

Endosomal actin branching, fission and receptor recycling require FCHSD2 recruitment by MICAL-L1

Devin Frisby¹, Ajay B. Murakonda¹, Bazella Ashraf¹, Kanika Dhawan^{1,2}, Leonardo Almeida-Souza^{3,4,5},
Naava Naslavsky¹ and Steve Caplan^{1,6*}.

¹Dept. of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198

²Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA

³Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland

⁴Institute of Biotechnology, University of Helsinki, Helsinki, Finland.

⁵Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.

⁶Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198

To whom correspondence and material requests should be addressed:

Steve Caplan: ¹Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha NE 68198;
scaplan@unmc.edu; Tel. (402) 559-7556; Fax. (402) 559-6650.

ORCID number: 0000-0001-9445-4297

Keywords: actin branching, endosome fission, FCHSD2, MICAL-L1, receptor recycling.

29 **Abstract**

30
31 Endosome fission is required for the release of carrier vesicles and the recycling of receptors to
32 the plasma membrane. Early events in endosome budding and fission rely on actin branching to
33 constrict the endosomal membrane, ultimately leading to nucleotide hydrolysis and enzymatic
34 fission. However, our current understanding of this process is limited, particularly regarding the
35 coordination between the early and late steps of endosomal fission. Here we have identified a
36 novel interaction between the endosomal scaffolding protein, MICAL-L1, and the human
37 homolog of the *Drosophila* Nervous Wreck (Nwk) protein, FCH and double SH3 domains
38 protein 2 (FCHSD2). We demonstrate that MICAL-L1 recruits FCHSD2 to the endosomal
39 membrane, where it is required for ARP2/3-mediated generation of branched actin, endosome
40 fission and receptor recycling to the plasma membrane. Since MICAL-L1 first recruits FCHSD2
41 to the endosomal membrane, and is subsequently responsible for recruitment of the ATPase and
42 fission protein EHD1 to endosomes, our findings support a model in which MICAL-L1
43 orchestrates endosomal fission by connecting between the early actin-driven and subsequent
44 nucleotide hydrolysis steps of the process.

45 Introduction

46
47 The trafficking of internalized cargos through endocytic compartments and their recycling to the
48 plasma membrane (PM) is critical to cellular function and necessary for plasma membrane
49 homeostasis and the regulation of cell signaling pathways (Naslavsky & Caplan, 2018). Indeed,
50 higher-order processes that are regulated by membrane trafficking include membrane
51 remodeling, signal transduction, cell migration, and control of cell polarity (Caswell & Norman,
52 2008; Cullen & Steinberg, 2018; Wang *et al*, 2000). Internalization at the plasma membrane
53 occurs through various mechanisms of endocytosis, ultimately leading to the homotypic and
54 heterotypic fusion of endocytic vesicles to generate the early or sorting endosome (EE/SE). At
55 the EE/SE, cargos are actively sorted and shunted to different fates such as lysosomal
56 degradation, retrograde trafficking to the Golgi, or recycling to the cell surface. Cargos destined
57 for recycling are sorted and packaged into tubulovesicular structures that undergo fission and are
58 either trafficked directly back to the plasma membrane (fast recycling) or first transported to the
59 “endocytic recycling compartment,” a series of perinuclear tubular recycling endosomes, before
60 moving to the plasma membrane (slow recycling) (Naslavsky & Caplan, 2018; Xie *et al*, 2016).
61 While cargo recycling has previously been characterized as a passive or “default” process, recent
62 studies support the notion that recycling is an active process mediated by cargo tail sorting
63 signals and protein complexes that control recycling (Hsu *et al*, 2012; McNally & Cullen, 2018).
64 For example, ACAP1 mediates the sorting and recycling of various receptors, including the
65 transferrin receptor (TfR), Glut4, and $\beta 1$ -integrin (Bai *et al*, 2012; Dai *et al*, 2004; Li *et al*,
66 2005). Additionally, the retromer and retriever complexes cooperate with sorting nexins (SNXs)
67 to regulate receptor sorting and recycling (Burd & Cullen, 2014; Cullen & Steinberg, 2018;
68 McNally *et al*, 2017; Wang *et al*, 2018).
69

70 Both the retromer and retriever recycling complexes interact either directly or indirectly with the
71 WASP and SCAR homolog (WASH) complex to activate ARP2/3-mediated branched actin
72 polymerization (Gomez & Billadeau, 2009; Harbour *et al*, 2012; Jia *et al*, 2012; McNally *et al*,
73 2017). The WASH complex is recruited to endosomes via direct interaction with the retromer
74 complex, while the retriever complex is indirectly recruited to endosomes by the WASH complex
75 through an interaction with the COMMD/CCDC22/CCDC93 (CCC) complex (Gomez &
76 Billadeau, 2009; Jia *et al.*, 2012; McNally *et al.*, 2017; Seaman *et al*, 2013). Interaction of the
77 WASH complex with cargo recycling complexes highlights the role of actin in the early steps of
78 cargo recycling at the endosome. Moreover, activation of ARP2/3-mediated branched actin
79 polymerization establishes a physical barrier that helps form a cargo retrieval subdomain by
80 inhibiting the diffusion of recycling receptors into the degradative endosomal subdomain
81 (Puthenveedu *et al*, 2010; Simonetti & Cullen, 2019). In addition, treatment of cells with
82 branched actin inhibitors decreased recycling endosome tubulation, further establishing a crucial
83 role for actin in the tubulation of cargo-laden vesicles on endosomes (Anitei & Hoflack, 2011;
84 Delevoye *et al*, 2016). During fission, actin provides a necessary pushing force at the neck of
85 budding vesicles for constriction and generation of appropriate membrane tension (Derivery *et*
86 *al*, 2009; Gomez & Billadeau, 2009). Through its regulation of receptor sorting, endosome
87 tubulation, and endosome fission, the WASH complex is required for T cell receptor (TCR),
88 GLUT1, $\beta 2$ AR, and $\alpha 5\beta 1$ -integrin recycling back to the plasma membrane; however, the proteins
89 and mechanisms regulating actin polymerization and depolymerization at endosomes are largely
90 unexplored (Piotrowski *et al*, 2013; Temkin *et al*, 2011; Zech *et al*, 2011).

91 Coordination of fission at endosomes is complex and incompletely understood. It requires the
92 function of multiple proteins in addition to the WASH complex, ARP2/3, and branched actin.
93 Several models have been proposed for fission at endosomes (Gopaldass *et al.*, 2024; Naslavsky
94 & Caplan, 2023a; Solinger & Spang, 2022). One recently elucidated mechanism for endosome
95 fission is endoplasmic reticulum-driven fission, where branched actin patches containing
96 Coronin1C stabilize cargo sequestration at tubular buds and recruit TMCC1 to drive fission
97 (Hoyer *et al.*, 2018; Rowland *et al.*, 2014). However, it is unclear whether ER-based fission is
98 primarily a mechanism for endosome homeostasis or whether it is key to vesicle/tubule carrier
99 release and transport for recycling. Amphipathic helix insertion and the induction of positive
100 membrane curvature is another mechanism that has been recently identified for endosome fission
101 (Courtellemont *et al.*, 2022; Gopaldass *et al.*, 2017). Many models, however, favor a combination
102 of initial actin-based membrane constriction followed by nucleotide hydrolysis of a dynamin-
103 family fission protein to detach the budding vesicle/tubule ((Derivery *et al.*, 2009) and reviewed
104 in (Naslavsky & Caplan, 2018, 2023a)).

105
106 The mode by which the earlier actin-based steps of endosomal membrane constriction are linked
107 to the terminal steps of fission remain poorly defined. One crucial endosomal membrane hub and
108 scaffolding protein is MICAL-L1 (Fig. 1A). MICAL-L1 appears to be a master regulator of
109 endosome fission; it localizes to endosomes and recruits a variety of proteins involved in both
110 the early and late steps of endosome fission, including Syndapin2/PACSIN2 and EHD1
111 (Giridharan *et al.*, 2013; Sharma *et al.*, 2009). Syndapins may link membrane trafficking to
112 cortical actin cytoskeletal dynamics, as they interact with dynamin and N-WASP (Qualmann *et*
113 *al.*, 1999). EHD1 has been implicated in the later stages of fission (Cai *et al.*, 2012; Cai *et al.*,
114 2013; Cai *et al.*, 2014; Deo *et al.*, 2018; Dhawan *et al.*, 2020; Kamerkar *et al.*, 2019; Naslavsky &
115 Caplan, 2011). Indeed, depletion of either MICAL-L1 or EHD1 leads to impaired fission and
116 recycling (Cai *et al.*, 2012; Cai *et al.*, 2013; Cai *et al.*, 2014; Deo *et al.*, 2018; Dhawan *et al.*,
117 2020; Farmer *et al.*, 2020; Kamerkar *et al.*, 2019; Naslavsky & Caplan, 2011), and evidence
118 suggests that EHD1 ATP hydrolysis drives its oligomerization on the endosomal membrane to
119 induce membrane thinning and fission (Deo *et al.*, 2018; Sharma *et al.*, 2009). How MICAL-L1
120 coordinates the actin polymerization and membrane tubulation at endosomes that occurs during
121 the early stages of cargo sorting with the later stages of EHD1-mediated endosome fission
122 remains unknown.

123
124 To address this question, we took advantage of an unbiased yeast 2-hybrid screen and identified
125 FCH and double SH3 domains protein 2 (FCHSD2) as a novel MICAL-L1 interacting partner.
126 FCHSD2 contains an N-terminal F-BAR domain, two SRC homology 3 (SH3) domains, and a C-
127 terminal proline-rich region (Fig. 1B). Initial insights into the function of FCHSD2 come from
128 studies done in fruit flies with the *Drosophila* homolog, Nervous Wreck (Nwk). Adult
129 temperature-sensitive Nwk mutants become paralyzed and experience spasms at 38°C (Coyle *et*
130 *al.*, 2004). Investigations into the function of Nwk reveal that it regulates receptor signaling at
131 neuromuscular junctions (NMJs) through its cooperation with the endocytic proteins Dap160 and
132 WASP and the regulation of Cdc42/WASP-mediated branched actin polymerization (O'Connor-
133 Giles *et al.*, 2008; Rodal *et al.*, 2008). FCHSD2 interacts with the corresponding mammalian
134 homologs of Dap160 and WASP, intersectin-1 (ITSN-1) and N-WASP (Almeida-Souza *et al.*,
135 2018), respectively, as well as with dynamin (O'Connor-Giles *et al.*, 2008; Rodal *et al.*, 2008)
136 and SNX9/18 (Haberg *et al.*, 2008), and FCHSD2 knockdown impedes cargo internalization via

137 clathrin-mediated endocytosis (CME) (Almeida-Souza *et al.*, 2018; Xiao *et al*, 2018). Indeed,
138 FCHSD2 regulates CME by enhancing N-WASP/ARP2/3-mediated branched actin
139 polymerization to promote maturation of clathrin-coated pits and facilitate dynamin-mediated
140 fission and internalization (Almeida-Souza *et al.*, 2018). More recently, Nwk and FCHSD2 have
141 been implicated in the regulation of cargo recycling at endosomes. Nwk localizes to Rab11-
142 containing endosomes in *Drosophila* NMJs and regulates receptor trafficking through direct
143 interaction with sorting nexin 16 (Rodal *et al*, 2011; Rodal *et al.*, 2008), and Nwk mutants
144 phenocopy RAB11 mutants for extracellular vesicle cargo transport (Blanchette *et al*, 2022).
145 Interestingly, FCHSD2 knockdown interferes with transferrin (Tf) and epidermal growth factor
146 receptor (EGFR) recycling and subsequently leads to increased localization of these cargos with
147 LAMP1, a marker of the lysosomal membrane (Xiao & Schmid, 2020). However, the mechanism
148 by which FCHSD2 regulates cargo recycling at endosomes remains unknown.
149

150 Here we identify FCHSD2 as a novel MICAL-L1 interacting partner. MICAL-L1 knock-out
151 impairs FCHSD2 localization to endosomes. Consistent with previous findings, FCHSD2
152 depletion had a minor but significant decrease on uptake of both clathrin-dependent and -
153 independent cargo. Importantly, FCHSD2 knock-down impaired the recycling of cargos from
154 both internalization pathways. We show that upon FCHSD2 depletion, the size of EEA1- and
155 MICAL-L1-decorated endosomes increases, and we demonstrate that FCHSD2 knockdown
156 significantly impedes endosomal fission. Moreover, FCHSD2 depletion decreases the
157 concentration of branched actin at endosomes, supporting its function in activating branched
158 actin polymerization and fission at endosomes.
159
160
161
162
163
164
165
166
167

168 **Results**

169

170 *MICAL-L1 interacts with and recruits FCHSD2 to endosomes*

171 The execution of fission at the endosome is a complex process that requires tightly coordinated
172 orchestration of multiple proteins in a sequential manner. MICAL-L1 (Fig. 1A) is a key scaffold
173 that, as described above, interacts with multiple endosomal proteins. However, a central question
174 is how this scaffold coordinates the fission process and how it links nucleotide hydrolysis-driven
175 fission with the earlier steps of membrane budding and constriction.

176

177 To identify novel MICAL-L1 interaction partners that might play a role in endosome fission, we
178 used an unbiased yeast two-hybrid approach to screen over 100,000,000 potential interactions
179 with full-length MICAL-L1 as bait (Fig. 1A). Among the potential hits identified with moderate
180 confidence was the human homolog of the *D. melanogaster* Nervous Wreck (Nwk) protein
181 (Becalska *et al.*, 2013; Coyle *et al.*, 2004; Rodal *et al.*, 2011; Rodal *et al.*, 2008), known as FCH
182 and double SH3 domains 2 (FCHSD2; also known as CAROM) (Almeida-Souza *et al.*, 2018;
183 Ohno *et al.*, 2003; Xu *et al.*, 2017) (Fig. 1B). Although primarily known for its role in
184 internalization at the plasma membrane (Almeida-Souza *et al.*, 2018; Xiao & Schmid, 2020),
185 recent studies have implicated mammalian FCHSD2 in receptor recycling (Xiao *et al.*, 2018;
186 Xiao & Schmid, 2020). FCHSD2 has an F-BAR domain as well as two SH3 domains. Indeed,
187 the binding region identified through the yeast two-hybrid screen included the first of the two
188 FCHSD2 SH3 domains, but not the second SH3 domain (Fig. 1C). To validate this interaction,
189 we generated and purified GST fusion proteins for full-length human FCHSD2 (GST-FCHSD2)
190 and GST fused to either the first or second SH3 domain (GST-SH3 A and GST-SH3 B). Upon
191 incubation with HeLa cell lysates, we demonstrated that whereas GST-FCHSD2 and GST-SH3
192 B were unable to pull-down MICAL-L1, the isolated GST-SH3 A domain precipitated MICAL-
193 L1 (Fig. 1D). These data are consistent with a role for SH3 A in binding to MICAL-L1, likely via
194 one or more of the latter's proline-rich motifs. The lack of binding for GST-FCHSD2 supports
195 the notion that the full-length protein is in an autoinhibited conformation (Almeida-Souza *et al.*,
196 2018; Del Signore *et al.*, 2021; Rodal *et al.*, 2008; Stanishneva-Konovalova *et al.*, 2016).

197

198 The localization of FCHSD2 in mammalian cells has been studied primarily using exogenous
199 protein, with reports indicating subcellular localization underneath the plasma membrane
200 (Almeida-Souza *et al.*, 2018) and at actin protrusions (Zhai *et al.*, 2022b). Given the role of
201 MICAL-L1 in scaffolding endosome fission machinery, we hypothesized that some FCHSD2
202 might be transiently localized to endosomes. To evaluate if low concentrations of FCHSD2 are
203 detectable on endosomes, we overexpressed GFP-FCHSD2 together with the active GTP-locked
204 RAB5 mutant Q79L (Stenmark *et al.*, 1994). As expected, the RAB5 mutant induced and
205 localized to enlarged endosomal structures (Fig. 2A; inset in Fig. 2B). Strikingly, FCHSD2 could
206 be detected at the surface of these enlarged endosomes (Fig. 2C; inset in 2D, and merged in Fig.
207 2E and F). To quantify the overlap between FCHSD2 and RAB5, we performed line scans on
208 multiple images. We measured the relative intensity of the fluorescence for each channel along
209 the line, normalizing the fluorescence by subtracting the “background” fluorescence from the
210 cytoplasm. As demonstrated, the graph shows a peak of mean fluorescence for each channel,
211 with the peak FCHSD2 (green) intensity overlapping with the peak RAB5 (red) intensity (Fig.
212 2G). These data support the notion that FCHSD2 can be detected in proximity to RAB5 on the
213 endosomal membrane.

214

215 Given that MICAL-L1 binds directly with lipids such as phosphatidic acid and
216 phosphatidylserine (Giridharan *et al.*, 2013) and interacts with FCHSD2, we next hypothesized
217 that MICAL-L1 is responsible for the initial recruitment of FCHSD2 to endosomes. To address
218 this, we again used the RAB5 Q79L mutant to transfect either parental or MICAL-L1^{-/-} HeLa
219 cells (CRISPR/Cas9 knock-out validated in Fig. 2H). We first confirmed that endogenous
220 FCHSD2 could be detected coating the membrane of enlarged RAB5 Q79L endosomes in the
221 parental cells (Fig. 2I-K; quantified in P). However, using an unbiased semi-automated
222 quantification method (see Fig. 2O for outline of segmentation method), significantly less
223 FCHSD2 was observed on the RAB5 Q79L endosomes in the MICAL-L1^{-/-} cells (Fig. 2L-N;
224 quantified in P). These data support the idea that MICAL-L1 is required for recruitment of
225 FCHSD2 to the endosomal membrane.

226

227 *FCHSD2 is required for internalization and recycling of clathrin-dependent and -independent*
228 *cargo*

229 Since MICAL-L1 has been implicated as an endosomal regulator that is required for receptor
230 recycling and FCHSD2 can be detected on endosomes, we next tested whether FCHSD2
231 depletion impairs recycling of cargo from endosomes. We first assessed the impact of FCHSD2
232 depletion on transferrin receptor (TfR) which is internalized through clathrin-mediated
233 endocytosis. After 10 min. of transferrin uptake, FCHSD2-depleted cells (validated in Fig. 3E)
234 displayed a modest decrease in internalized TfR of about 10%, consistent with previous studies
235 (Almeida-Souza *et al.*, 2018; Xiao & Schmid, 2020) (Fig. 3A and C; quantified in Fig. 3F).
236 However, after a chase of 50 min. to follow TfR recycling and the exit of labeled transferrin from
237 the cell, the FCHSD2 knock-down cells displayed a significant delay in endocytic recycling
238 (normalized to levels of internalized TfR) (Fig. 3B and D; quantified in Fig. 3G). These delays in
239 recycling were consistent with those reported by Xiao and Schmid for both TfR and epidermal
240 growth factor receptor (Xiao & Schmid, 2020).

241

242 To determine if FCHSD2 is involved in the recycling of receptors internalized through clathrin-
243 independent means, we next analyzed the internalization and recycling of major
244 histocompatibility complex class I (MHC I) receptors (Fig. 4). Using both FCHSD2 siRNA
245 knock-down and FCHSD2^{-/-} cells (validated in Fig. 4K), we demonstrated that whereas FCHSD2
246 depleted cells showed a modest decrease in internalized MHC I (Fig. 4A-D; quantified in Fig.
247 4I), both FCHSD2 knock-down and knock-out cells displayed delays in MHC I recycling, with
248 the “acute” siRNA knock-down cells displaying more severe recycling defects than the “chronic”
249 FCHSD2^{-/-} cells (Fig. 4E-H; quantified in Fig. 4J). Overall, our data support the notion that
250 FCHSD2 plays an important role in regulating events at the endosome that are required for
251 receptor recycling.

252

253 There is a growing appreciation that many endocytic regulatory proteins are also involved in
254 regulating primary ciliogenesis (Bales & Gross, 2016; Madhivanan & Aguilar, 2014; Pedersen *et*
255 *al.*, 2016), including MICAL-L1 (Xie *et al.*, 2019; Xie *et al.*, 2023). Accordingly, we asked
256 whether FCHSD2 depletion impacts the ability of retinal pigmented epithelial cells (RPE-1) to
257 generate a primary cilium. Upon FCHSD2 knock-down (validated in Fig. EV1 C), a greater
258 percentage of serum-starved RPE-1 cells generated a primary cilium compared to mock-treated
259 cells (Fig. EV1, compared B to A; quantified in D). These data are consistent with a role for

260 FCHSD2 in endocytic regulatory function and actin regulation, which has been linked to
261 inhibition of ciliogenesis (Hoffman & Prekeris, 2022).

262

263

264

265 *FCHSD2 is involved in the endosomal fission process*

266 The fission of endosomes is required for formation of carrier vesicles/tubules and the recycling
267 of receptors to the plasma membrane. Given the ascribed role for MICAL-L1 in endosome
268 fission (Cai *et al.*, 2014; Farmer *et al.*, 2020; Rahajeng *et al.*, 2012; Sharma *et al.*, 2009), we
269 postulated that FCHSD2 may regulate fission at endosomes, potentially through its actin-
270 regulatory activity. In recent years, it has become evident that in addition to punctate endosomes
271 and endosomal carriers, many endosomes and endosomal carriers are tubular and their fission is
272 regulated by MICAL-L1 and its interaction partners (Dhawan *et al.*, 2020; Dhawan *et al.*, 2022;
273 Farmer *et al.*, 2021; Jones *et al.*, 2020). Accordingly, we asked whether the fission of punctate and
274 tubular-shaped endosomes is impacted by depletion of FCHSD2 (Fig. 5 and EV2). As shown,
275 depletion of FCHSD2 by siRNA knock-down and in FCHSD2^{-/-} cells (Fig. 5B and D) led to
276 enlarged EEA1-marked endosomes (compare Fig. 5B to A and D to C; quantified in E). FCHSD2
277 knock-down also led to a longer and more elaborate tubular endosome network as compared to
278 mock-treated cells (EV2, compare B to A; quantified in EV2 H). Similarly, FCHSD2^{-/-} cells also
279 displayed an increase in total area of tubular endosomes marked by MICAL-L1 compared to the
280 wild-type parental cells (EV2 compare D to C; quantified in EV2 I). In addition, we transfected
281 the FCHSD2^{-/-} cells with wild-type FCHSD2. As shown, the FCHSD2-transfected cells (marked
282 by red stars) displayed fewer tubular endosomes than untransfected cells (tubular MICAL-L1
283 endosomes marked by green arrows) (EV2 E-G), and quantification showed a similar mean
284 tubular endosome area to that observed in the wild-type parental cells (quantified in EV2 I).
285 These data support the idea that FCHSD2 functions in the fission of EEA1 punctate endosomes
286 and MICAL-L1-marked tubular endosomes.

287

288 While endosome size usually correlates negatively with fission in cells, size is also affected by
289 fusion. To more definitively quantify the effects of FCHSD2 depletion on endosome fission, we
290 took advantage of a novel in-cell fission assay that we recently developed that uses a
291 synchronized system to acutely measure decrease in endosome size over a 30 min. period
292 (Dhawan *et al.*, 2022). Briefly, in mock and FCHSD2 knock-down cells, internalized transferrin
293 was used to mark endosomes, and both mock and knock-down cells were incubated with the
294 PI3K inhibitor LY294002 to induce enlarged endosomes and allow synchronization of fission
295 events upon inhibitor washout (chase). After inhibitor washout, in both mock-treated and
296 FCHSD2-depleted cells, we imaged transferrin-containing endosomes in 3D and quantified the
297 mean size of more than 100,000 structures, measuring the frequency of structures from the
298 binned endosome sizes (Fig. 6A-D; quantified in Fig. 6E-G). By integrating the area below each
299 curve and subtracting the values from before and after the LY294002 washout (chase), we
300 calculated and plotted a mean value for fission (Fig. 6G). Additional experiments were done to
301 measure the size of EEA1 endosomes (rather than transferrin-containing endosomes), and they
302 also demonstrated whereas mock-treated cells displayed reduced endosome size after LY294002
303 washout, FCHSD2 knock-down cells showed no significant reduction in size, suggesting
304 impaired endosome fission (EV3). Overall, these data strongly support a role for FCHSD2 in
305 endosome fission.

306

307 *FCHSD2 generates branched actin at the endosomal membrane*

308 We next addressed the potential mechanism by which FCHSD2 regulates endosome fission.
309 Given the role of FCHSD2 in actin regulation and control of WASP (Almeida-Souza *et al.*, 2018;
310 Becalska *et al.*, 2013; Rodal *et al.*, 2008; Stanishneva-Konovalova *et al.*, 2016; Zhai *et al.*,
311 2022b), we hypothesized that FCHSD2 may regulate fission by activation of ARP2/3 leading to
312 actin polymerization and branching at the endosomal membrane, thus facilitating membrane
313 budding. Indeed, treatment of cells with the ARP2/3 inhibitor, CK-666 (Nolen *et al.*, 2009), led to
314 impaired actin filament generation at RAB5 Q79L enlarged endosomes, whereas the CK-689
315 control had no effect on endosomal actin (EV4), highlighting the role of ARP2/3 in generating
316 branched actin at endosomes.

317

318 To determine if FCHSD2 is required for ARP2/3-mediated endosomal branched actin, we used a
319 modification of the elegant assay originally described by Cooper and colleagues (Zhao *et al.*,
320 2013) and applied on endosomes (Muriel *et al.*, 2016). Endogenous EEA1 was used as a marker
321 of endosomes, and cortactin was used to identify branched actin in mock and FCHSD2 knock-
322 down cells (Fig. 7). We then segmented cells into “peripheral” and “perinuclear” regions. As
323 demonstrated for the peripheral segmentations and quantification, mock-treated cells displayed a
324 significantly higher percent of endosomes with branched actin marked by cortactin (Fig. 7C-E;
325 see arrows in E-inset) than FCHSD2 knock-down cells (Fig. 7F-H and insets; quantified in Fig.
326 7A). Contact between endosomes and cortactin in the perinuclear region (Fig. 7B) is also
327 modestly decreased, but given the high density of endosomes in that region, the periphery
328 provides a better opportunity for quantification.

329

330 To better visualize actin and branched actin at endosomes in the presence and absence of
331 FCHSD2, we transfected parental and FCHSD2 knock-out cells with the GTP-locked RAB5
332 Q79L mutant, and then immunostained for branched actin (cortactin) (Fig. 8). In parental cells,
333 RAB5 Q79L induced formation of enlarged endosomes that were positive for cortactin and
334 branched actin, often observed in a polarized manner at one or more region of the endosomal
335 membrane (Fig. 8A-C, see arrows; quantified in Fig. 8P). Strikingly, in FCHSD2 knock-out cells
336 branched actin and actin filaments were largely absent from the enlarged endosomes (Fig. 8D-F;
337 quantified in Fig. 8P). However, when FCHSD2^{-/-} cells were rescued by transfection of WT
338 FCHSD2, the levels of cortactin observed on the enlarged endosomes increased and were more
339 similar to those in the parental cells than the FCHSD2^{-/-} cells (Fig. 8G-I; quantified in Fig. 8P).
340 Transfection with a FCHSD2 Y478A/Y480A SH3 A mutant, that has impaired binding to proline
341 rich motifs (Almeida-Souza *et al.*, 2018) largely failed to rescue cortactin localization to
342 endosomes (Fig. 8J-L; quantified in Fig. 8P). However, transfection with FCHSD2
343 Y576S+F607S, an SH3 B interface mutant that fails to interact with intersectin 1 (Almeida-
344 Souza *et al.*, 2018), nonetheless displayed significant rescue of branched actin generation at
345 endosomes, similar to that observed upon rescue with the WT FCHSD2 (Fig. 8M-O; quantified
346 in Fig. 8P). MICAL-L1^{-/-} cells were similarly devoid of branched actin (EV5). These data
347 support the notion that MICAL-L1 recruits FCHSD2 by binding to its SH3 A domain to play a
348 role in receptor recycling by activation of ARP2/3, a process which is required for the budding
349 and fission of endosomes.

350

351 Discussion

352
353 Current understanding of fission at the endosome has lagged behind knowledge of clathrin-
354 coated pit (CCP) scission at the PM, just as internalization has been more extensively studied
355 than receptor recycling. However, many of the defined steps of CCP scission are analogous to
356 fission at EE/SE, with the actin cytoskeleton playing a central role in the events at both
357 membranes, and both processes will be referred to herein as “fission.” Indeed, actin
358 polymerization increases at clathrin-coated pits at the late stages of CCP internalization
359 (Merrifield *et al.*, 2002), in concert with increased dynamin concentrations (Grassart *et al.*, 2014).
360 At EE/SE there is a dynamic polarized branched actin network that generates a pushing force on
361 the endosome (Derivery *et al.*, 2009). Both CCP fission at the PM and endosome fission are
362 facilitated by the ARP2/3 complex, which nucleates actin and generates branched actin (Pollard,
363 2007). However, the complex that serves as a nucleation promotion factor at endosomes and
364 activates ARP2/3 is the WASH complex, whereas the N-WASP complex promotes branched
365 actin via ARP2/3 at the PM (Derivery *et al.*, 2009; Merrifield *et al.*, 2004). An additional
366 distinction between CCP and endosome fission is that the final step of CCP release requires GTP
367 hydrolysis of dynamin, whereas evidence supports involvement of either dynamin (Derivery *et*
368 *al.*, 2009) and/or the dynamin-family ATPase EHD1 in fission at the endosome (Cai *et al.*, 2012;
369 Cai *et al.*, 2013; Cai *et al.*, 2014; Deo *et al.*, 2018; Jones *et al.*, 2020; Kamerkar *et al.*, 2019).
370 Finally, a key difference between CCP fission and endosomal fission is the involvement of
371 different scaffold proteins in the process. At the PM, intersectin 1 plays an important role in the
372 recruitment of the actin regulator FCHSD2 as well as dynamin (Almeida-Souza *et al.*, 2018;
373 Sengar *et al.*, 1999), whereas at endosomes, we show that MICAL-L1 recruits FCHSD2 (Figs. 1
374 and 2) and EHD1 (Sharma *et al.*, 2009). Notably, MICAL-L1 has been linked to microtubules
375 (Xie *et al.*, 2019) and motor proteins (Rahajeng *et al.*, 2010), and the tension between
376 microtubule-based pulling and branched actin pushing on membranes has been proposed as a
377 unique feature in endosomes that causes membrane tension and leads to fission (Roux *et al.*,
378 2006).
379

380 MICAL-L1 is a RAB8 effector and key endosomal protein that localizes to both vesicular and
381 tubular endosomes and recruits EHD1 to carry out the final steps of endosome fission (Cai *et al.*,
382 2014; Farmer *et al.*, 2020; Giridharan *et al.*, 2012; Giridharan *et al.*, 2013; Rahajeng *et al.*, 2012;
383 Sharma *et al.*, 2010; Sharma *et al.*, 2009). In addition to its known role in recruiting players
384 involved in the end stages of endosome fission, our new data now supports a role for this
385 scaffold in driving the early, actin constriction of endosomal membranes. Several lines of
386 evidence suggest how MICAL-L1 may regulate the actin cytoskeleton at endosomes. First,
387 MICAL-L1 interacts with Syndapin2/PACSIN2 (Giridharan *et al.*, 2013), a member of the
388 Syndapin F-BAR containing proteins that constrict and tubulate membranes and regulate actin
389 organization (Dharmalingam *et al.*, 2009; Kessels & Qualmann, 2002; Qualmann & Kelly, 2000;
390 Qualmann *et al.*, 1999; Wang *et al.*, 2009). Second, recent studies provide evidence that MICAL-
391 L1 interacts with two homologous proteins, CIN85 (also known as SH3-domain kinase binding
392 protein 1) (Havrylov *et al.*, 2009; Huttlin *et al.*, 2017) and CD2AP (CD2 associated protein)
393 (Huttlin *et al.*, 2021), each of which contains a capping protein interaction (CPI) motif that can
394 interact with actin capping protein to promote actin branching (Bruck *et al.*, 2006; Cooper &
395 Pollard, 1985; McConnell *et al.*, 2020). Most significantly, we demonstrate here that MICAL-L1
396 interacts with the mammalian Nervous Wreck (Nwk) homolog, FCHSD2, which regulates actin

397 assembly in flies and human cells (Almeida-Souza *et al.*, 2018; Del Signore *et al.*, 2021; Rodal *et*
398 *al.*, 2008; Stanishneva-Konovalova *et al.*, 2016).

399
400 FCHSD2 has been implicated in receptor recycling (Xiao *et al.*, 2018; Xiao & Schmid, 2020)
401 and Nwk localizes to recycling endosomes (Rodal *et al.*, 2011). Indeed, consistent with roles for
402 FCHSD2 in both endocytic function and actin regulation, FCHSD2 regulates ciliogenesis and
403 knock-out mice display acoustic vulnerability and hearing loss (Wang *et al.*, 2022; Zhai *et al.*,
404 2022a). Moreover, Nwk activates WASP to promote ARP2/3-dependent actin filament assembly
405 (Stanishneva-Konovalova *et al.*, 2016), and similarly FCHSD2 stimulates ARP2/3 on flat
406 membranes (Almeida-Souza *et al.*, 2018). FCHSD2 and CDC42 can also simultaneously bind N-
407 WASP, providing an additional layer of actin regulation (Rodal *et al.*, 2008; Zhai *et al.*, 2022b).
408 Given that the WASH complex is the major activator of endosomal ARP2/3 actin nucleation and
409 WASH function is required for fission and receptor recycling (Derivery *et al.*, 2012; Derivery *et*
410 *al.*, 2009), it is logical to speculate that FCHSD2 activates WASH at endosomes to promote
411 ARP2/3-based actin nucleation. Our experiments do not distinguish whether the requirement for
412 the FCHSD2 SH3 A domain in endosomal actin assembly is due to MICAL-L1 interactions,
413 actin assembly through WASP family proteins, or both. However, we note that FCHSD2 is a
414 dimer, and SH3A valency *in vivo* is likely even higher due to interactions with other binding
415 partners. Therefore, FCHSD2 complexes on endosomes are likely capable of interacting with
416 both MICAL-L1 and WASP family proteins. In addition, affinity capture-mass spectrometry has
417 identified FCHSD2 as a SNX27 interactor (Shi *et al.*, 2021), a protein that binds directly to both
418 the WASH complex and the retromer (Steinberg *et al.*, 2013; Temkin *et al.*, 2011), further
419 supporting endosomal WASH complex activation. Indeed, our experiments show that FCHSD2
420 knock-out cells have impaired branched actin generation at endosomes (Fig. 8 and EV5), and
421 that inhibition of ARP2/3 function leads to a failure to generate branched actin networks on
422 endosomes (EV4). Overall, these findings support a potential role for MICAL-L1 as a bridge or
423 link between early actin-based steps of endosomal membrane constriction via FCHSD2 and
424 EHD1-mediated fission of endosomes.

425
426 One intriguing question is what regulates the recruitment of FCHSD2 to endosomes? Nwk and
427 FCHSD2 appear to be autoinhibited by both SH3 domains, although the SH3 B domain plays a
428 more predominant role (Almeida-Souza *et al.*, 2018; Kelley *et al.*, 2015). It has been proposed
429 that intersectin 1 recruits FCHSD2 to clathrin coats as they mature, by an atypical SH3-SH3
430 interaction with the SH3 B domain of FCHSD2, while keeping FCHSD2 in a state of low
431 activation (Almeida-Souza *et al.*, 2018). Subsequently, PI(3,4)P2 accumulation at the edge of the
432 CCP allows BAR domain binding and recruitment to the flat membrane surrounding the CCP.
433 This in turn leads to the activation of FCHSD2 and induction of actin polymerization. At
434 endosomes, however, MICAL-L1 recruitment of FCHSD2 is likely via one of the ~14 MICAL-
435 L1 proline rich domains with the SH3 A domain of FCHSD2 (Fig. 1). We envision that
436 analogous to the process at the PM, the BAR domain of FCHSD2 then interacts with endosomal
437 phospholipids and is stabilized on the flat membrane region of endosomes to promote of
438 branched actin generation. Indeed, FCHSD2 can bind to phosphatidylinositol(3,4,5)-
439 trisphosphate (Almeida-Souza *et al.*, 2018) which is generated on endosomes by class I
440 phosphatidylinositol-3-kinase activity (Jethwa *et al.*, 2015).

441

442 It is unclear at present whether FCHSD2 is “handed-off” from CCP at the PM to endosomes, or
443 whether it is recruited from a cytoplasmic pool. However, recent studies have demonstrated that
444 stimulating receptor-mediated endocytosis leads to a significant increase in both the number and
445 size of EE/SE (Naslavsky & Caplan, 2023b), as well as recruitment of EHD1 and fission
446 machinery from the cytoplasm to endosomes (Dhawan *et al.*, 2020). As a result, this may lead to
447 an increased level of MICAL-L1 available for the recruitment of FCHSD2. It is possible that
448 FCHSD2 is recruited from CCP at the PM. In this scenario, the SH3-SH3 interactions between
449 FCHSD2 and intersectin 1 may be higher affinity than the FCHSD2 SH3 A domain with
450 MICAL-L1 proline rich domains, but by increasing the availability of the MICAL-L1 binding
451 sites for FCHSD2, increased recruitment of the latter protein may occur. Another possibility is
452 that intersectin 1 itself is initially involved in FCHSD2 recruitment to endosomes. Indeed, a
453 shortened form of intersectin (ITSN-s) serves as an effector for RAB13 (Ioannou *et al.*, 2017),
454 ITSN-1 interacts with endosomal components such as RAB5 and ARF6 (Wong *et al.*, 2012), and
455 ITSN-2 has been implicated in the regulation of endosomal recycling (Gubar *et al.*, 2020).
456 However, the relationship between intersectins, MICAL-L1 and FCHSD2 at endosomes remains
457 to be elucidated.

458
459 Our data is consistent with a model in which MICAL-L1 is initially required for recruitment of
460 FCHSD2 to endosomal membranes (see model; Fig. 8Q). This interaction occurs via the SH3 A
461 domain of FCHSD2, and likely requires one of the multiple MICAL-L1 proline-rich domains
462 domains. The identification of the specific proline rich region(s) remains unknown, and it is
463 possible that several such regions may be capable of binding. Once binding to MICAL-L1
464 occurs, we speculate that FCHSD2 migrates to extended regions of the budding endosomal
465 membrane, consistent with its preference for flat membranes and select phosphoinositides
466 (Almeida-Souza *et al.*, 2018). As a result, this membrane association helps stimulate WASH-
467 mediated ARP2/3 activation of branched actin, leading to further membrane constriction and
468 tubulation, supported by RAB and motor proteins (Farmer *et al.*, 2020). Ultimately, Coronin 1C
469 (Hoyer *et al.*, 2018) and 2A (Dhawan *et al.*, 2022) have been implicated in clearance of branched
470 actin, providing accessibility for the MICAL-L1 partner and fission protein, EHD1, to the
471 membrane, leading to vesicle/tubule release and cargo recycling to the PM. Overall, our study
472 provides new insight into the mechanisms of EE/SE fission, and helps identify how actin-based
473 constriction events are coupled with nucleotide hydrolysis to promote fission.

474
475
476
477
478
479
480
481
482
483

484 **Materials and Methods**

485

486 **Antibodies and reagents**

487

488 The following antibodies were used: anti-MICAL-L1 (1794, LifeTein, 1:200 for
489 immunoblotting), anti-GST-HRP (A01380, Genscript, 1:500), anti-GAPDH-HRP (HRP-60004,
490 Proteintech, 1:5000), anti-FLAG (F1804, Sigma, 1:800), anti-FCHSD2 (described in (Almeida-
491 Souza *et al.*, 2018), 1:300 for immunostaining), anti-FCHSD2 (PA5-58432, Invitrogen, 1:250 for
492 immunoblotting), anti-MHC-1 (purified W6/32, Leinco Technologies), anti-EEA1 (3288, Cell
493 Signaling, 1:30), anti-cortactin (05-180-I, Sigma, 1:200), anti-acetylated tubulin (3971, Cell
494 Signaling Technology, 1:300), anti-CP110 (12780, Proteintech, 1:200), anti-MICAL-L1
495 (H00085377-B01P, Novus, 1:500 for immunostaining), anti-MICAL-L1 (ab220648, Abcam,
496 1:300 for immunostaining), donkey anti-mouse-HRP (715-035-151, Jackson, 1:5000), mouse
497 anti-rabbit IgG light chain-HRP (211-032-171, Jackson, 1:3000), Alexa Fluor 568-conjugated
498 goat anti-rabbit (A11036, Molecular Probes, 1:500), Alexa Fluor 568-conjugated goat anti-
499 mouse (A21043, Molecular Probes, 1:500), Alexa Fluor 488-conjugated goat anti-rabbit
500 (A11034, Molecular Probes, 1:500), Alexa Fluor 488-conjugated goat anti-mouse (A11029,
501 Molecular Probes, 1:500), and Alexa Fluor 647-conjugated goat anti-mouse (115-606-008,
502 Jackson ImmunoResearch, 1:750). The following plasmid constructs were used: GFP-RAB5
503 Q79L (Roberts *et al.*, 1999), mCherry-RAB5 Q79L (35138, Addgene), FLAG-FCHSD2
504 (GenScript), FCHSD2-GFP (Almeida-Souza *et al.*, 2018), FCHSD2 Y576S+F607S – GFP
505 (Almeida-Souza *et al.*, 2018), and FCHSD2 YY478/480AA-GFP (Almeida-Souza *et al.*, 2018).
506 The following reagents were used: Sepharose resin (L00206, GenScript), Alexa fluor 488-
507 conjugated transferrin (T13342, Invitrogen), CF-568-conjugated Phalloidin (44-T VWR,
508 Biotium, 1:100), PI3K inhibitor LY294002 (501099125, Fisher Scientific), CK-689 (182517,
509 MilliporeSigma), and CK-666 (182515, MilliporeSigma). Yeast two-hybrid screens of over
510 100,000,000 potential interactions were performed by Hybrigenics (Boston, MA) using the full
511 length wild-type MICAL-L1 as bait.

512

513 **Cell culture and treatments**

514

515 The HeLa cell line (ATCC-CCL-2) was obtained from ATCC and cultured with complete
516 DMEM (high glucose) (ThermoFisher Scientific, Carlsbad, CA) with 10% fetal bovine serum
517 (FBS) (Sigma-Aldrich), 1× penicillin-streptomycin, and 2 mM L-glutamine. The hTERT RPE-1
518 human epithelial cell line (ATCC-CRL4000) was obtained from ATCC and grown in
519 DMEM/F12 (ThermoFisher Scientific, Carlsbad, CA) with 10% fetal bovine serum (FBS), 1×
520 penicillin-streptomycin, 2 mM L-glutamine, and 1X non-essential amino acids (ThermoFisher
521 Scientific, Waltham, MA). The non-small cell lung cancer cell (NSCLC) line H-1650 was
522 obtained from ATCC (CRL-5883) and cultured in RPMI with 10% FBS, 1× penicillin-
523 streptomycin, 2 mM L-glutamine, 1X MEM non-essential amino acids, 25 mM HEPES, and
524 1mM sodium pyruvate. Validated CRISPR/Cas9 gene-edited HeLa knock-out cells (FCHSD2^{-/-}
525 and MICAL-L1^{-/-}) were obtained from GenScript (Piscataway, NJ). All media also contained
526 100 µg/ml Normocin (Invitrogen) to prevent mycoplasma and other contamination and cells were
527 routinely tested for mycoplasma contamination. All cells were cultured at 37°C in 5% CO₂. The
528 small interfering siRNA (siRNA) oligonucleotide targeting human FCHSD2 (5'-
529 GCAUACUCCUGAGACCUCA[dT][dT]-3') was obtained from Sigma Aldrich. FCHSD2

530 siRNA knockdown in all HeLa cell lines was performed for 48 h using the DharmaFECT
531 transfection reagent (Dharmacon, Lafayette, CO). To achieve knockdown in both RPE and
532 NSCLC cells, siRNA was transfected using the Lipofectamine RNAi/MAX (Invitrogen,
533 Carlsbad, CA) reagent for 72 h. Knockdown efficiency was confirmed via immunoblotting.
534 Transfection with FCHSD2 constructs and RAB5 Q79L constructs was achieved using the
535 FuGENE 6 (Promega, Madison, WI) transfection reagents and protocol. The DNA ratios used for
536 co-transfections are noted below.

537

538 **Immunoblotting**

539

540 Cultured cells were washed three times with ice-cold PBS and harvested with a cell scraper.
541 Pelleted cells were resuspended in lysis buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% NP-
542 40, 0.5% sodium deoxycholate) with freshly added protease inhibitor cocktail (Roche,
543 Indianapolis, IN) for 30 min on ice. Lysates were then centrifuged at 13,000 rpm at 4°C for
544 10 min. Following centrifugation, 4x loading buffer was added to each sample and then boiled
545 for 10 min. Collected lysates or samples from the GST pulldowns were separated by 10% SDS-
546 PAGE, and transferred onto a nitrocellulose membrane (GE Healthcare, Chicago, IL). After
547 membrane transfer, the membranes were blocked with 5% dried milk in PBS containing 0.3%
548 (v/v) Tween-20 (PBST) for 30 min at room temperature. The membrane was incubated with the
549 primary antibody diluted in PBST at 4°C overnight. The membrane was washed three times with
550 PBST after incubation with the primary antibody and then incubated at room temperature for 30
551 min with the appropriate HRP-conjugated secondary antibody diluted in PBST. Enhanced
552 chemiluminescence (Bio-RAD, Hercules, CA) was used to visualize the HRP-conjugated
553 secondary antibody and digital images were acquired with iBright Imaging Systems (Invitrogen).

554

555

556 **Recombinant gene expression and protein purification**

557

558 The GST-tagged FCHSD2 DNA constructs were transformed into *Escherichia coli* Rosetta
559 strain, and freshly transformed *E. coli* was inoculated in 50 ml of Luria-Bertani (LB) broth,
560 containing 100 µg/ml ampicillin. Following an overnight incubation at 37°C with shaking, the 50
561 ml culture was used to inoculate a 1000 ml LB culture (containing antibiotic), which was
562 incubated at 37°C with shaking until the OD reached 0.4-0.6 at 600 nm. Protein expression was
563 then induced with 1 mM IPTG, and the culture was incubated overnight at 18°C. The bacteria
564 were then centrifuged at 5000 rpm for 15 min at 4°C. The bacterial pellet was then resuspended
565 in ice-cold lysis buffer composed of 1x PBS (pH 7.4) and 1 tablet of protease inhibitor (Roche)
566 per 10 ml. Following resuspension, the sample was lysed on ice via sonication (10 min of total
567 sonication with 20 s on and 10 s off cycles). To separate the cellular debris, lysates were then
568 centrifuged at 19,000 rpm for 45 min at 4°C. The supernatant was then incubated with
569 Glutathione Sepharose resin overnight at 4°C. Three subsequent washes were performed with
570 10-bed volumes of wash buffer, which was composed of 1x PBS with protease inhibitor.

571

572 **GST-pulldown**

573

574 Following protein purification, 20 µg of bead-bound GST constructs were centrifuged at 13,000
575 rpm for 30 s and resuspended in 30 µl of 1x PBS. 1 U micrococcal nuclease was added to the

576 bead-bound protein and incubated at 30°C for 10 min. Following this incubation, HeLa cell
577 lysate (lysed with 1% Brij98, 25 mM Tris-HCl, 125 mM NaCl, 1 mM MgCl₂, protease inhibitor,
578 pH 7.4) was added to the bead-bound protein and incubated at 4°C for 3 h. The samples were
579 then washed 3 times with 10-bed volumes of wash buffer (0.1% Brij98, 25 mM Tris-HCl, 125
580 mM NaCl, 1 mM MgCl₂, protease inhibitor, pH 7.4) and eluted with 4x loading buffer before
581 undergoing SDS-PAGE and immunoblotting.

582

583 **FCHSD2 localization at RAB5 endosomes**

584

585 HeLa cells were plated on coverslips and co-transfected with GFP-FCHSD2 and mCherry-RAB5
586 Q79L (1:1) using the FuGene transfection system. Following overnight transfection, coverslips
587 were fixed with 4% paraformaldehyde (in PBS) for 20 min at room temperature. After fixation,
588 the coverslips were washed 3x with PBS and mounted in Fluoromount (ThermoFisher
589 Scientific). Confocal images were captured using a Zeiss LSM 800 confocal microscope (Carl
590 Zeiss) with a 63×/1.4 NA oil objective, and the images were analyzed in ImageJ (National
591 Institutes of Health, Bethesda, MD). In ImageJ, a profile 2.81 μM in length was drawn from the
592 cytoplasm into the enlarged mCherry-RAB5 Q79L vesicles. The fluorescence intensities along
593 the profile were collected for both the red and the green channels. Background subtraction was
594 performed using the background fluorescence intensity in the region of the cytoplasm devoid of
595 mCherry-RAB5 Q79L vesicles. Following background subtraction, fluorescent intensities along
596 the profile were calculated as relative intensities of the maximal intensity for both the red and the
597 green channels. The distance from the maximal mCherry-RAB5 Q79L fluorescent intensity was
598 normalized for each figure and plotted. Localization of endogenous FCHSD2 at GFP-RAB5
599 Q79L structures in WT parental and MICAL-L1 knockout cells was quantified using Imaris 9.9.1
600 software. A region of interest (ROI) containing the RAB5 vesicles was marked, and all FCHSD2
601 puncta and RAB5 Q79L structures in that area were three-dimensionally (3D)-rendered (see
602 parameters: Table 1, Rows 1 and 2). The volumetric sum of all FCHSD2 puncta that contacted a
603 RAB5 Q79L structure was calculated as a percentage of the entire FCHSD2 volume in that ROI.

604

605 **Recycling assays**

606

607 The transferrin recycling assay was performed by diluting Transferrin-Alexa Fluor 488 (Tf-488;
608 Invitrogen) 1:700 in complete DMEM. FCHSD2 siRNA- or Mock-treated cells were allowed to
609 uptake transferrin for 10 min at 37°C. Following uptake, cells were washed twice with 1x PBS
610 and then chased with complete DMEM for 50 min. After three washes with 1x PBS, cells were
611 fixed with 4% paraformaldehyde in PBS for 20 min and then mounted in Fluoromount. For the
612 MHC-1 recycling assay, cells were incubated with anti-MHC-1 antibody diluted in complete
613 DMEM for 20 min at 37°C. After uptake, the remaining antibodies bound to the cell surface
614 MHC-1 were removed via a 1 min glycine strip (0.1 M HCl-glycine, pH 2.7). The glycine-
615 stripped cells were then either washed and fixed (uptake group) or washed 3 times with 1x PBS
616 and chased with complete DMEM for 50 min at 37°C. The cells were then washed 3 times with
617 PBS and fixed with 4% paraformaldehyde in PBS for 20 min. Cells were then stained with
618 fluorochrome-conjugated secondary antibodies for 30 min, washed 3 times with PBS, and
619 mounted in Fluoromount. Confocal images of cells after both the transferrin and MHC-1
620 recycling assays were captured using a Zeiss LSM 800 confocal microscope (Carl Zeiss) with a
621 63×/1.4 NA oil objective. The arithmetic mean of fluorescence intensity for each image was

622 analyzed using Zen Blue software. The fluorescence intensity after the chase was represented as
623 a percentage of the fluorescent intensity after uptake and plotted as “percent remaining in cells.”
624

625 **Measurement of endosome size**

626

627 FCHSD2 siRNA- or Mock-treated HeLa cells were fixed with 4% paraformaldehyde (PBS) for
628 20 min at room temperature. After fixation, the cells were stained with anti-EEA1 for 1 h and the
629 appropriate fluorochrome-conjugated secondary antibody for 30 min at room temperature. The
630 coverslips were mounted, and images were captured using a Zeiss LSM 800 confocal microscope
631 (Carl Zeiss) with a 63×/1.4 NA oil objective. EEA1 area was measured using Imaris 9.9.1 by
632 rendering surfaces according to the settings listed on Table 1, Row 3. For measuring MICAL-L1
633 endosome area, FCHSD2 knock-out cells were transfected with Flag-FCHSD2 as the rescue
634 group. WT parental, FCHSD2 knock-out, knock-out + rescue, mock-treated, and FCHSD2
635 siRNA-treated cells were fixed (as described above) and stained with anti-MICAL-L1. The
636 MICAL-L1 area per cell was measured using Imaris 9.9.1 with settings according to Table 1,
637 Row 4.

638

639 **Fission assay**

640

641 Mock- and FCHSD2 siRNA-treated HeLa cells were incubated for 45 min in DMEM containing
642 80 µM of the PI3K inhibitor LY294002 (Cayman Chemical, Ann Arbor, MI) diluted for 1 h at
643 37°C. Following the initial incubation, cells were washed with PBS and then incubated in
644 DMEM containing Transferrin-Alexa Fluor 488 (Invitrogen) and 80 µM LY294002 for 15 min at
645 37°C. Cells were then washed with PBS to remove the inhibitor and chased with complete
646 DMEM for 20 min to allow synchronized fission and recycling. Finally, cells were washed 3
647 times with PBS and fixed with 4% paraformaldehyde in PBS for 20 min at room temperature.
648 Cells on coverslips were incubated with anti-EEA1 for 1 h, followed by 3 PBS washes and a 30
649 min incubation with the appropriate 568 fluorochrome-conjugated secondary antibody. After
650 staining, coverslips were mounted in Fluoromount, and images were captured using a Zeiss LSM
651 800 confocal microscope (Carl Zeiss) with a 63×/1.4 NA oil objective. Quantification of the
652 assay was done using surface rendering in Imaris 9.9.1. Tf-containing vesicles and EEA1-
653 decorated endosomes were 3D rendered according to the parameters on Table 1, Row 5. The size
654 of Tf-containing vesicles was plotted in GraphPad Prism as a frequency distribution (interleaved)
655 graph with bins from 2 µm to 10 µm and the bin width set at 1 µm. A Gaussian curve was plotted
656 to infinity on the frequency distribution graphs for all four experimental groups (mock uptake,
657 mock chase, knock-down uptake, knock-down chase). The area under each of the curves was
658 calculated using the “Area under the curve” function in GraphPad Prism 10.2.3. The area
659 between the curves for the mock- or siRNA-treated group was calculated as the area under the
660 curve after uptake minus the area under the curve after chase.

661

662 **Quantification of cortactin at RAB5 QL endosomes**

663

664 Experimental groups included HeLa WT parental, FCHSD2 knock-out cells, and FCHSD2
665 knock-out cells transfected with FCHSD2-GFP, FCHSD2 YY478/480AA-GFP, or FCHSD2
666 Y576S+F607S-GFP. Cells were transfected with mCherry-RAB5 Q79L (Addgene #35138; 1:1 in
667 cells with co-transfection) overnight. GFP-RAB5 Q79L was transfected into WT parental,

668 FCHSD2 knock-out, and MICAL-L1 knock-out cells. Cells were washed with PBS and fixed
669 with 4% paraformaldehyde in PBS for 20 min at room temperature. Following fixation, cells
670 were stained with anti-cortactin for 1 h, followed by 3 washes with PBS and a 30 min incubation
671 with the appropriate 647 fluorochrome-conjugated secondary antibody. Three additional washes
672 with PBS were performed after secondary incubation, and then the cells were mounted in
673 Fluoromount. Z-stacks were captured using a Zeiss LSM 800 confocal microscope (Carl Zeiss)
674 with a 63 \times /1.4 NA oil objective. Using Imaris 9.9.1 software, mCherry-RAB5 Q79L and GFP-
675 RAB5 Q79L structures were 3D-rendered (see Table 1, Rows 6 and 7, respectively). A region of
676 interest around the active Rab5 structures was demarcated, and cortactin structures in this region
677 were 3D-rendered (see Table 1, Row 8). The cortactin structures that contacted the active RAB5
678 structures were selected using the filter tab and setting the maximal “shortest distance to surface”
679 at 1 \times 10⁻⁷ nm. The volume of cortactin structures that contacted RAB5 structures was summed
680 and represented as a percentage of the total cortactin volume in the designated region of interest.
681

682 **Actin inhibitors**

683
684 HeLa cells were plated on coverslips and transfected with GFP-RAB5 Q79L. The following day,
685 the cells were incubated for 40 min with 300 μ M of either the control CK-689 or the specific
686 ARP2/3 inhibitor CK-666 diluted in complete DMEM. Following the incubation, the cells were
687 washed with PBS and fixed with 4% paraformaldehyde in PBS for 20 min. The cells were then
688 washed 3 times with PBS and stained with 568-phalloidin for 1 h to mark the filamentous actin
689 network. The cells were washed an additional 3 times and then mounted on slides in
690 Fluoromount. Confocal images were captured using a Zeiss LSM 800 confocal microscope (Carl
691 Zeiss) with a 63 \times /1.4 NA oil objective.
692

693 **EEA1-Cortactin contacts**

694
695 Mock- and FCHSD2 siRNA-treated NSCLC cells were washed with PBS and fixed with 4%
696 paraformaldehyde in PBS for 20 min. The cells were co-stained with anti-EEA1 and anti-
697 cortactin antibodies by incubating with the primary antibody at room temperature for 1 h. The
698 cells were subsequently washed 3 times with PBS and incubated with the appropriate
699 fluorochrome-conjugated secondary antibodies. Following another 3 washes with PBS, cells
700 were mounted in Fluoromount, and images were captured using a Zeiss LSM 800 confocal
701 microscope (Carl Zeiss) with a 63 \times /1.4 NA oil objective. Images were quantified in the Imaris
702 9.9.1 software using the surfaces function with the respective parameters for EEA1 (Table 1,
703 Row 9) and cortactin (Table 1, Row 10). Three regions of interest were demarcated in the
704 periphery of the cells (defined as an area with no border closer than 5 μ m to the nucleus), and
705 another 3 regions in the perinuclear area (defined as an area having a border within 1 μ m of the
706 nucleus). EEA1 structures contacting cortactin were defined as EEA1 surfaces with a shortest
707 distance to a cortactin surface with a value of zero. The EEA1 structures that contacted cortactin
708 were represented as a percentage of the total number of EEA1 structures.
709

710 **Ciliogenesis assay**

711
712 To induce ciliogenesis, Mock- and FCHSD2 siRNA-treated RPE-1 cells were shifted to
713 starvation media (DMEM/F12, 0.2% FBS, 1% penicillin-streptomycin, 2 mM L-Glutamine, 1X

714 non-essential amino acids) for 4 h at 37°C in 5% CO₂. Cells were then rinsed once with cold
715 PBS and fixed with 100% methanol at -20°C for 5 min. After fixation, coverslips were washed 3
716 times with PBS, and a pre-staining incubation was performed for 30 min (0.5% Triton X and
717 0.5% BSA in PBS). Coverslips were co-stained with primary anti-CP110 and anti-acetylated-
718 tubulin antibodies for 1 h at room temperature. The coverslips were subsequently washed 3 times
719 and stained with the appropriate fluorochrome-conjugated secondary antibodies. Following
720 secondary incubation, the coverslips were washed 3 times with PBS and mounted in
721 Fluoromount. Images were taken using a Zeiss LSM 800 confocal microscope (Carl Zeiss) with
722 a 63×/1.4 NA oil objective, and maximal intensity orthogonal projections were obtained and
723 quantified in the Zen Blue software. The number of ciliated and non-ciliated cells was manually
724 counted. Ciliated cells were considered to have an elongated acetylated tubulin stain along with
725 retention of CP110 on one of the two centrioles. Non-ciliated cells typically retained CP110 on
726 both centrioles. The percentage of ciliated cells from the total number of cells was quantified for
727 each image and plotted.

728

729 Statistical analysis

730

731 Data for all experiments was collected from 3 independent experiments and graphed with the
732 mean and standard deviation. Normality was determined with a D'Agostino and Pearson (or
733 Shapiro-Wilk) normality test. If the normal distribution assumption was met, an unpaired two-
734 tailed *t*-test was used to assess p-values and determine statistical significance between two
735 groups (*p*<0.05). In the event that the distribution did not meet the assumption of normality, a
736 Mann-Whitney non-parametric two-tailed test was used to assess significance. All the graphical
737 and statistical tests were done using GraphPad Prism 10.2.3.

738

739 Data Availability

740

741 No data from this manuscript requires deposition in a public database.

742

743 Acknowledgments

744

745 This work was supported by NIH grant R35GM144102 from the National Institute of General
746 Medical Sciences (SC), and by NIH T32 training grant CA009476 (Cancer Biology Training
747 Program; DF), and by the Research Council of Finland (Research Fellow; LA-S).

748

749 Author Contributions

750

751 DF carried out the experimentation and collected and interpreted data, and wrote parts of the
752 manuscript. KD, ABM and BA each contributed to experimentation and generation of specific
753 figures. NN supervised and was involved in data interpretation and experimental design, helped
754 with figure preparation and edited parts of the manuscript. LA-S generated reagents, provided
755 scientific input and shared in editing of the manuscript. SC was responsible for the research
756 overall, obtained funding, laid out the overall research goals, supervised and was involved in
757 data interpretation, figure preparation and writing and editing of the manuscript.

758

759

760 **Disclosure and competing interests statement**

761

762 The authors have no competing interests.

763 **Figure Legends**

764

765 **Figure 1. FCHSD2 interacts with MICAL-L1 via its first SH3 domain.**

766

A. Domain architecture of MICAL-L1.

767

B. Domain architecture of FCHSD2.

768

C. An unbiased yeast 2-hybrid screen identified FCHSD2 as a MICAL-L1 interactor. MICAL-L1 was used as bait and an area covered by FCHSD2 amino acids 344-578 (yellow region, encompassing the first SH3 domain) was identified in the interaction.

771

D. GST-pulldowns identified FCHSD2 SH3 A as the MICAL-L1 interacting domain. GST-FCHSD2, GST-FCHSD2 SH3 A, and GST-FCHSD2 SH3 B proteins were expressed in bacteria and purified. Purified protein (20 µg) was incubated with HeLa lysate and pulled down with Glutathione Sepharose resin. Samples were eluted, subjected to SDS-PAGE and immunoblotted with anti-GST and anti-MICAL-L1 primary antibodies.

776

MICAL-L1=Microtubule Associated Monooxygenase, Calponin and Lim Domain Containing, FCHSD2=FCH and Double SH3 Domains 2, CH=Calponin Homology, LIM=Lin11, Islet-1 and Mec-3, CC=coiled coil, BAR=Bin-Amphiphysin-Rvs, SH3=Src Homology 3, Y2H=Yeast 2-Hybrid, GST=Glutathione S-Transferase.

779

780 **Figure 2. FCHSD2 is recruited to Rab5 QL endosomes by MICAL-L1.**

781

A-F. HeLa cells were co-transfected with GFP-FCHSD2 and the mCherry-RAB5 Q79L mutant, which remains GTP-locked and active. Cells were fixed, imaged, and analyzed in ImageJ. B, D and F represent insets of A, C and E, respectively. A profile 2.81 µm in length was drawn from the cytoplasm into the enlarged mCherry-RAB5 QL vesicles, and the fluorescence intensities of both channels was collected along the line. Background subtraction was performed and the fluorescence intensities along each profile were normalized.

788

G. The data (quantified from A-F) were plotted as relative intensity over the distance from peak mCherry-Rab5 QL intensity (red) and demonstrates that FCHSD2 staining overlaps with RAB5 QL on the endosomal membrane.

791

H. Immunoblot validation of MICAL-L1 knock-out in the CRISPR/Cas9 gene-edited knock-out cell line.

793

I-N. HeLa WT parental or MICAL-L1 knockout cells were transfected with the GFP-RAB5 Q79L mutant. Cells on coverslips were fixed after transfection and immunostained with anti-FCHSD2 to visualize endogenous FCHSD2 (J,M). Confocal images were captured and analyzed in Imaris software. As demonstrated, endogenous FCHSD2 coats RAB5 Q79L endosomes in parental cells (I-K; yellow arrows) but is largely absent from the endosomes in MICAL-L1 knockout cells (L-N).

799

O. Segmentation strategy for quantification of the percentage of cortactin in contact with RAB5 Q79L endosomes. Square regions of interest (ROI) were made to include the maximal endosomal area within the ROI.

802

P. Quantification of I-N. In a marked ROI around the RAB5 Q79L endosomes, the volume of FCHSD2 puncta that made contact with GFP-RAB5 Q79L endosomes was represented as a percentage of the total FCHSD2 volume in that region.

805

806

807

808

809 **Figure 3. Transferrin uptake and recycling are impaired upon FHCSD2 depletion.**
810 A-D. Mock and FCHSD2 siRNA knock-down HeLa cells were incubated with fluorophore-
811 labeled transferrin (Tf-488) for 10 min (A,C) and chased with complete media for 50 min to
812 allow recycling (B,D).
813 E. Immunoblot validation of FCHSD2 siRNA knock-down.
814 F. FCHSD2 depletion impairs transferrin uptake. Images (similar to those in A and C) were
815 analyzed in Zeiss Zen Blue software by measuring the arithmetic mean intensity of each image
816 after uptake, which was plotted relative to the highest arithmetic mean intensity.
817 G. FCHSD2 depletion delays transferrin recycling. Images (similar to those in B and D) were
818 analyzed in Zeiss Zen Blue software by measuring the arithmetic mean intensity of each image
819 after recycling. These values were normalized to the mean arithmetic mean intensity after uptake.
820

821 **Figure 4. MHC-I uptake and recycling are impaired upon FCHSD2 depletion.**
822 A-D. Mock, FCHSD2 siRNA knock-down, WT parental, and FCHSD2 knock-out HeLa cells
823 were incubated with anti-MHC1 antibodies for 20 min (A-D). Cells were glycine stripped to
824 remove non-internalized antibody, fixed, immunostained, and imaged.
825 E-H. Following the 20 min uptake, cells were glycine stripped, washed, and chased with
826 complete DMEM for 50 min to allow for MHC-I recycling. After chase, cells were glycine
827 stripped again, fixed, and immunostained to detect non-recycled MHC-I. Demarcated regions are
828 represented as insets.
829 I. FCHSD2 depletion impairs MHC-I uptake. Images (including A-D) were analyzed in Zeiss
830 Zen Blue software by measuring the arithmetic mean intensity of each image after uptake, which
831 was plotted relative to the highest arithmetic mean intensity.
832 J. FCHSD2 depletion impairs MHC-I recycling. Images (including E-H) were analyzed in Zeiss
833 Zen Blue software by measuring the arithmetic mean intensity of each image after recycling.
834 These values were normalized to the mean arithmetic mean intensity after uptake.
835 K. Immunoblot validation of FCHSD2 CRISPR/Cas9 knock-out in the CRISPR/Cas9 gene-
836 edited knock-out cell line (FCHSD2^{-/-}).
837

838 **Figure 5: FCHSD2 depletion leads to increased endosome size.**
839 A-D. Mock-treated (A), FCHSD2 knock-down (B), WT parental (C), and FCHSD2^{-/-}(D) cells
840 were fixed and immunostained with a primary antibody against the endosome marker EEA1.
841 Insets depict the increased size of EEA1-marked endosomes.
842 E. Quantification of the increased EEA1 area per cell shown in A-D. Using Imaris software,
843 EEA1 endosomes were rendered as surfaces, and the EEA1 area per cell was calculated per
844 image and plotted. Calculations are derived from 30 images from 3 independent experiments.
845

846 **Figure 6: FCHSD2 depletion leads to impaired endosome fission.**
847 A-D. Cells on coverslips were treated with the PI3K inhibitor LY294002 for 45 min to induce
848 enlarged endosomes and synchronize the size of the endosome population. The cells were then
849 incubated with Tf-488 in the presence of the inhibitor for 15 additional minutes. Cells were
850 immediately fixed (uptake; A,C) or chased with complete media to washout the inhibitor and
851 allow fission and recycling for 20 min (chase; B,D).
852 E-F. Imaris software was used to quantify and bin hundreds of thousands of endosomes
853 according to mean size. The surface function in Imaris was used to render all of the Tf-
854 containing structures. The surface areas of over 100,000 Tf-containing vesicles were plotted as a

855 frequency distribution plot in GraphPad Prism. A frequency distribution (interleaved) graph with
856 bins from 2 μm up to 10 μm and the bin width set at 1 μm was plotted, and a Gaussian curve was
857 extrapolated beyond 10 μm to infinity on the frequency distribution graphs for all four
858 experimental groups.

859 G. The area between the curves was calculated in GraphPad Prism by taking the difference
860 between the area underneath the curves for uptake and chase in both experimental groups (E and
861 F). The area between the curves represents a difference in the size of the endosomes after
862 complete media chase, suggesting decreased fission in the FCHSD2 siRNA knockdown cells.
863

864 **Figure 7. FCHSD2 knock-down leads to decreased branched actin at endosomes.**

865 A,B. Quantification of C-H. Three regions of interest (ROI) were demarcated in the periphery of
866 the cells (ROI begins at a minimal distance of 5 μm from the nucleus), and another 3 regions in
867 the perinuclear area (ROI begins within 1 μm from the nucleus). The surfaces function in Imaris
868 was used to 3D render all of the EEA1 and cortactin structures. EEA1 structures contacting
869 cortactin were defined as EEA1 surfaces with a shortest distance to a cortactin surface with a
870 value equal to zero. The EEA1 structures that contacted cortactin were represented as a
871 percentage of the total number of EEA1 structures in either the perinuclear region or the cell
872 periphery.

873 C-E. Mock-treated NSCLC cells were fixed and immunostained with antibodies against cortactin
874 (red) and EEA1 (green). Confocal images were captured and quantified (A,B). Insets of
875 peripheral regions are shown.

876 F-H. FCHSD2 knock-down cells were fixed and immunostained with antibodies against cortactin
877 (red) and EEA1 (green). Confocal images were captured and quantified (A,B). Insets of
878 peripheral regions are shown. EEA1-decorated endosomes in mock-treated NSCLC cells contact
879 cortactin puncta (white arrows) more frequently than the FCHSD2 knockdown cells.
880

881 **Figure 8. Visualization of decreased branched actin at endosomes in FCHSD2 knock-down
882 cells.**

883 A-O. WT parental (A-C), FCHSD2 knock-out (D-F), FCHSD2 knock-out + WT FCHSD2 rescue
884 (G-I), FCHSD2 knock-out + FCHSD2 SH3 A mutant rescue (J-L), and FCHSD2 knock-out +
885 FCHSD2 SH3 B mutant rescue (M-O) were transfected with mCherry-RAB5 Q79L. Cells were
886 fixed and immunostained with an antibody against cortactin to mark branched actin. WT parental
887 cells show a robust cortactin localization at RAB5 Q79L endosomes (B, yellow arrows), whereas
888 the FCHSD2 knock-out cells show a significant decrease in cortactin localized to endosomes (E).
889 Transfection of WT FCHSD2 rescues cortactin localization to the RAB5 endosomes (H, yellow
890 arrows). Transfection with the FCHSD2 SH3 A mutant displays impaired rescue of cortactin at
891 endosomes (K), whereas transfection of FCHSD2 SH3 B mutant rescued cortactin endosomal
892 localization (N, yellow arrows). These data suggest that the FCHSD2 SH3 A domain is required
893 to promote branched actin polymerization at endosomes.

894 P. Quantification of A-O. Confocal Z-stack images were captured and analyzed by Imaris
895 software using the surfaces function. mCherry-RAB5 Q79L structures were 3D rendered and a
896 region of interest around the enlarged endosomes was demarcated. Cortactin puncta in this region
897 were also 3D rendered. Cortactin surfaces that contacted RAB5 structures were filtered by
898 setting the maximal “shortest distance to surface” at 1×10^{-7} nm. The volume of cortactin
899 structures that contacted RAB5 structures was summed and represented as a percentage of the
900 total cortactin volume in the designated region of interest.

901 Q. Model for the role of FCHSD2 in fission at endosomes. FCHSD2 is recruited to and/or
902 stabilized at endosomes through an interaction with MICAL-L1. FCHSD2 induces branched
903 actin polymerization to promote endosome fission and receptor recycling.
904

905 **Expanded View 1. FCHSD2 knockdown increases ciliogenesis.**

906 A,B. Mock- or FCHSD2 siRNA-treated RPE-1 cells were serum-starved for 4 h to induce
907 ciliogenesis. Cells were fixed and immunostained with primary antibodies against CP110
908 (green), acetylated-tubulin (red), and DAPI (blue).

909 C. Immunoblot validation of FCHSD2 siRNA knockdown in RPE cells.

910 D. Percentage of ciliated cells quantified from A,B. The percentage of ciliated cells was
911 manually evaluated by counting the number of ciliated cells and non-ciliated cells in a given
912 field. Ciliated cells were considered to have an elongated acetylated tubulin stain along with
913 retention of CP110 on one of the two centrioles. Non-ciliated cells retained CP110 on both
914 centrioles. The percentage of ciliated cells increases upon FCHSD2 knock-down.
915

916 **Expanded View 2. The area of MICAL-L1-decorated tubular recycling endosomes
917 increases upon FCHSD2 knock-down.**

918 A-D. Mock, FCHSD2 siRNA, WT parental, and FCHSD2 knock-out HeLa cells were fixed and
919 immunostained with anti-MICAL-L1. Upon knock-down or knock-out, the number and area of
920 MICAL-L1-decorated endosomes increased.

921 E-G. FCHSD2 knockout cells were transfected with FLAG-FCHSD2 and immunostained with
922 anti-FLAG (red) and anti-MICAL-L1 (green). Rescued cells (red star) lack elongated MICAL-
923 L1 endosomes, whereas non-rescued, knock-out cells display an increased number and area of
924 MICAL-L1-decorated endosomes.

925 H. Quantification of increased MICAL-L1 area upon FCHSD2 depletion (A-D). Images were
926 captured and analyzed using the Imaris software by rendering MICAL-L1 surfaces and plotting
927 the MICAL-L1 area per cell.

928 I. Quantification of MICAL-L1 area in WT parental, knock-out, and FCHSD2 rescue cells (E-G).
929 Images were captured and analyzed using the Imaris software. The area of MICAL-L1 surfaces
930 per cell was measured in Imaris and plotted. Validation of knock-down and knock-out is shown
931 in Fig. 5.
932

933 **Expanded view 3. FCHSD2 knockdown leads to impaired fission of EEA1-decorated
934 endosomes.**

935 A. Cover-slips from Fig. 6 were co-stained with EEA1 to assess differences in endosome area
936 before and after washout of the PI3K inhibitor. EEA1 surfaces were rendered in Imaris from
937 confocal images. The total EEA1 area per cell was quantified after uptake with the inhibitor and
938 after washout of the inhibitor (chase) for both the mock- and FCHSD2 siRNA-treated cells.
939

940 **Expanded view 4. Actin polymerization at RAB5 Q79L endosomes requires ARP2/3.**

941 A-F. HeLa cells were transfected with the active GFP-RAB5 Q79L mutant and incubated with
942 the inactive control CK-689 (A-C) or the selective ARP2/3 inhibitor, CK-666 (D-F). Cells were
943 fixed and stained with phalloidin to detect filamentous actin (red). As depicted, there is a robust
944 actin network at RAB5 Q79L endosomes in cells treated with CK-689 which is absent in cells
945 treated with CK-666, suggesting that ARP2/3 is required for the actin nucleation.
946

947 **Expanded view 5. Both MICAL-L1 and FCHSD2 knock-out decrease branched actin
948 localization at RAB5 Q79L endosomes.**

949 A-I. WT parental (A-C), MICAL-L1 knock-out (D-F), and FCHSD2 knock-out (G-I) HeLa cells
950 were transfected with the active GFP-RAB5 Q79L mutant. Cells were fixed and immunostained
951 with a primary antibody against cortactin to mark branched actin. WT parental cells show a
952 robust branched actin network at the active RAB5 endosomes (A-C, yellow arrows), whereas
953 both the MICAL-L1 knock-out (D-F) and FCHSD2 knock-out (G-I) show RAB5 endosomes that
954 contain significantly less branched actin.

955 J. Quantification of cortactin localization at RAB5 Q79L structures from A-I. Z-stack confocal
956 images were captured and analyzed in Imaris by rendering 3D GFP-RAB5 Q79L structures. A
957 region of interest around the RAB5 Q79L endosomes was demarcated and the cortactin puncta
958 within this region were also 3D rendered. Cortactin surfaces that contacted RAB5 structures
959 were filtered by setting the maximal “shortest distance to surface” at 1×10^{-7} nm. The volume of
960 cortactin structures contacting RAB5 structures was represented as a percentage of the total
961 cortactin volume in the designated region.

962 **References**

963

964 Almeida-Souza L, Frank RAW, Garcia-Nafria J, Colussi A, Gunawardana N, Johnson CM, Yu M, Howard G,
965 Andrews B, Vallis Y *et al* (2018) A Flat BAR Protein Promotes Actin Polymerization at the Base of Clathrin-
966 Coated Pits. *Cell* 174: 325-337 e314

967 Anitei M, Hoflack B (2011) Bridging membrane and cytoskeleton dynamics in the secretory and
968 endocytic pathways. *Nat Cell Biol* 14: 11-19

969 Bai M, Pang X, Lou J, Zhou Q, Zhang K, Ma J, Li J, Sun F, Hsu VW (2012) Mechanistic insights into
970 regulated cargo binding by ACAP1 protein. *J Biol Chem* 287: 28675-28685

971 Bales KL, Gross AK (2016) Aberrant protein trafficking in retinal degenerations: The initial phase of
972 retinal remodeling. *Exp Eye Res* 150: 71-80

973 Becalska AN, Kelley CF, Berciu C, Stanishneva-Konovalova TB, Fu X, Wang S, Sokolova OS, Nicastro D,
974 Rodal AA (2013) Formation of membrane ridges and scallops by the F-BAR protein Nervous Wreck. *Mol
975 Biol Cell* 24: 2406-2418

976 Blanchette CR, Scalera AL, Harris KP, Zhao Z, Dresselhaus EC, Koles K, Yeh A, Apiki JK, Stewart BA, Rodal
977 AA (2022) Local regulation of extracellular vesicle traffic by the synaptic endocytic machinery. *J Cell Biol*
978 221

979 Bruck S, Huber TB, Ingham RJ, Kim K, Niederstrasser H, Allen PM, Pawson T, Cooper JA, Shaw AS (2006)
980 Identification of a novel inhibitory actin-capping protein binding motif in CD2-associated protein. *J Biol
981 Chem* 281: 19196-19203

982 Burd C, Cullen PJ (2014) Retromer: a master conductor of endosome sorting. *Cold Spring Harb Perspect
983 Biol* 6

984 Cai B, Caplan S, Naslavsky N (2012) cPLA2alpha and EHD1 interact and regulate the vesiculation of
985 cholesterol-rich, GPI-anchored, protein-containing endosomes. *Mol Biol Cell* 23: 1874-1888

986 Cai B, Giridharan SS, Zhang J, Saxena S, Bahl K, Schmidt JA, Sorgen PL, Guo W, Naslavsky N, Caplan S
987 (2013) Differential roles of C-terminal Eps15 homology domain proteins as vesiculators and tubulators of
988 recycling endosomes. *J Biol Chem* 288: 30172-30180

989 Cai B, Xie S, Caplan S, Naslavsky N (2014) GRAF1 forms a complex with MICAL-L1 and EHD1 to cooperate
990 in tubular recycling endosome vesiculation. *Front Cell Dev Biol* 2: 22

991 Caswell P, Norman J (2008) Endocytic transport of integrins during cell migration and invasion. *Trends in
992 cell biology* 18: 257-263

993 Cooper JA, Pollard TD (1985) Effect of capping protein on the kinetics of actin polymerization.
994 *Biochemistry* 24: 793-799

995 Courtellemont T, De Leo MG, Gopaldass N, Mayer A (2022) CROP: a retromer-PROPPIN complex
996 mediating membrane fission in the endo-lysosomal system. *EMBO J* 41: e109646

997 Coyle IP, Koh YH, Lee WC, Slind J, Fergestad T, Littleton JT, Ganetzky B (2004) Nervous wreck, an SH3
998 adaptor protein that interacts with Wsp, regulates synaptic growth in Drosophila. *Neuron* 41: 521-534

999 Cullen PJ, Steinberg F (2018) To degrade or not to degrade: mechanisms and significance of endocytic
1000 recycling. *Nat Rev Mol Cell Biol* 19: 679-696

1001 Dai J, Li J, Bos E, Porcionatto M, Premont RT, Bourgoin S, Peters PJ, Hsu VW (2004) ACAP1 promotes
1002 endocytic recycling by recognizing recycling sorting signals. *Dev Cell* 7: 771-776

1003 Del Signore SJ, Kelley CF, Messelaar EM, Lemos T, Marchan MF, Ermanoska B, Mund M, Fai TG,
1004 Kaksonen M, Rodal AA (2021) An autoinhibitory clamp of actin assembly constrains and directs synaptic
1005 endocytosis. *Elife* 10

1006 Delevoye C, Heiligenstein X, Ripoll L, Gilles-Marsens F, Dennis MK, Linares RA, Derman L, Gokhale A,
1007 Morel E, Faundez V *et al* (2016) BLOC-1 Brings Together the Actin and Microtubule Cytoskeletons to
1008 Generate Recycling Endosomes. *Curr Biol* 26: 1-13

1009 Deo R, Kushwah MS, Kamerkar SC, Kadam NY, Dar S, Babu K, Srivastava A, Pucadyil TJ (2018) ATP-
1010 dependent membrane remodeling links EHD1 functions to endocytic recycling. *Nat Commun* 9: 5187
1011 Derivery E, Helfer E, Henriot V, Gautreau A (2012) Actin polymerization controls the organization of
1012 WASH domains at the surface of endosomes. *PLoS One* 7: e39774
1013 Derivery E, Sousa C, Gautier JJ, Lombard B, Loew D, Gautreau A (2009) The Arp2/3 activator WASH
1014 controls the fission of endosomes through a large multiprotein complex. *Dev Cell* 17: 712-723
1015 Dharmalingam E, Haeckel A, Pinyol R, Schwintzer L, Koch D, Kessels MM, Qualmann B (2009) F-BAR
1016 proteins of the syndapin family shape the plasma membrane and are crucial for neuromorphogenesis.
1017 *The Journal of neuroscience : the official journal of the Society for Neuroscience* 29: 13315-13327
1018 Dhawan K, Naslavsky N, Caplan S (2020) Sorting nexin 17 (SNX17) links endosomal sorting to Eps15
1019 homology domain protein 1 (EHD1)-mediated fission machinery. *J Biol Chem* 295: 3837-3850
1020 Dhawan K, Naslavsky N, Caplan S (2022) Coronin2A links actin-based endosomal processes to the EHD1
1021 fission machinery. *Mol Biol Cell* 33: ar107
1022 Farmer T, Xie S, Naslavsky N, Stockli J, James DE, Caplan S (2020) Defining the protein and lipid
1023 constituents of tubular recycling endosomes. *J Biol Chem*
1024 Farmer T, Xie S, Naslavsky N, Stockli J, James DE, Caplan S (2021) Defining the protein and lipid
1025 constituents of tubular recycling endosomes. *J Biol Chem* 296: 100190
1026 Giridharan SS, Cai B, Naslavsky N, Caplan S (2012) Trafficking cascades mediated by Rab35 and its
1027 membrane hub effector, MICAL-L1. *Commun Integr Biol* 5: 384-387
1028 Giridharan SS, Cai B, Vitale N, Naslavsky N, Caplan S (2013) Cooperation of MICAL-L1, syndapin2, and
1029 phosphatidic acid in tubular recycling endosome biogenesis. *Mol Biol Cell* 24: 1776-1790, S1771-1715
1030 Gomez TS, Billadeau DD (2009) A FAM21-containing WASH complex regulates retromer-dependent
1031 sorting. *Dev Cell* 17: 699-711
1032 Gopaldass N, Chen KE, Collins B, Mayer A (2024) Assembly and fission of tubular carriers mediating
1033 protein sorting in endosomes. *Nat Rev Mol Cell Biol*
1034 Gopaldass N, Fauvet B, Lashuel H, Roux A, Mayer A (2017) Membrane scission driven by the PROPPIN
1035 Atg18. *EMBO J* 36: 3274-3291
1036 Grassart A, Cheng AT, Hong SH, Zhang F, Zenzer N, Feng Y, Briner DM, Davis GD, Malkov D, Drubin DG
1037 (2014) Actin and dynamin2 dynamics and interplay during clathrin-mediated endocytosis. *J Cell Biol* 205:
1038 721-735
1039 Gubar O, Croise P, Kropyvko S, Gryaznova T, Toth P, Blangy A, Vitale N, Rynditch A, Gasman S, Ory S
1040 (2020) The atypical Rho GTPase RhoU interacts with intersectin-2 to regulate endosomal recycling
1041 pathways. *J Cell Sci* 133
1042 Haberg K, Lundmark R, Carlsson SR (2008) SNX18 is an SNX9 paralog that acts as a membrane tubulator
1043 in AP-1-positive endosomal trafficking. *J Cell Sci* 121: 1495-1505
1044 Harbour ME, Breusegem SY, Seaman MN (2012) Recruitment of the endosomal WASH complex is
1045 mediated by the extended 'tail' of Fam21 binding to the retromer protein Vps35. *Biochem J* 442: 209-
1046 220
1047 Havrylov S, Rzhepetskyy Y, Malinowska A, Drobot L, Redowicz MJ (2009) Proteins recruited by SH3
1048 domains of Ruk/CIN85 adaptor identified by LC-MS/MS. *Proteome Sci* 7: 21
1049 Hoffman HK, Prekeris R (2022) Roles of the actin cytoskeleton in ciliogenesis. *J Cell Sci* 135
1050 Hoyer MJ, Chitwood PJ, Ebmeier CC, Striepen JF, Qi RZ, Old WM, Voeltz GK (2018) A Novel Class of ER
1051 Membrane Proteins Regulates ER-Associated Endosome Fission. *Cell* 175: 254-265 e214
1052 Hsu VW, Bai M, Li J (2012) Getting active: protein sorting in endocytic recycling. *Nat Rev Mol Cell Biol* 13:
1053 323-328
1054 Huttlin EL, Bruckner RJ, Navarrete-Perea J, Cannon JR, Baltier K, Gebreab F, Gygi MP, Thornock A,
1055 Zarraga G, Tam S *et al* (2021) Dual proteome-scale networks reveal cell-specific remodeling of the
1056 human interactome. *Cell* 184: 3022-3040 e3028

1057 Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP, Parzen H *et*
1058 *al* (2017) Architecture of the human interactome defines protein communities and disease networks.
1059 *Nature* 545: 505-509

1060 Ioannou MS, Kulasekaran G, Fotouhi M, Morein JJ, Han C, Tse S, Nossova N, Han T, Mannard E,
1061 McPherson PS (2017) Intersectin-s interaction with DENND2B facilitates recycling of epidermal growth
1062 factor receptor. *EMBO Rep* 18: 2119-2130

1063 Jethwa N, Chung GH, Lete MG, Alonso A, Byrne RD, Calleja V, Larijani B (2015) Endomembrane
1064 PtdIns(3,4,5)P3 activates the PI3K-Akt pathway. *J Cell Sci* 128: 3456-3465

1065 Jia D, Gomez TS, Billadeau DD, Rosen MK (2012) Multiple repeat elements within the FAM21 tail link the
1066 WASH actin regulatory complex to the retromer. *Mol Biol Cell* 23: 2352-2361

1067 Jones T, Naslavsky N, Caplan S (2020) Eps15 Homology Domain Protein 4 (EHD4) is required for Eps15
1068 Homology Domain Protein 1 (EHD1)-mediated endosomal recruitment and fission. *PLoS One* 15:
1069 e0239657

1070 Kamerkar SC, Roy K, Bhattacharyya S, Pucadyil TJ (2019) A Screen for Membrane Fission Catalysts
1071 Identifies the ATPase EHD1. *Biochemistry* 58: 65-71

1072 Kelley CF, Messelaar EM, Eskin TL, Wang S, Song K, Vishnia K, Becalska AN, Shupliakov O, Hagan MF,
1073 Danino D *et al* (2015) Membrane Charge Directs the Outcome of F-BAR Domain Lipid Binding and
1074 Autoregulation. *Cell Rep* 13: 2597-2609

1075 Kessels MM, Qualmann B (2002) Syndapins integrate N-WASP in receptor-mediated endocytosis. *EMBO*
1076 *J* 21: 6083-6094

1077 Li J, Ballif BA, Powelka AM, Dai J, Gygi SP, Hsu VW (2005) Phosphorylation of ACAP1 by Akt regulates the
1078 stimulation-dependent recycling of integrin beta1 to control cell migration. *Dev Cell* 9: 663-673

1079 Madhivanan K, Aguilar RC (2014) Ciliopathies: the trafficking connection. *Traffic* 15: 1031-1056

1080 McConnell P, Mekel M, Kozlov AG, Mooren OL, Lohman TM, Cooper JA (2020) Comparative Analysis of
1081 CPI-Motif Regulation of Biochemical Functions of Actin Capping Protein. *Biochemistry* 59: 1202-1215

1082 McNally KE, Cullen PJ (2018) Endosomal Retrieval of Cargo: Retromer Is Not Alone. *Trends Cell Biol* 28:
1083 807-822

1084 McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, Langton P, Pearson N, Danson CM, Nagele
1085 H *et al* (2017) Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling.
1086 *Nat Cell Biol* 19: 1214-1225

1087 Merrifield CJ, Feldman ME, Wan L, Almers W (2002) Imaging actin and dynamin recruitment during
1088 invagination of single clathrin-coated pits. *Nat Cell Biol* 4: 691-698

1089 Merrifield CJ, Qualmann B, Kessels MM, Almers W (2004) Neural Wiskott Aldrich Syndrome Protein (N-
1090 WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured
1091 fibroblasts. *Eur J Cell Biol* 83: 13-18

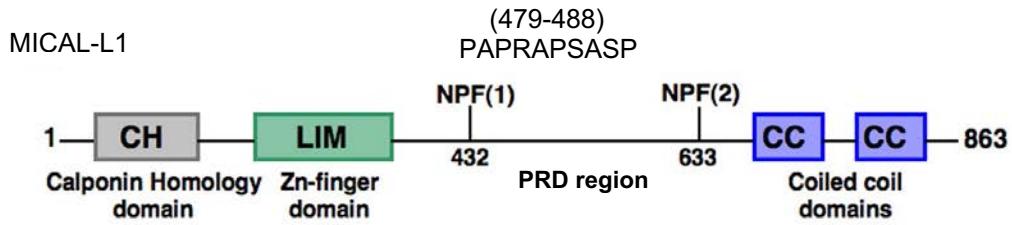
1092 Muriel O, Tomas A, Scott CC, Gruenberg J (2016) Moesin and cortactin control actin-dependent
1093 multivesicular endosome biogenesis. *Mol Biol Cell* 27: 3305-3316

1094 Naslavsky N, Caplan S (2011) EHD proteins: key conductors of endocytic transport. *Trends Cell Biol* 21:
1095 122-131

1096 Naslavsky N, Caplan S (2018) The enigmatic endosome - sorting the ins and outs of endocytic trafficking.
1097 *J Cell Sci* 131

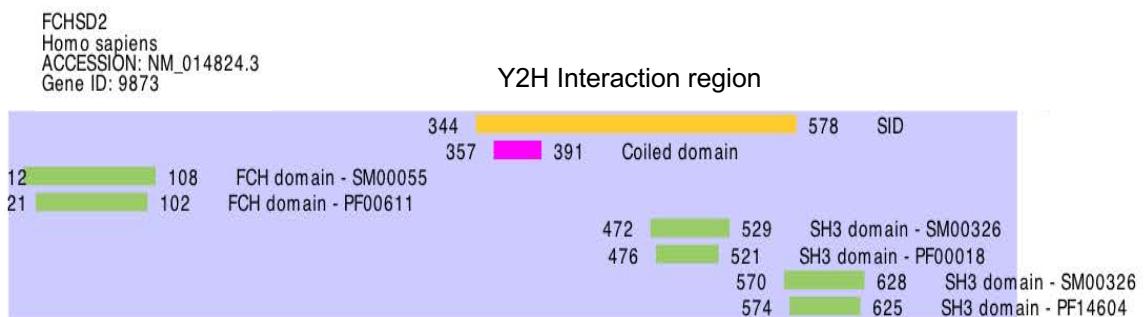
1098 Naslavsky N, Caplan S (2023a) Advances and challenges in understanding endosomal sorting and fission.
1099 *FEBS J* 290: 4187-4195

1100 Naslavsky N, Caplan S (2023b) Receptor-mediated internalization promotes increased endosome size
1101 and number in a RAB4- and RAB5-dependent manner. *Eur J Cell Biol* 102: 151339


1102 Nolen BJ, Tomasevic N, Russell A, Pierce DW, Jia Z, McCormick CD, Hartman J, Sakowicz R, Pollard TD
1103 (2009) Characterization of two classes of small molecule inhibitors of Arp2/3 complex. *Nature* 460:
1104 1031-1034

1105 O'Connor-Giles KM, Ho LL, Ganetzky B (2008) Nervous wreck interacts with thickveins and the endocytic
1106 machinery to attenuate retrograde BMP signaling during synaptic growth. *Neuron* 58: 507-518
1107 Ohno H, Hirabayashi S, Kansaku A, Yao I, Tajima M, Nishimura W, Ohnishi H, Mashima H, Fujita T, Omata
1108 M *et al* (2003) Carom: a novel membrane-associated guanylate kinase-interacting protein with two SH3
1109 domains. *Oncogene* 22: 8422-8431
1110 Pedersen LB, Mogensen JB, Christensen ST (2016) Endocytic Control of Cellular Signaling at the Primary
1111 Cilium. *Trends Biochem Sci* 41: 784-797
1112 Piotrowski JT, Gomez TS, Schoon RA, Mangalam AK, Billadeau DD (2013) WASH knockout T cells
1113 demonstrate defective receptor trafficking, proliferation, and effector function. *Mol Cell Biol* 33: 958-
1114 973
1115 Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. *Annu Rev
1116 Biophys Biomol Struct* 36: 451-477
1117 Puthenveedu MA, Laufer B, Temkin P, Vistein R, Carlton P, Thorn K, Taunton J, Weiner OD, Parton RG,
1118 von Zastrow M (2010) Sequence-dependent sorting of recycling proteins by actin-stabilized endosomal
1119 microdomains. *Cell* 143: 761-773
1120 Qualmann B, Kelly RB (2000) Syndapin isoforms participate in receptor-mediated endocytosis and actin
1121 organization. *The Journal of cell biology* 148: 1047-1062
1122 Qualmann B, Roos J, DiGregorio PJ, Kelly RB (1999) Syndapin I, a synaptic dynamin-binding protein that
1123 associates with the neural Wiskott-Aldrich syndrome protein. *Mol Biol Cell* 10: 501-513
1124 Rahajeng J, Giridharan SS, Cai B, Naslavsky N, Caplan S (2012) MICAL-L1 is a tubular endosomal
1125 membrane hub that connects Rab35 and Arf6 with Rab8a. *Traffic* 13: 82-93
1126 Rahajeng J, Giridharan SS, Naslavsky N, Caplan S (2010) Collapsin response mediator protein-2 (Crmp2)
1127 regulates trafficking by linking endocytic regulatory proteins to dynein motors. *J Biol Chem* 285: 31918-
1128 31922
1129 Roberts RL, Barbieri MA, Pryse KM, Chua M, Morisaki JH, Stahl PD (1999) Endosome fusion in living cells
1130 overexpressing GFP-rab5. *J Cell Sci* 112 (Pt 21): 3667-3675
1131 Rodal AA, Blunk AD, Akbergenova Y, Jorquera RA, Buhl LK, Littleton JT (2011) A presynaptic endosomal
1132 trafficking pathway controls synaptic growth signaling. *J Cell Biol* 193: 201-217
1133 Rodal AA, Motola-Barnes RN, Littleton JT (2008) Nervous wreck and Cdc42 cooperate to regulate
1134 endocytic actin assembly during synaptic growth. *J Neurosci* 28: 8316-8325
1135 Roux A, Uyhazi K, Frost A, De Camilli P (2006) GTP-dependent twisting of dynamin implicates
1136 constriction and tension in membrane fission. *Nature* 441: 528-531
1137 Rowland AA, Chitwood PJ, Phillips MJ, Voeltz GK (2014) ER contact sites define the position and timing of
1138 endosome fission. *Cell* 159: 1027-1041
1139 Seaman MN, Gautreau A, Billadeau DD (2013) Retromer-mediated endosomal protein sorting: all
1140 WASHed up! *Trends Cell Biol* 23: 522-528
1141 Sengar AS, Wang W, Bishay J, Cohen S, Egan SE (1999) The EH and SH3 domain Ese proteins regulate
1142 endocytosis by linking to dynamin and Eps15. *Embo J* 18: 1159-1171
1143 Sharma M, Giridharan SS, Rahajeng J, Caplan S, Naslavsky N (2010) MICAL-L1: An unusual Rab effector
1144 that links EHD1 to tubular recycling endosomes. *Commun Integr Biol* 3: 181-183
1145 Sharma M, Giridharan SS, Rahajeng J, Naslavsky N, Caplan S (2009) MICAL-L1 links EHD1 to tubular
1146 recycling endosomes and regulates receptor recycling. *Mol Biol Cell* 20: 5181-5194
1147 Shi R, Shi X, Qin D, Tang S, Vermeulen M, Zhang X (2021) SNX27-driven membrane localisation of
1148 OTULIN antagonises linear ubiquitination and NF- κ B signalling activation. *Cell Biosci* 11: 146
1149 Simonetti B, Cullen PJ (2019) Actin-dependent endosomal receptor recycling. *Curr Opin Cell Biol* 56: 22-
1150 33
1151 Solinger JA, Spang A (2022) Sorting of cargo in the tubular endosomal network. *Bioessays* 44: e2200158

1152 Stanishneva-Konovalova TB, Kelley CF, Eskin TL, Messelaar EM, Wasserman SA, Sokolova OS, Rodal AA
1153 (2016) Coordinated autoinhibition of F-BAR domain membrane binding and WASp activation by Nervous
1154 Wreck. *Proc Natl Acad Sci U S A* 113: E5552-5561
1155 Steinberg F, Gallon M, Winfield M, Thomas EC, Bell AJ, Heesom KJ, Tavare JM, Cullen PJ (2013) A global
1156 analysis of SNX27-retromer assembly and cargo specificity reveals a function in glucose and metal ion
1157 transport. *Nat Cell Biol* 15: 461-471
1158 Stenmark H, Parton RG, Steele-Mortimer O, Lutcke A, Gruenberg J, Zerial M (1994) Inhibition of rab5
1159 GTPase activity stimulates membrane fusion in endocytosis. *Embo J* 13: 1287-1296
1160 Temkin P, Lauffer B, Jager S, Cimermancic P, Krogan NJ, von Zastrow M (2011) SNX27 mediates retromer
1161 tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. *Nat Cell Biol* 13:
1162 715-721
1163 Wang E, Brown PS, Aroeti B, Chapin SJ, Mostov KE, Dunn KW (2000) Apical and basolateral endocytic
1164 pathways of MDCK cells meet in acidic common endosomes distinct from a nearly-neutral apical
1165 recycling endosome. *Traffic* 1: 480-493
1166 Wang H, Zhao D, Du H, Zhai X, Wu S, Lin L, Xu Z, Lu Q (2022) Deafness-related protein PDZD7 forms
1167 complex with the C-terminal tail of FCHSD2. *Biochem J* 479: 1393-1405
1168 Wang J, Fedoseienko A, Chen B, Burstein E, Jia D, Billadeau DD (2018) Endosomal receptor trafficking:
1169 Retromer and beyond. *Traffic* 19: 578-590
1170 Wang Q, Navarro MV, Peng G, Molinelli E, Goh SL, Judson BL, Rajashankar KR, Sondermann H (2009)
1171 Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein
1172 Pacsin/Syndapin. *Proc Natl Acad Sci U S A* 106: 12700-12705
1173 Wong KA, Wilson J, Russo A, Wang L, Okur MN, Wang X, Martin NP, Scappini E, Carnegie GK, O'Bryan JP
1174 (2012) Intersectin (ITSN) family of scaffolds function as molecular hubs in protein interaction networks.
1175 *PLoS One* 7: e36023
1176 Xiao GY, Mohanakrishnan A, Schmid SL (2018) Role for ERK1/2-dependent activation of FCHSD2 in
1177 cancer cell-selective regulation of clathrin-mediated endocytosis. *Proc Natl Acad Sci U S A* 115: E9570-
1178 E9579
1179 Xiao GY, Schmid SL (2020) FCHSD2 controls oncogenic ERK1/2 signaling outcome by regulating endocytic
1180 trafficking. *PLoS Biol* 18: e3000778
1181 Xie S, Bahl K, Reinecke JB, Hammond GR, Naslavsky N, Caplan S (2016) The endocytic recycling
1182 compartment maintains cargo segregation acquired upon exit from the sorting endosome. *Mol Biol Cell*
1183 27: 108-126
1184 Xie S, Farmer T, Naslavsky N, Caplan S (2019) MICAL-L1 coordinates ciliogenesis by recruiting EHD1 to
1185 the primary cilium. *J Cell Sci* 132
1186 Xie S, Naslavsky N, Caplan S (2023) EHD1 promotes CP110 ubiquitination by centriolar satellite delivery
1187 of HERC2 to the mother centriole. *EMBO Rep* 24: e56317
1188 Xu Y, Xia J, Liu S, Stein S, Ramon C, Xi H, Wang L, Xiong X, Zhang L, He D *et al* (2017) Endocytosis and
1189 membrane receptor internalization: implication of F-BAR protein Carom. *Front Biosci (Landmark Ed)* 22:
1190 1439-1457
1191 Zech T, Calaminus SD, Caswell P, Spence HJ, Carnell M, Insall RH, Norman J, Machesky LM (2011) The
1192 Arp2/3 activator WASH regulates alpha5beta1-integrin-mediated invasive migration. *J Cell Sci* 124: 3753-
1193 3759
1194 Zhai X, Du H, Shen Y, Zhang X, Chen Z, Wang Y, Xu Z (2022a) FCHSD2 is required for stereocilia
1195 maintenance in mouse cochlear hair cells. *J Cell Sci* 135
1196 Zhai X, Shen Y, Zhang X, Li T, Lu Q, Xu Z (2022b) FCHSD2 cooperates with CDC42 and N-WASP to regulate
1197 cell protrusion formation. *Biochim Biophys Acta Mol Cell Res* 1869: 119134
1198 Zhao J, Bruck S, Cemerski S, Zhang L, Butler B, Dani A, Cooper JA, Shaw AS (2013) CD2AP links cortactin
1199 and capping protein at the cell periphery to facilitate formation of lamellipodia. *Mol Cell Biol* 33: 38-47


A

B

C

D

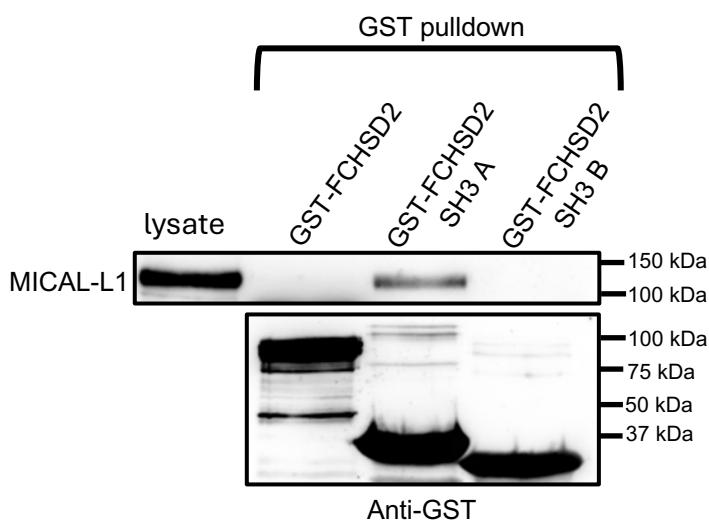
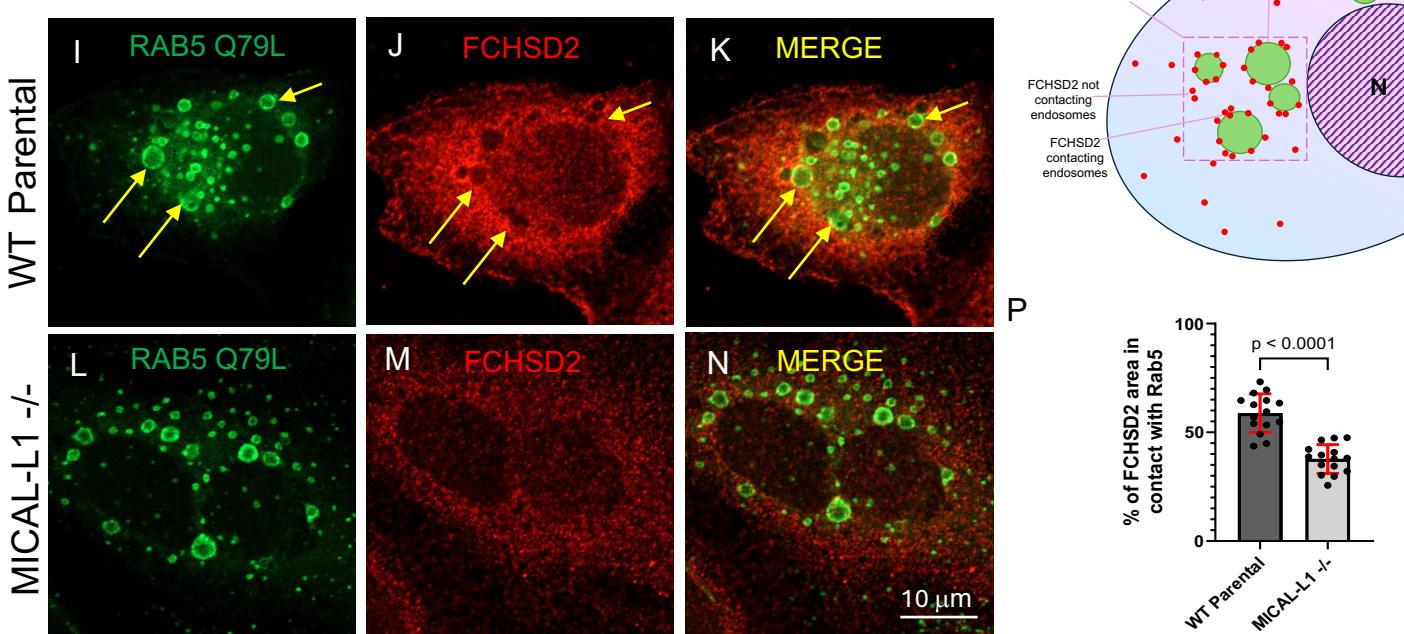
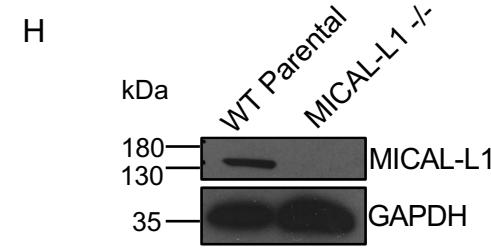
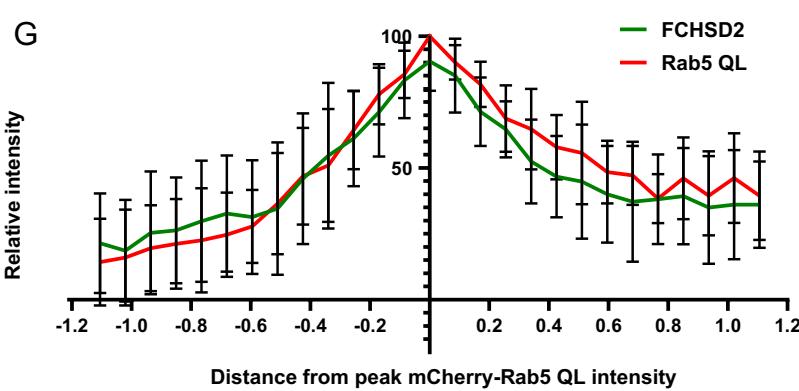
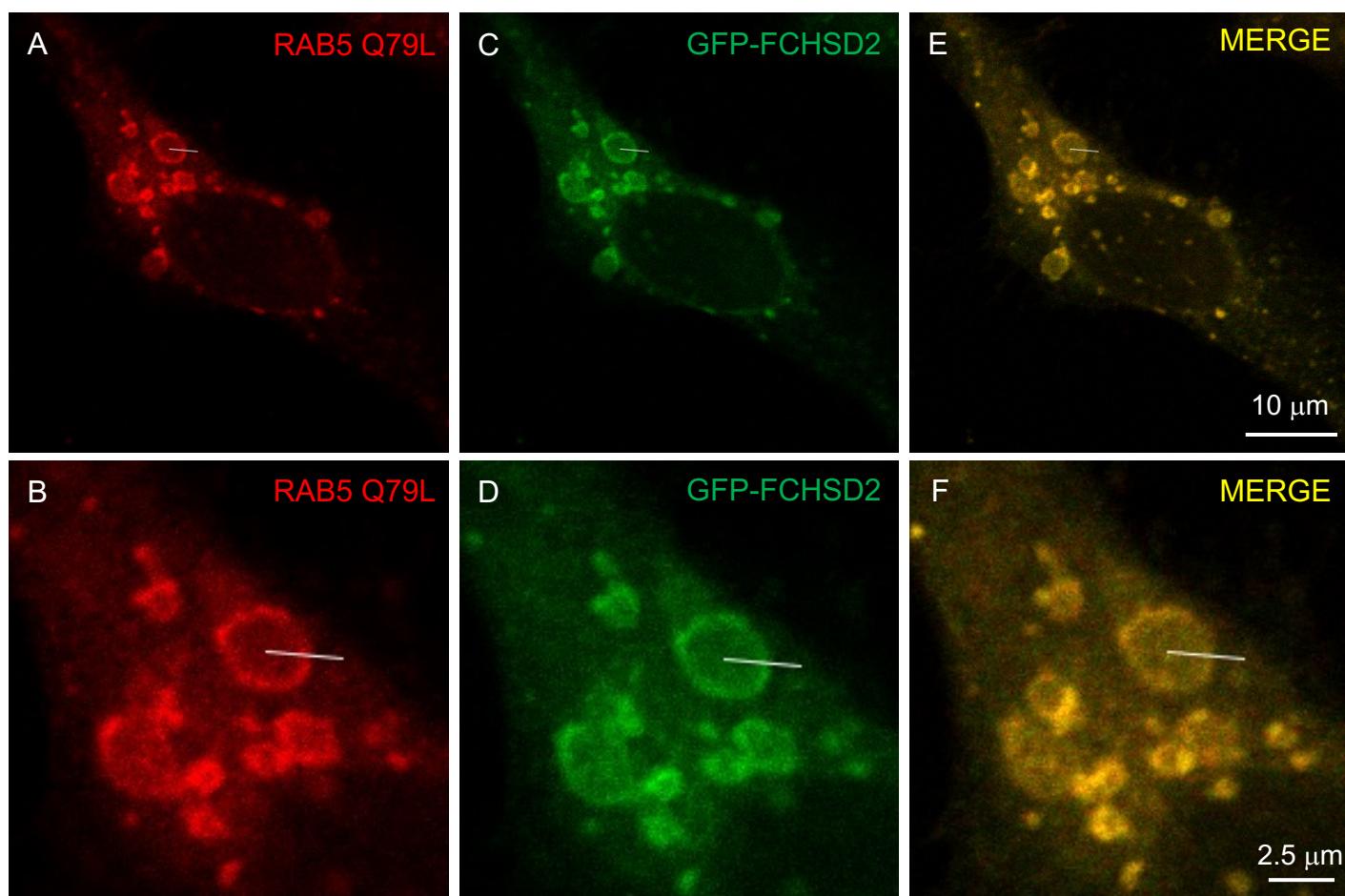
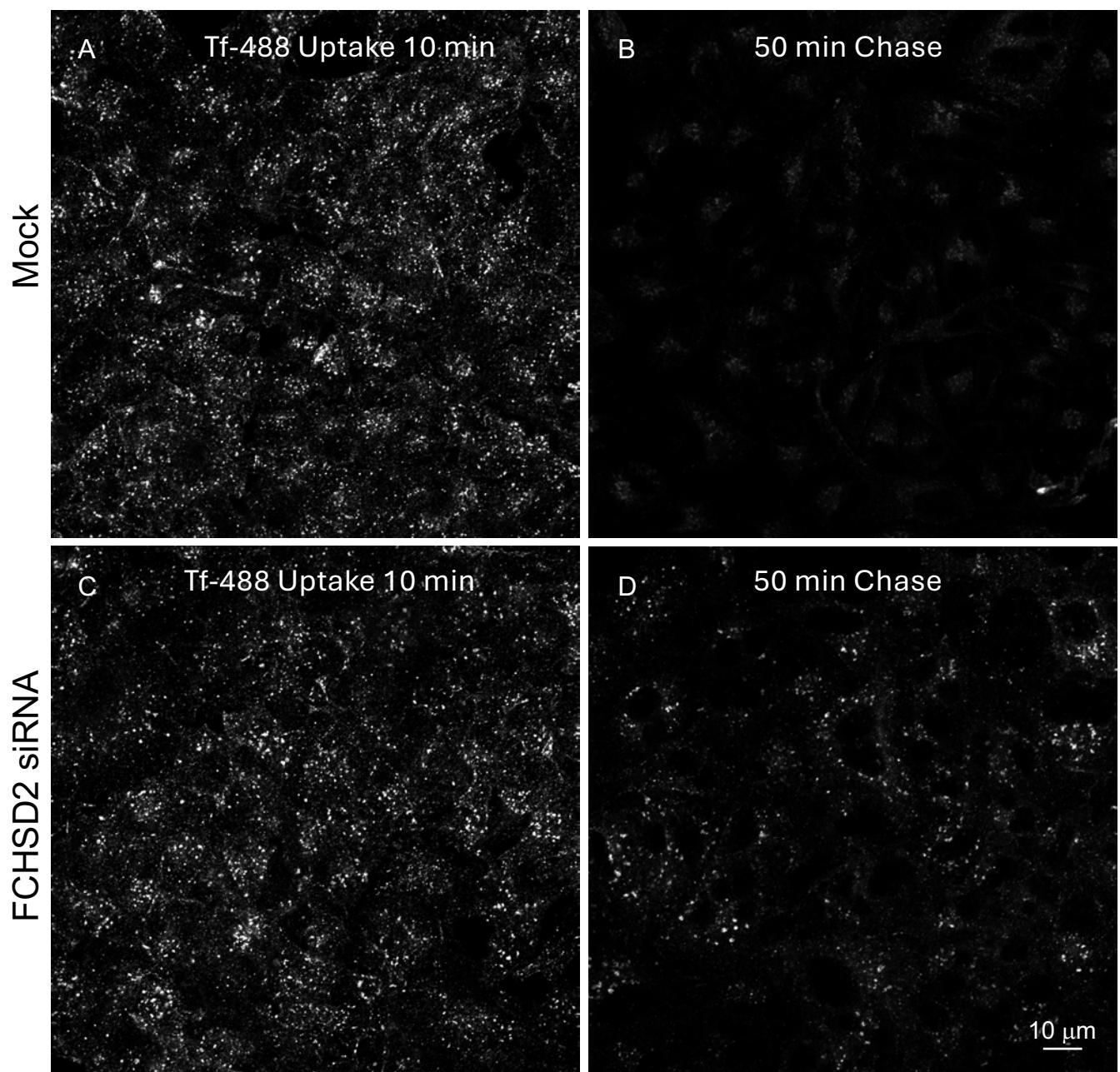
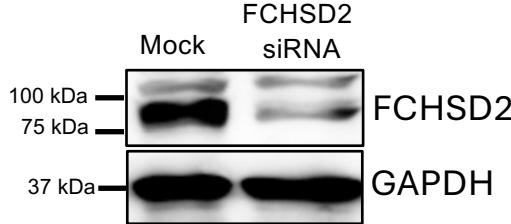
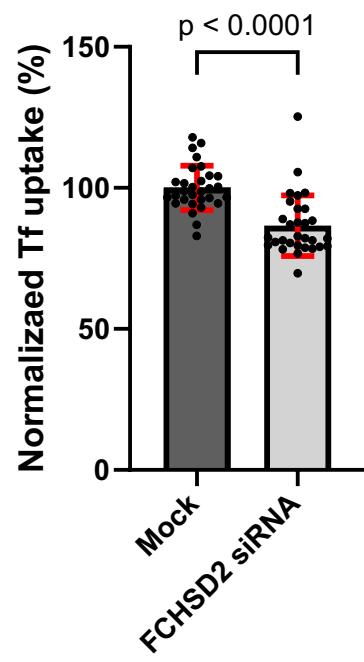


Fig. 2


Fig. 3

E

F

G

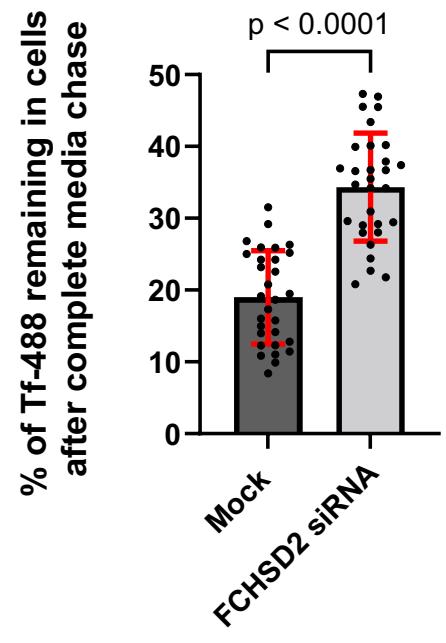


Fig. 4

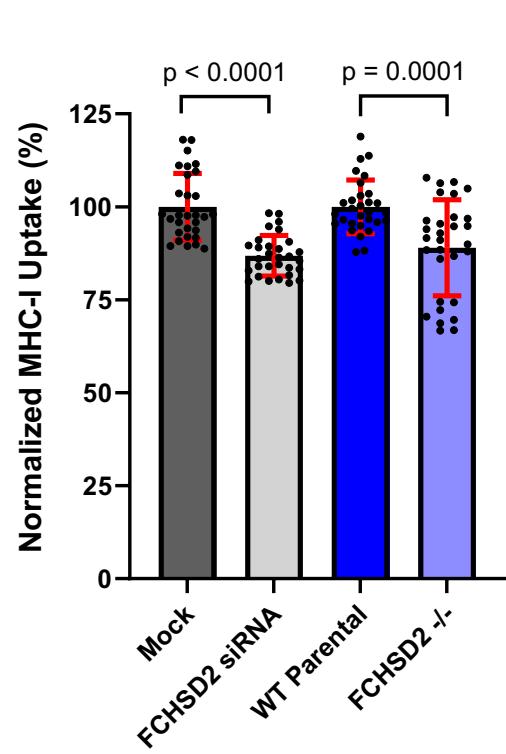
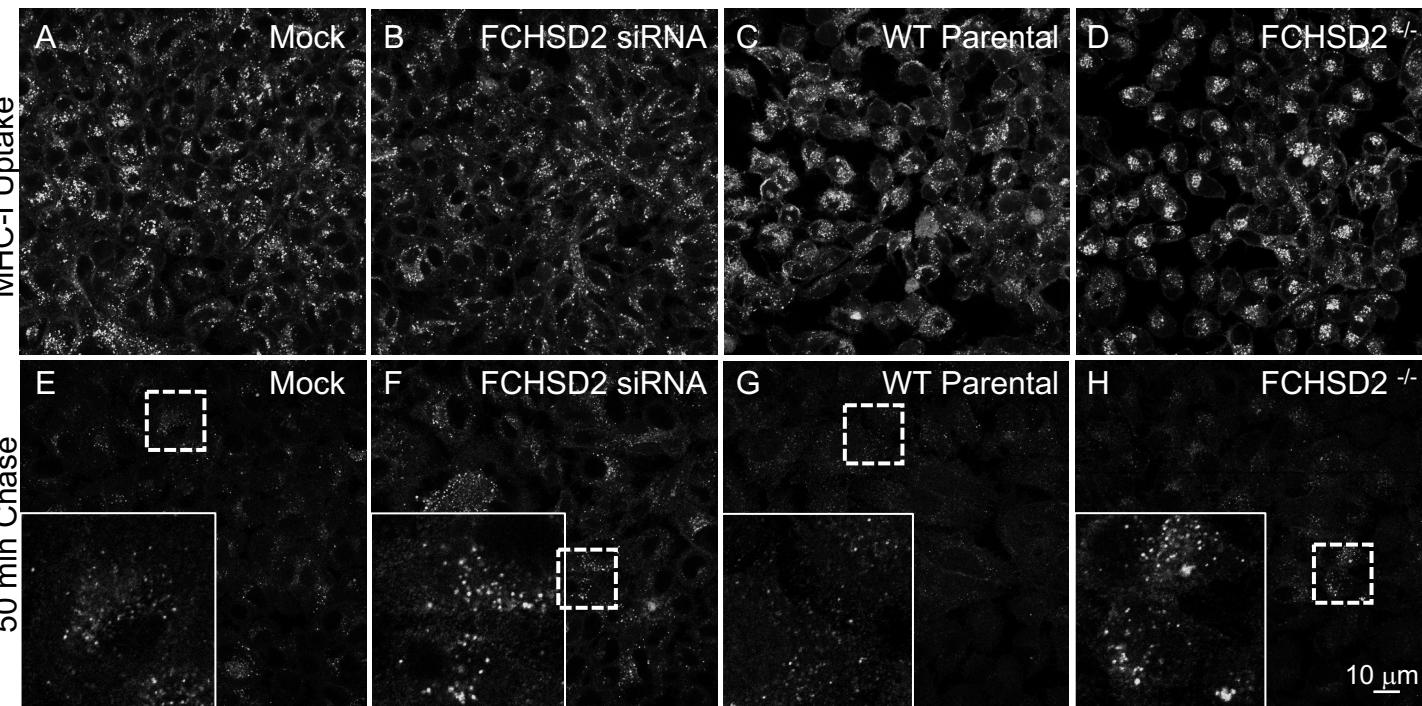



Fig. 5

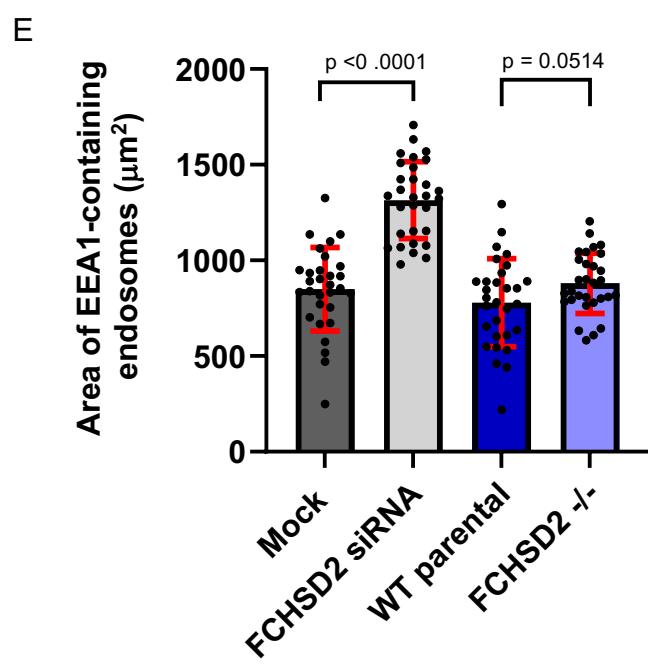
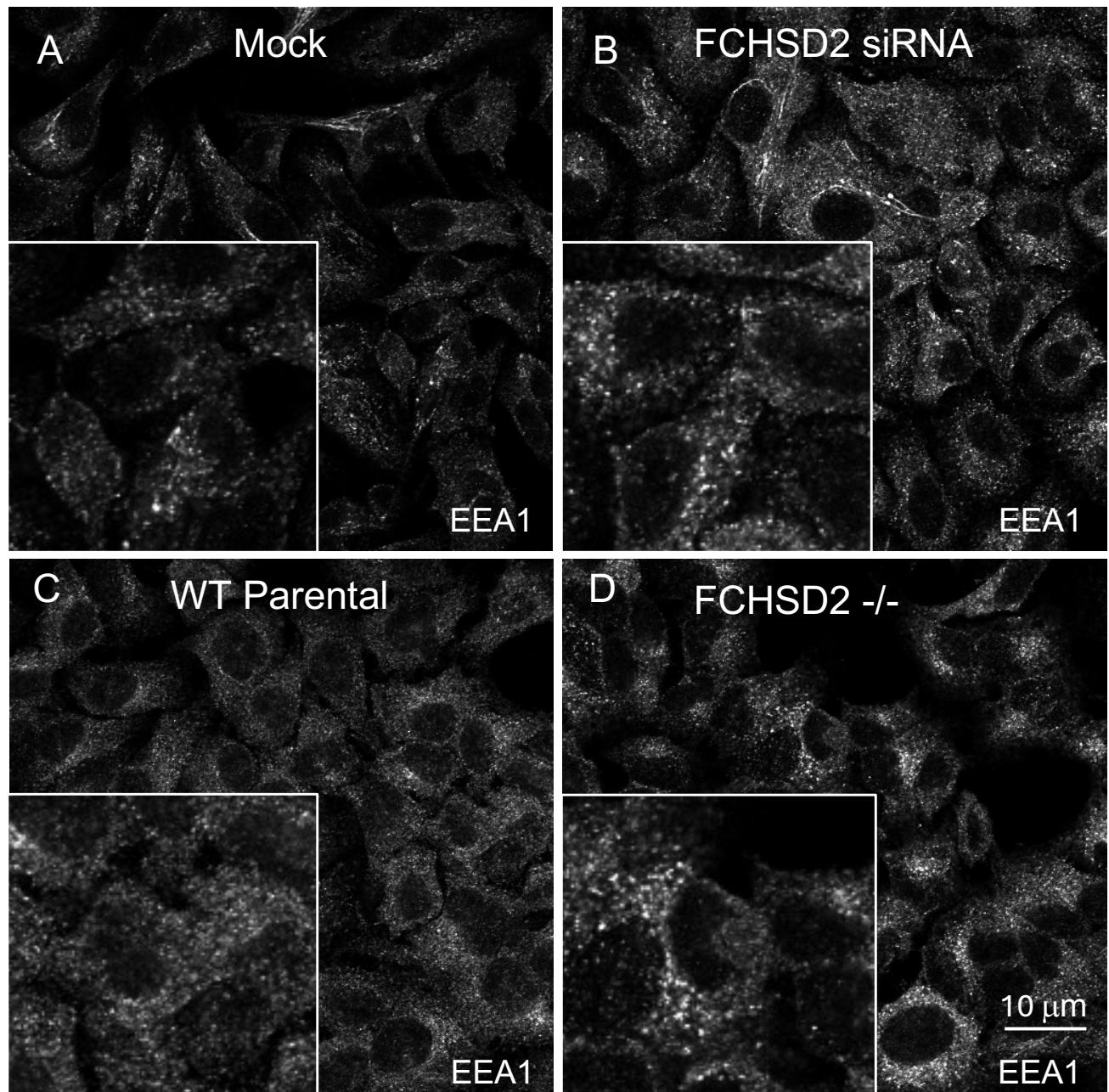



Fig. 6

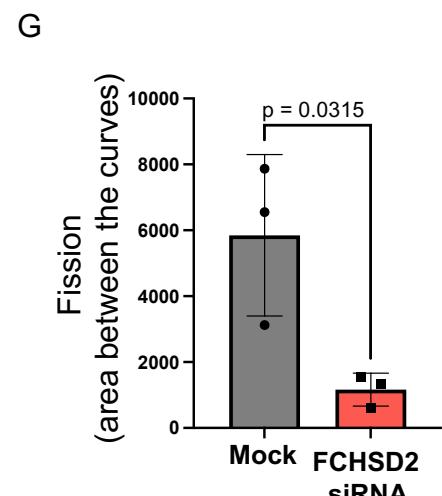
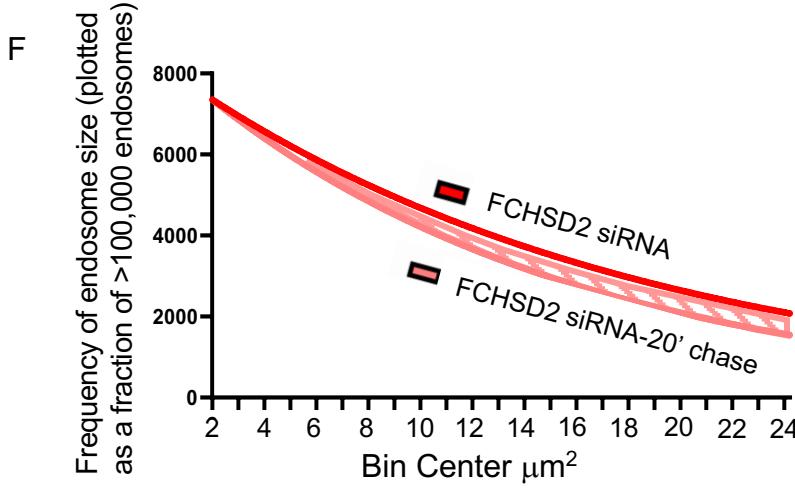
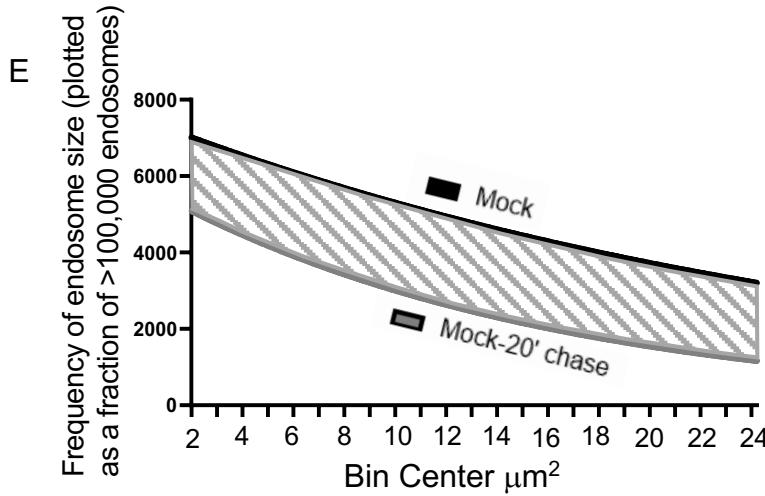
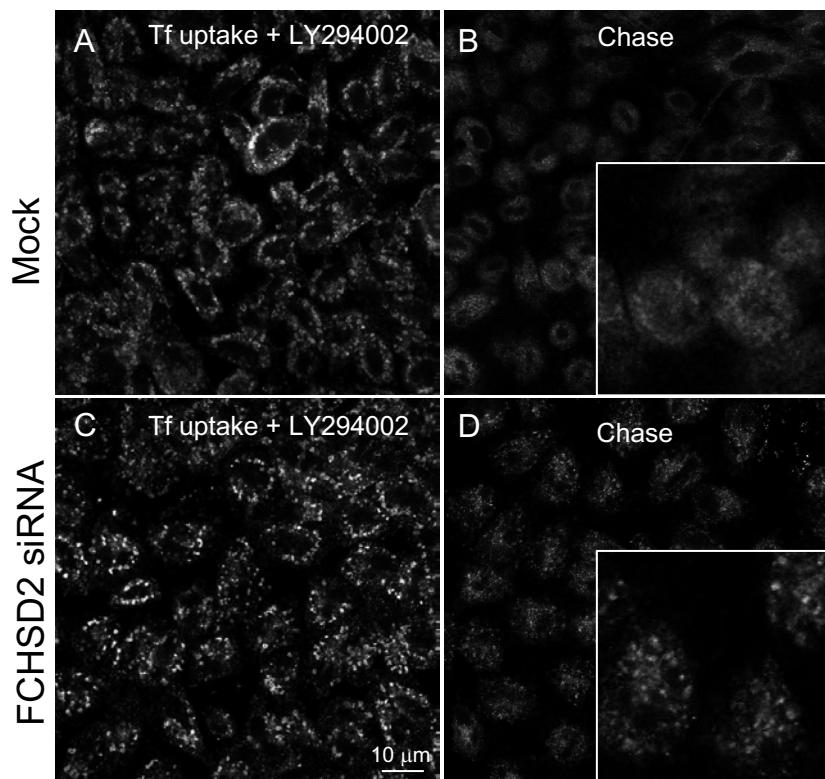
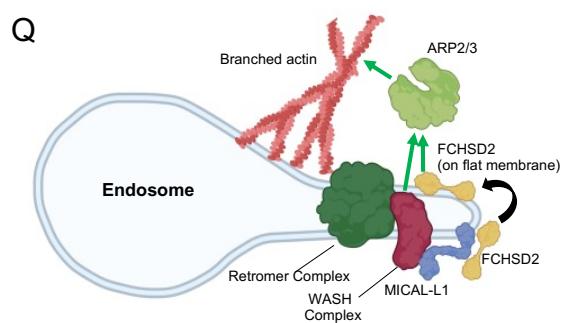
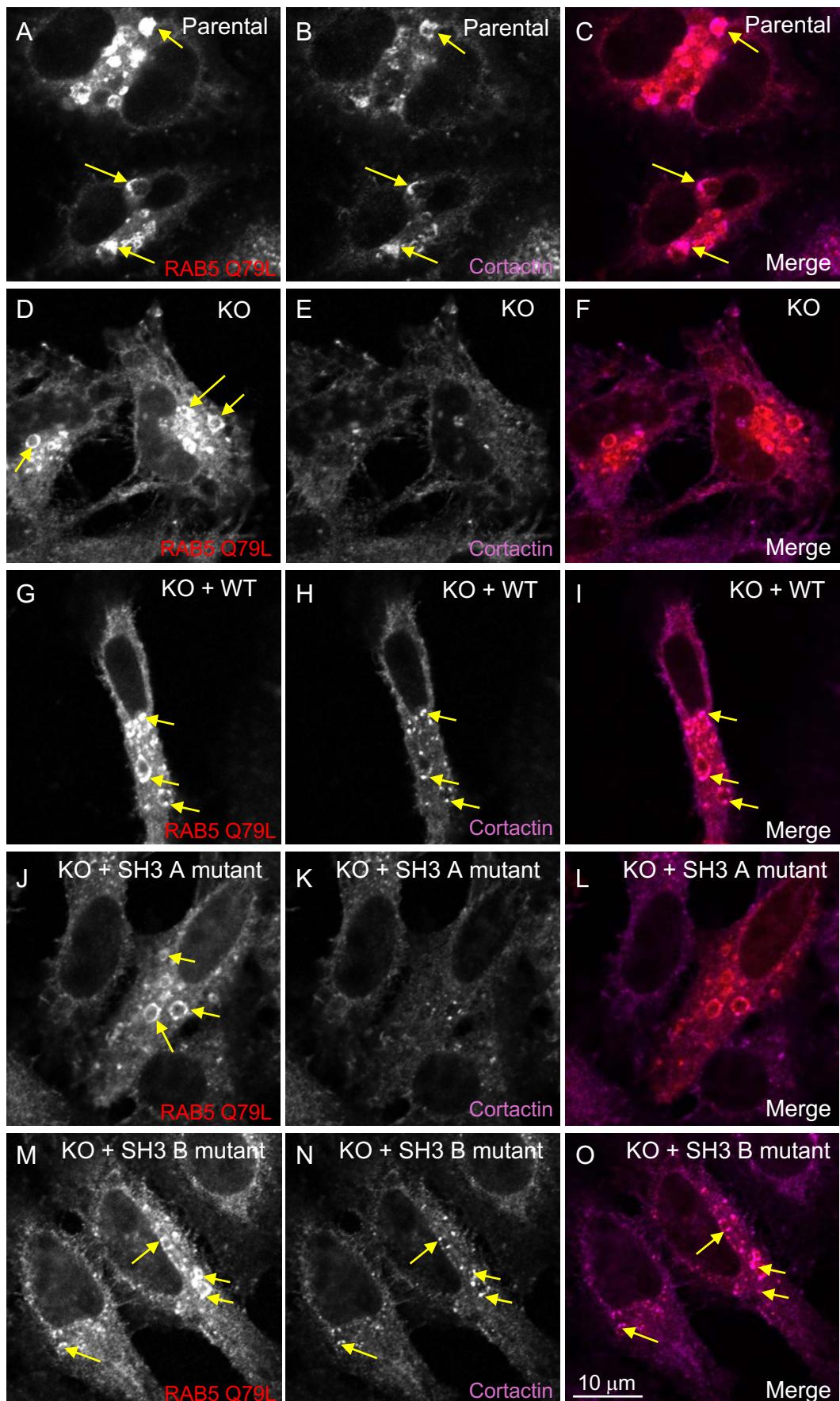
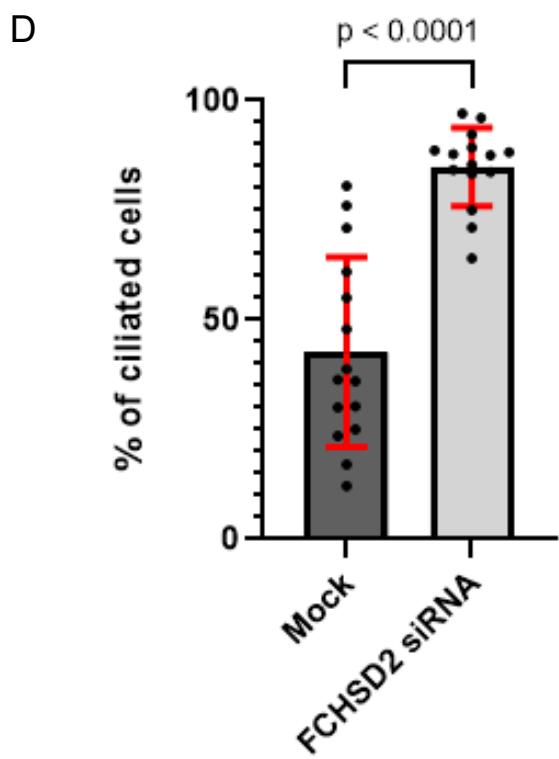
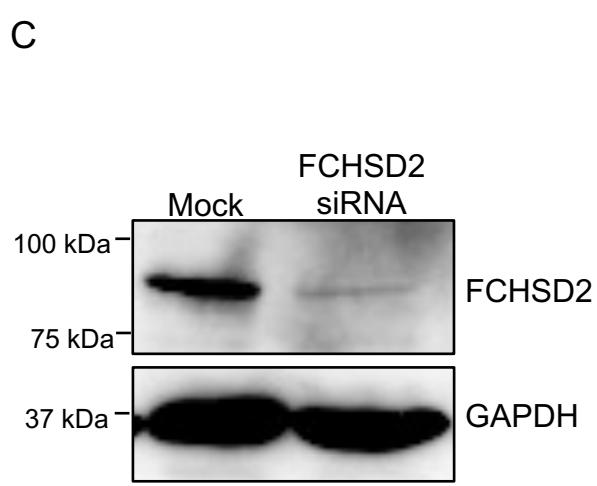
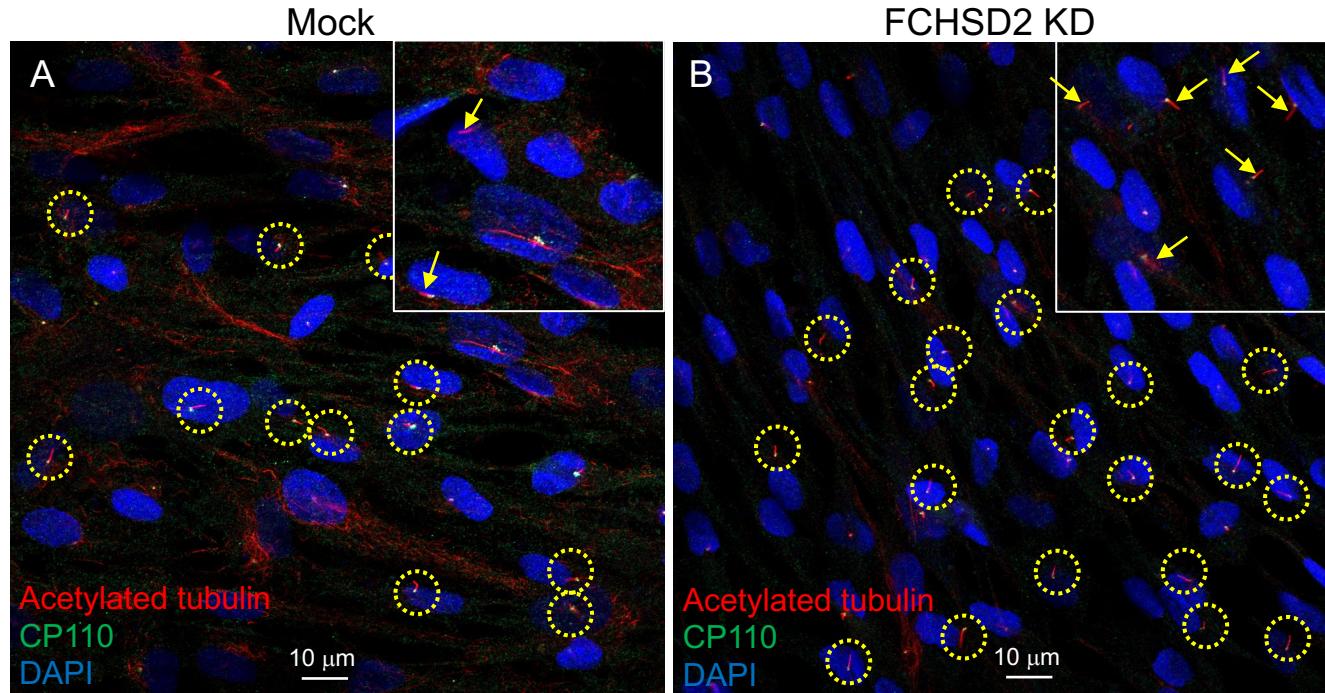
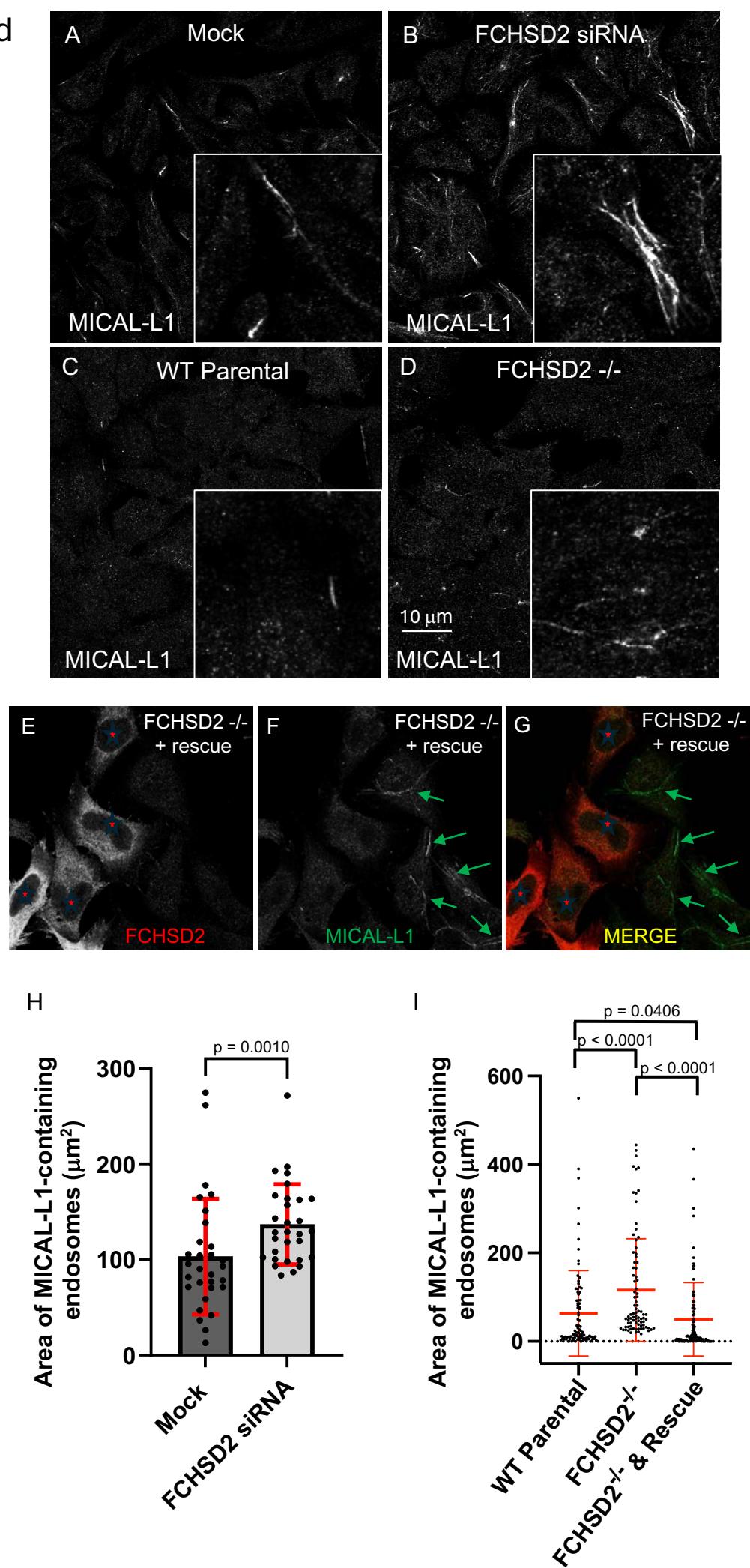
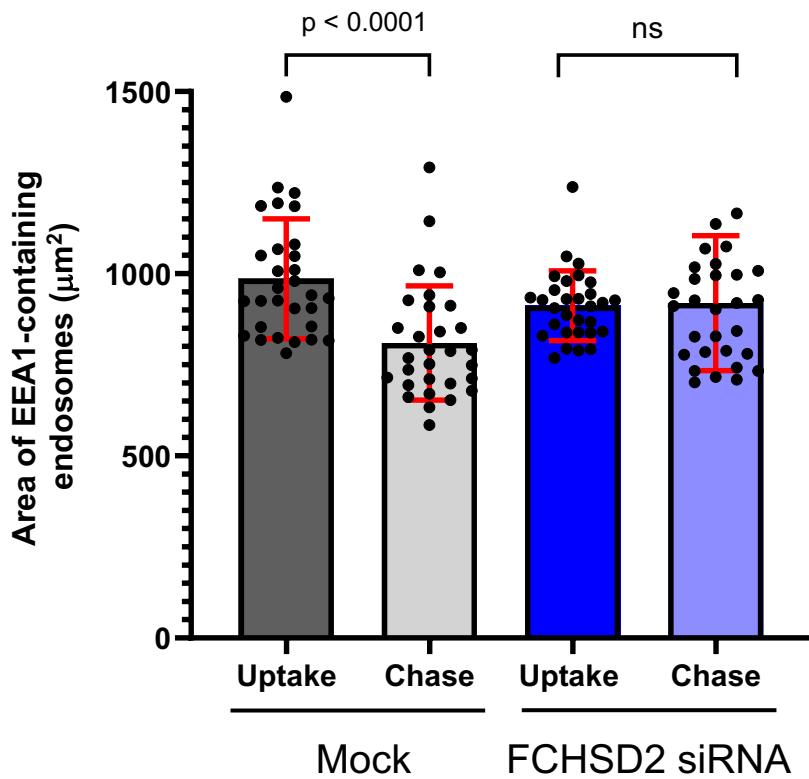





Fig. 7

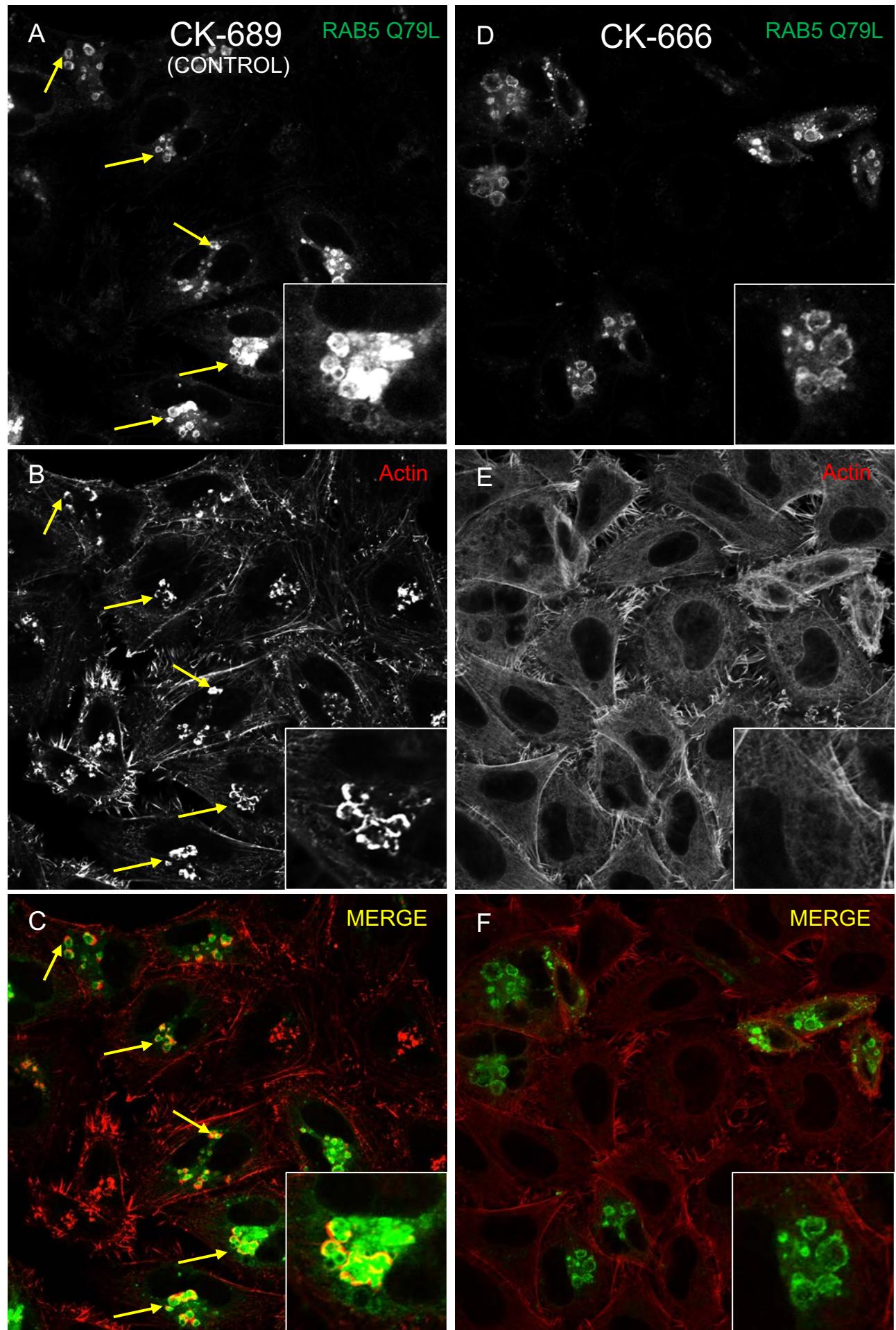








Fig. 8

Expanded View 1

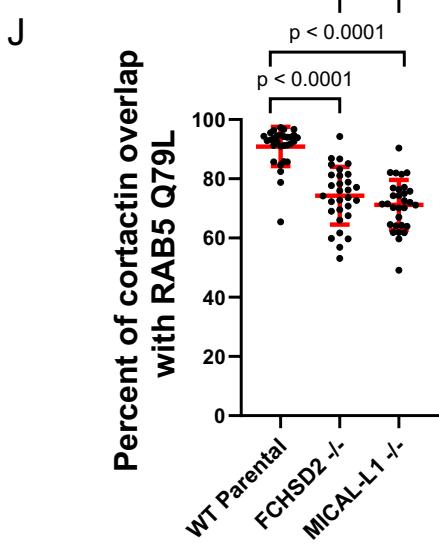
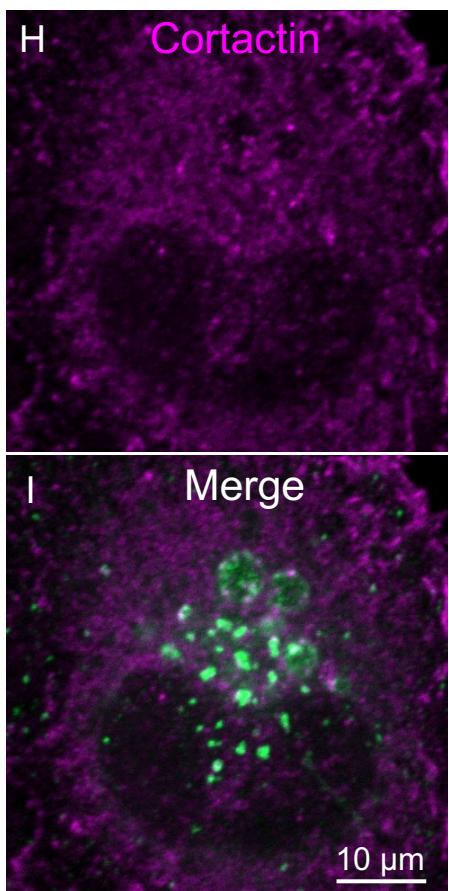
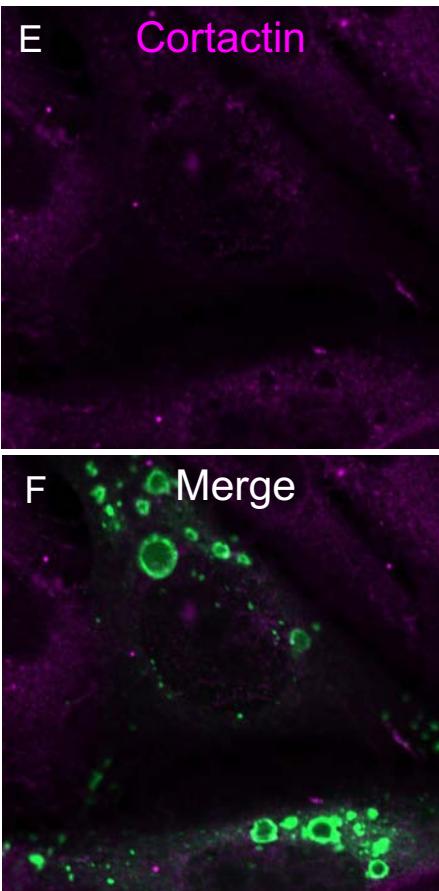
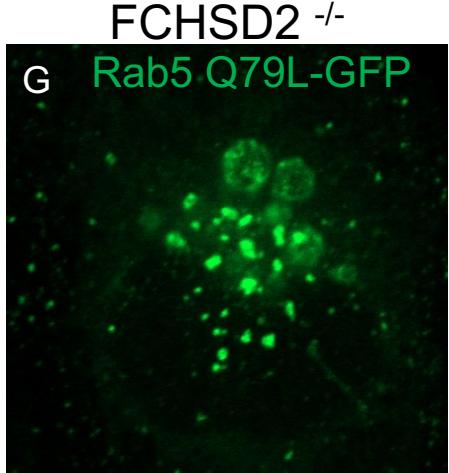
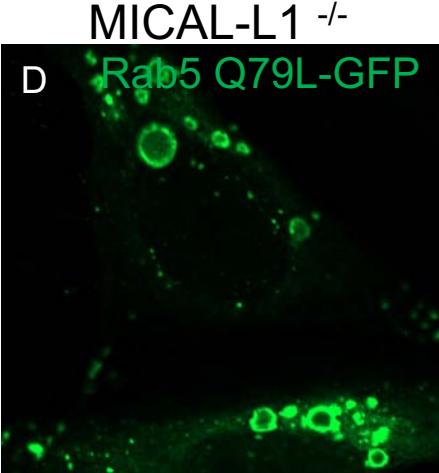
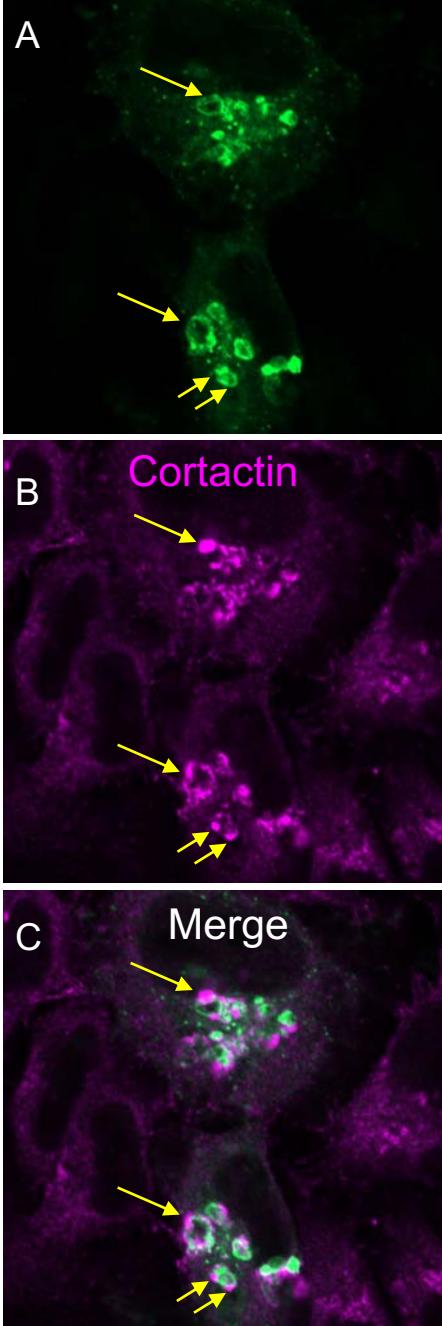


Expanded View 2



Expanded View 3

A

Expanded View 4

Expanded View 5

WT Parental

Table 1**Imaris parameters table**

Reference number	Description	Surface grain size (μm)	Diameter of largest sphere (μm)	Manual threshold value	Region growing estimated diameter (μm)	Quality above
1	FCHSD2 localization: FCHSD2 puncta	0.0800	0.200	740.43	0.600	-0.181
2	FCHSD2 localization: Rab5 QL structures	0.0500	0.400	5194.76	0.500	3962
3	Endosome morphology: EEA1	0.0500	0.400	4073.89	0.500	6679
4	Endosome morphology: MICAL-L1	0.198	1.00	5751.4	N/A	N/A
5	Fission assay: Tf and EEA1	0.250	3.48	5746	1.30	427
6	Cortactin at Rab5 QL: mCherry-Rab5 QL	0.0500	1.00	9696.54	0.500	5148
7	Cortactin at Rab5 QL: GFP-Rab5 QL	0.0500	0.400	5194.76	0.500	3962
8	Cortactin at Rab5 QL: Cortactin	0.0800	0.200	3388.84	0.600	-0.128
9	EEA1-Cortactin contacts: EEA1	0.200	0.638	2.69884	N/A	N/A
10	EEA1-Cortactin contacts: cortactin	0.170	0.543	2.46539	N/A	N/A