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Abstract

Kinases play a central role in regulating cellular processes, making their study essential for
understanding cellular function and disease mechanisms. To investigate the regulatory state of a
kinase, numerous methods have been, and continue to be, developed to infer kinase activities
from phosphoproteomics data. These methods usually rely on a set of kinase targets collected
from various kinase-substrate libraries. However, only a small percentage of measured
phosphorylation sites can usually be attributed to an upstream kinase in these libraries, limiting
the scope of kinase activity inference. In addition, the inferred activities from different methods
can vary making it crucial to evaluate them for accurate interpretation. Here, we present a
comprehensive evaluation of kinase activity inference methods using multiple kinase-substrate
libraries combined with different inference algorithms. Additionally, we try to overcome the
coverage limitations for measured targets in kinase substrate libraries by adding predicted
kinase-substrate interactions for activity inference. For the evaluation, in addition to classical
cell-based perturbation experiments, we introduce a tumor-based benchmarking approach that
utilizes multi-omics data to identify highly active or inactive kinases per tumor type. We show
that while most computational algorithms perform comparably regardless of their complexity, the
choice of kinase-substrate library can highly impact the inferred kinase activities. Hereby,
manually curated libraries, particularly PhosphoSitePlus, demonstrate superior performance in
recapitulating kinase activities from phosphoproteomics data. Additionally, in the tumor-based
evaluation, adding predicted targets from NetworKIN further boosts the performance, while
normalizing sites to host protein levels reduces kinase activity inference performance. We then
showcase how kinase activity inference can help in characterizing the response to kinase
inhibitors in different cell lines. Overall, the selection of reliable kinase activity inference methods
is important in identifying deregulated kinases and novel drug targets. Finally, to facilitate the
evaluation of novel methods in the future, we provide both benchmarking approaches in the R

package benchmarKIN.



Introduction

Protein phosphorylation is a reversible post-translational modification that acts as a key
regulator of various cellular processes and plays a central role in intracellular signal
transduction’. It is controlled by kinases which, together with their substrates and phosphatases,
form a large network that controls diverse biological processes ranging from cell cycle
progression, cell growth and differentiation to apoptosis. There are roughly 540 kinases encoded
in the human genome that phosphorylate 20,000 proteins at more than 350,000 phosphorylation
sites?. By catalyzing the transfer of a phosphate group to threonine, serine, tyrosine or histidine
residues, they affect the substrate protein’s activity, stability, localization and/or interaction with
other molecules®. Aberrant kinase activity has been implicated in the pathogenesis of numerous
diseases, including Alzheimer’s disease*, Parkinson’s disease®, metabolic
dysfunction-associated steatotic liver disease®, obesity and diabetes’, as well as various cancer
types®. Protein kinases are also one of the most targeted protein families for inhibition by small
molecules®. Hence, investigating the regulatory state of a kinase has emerged as an important
objective in many biomedical contexts, including identification of novel disease-specific drug

targets, development of patient specific therapeutics and prediction of treatment outcomes'®-"2.

Enabled by mass spectrometry (MS)-based technologies, measuring global
phosphorylation events has provided new opportunities for the systematic analysis of kinases
and their activities. Large-scale identification and quantification of phosphorylation levels can be
obtained by MS, which can provide measurements for up to 50,000 unique phospho-peptides
that span over 75% of all cellular proteins™. This snapshot of the phosphoproteome reflects the
activity of kinases and phosphatases. For example, to better understand dysregulation of
phosphorylation in cancer, phosphoproteomic profiling approaches have been routinely applied
to tumor cohorts in Clinical Proteogenomic Tumor Analysis Consortium (CPTAC)'*'® and
International Cancer Proteogenome Consortium (ICPC)'® studies. Additionally,
phosphoproteomic profiling has recently been applied to better understand the effects of a

SARS-CoV-2 infection on cellular signaling®’.

Phosphoproteomics data can be used to infer the activity of a given kinase based on the
phosphorylation profiles of the kinase’s targets'®. Several tools have been developed to carry out
this inference utilizing computational algorithms with varying complexity. For example,
PTM-SEA", uses the single-sample gene set enrichment algorithm?’, whereas KSEA?"%
calculates a z-score based on the aggregation of phosphorylation site levels for known targets

relative to the background set of overall phosphorylation site levels. A common feature of all
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these methods is that prior knowledge of the target phosphorylation sites of the respective
kinase is required. Typically, the kinase target site sets are extracted from manually curated
databases of known targets such as PhosphoSitePlus?, SIGNOR?, or Phospho.ELM*.
However, only a small percentage of phosphorylation sites can be attributed to any kinase, and,
of those that can be, many are often attributed to a small handful of well-studied kinases?>%.
This can affect kinase activity inference since activity cannot be inferred if too few substrates of
a given kinase are measured, and inferences that are based on low numbers of substrates may
not be as accurate as those made using a greater number of reliable substrates. Therefore, it is
critical to determine if we can increase the number of assessable kinases and enhance
performance by boosting the number of potential substrates that are considered. One way to
accomplish this is by including sites identified as targets in large in vitro screening assays?’,
Alternatively, one could consider sites predicted as targets by computational tools, such as
NetworKINZ°.

Given that multiple different methods have been, and continue to be, developed to infer
kinase activity and that the performance of these methods is dependent on the kinase targets
sets that are chosen, it is critical to establish mechanisms to evaluate the kinase activity
inference performance in order to determine the optimal approaches for estimating kinase
activity from phosphoproteomics data. So far, smaller comparative analyses have been
performed that relied on perturbation studies aimed at identifying perturbed kinases from
phosphoproteomic data®*3'. However, using perturbation studies alone for evaluation has been
limited to a subset of well-studied kinases, are only available in an in vitro setting, and may be

affected by unknown off-target effects.

In this study, we present two complementary benchmarking strategies designed to
evaluate various combinations of computational algorithms and kinase-substrate libraries for
inferring kinase activities. For the kinase activity inference, we focused on methods that
calculate a score solely based on kinase-substrate interactions, can be applied for
single-sample analysis as well as comparative analysis and do not require a specific input file.
As such we have not considered methods, such as CLUE?®, KinasePA?3, KEA334, INKA® or
KSTAR?®*® from the comparison. For the cell-based kinase perturbation-based evaluation, we
expand the existing gold-standard benchmark set of perturbation experiments to encompass a
broader set of kinases for evaluation. Furthermore, we introduce a new tumor-based
benchmarking approach based on the multi-omics CPTAC datasets to ultimately determine the

optimal methodology for inferring kinase activities in human tumors. We implement these
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benchmarking approaches in the R package benchmarKIN

(https://github.com/saezlab/benchmarKIN) to facilitate the evaluation of novel methodologies.
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Results

Quantifying kinome coverage by prior knowledge resources

For the comparison of kinase activity estimation we collected six kinase-substrate
libraries: PhosphoSitePlus?, PTMsigDB'®, the gold standard set used to train GPS 5.0 (GPS
gold)*’, OmniPath*®, iKiP-DB% and NetworKIN?. Besides manually curated resources and
meta-resources, like PhosphoSitePlus, PTMsigDB, GPS gold and OmniPath, we also included
the in vitro database iKiP-DB (in vitro Kinase-to-Phosphosite database), which identified
kinase-substrate interactions from a large-scale in vitro kinase study for over 300 human
proteins, and kinase target sites from the NetworKIN database, which contains precomputed
kinase-substrate interactions for phosphorylation sites reported in the KinomeXplorer-DB* using
the NetworKIN algorithm?.

We then compared the coverage of kinases and kinase-substrate interactions for the
different libraries. OmniPath, which is a meta-resource that includes interactions from dbPTM*,
HPRD*', Li2012*?, MIMP**, NCI-PID*, PhosphoNetworks*®, PhosphoSitePlus?, phospho.ELM?*,
Reactome?*®, RLIMS-P*’, and SIGNOR?, exhibited the highest kinase coverage (467), followed
by PhosphoSitePlus (390) and GPS gold (352) (Fig. 1a). OmniPath includes 47 kinases not
present in any of the other resources that mainly originate from kinases with interactions
reported by MIMP and PhosphoNetworks. iKiP-DB, PhosphoSitePlus, NetworKIN and GPS gold
also report interactions for 11, 7, 2 and 1 unique kinases, respectively. 86.2% of all kinases are
covered by at least two of the analyzed resources (Fig. 1a, Supplementary Fig. 1a). In general,
all databases cover both serine/threonine and tyrosine kinases as well as kinases with
ambiguous amino acid specificity (Supplementary Fig. 1b). In terms of kinase-substrate
interactions, iKiP-DB and NetworKIN had among the highest number of interactions (iKiP-DB:
26,786, NetworKIN: 22,788), which is expected since interactions from these resources are not
limited to those that are experimentally validated. Additionally, the meta-resource OmniPath
contained a total of 26,280 interactions (Fig. 1b). A lower overlap of kinase-substrate
interactions than of kinase coverage was observed between the resources, with only 21.7% of
interactions being shared between at least two resources. iKiP-DB and NetworKIN had the
lowest overlap with the other resources and reported 26,327 and 19,524 unique
kinase-substrate interactions, respectively. OmniPath, PhosphoSitePlus, PTMsigDB and GPS
gold contained 11,148, 341, 277 and 544 unique kinase-substrate interactions, respectively
(Fig. 1b, Supplementary Fig. 1c). In general, the manually curated resources, PhosphoSitePlus,

PTMsigDB, GPS gold and OmniPath all have a median number of targets between 8.5 and 18
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for all kinases. In contrast, NetworKIN and iKiP-DB, have much larger median numbers of
predicted targets across kinases, 64 and 69, respectively (Supplementary Fig. 1d).

Lastly, we compared the overlap of targets for each kinase between the resources by calculating
the mean Jaccard index of all shared kinases between two resources. We observed higher
Jaccard indices between the curated resources, namely PTMsigDB, GPS gold and
PhosphoSitePlus. This can be linked to the fact that both PTMsigDB and GPS gold incorporate
sites from PhosphoSitePlus. Additionally, with a mean Jaccard index of 0.34, OmniPath shows
some overlap with PTMsigDB, GPS gold and PhosphoSitePlus. iKiP-DB and NetworKIN, on the
other hand, showed low overlap with any other resource with a highest mean Jaccard index of
0.03 (Fig. 1c).

Overall, we observed variation in kinase coverage among the different resources, with
OmniPath exhibiting the most comprehensive kinase coverage, while iKiP-DB had the highest
number of kinase-substrate interactions. Additionally, while manually curated databases had
overlapping substrate sets, OnmiPath, NetworKIN, and iKiP-DB had substantial numbers of
unique substrates, a factor that is likely to impact the accuracy of predicted kinase activities

derived from each resource and thus motivates their comparison.
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Figure 1 Comparison of kinase-substrate libraries.

a Number of unique kinases and kinases with at least five annotated targets in each library (left).
Coverage of kinases across different kinase-substrate libraries (right). b Number of unique
kinase-substrate interactions in each library (left) and coverage of kinase-substrate interactions across
libraries (right). ¢ Mean Jaccard index of kinase regulons between kinase-substrate libraries. For all

shared kinases between two libraries, Jaccard indices of their targets were calculated and averaged.
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Unification and correlation analysis of methods for kinase activity inference

To better understand how the different resources may influence kinase activity inference,
we used them systematically as alternative input to various computational methods to infer
kinase activities from phosphoproteomics datasets.

For the activity estimation, we assessed 17 different methods that predict kinase activity
scores from phosphoproteomics data relying on a set of kinase-substrate interactions, namely
fgsea*® (fast gene set enrichment analysis), KARP*® (Kinase activity ranking using
phosphoproteomics data), KSEA?"#2 (Kinase-Substrate Enrichment Analysis), the
Kologomorov-Smirnov test (KS test), the linear model implemented in RoKAIP! (Im RoKAl), the
Mann-Whitney-U test (MWU test), the mean, the median, a multivariate linear model® (miIm), the
normalized mean (norm mean), PCA (principal component analysis), PTM-SEA'®
(PTM-Signature Enrichment Analysis), the sum, a univariate linear model®® (ulm), the upper
quantile (UQ), VIPER®' (Virtual Inference of Protein-activity by Enriched Regulon analysis) and
the z-score as implemented by RoKAI®' (z-score) (Table 1). Among other things, these methods
vary in whether they consider quantitative information, model kinase promiscuity, meaning
whether they consider that sites can be phosphorylated by multiple kinases, or whether they
calculate a score based on multiple samples. Furthermore, they can be divided into methods
that aggregate values for the target sites of a given kinase or compare them to the remaining
sites or to an empirical null distribution. A more detailed description of each computational
method can be found in the methods section “Computational methods for kinase activity
inference”.

We then employed each computational method in conjunction with each of the resources
described in the previous section on the datasets collected by Hernandez-Armenta et al.*® and
the datasets presented by Hijazi et al.* (Fig. 2a). This combined collection consists of 212
kinase perturbation experiments with an average of 6,470 phosphorylation sites identified per
experiment. Among these, an average of 27% could be assigned to an upstream regulatory
kinase in at least one of the kinase-substrate libraries tested (Supplementary Fig. 2a). We then
compared the inferred activity scores across experiments when using different computational
methods and prior knowledge resources by evaluating mean Pearson correlation coefficients
between the different calculation methods and kinase substrate libraries.

Among the computational methods, most showed strong agreement, with a correlation
above 0.78 in 80% of cases. The lowest concordance was observed for activity scores inferred
using the KARP score, with correlations ranging from 0.03 to -0.19 compared to other methods

(Fig. 2b). For the kinase-substrate libraries, we found the highest correlation between
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PTMsigDB, GPS gold, and PhosphoSitePlus (greater than 0.83). Activity scores inferred with
OmniPath also showed a high correlation of over 0.72 with these libraries. However, NetworKIN
and iKiP-DB exhibited Pearson correlations below 0.43 when compared to any of the other
kinase-substrate libraries (Fig. 2¢), which may be expected given that the poor overlap between
substrates from these databases and the other databases. In summary, we observed that while
most computational algorithms perform comparably, a high discrepancy can be observed

between inferred activity scores when using different kinase-substrate libraries.
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Figure 2 Kinase activity inference comparison.

a Workflow for kinase activity inference. Using each kinase-substrate library, kinase activity scores are
inferred from phosphorylation profiles of 212 different experiments using the following computational
methods: fgsea, KARP, KSEA, KS, Im RoKAI, MWU, mean, median, mim, norm mean, PCA, PTM-SEA,
sum, ulm, UQ, VIPER, z-score. b Mean Pearson correlation of inferred activity scores. Pearson
correlation between computational methods was calculated for each kinase-substrate library and
averaged across libraries. ¢ Mean Pearson correlation of inferred activity scores. Pearson correlation
between kinase-substrate libraries was calculated for each computational method and averaged across

methods.
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Benchmarking kinase activity estimation via phosphoproteomics data from experimental
perturbations

Next, we evaluated how well each method-resource combination for inferring kinase
activity performed with respect to its specific ability to recapitulate the changes in
phosphorylation site abundance caused by experimental perturbation of a kinase. In the
collection described in the previous section, 69 different kinases were perturbed, associated with
an increase or decrease in their activity (up-regulation: 100, down-regulation: 259 cases)
(Supplementary Fig. 2b).

After scaling the activities per experiment, we followed the benchmark pipeline in the
decoupler python package (See methods section “Perturbation benchmark procedure”) to
compare the performance of all combinations of the computational methods and
kinase-substrate libraries described above. Similar to previously proposed®!, we also tested how
the number of targets for each kinase might affect the performance, by taking the measured
number of targets in an experiment as the kinases’ activity values. Additionally, we used a
randomized kinase-substrate library as a baseline for performance. In this library, the
phosphorylation sites reported in PhosphoSitePlus, as one of the most commonly used libraries
for kinase activity inference, were shuffled and randomly assigned to an upstream kinase.

To evaluate the performance for each combination, all inferred kinase activities across
experiments were sorted by their activity scores and the area under the receiver operating
characteristic curve (AUROC) was calculated based on the perturbation information for each
experiment (See methods section “Perturbation benchmark procedure”). Additionally, we
calculated the scaled rank for each kinase within its experiment by dividing the rank of the
perturbed kinases by the total number of kinases with an inferred activity (See methods section
“Mean rank benchmark”).

The z-score as implemented by RoKAI, as well as the sum, in combination with
PhosphoSitePlus and PTMsigDB were the best performing methods with a median AUROC of
0.80 (Fig. 3a; Supplementary Fig. 3a). When comparing the performance of PhosphoSitePlus to
the other libraries across all methods, we only observed significant differences for NetworKIN,
iKiP-DB and the shuffled library, which overall had lower median AUROCSs (adjusted p-value <
8.5x107°, mean Wilcoxon statistic across libraries equal to 278). Furthermore, all kinase
substrate libraries performed better than our randomized control (adjusted p-value < 4.7x107°,
mean Wilcoxon statistic across libraries equal to 288.5)(Supplementary Table 1). When

comparing the computational methods, all methods, except for KARP, UQ and the number of
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targets, had a median AUROC of at least 0.7 in combination with PhosphoSitePlus (Fig. 3a).
However, we could not identify significant differences between methods across kinase-substrate
libraries (adjusted p-values > 0.05, mean Wilcoxon statistic across methods equal to
26)(Supplementary Table 2). As also previously observed®', the number of targets performed
comparable well to other methods, indicating a bias for well-annotated kinases as perturbation
targets in the experiments. However, in contrast to other methods, this metric also performed
well for the shuffled network, as here the number of targets did not change compared to
PhosphoSitePlus.

In addition to the AUROC, we compared the median scaled rank of the perturbed kinases
across combinations.The scaled rank describes the quantile in which the perturbed kinase's
activity falls, with a lower value being better. This metric measures how likely a perturbed kinase
is to be located at the extremes of the distribution of inferred activities in each experiment,
evaluating the ability of a method to assist in kinase prioritization in a real-world experiment. For
the z-score, the sum, KSEA, the normalized mean, PTM-SEA and the univariate linear model in
combination with PhosphoSitePlus, PTMsigDB and OmniPath, the median scaled rank of the
perturbed kinases was equal to or lower than the 0.25 quantile (Fig. 3b; Supplementary Fig. 3b).
The number of targets performed comparable well to other methods again. As already described
for the AUROC analysis, this indicates a bias for well-annotated kinases as perturbation targets
in the experiments.

For the top performing library across methods, namely PhosphoSitePlus, we also
investigated the performance in identifying perturbed kinases based on their activities for each
kinase separately. For each kinase, we calculated its mean rank for every experiment in which it
was perturbed and visualized it in a kinome tree (Fig. 3c). AURKB, ATM, AURKA, MAP2K2 and
ALK ranked among the top 5 kinases on average whenever the respective kinase was
perturbed. However, CSNK2A1 had an average rank of 70 whenever perturbed. To investigate
whether these differences might be linked to the number of targets of a kinase or a study bias of
the kinases, we correlated the number of targets and citations for each kinase with its rank,
reflecting their potential study bias. However, we did not observe a strong correlation for either
the number of targets (pearson correlation equal to 0.12, p-value equal to 0.42) or the number of
citation (pearson correlation equal to -0.17, p-value equal to 0.28) and the rank of the kinases
(Supplementary Fig. 3c-d).

In conclusion, perturbation-based benchmarking analysis revealed distinct clusters for
method-resource combinations, and PhosphoSitePlus and PTMsigDB in combination with the

z-score and the sum performed particularly well. In general, manually curated databases, such
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as GPS gold, PTMsigDB, PhosphoSitePlus and OmniPath demonstrated similar performances
when assessed by both AUROC and scaled rank, with PhosphoSitePlus having the best
performance overall. Additionally, methods like the z-score, KSEA, the sum, the normalized
mean, or an univariate linear model clustered together and had the highest performance using
both AUROC and scaled rank. The performance of the activity estimation differed between

individual kinases, which could not be linked to any study bias.
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Figure 3 Systematic benchmark of kinase activity inference methods.

a Predictive performance of methods for kinase activity inference in identifying perturbed kinases from
phosphoproteomics data. Median AUROC for each kinase-substrate library - computational algorithm
prediction. Hierarchical clustering was used on both libraries and methods. b Median scaled rank of the
perturbed kinases’ inferred activity for each library-algorithm pair. The scaled rank is determined by taking
the rank of the perturbed kinase in its experiment based on the activity, dividing it by the total number of
kinases for which an activity was calculated. Hierarchical clustering was used on both libraries and
methods. ¢ Kinome tree of perturbed kinases each colored by its mean ranks across its perturbation

experiments for the best performing kinase-substrate library PhosphoSitePlus.

A complementary benchmarking approach using human tumor data to evaluate kinase
activity inference

Even though perturbation experiments can be a helpful tool to benchmark kinase activity
inference, they are typically constrained to a small set of well-studied kinases and may not
adequately address off-target and indirect effects. Additionally, these experiments are usually
performed in cell lines that lack the complexity of the tumor microenvironment observed in
patients. Thus, we introduce a complementary benchmarking strategy that leverages multiple
omics layers to construct a gold standard set of highly active or inactive kinases using human
tumor profiling data from CPTAC.

CPTAC generated matched proteomics and phosphoproteomics data for the same set of
tumors from ten cancer types'. Since overall phosphosite levels are commonly dependent on
the levels of the corresponding host proteins, we first tested the correlation between
phosphorylation sites and their host protein level in the CPTAC data. Phosphorylation sites
showed similar distributions for correlation with their corresponding host proteins, with medians
ranging from 0.36 to 0.47, for most cancer types (Supplementary Fig. 4a). However, colon
(COAD), ovarian (OV), and pancreatic (PDAC) cancer, with median correlations of 0.32, 0.26,
and 0.31, respectively, had distributions that were markedly lower. Since the lower correlation
could suggest that these phosphoproteomics datasets may not be as robust, we excluded these
three cancer types (two of these were also from an earlier round of CPTAC where the
methodology was still being refined) from subsequent analyses. Therefore, this benchmarking
approach focuses on breast cancer (BRCA)%, clear cell renal carcinoma (CCRCC)*,
glioblastoma (GBM)®, head and neck squamous cell carcinoma (HNSCC)®, lung
adenocarcinoma (LUAD)¥, lung squamous cell carcinoma (LSCC)%, and uterine corpus

endometrial carcinoma (UCEC)* (Fig. 4a).
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To use this resource to benchmark kinase activity inference in tumors, we started with the
hypothesis that tumors with the highest kinase protein levels would have the highest kinase
activities whereas tumors with the lowest levels would have the lowest activities. To test this
hypothesis, we used the z-score as implemented by RoKAI in combination with kinase
substrates from PhosphoSitePlus, as this was the best performing combination in the
perturbation benchmark implemented above. Across all cancer types, z-scores were significantly
higher in tumors in which the corresponding kinase protein levels were in the top 5% compared
to those in the bottom 5% (Fig. 4b). These results support the use of the upper and lower tails of
the abundance distribution for individual kinases to identify samples with high and low kinase
activities, respectively. Accordingly, we defined a gold standard set of kinase-tumor pairs to
benchmark different methods of kinase activity inference (Fig. 4c-d, methods section
“Development of a tumor-based benchmark”). Briefly, we applied ROC analysis to determine
how well each method distinguishes between kinase-tumor pairs in the gold standard positive
set (top 5%) and those in the gold standard negative set (bottom 5%). To mitigate cancer type
differences while maintaining the power gained from including all seven cancer types, the gold
standard kinase-tumor pairs were selected for each kinase in each cancer type separately, and
the inferred kinase activity scores were converted to z-scores within each cancer type. The ROC
analysis was then performed on the combined set of kinases and cancer types. To also assess
the stability of the results from the ROC analyses, we subsampled 80% of the gold standard set
1,000 times.

With AUROC values of ~0.66-0.67, 10 out of 18 methods, including KSEA and
PTM-SEA, performed similarly to the best performing method, namely the z-score (Fig. 4e). With
AUROC values of ~0.64-0.65, 7 of the 8 remaining methods were only marginally worse than
the 10 best performing methods, whereas the performance for KARP was significantly lower
than any of the other methods and barely better than the controls (Fig. 4e, Supplementary Fig.
4b). Similar trends were observed when different thresholds (top/bottom 2.5% and 10%) were
used to select positive and negative pairs for the gold standard sets (Supplementary Fig. 4c-f)
and when other prior knowledge substrate databases were tested (Supplementary Table 3)
except for iKiP-DB, where the overall performance range was substantially lower (0.53-0.54).
Thus, the performance results obtained from this new benchmarking approach are consistent
with the established perturbation-based approach. For both, simple methods such as the mean

or z-score perform similarly to more complex methods such as PTM-SEA.
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Figure 4 Development of a human tumor-based benchmarking approach using multi-omics data

from CPTAC.

a Summary of CPTAC datasets used in the current study. Cancer types included here are breast (BRCA),
kidney (clear cell renal cell carcinoma: CCRCC), brain (glioblastoma: GBM), head and neck (HNSCC),

lung (adenocarcinoma: LUAD and squamous cell carcinoma: LSCC), and uterine/endometrial (UCEC)

cancers. The number of patients for each cancer type is shown in parentheses. b Inferred kinase activity
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scores from the phosphoproteomics data are significantly higher in tumors with the highest relative levels
of the corresponding kinase (top 5% according to the normal distribution of kinase protein levels) than in
tumors with the lowest levels (bottom 5%). ¢ Toy diagram demonstrating selection process for
kinase-tumor pairs for the Gold Standard (GS) set to be used for benchmarking kinase activity. For each
cancer type, the protein data for each kinase (rows) was used to identify samples (columns) with the
highest protein levels for the GS+ (tred boxes highlighted in yellow) and the lowest protein levels for the
GS- (blue boxes highlighted in yellow) sets. d Benchmarking approach. The activity scores for each
kinase are first converted to Z-scores across all samples within a cohort, and receiver-operator curve
(ROC) analysis is used to evaluate how well theses Z-scores distinguish between kinase-tumor pairs in
the GS+ and GS- sets for all kinases across all cancer types pooled together. To account for variability,
ROC analyses are repeated 1000x after randomly subsampling kinase-tumor pairs from each GS subset
for which activity scores are available. e Comparison of all kinase activity inference methods using the
CPTAC-derived benchmark. Boxplots show the distributions of AUROC scores from benchmarking
analysis applied to 1000x random samples of 80% of the GS set (median is indicated by line in center,
whereas upper and lower boundaries of box show upper and lower quartiles, respectively, and circles
indicate outliers). AUROC: area under the receiver-operator curve.

Normalizing sites to host protein levels reduces kinase activity inference performance
Since phosphorylation sites are often well correlated with and reflective of host protein
levels (Supplementary Fig. 4a), one potential concern is that phosphorylation site differences
driven by changes in host protein levels may mask differences due to changes in the activity of
upstream kinases. Therefore, we utilized our benchmarking approach to determine whether
normalizing phosphorylation site levels to host protein levels prior to calculating kinase activity
improves kinase activity inference. Specifically, we focused on two types of normalization
strategies: linear regression to account for host protein levels and subtraction of host protein log
intensities from site log intensities (subtract). For linear regression, we used three approaches: a
single global linear model for all sites vs. corresponding host proteins (global), separate linear
models for all sites on each protein separately (protein), and separate models for each individual
site (site). Unnormalized data provided the best input for maximal performance for all kinase
activity inference methods (Fig. 5a). Data that was normalized with the global linear regression
approach resulted in modest reductions in performance. For z-scores, the mean AUROC was
0.662 for the unnormalized data and 0.645 for the global linear regression normalized data
(similar trends were observed for other methods). However, all other normalization strategies
resulted in AUROCs lower than 0.62, suggesting that the adjustments imposed by these

normalization approaches may be overcorrections that remove meaningful information in
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addition to potential confounding effects from the host protein levels. In support of the possibility
that the protein data already contains some relevant signal, we found that host proteins of
common targets of the same kinases showed significantly higher correlation than host proteins

for targets of different kinases in the CPTAC data (Supplementary Fig. 5a).

Adding predicted targets to boost kinase activity inference

One way to potentially improve accuracy and boost the number of sites that are
considered for the activity inference of a given kinase is to add predicted or in vitro identified
substrates from databases such as NetworKIN or iKiP-DB, respectively. To test this possibility,
we compared the performance of each kinase activity inference method in both benchmarks
when using just curated targets from PhosphoSitePlus to the performance obtained when
complementing the curated targets with targets from the NetworKIN database or iKiP-DB.

Overall, the addition of targets from NetworKIN and iKiP-DB boosted the number of
kinases for which an activity could be inferred in both the CPTAC and the perturbation datasets
and increased the number of kinases considered for evaluation by both benchmarks (Table 2).
Furthermore, using the combined set of targets from PhosphoSitePlus and NetworKIN as
substrates resulted in improved overall performance in the tumor-based benchmarking approach
over using just known targets for all methods (Fig. 5b). Once again, using the z-score resulted in
the best overall performance (AUROC = 0.68 for tumor-based), while the performance for KSEA
(mean AUROC = 0.669) and PTM-SEA (mean AUROC = 0.679) was only modestly lower.
However, this improvement could not be observed for the perturbation-based benchmarking
approach (Fig. 5c¢). Additionally, adding iKiP-db targets led to a decrease of performance in both
benchmarking approaches (Fig. 5b-c). Hereby, it is important to keep in mind that the evaluated
kinases do not necessarily overlap between the two benchmarking approaches.

Since different kinases are likely contributing differently to the evaluation in our
benchmarks, we also directly compared the performances for the different target sets after
filtering to strictly the set of kinases evaluated for the PhosphoSitePlus target set itself in each
cancer type (Fig. 5d-e). For this set of kinases, which are more likely to be well-studied kinases
with better characterized substrates, the performance boost obtained from the combined target
set was markedly higher for the tumor-based benchmark (mean AUROC 0.70 in the combination
vs 0.67 for PhosphoSitePlus alone) and slightly higher in the perturbation-based benchmark
(mean AUROC = 0.80 for the combination vs. 0.79 for PhosphoSitePlus), while the performance
for the iKiP-DB set was still lower but not as poor as when considering all kinases (mean
AUROC = 0.65 tumor-based; mean AUROC = 0.78 perturbation-based).
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Figure 5 Utilizing benchmarking to optimize kinase activity inference

a Normalizing phosphosite levels to host protein levels prior to kinase activity inference reduces

performance in the tumor-based benchmark. b Kinase activity inference performance (AUROC) using the

tumor-based benchmark approach when considering the target set combining known targets from
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PhosphoSitePlus with predicted targets from NetworKIN or iKiP-DB. ¢ Kinase activity inference
performance (AUROC) using the perturbation-based benchmark approach when considering the target
set combining known targets from PhosphoSitePlus with predicted targets from NetworKIN or iKiP-DB. d
Evaluation of performance using the tumor-base benchmark approach after filtering for kinases that could
be evaluated using the PhosphoSitePlus target set in each cancer type. e Evaluation of performance
using the perturbation-base benchmark approach after filtering for kinases that could be evaluated using
the PhosphoSitePlus target set in each experiment.

PS+: PhosphoSitePlus; AUROC: area under the receiver-operator curve.

Additionally, we compared the performance of PhosphoSitePlus alone with the
combination of PhosphoSitePlus and targets predicted from the kinase library published by
Johnson et al. and Yaron-Barir et al.®*¢" as well as predicted targets using the large language
models Phosformer®2. However, adding targets predicted by the kinase library or Phosformer led
to a decrease in performance for both benchmarking approaches (Kinase library: mean AUROC
= 0.58 tumor-based; mean AUROC = 0.71 perturbation-based, Phosformer: mean AUROC =
0.57 tumor-based; mean AUROC = 0.72 perturbation-based)(Supplementary Fig. 5 b-c).

Based on this analysis, we chose to use the z-score for a combined set of known targets
from PhosphoSitePlus and predicted targets from NetworKIN to infer kinase activity for latter

analyses.

Activating sites on kinases are better associated with inferred kinase activity than kinase
protein levels

To determine if activating sites provide an additional layer of regulation beyond kinase
protein levels, we also evaluated the correlation of these sites with corresponding host kinase
protein levels in each cancer type. Using PhosphositePlus annotations in combination with
manual review of the literature, we identified 787 phosphorylation sites on 280 kinases that are
associated with activation of their host kinases (Fig. 6a). While activating sites were reasonably
well correlated with kinase protein levels (median correlation ranged from ~0.2 to 0.32,
depending on cancer type), the correlation was noticeably lower for these activating sites than it
was for the same number of randomly drawn non-activating sites and their host proteins (Fig.
6b). Empirical p-values reflecting how frequently 1000 samples of random sites showed
correlation as low as or lower than activating sites ranged from 0.001 (CCRCC) to 0.18 (LUAD).
On average, activating sites only showed correlation that was higher than random for ~7% of the

sample sets. Thus, changes in activating sites are less likely to reflect changes in the protein,
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supporting the hypothesis that they may be more likely to contribute to regulation of kinase
activity beyond the regulation imparted by kinase protein levels themselves.

To further investigate this possibility, we compared the correlation of inferred kinase
activity scores with kinase activating sites to their correlation with kinase protein levels. For the
same set of kinases, activating sites showed significantly greater correlation with kinase activity
than did protein levels (Fig. 6¢, paired Wilcoxon rank sum test, p = 0.00093). However, the
difference between mean Pearson r values was only 0.048, and the analysis presented in
previous sections was based on the assumption that kinase activity was already largely
dependent on kinase protein levels, which prompted a more nuanced investigation. The plot in
Figure 6d shows the difference between the correlation with activity scores for each kinase
activating site and its corresponding host protein (y-axis) vs. the correlation between the site and
host protein (x-axis). When sites and host proteins are well correlated, the difference in the
correlation for the two to the activity score tends to be smaller, but activating sites tend to show
better correlation than protein when the correlation between the site and host protein is poor. In
a direct comparison of activating site and the host protein correlations with activity, activating
sites showed significantly greater correlation with kinase activity than did kinase protein levels
(Fig. 6e, paired Wilcoxon rank sum, p = 0.02; difference in mean Pearson r values was 0.078)
when the Pearson correlation between the site and host protein was less than or equal to 0.2,
whereas there was no difference when the correlation was greater than or equal to 0.4 (Fig. 6f,
paired Wilcoxon rank sum, p = 0.67; difference in mean Pearson r values was 0.009).

In essence, while kinase activity is largely driven by protein levels, particularly when
activating sites are well correlated with those proteins, activating sites are better associated with
kinase activity when the correlation is poor. Because of this observation, we also repeated the
benchmarking analysis after using activating sites instead of kinase protein levels to define the
gold standard sets. While this reduces the number of kinase-tumor pairs that are included in the
gold standard set (Supplementary Table 4), similar results were obtained when substituting the
gold standard sets defined using kinase protein levels with activating site gold standard sets
(Supplemental Fig. 6a-d). Specifically, most methods had comparable performance using these
benchmarks, and the z-score as implemented by RoKAI was consistently among the top

performing methods.
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Figure 6 Activating sites on kinases are better associated with kinase activity than protein levels

a 787 potential activating sites on 270 kinases were identified from a combination of manual curation of

the literature and of regulatory sites from PhosphoSitePlus. b Activating sites on kinases have lower

correlation with their host proteins than sites selected at random. Red lines show the median Pearson

correlation coefficient (r) for all activating sites with corresponding host proteins within each cancer cohort.

Plots show the distribution of the median correlation coefficients for 1000 random samples of sites of the

same size as the activating site set that are not activating sites, and the p-value indicates the fraction of

random samples with median correlation coefficients equal to or less than the median correlation
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coefficients for the activating sites. ¢ Activating sites on kinases show significantly higher correlation with
activity scores than kinase protein levels do. Boxplots show the distributions of Pearson correlation
coefficients between kinase activity scores and either activating site levels on the corresponding kinases
(left) or kinase protein levels (right). (d-f) Activating sites with low correlation to host protein show better
association with corresponding kinase activity scores than protein levels do, whereas protein levels and
activating sites are similarly associated with activity when activating site-host protein correlation is high. d
Scatter plot showing the difference between activating site and protein correlations with kinase activity
scores (y-axis) vs. the Pearson correlation coefficient for the corresponding site with the corresponding
host protein (x-axis). Each point represents an individual unique site in a single cancer type (all cancer
types included in plot). e Boxplots show distributions for correlation coefficients for activity scores with
activating site levels (left) or with protein levels (right) for kinases with low correlation (r <= 0.2) between
the corresponding activating site and protein. f Boxplots show distributions for correlation coefficients for
activity scores with activating site levels (left) or with protein levels (right) for kinases with high correlation
(r >= 0.4) between the corresponding activating site and protein. For boxplots, the lines in the center show
median values, whereas upper and lower boundaries of boxes show upper and lower quartiles,

respectively, and circles indicate outliers).

Kinase activity is a better marker for response to kinase inhibitors in cell lines than
kinase protein levels

The primary objective of precision oncology is to identify tumors that would be good
candidates for treatment with a specific drug. For kinase inhibitors, thus, we strive to target
tumors with elevated kinase levels/activity. To determine if inferred kinase activity scores would
serve as more effective indicators for response to treatment with a given kinase inhibitor than
kinase protein levels, we utilized a systematic resource for testing drug response in the NCI60
collection of cell lines from the Genomics of Drug Sensitivity in Cancer (GDSC) project®. Since
proteomics and phosphoproteomics data is available for many of the cell lines tested®, we
correlated drug responses across these cell lines to protein levels of the corresponding kinase
as well as to kinase activity scores. As an example, high CDK4 activity inferred using the
z-score method from RoKAI and targets from PhosphoSitePlus combined with those from
NetworKIN was associated with better response (lower AUC) to palbociclib, a CDK4/6 inhibitor,
whereas higher protein levels tended to be associated with worse response (high AUC) (Fig.
7a). A systematic analysis of the association of drug response with target kinase measurements
is shown in the dumbell plot in Figure 7b. Here, a lower AUC indicates better response; thus, the
more negative the correlation, the better the association of a given kinase metric is with inhibitor

response. The measurement best associated with response for the most inhibitor-kinase
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combinations tested (13/29) was the kinase activity score inferred using the combined set of
known plus predicted targets, while kinase protein levels showed the greatest number of worst
(highest) correlations (17/29). On the other hand, while the correlations with response for activity
scores calculated using just known targets from PhosphoSitePlus was often similar to those for
scores calculated using targets from both PhosphoSitePlus and NetworKIN, this metric was only
the best associated with response for 4/29 drug-target combinations.

In conclusion, high kinase activity scores inferred using both known targets from
PhosphoSitePlus and predicted sites from NetworKIN are better indicators of the likelihood for
tumors to respond to treatment to the corresponding kinase inhibitor than kinase protein levels

or activity scores inferred using known targets alone.
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Figure 7 Inferred kinase activity scores provide a better indication for response to kinase inhibitor
treatment than protein levels.

a CDK4 activity scores are higher, whereas CDK4 protein levels are lower, in cell lines with
better response to palbociclib, a CDK4/6 inhibitor. Scatter plot shows z-scores for CKD4 activity
scores (red points) or protein levels (blue points) vs. palbociclib response data from the
Genomics of Drug Sensitivity in Cancer project (GDSC1; lower AUC (area under curve)
indicates better response). Each point represents a different NCI60 cell line. Solid lines are from
fitted linear models associating activity (red) or protein (blue) with response AUC, and dotted
lines show the 95% confidence interval for these models. b Dumbbell plot comparing Spearman
Rho values for correlation of response to kinase inhibitors in NCI60 cell lines from the GDSC
with levels of the corresponding kinase target protein (blue points) to correlations with the
corresponding kinase activity score (red points show correlations with scores calculated using

PhosphoSitePlus + NetworKIN targets and pink points show those for scores calculated using
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PhosphoSitePlus targets alone) levels. Correlations with drug response data from GDSC1 for
each drug-kinase target pair are shown in the upper plot whereas correlations for GDSC2 data

are shown in the lower plot.
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Discussion

The identification of deregulated kinases is a crucial component of biomedical research
as they play central roles in signaling and serve as important drug targets. Therefore,
computational tools have been developed to infer kinase activities from phosphoproteomics
data. To interpret these findings accurately, it is important to critically evaluate the reliability and
coverage of kinase-substrate libraries and prediction tools, as well as the impact of different
computational algorithms.

In this paper, we present a systematic comparison of methods and prior knowledge
resources for kinase target sets that can be used for kinase activity inference and introduce a
new benchmarking strategy to identify the most reliable methods. Evaluation of all combinations
of methods and prior target sets using the classical perturbation-based benchmarking approach
identified that simpler computational methods like the mean or z-scores used by RoKAI or KSEA
are comparable if not superior to more sophisticated methods like fgsea, or multivariate linear
models. Additionally, manually curated target resources, especially PhosphoSitePlus, perform
the best. Furthermore, we introduce a complementary benchmarking strategy based on
multi-omics data from human tumors where again, simpler computational methods performed
among the best. We next used both benchmarking approaches to test whether boosting
PhosphoSitePlus targets with predicted targets from various resources could enhance kinase
activity inference. Adding targets predicted by NetworKIN but not other prediction tools did
improve performance noticeably in the tumor-based benchmark, but only modestly in the
perturbation-based benchmark. Finally, we showcase the potential for kinase activity inference
to inform precision oncology by identifying active kinases in a given sample.

We employed two complementary approaches for the evaluation of kinase activity
inference methods because both have distinct strengths and limitations. The perturbation-based
approach is straightforward and focuses on assessing the direct effect of the perturbation on the
kinase’s activity. However, it is limited to usually well-studied kinases that have been
experimentally perturbed and profiled by phosphoproteomics. Here, we also observed some
bias for well-studied kinases, with the number of targets as a metric for kinase activity inference
performing considerably well in the benchmark. Additionally, it could be confounded by
downstream kinases or feedback regulations and usually does not account for off-target effects
of drug perturbations. There have already been some efforts in identifying the target spectrum of
kinase drugs®®®®; however, these are usually linked to binding assays and as such do not
necessarily reflect a change in activity. Ideally, further perturbation studies with very specific

drugs would be useful to minimize the limitations of this benchmark approach. Specificity is
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critical because a major assumption of the perturbation-based approach is that non-targeted
kinases are less affected by the perturbation and treated as negatives, which could result in
decreased performance if they are in fact also affected by the perturbation. Experimental
perturbations require experimental systems that lack the complexity of the tumor
microenvironment present in humans. In contrast, the tumor-based benchmark approach aims
to better account for this complexity, but it is primarily based on the assumption that tumors with
high kinase protein levels have high kinase activity whereas tumors with low kinase protein
levels have low activity. This may not necessarily be the case as kinases are also subject to
post-translational regulation and abundance thus may not necessarily translate into activity®’.
Furthermore, while this approach does bypass some of the bias towards considering mainly
well-studied kinases, allowing for the inclusion of under-studied kinases in the evaluation, kinase
activity inference still requires having a set of reliable target sites for a given kinase in order to
obtain scores to evaluate in the first place. Finally, while off-target effects of a perturbation are
not an issue with this approach, it is still likely that, in a tumor with high kinase levels,
downstream kinases will also be active. Because of the advantages and disadvantages of these
complementary approaches, we recommend using both and determining the consensus
between the two.

Aside from evaluating kinase activity inference methods and kinase target sets
themselves, the benchmarking approaches described here can be used to evaluate other
potential strategies for improving inference. For example, when proteomics data is available for
the same samples that have been profiled with phosphoproteomics, as is the case for the
CPTAC cohorts, a logical hypothesis would be that normalizing phosphosites to their host
protein levels may reduce the possibility that substrate protein levels, which are often well
correlated with phosphosite levels, confound kinase activity inference. However, all of the
strategies we tested for normalizing sites to host protein levels resulted in decreased
performance in the tumor-based benchmark, suggesting that there may be signal present that is
associated with kinase activity in the protein data already and that removing this signal impairs
our ability to accurately infer that activity. In support of this hypothesis, we observed that the host
proteins of common targets of the same kinase already show higher correlation than the targets
of kinases from different groups, possibly because many kinases and their substrates may lie in
common pathways. Alternatively, the noise present in both the phosphosite and protein data
may be amplified by the normalization process; thus, normalization may actually be decreasing
the signal-to-noise ratio. Both of these possibilities are supported by our observation that the

reduction in performance is most severe when attempting to make this adjustment on a site by

29


https://sciwheel.com/work/citation?ids=14262562&pre=&suf=&sa=0

site basis (subtracting or using the per site linear model) but is minimal when the adjustment is
made by considering the data as a whole (global linear model). The development of
normalization strategies that mitigate these issues may allow us to better account for the effects
of substrate protein levels when inferring kinase activity in the future.

By assessing the impact of utilizing predicted targets for kinase activity inference on
performance, benchmarking may also allow us to evaluate the biological relevance of those
predictions. Despite good performance for PhosphoSitePlus or other curated libraries, current
kinase-substrate libraries are limited in their coverage of both kinases and phosphorylation sites.
As a result, much of the information measured in phosphoproteomics cannot be used for the
prediction of kinases activities and activity inference is restricted to a certain set of kinases,
limiting the interpretation of the results. To bridge these gaps, a variety of substrate prediction
tools have been introduced. However, besides NetworKIN, the tools tested here did not improve
performance. This might be due to the fact that these tools solely focus on the amino acid
sequence, neglecting context-dependency and the regulatory environment of kinases. As such,
incorporating factors such as protein-protein interactions (PPI), subcellular localization, and the
presence of inhibitors or activators could be crucial components to identify direct targets of
kinases and ultimately improve predictions for kinase activities. Despite being the oldest of the
prediction methods we tested, NetworKIN likely provided the best performance because the
predictions are informed by PPI in addition to sequence homology to known targets.
Unfortunately, NetworKIN is not actively maintained, and the substrate predictions used for our
analysis were obtained by mapping the sites in our data to predicted sites downloaded from the
website; predicted targets would have been overlooked if they could not be mapped properly.
More modern kinase substrate prediction methods that use current protein sequence databases
(or that are database agnostic) and incorporate biological context are likely to further improve
performance, and our benchmarking tools should provide the means to evaluate how well they
do so.

Kinase activity inference also has the potential to inform precision oncology. Tumors with
high kinase activity scores may be candidates for therapy with the corresponding kinase
inhibitors. Our cell line analyses indicated that the method and target site set that were among
the best performing in the benchmarks also generated scores that were consistently best
associated with inhibitor response. However, this analysis was performed using data from cell
lines, and further studies will need to be carried out to confirm these trends in more complex
biological systems. Furthermore, performing phosphoproteomic profiling of tumors to identify

kinases to target is not practical in a clinical setting. A simpler and more quantitative assay using
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specific peptides that are representative of kinase activity would be more ideal. Our comparison
of activating sites on kinases to kinase protein levels suggests that the best approach to select
markers for kinase activity may be to consider each kinase on an individual basis; for some
kinases, the protein levels may provide a sufficient readout for activity whereas activating sites
or specific target sites that are well correlated with kinase activity may be better candidates for
other kinases.

In summary, we performed a comprehensive comparison and identified PhosphoSitePlus
in combination with targets from NetworKIN and z-score implemented by RoKAI as the best
performing approach for kinase activity inference. Furthermore, both benchmarking approaches
are available in the R package benchmarKIN (https://github.com/saezlab/benchmarKIN). The
package includes all necessary data for both approaches and provides vignettes demonstrating
how to use the benchmarking approaches for evaluating kinase activity inference. This will help

to simplify the process of evaluating novel methods or other kinase-substrate resources.
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Methods

Prior knowledge resources

We collected kinase-substrate interactions from multiple prior knowledge resources,
including PhosphoSitePlus?, PTMsigDB", the gold standard set used to train GPS 5.0 (GPS
gold)®*, OmniPath*®, iKiP-DB?" and NetworKIN?. PhosphoSitePlus is a well established
kinase-substrate resource containing curated, experimentally observed kinase-substrate
interactions. We downloaded the kinase-substrate interactions from the PhosphoSitePlus

website (https://www.phosphosite.org, accessed: 19/04/2023), which were filtered to retain only

those reported in humans. Additionally, we sourced PTMsigDB signature sets, a collection of
site-specific signatures for perturbations, pathways and kinases curated from literature. It is
based on PhosphoSitePlus and considers information from NetPath, WikiPathways and LINCS.
In newer versions it also includes signatures from iKiP-DB (in vitro Kinase-to-Phosphosite
database). The v2.0.0 kinase sets tailored for humans were downloaded from the proteomics
broadapp website (https://proteomics.broadapps.org/ptmsigdb/, accessed: 20/12/2023), and all
kinase signatures were extracted, except for the ones from iKiP-DB as this was tested as a
separate resource. GPS gold was downloaded from the supplementary files of the original
publication (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393560/#s0065). We next extracted
all kinase-substrate interactions stored in OmniPath using the get_signed_ptms function from
the OmniPathR v3.11.1 package and filtered the interactions for phosphorylation events.
OmniPath is a meta-resource, integrating information from over 100 different resources about
intra- and inter-cellular signaling, including information about kinase-substrate interactions
coming from PhosphoSitePlus, MIMP*, dbPTM*, HPRD*!, SIGNOR?, PhosphoNetworks*,
phospho.ELM?* and Li2012%, as well as ProtMapper® and KEA3*. However, here all
interactions exclusively reported by ProtMapper or any of the KEAS libraries were excluded.
NetworKIN was downloaded from the networKIN website
(http://netphorest.science/download/networkin_human_predictions_3.1.tsv.xz) and filtered for
interactions with a NetworKIN score equal to or higher than five. The NetworKIN database
contains precomputed kinase-substrate interactions for the human phosphoproteome reported
in the KinomeXplorer-DB. Kinase-substrate interactions were computed using the NetworKIN
algorithm which integrates consensus substrate motifs with context modeling. Lastly, we
included the iKiP-DB which contains kinase-substrate interactions identified based on a
large-scale in vitro kinase study for over 300 human protein kinases. Kinase-substrate

interactions were sourced from the supporting information of the corresponding publication

(https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00198/suppl_file/pr2c00198_si_007.zip
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)- All kinase-substrate resources were processed to a common format, with kinases and target
proteins expressed as human gene names, and filtered for kinases reported by kinhub or gene
ontology (GO) terms (GO:0016301). Moreover, we extracted information such as the
phosphorylated amino acid, its position within the protein, and, where available, the 15-mer or
11-mer (in case of NetworKIN) sequence surrounding the phosphorylated amino acid from all
resources. For mapping the phosphorylation sites from the experiments to the phosphorylation
sites in the kinase-substrate libraries, we used the combination of HGNC symbols with the
flanking sequence of the phosphorylation site (15mer or 11mer), whenever applicable, or the

combination of HGNC symbol with amino acid type and location information.

Computational methods for kinase activity inference

For kinase activity inference, we select multiple published methods including fgsea“*® (fast
gene set enrichment analysis), KARP*® (Kinase activity ranking using phosphoproteomics data),
KSEAZ?'22 (kinase set enrichment analysis), the linear model and z-score as implemented in
RoKAI®'" (Robust kinase activity inference), PTM-SEA® (PTM-signature enrichment analysis)
and VIPER®' (Virtual Inference of Protein-activity by Enriched Regulon analysis). Additionally, we
included the following methods: Kolomogorov-Smirnov test, Mann-Whitney-U test, the mean, the
median, the multivariate linear model, normalized mean and univariate linear model as
implemented in decoupler®, principal component analysis, the sum and the upper quantile. A
small description of all computational methods can be found below. For more detailed
information please refer to the original publications.

fgsea. Fast gene set enrichment infers kinase activities using a weighted running sum
approach. It first ranks molecular features per sample and calculates an enrichment score by
walking down the list of features, increasing a running sum statistic when a feature is part of the
target set and decreasing when it is not. The magnitude of the increment depends on the
correlation of that feature with the phenotype. The enrichment score is then the maximum
derivation from zero. Here we used the implementation of fgsea from the decoupler package
v2.8.0.

KARP. KARP calculates a K-score which consists of the ratio of the sum of molecular
features of the targets of a kinase and the sum of molecular features of all phosphorylation sites.
This is then corrected for the imbalance in known targets by multiplying the square root of
measured targets of a kinase divided by the total number of known targets of that kinase in a

given resource. The K-score was implemented as described in Wilkes et al..
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KSEA. Kinase set enrichment analysis calculates a z-score to assess the difference
between the mean of the molecular features of known targets of a kinase and the mean of
molecular features of all phosphorylation sites, adjusted by the square root of the number of
identified targets and the standard deviation of the molecular features of all phosphorylation
sites. We implemented the KSEA method as described in the KSEAapp.

Kologomorov-Smirnov. The Kologomorov Smirnov test compares the running sum of
targets and non-targets of a kinase. Molecular features are again ranked and the running sum
statistic increases if the feature is part of the target list. The increments hereby are always the
same (in contrast to fgsea). To run the Kologomorov-Smirnov test we used the ks.test function
from the stats package v4.3.3 and used the negative logarithm of the p-value as the final score.

Linear model - RoKAI. The linear model described by RoKAI simultaneously models the
molecular readouts of all molecular features for all kinases. Thereby the phosphorylation site is
modeled as the sum of activities for all linked kinases and the weights of non-targets are thereby
set to zero. The kinase activity is inferred using least squares optimization including ridge
regularization. To run the linear model we transcoded the original implementation from MATLAB
to R.

Mann-Whitney-U. The Mann-Whitney U test, also known as the Wilcoxon rank-sum test,
compares the ranks of the molecular features between targets and non-targets of a kinase. All
phosphorylation sites are ranked together based on their molecular features and the U-statistic
is calculated based on the sum of ranks for targets and non-targets. To run the Mann-Whitney-U
test we used the wilcox.test function from the stats package v4.3.3 and used the negative
logarithm of the p-value as the final score.

mean. The mean refers to the average level of the molecular features of all target sites of
a kinase.

median. The median refers to the middle value of the molecular features of all target
sites of a kinase when these features are ranked in order.

multivariate linear model. The multivariate linear model as implemented in decoupler
simultaneously models the molecular readouts of all molecular features for all kinases. Thereby
the phosphorylation site is modeled as the sum of activities for all linked kinases and the weights
of non-targets are thereby set to zero. Here, we used the run_mim function from the decoupler
package v2.8.0.

normalized mean. For the normalized mean, random permutations of target features are
performed and a random null distribution of means is obtained. For the normalized mean the

average level of the molecular features of all target sites of a kinase is then subtracted by the
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mean of the random null distribution and divided by the standard deviation of the random null
distribution. Here we used the implementation of the normalized mean from the decoupler
package v2.8.0.

principal component analysis. Principal component analysis is performed across
samples using only the molecular features of the targets of a certain kinase. The score of that
kinase then represents the variance explained by the first principal component. Here we used
the prcomp function from the stats package v4.3.3 without scaling.

PTM-SEA. PTM-SEA calculates an enrichment score as described for fgsea.
Additionally, it calculates a normalized enrichment score using random permutations of target
features. To run PTM-SEA we used the run_ssGSEAZ2 function from the ssGSEAZ2 package
v1.0.1. We used the default settings and increased the maximum number of targets to 100,000.

sum. The sum refers to the summed up levels of the molecular features of all target sites
of a kinase. Here we used the implementation of the sum from the decoupler package v2.8.0
which is also able to take interaction weights into account. These were all set to one here.

univariate linear model. The univariate linear model as implemented in decoupler
models the molecular readouts of all molecular features per kinase. The weights of non-targets
are thereby set to zero and the obtained t-value from the fitted model represents the activity of
the kinase. We used the run_ulm function from the decoupler package v2.8.0.

upper quantile. The upper quantile represents the value below which 75% of the
molecular features of all target sites of a kinase fall.

VIPER. VIPER estimates kinase activities through a three-tailed enrichment score
calculation based on the ranking of all phosphorylation sites and the targets of a kinase based
on their molecular features. Finally, a normalized enrichment score is estimated using random
permutations. For the implementation of VIPER we used the decoupler package v2.8.0.

z-score - RoKAI. The Z-score as implemented in RoKAI calculates the mean of the
molecular features of the known targets of a kinase and adjusts it by the square root of the
number of identified targets for the kinase and the standard deviation of the molecular features
of all phosphorylation sites. To run the z-score we transcoded the original implementation from
MATLAB to R.

Processing of kinase perturbation dataset
Hernandez-Armenta. To evaluate the performance of different kinase inference methods
combined with different prior knowledge networks, we obtained a curated set of 93 knockdown

and overexpression perturbation experiments previously used by Hernandez-Armenta et al. We
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downloaded the processed datasets from Zenodo (https://zenodo.org/records/5645208). These
datasets contain quantile-normalized log fold-changes from publicly available studies covering
27 different kinases regulated in 103 different perturbation settings.

Hijazi. Additionally, we collected the perturbation datasets from Hijazi et al. containing
phosphosite log fold-changes from 61 kinase inhibitors perturbation experiments in two different
cell lines (HL60, MCF7). To identify the detected phosphosites we used the primary UniProt
Accession number reported in the original data for each phosphopeptide. We filtered out
phosphosites whose identification false discovery rate was greater than 0.05, as this was the
threshold used in the original publication. Finally, for each perturbation experiment we generated
a ranked list of peptides with their reported log fold-change. Peptides with multiple
phosphorylation sites were split and in case of ambiguity we selected the fold change with a
higher significance for the phosphorylation sites. We then collected the targets for each kinase
inhibitor based on the Therapeutic Target Database (https://idrblab.net/ttd/), if available. The full

list of targets and references can be found in Supplementary Table 5.

Kinase activity inference

Kinases activities were estimated based on the log fold-change of the direct target
phosphorylation sites for each kinase. To select the direct targets of a kinase we used different
kinase-substrate libraries in combination with multiple computational methods, which are
described in section “Prior knowledge resources” and section “Computational methods for
kinase activity inference” in more detail. Using each combination, we inferred kinase activities
for each experiment, considering only kinases with at least five measured target phosphorylation

sites.

Comparison of activity scores

We performed pairwise Pearson correlation to compare the inferred kinase activities
scores from each prior-method combination for each experiment. We then performed
hierarchical clustering on the mean Pearson correlation across experiments between all

method-prior combinations.

Perturbation benchmark procedure
Kinase activity scores obtained as described above were first multiplied by the sign of the
perturbation (knockout: negative, overexpression: positive) for each perturbation experiment. To

account for variability across experiments, the scores were scaled by dividing each score with
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the absolute maximum score of the experiment. Each method-resource combination was then
evaluated using the get_performance function from the decoupler v1.6.1 Python package.
Therefore the activity scores matrix (rows: experiments, columns: TF activities) is flattened
across experiments into a single vector and missing values for activity scores are removed. Due
to differences in class imbalance across networks, a downsampling strategy is employed within
the benchmark. For each permutation, an equal number of positive and negative classes are
randomly selected to calculate the area under the Receiver Operating Characteristic (AUROC)
and Precision-Recall Curve (AUPRC) metrics. This process is repeated 1,000 times per
network, obtaining distributions of performance measurements. To compare the performance
across kinase-substrate libraries and across methods, we aggregated the median AUROC for
each library across methods and vice versa. We then compared the median AUROCs between
libraries and methods using a Wilcoxon test and performing p-value adjustment using

Benjamini-Hochberg.

Mean rank benchmark

We calculated the mean rank across experiments for each method-resource
combination. Kinase activity scores of each experiment were multiplied by the sign of the
perturbation (knockout: negative, overexpression: positive) and ranked by their activity. The
ranks of the perturbed kinases were then selected and scaled by dividing the rank with the total
number of inferred kinase activities. This scaled rank describes the quantile in which the
perturbed kinase was found based on its activity, with a lower value being better. We then
calculated the mean scaled rank of perturbed kinases across all experiments. Additionally, we
calculated the rank for each perturbed kinase across its perturbation experiments. We then used
CORAL (http://phanstiel-lab.med.unc.edu/CORAL/) to visualize the rank of each kinase across
all method combinations from PhosphoSitePlus. Within the kinome tree, only perturbed kinases

which were captured at least once are shown.

Evaluation of study bias

The mean rank for each perturbed kinase was compared to their study quantity.
Therefore, a table containing the PubMed IDs linked to each gene (gene2pubmed.gz) was
downloaded from the National Institute of Health (https://ftp.ncbi.nih.gov/gene/DATA/). We
calculated the number of unique PubMed IDs for each perturbed kinase and performed

Pearson correlation to assess the relationship between the rank and the number of PubMed
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references of each kinase using the cor.test function from the stats package v4.3.3 in R.
Additionally, we assessed the relationship between the rank and the number of reported targets
in PhosphoSitePlus for each kinase using the cor.test function from the stats package v4.3.3 in

R.

Addition of predicted kinase-substrate relationships

To evaluate the addition of predicted kinase-substrate relationships we combined the
kinase-substrate interactions reported by PhosphoSitePlus with predicted targets from the
Kinase Library and Phosformer. The predicted interactions were selected as follows.

Kinase Library. We calculated the percentile score for each substrate in the datasets
based on the position-specific score matrices (PSSMs) derived from the positional scanning
peptide array for all Serine/Threonine and Tyrosine kinases as presented by Johnson et al. and
Yaron-Barir et al.®*5', Following Johnson et al., we then assigned the highest scoring 15 kinases
based on their percentile scores as upstream regulators for each phosphorylation site.

Phosformer. To obtain the protein language model predictions, we applied the
Phosformer model®? (https://github.com/esbgkannan/phosformer to every phosphosite in our
datasets to obtain the probability of upstream regulation for every kinase in the reference
kinases list
(https://qithub.com/esbgkannan/phosformer/blob/main/data/reference_human_kinases.csv).
Following the threshold applied for the kinase library, we assigned the highest scoring 15

kinases as upstream regulators for each phosphorylation site.

Development of a tumor-based benchmark

The data used to establish the tumor-based benchmark is the version of the CPTAC data
harmonized across ten cancer types using the BCM pipeline described in Li et al.’®. Based on
the analysis of site-host protein correlations presented in Figure 4b, we chose to focus on data
from the breast cancer (BRCA)%, glioblastoma (GBM)®, clear cell renal carcinoma (CCRCC)%,
head and neck squamous cell carcinoma (HNSCC)%, lung squamous cell carcinoma (LSCC)%,
lung adenocarcinoma (LUAD)%, and uterine corpus endometrial carcinoma (UCEC)*® studies.
For each cancer type, the protein data for each kinase was used to identify samples for the Gold
Standard positive (GS+) (those in the top 5% relative to the normal distribution of the protein
levels; z-score > 1.645) and negative (GS-) (bottom 5% relative to the normal distribution;
z-score < 1.645) sets after filtering out proteins with fewer than 30 measurements and with

variance < 0.1. Alternative GS sets were also established using the top 2.5% (|z| > 1.96), 10%
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(Iz| > 1.282), and 15% (|z| > 1.036; not analyzed here, but presented as an option in the
benchmarKIN package). To establish alternative GS sets using activating sites on kinases, the
same thresholds were applied to kinases phosphosite levels for the sites defined in the Analysis
of activating sites on kinases methods section instead of kinase protein levels.

For benchmarking using these GS sets, we first median centered the log2 MS1 intensity
data for each site within each cancer type to use as input for calculating kinase activity scores
as described above (Computational methods for kinase activity inference). To ensure that there
was no leakage from the data used to define the GS sets to the data used to calculate kinase
activity scores, phosphorylation sites for the respective kinase were removed from each kinase
target set from each prior knowledge kinase-substrate resource prior to kinase activity inference.
The activity scores for each kinase were first converted to z-scores across all samples within a
cohort, and receiver-operator curve (ROC) analysis was used to evaluate how well the z-scores
distinguished between kinase-tumor pairs in the GS+ and GS- sets for all kinases across all
cancer types pooled together. To account for variability, ROC analyses were repeated 1000x
after randomly subsampling 80% of the kinase-tumor pairs from each GS subset for which
activity scores are available. Functions (R code) for using this benchmarking approach with any
of the GS sets described here given kinase activity scores calculated from the same CPTAC

datasets are available in the benchmarKIN R package.

Normalization of phosphosite levels to protein levels

To normalize the phosphosite data to host protein levels, we first filtered the protein and
phosphosite log2 MS1 intensity data to remove proteins and sites with fewer than 30
measurements. Sites lacking measurements for respective host proteins were then removed.
We then employed multiple strategies to normalize the level of each site in each dataset to the
corresponding values of the host protein. Thus, the unnormalized data used for this analysis is
different from the data used for the corresponding analyses presented in Figure 4. The first
normalization strategy involved subtracting the log2 MS1 intensity of the protein in a given
sample from the log10 MS1 intensity of the site. The remaining strategies relied on using the
residuals from linear regression of the sites to their host proteins. We used three different types
of models for the linear regression normalization: a single global linear model for all sites vs.
corresponding host proteins (global), separate linear models for all sites on each protein
separately (protein), and separate models for each individual site (site). Site median-centered

data was used as input for kinase activity inference using PhosphoSitePlus targets as described
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above (Computational methods for kinase activity inference) and evaluation was carried out

using the tumor-based benchmark.

Analysis of activating sites on kinases

A list of manually curated activating sites from the literature was updated with sites
annotated as promoting kinase activity in the regulatory sites file downloaded from
PhosphoSitePlus? in March 2022. For all activating sites with host proteins measured in the
CPTAC data, Pearson correlation coefficients between the sites and corresponding host proteins
were calculated for each cancer type. To determine if these correlations were lower than
expected by chance, empirical p-values were calculated by randomly sampling an equal number
of sites in each dataset and calculating the Pearson correlation between sites in these samples
and the corresponding host proteins. The p-value is the fraction of these samples that had
median correlation coefficients that were equal to or lower than the median for all of the
activating sites in a given cancer type. Pearson correlations were also calculated between
activity scores calculated using the RoKAl z-score with targets from the combination of
PhosphoSitePlus and NetworKIN and kinase activating sites or kinase protein levels. To assess
differences between the correlations of the activity scores with activating sites and their
correlations with kinase protein levels, paired (by kinase) two-tailed Wilcoxon rank sum tests

were used.

Correlation of kinase metrics to kinase inhibitor response in cell lines

Proteomics and phosphoproteomics datasets for the NCI60 cells lines were obtained
from Supplementary Tables 3 and 2, respectively, from Frejno, et al.’. Phosphosites were
aggregated by the combination of HGNC symbols with the 11mer sequence flanking the site by
keeping the rows with the least number of missing values for the same gene symbol-11mer
combination. In cases where there was a tie, the rows were averaged. The protein dataset was
processed similarly except that the data was aggregated by the HGNC symbol alone. Sites and
proteins with measurements in less than 20 cell lines were removed, and the phosphosite data
was centered by the median value for each site. The site data was then used as input for kinase
activity inference calculations as described above (Computational methods for kinase activity
inference) using either the targets from PhosphoSitePlus alone or in combination with
NetworKIN. Drug inhibitor response data from the GDSC was downloaded from the Sanger
Institute website (https://www.cancerrxgene.org/downloads/drug_data)® and filtered to NCI60

cell lines and to inhibitors that target kinases. Spearman rank correlations between AUROC
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values for inhibitor response and either kinase activity scores or protein levels were calculated

for kinases having both measurements that are established targets of a given inhibitor.

Data Availability

The data for the benchmark can be accessed within benchmarKIN
(https://github.com/saezlab/benchmarKIN) and is available at:
https://zenodo.org/uploads/12566560.

For the kinase-substrate libraries, PhosphoSitePlus was  obtained via

https://www.phosphosite.org/staticDownloads#, PTMsigDB was obtained via
https://proteomics.broadapps.org/ptmsigdb/, iKiP-DB was obtained via
https://pubs.acs.org/doi/suppl/10.1021/acs.jproteome.2c00198/suppl _file/pr2c00198 si 007.zip
and NetworKIN was obtained via

http://netphorest.science/download/networkin_human_predictions 3.1.tsvxz and is also

available in the forementioned Zenodo repository.

Code Availability

The code for the analysis presented in this manuscript is available at
https://github.com/saezlab/kinase_benchmark. The benchmarKIN package is available at
https://github.com/saezlab/benchmarKIN, along with detailed tutorials describing the
benchmarking approaches presented here (https://benchmarkin.readthedocs.io).
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Tables

Table 1 Overview of computational methods for kinase activity inference.

Method Accounts for Models kinase | Multi-sample Scores relative to
magnitude promiscuity based

fgsea*® Yes No No Non-targets

KARP# Yes No No Non-targets

KSEA?"22 Yes No No Non-targets

Kologomorov-Smirnov®® No No No Non-targets

Linear model - RoKAI*' Yes Yes No Non-targets

Mann-Whitney-U No No No Non-targets

mean Yes No No Solely target based

median Yes No No Solely target based

multivariate linear model®® | Yes Yes No Non-targets

normalized mean®® Yes No No Null distribution

Principal component Yes No Yes Solely target based

analysis

PTM-SEA™ Yes No No Non-targets & Null
distribution

sum Yes No No Solely target based

univariate linear model®® Yes No No Non-targets

upper quantile Yes No No Solely target based

VIPER® Yes No No Non-targets & Null
distribution

z-score®! Yes No No Non-targets
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Table 2 Kinases covered in evaluation set.

Target set Kinase Kinases per Kinases in Evaluated

total dataset evaluation set | kinases per
dataset

Tumor benchmark:

PhosphosSitePlus 103 85 66 29

PhosphosSitePlus & 157 134 104 51

NetworKIN

PhosphosSitePlus & 241 215 171 80

iKiP-DB

Perturbation benchmark:

PhosphosSitePlus 139 70 38 Not applicable

PhosphosSitePlus & 196 108 50 Not applicable

NetworKIN

PhosphosSitePlus & 269 175 50 Not applicable

iKiP-DB
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Kinase Activating Site Curation
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