity has 49 

resulted in substanƟal gaps in current knowledge about which proteins and pathways exhibit diurnal 50 

or endogenous rhythmicity. 51 

The rhythmicity of protein expression is relevant beyond analysis of circadian rhythm disorders, as 52 

temporal variaƟon increases the potenƟal for study design error and reduces staƟsƟcal power. On the 53 

first issue, if a protein has a rhythmic component, this creates the potenƟal for confounding if studies 54 

are designed without taking rhythmicity into account. This might occur, for example through selecƟon 55 

/ sampling bias, such as in a case / control study if all cases were to be measured in a hospital seƫng 56 

during a ‘morning round’, and controls were to be measured by convenience sampling, perhaps later 57 

in the working day. This bias would increase the risks of Type I errors, i.e. false posiƟve idenƟficaƟon 58 

of biomarkers as differenƟaƟng between cases and controls, with the risks of bias proporƟonate to the 59 

rhythm amplitude. Rhythmicity also increases the risk of Type II errors, by reducing staƟsƟcal power. 60 

This reducƟon in staƟsƟcal power for a given study follows naturally from the increase in variance in 61 

the features (here proteins) being measured. These challenges to study design can, however, also offer 62 

opportuniƟes. By controlling for chronobiological variaƟon through – for example – controlled Ɵme-63 

of-day sampling, variance can be reduced and staƟsƟcal power improved. Such study design steps are 64 

likely to be much more cost-effecƟve than simply increasing the number of parƟcipants. 65 

In this work, we provide a case study of the significance of rhythmicity for a small set of high-66 

abundance proteins in human serum, by measuring protein concentraƟon at a two-hourly resoluƟon 67 

across 30 sequenƟal hours and idenƟfying rhythmic features alongside their acrophase (peak) values 68 

and amplitudes. We use these data to provide a real-world illustraƟon of the challenges to study design 69 
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that rhythmicity presents, in terms of increased n to maintain staƟsƟcal power (or the opportunity to 70 

reduce n and maintain staƟsƟcal power, if rhythmicity is controlled for). Finally, we set out four 71 

suggested miƟgaƟon steps against both Type I and Type II errors driven by chronobiology in proteomic 72 

analyses. These include incorporaƟng Ɵme of sampling in study design; giving consideraƟon to 73 

chronobiological issues in staƟsƟcal power calculaƟons; reporƟng Ɵme of sampling for cases and 74 

controls (with p-values) as metadata; and reporƟng any literature idenƟfied rhythmicity in any 75 

biomarkers of interest, to help provide context for readers. 76 

Method and Materials 77 

Experimental model and subject details 78 

The samples analysed in this work were selected from a previous study as described in Isherwood et 79 

al. 15 Briefly, 24 healthy male volunteers were recruited by the Surrey Clinical Research Facility (CRF); 80 

the study was given a favourable ethical opinion from the University of Surrey ethics commiƩee and 81 

all parƟcipants gave wriƩen informed consent. ParƟcipants’ blood was sampled during constant 82 

rouƟne (60 blood draws: every 30 minutes for 30 sequenƟal hours). Inclusion criteria included being 83 

male; aged between 18 and 35 years; BMI between 18 and 30 kg/m2 (inclusive) at screening; and 84 

habitual (at least 5 days per week) hours in bed per night between 7-9 hours which included a bedƟme 85 

between 22:00-01:00 and wakeƟme between 06:00-09:00. An ESS (Epworth Sleepiness Scale) score <9 86 

was treated as indicaƟve of normal range dayƟme sleepiness, an HÖ (Horne-Östberg; diurnal 87 

preference) score between 30-70 was taken as the normal range and a PSQI (PiƩsburgh Sleep Quality 88 

Index) score <5 was considered indicaƟve of saƟsfactory sleep quality and sleep. ShiŌ workers involved 89 

in night work within the past six months and volunteers that had travelled across more than two Ɵme 90 

zones within a month before the study were excluded. AddiƟonal exclusion criteria were, smokers or 91 

nicoƟne products users within the 6 months prior to screening, and any regular use of medicaƟon 92 

known to influence circadian rhythm. A 10-day pre-laboratory rouƟne, a previously validated standard 93 

for our human chronobiology experiments, was employed. 16–18 The full details of both the pre-94 

laboratory protocol and the laboratory protocol are set out in Isherwood et al.,15 including allowed 95 

sleep windows, moƟon and light measurement via AcƟwatches [Cambridge Neurotechnology, 96 

Cambridge, UK] and diet diaries, supplemented by conƟnuous glucose monitors (CGMs) [Freestyle 97 

Libre 2, AbboƩ Laboratories Limited]. Compliance with the pre-laboratory rouƟne was monitored by 98 

CGM confirmed compliance to the meal eaƟng Ɵmes. Upon admission in the CRF in the aŌernoon of 99 

Day 0, the parƟcipants were assessed to confirm compliance to the pre-laboratory rouƟne and a review 100 

of medicaƟon, an alcohol breath test and a urine sample for analysis of coƟnine and drugs of abuse 101 

were performed. ParƟcipants were supervised throughout the laboratory sessions by medical/clinical 102 

research staff. Laboratory environmental condiƟons and meals are again set out in Isherwood et al. 15 103 
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During the laboratory period 12 parƟcipants consumed hourly small meals throughout the waking 104 

period and 12 consumed two large daily meals. Following the diet regimes, all parƟcipants underwent 105 

a constant rouƟne protocol with 30-60 min blood sampling. From the dataset of 12 individuals on the 106 

small-meal regime 11 were selected at random. The samples from the constant rouƟne were taken 107 

forward for this proteomics analysis.  108 

Sample preparaƟon  109 

Human sera (50 µL) were aliquoted into fresh Eppendorf tubes prior to denaturing with 5 µL of 0.1% 110 

(w/v) RapiGest™ (Waters CorporaƟon, Milford, MA) in 50 mM ammonium bicarbonate and incubated 111 

at 80°C for 45 min. Following incubaƟon, 100 mM DTT (3 µL) was added and incubated for a further 112 

30 mins at 60°C to reduce the proteins, before being alkylated with 200 mM iodoacetamide (3 µL) at 113 

room temperature for 30 min. Trypsin 1:50 (w/w) (Gold Mass Spectrometry grade, Promega, Madison, 114 

WI, USA) was added to each sample for proteolyƟc digesƟon and leŌ incubaƟng overnight at 37°C. TFA 115 

was added to a final concentraƟon of 0.5% (v/v) to hydrolyse the RapiGest and heated for a further 45 116 

min at 37°C, before centrifuging for 25 min at 18,000 g. The supernatant was collected and 3 µL 117 

aliquoted for LC-MS analysis. Aliquoted samples were diluted 1:250 (v/v) with 750 µL of 0.1% FA (v/v) 118 

and 19 µL of MassPREP™ DigesƟon Standard Mix 1 (Waters CorporaƟon, Milford, MA) was added as 119 

an internal reference. 120 

LC-MS analyses 121 

PepƟdes resulƟng from the trypƟc digests were analyzed using the Evosep One EV-1000 (Odense, 122 

Denmark) coupled to a SYNAPT™ XS mass spectrometer (Waters Corp., Wilmslow, UK). Samples were 123 

loaded onto the Evosep Ɵps as per the manufacturer’s instrucƟons. PepƟdes were separated using the 124 

Evosep 60 SPD method, configured with a EV-1064 column. MS data were collected with the SYNAPT 125 

XS mass spectrometer, operated in posiƟve electrospray ionisaƟon (ESI) mode with a nominal 126 

resoluƟon of 25,000 FWHM (V opƟcs). The capillary voltage was 3.2 kV, cone voltage was 35 V and 127 

source temperature was set at 100 °C. Data were acquired over 50-2000 Da mass range with a scan 128 

Ɵme of 0.5 s. All mass spectral data were acquired in conƟnuum mode using UDMSE to obtain 129 

fragmentaƟon data simultaneously. 19 FuncƟon one (low energy) data were collected using a constant 130 

trap and transfer energy of 6 eV whilst the second (high energy) funcƟon consisted of a transfer 131 

collision energy ramp of 19 to 45 eV. For mass accuracy, [Glu1]-fibrinopepƟde (m/z = 785.8426) was 132 

acquired as lock mass at a concentraƟon of 100 fmol/µL (in 50:50 CH3CN/H2O, 0.1 % formic acid). Lock 133 

mass scans were collected every 60 s and averaged over 3 scans to perform mass correcƟon. The Ɵme-134 

of-flight was externally calibrated over the acquisiƟon mass range (50-2000 Da) before analysis with a 135 

NaCI mixture. These data were collected using MassLynx v 4.1 soŌware (Waters Corp., Wilmslow, UK) 136 
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in a randomized order with three technical replicates acquired per sample. Lock mass consisƟng of 137 

[Glu1]-FibrinopepƟde was delivered to the reference sprayer of the MS source using the M-Class 138 

Auxillary Solvent Manager with a flow rate of 1 µL/min.  139 

Data analysis 140 

The Ɵmes of sampling were mapped to each parƟcipant’s dim light melatonin onset (DLMO) Ɵme by a 141 

previously described method. 20 Progenesis QI for Proteomics (Nonlinear Dynamics, Newcastle upon 142 

Tyne, UK) was used to process all LC-MS data. RetenƟon Ɵme alignment, peak picking and 143 

normalizaƟon were conducted to produce peak intensiƟes for retenƟon Ɵme and m/z data pairs. Data 144 

were searched against reviewed entries of a Homo sapiens UniProt database (20,435 reviewed entries, 145 

release 2024) to provide protein idenƟficaƟons with a false discovery rate (FDR) of 1%. A decoy 146 

database was generated as previously described, 21 allowing for protein/pepƟde idenƟficaƟon rates to 147 

be determined. PepƟde and fragment ion tolerances were determined automaƟcally, and searches 148 

allowed for one missed cleavage site. Carbamidomethyl of cysteines was applied as a fixed 149 

modificaƟon, whilst oxidaƟon of methionines and deamidaƟon of asparagine/glutamine were set as 150 

variable modificaƟons. Following this process, a dataset in the form of an array comprising protein 151 

concentraƟons across features by Ɵme by parƟcipant was generated. These concentraƟons were then 152 

normalised by standard scaling, i.e. dividing by the per-parƟcipant standard deviaƟon to express each 153 

concentraƟon as a parƟcipant z-score. This generated an array of scaled protein concentraƟons with 154 

dimensions of parƟcipant n by DLMO Ɵme t by protein idenƟfier p. 155 

Cosinor analysis for rhythm detecƟon was performed using CosinorPy (version 3.0) in the Python 156 

programming language (version 3.9.18), using the Spyder IDE (version 5.4.3). 22,23 A single component 157 

cosinor model was used in this work. CosinorPy includes funcƟonality for mulƟple components, and 158 

also for inclusion of non-linear factors, but given the small sample size employed here, complex models 159 

were rejected due to the risk of overfiƫng. Proteins that were idenƟfied as rhythmic with p-value < 160 

0.05 and amplitude > 0.1 were collated and processed for pathway upregulaƟon / downregulaƟon 161 

using the STRING online plaƞorm, 24,25 in order to idenƟfy clusters of proteins that were significantly 162 

altered (enrichment p-value < 0.05, with FDR correcƟon).  163 

To assess the impact of rhythmicity on biomarker idenƟficaƟon and staƟsƟcal power, we start with the 164 

assumpƟon that the variance of a biomarker measured in a cohort controlled for chronobiological 165 

variaƟon is 𝜎௕௔௦௘
ଶ . To this base variaƟon, an uncontrolled chronobiological variaƟon represented by a 166 

cosine funcƟon would add addiƟonal variance 𝜎௖௢௦௜௡௘
ଶ , plus the covariance 𝜎௕௖

ଶ , as shown in eq. 1. If 167 

there is no relaƟonship between base variaƟon and variaƟon due to chronobiology, the covariance 168 

term is zero. Furthermore, the chronobiological variance could be expressed solely in terms of the 169 
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amplitude A of the cosine funcƟon, yielding eq. 2. For biomarkers with mulƟple components, total 170 

variance will be the sum of the base variance (excluding any rhythmic component) plus the sum of 171 

𝐴ଶ/2 for each addiƟonal cosinor component (by the variance sum law). 26 172 

𝜎௧௢௧௔௟
ଶ ൌ  𝜎௕௔௦௘

ଶ ൅  𝜎௖௢௦௜௡௘
ଶ ൅  𝜎௕௖

ଶ    (1) 173 

𝜎௧௢௧௔௟
ଶ ൌ  𝜎௕௔௦௘

ଶ ൅  
஺మ

ଶ
  (2) 174 

Because variance increases when adding uncorrelated cosinor components, the number of 175 

parƟcipants n required to maintain staƟsƟcal power would be increased for given criƟcal values Z and 176 

effect size d, as illustrated in eq. 3. The criƟcal values used here were based on α = 0.05 and β = 0.20. 177 

𝑛 ൌ  
൫௓ഀ/మା௓ഁ൯

మ
∗ ଶ ∗ ఙ೟೚೟ೌ೗

మ

ௗమ
  (3) 178 

For each rhythmic protein idenƟfied here, the increase in n required to maintain staƟsƟcal power is 179 

reported. AddiƟonally, the impact on power (Zβ and therefore β) is derived from eq. 4). 180 

𝑍ఉ ൌ  ൬
௡∗ௗమ

ଶ ∗ ఙ೟೚೟ೌ೗
మ ൰

଴.ହ
െ   𝑍ఈ/ଶ (4) 181 

Results 182 

Cohort analysis 183 

11 parƟcipants were randomly selected from the small meal cohort of 12 from the original study; 1 184 

was excluded from subsequent analysis due to failed LC-MS injecƟons. The key characterisƟcs of the 185 

10 study parƟcipants analysed in this work are summarised in Table 1. All recruited parƟcipants were 186 

male. 187 

Table 1: CharacterisƟcs of study parƟcipants (n = 10) 188 

 Mean Standard Deviation 

25% DLMO (dec. H) 22.77 1.11 

Age (years) 28.2 4.3 

Height (cm) 180 7.8 

Weight (kg) 78.6 9.3 

BMI (kg m-2) 24.3 2.6 

Body fat (%) 14.7 5.5 

HO (score) 58.4 4.7 

PSQI (score) 3.5 0.5 

ESS (score) 3.5 2.6 

 189 

Rhythm analysis 190 
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Proteins (n = 281) were idenƟfied across the triplicate injecƟons. All proteins with greater than 10% 191 

missing values were excluded from further analysis, leaving 73 proteins for rhythm analysis. Of these, 192 

13 proteins were idenƟfied as including a 24-hour or 12-hour rhythm based on two criteria: a p-value 193 

when fiƩed to a single component cosinor of < 0.05 and an amplitude > 0.1. Of the 13 proteins, 9 194 

showed a 12-hour rhythm and 6 showed a 24-hour rhythm, with an overlap of 2 proteins. The 195 

individual proteins idenƟfied as rhythmic are shown in Table 2 with their acrophases and amplitudes. 196 

These amplitudes are shown in terms of the intra-individual z-scores, i.e. relaƟve to the standard 197 

deviaƟon exhibited by each individual. 198 

Table 2: Cosinor analysis of proteins idenƟfied as having a significant rhythm (p < 0.05) versus H0 of no rhythmicity 199 

Protein (gene) with 12 hour rhythm Uniprot ID 
Acrophase 
(DLMO h)* 

p-value 
Amplitude (z-

score) 

Zinc-alpha-2-glycoprotein (AZGP1) P25311 4.4 0.009 0.28 

Inter-alpha-trypsin inhibitor heavy chain H2 (ITIH2) P19823 10.0 0.019 0.30 

Fibrinogen alpha chain (FGA) P02671 7.9 0.019 0.30 

Kininogen-1 (KNG1) P01042 5.0 0.020 0.23 

Apolipoprotein A-II (APOA2)r P02652 10.1 0.021 0.27 

Immunoglobulin kappa light chain (IGK) P0DOX7 3.7 0.039 0.27 

Plasminogen (PLG) P00747 5.8 0.039 0.22 

Immunoglobulin heavy constant mu (IGHM) P01871 0.3 0.042 0.31 

Immunoglobulin kappa constant (IGKC) P01834 3.5 0.049 0.27 

Protein (gene) with 24 hour rhythm Uniprot ID 
Acrophase 
(DLMO hr) 

p-value 
Amplitude (z-

score) 

Plasminogen (PLG) P00747 -0.9 0.010 0.37 

Apolipoprotein C-III (APOC3) P02656 7.5 0.011 0.41 

Fibrinogen alpha chain (FGA) P02671 -2.1 0.025 0.32 

Fibrinogen beta chain (FGB) P02675 0.0 0.034 0.31 

Complement factor H (CFH) P08603 0.2 0.042 0.29 

Apolipoprotein E (APOE) P02649 5.4 0.043 0.37 

*DLMO h is set at 0 which represents a mean clock Ɵme of 22:46 h:min  200 

Both the 24-hour and 12-hour sets of proteins were subjected to separate pathway analysis using 201 

STRING. For the 12-hour set of proteins, one cluster of proteins was idenƟfied (Figure 1A) with a p-202 

value of < 0.001 for the overall level of enrichment. The proteins within this cluster were invesƟgated 203 

for funcƟonal enrichment. Different databases may produce different results, but here showed 204 

considerable overlap; enrichment according to GO Biological Processes was significant for fibrinolysis 205 

(p=0.020), negaƟve regulaƟon of blood coagulaƟon (p=0.004) and blood coagulaƟon (p=0.020); whilst 206 

according to KEGG Pathways, funcƟonal enrichment was significant for the complement and 207 

coagulaƟon cascades (p < 0.001). The full lists of pathways are shown in Table S1, Supplementary 208 

Material. Comparison of acrophases for the proteins idenƟfied also showed clustering for PLG, KNG1 209 

and AZGP1 around 5 hours aŌer DLMO (= 03.77 (dec. h, clock Ɵme) (Figure 1B). 210 
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 211 

Figure 1: (A) Node and edge relaƟonships of proteins idenƟfied as having staƟsƟcally significant 12-hour rhythms (p-value < 212 

0.05) and forming a funcƟonally enriched cluster. Network nodes represent proteins and edges represent protein-protein 213 

interacƟons, line thickness indicates the strength of data support (B) polar plot of acrophases of proteins shown in Figure 2A, 214 

amplitude is shown in terms of z-score along the radius, DLMO Ɵme is shown around the perimeter (DLMO 0 = clock Ɵme 215 

22:46 h:min). All analyses based on a cohort of n = 10. 216 

For the 24-hour set of rhythmic proteins, one cluster of proteins was idenƟfied (Figure 2A) with a p-217 

value of p < 0.0001 for the overall level of enrichment. The proteins within this cluster were 218 

invesƟgated for funcƟonal enrichment in the same way as for the 12-hour set of proteins. Enrichment 219 

according to GO Biological Processes was significant for pathways including plasminogen acƟvaƟon 220 

(p=0.004), negaƟve regulaƟon of triglyceride metabolism (p=0.004); whilst for KEGG pathways, 221 

funcƟonal enrichment was again significant for the complement and coagulaƟon cascades (p<0.001), 222 

for cholesterol metabolism (p=0.016) and platelet acƟvaƟon (p=0.049). The full lists of pathways are 223 

shown in Table S2, Supplementary Material. Comparison of peak Ɵmings showed that complement 224 

and fibrinolysis-related proteins all had an acrophase between a DLMO Ɵme of -2 hours and 0 hours 225 

(clock Ɵme 20.77-22.77 h)(Figure 2B). 226 

 227 
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Figure 2: (A) Node and edge relaƟonships of proteins idenƟfied as having staƟsƟcally significant 24-hour rhythms (p-value < 228 

0.05) and forming a funcƟonally enriched cluster. Network nodes represent proteins and edges represent protein-protein 229 

interacƟons, line thickness indicates the strength of data support (B) polar plot of acrophases of proteins shown in Figure 3A, 230 

amplitude is shown in terms of z-score along the radius, DLMO Ɵme is shown around the perimeter (DLMO 0 = clock Ɵme 231 

22:46 h:min). All analyses based on a cohort of n = 10. 232 

Finally, the potenƟal impact of rhythmicity on biomarker idenƟficaƟon and pathway contribuƟon is 233 

summarised in Table 3. This table shows for each protein the amplitude idenƟfied in this work, and the 234 

increase in n required to maintain staƟsƟcal power if rhythm is not controlled, or conversely the 235 

decrease in n achievable for a given Type II error rate if rhythm is controlled. 236 

Table 3: StaƟsƟcal implicaƟons for proteins idenƟfied as rhythmic in this work 237 

Protein (gene) with 12 hour rhythm Amplitude (z-score) 
Increase in n for 

maintained power 
β (Type II error rate) if 

uncontrolled 1 

Zinc-alpha-2-glycoprotein (AZGP1) 0.28 9% 23% 

Inter-alpha-trypsin inhibitor heavy chain H2 (ITIH2) 0.3 10% 24% 

Fibrinogen alpha chain (FGA) 0.3 10% 24% 

Kininogen-1 (KNG1) 0.23 6% 22% 

Apolipoprotein A-II (APOA2) 0.27 8% 23% 

Immunoglobulin kappa light chain (IGK) 0.27 8% 23% 

Plasminogen (PLG) 0.22 5% 22% 

Immunoglobulin heavy constant mu (IGHM) 0.31 11% 24% 

Immunoglobulin kappa constant (IGKC) 0.27 8% 23% 

Protein (gene) with 24 hour rhythm Amplitude (z-score) 
Increase in n for 

maintained power 
β (Type II error rate) if 

uncontrolled 

Plasminogen (PLG) 0.37 16% 26% 

Apolipoprotein C-III (APOC3) 0.41 20% 28% 

Fibrinogen alpha chain (FGA) 0.32 11% 24% 

Fibrinogen beta chain (FGB) 0.31 11% 24% 

Complement factor H (CFH) 0.29 9% 24% 

Apolipoprotein E (APOE) 0.37 16% 26% 

1 For baseline calculaƟons a β of 20% was used, or a staƟsƟcal power of 80%  238 

Power and ImplicaƟons for StaƟsƟcal Errors 239 

In addiƟon to the specific proteins analysed here, the data also provide a case study for calculaƟng the 240 

impact of biological rhythmicity on staƟsƟcal power. Both the Type II error rate and the number of 241 

parƟcipants required increase as the amplitude of the rhythmic component increases. The overall 242 

relaƟonship is shown in Figure 3. For any given amplitude, there will be a required increase in n needed 243 

to maintain staƟsƟcal power (Figure 3A), or an increased Type II error rate if n is not increased (Figure 244 

3B). Conversely, controlling for rhythmicity allows for the maintenance of staƟsƟcal power without 245 

increasing n. Both funcƟons (for n and for the Type II error rate) vary with the square of the amplitude, 246 

so both charts show the same exponenƟal relaƟonship. 247 
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 248 

Figure 3: (A) RelaƟonship between required n and amplitude of rhythm to achieve a 20% Type II error rate (B) Type II error 249 

rate with fixed n (number of parƟcipants) and an increasing independent cosinor rhythmic component  250 

Discussion 251 

Temporal variaƟon is a key aspect of physiology. Daily variaƟon in the transcriptome and metabolome 252 

of human Ɵssues and fluids have been described, 27–29 but rhythms of human proteomic data are poorly 253 

understood. Here we provide an analysis of the influence of temporal variaƟon in the human serum 254 

proteome. Overall, 13 out of the 73 proteins meeƟng QC thresholds were idenƟfied as rhythmic, 6 255 

being staƟsƟcally significant at 24 hours, and 9 being staƟsƟcally significant at 12 hours (including 2 256 

rhythmic at both). The proporƟon of proteins idenƟfied as rhythmic was 18%. This is broadly consistent 257 

with a recent larger proteomics study which found that 15% of analysed proteins exhibited significant 258 

daily rhythmicity, 13 and is also concordant with metabolomics studies suggesƟng a range of 15% to 259 

20% of features exhibiƟng circadian rhythmicity in constant rouƟne condiƟons (in non-constant / 260 

entrained condiƟons this can be higher). 9 Rhythmicity of many of the biological funcƟons captured 261 

here is already well-described, with immunoglobulins having previously been described as having a 262 

circadian component. 30–32 As well as immunoglobulins, this work also highlights a number of protein 263 

clusters and pathways as rhythmic, such as the coagulaƟon and the complement cascade as well as 264 

apolipoproteins. Several of the individual proteins here have previously been idenƟfied as rhythmic, 265 

in parƟcular the apolipoproteins APOA2, APOC3 and APOE. 13,33 Within the complement and 266 

coagulaƟon cascades, FIBA, FIBB and KNG1 have also previously been reported as rhythmic. 33 The 267 

other proteins  - ZA2G, ITIH2, PLG and CFAH - are to our knowledge idenƟfied for the first Ɵme as 268 

rhythmic in this work. 269 
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Circadian variaƟon of fibrinolyƟc and complement acƟvity in blood is a well-described phenomenon, 270 

34 and has for example been reported to contribute to increased risk of cardiovascular events in the 271 

morning. 35 The proteins idenƟfied here have also been closely associated with condiƟons known to 272 

dysregulate circadian rhythms such as Alzheimer’s disease. For example, CFH within the complement 273 

cascade has been idenƟfied as a biomarker of Alzheimer’s, 36,37, as have the fibrinolysis pathway 274 

proteins FGA and FGB, 38,39 and indeed as has AZGP1. 40 Three apolipoproteins were also idenƟfied as 275 

rhythmic; the genes governing the expression of many of this family of proteins have previously been 276 

demonstrated to show rhythmic expression 41 and these results are also consistent with lipid 277 

metabolism more broadly having a circadian component; 42 40 Apolipoproteins have also been directly 278 

linked to Alzheimer’s disease; especially with regard to APOE4. 43,44 It should be noted that in some 279 

cases, where rhythmic proteins are idenƟfied as biomarkers of a condiƟon, there is a risk that they are 280 

in fact biomarkers of generic circadian dysregulaƟon, and are not specific to the disease in quesƟon. 281 

This is a known issue in mulƟvariable analyses such as proteomics or metabolomics, especially when 282 

machine learning algorithms are trained on idealised case-control datasets of disease versus healthy 283 

parƟcipants. 45 284 

In terms of limitaƟons, the work presented here is a small case study reviewing only a limited number 285 

of proteins. It should be noted that recent analyses of proteomic rhythmicity have idenƟfied a much 286 

wider range of proteins with a circadian component. 13,33 Nonetheless, the staƟsƟcal impact on 287 

biomarker or pathway idenƟficaƟon shown in this case study is relevant for any rhythmic protein, 288 

transcript, metabolite, or other chronobiological biomarker of interest. Therefore, we can view 289 

chronobiology as represenƟng a potenƟal ‘omics confounder. As presented here, controlling for 290 

rhythmic variaƟon allows for a reducƟon of sample size n whilst maintaining staƟsƟcal power, whilst 291 

conversely failing to control for rhythmicity ceterus paribus increases Type II error rates. Therefore, 292 

rhythmicity represents both a meaningful opportunity (for improved staƟsƟcal power at relaƟvely low 293 

cost) in biomarker research, as well as a cost (in the form of increased error rates and reduced 294 

reproducibility), when not controlled for. 295 

We see the following suggested measures as helpful in aiding the reader’s understanding of biomarker 296 

research in the context of chronobiology, reducing the risks of Type I and Type II errors, and improving 297 

reproducibility. 298 

1. The ideal is to control for rhythmicity as part of the study design, especially when the 299 

biomarkers being invesƟgated have a known rhythmic component or in untargeted studies 300 

that may have a rhythmic component . At the simplest level, Ɵme of day of sampling could be 301 

controlled; a beƩer approach is to adjust for circadian phase with the gold-standard being the 302 

alignment to DLMO, albeit this will be beyond the scope of the vast majority of projects. 303 
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AlternaƟvely, single point-in-Ɵme methods could be used to calculate and adjust to a DLMO 304 

Ɵme. 46 305 

2. If rhythmicity cannot be controlled for during sampling, staƟsƟcal power calculaƟons during 306 

the study design phase should acknowledge the impact of rhythmicity, and the necessary 307 

increase in n or the reducƟon in β. 308 

3. We also recommend that Ɵme of day of sampling be considered as part of a study’s metadata, 309 

and should be reported, alongside for example, the p-value for any difference between case 310 

and controls’ Ɵme of sampling. This would also be of benefit in biobank data, as researchers 311 

would have the opƟon of selecƟng Ɵme-of-day matched data to control for rhythmicity.  312 

4. Finally, where rhythmicity in any idenƟfied biomarkers has previously been reported, this 313 

should be noted, especially in studies reviewing biomarkers, pathways, or condiƟons which 314 

are known to be influenced by the human Ɵming system. 315 

In conclusion, the rhythmic protein expressions shown in this work demonstrate the potenƟal for 316 

confoundment; biological rhythmicity therefore presents a study design problem for case-control 317 

experiments in proteomics and other ‘omics plaƞorms. Whilst aligning rhythms to an individual’s 318 

circadian phase using DLMO to remove the confounder is likely to be too costly for the majority of 319 

studies, adopƟon of the recommendaƟons suggested in this work would miƟgate against the risks of 320 

Type I and Type II errors and improve reproducibility of biomarker idenƟficaƟon. 321 
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Supplementary Material 447 

 448 

Table S1: Proteins (genes) with 12 hour rhythm analysed by STRING, pathway outputs 449 

GO term Description Count in 
network 

Strength FDR p-value 

GO:0030195 Negative regulation of blood coagulation 3 of 46 2.33 0.0045 

GO:0042730 Fibrinolysis 2 of 19 2.54 0.0196 

GO:0007596 Blood coagulation 3 of 173 1.76 0.0196 

KEGG pathway Description Count in 
network 

Strength FDR p-value 

hsa04610 Complement and coagulation cascades 3 of 82 2.08 0.00052 

Reactome pathway Description Count in 
network 

Strength FDR p-value 

HSA-381426 Regulation of Insulin-like Growth Factor (IGF) 
transport and uptake by Insulin-like Growth 

Factor Binding Proteins (IGFBPs) 

5 of 124 2.12 1.52E-07 

HSA-8957275 Post-translational protein phosphorylation 4 of 107 2.09 1.62E-05 

HSA-114608 Platelet degranulation 3 of 126 1.89 0.0041 

HSA-140877 Formation of Fibrin Clot (Clotting Cascade) 2 of 39 2.23 0.0208 

STRING Cluster Description Count in 
network 

Strength FDR p-value 

CL:18733 Mixed, incl. COVID-19, thrombosis and 
anticoagulation, and Inter-alpha-trypsin 

inhibitor heavy chain C-terminus 

3 of 21 2.67 0.00014 

CL:18726 Complement and coagulation cascades, and 
Protein-lipid complex 

4 of 161 1.91 0.00014 

CL:18737 Fibrinogen, and Thrombophilia 2 of 6 3.04 0.0011 

 450 

  451 
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Table S2: Proteins (genes) with 24 hour rhythm analysed by STRING, pathway outputs 452 

GO term Description Count in 
network 

Strength FDR p-value 

GO:0034382 Chylomicron remnant clearance 2 of 5 3.12 0.0021 

GO:0043152 Induction of bacterial agglutination 2 of 6 3.04 0.0021 

GO:0032489 Regulation of Cdc42 protein signal 
transduction 

2 of 8 2.91 0.0029 

GO:0090209 Negative regulation of triglyceride metabolic 
process 

2 of 10 2.82 0.004 

GO:0031639 Plasminogen activation 2 of 11 2.78 0.0045 

KEGG pathway Description Count in 
network 

Strength FDR p-value 

hsa04610 Complement and coagulation cascades 4 of 82 2.2 1.69E-06 

hsa04979 Cholesterol metabolism 2 of 48 2.14 0.0158 

hsa05150 Staphylococcus aureus infection 2 of 86 1.88 0.0327 

hsa04611 Platelet activation 2 of 122 1.73 0.0487 

Reactome pathway Description Count in 
network 

Strength FDR p-value 

HSA-8964058 HDL remodeling 2 of 10 2.82 0.0116 

HSA-8963901 Chylomicron remodeling 2 of 10 2.82 0.0116 

HSA-8963888 Chylomicron assembly 2 of 10 2.82 0.0116 

HSA-372708 p130Cas linkage to MAPK signaling for 
integrins 

2 of 15 2.64 0.0116 

HSA-354194 GRB2:SOS provides linkage to MAPK 
signaling for Integrins 

2 of 15 2.64 0.0116 

STRING Cluster Description Count in 
network 

Strength FDR p-value 

CL:18726 Complement and coagulation cascades, and 
Protein-lipid complex 

6 of 161 2.09 1.55E-09 

CL:18737 Fibrinogen, and Thrombophilia 3 of 6 3.22 1.20E-06 

CL:18728 Complement and coagulation cascades, and 
Positive regulation of opsonization 

4 of 109 2.08 9.96E-06 

CL:18956 Lipoprotein particle, and Assembly of active 
LPL and LIPC lipase complexes 

2 of 46 2.15 0.0305 
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