

1 Reference genome bias in light of species-specific 2 chromosomal reorganization and translocations

3 **Marius F. Maurstad¹, Siv Nam Khang Hoff¹, José Cerca¹, Mark Ravinet¹, Ian Bradbury², Kjetill S.
4 Jakobsen¹, Kim Præbel³, Sissel Jentoft¹**

5 ¹Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway

6 ²Fisheries and Oceans Canada, Newfoundland, St John's, Canada

7 ³Norwegian College of Fishery Science, The Arctic University of Norway, Tromsø, Norway

8 Summary

9 Whole-genome sequencing efforts has during the past decade unveiled the central role of
10 genomic rearrangements—such as chromosomal inversions—in evolutionary processes,
11 including local adaptation in a wide range of taxa. However, employment of reference genomes
12 from distantly or even closely related species for mapping and the subsequent variant calling,
13 can lead to errors and/or biases in the datasets generated for downstream analyses. Here, we
14 capitalize on the recently generated chromosome-anchored genome assemblies for Arctic cod
15 (*Arctogadus glacialis*), polar cod (*Boreogadus saida*), and Atlantic cod (*Gadus morhua*) to
16 evaluate the extent and consequences of reference bias on population sequencing datasets
17 (approx. 15-20x coverage) for both Arctic cod and polar cod. Our findings demonstrate that
18 the choice of reference genome impacts population genetic statistics, including individual
19 mapping depth, heterozygosity levels, and cross-species comparisons of nucleotide diversity
20 (π) and genetic divergence (D_{XY}). Further, it became evident that using a more distantly related
21 reference genome can lead to inaccurate detection and characterization of chromosomal
22 inversions, i.e., in terms of size (length) and location (position), due to inter-chromosomal
23 reorganizations between species. Additionally, we observe that several of the detected species-
24 specific inversions were split into multiple genomic regions when mapped towards a
25 heterospecific reference. Inaccurate identification of chromosomal rearrangements as well as
26 biased population genetic measures could potentially lead to erroneous interpretation of
27 species-specific genomic diversity, impede the resolution of local adaptation, and thus, impact

28 predictions of their genomic potential to respond to climatic and other environmental
29 perturbations.

30 **Introduction**

31 Recent advancement within sequencing technologies and bioinformatic tools have
32 revolutionized the field of biology. Pioneering studies have been conducted within human
33 genomics, which have improved our understanding of biological processes tremendously. The
34 number of studies on wildlife and marine species is also increasing^{1–4}, and over the past years,
35 several larger international initiatives have been established to characterize all of life's genomic
36 diversity⁵. Within these efforts, the overall goal is to generate highly contiguous reference
37 genomes (i.e., chromosome level) that can be used in a i) comparative setting to describe the
38 genomic diversity between species, and/or conduct ii) within-species genome-wide
39 characterization of cryptic ecotypes and sub-population differentiations^{4–7}.

40 While the number of high-quality reference genomes is growing, there is still a shortage
41 in the number of reference genomes available for various taxa⁸. In the cases where a reference
42 genome for the focal species is missing, the standard method is to select a close relative for
43 mapping and subsequent variant calling⁹. When using a reference genome from a distantly
44 related species (or a divergent population), the genomic divergence between the reference and
45 the target species can impact mapping, variant calling, and downstream inferences^{9–14}. For
46 instance, measures of heterozygosity—important measures for conservation genomics—can be
47 overestimated when employing more divergent references^{10–13}. However, few studies have
48 examined how discrepancies in genomic architecture between the reference and target species
49 would impact the identification of e.g., larger structural variants, such as chromosomal
50 inversions. Since the beginning of the genomics area, chromosomal inversions have been
51 recognized as part of the standing genomic variation of a species, and/or sub-
52 populations/ecotypes, that are likely to play important roles in evolutionary processes,

53 including local adaptation^{15–20}. For instance, in Atlantic cod (*Gadus morhua*; L., 1758), four
54 larger chromosomal inversions are found to discriminate between populations throughout its
55 geographical distribution, i.e., dominating the observed genomic divergence by large allele
56 frequency shifts^{15,21–23}. It is suggested that these are of high importance for maintaining the
57 genomic divergence between locally adapted populations as well as the iconic migratory
58 Northeast Arctic cod (NEAC) and the more stationary Norwegian coastal cod (NCC)^{15,21–24}.
59 Would such and other structural variants be overlooked or inadequately characterized due to
60 larger or smaller inter-chromosomal reorganizations between the reference used and the focal
61 species? In an earlier study conducted on European plaice (*Pleuronectes platessa*), a difference
62 in number of putative chromosomal inversions were recorded based on using the species-
63 specific reference vs. using the Japanese flounder (*Paralichthys olivaceus*)^{25,26} that potentially
64 could be due to species-specific differences in number of inversions and/or other types of inter-
65 chromosomal reorganizations.

66 Within the gadids, major genomic reorganizations and reshufflings have been
67 documented, and especially within the two cold-water specialists: the Arctic cod (*Arctogadus*
68 *glacialis*; Peters, 1872) and the polar cod (*Boreogadus saida*; Lepechin, 1774)²⁷. Additionally,
69 for polar cod a large number of polymorphic chromosomal inversions (with the potential
70 impact on sub-population structuring) have been detected²⁸. Such major genomic
71 reorganizations and reshufflings could potentially lead to downstream bioinformatic errors in
72 mapping, variant calling, and data interpretation, depending on the selection of reference. In
73 this study, we aimed at taking the full advantage of the newly generated chromosome-anchored
74 genome assemblies of the closely related Arctic cod²⁷, polar cod²⁷, and NEAC²⁹ to assess how
75 the selected reference genome impacts the mapping depth, heterozygosity level and measures
76 of population differentiation and divergence between Arctic cod and polar cod, when exploring
77 population-level data of the two species collected from the northern Barents Sea and adjacent

78 regions (Figure 1b). Additionally, we investigated how the different reference genomes
79 influence the detection of chromosomal inversions, focusing exclusively on the Arctic cod.
80 Both Arctic cod and polar cod represent important sympatric species inhabiting the Arctic, one
81 of the world's most rapidly changing environments that is undergoing warming at a pace almost
82 four times faster than the global average³⁰. Until now, there are only a few studies that have
83 looked into the population genetic structuring of Arctic cod and polar cod using a handful of
84 genetic markers^{31–36} and even fewer that have used whole genome sequencing approaches^{28,37},
85 and by such, this study will advance our insight into the genomic composition and potential
86 within these species in the light of the ongoing climatic changes.

87 Materials and Methods

88 Sample acquisition and sequencing

89 The collection of Arctic cod (N=14, Table S1) used in this study was obtained via the TUNU-
90 cruises (UiT, The Arctic University of Norway) and from other international collaborators,
91 including N=11 individuals from Northeast Greenland (Tyroler and Besselfjord) and N=2
92 individuals from Canada (Davis Strait), as well as one specimen collected in the Barents Sea
93 (Figure 1b). The collection of polar cod (N=14, Table S1) is a subset from a larger dataset²⁸
94 from the northern Barents Sea (Figure 1b). DNA isolation for Arctic cod was done by following
95 the QIAGEN DNeasy Blood & Tissue kit protocol. DNA concentration measurement, library
96 preparation, and sequencing were performed by the Norwegian Sequencing Centre. See
97 Supplementary Sequencing Report for more information.

98 Study design

99 The whole genome sequencing data were used to generate three *cross-species* datasets where
100 data from both Arctic cod (N=14) and polar cod (N=14) were included (Figure 2a), as well as
101 three *intraspecific* datasets where we focused on the Arctic cod samples (Figure 2b). Both

102 sample collections (i.e., *cross-species* and *intraspecific*) were mapped against the reference
103 genomes of either i) Arctic cod²⁷, ii) polar cod²⁷, and iii) Northeast Atlantic cod (NEAC)²⁹,
104 with the main purpose to assess the choice of reference on mapping depth as well as
105 heterozygosity levels. Additionally, population genetic measures, such as nucleotide diversity
106 (π), genetic differentiation (F_{ST}), and genetic divergence (D_{XY}) were estimated to assess the
107 influence of reference genome choice in a *cross-species* context. Moreover, we utilized the
108 *intraspecific* datasets to assess the precision in detection of chromosomal inversions within
109 Arctic cod. This was conducted by comparing the degree of overlap between the inversions
110 detected when using either the Arctic cod (i.e. the benchmark) vs. the polar cod or the NEAC
111 genome as a reference.

112 **Mapping and variant calling**

113 To obtain the six separate datasets (i.e., three VCFs for the *cross-species* analysis and three
114 VCFs focusing on the *intraspecific* analysis) we started by trimming Illumina PE reads using
115 Trimmomatic v0.39³⁸ with default settings. Mapping to the different references was done using
116 the Burrows-Wheeler Alignment Tool v0.7.17³⁹ (BWA-MEM algorithm) with default settings.
117 Alignment files for each sample were merged and sorted using SAMtools v1.9⁴⁰. Duplicated
118 reads were marked using MarkDuplicates v2.22.1⁴¹. Variant calling was performed using the
119 Genome Analysis Toolkit (GATK) v4.2.0.0⁴². For this, each mapped sample was individually
120 called into GVCFs using HaplotypeCaller. GVCFs for individual samples were then combined
121 into the six different VCFs, as described above in the experimental design, and imported into
122 a Genomics DataBase using GenomicsDBImport. Joint genotyping was performed using the
123 GenotypeGVCFs tool to produce final VCFs. Single nucleotide polymorphisms (SNPs) were
124 extracted and downsampled to 100,000 SNPs using SelectVariants to make diagnostic plots for
125 filter parameter evaluation. Filtering was done by following the GATK hard-filtering
126 recommendations and manually inspecting the diagnostic plots as suggested in

127 <https://speciationgenomics.github.io/>. After the initial round of filtering, we used VCFtools
128 v0.1.16⁴³ to retain only biallelic sites (see Table S2 and S3 for filtering parameters and Table
129 S4 for the number of SNPs after filtering). Lastly, in-depth inspection of the datasets generated
130 was conducted using PLINK v1.9⁴⁴ and VCFtools v0.1.16. for detection of potential data biases
131 (for more information see Supplementary Note 1). A summary of the workflow is shown in
132 Figure 2.

133 **Evaluation of population structure, mapping, and variant calling based on reference used**
134 We analyzed read depth distributions of mapped reads for Arctic cod and polar cod samples
135 against the three references using mosdepth v0.2.4⁴⁵ in fast mode, with a window size of 500
136 bp. Additionally, VCFtools v0.1.16 was used to evaluate the proportion of heterozygous sites
137 per sample. The population genetic structure between and within the two species was
138 investigated using PLINK v1.9 to perform a Principal Component Analysis (PCA), using both
139 the *cross-species* and the *intraspecific* datasets.

140 For an evaluation of the genetic diversity detected within the *intraspecific* datasets, we
141 also carried out demographic inference and estimated female effective population size (N_e) for
142 Arctic cod using BEAST v2.6.7⁴⁶ under the Bayesian skyline model⁴⁷. The analysis was done
143 twice, once only with Arctic cod samples in the present study ($N=14$) and including Arctic cod
144 ($N=33$) samples sourced from NCBI (see Supplementary Note 2 for more details).
145 Additionally, for the *cross-species* datasets, π , F_{ST} ⁴⁸, and D_{XY} between Arctic cod and polar
146 cod were estimated using pixy v1.2.6⁴⁹, applying a window size of 10,000 bp.

147 **Detection of chromosomal inversions in Arctic cod**

148 For the *intraspecific datasets* (i.e., the three intraspecific VCFs mapped to the three different
149 reference genomes) detection of chromosomal inversions was performed using complementary
150 approaches. The workflow is illustrated in Supplementary Figure 5. First, we used a PCA-

151 based approach following Huang et al¹⁷. This involved quantifying genetic variation within
152 each chromosome using the R package *lostruct* in windows of 50 SNPs⁵⁰. When conducting
153 PCAs of inversions, heterokaryotypes are expected to cluster between the two homokaryotype
154 clusters for individuals carrying alternative inversion orientations⁵¹. Thus, resulting *lostruct*
155 plots were manually checked for regions along chromosomes where the PCA for the MDS
156 corners displayed three distinct clusters. After detecting potential inversion regions, *VCFtools*
157 v0.1.16 was used to extract the regions harboring the inversion signal and calculate the
158 heterozygosity for each sample. *PLINK* v1.9 was then used to calculate a new PCA of the SNPs
159 within this region. In the cases where the PCA displayed an inversion signal, clusters were
160 assigned to either homokaryotypes with most individuals (common group), heterokaryotypes
161 as the group clustering in the center (het group), or homokaryotypes with the fewest individuals
162 (rare group). Due to the low sample count for Arctic cod, the heterozygosity distribution could
163 not be plotted using conventional boxplots, instead we used a binning strategy implemented in
164 the *ggplot2* function *geom_dotplot*⁵².

165 Next, *F_{ST}* and *D_{XY}* were calculated using *pixy* v1.2.6 in windows of 10,000 bp between
166 the rare and common groups along chromosomes to assess patterns of genetic differentiation
167 and divergence outside and inside potential inversion regions. Lastly, patterns of linkage
168 disequilibrium (LD) were investigated for the chromosomes that displayed potential signals of
169 inversions. The expectation for chromosomes harboring inversions is that regions within the
170 inversion will show high LD among all samples (when both homokaryotypes are present) but
171 not among samples with the same inversion orientation¹⁷. As the calculation of LD in a pairwise
172 fashion for whole chromosomes produces millions of data points, SNPs had to be down-
173 sampled. *PLINK* v1.9 was used to remove sites with more than 0.01% missing data, and SNPs
174 were randomly thinned down to 10% of the original count. After thinning of SNPs, *PLINK*
175 v1.9 was used to calculate LD in a pairwise fashion for the SNPs left within the chromosome

176 of interest. Due to the high number of data points still left, the R package scattermore was used
177 to produce the LD plots⁵³. We used the MDS plots along the chromosomes to define the
178 boundaries of the inversions and corroborated with the LD patterns.

179 **Synteny between the three references**

180 To investigate chromosomal rearrangements synteny analysis between the Arctic cod, polar
181 cod, and NEAC references was done using a syntenic block analysis with McScanX⁵⁴. The
182 result of the synteny analysis was visualized on the Synvisio interactive homepage⁵⁵.

183 **Results & Discussions**

184 **Genetic structure of Arctic cod and Arctic cod vs. polar cod**

185 The PCA conducted on the *intraspecific* genomic dataset revealed a separation among the
186 Arctic cod specimens along the first principal component (PC1) axis, explaining 10.7-10.9%
187 of the variation in the datasets depending on the reference used (Figure 3a-c). Additionally, a
188 separation along the PC2 axis was demonstrated, explaining 8.31-8.42% of the variation in the
189 datasets (Figure 3a-c). When inspecting this separation against the various variant calling
190 statistics (Figure S1-S3), we found that neither mean depth nor presence of missing sites
191 appeared to have a notable influence on the positioning of the samples within the PCA. Mean
192 depth was generally consistent across most samples, except for a single individual from Davis
193 Strait. This individual, sourced from a publicly available dataset (Table S1), had been
194 sequenced to a greater depth (approx. 30x coverage) than the others. Furthermore, among the
195 samples, one individual from Besselfjord displayed a higher degree of missing data compared
196 to the rest. The proportion of heterozygous sites, however, tended to overlap to some degree
197 with the sample positioning along the PC1 axis. It should be noted that this was not the case
198 for all samples, for instance, the Davis Strait sample (with the highest coverage and highest
199 proportion of heterozygotic sites present) was placed in the middle of the gradient (Figure S1-

200 S3). Additionally, the proportion of heterozygous sites was generally higher using either polar
201 cod or NEAC vs. Arctic cod as reference but did not impact the placement of the samples
202 within the PCA (Figure 3a-c; Figure S1-S3). It is therefore tempting to speculate that a sub-
203 population structuring within Arctic cod is present. However, to fully assess this and define the
204 different sub-populations a larger dataset with more individuals from a larger geographical
205 range is needed.

206 The PCAs on the *cross-species* datasets uncovered a distinct clustering pattern
207 irrespective of the reference used, where the samples clustered in accordance with their
208 respective species (Figure 3d-f), i.e., one cluster for Arctic cod and one cluster for polar cod,
209 respectively. Additionally, a difference in how the two species clustered along the PC2 axis
210 was detected, with Arctic cod exhibiting minimal intraspecific variation, whereas polar cod
211 displayed intraspecific variability along the PC2 axis (Figure 3d-f), explained by 3.75-3.81%
212 of the variation in the datasets, depending on the reference used. Taken together, these findings
213 indicate that polar cod has a larger standing genetic variation compared to Arctic cod, which
214 could be linked to the difference in female N_e observed between the species (Figure S4 and
215 Hoff et al.²⁷) as well as documented by others^{37,56,57}.

216 **Impact of reference genome on mapping and variant calling statistics**

217 For the *cross-species* datasets, the estimation of mean mapping depth uncovered a species-
218 specific variability, which was dependent on the reference genome used. We detected highest
219 mean depth when individual sequencing data were mapped against their intraspecific reference,
220 while using one of the two other codfishes as the reference resulted in lower mean depth (Figure
221 4a). Lowest mapping depth was observed using NEAC as the reference, i.e., the most distant
222 reference with lowest sequence identity and thus, the lowest potential mappability for both the
223 Arctic cod and polar cod datasets. Notably, the polar cod datasets displayed higher overall
224 depth levels, irrespective of reference used, due to the fact that the polar cod samples were

sequenced in a separate batch with slightly higher coverage (see Supplementary Materials and Methods in Hoff et al.²⁸). Moreover, the proportion of heterozygous sites estimated (Figure 4b) mirrored the patterns of mean depth observed, where the lowest number of heterozygous sites was detected when the intraspecific reference was employed (Figure 4b), while a higher proportion of heterozygous sites was detected when one of the two heterospecific codfishes was used as the reference (Figure 4b). Thus, a higher mean depth resulted in a lower proportion of heterozygote sites and vice versa. Intriguingly, the degree of heterozygosity, seemed to be less impacted when using the more distantly related NEAC as a reference. Even if having the lowest mapping depth, the heterozygosity level was not as pronounced as seen when using either Arctic cod or polar cod as the reference (Figure 4a and b). These findings could potentially be coupled to the high genomic content of short tandem repeats detected within codfishes^{58–60} combined with the GadMor3 genome assembly being of higher quality and more contiguous compared to the Arctic cod and the polar cod genome assemblies^{27,29}. Mapping towards these lower quality genomes would potentially result in a higher degree of erroneous mapping of reads, i.e., misalignments (especially within the repetitive regions) vs. when mapping towards the higher quality NEAC genome assembly. Accordingly, the lower quality of the Arctic cod and the polar cod genomes, i.e., with a lower resolution of the repetitive regions, combined with higher sequence identity between these two species, could easily result in higher mapping depth (as documented above), as well as a higher degree of wrongly called heterozygous sites^{10–14,61}. It should also be noted, that our findings could be explained by the fact that NEAC is genetically more divergent vs. the two other species, resulting in lower mappability and lower number of callable sites, and thus, less heterozygote sites detected. But, based on the similar number of sites called using the different references (see Table S4), the latter explanation seems less plausible.

249 For the population genetic statistics calculated for each of the species, we discovered
250 varying results depending on the reference used (Figure 4c-e). The average π estimates
251 displayed similar overall trends regardless of the reference genome used (Figure 4c; box plots).
252 However, when either Arctic cod or polar cod was used as a reference, the non-reference
253 species in the *cross-species* datasets exhibited a tailing of the average π values (Figure 4c;
254 points). In contrast, using NEAC as a reference, the tailing appeared less pronounced and more
255 similar to the estimates seen for the intraspecific comparisons. Similarly, the average
256 background D_{XY} divergence (Figure 4d) between the species was higher when Arctic cod and
257 polar cod were used as references, while a notable decrease in genetic divergence was observed
258 when employing NEAC as the reference. These observations combined, could probably also
259 be linked to the difference in quality of the genome assemblies, with the NEAC having the
260 highest quality and lower degree of misalignments and/or due to poorer mappability, as
261 discussed above. Additionally, the employment of an equally distant relative as reference for
262 both species, could here be an asset, i.e., not introducing any reference bias towards one of the
263 species when performing the variant calling. Such a bias could most likely influence the genetic
264 diversity detected between the two species, seemingly resulting in an overestimation of the
265 genetic divergence between Arctic cod and polar cod, when compared to the results achieved
266 when using NEAC as the reference. On the other hand, when using NEAC as the reference
267 there might be a higher chance that the polymorphic sites and the divergence detected between
268 the two species are located within conserved regions (where the mappability is better), which
269 could lead to an underestimation, as observed in our comparisons (Figure 4d). Contradictory
270 to π and D_{XY} , calculation of average background F_{ST} differentiation between Arctic cod and
271 polar cod uncovered a similarly high degree of fixation between the species, irrespective of
272 which of the three references used (Figure 4e). The rather large interspecific differentiation at
273 the whole genome-wide level corroborates the findings from the PCA analyses (Figure 3d, e

274 and f), indicating that the reference used does not impact the variant calling to any degree to
275 determine the global degree of differentiation between the species, when using F_{ST} and/or PCA
276 analyses. In contrast, genetic diversity and genetic divergence, measured by π and D_{XY} , are
277 seemingly more sensitive to the choice of reference used.

278 **Detection of multiple chromosomal inversions in Arctic cod**

279 For the *intraspecific* dataset when using Arctic cod as reference genome we detected six
280 chromosomal inversions that fulfilled the criteria defined by our inversion detection protocol
281 (Figure S5). The inversions detected were found on chromosome 1, 6, 10, 11, 13, and 14,
282 spanning from 2 Mb to 14 Mb in size (Table 1; Figure 5; Figure S6-S10). Furthermore, we
283 detected five additional putative inversions, i.e., regions displaying the same patterns as the
284 other inversions, but with weaker LD signals, less clear heterozygosity distribution, and/or only
285 2 or less individuals in the rare cluster (Table 1; Figure S11-S17). Among the putative
286 inversions, the ones identified on chromosome 7 represented a special case where two smaller
287 regions in the center of the chromosome exhibited inversion signals but did not share the same
288 individuals between clusters (Figure S11 and S12), and thus, denoted as two separate putative
289 inversions. The absence of an inversion signal in the intermediate region further supports two
290 independent inversions (Figure S13). On chromosome 9, we detected a signal indicating a
291 putative inversion. However, this region did not display distinct R2 values along the LD
292 heatmap (Figure S14). Lastly, putative inversions were detected on chromosomes 3 and 15,
293 respectively, were both fulfilled all steps for inversion detection but only had a single sample
294 in the rare cluster (Figure S15 and S16). Additionally, for chromosome 10, we identified a
295 region upstream of the inversion that also displayed a high degree of differentiation (Figure
296 S17). However, this upstream region lacked the distinct PCA clusters and typical
297 heterozygosity distribution expected for inversions (Figure S17), and therefore, was not
298 classified as part of this inversion nor as a separate putative inversion.

299 The larger number of inversions detected in Arctic cod is comparable with the higher
300 number of inversions detected in polar cod, where in total 20 inversions are detected²⁸. Both
301 species resides in freezing water temperatures, and thus it is speculated that this high number
302 is linked to cold water adaptions²⁷.

303 **Table 1:** Inferred chromosomal inversions for Arctic cod using the three reference genomes. First column gives
304 chromosome (Chr) in Arctic cod and the homologous chromosome is given for the other two species. The count
305 of individuals is given in the rare group (RC), explained variation for the first principal component (PC1), and the
306 region used to run PCA calculations. The grey coloring indicates the inversion split in two, while orange coloring
307 denotes inversion not detected. Location on the chromosome(s) is given as Region (in Mbp).

Arctic cod				Polar cod				NEAC			
Chr	RC	PC1	Region	Chr	RC	PC1	Region	Chr	RC	PC1	Region
1	2	43.7%	42-50	15+	2	44.4%	13-18	18	2	53.4%	8-14
1	-	-	-	15+	2	40.8%	6-8	-	-	-	-
3*	1	30.5%	3-8	18*	1	45.2%	4-6	19*	1	38.3%	7-10
6	4	56.3%	45-47	5	4	44.6%	8-12	17	1	42.5%	1-5
7*	1	41.4%	20-23	3*	1	31.3%	51-54	15*	1	45.1%	18-20
7*	2	44.5%	30-32	16	-	-	-	21*	2	37.9%	17-19
9*	2	23.15%	20-25	6	2	15%	20-23	4*	2	15.3%	22-27
10	2	42%	14-23	7	2	29.8%	8-15	12	2	38.7%	1-6
11	3	26.5%	10-24	8	3	26.4%	4-15	7	3	25.4%	14-29
13	3	29.5%	1-7	14+	3	17.7%	start-1	5	3	25.7%	1-4
13	-	-	-	14+	3	13.9%	9-13	-	-	-	-
14	3	42%	22-end	10	3	48.2%	21-end	10	3	43.2%	23-27
15*	1	42.4%	7-12	12*	1	27.2%	start-3	2*	1	31.7%	16-20

308 *Putative inversion, +split in multiple regions.

309 **Reference bias in inversion detection coupled to interspecific chromosomal reshufflings** 310 **and translocations**

311 By taking full advantage of the *intraspecific* datasets, we uncovered that the precision, in terms
312 of size and location, of the inversion scoring became problematic when using a different
313 reference genome than the focal species (Table 1). Employing NEAC as the reference genome,
314 all six validated inversions were confirmed as well as the putative inversions (Figure S18-S28).
315 Even though all the inversions were detected, the majority of the inversions identified were not
316 found to be of similar size and nor with the same chromosomal positioning as the corresponding

317 inversions detected using Arctic cod as the reference. This differentiation is mainly due to the
318 larger species-specific genomic rearrangements and translocations that have occurred within
319 this lineage (Figure 6, 7 and Hoff et al.²⁷). However, for some of the inversions a partly
320 overlapping positioning was detected when inspecting homologous chromosomes, i.e., the
321 inversions on chromosome 4, 7, 10, and 19 in NEAC vs. chromosome 9, 11, 14 and 3 in Arctic
322 cod (Table 1). Moreover, two of the inversions detected (on chromosome 7 and 17) in NEAC
323 were found to be larger than the corresponding inversions detected in Arctic cod (on
324 chromosome 11 and 6). Since it has been shown for these two regions that Atlantic cod has
325 overlapping inversions with Arctic cod²⁷, this could imply that the signal of the Atlantic cod
326 inversion could interfere with the detection of the true Arctic cod inversion.

327 When applying the more closely related polar cod as the reference, all inversions were
328 detected except one of the putative inversions (Table 1; Figure S29-S41), i.e., the second
329 inversion on chromosome 7 in Arctic cod (corresponding to chromosome 16 in polar cod;
330 Figure S29). Also here, the majority of the inversions identified were not found to be of similar
331 size and nor with the same chromosomal positioning as the corresponding inversions detected
332 using Arctic cod (nor the NEAC) as reference. Moreover, for the inversion detected on
333 chromosome 1 in Arctic cod, the inversion appeared as two separate but linked inversions, a
334 result of chromosomal rearrangements between polar cod and Arctic cod (Figure 6c and d;
335 Figures S30 and S31). Similarly, inaccurate identification due to intraspecific chromosomal
336 translocations (between all three species) is seen for the region harbouring the inversion on
337 chromosome 13 in Arctic cod (Figure 7). When employing the polar cod genome as the
338 reference, we find that the inversion is split into two separate inversions, with no clear LD
339 signals as well as a less clear heterozygosity distribution (Figure 7c and d; Figure S38 and 39).
340 For the same region using NEAC as reference (Figure 6e; Figure S26), we capture the expected
341 heterozygosity distribution, however only weak LD signals were detected. Adding to the

342 complexity of inversion detection when utilizing a more distantly related reference, the putative
343 inversion on chromosome 3 in Arctic cod showed a much clearer LD signal when either NEAC
344 (Figure S19) or polar cod (Figure S32) was employed.

345 **Concluding remarks**

346 Our findings combined, strongly indicate that caution must be exercised when using a
347 heterospecific reference genome for variant calling as well as inversion scoring. The quality of
348 the reference used as well as degree of genomic divergence between the focal species and the
349 reference seemingly impact the variants called due to i) a lower degree of mappability and thus,
350 losing informative genetic variation, ii) potential misalignments which could lead to f. ex. a
351 bias towards higher degree of heterozygosity and more noisy datasets, where in-depth analyses
352 on e.g., demography history and detection of signals of selection are highly likely to be
353 erroneous/inflated by this type of reference bias^{10–14,61}. Specifically, the general population
354 genetic statistics in terms of heterozygosity, ROH, and genetic diversity, are all metrics that are
355 often used within conservation genomics as measurements for the health situation of a species
356 and/or populations, by estimating the standing genetic variation and thus, their adaptive
357 capacity^{4,10,12,62}. Our study shows that some of these metrics are seemingly more sensitive,
358 such as D_{XY} and π , while the F_{ST} estimates are more robust, at least for detecting differentiation
359 between species. However, it could be that F_{ST} estimates may be impacted if looking into
360 differentiation within a species, i.e., between populations and/or ecotypes.

361 Most importantly, we discovered that the use of reference impacted the detection and
362 characterization of chromosomal inversions. Important information on size, position, and
363 linkage between regions can easily be lost due to species-specific genomic rearrangements and
364 smaller translocations²⁷. For instance, when using the more closely related species—the polar
365 cod—as the reference for the detection of inversions in Arctic cod resulted in the detection of
366 several inversions that were defined as two inversions instead of one continuous larger

367 inversion as well one inversion that was not discovered at all. This mismatch in detection of
368 inversions is highly linked to the larger genomic reshufflings that have occurred after Arctic
369 cod and polar cod branched off from their common codfish ancestor ~4 million years ago²⁴.
370 Moreover, most of the inversions detected were smaller than when using the focal species as
371 the reference, i.e., meaning that the breakpoint regions are not fully characterized when using
372 a non-conspecific reference. Additionally, we also uncovered that the precision of detection
373 was impacted if the reference has inversions in the same regions as the focal species. When
374 applying Atlantic cod as the reference, two of the inversions were found to be longer than
375 expected, which could be explained by the fact that Atlantic cod in these regions harbor species-
376 specific but overlapping polymorphic inversions with Arctic cod^{21,22,27}. We speculate that
377 highly variable breakpoint regions^{63,64} could lead to higher degree of misalignments in these
378 regions. Taken together, inference of detection of chromosomal inversions when using a non-
379 conspecific reference, should be handled with care. Especially, since the breakpoint regions—
380 where important genes under selection tend to be positioned^{27,65–68}—seems to be lost in the
381 scoring of the inversions, as well as the number and interlinking of inversions may be
382 incomplete.

383 **Author contributions**

384 S.J., S.N.K.H., M.F.M. conceptualized the study. S.N.K.H., M.F.M. did DNA extractions.
385 M.F.M. handled, processed, and analyzed the data. M.R. provided scripts. S.J., S.N.K.H.
386 sampled polar cod and the single specimen of Arctic cod from the Barents Sea. I.B. and K.P.
387 provided Arctic cod specimens from Canada and Greenland, respectively. Funding acquisition
388 by S.J., K.P. and K.S.J.. S.J., S.N.K.H., and M.F.M. did the interpretation and discussion of
389 results. Visualization and design of figures by S.N.K.H., M.F.M., and S.J. J.C. provided early
390 feedback and comments to the manuscript. M.F.M. and S.J. wrote the original manuscript,

391 S.N.K.H. contributed with relevant sections and feedback. All co-authors read, provided
392 feedback, and improved the manuscript.

393 **Data availability**

394 All unpublished raw sequences from the Arctic cod dataset will be deposited in the European
395 Nucleotide Archive (ENA) at EMBL-EBI upon publication.

396 **Acknowledgements**

397 Library preparations and sequencing were performed by the Norwegian Sequencing Centre,
398 Oslo. The computations were performed on resources provided by Sigma2; the National
399 Infrastructure for High Performance Computing and Data Storage in Norway. We thank
400 Alexandra Viertler for the codfish illustrations. We thank the crews of RV Kronprins Haakon
401 (i.e., the Nansen Legacy project) and RV Helmer Hanssen (i.e., the TUNU-cruises) for
402 facilitating the trawling and sample acquisition in the rough Barents Sea and in Northeast
403 Greenland. M.F.M. would like to thank the Nansen Legacy for the early career opportunities
404 provided to him.

405 **Funding**

406 This work was funded by the Research Council of Norway through the following
407 projects: '**Nansen Legacy**' (RCN no. 276730) and '**Comparacod**' (RCN no. 222378).

408

409

410

411

412

413 **References**

- 414 1. Hohenlohe, P. A., Funk, W. C. & Rajora, O. P. Population genomics for wildlife
415 conservation and management. *Mol. Ecol.* **30**, 62–82 (2021).
- 416 2. Lancaster, L. T. *et al.* Understanding climate change response in the age of genomics. *J.*
417 *Anim. Ecol.* **91**, 1056–1063 (2022).
- 418 3. Bernatchez, L., Ferchaud, A.-L., Berger, C. S., Venney, C. J. & Xuereb, A. Genomics for
419 monitoring and understanding species responses to global climate change. *Nat. Rev. Genet.*
420 **25**, 165–183 (2024).
- 421 4. Andersson, L. *et al.* How fish population genomics can promote sustainable fisheries: a road
422 map. *Annu. Rev. Anim. Biosci.* **12**, 1–20 (2024).
- 423 5. Formenti, G. *et al.* The era of reference genomes in conservation genomics. *Trends Ecol.*
424 *Evol.* **37**, 197–202 (2022).
- 425 6. Pettersson, M. E. *et al.* A chromosome-level assembly of the Atlantic herring genome—
426 detection of a supergene and other signals of selection. *Genome Res.* **29**, 1919–1928
427 (2019).
- 428 7. Theissinger, K. *et al.* How genomics can help biodiversity conservation. *Trends Genet.* **39**,
429 545–559 (2023).
- 430 8. Hotaling, S., Kelley, J. L. & Frandsen, P. B. Toward a genome sequence for every animal:
431 Where are we now? *Proc. Natl Acad. Sci. USA.* **118**, e2109019118 (2021).
- 432 9. Bentley, B. P. & Armstrong, E. E. Good from far, but far from good: the impact of a
433 reference genome on evolutionary inference. *Mol. Ecol. Resour.* **22**, 12–14 (2022).
- 434 10. Armstrong, E. E. *et al.* Long live the king: chromosome-level assembly of the lion
435 (*Panthera leo*) using linked-read, Hi-C, and long-read data. *BMC Biol.* **18**, 3 (2020).
- 436 11. Gopalakrishnan, S. *et al.* The wolf reference genome sequence (*Canis lupus lupus*) and its
437 implications for *Canis* spp. population genomics. *BMC Genomics* **18**, 495 (2017).
- 438 12. Prasad, A., Lorenzen, E. D. & Westbury, M. V. Evaluating the role of reference-genome
439 phylogenetic distance on evolutionary inference. *Mol. Ecol. Resour.* **22**, 45–55 (2022).
- 440 13. Thorburn, D.-M. J. *et al.* Origin matters: Using a local reference genome improves
441 measures in population genomics. *Mol. Ecol. Resour.* **23**, 1706–1723 (2023).
- 442 14. Deng, X.-L. *et al.* The impact of sequencing depth and relatedness of the reference genome
443 in population genomic studies: A case study with two caddisfly species (Trichoptera,
444 Rhyacophilidae, *Himalopsyche*). *Ecol. Evol.* **12**, e9583 (2022).
- 445 15. Barth, J. M. I. *et al.* Genome architecture enables local adaptation of Atlantic cod despite
446 high connectivity. *Mol. Ecol.* **26**, 4452–4466 (2017).
- 447 16. Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal
448 inversions. *Trends Ecol. Evol.* **33**, 427–440 (2018).
- 449 17. Huang, K., Andrew, R. L., Owens, G. L., Ostevik, K. L. & Rieseberg, L. H. Multiple
450 chromosomal inversions contribute to adaptive divergence of a dune sunflower ecotype.
451 *Mol. Ecol.* **29**, 2535–2549 (2020).

452 18. Akopyan, M. *et al.* Comparative linkage mapping uncovers recombination suppression
453 across massive chromosomal inversions associated with local adaptation in Atlantic
454 silversides. *Mol. Ecol.* **31**, 3323–3341 (2022).

455 19. Merot, C. *et al.* Locally adaptive inversions modulate genetic variation at different
456 geographic scales in a seaweed fly. *Mol. Biol. Evol.* **38**, 3953–3971 (2021).

457 20. Hager, E. R. *et al.* A chromosomal inversion contributes to divergence in multiple traits
458 between deer mouse ecotypes. *Science* **377**, 399–405 (2022).

459 21. Berg, P. R. *et al.* Three chromosomal rearrangements promote genomic divergence
460 between migratory and stationary ecotypes of Atlantic cod. *Sci. Rep.* **6**, 23246 (2016).

461 22. Berg, P. R. *et al.* Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated
462 with large inversions. *Heredity* **119**, 418–428 (2017).

463 23. Sodeland, M. *et al.* “Islands of divergence” in the atlantic cod genome represent
464 polymorphic chromosomal rearrangements. *Mol. Biol. Evol.* **8**, 1012–1022 (2016).

465 24. Matschiner, M. *et al.* Supergene origin and maintenance in Atlantic cod. *Nat. Ecol. Evol.*
466 **6**, 469–481 (2022).

467 25. Weist, P. *et al.* The role of genomic signatures of directional selection and demographic
468 history in the population structure of a marine teleost with high gene flow. *Ecol. Evol.* **12**,
469 e9602 (2022).

470 26. Le Moan, A., Bekkevold, D. & Hemmer-Hansen, J. Evolution at two time frames: ancient
471 structural variants involved in post-glacial divergence of the European plaice (*Pleuronectes*
472 *platessa*). *Heredity* **126**, 668–683 (2021).

473 27. Siv N.K Hoff *et al.* Chromosomal fusions and large-scale inversions are key features for
474 adaptation in Arctic codfish species (Submitted). *Manuscript* (2024).

475 28. Siv N.K Hoff *et al.* Population divergence manifested by genomic rearrangements in a
476 keystone Arctic species with high gene flow (Submitted). *Manuscript* (2024).

477 29. Jentoft, S. *et al.* The genome sequence of the Atlantic cod, *Gadus morhua* (Linnaeus, 1758).
478 *Wellcome Open Res.* **9**, 189 (2024). <https://doi.org/10.12688/wellcomeopenres.21122.1>

479 30. Rantanen, M. *et al.* The Arctic has warmed nearly four times faster than the globe since
480 1979. *Commun. Earth. Environ.* **3**, 1–10 (2022).

481 31. Gordeeva, N. V. & Mishin, A. V. Population Genetic Diversity of Arctic Cod (*Boreogadus*
482 *saida*) of Russian Arctic Seas. *J. Ichthyol.* **59**, 246–254 (2019).

483 32. Madsen, M. L., Nelson, R. J., Fevolden, S.-E., Christiansen, J. S. & Præbel, K. Population
484 genetic analysis of Euro-Arctic polar cod *Boreogadus saida* suggests fjord and oceanic
485 structuring. *Polar Biol.* **39**, 969–980 (2016).

486 33. Maes, S. M. *et al.* High gene flow in polar cod (*Boreogadus saida*) from West-Svalbard
487 and the Eurasian Basin. *J. Fish Biol.* **99**, 49–60 (2021).

488 34. Nelson, R. J. *et al.* Circumpolar genetic population structure of polar cod, *Boreogadus*
489 *saida*. *Polar Biol.* **43**, 951–961 (2020).

490 35. Quintela, M. *et al.* Distinct genetic clustering in the weakly differentiated polar cod,
491 *Boreogadus saida* Lepechin, 1774 from East Siberian Sea to Svalbard. *Polar Biol.* **44**,
492 1711–1724 (2021).

493 36. Wilson, R. E. *et al.* Micro-geographic population genetic structure within Arctic cod
494 (Boreogadus saida) in Beaufort Sea of Alaska. *ICES J. Mar. Sci.* **76**, 1713–1721 (2019).

495 37. Wilson, R. E. *et al.* Low levels of hybridization between sympatric cold-water-adapted
496 Arctic cod and Polar cod in the Beaufort Sea confirm genetic distinctiveness. *Arc. Sci.* **8**(4):
497 1082-1093. (2022) doi:10.1139/as-2021-0030.

498 38. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina
499 sequence data. *Bioinformatics* **30**, 2114–2120 (2014).

500 39. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
501 Preprint at <https://doi.org/10.48550/arXiv.1303.3997> (2013).

502 40. Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *GigaScience* **10**, giab008
503 (2021).

504 41. Broad Institute. Picard Toolkit. *Broad Institute, GitHub repository*
505 <https://broadinstitute.github.io/picard/> (2019).

506 42. DePristo, M. A. *et al.* A framework for variation discovery and genotyping using next-
507 generation DNA sequencing data. *Nat. Genet.* **43**, 491–498 (2011).

508 43. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156–2158
509 (2011).

510 44. Purcell, S. *et al.* PLINK: A tool set for whole-genome association and population-based
511 linkage analyses. *Am. J. Hum. Genet.* **81**, 559–575 (2007).

512 45. Pedersen, B. S. & Quinlan, A. R. Mosdepth: quick coverage calculation for genomes and
513 exomes. *Bioinformatics* **34**, 867–868 (2018).

514 46. Bouckaert, R. *et al.* BEAST 2.5: An advanced software platform for Bayesian evolutionary
515 analysis. *PLoS Comput. Biol.* **15**, e1006650 (2019).

516 47. Drummond, A. J., Rambaut, A., Shapiro, B. & Pybus, O. G. Bayesian coalescent Inference
517 of past population dynamics from molecular sequences. *Mol. Biol. Evol.* **22**, 1185–1192
518 (2005).

519 48. Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the analysis of population
520 structure. *Evolution* **38**, 1358–1370 (1984).

521 49. Korunes, K. L. & Samuk, K. pixy: Unbiased estimation of nucleotide diversity and
522 divergence in the presence of missing data. *Mol. Ecol. Resour.* **21**, 1359–1368 (2021).

523 50. Li, H. & Ralph, P. Local PCA shows how the effect of population structure differs along
524 the genome. *Genetics* **211**, 289–304 (2019).

525 51. Mérot, C. Making the most of population genomic data to understand the importance of
526 chromosomal inversions for adaptation and speciation. *Mol. Ecol.* **29**, 2513–2516 (2020).

527 52. Wickham, H. *et al.* *ggplot2*. Springer-Verlag New York <https://ggplot2.tidyverse.org>
528 (2016).

529 53. Kratochvíl, M., Bednárek, D., Sieger, T., Fišer, K. & Vondrášek, J. ShinySOM: graphical
530 SOM-based analysis of single-cell cytometry data. *Bioinformatics* **36**, 3288–3289 (2020).

531 54. Wang, Y. *et al.* MCScanX: a toolkit for detection and evolutionary analysis of gene synteny
532 and collinearity. *Nucleic Acids Res.* **40**, e49 (2012).

533 55. Bandi, V. *et al.* Visualization tools for genomic conservation. in *Plant Bioinformatics: Methods and Protocols* (ed. Edwards, D.) 285–308 (Springer US, New York, NY, 2022). doi:10.1007/978-1-0716-2067-0_16.

536 56. Wilson, R. E. *et al.* Mitochondrial genome diversity and population mitogenomics of polar
537 cod (*Boreogadus saida*) and Arctic dwelling gadoids. *Polar Biol.* **43**, 979–994 (2020).

538 57. Pálsson, S., Källman, T., Paulsen, J. & Árnason, E. An assessment of mitochondrial
539 variation in Arctic gadoids. *Polar Biol.* **32**, 471–479 (2009).

540 58. Tørresen, O. K. *et al.* An improved genome assembly uncovers prolific tandem repeats in
541 Atlantic cod. *BMC Genomics* **18**, 95 (2017).

542 59. Tørresen, O. K. *et al.* Genomic architecture of haddock (*Melanogrammus aeglefinus*)
543 shows expansions of innate immune genes and short tandem repeats. *BMC Genomics* **19**,
544 240 (2018).

545 60. Reinar, W. B. *et al.* Teleost genomic repeat landscapes in light of diversification rates and
546 ecology. *Mobile DNA* **14**, 14 (2023).

547 61. Chen, N.-C., Solomon, B., Mun, T., Iyer, S. & Langmead, B. Reference flow: reducing
548 reference bias using multiple population genomes. *Genome Biol.* **22**, 8 (2021).

549 62. Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. *Trends Ecol.
550 Evol.* **23**, 38–44 (2008).

551 63. Araya, R. A. *et al.* Tandem accumulation of transposable element-derived repeats in
552 inversion breakpoints. In prep. (2024).

553 64. Han, F. *et al.* Ecological adaptation in Atlantic herring is associated with large shifts in
554 allele frequencies at hundreds of loci. *eLife* **9**, e61076 (2020).

555 65. Stewart, N. B. & Rogers, R. L. Chromosomal rearrangements as a source of new gene
556 formation in *Drosophila yakuba*. *PLoS Genet.* **15**, e1008314 (2019).

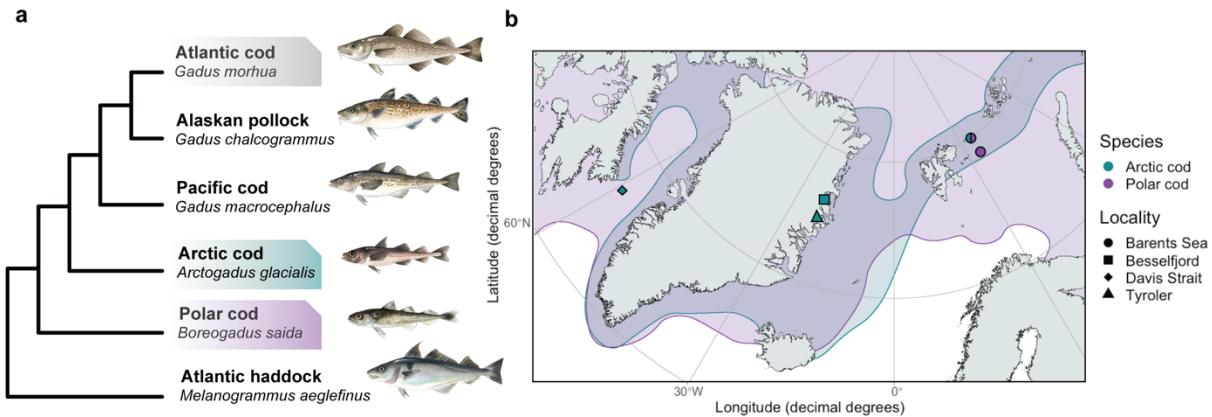
557 66. Jones, F. C. *et al.* The genomic basis of adaptive evolution in threespine sticklebacks.
558 *Nature* **484**, 55–61 (2012).

559 67. Guillén, Y. & Ruiz, A. Gene alterations at *Drosophila* inversion breakpoints provide prima
560 facie evidence for natural selection as an explanation for rapid chromosomal evolution.
561 *BMC Genomics* **13**, 53 (2012).

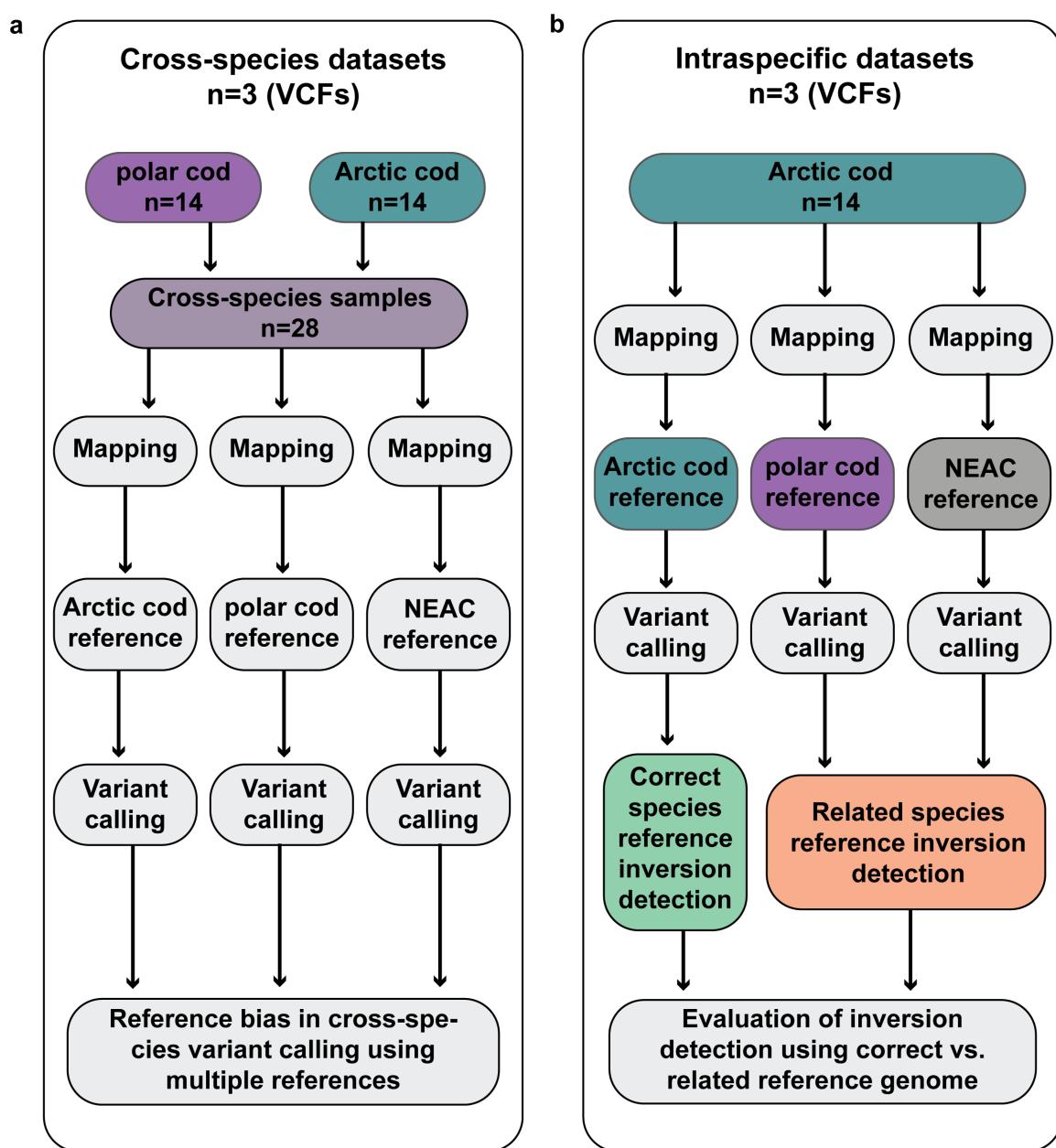
562 68. Villoutreix, R. *et al.* Inversion breakpoints and the evolution of supergenes. *Mol. Ecol.* **30**,
563 2738–2755 (2021).

564 69. Mecklenburg, C. W. *et al.* *Marine Fishes of the Arctic Region Volume 1. Conservation of
565 Arctic Flora and Fauna Monitoring Series 28*, Norwegian Ministry of Foreign Affairs
566 (2018).

567


568

569


570

571

572 **Figures**

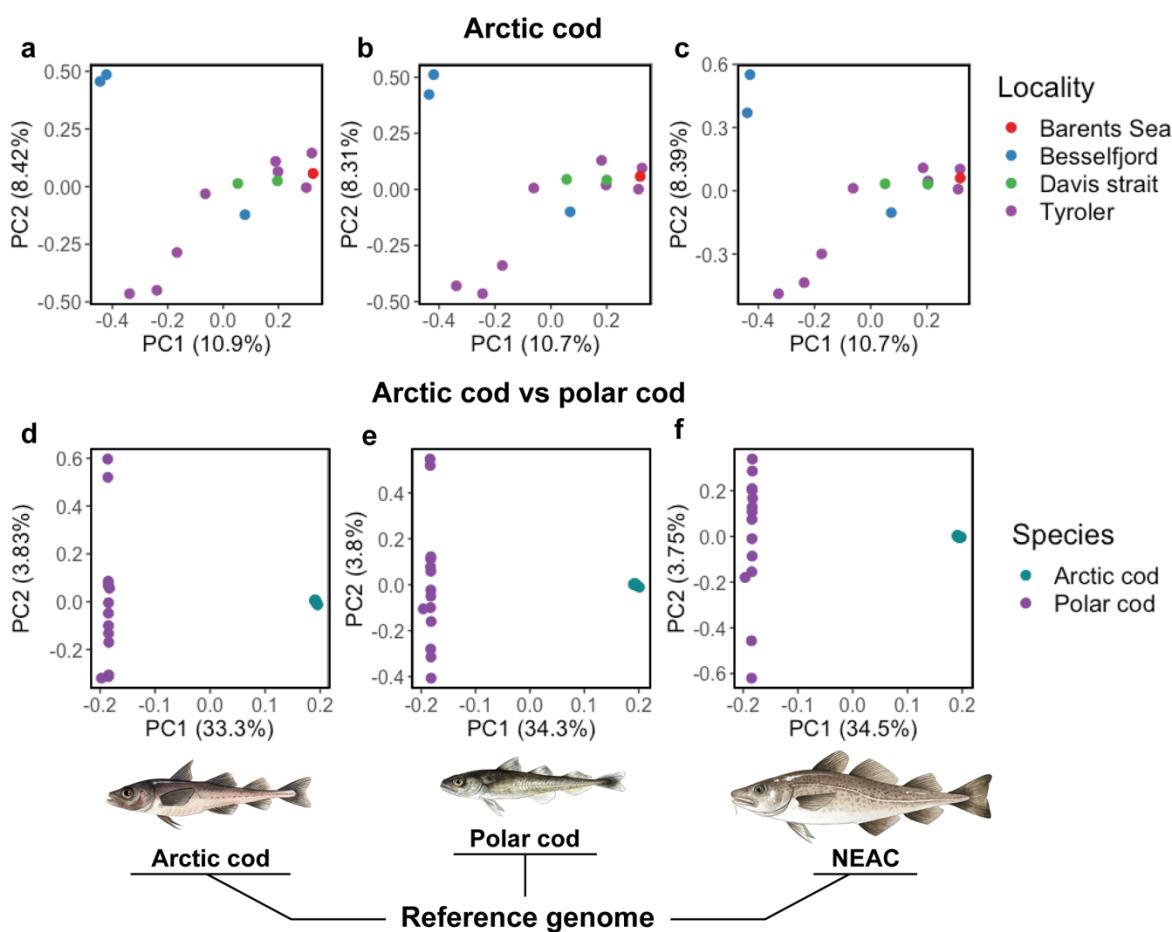
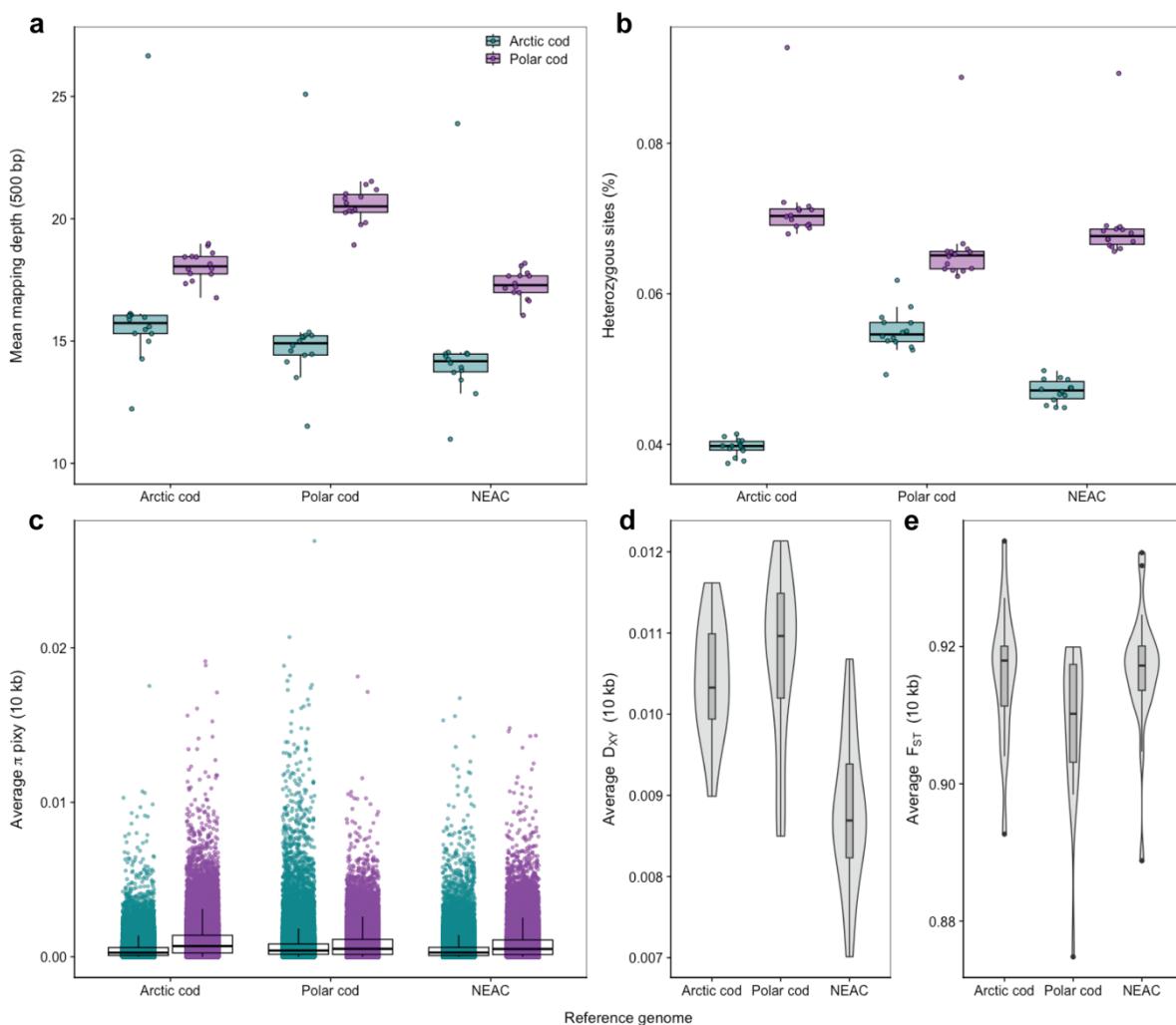
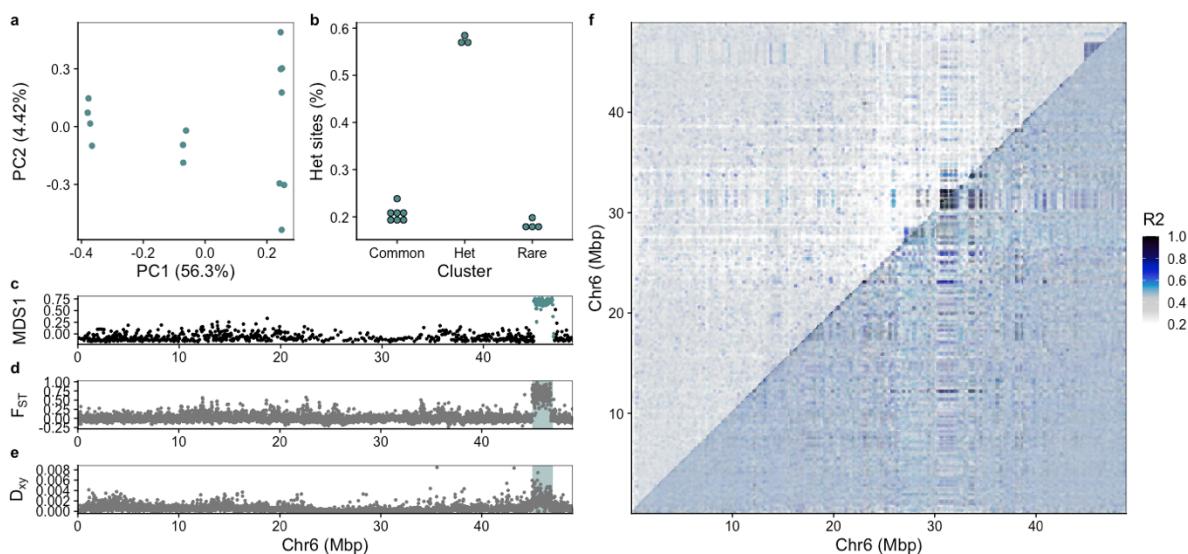


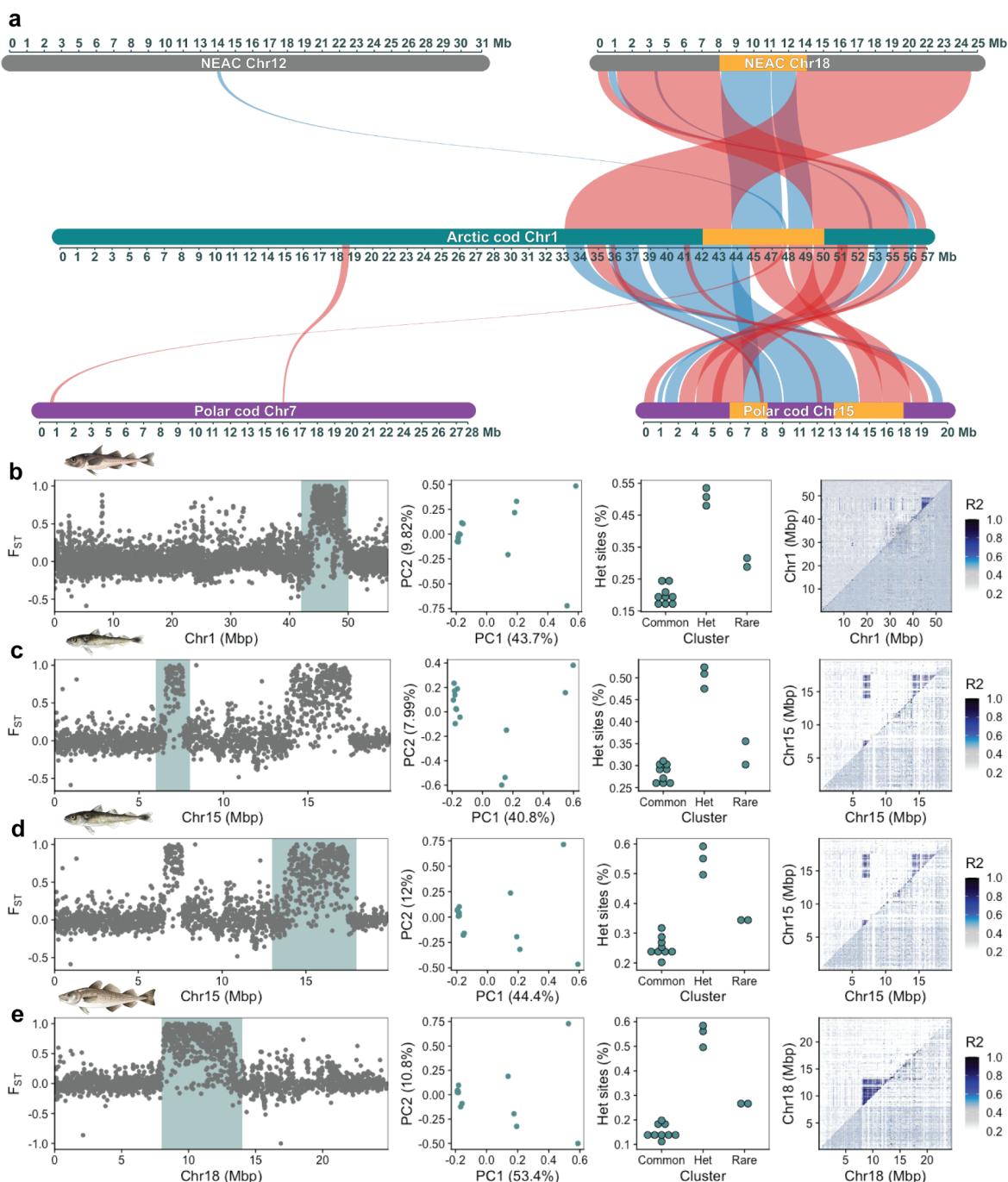
Figure 1: Phylogenetic relationship and distribution of Arctic cod and polar cod. a) Phylogenetic relationship of Arctic cod redrawn from Matschiner et al.²⁴ and Hoff et al.²⁷ The phylogenetic placement of Arctic cod is not fully resolved, as it may be either a sister lineage to *Gadus* or a sister species to polar cod^{24,27}. Species used as reference genomes in this study are highlighted. b) Map of sampling localities of Arctic cod and polar cod with their distributions in the sampling region redrawn from Mecklenburg et al.⁶⁹ Illustrations by Alexandra Vierler.

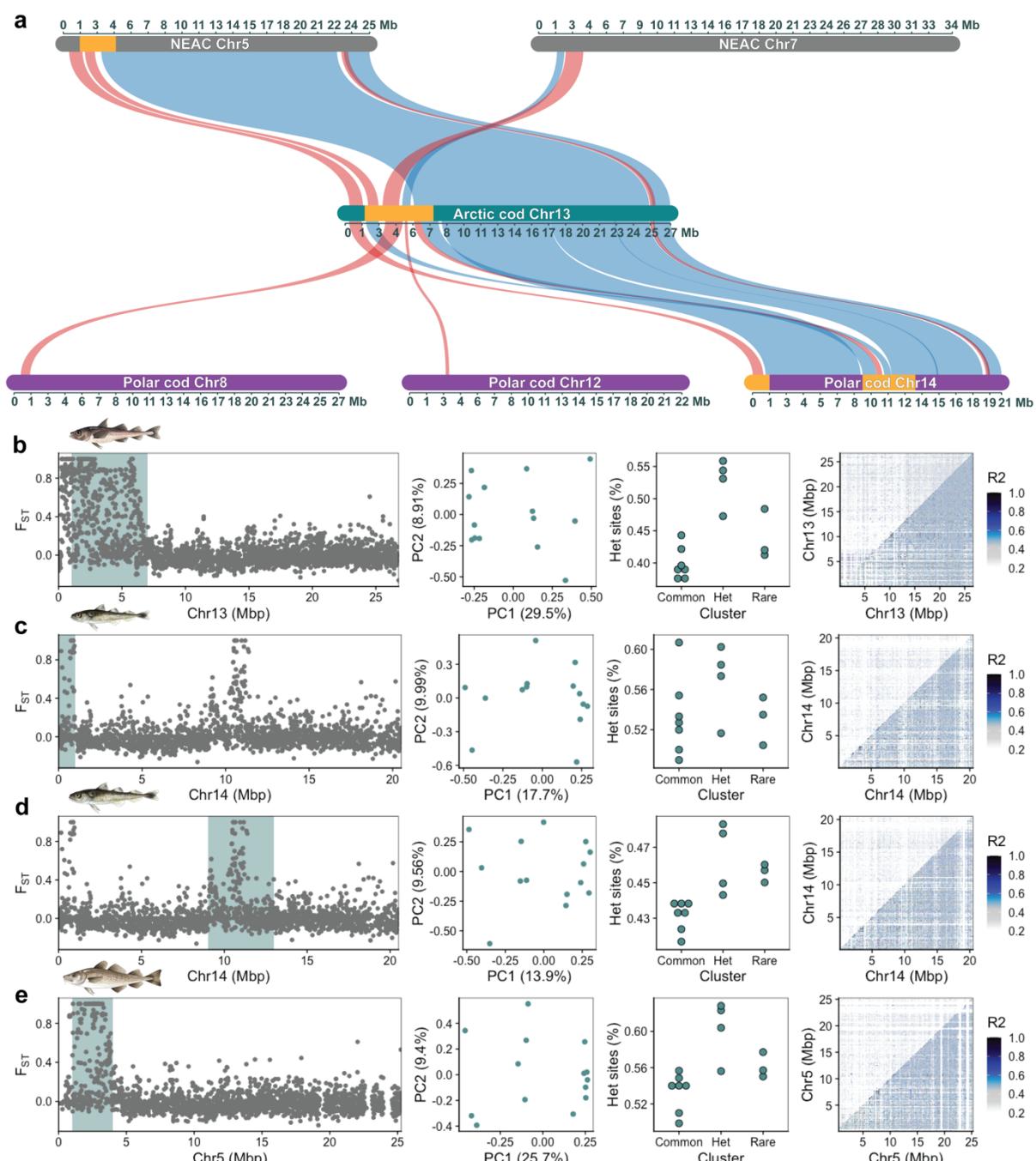
580
581
582
583
584
585
586
587
588
589
590
591
592
593


Figure 2: Flowchart of the sample design and generation of the *cross-species* and *intraspecific* datasets. a) For the generation of the three *cross-species* VCFs, we used samples of Arctic cod (N=14) and polar cod (N=14). Each sample was individually mapped against three different reference genomes: Arctic cod, polar cod, and (Northeast Arctic cod) NEAC. After mapping, the samples were grouped based on the reference genome they were mapped against. This approach was employed to assess the extent of reference bias in *cross-species* variant calling when using different reference genomes. b) To investigate the impact of reference bias on inversion detection, we generated three *intraspecific* datasets focusing on Arctic cod samples (N=14). These samples were mapped against the same three reference genomes used for the *cross-species* VCFs. In this analysis, the Arctic cod reference was considered the accurate benchmark for detecting inversions. The detected inversions were then compared to those identified when using a related species' reference genome, to evaluate the influence of reference choice on inversion detection.


594

595 **Figure 3:** Genetic structure for Arctic cod samples (*intraspecific*) and Arctic cod vs. polar cod (*cross-*
596 *species*) using the three different reference genomes. The map shows the different sampling localities
597 of Arctic cod and polar cod used in this study. a, b, c) PCA of Arctic cod samples against the three
598 references, and d, e, f) PCA of *cross-species* datasets using the three references. The three references
599 Arctic cod, polar cod, and NEAC used for the PCAs shown below.


600


601
602 **Figure 4:** Variability in sample statistics and population measures for the cross-species comparison
603 using different references for Arctic cod and polar cod. a) The mean mapping depth differs for Arctic
604 cod and polar cod samples based on the reference chosen, i.e., Arctic cod, polar cod or NEAC. The
605 highest mean depth is seen in samples when they are mapped against their respective intraspecific
606 references. b) Similarly, the proportion of heterozygous sites per sample, calculated using VCFtools
607 after variant calling, also changes with the reference used. The lowest values are found in Arctic cod
608 and polar cod when analyzed against their own intraspecific references. c) Average π values in windows
609 across the three different reference genomes for each species, calculated using pixy, demonstrate
610 variation in calculated π values depending on the reference used. d, f) Average D_{XY} and F_{ST} for each
611 chromosome in the cross-species comparison of Arctic cod and polar cod, calculated using pixy, using
612 the three different references, also show variability depending on the reference chosen.
613
614

615
616 **Figure 5:** Example of how a chromosomal inversion was detected using chromosome 6 of Arctic cod
617 as reference. a) PCA for the inversion region identified using lostruct. b) Manually assigned cluster
618 groups and heterozygous sites given in bins for the clusters. c) MDS analysis produced by lostruct where
619 the inversion region is highlighted. d) F_{ST} and e) D_{XY} calculated with pixy showing elevated values
620 within the highlighted inversion region. f) pairwise linkage disequilibrium plot calculated using pixy
621 where the top triangle includes all samples, and the lower triangle includes only the individuals within
622 the common type. The upper right corner of the top triangle shows elevated R2 values; however, the
623 bottom triangle, containing only individuals with homokaryotypes of the common type, does not display
624 elevated R2 values. This pattern is in line with what is expected for a chromosomal inversion.
625

626
627 **Figure 6:** Example of inversion detection bias for the inversion on chromosome 1 in Arctic cod using
628 Arctic cod, polar cod, and NEAC as reference genomes independently. a) Synvisio plots illustrating the
629 structural rearrangements occurring between the three species' reference genomes for the second half
630 of the Arctic cod chromosome 1; blue indicates the same orientation, while red indicates the reverse
631 orientation, and orange indicates regions defined for the inversion detection protocol. b) Inversion
632 detection when using Arctic cod as a reference. c) and d) Inversion detection when using polar cod as
633 a reference, where the inversion is split into two parts that are linked together. e) When using NEAC as
634 a reference, the inversion is successfully captured. However, a smaller part is missing, as it has
635 translocated to chromosome 12 in NEAC. Each panel is described in further detail in Figure 5.
636
637

638

639

640

641

642

643

644

645

646

647

648

Figure 7: Example of inversion detection bias for the inversion on chromosome 13 in Arctic cod using Arctic cod, polar cod, and NEAC as reference genomes independently. a) Synvisio plots illustrating the structural rearrangements between the three species' reference genomes for Arctic cod chromosome 13, annotated with the same colors as those used in Figure 5. Here, multiple structural rearrangements between the species obscure the inversion signal for chromosome 13. b) Inversion detection using Arctic cod as a reference. c) and d) Inversion detection using polar cod as a reference, where the inversion appears as two distinct parts. Moreover, the heterozygosity signal is weaker in c), and none of the LD plots capture the inversion when using polar cod as reference. e) The inversion exhibits the expected heterozygosity distribution when using NEAC as a reference, but the LD signal is weak. Each panel is described in further detail in Figure 5.