

1 Contribution of telacebec to novel drug regimens in a murine 2 tuberculosis model

3
4 Oliver D. Komm¹, Sandeep Tyagi¹, Andrew Garcia¹, Deepak Almeida¹, Yong Chang¹, Si-Yang Lee¹,
5 Jennie Ruelas Castillo¹, Paul J. Converse¹, Todd Black², Nader Fotouhi², Eric L. Nuermberger^{1,*}

6
7 ¹Center for TB Research, Johns Hopkins University, Baltimore, MD, USA.

8 ²TB Alliance, New York, NY, USA.

9
10 *Corresponding author: enuermrb@jhmi.edu

11
12 Running title: Telacebec-diarylquinoline combinations for TB

13 Abstract

14 The clinical efficacy of combination drug regimens containing the first generation diarylquinoline
15 (DARQ) bedaquiline in the treatment of multidrug-resistant tuberculosis has validated ATP synthesis
16 as a vulnerable pathway in *Mycobacterium tuberculosis*. New DARQs in clinical development may be
17 even more effective than bedaquiline, including against emerging bedaquiline-resistant strains.
18 Telacebec (T) is a novel cytochrome bc₁:aa₃ oxidase inhibitor that also inhibits ATP synthesis. Based
19 on its demonstrated efficacy as a monotherapy in mice and in a phase 2a clinical trial, we used an
20 established BALB/c mouse model of tuberculosis (TB) to test the contribution of T to novel
21 combination therapies against two strains of *M. tuberculosis* (H37Rv and HN878) in an effort to find
22 more effective regimens. Overall, T was more effective in regimens against the HN878 strain than
23 against the H37Rv strain, a finding that supports the greater vulnerability of the former strain to T
24 and to genetic depletion of QcrB. Against both strains, combinations of a DARQ, clofazimine (CFZ),
25 and T were highly bactericidal. However, only against HN878 did T contribute synergistically, whereas
26 an antagonistic effect was observed against H37Rv. These results demonstrate the therapeutic
27 potential of T and highlight how differences in the susceptibility of *M. tuberculosis* strains could lead
28 to different conclusions about a drug's potential contribution to novel drug regimens.

29 30 Introduction

31 Mycobacterial respiration and oxidative phosphorylation have proven to be a vulnerable pathway in
32 *Mycobacterium tuberculosis* for chemotherapy of tuberculosis (TB) (1, 2). Recent drug discovery work
33 has focused on validating potential drug targets, developing small molecule inhibitors and finding
34 combination therapies leading to synergistic effects on the pathway (3-5). Bedaquiline (BDQ, B), a
35 diarylquinoline (DARQ) inhibitor of ATP synthase, was approved for TB treatment by the U.S. Food
36 and Drug Administration in late 2012 (6). Its strong sterilizing activity underpins the efficacy of the

37 first oral 6-month regimen recommended by WHO for treatment of rifampin-resistant TB based on
38 the combination of BDQ, pretomanid (Pa) and linezolid (L), with or without addition of moxifloxacin
39 (M) (regimens abbreviated as BPaL(M)) (7-10). BDQ is a key component of even shorter experimental
40 regimens also containing pyrazinamide (PZA, Z), such as the BPaMZ regimen studied in the recently
41 completed SimpliciTB trial (ClinicalTrials.gov identifier NCT03338621) and the combination of BLZ
42 plus isoniazid and ethambutol studied in the TRUNCATE-TB trial (11). BDQ is also a crucial component
43 of other regimens with strong sterilizing activity in mouse models of TB. For example, BDQ is more
44 effective than rifapentine (P) when either is combined with MZ in BALB/c mice; and the addition of
45 rifabutin (Rb) to BMZ further increases the sterilizing activity (12). The resultant BMZRB regimen will
46 be evaluated in the ongoing phase 2c CRUSH-TB trial (NCT05766267). In addition, the combination of
47 BDQ with the Rv1625c activator GSK2556286 (G) (now in phase 1 of clinical development
48 [NCT04472897]) and the DprE1 inhibitor TBA-7371 (A) (now in phase 2 of clinical development
49 [NCT04176250]), has demonstrated sterilizing activity approaching that of BPaL in BALB/c mice and
50 may represent a promising backbone for further regimen development (13).

51

52 Despite its clinical utility, BDQ has several liabilities, including high lipophilicity (e.g., partition
53 coefficient between n-octanol and water [$\log P$] = 7.25 \log_{10}) and accumulation in tissues with a
54 consequently long terminal half-life of 5-6 months, high plasma protein binding (>99.9%), slow
55 diffusion into caseous lesions, and potential to prolong the QT interval (14-16). Furthermore,
56 although high-level resistance to BDQ caused by mutations in the *atpE* gene have been encountered
57 only rarely in the clinic to date (17), mutations in *Rv0678* (also known as *mmpR5*) (18-20), which
58 cause smaller but still clinically significant reductions in susceptibility are increasingly reported (21-
59 23). One issue of concern is that these mutations are also associated with reduced susceptibility to
60 other TB drugs, such as clofazimine (CFZ) and new DprE1 inhibitors in clinical development (namely
61 TBA-7371 (A) (24), quabodepistat (formerly known as OPC-167832) (25), and the benzothiazinones
62 BTZ043 and PBTZ169 (26)), and these mutations may be observed in isolates from patients without
63 prior BDQ or CFZ exposure (27, 28).

64

65 To improve upon the efficacy and liabilities of BDQ, two new DARQ analogues, TBAJ-587 (S587) and
66 TBAJ-876 (S876), with higher potency against *M. tuberculosis* (including *Rv0678* mutants), but lower
67 lipophilicity and improved cardiac safety profiles, were developed (16, 29-31). Mouse efficacy studies
68 have demonstrated their superior potency compared to BDQ against wildtype *M. tuberculosis* H37Rv
69 and isogenic *Rv0678* mutants (18, 32) and superior sterilizing activity when replacing BDQ in
70 combination with Pa and an oxazolidinone (33). Both new DARQs are now in clinical trials
71 (NCT04890535 and NCT06058299).

72

73 Telacebec (T) is a new first-in-class anti-mycobacterial drug candidate that binds QcrB to inhibit the
74 cytochrome bc₁:aa₃ complex, a terminal oxidase of the electron transport chain (ETC) (34), and
75 therefore acts on a different component of the respiratory chain than BDQ to inhibit ATP synthesis. T
76 shows potent inhibitory activity against *M. tuberculosis* and exceptionally potent bactericidal activity
77 against *M. tuberculosis* mutants (e.g., Δ cydAB and cydC::aph mutants) lacking the alternative
78 cytochrome bd terminal oxidase and against *Mycobacterium ulcerans* strains which lack a functional
79 cydAB operon encoding this oxidase (34-37). Mouse studies testing single doses of up to 1000 mg/kg
80 and human studies testing doses of up to 320 mg/d for 14 days showed favorable safety and
81 tolerability (34, 38-41). A recent Phase 2a study demonstrated dose-dependent early bactericidal
82 activity in TB patients (40). However, there are only limited published data on the potential
83 contributions of T or other QcrB inhibitors to the efficacy of novel drug regimens in animal models of
84 TB chemotherapy to inform regimen development (42).

85

86 The fat soluble riminophenazine dye CFZ was originally developed to treat TB in the 1960s but was
87 primarily used as an anti-leprosy medication until recently (43, 44). It was newly designated a
88 second-line drug for rifampin-resistant TB by the WHO, after studies demonstrated the efficacy of 9-
89 month CFZ-containing regimens (45, 46). The mode of action of CFZ is not firmly established, but it
90 has been shown that the primary NADH:quinone oxidoreductase in the mycobacterial ETC, NDH-2,
91 reduces CFZ, which in turn reduces O₂, recycling CFZ and generating reactive oxygen species (ROS)
92 (47). Lamprecht et al. demonstrated the synergistic activity of BDQ, T and CFZ *in vitro*, finding that
93 this combination sterilized *M. tuberculosis* H37Rv cultures after 5 days of exposure. They
94 hypothesized that the mechanism of the synergy is based on the combined effects of BDQ and T
95 leading to a compensatory increase in electron flux in the ETC and a resulting increase in reactive
96 oxygen species production through CFZ-mediated redox cycling (48).

97

98 Taken together, these promising results prompted us to investigate whether T, as an ATP synthesis
99 inhibitor acting on a target different from BDQ, could contribute to novel drug combinations capable
100 of shortening TB treatment and/or mitigating BDQ resistance. Here, we describe a series of
101 experiments to test the hypotheses that T could replace BDQ in, or augment the activity of, DARQ-
102 containing regimens, including combinations of a DARQ, T and CFZ in an established BALB/c mouse
103 model of TB using the H37Rv reference strain (Lineage 4, Euro-American) of *M. tuberculosis*.

104

105 The contribution of T to selected combinations was also assessed against an infection with *M.*
106 *tuberculosis* HN878, a more recent clinical isolate belonging to the other major lineage of *M.*

107 *tuberculosis* isolates (Lineage 2, East Asian). Compared to H37Rv, HN878 has a lower basal expression
108 of the bd oxidase and is more vulnerable to conditional silencing of *qcrB* expression and T (49).
109 Therefore, we hypothesized T would be more effective in drug regimens against the HN878 strain.
110

111 Results

112 **Experiment 1: Evaluating the contribution of telacebec when added to core**
113 **components of, or substituted for bedaquiline in, regimens of clinical significance**

114 Experiment 1 was designed to test (1) whether T has additive activity with drug combinations that
115 have previously been shown to partner well with BDQ, and (2) whether T is as effective as BDQ in
116 these regimens. Therefore, we tested both T and BDQ as additions to each of the following
117 combinations: PaL (50), PaMZ (51), MZrb (12), and GSK2556286+TBA-7371 (13). An additional
118 objective was to determine if the addition of T increases the bactericidal activity of the highly
119 sterilizing BMZ (51, 52) and PMZ (53) combinations.

120 The experimental scheme is shown in **Table S1**. BALB/c mice received a high-dose aerosol infection
121 with *M. tuberculosis* H37Rv and treatment started two weeks post-infection. Arms containing PZA
122 were limited to 4 weeks of treatment because CFU counts were expected to be very low or
123 undetectable after longer treatment durations and less likely to permit assessment of the
124 contribution of T. Other arms were evaluated after both 4 and 8 weeks of treatment.

125 After 4 weeks of treatment, the addition of T significantly increased the bactericidal activity of PaMZ
126 ($p<0.05$) and MZrb ($p<0.0001$) (**Table 1**), but the addition of T did not increase the activity of BMZ
127 although BMZQ was as effective as BMZrb and was superior to BPaMZ ($p<0.0001$). The addition of T
128 did not increase the activity of PMZ. After 8 weeks of treatment, addition of T antagonized the
129 bactericidal activity of PaL ($p<0.01$), but did not significantly alter the activity of GA ($p=0.78$).

130 However, the addition of both T and CFZ to GA significantly reduced the CFU counts compared to GA
131 alone.

132 In every example in which either BDQ or T was added to the same 2- or 3-drug combination, BDQ
133 was a stronger contributor to the regimen than T. Addition of BDQ resulted in significantly lower
134 mean CFU counts in all cases, whereas the addition of T only significantly lowered the mean CFU of
135 the MZrb and PaMZ combinations and antagonized the PaL combination.

136

137 Experiment 2: Evaluating the bactericidal activity of regimens based on a backbone of
138 TBAJ-876, clofazimine and telacebec

139 Experiment 2 was performed to determine if the addition of T to the more potent DARQ TBAJ-876
140 and CFZ would recapitulate the synergy observed *in vitro* (18, 33). A second objective was to
141 determine if the addition of various fourth drugs would increase the bactericidal activity of this 3-
142 drug combination. Among the fourth drugs tested were the rifamycin transcription inhibitor rifabutin
143 (Rb); three oxazolidinone translation inhibitors: linezolid (L), sutezolid (U), and TBI-223 (O); three cell
144 wall synthesis inhibitors: Pa, the DprE1 inhibitor TBA-7371 (A), and the MmpL3 inhibitor MPL-446
145 (Mp); and PZA. The experimental scheme is described in **Error! Reference source not found.** BALB/c
146 mice received a high-dose aerosol infection with *M. tuberculosis* H37Rv and were initiated on
147 treatment 2 weeks post-infection. Treatment duration was limited to 4 weeks because CFU counts in
148 mice treated with TBAJ-876 and CFZ with or without T were expected to be very low or undetectable
149 at 8 weeks.

150

151 TBAJ-876 alone at 6.25 mg/kg was highly bactericidal, reducing the CFU counts by more than $3.5 \log_{10}$
152 over 4 weeks (**Table 2**). Monotherapy with TBAJ-876 was as active as the combination of TBAJ-876
153 with PaL, as previously observed (18). The addition of CFZ to TBAJ-876 significantly improved the
154 bactericidal activity ($p<0.0001$). However, addition of T to TBAJ-876+C resulted in significantly higher
155 CFU counts ($p<0.01$). Driven by the combined additive effects of TBAJ-876 and CFZ, this combination,
156 with or without addition of T, was significantly more active than the TBAJ-876+PaL control regimen
157 ($p<0.0001$), as was nearly every 4-drug combination based on TBAJ-876 plus CT at this time point.
158 However, only the addition of PZA significantly increased the activity of the TBAJ-876+CT backbone
159 ($p<0.001$), reducing the CFU counts below the lower limit of detection of $1.66 \log_{10}$ in this
160 experiment. The addition of GSK2556286 to TBAJ-876+CT resulted in the next largest reduction in
161 mean CFU counts, rendering the lungs of two mice culture-negative, but the difference with TBAJ-
162 876+CT was not statistically significant. Neither addition of Rb nor addition of any of the 3
163 oxazolidinones tested significantly changed the CFU counts after 4 weeks of treatment. With respect
164 to cell wall inhibitors, TBA-7371 was more effective in the combination than the mycolic acid
165 synthesis inhibitors Pa and MPL-446, although only the antagonistic effect of adding Pa to the 3-drug
166 regimen was statistically significant ($p<0.0001$).

167

168 Experiment 3: Deconvoluting the effects of telacebec in combination with TBAJ-587,
169 clofazimine and/or pyrazinamide

170 Combinations of BDQ with either CFZ or PZA were previously shown to have strong additive
171 bactericidal and sterilizing activity in mouse models of TB (54-57). Experiment 3 was designed to
172 evaluate the components of the DARQ-CFZ-T regimen tested in Experiment 2 and the interaction
173 between T and the other next-generation DARQ in clinical development, TBAJ-587, with or without
174 CFZ or PZA. To attempt to realize the synergy observed in vitro and gather information on the
175 maximum possible effect, higher doses were tested for CFZ and T. A second objective was to
176 determine if T would be as effective as TBAJ-587 when combined with either CFZ or PZA. The
177 experimental scheme is shown in **Table S3**. BALB/c mice received a high-dose aerosol infection with
178 *M. tuberculosis* H37Rv and were initiated on treatment 2 weeks post-infection. Monotherapy arms
179 were limited to 4 weeks of treatment due to risk of resistance selection with longer treatment. Arms
180 containing TBAJ-587 and PZA were limited to 4 weeks of treatment because CFU counts were
181 expected to be very low or undetectable at 8 weeks and unlikely to permit assessment of the
182 contribution of T. Other arms were evaluated after 4 and 8 weeks of treatment.

183

184 The mean CFU count in the lungs at D0 was 7.52 ± 0.13 (**Table 2. Mean CFU counts at week 4 in Experiment 2**
185 (**H37Rv**))

Regimen	Time point and mean (\pm SD) \log_{10} CFU counts ¹⁸⁶		
	W-2	D0	W4
Untreated	4.14 ± 0.12	7.51 ± 0.06	
S876 _{6.25} Pa _{30bid} L _{25bid}			3.96 ± 0.22
S876 _{6.25}			3.74 ± 0.44
S876C _{6.25}			1.88 ± 0.28
S876CT ₅			2.65 ± 0.19
S876CT+L _{25bid}			3.03 ± 0.27
S876CT+U _{25bid}			2.84 ± 0.20
S876CT+O _{45bid}			2.51 ± 0.50
S876CT+Rb ₅			2.51 ± 0.23
S876CT+Pa _{30bid}			4.18 ± 0.15
S876CT+Mp ₅₀			3.26 ± 0.21
S876CT+286 ₃₅			2.11 ± 0.51
S876CT+A _{75bid}			2.44 ± 0.64
S876CT+Z ₁₅₀			$1.66 \pm 0.00^*$

187 Number in subscript indicate mg/kg/dose.

188 * $1.66 \log_{10}$ was the lower limited of detection in this study

189 Abbreviations: S876=TBAJ-876; C=clofazimine; T=telacebec; L=linezolid; U=sutezolid; O=TBI-223; Rb=rifabutin;
190 Pa=pretomanid; Mp=MPL-446; 286=GSK-286; A=TBA-7371; Z=pyrazinamide.

191 Dosing was once daily except for L, U, O, Pa, and A which were dosed twice daily, all regimens were given 5 days a week.
192 W-2 = Day after infection; D0 = Day of treatment initiation; W4 = 4 weeks after treatment initiation.
193

194 **Table 33).** Untreated mice experienced an increasing bacterial burden and met humane endpoints
195 for euthanasia at Week 3. Single drug treatment with T at 10 mg/kg and 50 mg/kg was bacteriostatic,
196 preventing death in T-treated mice, but not reducing lung CFU counts compared to D0 CFU counts.
197 Furthermore, no dose-response was observed. TBAJ-587 alone at 12.5 mg/kg reduced the bacterial
198 burden by more than 4 log₁₀ over 4 weeks, comparable to the observed CFU reduction of TBAJ-876
199 monotherapy at 6.25 mg/kg in Experiment 2, and in line with a previous experiment in which TBAJ-
200 587 at 25 mg/kg reduced the lung CFU count by approximately 5 log₁₀ over 4 weeks (32). Addition of
201 either PZA (p<0.001) or CFZ (p<0.01) significantly increased the bactericidal activity of TBAJ-587,
202 resulting in the two most active drug combinations tested. In contrast, addition of T antagonized the
203 activity of TBAJ-587 over the course of 4 weeks (p<0.01). No difference in the overall effect was
204 observed for either dose of T in combination with TBAJ-587 after 4 or 8 weeks of treatment.
205 Similarly, the addition of T to combinations of TBAJ-587 plus either CFZ or PZA also resulted in higher
206 CFU counts after 4 and 8 weeks of treatment, although the effect of T on these combinations was not
207 statistically significant. Whereas all mice treated with TBAJ-587 plus CFZ had no detectable CFU after
208 8 weeks of treatment, all mice treated with the same combination plus T remained culture-positive
209 at this time point. Replacing TBAJ-587 with T in combinations containing CFZ or PZA resulted in
210 significantly higher CFU counts. Compared with T monotherapy, the addition of PZA reduced the
211 mean CFU count by over 3 log₁₀ and the addition of CFZ reduced the mean CFU count by around 1
212 log₁₀, but we did not assess whether these combinations with T were more effective than PZA or CFZ
213 alone.

214
215 To determine if the observed antagonistic effect of T on DARQ-containing combinations could be due
216 to drug-drug interactions which reduce drug exposures, steady state plasma concentrations of TBAJ-
217 587 (**Table S4a**), its active M3 metabolite (M3) (**Table S4b**), and T (**Table S4c**) were measured to
218 compare the exposures of the drugs alone and in combination with companion drugs. For TBAJ-587
219 and its M3 metabolite, the mean concentrations were compared between mice administered TBAJ-
220 587 alone and mice administered TBAJ-587 in combination with T 10 mg/kg (T₁₀), T 50 mg/kg (T₅₀),
221 and T₁₀ plus CFZ. For T, the mean concentrations were compared between mice administered T₁₀
222 alone and T₁₀ in combination with TBAJ-587 and TBAJ-587+CFZ, as well as between mice
223 administered T₅₀ alone and T₅₀ in combination with TBAJ-587.

224 Mean concentrations of TBAJ-587 and the M3 metabolite did not differ significantly between most
225 groups and time points assessed. However, the mean concentrations of TBAJ-587 were significantly
226 lower at 1h and 5h when TBAJ-587 was administered in combination with T₁₀+C compared to
227 treatment with TBAJ-587 alone (p<0.05). Similar results were observed for the M3 metabolite of
228 TBAJ-587; at the 5h timepoint, the mean concentration in the TBAJ-587+T₁₀+C group was significantly

229 lower than that in the TBAJ-587 alone group ($p<0.05$). Furthermore, a significantly higher mean
230 concentration of M3 was observed in the TBAJ-587+T₅₀ group compared to TBAJ-587 alone ($p<0.05$)
231 or TBAJ-587+T₁₀ ($p=0.001$). A significantly lower mean concentration of T at 5h post-dose was
232 observed in the group receiving TBAJ-587+T₁₀ compared to the group receiving T₁₀ alone ($p<0.05$). No
233 other significant differences in T concentrations were noted between groups.

234

235 **Experiment 4: Evaluating the contribution of telacebec to combination drug regimens**
236 *against M. tuberculosis HN878*

237 Recent work suggests that the HN878 strain of *M. tuberculosis* is more susceptible to T than the
238 H37Rv strain, likely because the latter more effectively utilizes the compensatory cytochrome bd
239 oxidase to reduce telacebec's effectiveness (49). To investigate if this differential vulnerability affects
240 the contribution of T to novel drug combinations *in vivo*, we infected BALB/c mice with HN878 and
241 evaluated T with a variety of companion drug combinations, including some of those previously
242 tested against H37Rv in Experiment 1. Both BDQ-containing and BDQ-sparing regimens were
243 included to investigate the interaction between BDQ and T against HN878. The scheme of the
244 experiment is shown in **Table S5**.

245

246 The results confirmed the hypothesis that the HN878 strain is more susceptible to T-containing
247 combinations than the H37Rv strain. Unlike the antagonism observed when T was added to TBAJ-
248 876+CFZ and TBAJ-587+CFZ against H37Rv in Experiments 2 and 3, respectively, the addition of T to
249 BDQ+CFZ significantly increased the bactericidal effect against HN878 in Experiment 4 ($p<0.0001$)
250 (**Table 4**). Unlike the antagonistic effect of adding T to PaL against H37Rv, the same addition against
251 HN878 resulted in a statistically non-significant lower mean CFU count. Lastly, the addition of T to
252 PMZ resulted in a statistically significant additive effect against HN878 ($p<0.01$) but not H37Rv. A
253 significant additive effect of T with BPaC was also observed ($p<0.0001$), and the 4-drug BPaCT was
254 much more effective than BPaL±T. No significant effects were observed with addition of T to the
255 combinations of BPaL, BPaM, BGA and PaRb. The effect of adding T to the BCM combination could
256 not be evaluated because all BCM-treated mice were culture-negative by the end of one month of
257 treatment and the addition of T did not change this result. Adding T to BMZ increased the average
258 CFU count significantly ($p<0.05$) and increased the percentage of mice with culturable bacteria from
259 25% to 75%.

260

261 Experiment 5: Determination of telacebec MICs against *M. tuberculosis* H37Rv strain
262 and isogenic *Rv0678* mutants

263 Given the increasing recognition of *Rv0678* mutations associated with baseline and acquired
264 phenotypic resistance to BDQ and CFZ (27, 28), and the impact of such mutations on a number of
265 other TB drugs, including new DARQs (18-26), we investigated whether *Rv0678* mutations associated
266 with BDQ resistance also affect the susceptibility of *M. tuberculosis* to T by determining the MIC of T
267 against a pair of isogenic *Rv0678* mutants using the agar proportion method. The MIC of T was 8
268 ng/ml against the parental H37Rv strain and the *Rv0678_2* mutant, which is isogenic except for a
269 single nucleotide insertion Gly65 (+G) between nucleotides 193 and 194 of the *Rv0678* gene (18).
270 Against the *Rv0678_J4* mutant, which is also isogenic except for an IS6110 insertion between
271 nucleotides 49 and 50 of the *Rv0678* gene (18), the T MIC was 4 ng/ml.

272

273 Discussion

274 The current study used a well-established BALB/c mouse model of TB to evaluate the contribution of
275 the first-in-class QcrB inhibitor T to the bactericidal activity of novel drug combinations targeting
276 mycobacterial respiration and oxidative phosphorylation against two different strains of *M.*
277 *tuberculosis*. Given the clinical success of the ATP synthase inhibitor BDQ and the ongoing clinical
278 development of the more potent next-generation DARQs TBAJ-587 and TBAJ-876, we explored the
279 effect of combining T with DARQ-containing combinations *in vivo*. Having previously observed
280 additive bactericidal and sterilizing activity of BDQ and CFZ in this model and given the evidence of
281 synergistic activity of BDQ, CFZ and T *in vitro* (48), we were particularly interested in the interactions
282 of these 3 classes *in vivo*. To our knowledge, this is the first report describing the effects of this
283 combination of drugs acting on the respiratory chain in a murine model of TB.

284

285 Against *M. tuberculosis* H37Rv (Experiments 2 and 3), TBAJ-876 and TBAJ-587 individually showed
286 strong bactericidal activity, reducing lung CFU counts by around 4 log₁₀ compared to D0 counts,
287 results which are in line with previously published data (16, 27). The addition of CFZ increased the
288 activity of either DARQ by approximately 1-2 log₁₀, similar to previous observations with addition of
289 CFZ to BDQ in this model (48). The observed bacteriostatic effect of T monotherapy was also
290 consistent with previous *in vitro* results (42). Previous results in mouse infection models have varied,
291 with some finding bactericidal activity (29) and others observing only bacteriostatic effects (49).
292 Surprisingly, the addition of T antagonized or, at least, did not increase, the activity of either
293 DARQ+CFZ combination, and also antagonized the activity of TBAJ-587 when TBAJ-587+T was

294 compared to TBAJ-587 alone. Some *in vitro* studies have shown lack of additivity or antagonism when
295 T or another QcrB inhibitor is added to BDQ (42, 50). However, the addition of T to a DARQ+CFZ
296 combination was expected to be additive (42).

297
298 In stark contrast to the results observed against infections with the H37Rv strain, we found a strong
299 additive effect when T was combined with a DARQ (BDQ) and CFZ against an infection with the
300 HN878 strain. The addition of T to the combination of BDQ, Pa, and CFZ (BPaCT) was also
301 advantageous against HN878 infection, reducing the mean CFU count by over 2 \log_{10} compared to
302 BPaC alone in Experiment 4. Whereas BPaCT reduced the mean CFU count by over 6 \log_{10} compared
303 to D0 and was superior to BPaL against HN878 in Experiment 4, TBAJ-876 plus PaCT reduced the
304 mean CFU count by only 3.33 \log_{10} and was significantly worse than TBAJ-876 plus PaL against H37Rv
305 in Experiment 2. A similar strain-dependent differential contribution of T emerged when T was added
306 to the PaL backbone, with T significantly antagonizing this DARQ-sparing backbone and increasing the
307 mean CFU count by 1.05 \log_{10} against H37Rv in Experiment 1, but lowering the mean CFU count,
308 albeit non-significantly, against HN878 in Experiment 4.

309
310 BPaMZ was recently tested as a 4-month regimen for drug-sensitive TB in the SimpliciTB trial
311 (ClinicalTrials.gov identifier NCT03338621), but did not meet non-inferiority criteria when compared
312 to the 6-month standard-of-care due to treatment discontinuations from adverse events. Therefore,
313 we tested whether T could replace Pa or Z, two components thought most to be associated with
314 hepatotoxicity in this combination (58). We observed similar results between the strains when T was
315 used in place of Pa in BPaMZ. In both strains the addition of T was slightly antagonistic to the BMZ
316 backbone. Against HN878 infection, addition of T to BPaM had no significant effect.

317
318 A regimen combining PMZ with isoniazid is thus far the only 4-month regimen proven to be non-
319 inferior to the 6-month first-line regimen for drug-susceptible TB. However, the utility of isoniazid is
320 limited by the prevalence of isoniazid monoresistance. As QcrB inhibitors have shown promising
321 interactions with rifamycins and PZA (59), we compared the contribution of T to the PMZ backbone
322 against both *M. tuberculosis* strains. Whereas the addition of T to PMZ had no significant effect
323 during the first month against H37Rv, it reduced the mean CFU count by over 1 \log_{10} against HN878.
324 Additional studies using relapse as an endpoint and in a C3HeB/FeJ mouse model that develops
325 caseating lung lesions may be useful to further explore the potential value of incorporating T into the
326 BPaMZ and PMZ regimens.

327

328 The findings regarding *M. tuberculosis* strain-dependent contributions of T discussed above reinforce
329 other recent findings from this BALB/c mouse model that demonstrated a differential contribution of
330 linezolid to the BPa backbone against these two *M. tuberculosis* strains (60) and lead to one of our
331 main conclusions—that important differences in drug susceptibility between different lineages and
332 strains of *M. tuberculosis* exist and deserve greater attention in regimen development. With respect
333 to the potential contribution of T to some of the novel regimens examined here, our observations
334 require further investigation with additional strains from the two major lineages represented here by
335 H37Rv and HN878 to determine the extent to which these are lineage-associated, versus strain-
336 specific, effects and to better understand the mechanisms behind them. For example, we recently
337 reported the considerable bactericidal and sterilizing activity of the B286A regimen in mice (13). The
338 current results from Experiment 1 showing similar bactericidal activity of B286A and BPaL after 8
339 weeks of treatment in mice infected with H37Rv are in line with prior results. However, in
340 Experiment 4 in which mice were infected with HN878, B286A rendered all mice culture-negative
341 after 4 weeks of treatment and was clearly superior to BPaL (as well as PMZ) at this time point. We
342 found that T did not add activity to the 286A backbone and therefore could not replace any portion
343 of the BDQ contribution to B286A in Experiment 1, but we did not evaluate the contribution of T to
344 286A against HN878. Studies to further investigate the B286A backbone and the extent to which T
345 can add activity or replace BDQ (with or without concomitant use of CFZ) should consider inclusion of
346 additional *M. tuberculosis* strains from lineage 4 in particular.

347
348 The antagonistic effects of T on the activity of the DARQ-containing, and especially DARQ+CFZ-
349 containing, regimens we observed in H37Rv-infected mice were surprising. Analysis of plasma drug
350 concentrations in Experiment 3 did not provide compelling evidence of a drug-drug interaction
351 between TBAJ-587 and T that would explain the antagonism, as the concentrations of TBAJ-587 and
352 its active M3 metabolite were not consistently significantly lower in mice receiving TBAJ-587+T
353 compared to those receiving TBAJ-587 alone. Only the M3 concentrations measured at 5 h post-dose
354 in the TBAJ-587+T₅₀ arm were significantly lower than the corresponding concentrations measured in
355 the TBAJ-587 alone arm. However, TBAJ-587 and M3 concentrations were consistently significantly
356 lower in mice receiving TBAJ-587+T₁₀+CFZ compared to groups receiving TBAJ-587 alone or in
357 combination with T, despite the fact that the addition of CFZ to this arm significantly increased its
358 bactericidal activity over TBAJ-587+T₁₀ only. Because drug concentrations were not assessed in the
359 TBAJ-587+CFZ arm and CFZ concentrations were not measured in any arm, we were unable to
360 determine if co-administration with CFZ itself lowered TBAJ-587 concentrations or if co-
361 administration with both T and CFZ was necessary; nor could the impact of T on CFZ concentrations
362 be assessed. The strong additive effects observed when T was added to BDQ+CFZ-containing

363 regimens in HN878-infected mice provided additional, albeit indirect, evidence that the antagonism
364 was not due solely to a drug-drug interaction that lowered DARQ concentrations.

365
366 Since a pharmacokinetic interaction did not appear to explain the antagonistic effect of T on DARQ
367 activity against H37Rv, other possible explanations for this observation should be considered. An
368 explanation may lie in the considerable respiratory flexibility of *M. tuberculosis* and the time course
369 of its adaptation during mouse infection. *M. tuberculosis* is known to rely on the bd oxidase, an
370 alternative non-proton-pumping terminal oxidase, to mitigate the effects of T-mediated blockade of
371 the bc₁:aa₃ oxidase (61, 62), but upregulation of bd oxidase expression also enables an increase in
372 ETC flux without contributing to membrane hyperpolarization in the face of blockade of ATP synthase
373 by BDQ (61). Indeed, loss of the bd oxidase renders *M. tuberculosis* more susceptible to BDQ *in vitro*
374 and *in vivo* (61, 63). Temporal transcriptional profiling upon mouse infection has shown that *M.*
375 *tuberculosis* also adapts to the onset of Th1 cell-mediated immunity *in vivo* by upregulating the bd
376 oxidase and decreasing dependence on the bc₁:aa₃ oxidase (64). Unlike the standard *in vitro*
377 conditions, this alteration would lead to lower expression of bc₁:aa₃ oxidase compared to bd oxidase
378 prior to any treatment, which could reduce the benefit of T inhibition of the former while still
379 promoting further additive expression of bd oxidase. Less consistent with prior *in vitro* results was
380 our finding that addition of T to DARQ+CFZ combinations led to antagonism or, at least, lack of
381 additive effects in mice infected with H37Rv. Indeed, Lamprecht et al. previously showed that
382 addition of T to BDQ+CFZ increased bactericidal activity *in vitro* against H37Rv in axenic media and in
383 infected RAW264.7 cells and proposed a mechanistic model whereby BDQ and T increase ETC flux via
384 bd oxidase, which potentiates the bactericidal mechanism of CFZ to transfer electrons from NDH2 to
385 oxygen to produce ROS (48). However, the additive effect of T *in vitro* in those experiments was
386 relatively modest and the same imbalance of bd oxidase activity relative to bc₁:aa₃ oxidase activity *in*
387 *vivo* as described above could mitigate against this small effect in mice. Since Shi et al. demonstrated
388 that bd oxidase expression is highest during the onset of the adaptive immune response in mice and
389 then returns to baseline as chronic infection is established (64), it may be worthwhile to revisit these
390 combinations in a more chronic mouse infection model.

391
392 We hypothesized that a fourth drug inhibiting transcription or translation would limit the ability of
393 *M. tuberculosis* to adapt and compensate for actions of the DARQ+CFZ+T combination and therefore
394 increase the susceptibility to the regimen. Indeed, each of these classes works well together with
395 rifamycins, in particular. This theory was not confirmed in our experiments, as neither mechanistic
396 class of inhibitors was able to significantly increase the activity of the backbone regimen in
397 Experiment 2, possibly due to the previously described over-expression of bd oxidase during

398 infection occurring prior to drug exposure. Pa, as well as DprE1 and MmpL3 inhibitors have shown
399 some ability to augment the activity of BDQ-containing regimens (50, 65) in previous experiments.
400 DprE1 inhibitors have also shown additive activity with T (66) and with CFZ (67). However, we did not
401 observe additive effects when Pa, TBA-7371 or the bactericidal and orally bioavailable MmpL3
402 inhibitor MPL-446 were added to TBAJ-876+CFZ+T in our study. The only drug that added
403 significantly to this 3-drug backbone was PZA, consistent with our prior observations of the potent
404 bactericidal and sterilizing efficacy of BDQ+CFZ+PZA in this model (57, 68).

405

406 Finally, we found that *Rv0678* mutations that reduce *M. tuberculosis* susceptibility to BDQ do not
407 affect the MIC of T. This encouraging result suggests that T may, as another ATP synthesis inhibitor,
408 provide an option to augment or replace BDQ in regimens against infections caused by *Rv0678*
409 mutants.

410

411 This study has limitations. First, we evaluated a limited set of drug combinations to test specific
412 hypotheses based on prior *in vitro* and *in vivo* studies. The potential contribution of T to other
413 combinations of TB drugs should be examined. Second, the potential effect on the DARQ and CFZ
414 exposures when T was added to either DARQ+CFZ combination was not assessed, which prevents us
415 from determining whether an adverse PK interaction explains at least part of the antagonistic effect
416 of T in the 3-drug combination. However, the magnitude of the antagonistic effect of T on the 3-drug
417 combination was comparable to that of its effect on the TBAJ-587+T combination, where no
418 significant PK interaction was observed. Therefore, it is unlikely that a PK interaction explains the
419 entire antagonistic effect. Third, we did not evaluate the contribution of T to the sterilizing activity of
420 these regimens by assessing relapse prevention as an endpoint. This could be examined in future
421 studies, but we are skeptical that a significant beneficial effect on relapse would have been observed
422 against the H37Rv strain had the regimens been assessed using this endpoint, where there was no
423 additive bactericidal effect. Fourth, our studies relied on a single strain of each of two lineages of *M.*
424 *tuberculosis* and the results may not be generalizable to other strains in these or other lineages. We
425 note that the HN878 strain (of Lineage 2) appears more vulnerable to T treatment and *qcrB* silencing
426 via CRISPR interference than the H37Rv strain (of Lineage 4) (49) and it is possible that the
427 laboratory-adapted H37Rv strain is something of an outlier in terms of its limited vulnerability to
428 QcrB inhibition. Therefore, we believe it would be worthwhile to evaluate the contribution of T to
429 similar regimens against additional Lineage 2 and 4 isolates, and isolates from other lineages as well.
430 Finally, we used a BALB/c mouse infection model that does not develop caseating lung lesions.
431 Further studies are warranted to evaluate the potential contribution of T to TB therapy, including

432 combinations with a DARQ and CFZ, in a model that forms such necrotic lesions, such as C3HeB/FeJ
433 mice.

434

435 In conclusion, T exhibited additive activity with BDQ+CFZ-containing combinations and the PMZ
436 combination in a bacterial strain-dependent manner. These and other regimens deserve further
437 evaluation against additional *M. tuberculosis* strains, as well as in sterilizing effect studies and
438 C3HeB/FeJ mice to further assess the potential contribution of T to novel drug regimens. However, it
439 seems likely that T may only reach its full potential when a suitable inhibitor of the alternative bd
440 oxidase is available

441 MATERIALS AND METHODS

442 MIC determination.

443 *M. tuberculosis* H37Rv (American Type Culture Collection strain ATCC 27294) and isogenic *Rv0678*
444 mutants previously selected in the H37Rv background were grown in 7H9 media with 10% OADC and
445 0.05% Tween 80. The *Rv0678_J4* mutant has an IS6110 insertion at nucleotide 49. The *Rv0678_2*
446 mutant has a guanine insertion between nucleotides 193 and 194 of the *Rv0678* gene. Both mutants
447 were isolated during a previous study in our lab (18).

448 The agar proportion method was used to determine the MIC. A stock solution of T was prepared in
449 DMSO (Fisher Scientific), serially diluted in 2-fold steps, and added (0.1% vol/vol) to 7H11 agar
450 supplemented with 10% (vol/vol) OADC enrichment, and 0.5% (vol/vol) glycerol to achieve all
451 doubling T concentrations between 1 ng/ml and 64 ng/ml. All the strains were grown in 7H9 medium
452 with (0.05%) Tween and (10%) OADC to an $OD_{600nm} = 1$. The inoculum for MIC testing was prepared
453 by adjusting this culture to approximately 10^5 CFU/ml by diluting it 1:100. Undiluted inoculum and
454 inoculum diluted 1:100 were seeded onto T-containing plates, while serial 10-fold dilutions up to
455 1:10,000 were seeded onto T-free plates to determine the CFU count of the inoculum. The MIC was
456 defined as the lowest T concentration that prevented the growth of at least 99% of CFU compared to
457 plates without T after 18 days of incubation at 37°C.

458

459 Bacterial strain.

460 *M. tuberculosis* H37Rv (American Type Culture Collection strain ATCC 27294) and *M. tuberculosis*
461 HN878 were mouse-passaged and frozen at -80°C in aliquots. For each mouse infection, an aliquot
462 was thawed, grown in liquid culture medium (Middlebrook 7H9) and then used to aerosol infect
463 mice.

464

465 [Infection model.](#)

466 All animal procedures adhered to national and international guidelines and were approved by the
467 Johns Hopkins University Animal Care and Use Committee. For all experiments 6-week-old female
468 BALB/c mice were aerosol-infected with a culture of *M. tuberculosis* during log phase growth with an
469 optical density at 600 nm of approximately 0.8-1.0 (D-14). Treatment was initiated 2 weeks later
470 (D0). On D-13 and D0 mice were sacrificed for lung CFU counts to determine the number of bacterial
471 implanted and CFU counts at the start of treatment.

472

473 [Media.](#)

474 Bacteria for the aerosol infection were cultured in Middlebrook 7H9 broth supplemented with 10%
475 (vol/vol) oleic acid-albumin-dextrose-catalase (OADC) enrichment, 0.5% (vol/vol) glycerol, and 0.1%
476 (vol/vol) Tween 80. Lung homogenates as well as the cognate 10-fold dilutions were plated on
477 selective 7H11 agar (7H11 agar containing 50 µg/ml carbenicillin, 10 µg/ml polymyxin B, 20 µg/ml
478 trimethoprim, and 50 µg/ml cycloheximide), supplemented with 10% (vol/vol) OADC enrichment,
479 0.5% (vol/vol) glycerol and 0.4% activated charcoal to adsorb any drug carried over in the
480 homogenates (55, 69). Difco Middlebrook 7H9 broth powder, Difco Mycobacteria 7H11 agar powder,
481 and BBL Middlebrook OADC enrichment were obtained from Becton, Dickinson and Company.
482 Glycerol and Tween 80 were obtained from Fisher Scientific, and activated charcoal was obtained
483 from J. T. Baker. All selective drugs were obtained from Sigma-Aldrich/Millipore-Sigma.

484

485 [Antibiotic treatment.](#)

486 In Experiment 1 mice were randomized to one of 17 treatment groups (**Table S31**), in Experiment 2
487 mice were randomized to one of 13 treatment groups (**Table S2**), in Experiment 3 mice were
488 randomized to one of 11 treatment groups (**Table S33**), and in Experiment 4 mice were randomized
489 to one of 20 treatment groups (**Table S4**). CFZ, TBAJ-587, TBAJ-876 were formulated in 20%
490 hydroxypropyl-β-cyclodextrin solution acidified with 1.5% 1N HCl. T was prepared in 20% (wt/wt) d-α
491 tocopheryl polyethylene glycol 1000 (Sigma) succinate solution. Pa was prepared in the CM-2
492 formulation as previously described (70). Rb and PZA were prepared in deionized H₂O. Oxazolidinones
493 (L, U and O) were prepared in 0.5% methylcellulose. G was prepared in 1% methylcellulose. TBA-7371
494 was prepared in 0.5% methylcellulose plus 0.1% Tween 80. MPL-446 was prepared in 15% Solutol HS
495 15 in 50mM Na-phosphate buffer at pH 6.5. Drugs were administered by gavage, 5 days per week. In

496 Experiments 1 and 4, Pa 50 mg/kg and L 100 mg/kg were given once daily. In Experiment 2, Pa
497 30 mg/kg and L 25 mg/kg were given together twice daily, 8 h apart, resulting in a total daily dose of
498 60 mg/kg of Pa and 50 mg/kg of L. In Experiment 1 and Experiment 3 selected combination regimens
499 were given for up to 2 months (**Table S3** and **Table S2**), in Experiment 2 and Experiment 4 all
500 treatments were given for 1 month (**Table S3. Experimental scheme Experiment 3 (H37Rv)**)

Regimen	Time point and # of mice				
	W-2	D0	W4	W8	Total
Untreated	2	4	4*		10
T ₁₀			4		4
T ₅₀			4		4
S587 _{12.5}			4		4
T ₁₀ + S587			4	4	8
T ₅₀ + S587			4	4	8
S587C _{12.5}			4	4	8
S587Z ₁₅₀			4		4
T ₁₀ + S587C			4	4	8
T ₁₀ + S587Z			4		4
T ₁₀ + C			4	4	8
T ₁₀ + Z			4	4	8
Total	2	4	48	24	78

501 *Untreated mice were euthanized at week 3.

502 Number in subscript indicate dose in mg/kg.

503 Abbreviations: S587=TBAJ-587; T=telacebec; C=clofazimine; Z=pyrazinamide; W-2 = Day after infection; D0 = Day of
504 treatment initiation; W4 and W8 = 4 and 8 weeks after treatment initiation, respectively.

505 Dosing was once daily 5 days a week.

506

507 **3 and Table S4).**

508

509 **Evaluation of drug efficacy in vivo.**

510 Efficacy was evaluated after 1 and 2 months of treatment by removing lungs aseptically and
511 homogenizing in 2.5 ml PBS. Lung homogenates were then plated in serial dilutions on 7H11 agar
512 plates supplemented with 0.4% charcoal and selective antibiotics (cycloheximide (20 µg/ml),
513 carbenicillin (100 µg/ml), polymyxin B (400,000 U/ml), and trimethoprim (40 µg/ml)). CFU counts
514 were performed after 4 and 6 weeks of incubation.

515

516 **Pharmacokinetics of TBAJ-587 and Telacebec.**

517 Multidose PK of T and TBAJ-587 in plasma was characterized in infected female BALB/c mice (Charles
518 River Laboratories, Wilmington, MA) receiving oral doses once daily. In the fourth week of treatment
519 in Experiment 3, 3 mice per group per time point were sampled by submandibular bleed at 1, 5, and
520 24 hours post-dose. Drug concentrations were quantified by a validated high-performance liquid
521 chromatography/mass spectrometry method (Alliance Pharma Inc, Devault, PA).

522

523 **Statistical analysis.**

524 GraphPad Prism version 10.2 was used to compare group means by one-way ANOVA with
525 Bonferroni's correction to control for multiple comparisons.

526

527 **Acknowledgements.**

528 This research was supported by the TB Alliance.

529 References

- 530 1. Bajeli S, Baid N, Kaur M, Pawar GP, Chaudhari VD, Kumar A. 2020. Terminal Respiratory
531 Oxidases: A Targetables Vulnerability of Mycobacterial Bioenergetics? *Front Cell Infect*
532 *Microbiol* 10:589318.
- 533 2. Hasenoehrl EJ, Wiggins TJ, Berney M. 2020. Bioenergetic Inhibitors: Antibiotic Efficacy and
534 Mechanisms of Action in *Mycobacterium tuberculosis*. *Front Cell Infect Microbiol* 10:611683.
- 535 3. Kim S, Louie A, Drusano GL, Almoslem M, Kim S, Myrick J, Nole J, Duncanson B, Peloquin CA,
536 Scanga CA, Yamada W, Neely M, Schmidt S. 2022. Evaluating the effect of clofazimine against
537 *Mycobacterium tuberculosis* given alone or in combination with pretomanid, bedaquiline or
538 linezolid. *Int J Antimicrob Agents* 59:106509.
- 539 4. Sindhu T, Debnath P. 2021. Cytochrome bc1-aa3 oxidase supercomplex as emerging and
540 potential drug target against tuberculosis. *Curr Mol Pharmacol*
541 doi:10.2174/1874467214666210928152512.
- 542 5. Wani MA, Dhaked DK. 2021. Targeting the cytochrome bc(1) complex for drug development
543 in *M. tuberculosis*: review. *Mol Divers* doi:10.1007/s11030-021-10335-y.
- 544 6. Guo H, Courbon GM, Bueler SA, Mai J, Liu J, Rubinstein JL. 2021. Structure of mycobacterial
545 ATP synthase bound to the tuberculosis drug bedaquiline. *Nature* 589:143-147.
- 546 7. Conradie F, Diacon AH, Ngubane N, Howell P, Everitt D, Crook AM, Mendel CM, Egizi E,
547 Moreira J, Timm J, McHugh TD, Wills GH, Bateson A, Hunt R, Van Niekerk C, Li M, Olugbosi M,
548 Spigelman M. 2020. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. *New
549 England Journal of Medicine* 382:893-902.
- 550 8. Conradie F, Bagdasaryan TR, Borisov S, Howell P, Mikashvili L, Ngubane N, Samoilova A,
551 Skornikova S, Tudor E, Variava E, Yablonskiy P, Everitt D, Wills GH, Sun E, Olugbosi M, Egizi E,
552 Li M, Holsta A, Timm J, Bateson A, Crook AM, Fabiane SM, Hunt R, McHugh TD, Tweed CD,
553 Foraida S, Mendel CM, Spigelman M. 2022. Bedaquiline–Pretomanid–Linezolid Regimens for
554 Drug-Resistant Tuberculosis. *New England Journal of Medicine* 387:810-823.
- 555 9. Nyang'wa BT, Berry C, Kazounis E, Motta I, Parpieva N, Tigay Z, Solodovnikova V, Liverko I,
556 Moodliar R, Dodd M, Ngubane N, Rassool M, McHugh TD, Spigelman M, Moore DAJ,
557 Ritmeijer K, du Cros P, Fielding K. 2022. A 24-Week, All-Oral Regimen for Rifampin-Resistant
558 Tuberculosis. *N Engl J Med* 387:2331-2343.
- 559 10. WHO. 05.02.2022 2022. Rapid communication: key changes to the treatment of drug-
560 resistant tuberculosis. <https://www.who.int/publications/i/item/WHO-UCN-TB-2022-2>.
561 Accessed 09.18.2023.
- 562 11. Paton NI, Cousins C, Suresh C, Burhan E, Chew KL, Dalay VB, Lu Q, Kusmiati T, Balanag VM,
563 Lee SL, Ruslami R, Pokharkar Y, Djaharuddin I, Sugiri JJR, Veto RS, Sekagya-Wiltshire C,
564 Avihingsanon A, Sarin R, Papineni P, Nunn AJ, Crook AM. 2023. Treatment Strategy for
565 Rifampin-Susceptible Tuberculosis. *N Engl J Med* 388:873-887.
- 566 12. Tasneen R, Garcia A, Converse PJ, Zimmerman MD, Dartois V, Kurbatova E, Vernon AA, Carr
567 W, Stout JE, Dooley KE, Nuermberger EL. 2022. Novel Regimens of Bedaquiline-Pyrazinamide
568 Combined with Moxifloxacin, Rifabutin, Delamanid and/or OPC-167832 in Murine
569 Tuberculosis Models. *Antimicrob Agents Chemother* 66:e0239821.
- 570 13. Li SY, Tyagi S, Soni H, Betoudji F, Converse PJ, Mdluli K, Upton AM, Fotouhi N, Barros-Aguirre
571 D, Ballell L, Jimenez-Navarro E, Nuermberger EL. 2024. Bactericidal and sterilizing activity of
572 novel regimens combining bedaquiline or TBAJ-587 with GSK2556286 and TBA-7371 in a
573 mouse model of tuberculosis. *Antimicrob Agents Chemother* doi:10.1128/aac.01562-
574 23:e0156223.
- 575 14. Svensson EM, Murray S, Karlsson MO, Dooley KE. 2015. Rifampicin and rifapentine
576 significantly reduce concentrations of bedaquiline, a new anti-TB drug. *J Antimicrob
577 Chemother* 70:1106-14.

578 15. Diacon AH, Donald PR, Pym A, Grobusch M, Patientia RF, Mahanyele R, Bantubani N,
579 Narasimooloo R, De Marez T, van Heeswijk R, Lounis N, Meyvisch P, Andries K, Mcneeley DF.
580 2012. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for
581 multidrug-resistant tuberculosis: long-term outcome, tolerability, and effect on emergence
582 of drug resistance. *Antimicrob Agents Chemother* 56:3271-6.

583 16. Sutherland HS, Tong AST, Choi PJ, Blaser A, Conole D, Franzblau SG, Lotlikar MU, Cooper CB,
584 Upton AM, Denny WA, Palmer BD. 2019. 3,5-Dialkoxyypyridine analogues of bedaquiline are
585 potent antituberculosis agents with minimal inhibition of the hERG channel. *Bioorganic &*
586 *Medicinal Chemistry* 27:1292-1307.

587 17. Andries K, Verhasselt P, Guillemont J, Göhlmann HWH, Neefs J-M, Winkler H, Gestel JV,
588 Timmerman P, Zhu M, Lee E, Williams P, Chaffoy Dd, Huitric E, Hoffner S, Cambau E, Truffot-
589 Pernot C, Lounis N, Jarlier V. 2005. A Diarylquinoline Drug Active on the ATP Synthase of
590 *$\text{Mycobacterium tuberculosis}$*. *Science* 307:223-227.

591 18. Almeida D, Converse PJ, Li SY, Upton AM, Fotouhi N, Nuermberger EL. 2021. Comparative
592 Efficacy of the Novel Diarylquinoline TBAJ-876 and Bedaquiline against a Resistant Rv0678
593 Mutant in a Mouse Model of Tuberculosis. *Antimicrob Agents Chemother* 65:e0141221.

594 19. Andries K, Villegas C, Coeck N, Thys K, Gevers T, Vranckx L, Lounis N, de Jong BC, Koul A.
595 2014. Acquired Resistance of *Mycobacterium tuberculosis* to Bedaquiline. *PLOS ONE*
596 9:e102135.

597 20. Ismail NA, Omar SV, Joseph L, Govender N, Blows L, Ismail F, Koornhof H, Dreyer AW, Kaniga
598 K, Ndjeka N. 2018. Defining Bedaquiline Susceptibility, Resistance, Cross-Resistance and
599 Associated Genetic Determinants: A Retrospective Cohort Study. *EBioMedicine* 28:136-142.

600 21. Derendinger B, Dippenaar A, de Vos M, Huo S, Alberts R, Tadokera R, Limberis J, Sirgel F,
601 Dolby T, Spies C, Reuter A, Folkerts M, Allender C, Lemmer D, Van Rie A, Gagneux S, Rigouts
602 L, Te Riele J, Dheda K, Engelthaler DM, Warren R, Metcalfe J, Cox H, Theron G. 2023.
603 Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South
604 Africa: a retrospective longitudinal cohort study. *Lancet Microbe* 4:e972-e982.

605 22. Brown TS, Tang L, Omar SV, Joseph L, Meintjes G, Maartens G, Wasserman S, Shah NS, Farhat
606 MR, Gandhi NR, Ismail N, Brust JCM, Mathema B. 2023. Genotype-Phenotype
607 Characterization of Serial *Mycobacterium tuberculosis* Isolates in Bedaquiline-Resistant
608 Tuberculosis. *Clin Infect Dis* doi:10.1093/cid/ciad596.

609 23. Timm J, Bateson A, Solanki P, Paleckyte A, Witney AA, Rafael SAD, Fabiane S, Olugbosi M,
610 McHugh TD, Sun E. 2023. Baseline and acquired resistance to bedaquiline, linezolid and
611 pretomanid, and impact on treatment outcomes in four tuberculosis clinical trials containing
612 pretomanid. *PLOS Glob Public Health* 3:e0002283.

613 24. Almeida DV, Converse PJ, Nuermberger EL. 2023. Mutations in Rv0678 Reduce Susceptibility
614 of *Mycobacterium tuberculosis* to the DprE1 Inhibitor TBA-7371. *Antimicrob Agents*
615 *Chemother* doi:10.1128/aac.00052-23:e0005223.

616 25. Hariguchi N, Chen X, Hayashi Y, Kawano Y, Fujiwara M, Matsuba M, Shimizu H, Ohba Y,
617 Nakamura I, Kitamoto R, Shinohara T, Uematsu Y, Ishikawa S, Itotani M, Haraguchi Y,
618 Takemura I, Matsumoto M. 2020. OPC-167832, a Novel Carbostyryl Derivative with Potent
619 Antituberculosis Activity as a DprE1 Inhibitor. *Antimicrob Agents Chemother* 64.

620 26. Poulton NC, Azadian ZA, DeJesus MA, Rock JM. 2022. Mutations in rv0678 Confer Low-Level
621 Resistance to Benzothiazinone DprE1 Inhibitors in *Mycobacterium tuberculosis*. *Antimicrob*
622 *Agents Chemother* 66:e0090422.

623 27. Battaglia S, Spitaleri A, Cabibbe AM, Meehan CJ, Utpatel C, Ismail N, Tahseen S, Skrahina A,
624 Alikhanova N, Kamal SMM, Barbova A, Niemann S, Groenheit R, Dean AS, Zignol M, Rigouts L,
625 Cirillo DM, Land GA. 2020. Characterization of Genomic Variants Associated with Resistance
626 to Bedaquiline and Delamanid in Naive *Mycobacterium tuberculosis* Clinical Strains. *Journal*
627 *of Clinical Microbiology* 58:e01304-20.

628 28. Xu J, Wang B, Hu M, Huo F, Guo S, Jing W, Nuermberger E, Lu Y. 2017. Primary Clofazimine
629 and Bedaquiline Resistance among Isolates from Patients with Multidrug-Resistant
630 Tuberculosis. *Antimicrobial Agents and Chemotherapy* 61:e00239-17.

631 29. Choi PJ, Conole D, Sutherland HS, Blaser A, Tong AST, Cooper CB, Upton AM, Palmer BD,
632 Denny WA. 2020. Synthetic Studies to Help Elucidate the Metabolism of the Preclinical
633 Candidate TBAJ-876—A Less Toxic and More Potent Analogue of Bedaquiline. *Molecules*
634 25:1423.

635 30. Tong AST, Choi PJ, Blaser A, Sutherland HS, Tsang SKY, Guillemont J, Motte M, Cooper CB,
636 Andries K, Van den Broeck W, Franzblau SG, Upton AM, Denny WA, Palmer BD, Conole D.
637 2017. 6-Cyano Analogues of Bedaquiline as Less Lipophilic and Potentially Safer
638 Diarylquinolines for Tuberculosis. *ACS Medicinal Chemistry Letters* 8:1019-1024.

639 31. Sutherland HS, Tong AST, Choi PJ, Blaser A, Franzblau SG, Cooper CB, Upton AM, Lotlikar M,
640 Denny WA, Palmer BD. 2020. Variations in the C-unit of bedaquiline provides analogues with
641 improved biology and pharmacology. *Bioorganic & Medicinal Chemistry* 28:115213.

642 32. Xu J, Converse PJ, Upton AM, Mdluli K, Fotouhi N, Nuermberger EL. 2021. Comparative
643 Efficacy of the Novel Diarylquinoline TBAJ-587 and Bedaquiline against a Resistant
644 <i>Rv0678</i> Mutant in a Mouse Model of Tuberculosis. *Antimicrobial Agents and*
645 *Chemotherapy* 65:e02418-20.

646 33. Li SY, Converse PJ, Betoudji F, Lee J, Mdluli K, Upton A, Fotouhi N, Nuermberger EL. 2023.
647 Next-Generation Diarylquinolines Improve Sterilizing Activity of Regimens with Pretomanid
648 and the Novel Oxazolidinone TBI-223 in a Mouse Tuberculosis Model. *Antimicrob Agents*
649 *Chemother* doi:10.1128/aac.00035-23:e0003523.

650 34. Pethe K, Bifani P, Jang J, Kang S, Park S, Ahn S, Jiricek J, Jung J, Jeon HK, Cechetto J,
651 Christophe T, Lee H, Kempf M, Jackson M, Lenaerts AJ, Pham H, Jones V, Seo MJ, Kim YM, Seo
652 M, Seo JJ, Park D, Ko Y, Choi I, Kim R, Kim SY, Lim S, Yim SA, Nam J, Kang H, Kwon H, Oh CT,
653 Cho Y, Jang Y, Kim J, Chua A, Tan BH, Nanjundappa MB, Rao SP, Barnes WS, Wintjens R,
654 Walker JR, Alonso S, Lee S, Kim J, Oh S, Oh T, Nehrbass U, Han SJ, No Z, et al. 2013. Discovery
655 of Q203, a potent clinical candidate for the treatment of tuberculosis. *Nat Med* 19:1157-60.

656 35. Almeida DV, Converse PJ, Omansen TF, Tyagi S, Tasneen R, Kim J, Nuermberger EL. 2020.
657 Telacebec for Ultrashort Treatment of Buruli Ulcer in a Mouse Model. *Antimicrob Agents*
658 *Chemother* 64.

659 36. Converse PJ, Almeida DV, Tyagi S, Xu J, Nuermberger EL. 2019. Shortening Buruli Ulcer
660 Treatment with Combination Therapy Targeting the Respiratory Chain and Exploiting
661 Mycobacterium ulcerans Gene Decay. *Antimicrobial Agents and Chemotherapy* 63:e00426-
662 19.

663 37. Komm O, Almeida DV, Converse PJ, Omansen TF, Nuermberger EL. 2021. Impact of Dose,
664 Duration, and Immune Status on Efficacy of Ultrashort Telacebec Regimens in Mouse Models
665 of Buruli Ulcer. *Antimicrob Agents Chemother* 65:e0141821.

666 38. Lee BS, Pethe K. 2022. Telacebec: an investigational antibacterial for the treatment of
667 tuberculosis (TB). *Expert Opinion on Investigational Drugs* 31:139-144.

668 39. Kim J, Choi J, Kang H, Ahn J, Hutchings J, van Niekerk C, Park D, Kim J, Jeon Y, Nam K, Shin S,
669 Shin BS. 2021. Safety, Tolerability, and Pharmacokinetics of Telacebec (Q203), a New
670 Antituberculosis Agent, in Healthy Subjects. *Antimicrob Agents Chemother*
671 doi:10.1128/aac.01436-21:Aac0143621.

672 40. de Jager VR, Dawson R, van Niekerk C, Hutchings J, Kim J, Vanker N, van der Merwe L, Choi J,
673 Nam K, Diacon AH. 2020. Telacebec (Q203), a New Antituberculosis Agent. *N Engl J Med*
674 382:1280-1281.

675 41. Moosa A, Lamprecht DA, Arora K, Barry CE, 3rd, Boshoff HIM, Ioerger TR, Steyn AJC, Mizrahi
676 V, Warner DF. 2017. Susceptibility of *Mycobacterium tuberculosis* Cytochrome bd Oxidase
677 Mutants to Compounds Targeting the Terminal Respiratory Oxidase, Cytochrome c.
678 *Antimicrob Agents Chemother* 61.

679 42. Yu W, Yusuf B, Wang S, Tian X, Hameed HMA, Lu Z, Chiwala G, Alam MS, Cook GM, Maslov
680 DA, Zhong N, Zhang T. 2021. Sterilizing Effects of Novel Regimens Containing TB47,
681 Clofazimine, and Linezolid in a Murine Model of Tuberculosis. *Antimicrob Agents Chemother*
682 65:e0070621.

683 43. Park S, Jung J, Kim J, Han SB, Ryoo S. 2022. Investigation of Clofazimine Resistance and
684 Genetic Mutations in Drug-Resistant *Mycobacterium tuberculosis* Isolates. *Journal of Clinical
685 Medicine* 11:1927.

686 44. Alghamdi WA, Al-Shaer MH, Kipiani M, Barbakadze K, Mikashvili L, Kempker RR, Peloquin CA.
687 2021. Pharmacokinetics of bedaquiline, delamanid and clofazimine in patients with
688 multidrug-resistant tuberculosis. *J Antimicrob Chemother* 76:1019-1024.

689 45. Van Deun A, Maug AK, Salim MA, Das PK, Sarker MR, Daru P, Rieder HL. 2010. Short, highly
690 effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. *Am J
691 Respir Crit Care Med* 182:684-92.

692 46. Organization WH. 2016. WHO treatment guidelines for drug-resistant tuberculosis. World
693 Health Organization.

694 47. Yano T, Kassovska-Bratinova S, Teh JS, Winkler J, Sullivan K, Isaacs A, Schechter NM, Rubin H.
695 2011. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a
696 pathway for the generation of bactericidal levels of reactive oxygen species. *J Biol Chem*
697 286:10276-87.

698 48. Lamprecht DA, Finin PM, Rahman MA, Cumming BM, Russell SL, Jonnala SR, Adamson JH,
699 Steyn AJC. 2016. Turning the respiratory flexibility of *Mycobacterium tuberculosis* against
700 itself. *Nature Communications* 7:12393.

701 49. Bosch B, DeJesus MA, Poulton NC, Zhang W, Engelhart CA, Zaveri A, Lavalette S, Ruecker N,
702 Trujillo C, Wallach JB, Li S, Ehrt S, Chait BT, Schnappinger D, Rock JM. 2021. Genome-wide
703 gene expression tuning reveals diverse vulnerabilities of *M. tuberculosis*. *Cell* 184:4579-
704 4592.e24.

705 50. Tasneen R, Betoudji F, Tyagi S, Li SY, Williams K, Converse PJ, Dartois V, Yang T, Mendel CM,
706 Mdluli KE, Nuermberger EL. 2016. Contribution of Oxazolidinones to the Efficacy of Novel
707 Regimens Containing Bedaquiline and Pretomanid in a Mouse Model of Tuberculosis.
708 *Antimicrob Agents Chemother* 60:270-7.

709 51. Li SY, Tasneen R, Tyagi S, Soni H, Converse PJ, Mdluli K, Nuermberger EL. 2017. Bactericidal
710 and Sterilizing Activity of a Novel Regimen with Bedaquiline, Pretomanid, Moxifloxacin, and
711 Pyrazinamide in a Murine Model of Tuberculosis. *Antimicrob Agents Chemother* 61.

712 52. Xu J, Li SY, Almeida DV, Tasneen R, Barnes-Boyle K, Converse PJ, Upton AM, Mdluli K, Fotouhi
713 N, Nuermberger EL. 2019. Contribution of Pretomanid to Novel Regimens Containing
714 Bedaquiline with either Linezolid or Moxifloxacin and Pyrazinamide in Murine Models of
715 Tuberculosis. *Antimicrob Agents Chemother* 63.

716 53. Rosenthal IM, Zhang M, Williams KN, Peloquin CA, Tyagi S, Vernon AA, Bishai WR, Chaisson
717 RE, Grosset JH, Nuermberger EL. 2007. Daily dosing of rifapentine cures tuberculosis in three
718 months or less in the murine model. *PLoS Med* 4:e344.

719 54. Ibrahim M, Andries K, Lounis N, Chauffour A, Truffot-Pernot C, Jarlier V, Veziris N. 2007.
720 Synergistic activity of R207910 combined with pyrazinamide against murine tuberculosis.
721 *Antimicrob Agents Chemother* 51:1011-5.

722 55. Tasneen R, Li SY, Peloquin CA, Taylor D, Williams KN, Andries K, Mdluli KE, Nuermberger EL.
723 2011. Sterilizing activity of novel TMC207- and PA-824-containing regimens in a murine
724 model of tuberculosis. *Antimicrob Agents Chemother* 55:5485-92.

725 56. Ibrahim M, Truffot-Pernot C, Andries K, Jarlier V, Veziris N. 2009. Sterilizing activity of
726 R207910 (TMC207)-containing regimens in the murine model of tuberculosis. *Am J Respir Crit
727 Care Med* 180:553-7.

728 57. Almeida D, Ioerger T, Tyagi S, Li SY, Mdluli K, Andries K, Grosset J, Sacchettini J, Nuermberger
729 E. 2016. Mutations in *pepQ* Confer Low-Level Resistance to Bedaquiline and Clofazimine in
730 *Mycobacterium tuberculosis*. *Antimicrob Agents Chemother* 60:4590-9.

731 58. Tweed CD, Wills GH, Crook AM, Amukoye E, Balanag V, Ban AYL, Bateson ALC, Betteridge MC,
732 Brumskine W, Caoili J, Chaisson RE, Cevik M, Conradie F, Dawson R, del Parigi A, Diacon A,
733 Everitt DE, Fabiane SM, Hunt R, Ismail AI, Laloo U, Lombard L, Louw C, Malahleha M,
734 McHugh TD, Mendel CM, Mhimbira F, Moodliar RN, Nduba V, Nunn AJ, Sabi I, Sebe MA,
735 Selepe RAP, Staples S, Swindells S, van Niekerk CH, Variava E, Spigelman M, Gillespie SH.
736 2021. A partially randomised trial of pretomanid, moxifloxacin and pyrazinamide for
737 pulmonary TB. *The International Journal of Tuberculosis and Lung Disease* 25:305-314.
738 59. Lu X, Williams Z, Hards K, Tang J, Cheung CY, Aung HL, Wang B, Liu Z, Hu X, Lenaerts A,
739 Woolhiser L, Hastings C, Zhang X, Wang Z, Rhee K, Ding K, Zhang T, Cook GM. 2019.
740 Pyrazolo[1,5- a]pyridine Inhibitor of the Respiratory Cytochrome bcc Complex for the
741 Treatment of Drug-Resistant Tuberculosis. *ACS Infect Dis* 5:239-249.
742 60. Bigelow KM, Tasneen R, Chang YS, Dooley KE, Nuermberger EL. 2020. Preserved Efficacy and
743 Reduced Toxicity with Intermittent Linezolid Dosing in Combination with Bedaquiline and
744 Pretomanid in a Murine Tuberculosis Model. *Antimicrob Agents Chemother* 64.
745 61. Kalia NP, Hasenoehrl EJ, Ab Rahman NB, Koh VH, Ang MLT, Sajorda DR, Hards K, Grüber G,
746 Alonso S, Cook GM, Berney M, Pethe K. 2017. Exploiting the synthetic lethality between
747 terminal respiratory oxidases to kill *Mycobacterium tuberculosis* and clear host infection.
748 *Proc Natl Acad Sci U S A* 114:7426-7431.
749 62. Kalia NP, Singh S, Hards K, Cheung CY, Sviriaeva E, Banaei-Esfahani A, Aebersold R, Berney M,
750 Cook GM, Pethe K. 2023. *M. tuberculosis* relies on trace oxygen to maintain energy
751 homeostasis and survive in hypoxic environments. *Cell Rep* 42:112444.
752 63. Berney M, Hartman TE, Jacobs WR, Jr. 2014. A *Mycobacterium tuberculosis* cytochrome bd
753 oxidase mutant is hypersensitive to bedaquiline. *mBio* 5:e01275-14.
754 64. Shi L, Sohaskey CD, Kana BD, Dawes S, North RJ, Mizrahi V, Gennaro ML. 2005. Changes in
755 energy metabolism of *Mycobacterium tuberculosis* in mouse lung and under in vitro
756 conditions affecting aerobic respiration. *Proc Natl Acad Sci U S A* 102:15629-34.
757 65. Makarov V, Lechartier B, Zhang M, Neres J, van der Sar AM, Raadsen SA, Hartkoorn RC,
758 Ryabova OB, Vocat A, Decosterd LA, Widmer N, Buclin T, Bitter W, Andries K, Pojer F, Dyson
759 PJ, Cole ST. 2014. Towards a new combination therapy for tuberculosis with next generation
760 benzothiazinones. *EMBO Mol Med* 6:372-83.
761 66. Nguyen TQ, Hanh BTB, Jeon S, Heo BE, Park Y, Choudhary A, Moon C, Jang J. 2022. Synergistic
762 Effect of Q203 Combined with PBTZ169 against *Mycobacterium tuberculosis*. *Antimicrobial
763 Agents and Chemotherapy* 66:e00448-22.
764 67. Lechartier B, Cole ST. 2015. Mode of Action of Clofazimine and Combination Therapy with
765 Benzothiazinones against *Mycobacterium tuberculosis*. *Antimicrob Agents Chemother*
766 59:4457-63.
767 68. Williams K, Minkowski A, Amoabeng O, Peloquin CA, Taylor D, Andries K, Wallis RS, Mdluli KE,
768 Nuermberger EL. 2012. Sterilizing activities of novel combinations lacking first- and second-
769 line drugs in a murine model of tuberculosis. *Antimicrob Agents Chemother* 56:3114-20.
770 69. Mitchison DA, Allen BW, Carrol L, Dickinson JM, Aber VR. 1972. A Selective Oleic Acid
771 Albumin Agar Medium For Tuberclle Bacilli. *Journal of Medical Microbiology* 5:165-175.
772 70. Tyagi S, Nuermberger E, Yoshimatsu T, Williams K, Rosenthal I, Lounis N, Bishai W, Grossset J.
773 2005. Bactericidal activity of the nitroimidazopyran PA-824 in a murine model of
774 tuberculosis. *Antimicrob Agents Chemother* 49:2289-93.

775

776 **Tables**

777 **Table 1. Mean CFU counts at week 4 and week 8 in Experiment 1 (H37Rv)**

Regimen	Time point and mean (\pm SD) \log_{10} CFU counts			
	W-2	D0	W4	W8
Untreated	4.61 \pm 0.19	7.69 \pm 0.33		
Pa ₅₀ L ₁₀₀				4.81 \pm 0.46
B ₂₅ PaL				1.13 \pm 0.24
T ₅ PaL				5.86 \pm 0.24
PaM ₁₀₀ Z ₁₅₀			6.59 \pm 0.22	
BPaMZ			4.51 \pm 0.41	
TPaMZ			5.91 \pm 0.36	
MZRb ₅			5.75 \pm 0.15	
BMZRB			2.78 \pm 0.40	
TMZRB			4.53 \pm 0.16	
BMZ			2.38 \pm 0.05	
BMZT			2.64 \pm 0.33	
PMZ			4.97 \pm 0.62	
PMZT			4.78 \pm 0.13	
286 ₃₅ A ₂₀₀				6.84 \pm 0.15
B286A				1.44 \pm 0.17
T286A				7.14 \pm 0.32
TC _{6.25} 286A				3.70 \pm 0.83

778 Number in subscript indicate dose in mg/kg.

779 Abbreviations: Pa=pretomanid; L=linezolid; B=bedaquiline; T=telacebec; M=moxifloxacin, Z=pyrazinamide; Rb=rifabutin;
780 286=GSK-286; A=TBA-7371; C=clofazimine.

781 W-2 = Day after infection; D0 = Day of treatment initiation; W4/8 = 4/8 weeks after treatment initiation, respectively.

782

783

Table 2. Mean CFU counts at week 4 in Experiment 2 (H37Rv)

Regimen	Time point and mean (\pm SD) \log_{10} CFU counts ⁷⁸⁴		
	W-2	D0	W4
Untreated	4.14 \pm 0.12	7.51 \pm 0.06	
S876 _{6.25} Pa _{30bid} L _{25bid}			3.96 \pm 0.22
S876 _{6.25}			3.74 \pm 0.44
S876C _{6.25}			1.88 \pm 0.28
S876CT ₅			2.65 \pm 0.19
S876CT+L _{25bid}			3.03 \pm 0.27
S876CT+U _{25bid}			2.84 \pm 0.20
S876CT+O _{45bid}			2.51 \pm 0.50
S876CT+Rb ₅			2.51 \pm 0.23
S876CT+Pa _{30bid}			4.18 \pm 0.15
S876CT+Mp ₅₀			3.26 \pm 0.21
S876CT+286 ₃₅			2.11 \pm 0.51
S876CT+A _{75bid}			2.44 \pm 0.64
S876CT+Z ₁₅₀			1.66 \pm 0.00*

785

Number in subscript indicate mg/kg/dose.

786

* 1.66 \log_{10} was the lower limited of detection in this study

787

Abbreviations: S876=TBAJ-876; C=clofazimine; T=telacebec; L=linezolid; U=sutezolid; O=TBI-223; Rb=rifabutin;

788

Pa=pretomanid; Mp=MPL-446; 286=GSK-286; A=TBA-7371; Z=pyrazinamide.

789

Dosing was once daily except for L, U, O, Pa, and A which were dosed twice daily, all regimens were given 5 days a week.

790

W-2 = Day after infection; D0 = Day of treatment initiation; W4 = 4 weeks after treatment initiation.

791

792

Table 3. Mean CFU counts at week 4 and week 8 in Experiment 3 (H37Rv)

Regimen	Time point and mean (\pm SD) \log_{10} CFU counts				
	W-2	D0	W3*	W4	W8
Untreated	4.41 \pm 0.02	7.52 \pm 0.13	9.41 \pm 0.23		
T ₁₀				7.65 \pm 0.05	
T ₅₀				7.70 \pm 0.06	
S587 _{12.5}				3.40 \pm 0.47	
T ₁₀ + S587				4.40 \pm 0.17	2.33 \pm 0.08
T ₅₀ + S587				4.54 \pm 0.14	2.27 \pm 0.23
S587C _{12.5}				2.57 \pm 0.28	0.00 \pm 0.00
S587Z ₁₅₀				2.20 \pm 0.37	
T ₁₀ + S587C				3.15 \pm 0.22	0.78 \pm 0.00
T ₁₀ + S587Z				2.74 \pm 0.20	
T ₁₀ + C				6.05 \pm 0.27	3.53 \pm 0.23
T ₁₀ + Z				4.53 \pm 0.25	2.92 \pm 0.37

793

Number in subscript indicate dose in mg/kg. *untreated mice were euthanized at week 3.

794

Abbreviations: S587=TBAJ-587; T=telacebec; C=clofazimine; Z=pyrazinamide.

795

W-2 = Day after infection; D0 = Day of treatment initiation; W3/4/8 = 3/4/8 weeks after treatment initiation, respectively.

796

797

798 **Table 4. Mean CFU counts at week 4 in Experiment 4 (HN878)**

Regimen	Time point and mean (\pm SD) \log_{10} CFU counts		
	W-2	D0	W4
Untreated	4.13 \pm 0.04	6.73 \pm 0.10	
B ₂₅ C _{6.25}			3.12 \pm 0.36
BCT ₅			0.41 \pm 0.70
BCM ₁₀₀			0.00 \pm 0.00
BCMT			0.00 \pm 0.00
Pa ₅₀ L ₁₀₀			6.31 \pm 0.23
BPaL			4.04 \pm 0.21
BPaLT			3.43 \pm 0.49
TPaL			6.05 \pm 0.21
BPaC			2.50 \pm 0.28
BPaCT			0.39 \pm 0.45
BPaM			2.90 \pm 0.12
BPaMT			3.17 \pm 0.16
BMZ ₁₅₀			0.20 \pm 0.39
BMZT			0.94 \pm 0.66
B286 ₃₅ A ₂₀₀			0.00 \pm 0.00
B286AT			0.57 \pm 0.66
PaRb ₅			6.38 \pm 0.32
PaRbT			6.00 \pm 0.20
P ₁₀ MZ			5.96 \pm 0.23
PMZT			4.77 \pm 0.12

799

Number in subscript indicate mg/kg/dose.

800

Abbreviations: B=bedaquiline; C=clofazimine; T=telacebec; M=moxifloxacin; Pa=pretomanid; L=linezolid; Z=pyrazinamide; 286=GSK'286; A=TBA-7371; Rb=rifabutin; P=rifapentine.

801

W-2 = Day after infection; D0 = Day of treatment initiation; W4 = 4 weeks after treatment initiation.

802

803

804 **Table S1. Experimental scheme Experiment 1 (H37Rv)**

Regimen	Time point and # of mice				
	W-2	D0	W4	W8	Total
Untreated	2	3			5
Pa ₅₀ L ₁₀₀				4	4
B ₂₅ PaL				4	4
T ₅ PaL				4	4
PaM ₁₀₀ Z ₁₅₀			4		4
BPaMZ			4		4
TPaMZ			4		4
MZRb ₅			4		4
BMZRB			4		4
TMZRB			4		4
BMZ			4		4
BMZT			4		4
PMZ			4		4
PMZT			4		4
286 ₃₅ A ₂₀₀				4	4
B286A				4	4
T286A				4	4
TC _{6.25} 286A				4	4
Total	2	3	40	28	73

805 Number in subscript indicate dose in mg/kg. *Untreated mice were euthanized at week 3.

806 Abbreviations: Pa=pretomanid; L=linezolid; B=bedaquiline; T=telacebec; M=moxifloxacin, Z=pyrazinamide; Rb=rifabutin;
807 286=GSK-286; A=TBA-7371; C=clofazimine. W-2 = Day after infection; D0 = Day of treatment initiation; W4 and W8 = 4 and
808 8 weeks after treatment initiation, respectively.

809 Dosing was once daily 5 days a week.

810

811 **Table S2. Experimental scheme Experiment 2 (H37Rv)**

Regimen	Time point and # of mice			
	W-2	D0	W4	Total
Untreated	2	3		5
S876 _{6.25} Pa _{30bid} L _{25bid}			5	5
S876 _{6.25}			5	5
S876C _{6.25}			5	5
S876CT ₅			5	5
S876CT+L _{25bid}			5	5
S876CT+U _{25bid}			5	5
S876CT+O _{45bid}			5	5
S876CT+Rb ₅			5	5
S876CT+Pa _{30bid}			5	5
S876CT+Mp ₅₀			5	5
S876CT+286 ₃₅			5	5
S876CT+A _{75bid}			5	5
S876CT+Z ₁₅₀			5	5
Total	2	3	65	70

812 Number in subscript indicate mg/kg/dose.

813 Abbreviations: S876=TBAJ-876; C=Clotafazimine; T=telacebec; L=Linezolid; U=Sutezolid; O=TBI-223; Rb=Rifabutin;
814 Pa=Pretomanid; Mp=MPL-446; 286=GSK-286; A=TBA-7371; Z=Pyrazinamide. W-2 = Day after infection; D0 = Day of
815 treatment initiation; W4 = 4 weeks after treatment initiation.

816 Dosing was once daily except for L, U, O, Pa, and A which were dosed twice daily, all regimens were given 5 days a week.

817

818

Table S3. Experimental scheme Experiment 3 (H37Rv)

Regimen	Time point and # of mice				
	W-2	D0	W4	W8	Total
Untreated	2	4	4*		10
T ₁₀			4		4
T ₅₀			4		4
S587 _{12.5}			4		4
T ₁₀ + S587			4	4	8
T ₅₀ + S587			4	4	8
S587C _{12.5}			4	4	8
S587Z ₁₅₀			4		4
T ₁₀ + S587C			4	4	8
T ₁₀ + S587Z			4		4
T ₁₀ + C			4	4	8
T ₁₀ + Z			4	4	8
Total	2	4	48	24	78

819

*Untreated mice were euthanized at week 3.

820

Number in subscript indicate dose in mg/kg.

821

Abbreviations: S587=TBAJ-587; T=telacebec; C=clofazimine; Z=pyrazinamide; W-2 = Day after infection; D0 = Day of treatment initiation; W4 and W8 = 4 and 8 weeks after treatment initiation, respectively.

822

Dosing was once daily 5 days a week.

823

824

825 **Table S4a. Mean concentrations of S587 at steady state**

Time point	Regimen			
	S587 _{12.5}	S587+T ₁₀	S587+T ₅₀	S587+T ₁₀ C _{12.5}
1h	794±323	465±115	331±373	93±57
	411±151	242±146	424±216	120±62
	310±158	264±165	279±206	75±16

826 Concentration of S587 in ng/ml ± SD. Number in subscript indicate mg/kg/dose.

827 Abbreviations: S587=TBAJ-587; T=telacebec; C=clofazimine

828

829

830 **Table S4b. Mean concentrations of M3 metabolite of S587 at steady state**

Time point	Regimen			
	S587 _{12.5}	S587+T ₁₀	S587+T ₅₀	S587+T ₁₀ C _{12.5}
1h	1160±387	1259±348	1127±1305	292±208
	1601±311	811±602	2696±219	497±96
	909±378	906±527	1358±501	194±41

831 Concentration of metabolite 3 of S587 in ng/ml ± SD. Number in subscript indicate mg/kg/dose.

832 Abbreviations: S587=TBAJ-587; T=telacebec; C=clofazimine

833

834

835 **Table S4c. Mean concentrations of T at steady state**

Time point	Regimen				
	T ₁₀	S587 _{12.5} +T ₁₀	S587+T ₁₀ C _{12.5}	T ₅₀	S587+T ₅₀
1h	1462±435	1585±509	1445±1056	2642±1857	4608±6536
	2265±102	861±644	1843±379	7310±3990	9881±2812
	921±337	722±477	670±113	3008±330	2297±886

836 Concentration of Telacebec in ng/ml ± SD. Number in subscript indicate mg/kg/dose.

837 Abbreviations: S587=TBAJ-587; T=telacebec; C=clofazimine

838

839 **Table S5. Experimental scheme for Experiment 4 (HN878)**

Regimen	Time point and # of mice			
	W-2	D0	W4	Total
Untreated	2	3		5
B ₂₅ C _{6.25}			4	4
BCT ₅			4	4
BCM ₁₀₀			4	4
BCMT			4	4
Pa ₅₀ L ₁₀₀			4	4
BPaL			4	4
BPaLT			4	4
TPaL			4	4
BPaC			4	4
BPaCT			4	4
BPaM			4	4
BPaMT			4	4
BMZ ₁₅₀			4	4
BMZT			4	4
B286 ₃₅ A ₂₀₀			4	4
B286AT			4	4
PaRb ₅			4	4
PaRbT			4	4
P ₁₀ MZ			4	4
PMZT			4	4
Total	2	3	80	85

840 Number in subscript indicate mg/kg/dose.

841 Abbreviations: B=Bedaquiline; C=Clofazimine; T=telacebec; M=Moxifloxacin; Pa=Pretomanid; L=Linezolid; Z=Pyrazinamide;
842 A=TBA-7371; Rb=Rifabutin. W-2 = Day after infection; D0 = Day of treatment initiation; W4 = 4 weeks after treatment
843 initiation.

844 Dosing was once daily 5 days a week.