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Abstract

Throughout history, populations from numerous species have been deci-
mated by epidemic outbreaks, like the 19th-century rinderpest outbreak in
Cape buffalo (≈ 90% mortality) and Black Death in humans (≈ 50% mor-
tality). Recent studies have raised the enticing idea that such epidemic
outbreaks have led to strong natural selection acting on disease-protective
variants in the host populations. However, so far there are few, if any, clear
examples of such selection having taken place. This could be because so
far studies have not had sufficient power to detect the type of selection an
epidemic outbreak must induce: strong but extremely short-term selection
on standing variation. We present here a simulation-framework that allows
users to explore under what circumstances it is possible to detect epidemic-
driven selection using standard selection scan methods like FST and iHS.
Using two examples, we illustrate how the framework can be used. Further-
more, via these examples, we show that comparing survivors to the dead has
the potential to render higher power than more commonly used sampling
schemes. And importantly, we show that even for outbreaks with high mor-
tality, like the Black Death, strong selection may have led to only modest
shifts in allele frequency, suggesting large sample sizes are required to obtain
appropriate power to detect the selection. We hope this framework can help
in designing well-powered future studies and thus lead to a clarification of
the role epidemic-driven selection has played in the evolution of different
species.

Significance Statement

Our study introduces a simulation-based framework, SimOutbreakSelection
(SOS), which enables researchers to design studies that have power to de-
tect epidemic-driven selection while taking sampling time points and demo-
graphic history into account. We use rinderpest in African Buffalo and the
Black Death in Medieval Sweden as examples to showcase the framework.
Via these examples we also show that large sample sizes are needed even
for severe epidemics like the Black Death and that the often used sampling
strategy where samples from before the epidemic and samples from after are
compared is not always optimal.
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1 Introduction

Outbreaks of severe disease epidemics have had devastating effects on many
human and animal populations throughout history. Since the worst out-
breaks are known to have killed large proportions of the affected popula-
tions, any potential genetic variant that increased the ability of its carriers
to survive the outbreak must have been under extremely strong positive nat-
ural selection. Nevertheless, evidence of selection driven by severe epidemic
outbreaks has been limited, despite efforts to investigate the effect on the
host population of several outbreaks with high mortality [1].

Early studies delved into selection driven by epidemics on a genic-level
[2–5] and recently researchers have begun conducting selection scans to ad-
dress some of these questions [1, 6–9]. For instance, the Black Death, a
canonical example of an epidemic disease, has been extensively studied in
both ancient and modern individuals [8–12], yet no clear and undisputed
evidence of epidemic-driven selection has been found in these selection scans
[7, 9, 13]. It is possible that the lack of wide-spread evidence is due to this
type of selection rarely, or never, occurring because it requires a protective
variant to already be present in the population when the outbreak takes
place. However, it may also simply be due to limitations in the studies
that have been performed, such as limited sample size. While the ability to
study ancient DNA has expanded the scope of research on selection across
time [14–18], the number of samples that have been analysed so far may
not have been sufficient to answer questions related to epidemic-driven se-
lection [13]. Moreover, commonly used methods for detecting selection in
population genetics are optimized for continuous selection over many gener-
ations acting on new variants [19]. In contrast, selection driven by epidemic
outbreaks is short-term (the time each outbreak takes) and must necessar-
ily act on standing variation, because the short term nature of outbreaks
leaves prohibitively short time for a new advantageous mutation to occur
and spread in a population. Lastly, most current methods rely on detecting
allele frequency changes that occur only at the selected locus [20]—a notable
limitation given the nature of epidemics to strongly increase genetic drift as
a consequence of mass death in a population [21].

In light of the aforementioned considerations and limitations, we here in-
troduce a simulation-based framework called SimOutbreakSelection (SOS),
which allows users to explore under what settings (e.g. sample size, sampling
scheme, selection scan method)—if any—it is possible to detect epidemic-
driven selection on a single advantageous variant in their population and
epidemic of interest. For instance, SOS can be used to see if the number
of samples one has access to are enough to have reasonable power to detect
selection and, if so, which methods would provide the most power. Similarly,
one can explore how many samples would be needed for a given sampling
scheme and selection scan method of choice by performing simulations with
selection using a range of different sample sizes, and for each of these, esti-
mating power as the proportion of times the variant is detected to be under
selection. Through this framework, we aim to facilitate the design of well-
powered studies that can reveal the extent to which epidemic-driven selection
has actually taken place.

In this paper we will first introduce the framework. Then we will illus-
trate how it can be used via a few examples and finally we will discuss the
benefits and limitations of using it. Importantly, besides illustrating how
the framework can be used, the examples also reveal two key points about
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the power to detect epidemic-driven selection: 1) that large sample sizes
will often be needed to obtain adequate power because the increase in al-
lele frequency due to selection can be modest even in an outbreak with a
mortality of 50% and 2) that comparing survivors to those that have died
from the epidemic is worth considering, since it can enhance detection power
compared to several other sampling schemes under certain circumstances.

2 Results

2.1 Overview of the Framework

Our framework, SOS, is based on the forward-simulator SLiM [22] and it pro-
vides a straightforward means of assessing the power of various methods to
detect selection driven by an epidemic. With SOS, users can flexibly simulate
a customized epidemic scenario featuring a specific genetic variant under se-
lection, sample a chosen number of individuals at one or more designated
time points, calculate and plot a range of commonly employed selection scan
statistics, and summarize the results from multiple simulations to estimate
the power of each method expressed as the proportion of simulations in which
selection was detected. This means that users can use the framework to help
them design well-powered selection studies of historical epidemics, such as for
instance rinderpest in African buffalo and Black Death in Medieval Sweden.

Figure 1: SOS Framework. A. Input: There are three required input types to use SOS.
They are the (1) demographic simulation, (2) the details of the epidemic and (3) the target
generations and populations to be saved when simulating the epidemic with selection in
SOS. B. SOS: There are three steps to the SOS tool which consists of (1) simulating the
epidemic, (2) sampling the different time points and different sample sizes for each sampling
scheme, and (3) running different selection scan methods to calculate summary statistics.
C. Output: SOS plots different summary statistics per simulation and sampling. These
summary statistics can also be used to calculate power of the different selection scan
methods. For convenience, and to make the tool as flexible as possible, SOS offers the raw
simulation data (i.e. genotypes in a VCF file) of sampled populations and time points as
output in case the user wants to explore this in other ways.

To work, SOS needs three types of input (Fig. 1A). The first type of
input is data that mimics the relevant population right before the epidemic
occurred. This can be obtained by simulating a realistic demographic his-
tory informed by the current literature in addition to the user’s knowledge
about their organism. The second type of input is information about the
course of the epidemic in question. This includes the number of outbreaks
and thus population bottlenecks, bottleneck size(s) and bottleneck length(s).
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Additionally, it includes the user’s assumptions about the potential advanta-
geous variant. For this it is worth noting that to make it possible to sample
deceased epidemic victims, the framework is built on the use of a non Wright-
Fisher model for the epidemic forward simulations. This also has the benefit
that selection acting on the advantageous variant is modelled using viabili-
ties, i.e. a survival probability (or 1-mortality rate) for each genotype (VAA,
VAa, Vaa), as opposed to a single relative fitness coefficient, which makes the
selection model easier to relate to reported mortality rates during epidemics.
For the users, this in practice means that they have to specify the following
assumptions about the potential advantageous variant: its allele frequency
right before the epidemic (starting frequency), whether its mode of inheri-
tance is additive, recessive or dominant, and the viability of its homozygous
carriers (VAA). Given this—and the size and length of the bottleneck(s)—a
fitness model is fully specified (see Materials & Methods). The third and
final type of input is what time points and populations should be saved, so
SOS can later sample individuals from these and calculate different summary
statistics based on those samples.

Once all three types of input are specified, SOS is used to simulate the
epidemic with selection (Fig. 1B. step 1) as many times as the user wants.
And importantly, it allows the user to subsequently sample from those sim-
ulations at one or more of the time points that were specified as part of
the third input (Fig. 1B. step 2). Finally, SOS can then be used to calcu-
late different selection scan statistics from the samples and thus to evaluate
which ones can detect epidemic-driven selection given a particular sampling
scheme (Fig. 1B. step 3). Currently, the selection statistics available within
SOS include classic frequency-based methods such as the fixation site in-
dex (FST ) and the joint site frequency spectrum (jSFS) as well as popular
haplotype-based methods like iHS. Hence for example, the user can specify
that they want to compare 100 samples from before versus 100 from after
an epidemic with FST . SOS will then perform both the sampling and a FST

selection scan and either visualise the selection scan results or summarise
them into power estimates (Fig. 1C). Additionally, SOS can also provide the
raw sampled output to make it possible for the user to perform additional
statistical analyses of the sampled data if relevant.

Below we illustrate how SOS can be used in practice with two exam-
ple epidemics. In both examples, for simplicity, we simulated data from
two chromosomes, equal to human chromosomes 21 and 22 (a total of 68.9
Mb), and chose to consider the selected variant successfully detected if it was
among the top three candidate variants or if one of the top three variants was
in strong linkage disequilibrium (LD) with the selected variant (r2 > 0.8).
Furthermore, for speed, we performed all our power analyses by first run-
ning 10 simulations for each epidemic scenario (i.e. combination of sample
scheme, viability, sample size and starting allele frequency) each with a dif-
ferent selected locus followed by 100 subsamplings of each of those and then
estimating power as the proportion of those 1000 simulation replicates per
scenario. However, we note that the length and number of chromosomes
simulated, the detection criteria, and the number of simulations performed
can all be adjusted by the user.

2.2 Example of use: Rinderpest in the African Cape buffalo

The iconic Cape Buffalo went through a severe epidemic outbreak of rinder-
pest in the final decades of the 19th century, which led to a high number of
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fatalities across the species range. Given the strong reduction in population
size, approximately 90%, we were interested in exploring if this extreme epi-
demic outbreak drove positive selection on any single genetic locus. More
specifically because we had 20 present day samples from Kruger National
Park we wanted to use SOS to investigate if this was enough for a well pow-
ered study and if not whether, for example, adding more modern samples
and/or some older samples from before the epidemic would lead to a useful
study.

As mentioned earlier, to be able to use SOS three types of input are
needed: (1) data that mimics the relevant populations(s) right before the
epidemic-driven bottleneck, (2) a description of the epidemic-driven bottle-
neck and assumptions about the nature of the potential selection, and (3) a
delineation of the populations and generations of interest for later analyses
(Fig. 1). To answer our questions for the rinderpest epidemic in African
buffalo, we therefore used SOS in the following way:

For the first input type, we simulated data that mimicked the population
from which we had sampled (n = 20), Cape buffalo from Kruger National
Park (KNP). To this end, we used a recently published PSMC [23] analysis
when simulating using SLiM [22] the demographic history of KNP Cape
buffalo while cross-checking our simulations with the present-day levels of
heterozygosity of KNP Cape buffalo (see Materials and Methods).

For the second type of input, we compiled a combination of census data
of KNP buffalo and previous work on rinderpest [24]. This provided us with
an estimated size and length of the epidemic-driven bottleneck: about a
90% decrease in population which took place in the span of approximately
1 generation. Following this, we decided to perform a gradual recovery
taking place across 15 generations post-epidemic to present-day. For the
advantageous variant, we initially assumed an additive model of inheritance
during the rinderpest epidemic and to get a broad overview, we explored all
possible combinations of four different viabilities for the homozygous carriers
(VAA = 1, 0.8, 0.5, and 0.3) and four different starting frequencies (fA = 0.1,
0.2, 0.3, and 0.4).

For the third input, we specified that we wanted to save the following
time points of interest: the present plus the generations right before and
right after the epidemic in case it turned out our available modern data
were not enough for a well-powered study.

With these inputs we simulated selection during the epidemic using SOS.
We then first investigated whether our 20 modern samples led to enough
power by sampling 20 simulated samples from the present-day (saved by
SOS during simulations) and applying the following statistics often used to
detect selection using only present day samples, namely iHS, π and Tajima’s
D. Since computing iHS is inefficient we chose only to focus on the simu-
lations from the selection scenario with the strongest viability (VAA = 1).
Unfortunately, even for this scenario our simulations and subsequent sam-
plings show that there is insufficient power (≤ 4.5%) to detect epidemic-
driven selection using any of the applied statistics when looking solely at 20
present-day samples (Table S1).

Next, we tried to apply SOS to the same simulations, but using a much
larger sample size (n = 1000) from the present day generation in order to get
a sense of how many more samples we would need to obtain a well-powered
study if we analyse only present-day samples. However, even at n = 1000
detection of the selected locus did not render sufficient power (≤ 7% power)
(Table S1).
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Finally, we explored whether adding historical samples from before, and
potentially also right after the epidemic, might help and if so, how many
samples would then be needed. More specifically, we used SOS to estimate the
power for two common selection statistics, FST and jSFS, for the following
two additional sampling schemes assuming a range of different sample sizes
per group of samples being compared (n = 20, 50, 100, 200 and 500):

1. Before versus Present: Comparing individuals from before the rinder-
pest epidemic to the present-day population (i.e. 15 generations post-
epidemic).

2. Before versus After: Comparing individuals from before the rinderpest
epidemic to the individuals of the next generation.

We used SOS to estimate the power for each possible combination of
simulated values of fA and VAA. We did this for both FST and jSFS, however
we will only describe the results for FST here since the results for jSFS were
in general similar to those of FST and when different, FST tended to perform
better (Fig. S3).

Overall, the two comparative sampling schemes for the rinderpest epi-
demic in Cape buffalo yielded markedly increased detection power compared
to performing selection scans solely on present-day samples (Fig. 2A). More-
over, they both led to some well-powered designs, especially when the advan-
tage of carrying the advantageous allele was highest (VAA = 1): both Before
versus After and Before versus Present had powers over 80% when using
FST for n ≥ 50 samples from each of the time points (Fig. 2A). When the
advantage is lower VAA = 0.8, 50 samples from each time is also enough to
obtain a power of at least 80% for the Before versus After sampling scheme,
but for the Before versus Present at least 100 samples from each time point
are needed. For even lower viabilities, the number of samples required be-
comes highly dependant on the starting fA of the advantageous allele: the
lower the starting fA, the lower the power. And for the lowest investigated
starting fA, 0.1, the number of samples from each time point required to
obtain a power of at least 80% are 200 and 500 for VAA = 0.5 and 0.3,
respectively when using a Before versus After sampling scheme. Notably,
n = 20 samples from each time point led to only modestly powered studies
across all explored viabilities (e.g power of less than 59% using FST ) for both
sampling schemes.

As stated in the beginning, we chose to focus on an additive model and
thus all the results above are under that model. However, we also tried to
perform the same simulations under a recessive model (Fig. 2B; Table S2).
Interestingly, for the sampling scheme with only present-day samples there
was actually one scenario (VAA = 1 and an initial fA = 0.3, where we ob-
tained 63% power using iHS on n = 1000 present-day samples (Table S2).
Though this could potentially be due to iHS being most powerful when the
target allele has a frequency between 0.4 and 0.8 [25]. However, we note that
all other tested scenarios under recessive selection rendered 0 or close to 0%
detection power, suggesting that more than 1000 present-day samples would
be needed to reach a well-powered study for this sampling scheme assuming
a recessive inheritance model. For the comparative sampling schemes we
note, not surprisingly, that more samples are required under recessive se-
lection compared to under additive selection in all comparable investigated
scenarios. Considering these results, if we wanted to design a study to look
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into the rinderpest epidemic in KNP buffalo, we would discard the possi-
bility of solely using present-day data to detect epidemic-driven selection.
The most optimal of the designs explored, power-wise, is having samples
from before and right after the epidemic and using FST . For this design
we learned that, even under strong selection (VAA = 1), having at least 50
samples per comparative group is needed for a well-powered study (i.e. de-
tection power ≥ 80%). Moreover, under weaker selection VAA ≤ 0.8 and
smaller starting allele frequencies, even more samples would be necessary
(Fig. 2; Table S1 and S2). Generally speaking, the largest fA feasible un-
der any assumed advantage led to the highest power and therefore the most
optimistic assumption with the difference in power being sometimes large:
e.g. with n = 100 the power for FST Before versus After when fA = 0.2 is
≈ 44% of the power when fA = 0.3 assuming VAA = 0.3. Most promisingly,
since modern samples are usually easier to obtain, our simulations showed
only a modest difference in detection power between Before versus After and
Before versus Present in either modes of selection.

Figure 2: Simulation based estimates of detection power assuming additive
and recessive selection in rinderpest in African Cape buffalo. Power to detect
selection driven by the rinderpest epidemic with a 90% mortality estimated using SOS for
different combinations of sampling schemes, initial allele frequencies of the advantageous
allele (fA), viabilities of the homozygous carriers of the advantageous allele (VAA), and
sample sizes for each grouping (n) (see Table S1 for exact values). Power was estimated
as the percentage of simulation replicates, where the selected variant was detected from a
total of 1000 performed simulation replicates per scenario with FST for (A) additive and
(B) recessive selection. Note that results for some initial allele frequencies are missing for
some of the VAA values because those combinations are biologically unfeasible. For instance
with an initial allele frequency of 0.4, then assuming Hardy Weinberg Equilibrium right
before the outbreak, 16% of the population is expected to be homozygous carriers of the
advantageous allele and that means 90% of the population cannot be killed if the viability
of the homozygous carriers, VAA, is set to 1 (i.e. they all survive).
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2.3 Example of use: Black Death in Medieval Sweden

In our second example of how SOS can be used we explored an epidemic
with different characteristics to those of rinderpest. Where rinderpest was
a severe single generation epidemic in Cape buffalo, for our second example
we explored a historical multigenerational epidemic that was comparatively
less lethal, but with one of the largest death tolls in human history: the
Black Death with a focus on Medieval Sweden.

The bacterium Yersinia pestis has been responsible for some of the most
devastating pandemics in human history. Among the three major plague
pandemics, the second plague is recognized as a turning point in European
history where up to 60% of the European population is believed to have
perished in less than a single generation [26]. Several studies have looked
into whether Black Death could have posed a strong selection pressure upon
variants that confer protection against Y. pestis in the European population
[7, 9, 12], however clear, undisputed evidence of such selection has yet to be
presented [13].

Much of the second plague pandemic research has concentrated on popu-
lations and regions where abundant multidisciplinary resources exist locally
in relation to the Black Death [27–31], such as England, France and Italy.
Comparatively less is known about the Scandinavian “Great Death”, as the
second plague is referred to in contemporary Swedish.

Motivated by previous studies that have searched for putative plague-
driven selection, we used SOS to explore when, and if, it would be possible
to detect plague-driven selection in Medieval Sweden while mimicking the
sampling schemes many related studies have used i.e. Before versus After
[7–9, 12]. Additionally, we decided to explore a similar sampling scheme
used in a few studies of epidemics in relation to the Black Death [8] but
also used for exploring other acute epidemics, such as Ebola [6]: comparing
the dead (non-survivors) to survivors. In principle, comparing those that
died from the epidemic to those that survived should allow us to assess if a
variant that putatively confers protection against Y.pestis is found in higher
frequency among the survivors relative to the victims.

To explore these sampling schemes for Black Death in Medieval Sweden,
we used the Gravel model [32] in SLiM to simulate the demographic history
of a European-like population for our first SOS input (Fig. 1A). The second
input type required compiling information about the plague in Sweden. We
used historical records and accounts by various experts to estimate the size
and length of the plague-driven bottlenecks in Sweden [26, 33, 34]: a 50%
reduction in population size from 1350 CE until 1430 CE, caused by two
outbreaks lasting a generation each and separated by one generation. We
initially aimed to explore the same range of starting frequencies and viabili-
ties for the potential advantageous variant as in our rinderpest example, but
realised that the majority of lower viabilities led to no observable power.
Therefore we only show results for all possible combinations of two different
viabilities for the homozygous carriers (VAA = 1 and 0.8) and four different
starting frequencies (fA = 0.1, 0.2, 0.3, and 0.4). We explored both an addi-
tive and a recessive model of inheritance selection for comparison purposes.
For the third input of SOS we decided to save the following time points: the
generation before the epidemic, during the second severe bottleneck, and
right after the second bottleneck of plague.

With this input we used SOS to simulate and estimate power to detect
selection (Fig. 1B. steps 1-3) with the selection statistic, FST which is the
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most commonly used in previous studies. Fig. 3 displays the detection
power for each scenario, mode of inheritance, and method estimated by SOS.
Under an additive selection model, we note that in order to obtain a well-
powered study (power ≥ 80%) using a Before versus After sampling scheme,
at least 500 samples are needed in each grouping and that is under the
assumption of complete protection when homozygous for the advantageous
allele (VAA = 1.0) and a starting fA close to 0.3. Lower advantages of
being homozygous for the advantageous allele (VAA = 0.8) led to virtually
no detection power (< 5%) even at higher fA and larger sample sizes (Fig.
3 A) across all sampling schemes. On the other hand, when exploring the
Dead versus Survivors sampling scheme, we observe that when homozygous
individuals are completely protected by the advantageous allele (VAA = 1.0)
and assuming an initial fA of 0.3 (Fig. 3), n = 100 per grouping is sufficient
to render a well-powered study (power > 88% power across all comparative
methods).

Under recessive selection model, Before versus After as a sampling scheme
gave rise to no well-powered designs (power < 80%), suggesting only higher
initial allele frequencies could render a study well-powered assuming reces-
sive selection and with a substantial amount of samples (n > 500) (Fig.
3B; Table S3). The Dead versus Survivors sampling scheme rendered well-
powered designs but requires more samples compared to an additive model.
Particularly we note that more than 500 samples per grouping is necessary
to reach reasonable power if the initial fA is 0.1 (Fig. 3B; Table S3).

Overall, simulations of the Black Death in Medieval Sweden suggests
that only a VAA = 1 renders any power to detect epidemic-driven selec-
tion with the explored sample sizes. Hence, unless selection was extremely
strong, the amount of samples needed for a well-powered study is very large,
especially given the sampling schemes explored are based on historical sam-
ples. Notably, the optimal sampling scheme for this epidemic was Dead
versus Survivors whereas many more samples were necessary to detect the
protective variant for Before versus After (Fig. 3).

Figure 3: Simulation based estimates of detection power assuming additive
or recessive selection in Black Death in Medieval Sweden. Different plague epi-
demic sampling schemes comparing initial allele frequencies (fA), sampling sizes for each
grouping (n), and detection power using FST for (A) additive and (B) recessive selection.
Power values correspond to the percentage of simulations where the selected variant was
detected from a total of 1000 performed simulation replicates per scenario. These simula-
tions explored two different viability values for the homozygous advantageous allele (VAA)
combined with four different initial allele frequencies.
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2.4 Example of use: Gaining further insights

As a third example of how SOS can be used, we used some of the additional
output that SOS can provide to gain some further insights into why detection
power varies extensively between the different scenarios and methods for our
two example epidemics.

Allele frequency shifts

First, from the results for the two examples of epidemics we just presented
it was clear that, as expected, sample size and viability of the homozygous
carriers matter substantially for power. But it was also clear that other
factors, like starting fA and choice of sampling scheme also play a role. To
get a better understanding of why, we first investigated the raw data from
the different samples.

In particular, for all the scenarios with VAA=1, we calculated the mean
difference in the frequency of the advantageous allele (∆fA) due to additive
selection for the different sampling schemes in each epidemic and plotted
this against the estimated power for FST -based scans (Fig. 4A and B).
Unsurprisingly, we see a clear correlation: the larger the allele frequency
difference (∆fA), the higher the power. However, focusing only on the simu-
lations from the plague epidemic (Fig. 4), we also observe that the increase
in power can, to some extent, be explained by the fact that higher starting
allele frequencies result in larger differences in the allele frequency of the
advantageous allele, fA due to selection.

Furthermore, when we compare the plots for Before versus After and
Dead versus Survivors, it reveals that the increased power in the latter sam-
pling scheme can be attributed to the larger allele frequency differences it
results in.

Finally, it is worth noting the differences in ∆fA for the plague epidemic
and rinderpest epidemics, specifically for the case where the starting fA is
the same (red vs blue circles in the plots). This clearly explains much of
the big difference in power between the two epidemics: again, the larger the
∆fA, the higher power. And if one takes a look at the models used by SOS

for rinderpest and plague the difference in ∆fA can be explained by the fact
that the bottleneck sizes are very different: the starting frequency fA and
the viability for the homozygous carriers of the advantageous variants VAA

are set to the same, so to achieve different bottleneck sizes the viabilities
of VAa and Vaa differ greatly. Specifically, the larger the bottleneck, the
smaller the viability has to be for VAa and especially Vaa, which means the
overall selection pressure gets stronger, which in turn leads to a larger ∆fA.
Importantly, this overall trend is further supported by the true fA trajectory
observed for each of the two epidemics simulated assuming VAA = 1 and fA =
0.1 (Fig. 4C). Here we see that the shift in allele frequency is much smaller in
the simulations of the plague, which explains why more samples are required
to detect selection in the plague epidemic compared to rinderpest under the
same assumptions about VAA and starting fA.
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Figure 4: Allele frequency differences observed for the rinderpest and plague
epidemics assuming VAA = 1. Differences in allele frequency, ∆fA, are plotted against
detection power using FST for sampling schemes (A) Before versus After and (B) Dead
versus Survivors in all scenarios where being homozygous for the advantageous allele gives
an individual the highest advantage (VAA = 1). In the results the two epidemics are sepa-
rated by color, initial allele frequency by shape, and each panel is divided into sample size
used (n = 20, 50, 100, 200, 500). (C) True fA trajectories across time in the 10 simulations
for rinderpest in Buffalo (light blue) and for plague in Medieval Swedes (light red) for a
starting fA of 0.1; mean fA is coloured by epidemic (dark blue and dark red).

Detection Criteria

The majority of the work presented here has focused on comparative sam-
pling schemes. This is due to the little to no power we observed when
performing single-population neutrality statistics (Table S1).

As a final example of how SOS can be used we tried to use SOS’s graphical
outputs to evaluate why iHS consistently failed to detect the variant under
selection, especially when we uphold the same criteria as we have for the
comparative selection scans to consider a selected variant as detected (i.e.
the 3 variants with the highest value of the relevant selection statistic being
among or in high LD with the selected variant).

Specifically, we examined some selection scan plots from simulations with
n = 1000 that SOS can output. Notably, in some simulations there is no
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signal at all surrounding the variant under selection, even when there was a
clearly detectable signal using FST based on samples sizes of only n = 50 per
time point (Fig. 5A and B). However, we also found examples of simulations
where the selected variant is within a broad peak that spans more than 0.35
Mb but where it was not considered detected according to our detection
criteria (Fig. 5C). This implies that there are cases where we were unable
to detect the selection using our detection criteria, but where it is possible
to choose a less stringent criteria and detect the general region of interest.
Naturally, the optimal choice of detection criteria depends on the aims of the
user, but if detecting the region of interest without capturing a signal in the
advantageous variant is a reasonable outcomeSOS could be used to design a
criteria that would increase the power of iHS applied to modern samples.

Figure 5: iHS and FST graphical output by SOS comparing results for a rinderpest
simulation under additive selection, with VAA=1 and fA = 0.1. iHS was performed with
n = 1000 for the Present while FST was performed on Before versus Present with n = 50
for each time point. (A) An example iHS result that shows no discsernible peak or nearby
candidate while (B) using FST shows clear detection of the selected variant. (C) An
example iHS result that shows a broad peak where the top candidate detected was more
than 350 Kb away (blue point) from the selected variant (red star) and with r2 < 0.1. (D)
Corresponding FST result for the broad peak showing better precision than iHS.

Inspired by this, we also further explored the effect of using a different
detection criteria for FST based detection. Specifically, we tried to compare
the power obtained with the LD-based detection criteria used so far with the
power obtained using a genomic distance based detection criteria, where the
advantageous variant is considered detected if it falls within a 1Mb window
of one of the top three variants (500 Kb on each side of the top variants).
We observed that this new criteria in general led to increased power. Across
all scenarios explored the increase in power ranged 0 − 27.4% in rinderpest
(Fig. S5) and 0.1 − 16.8% in plague (Fig. S6). However we note that the
median increase is only 6.2% and 5.3%, respectively, and only in a very few
scenarios the increase made a difference in the conclusion of whether the
study was considered underpowered (i.e. < 80% power) (Fig. S7-8).
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3 Discussion

Here we have presented SOS, a simulation-based framework that allows users
to explore whether epidemic-driven selection can be detected for different
epidemic scenarios, sampling schemes, and sample sizes. Furthermore, we
have showcased, using two example epidemics, how our framework can be
used to inform users about when and, if, they have reasonable power to
detect epidemic-driven selection.

Besides illustrating how SOS can be used, the results from our two ex-
ample epidemics highlight several important points. First, our results reveal
that power is highly dependent on the size of the bottleneck and therefore
varies greatly between different epidemics. Despite the shared parameters
the two epidemics were simulated with (i.e. fA, VAA, mode of inheritance),
the different bottleneck sizes cause marked dissimilarity in allele frequency
changes, and therefore in power (Fig. 4).

Secondly, our simulations also show that unless the bottleneck size is
extreme, like for the case of the rinderpest epidemic in Cape buffalo, a
substantial number of samples appear to be necessary to obtain reason-
able power (≥ 80%). And even in an extreme case, like rinderpest, we note
that we were unable to detect the epidemic-driven selection using only 20
present-day samples. While a number of previous studies have attempted to
detect signatures of a rinderpest-driven bottleneck in African buffalo [23, 24,
35–38], few have specifically sought out signatures of selection driven by the
epidemic [2]. Notably, the previous studies have shown that neither genome-
wide heterozygosity nor site frequency spectra were altered by the rinderpest
bottleneck, which may be what has discouraged a focus on selection. How-
ever, we too find that despite simulated high death-tolls, there is no marked
difference when using standard measures of diversity or population differ-
entiation. Importantly, despite this, with sufficient samples (n ≥ 50) and
a comparative sample scheme, we can still detect signatures of rinderpest-
driven selection. This suggests that a study with focus on selection driven
by rinderpest may be worth performing.

Thirdly, not all the explored comparative sampling schemes lead to sim-
ilar power. This is especially highlighted in our results for the plague epi-
demic in Medieval Sweden where sampling scheme mattered considerably.
Specifically, Dead versus Survivors rendered markedly better power than
both Before versus After or Before versus Present. On the other hand, the
difference between Before versus After and Before versus Present was less
clear in the case where we made that comparison. This is encouraging since
samples from the present are often easier to get access to than samples from
right after the plague. However, we caution that this conclusion of course
depends on if and how the population’s size recovers after the epidemic.

Fourthly, we also observe that one assumption about mode of inheritance
matters greatly. For example, assuming additive selection would lead to over
optimistic power estimates (Fig. 2; Fig. 3) if the true inheritance model is
recessive and therefore misleading in how many samples would be necessary
to have a well-powered study.

Finally, it is also important to note that we have simulated plague scenar-
ios where a putative monogenic variant would be exceptionally protective in
the population (i.e. VAA = 0.8, 1). Nonetheless, there are several combina-
tions of viabilities and initial fA where little to no power could be obtained
(Fig. 3). If achieving sufficient power to detect a protective monogenic
variant requires a large sample size, it is conceivable that detecting poly-

13

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.06.27.601009doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601009
http://creativecommons.org/licenses/by/4.0/


genic epidemic-driven selection would require a substantially larger number
of samples. This is an especially relevant consideration given that the ge-
nomic basis for host susceptibility to infectious diseases is largely polygenic
[39, 40].

Together this suggests that running SOS before carrying out a study can
be very useful if one wants get an idea of whether the samples they have
are sufficient to perform a well-powered study. It also suggests that several
previous studies may have been underpowered [13]. In fact, the largest
plague study to date, in regards to pre- versus post-, has been with 206
individuals in total: 143 from London (38 pre; 42 during; 63 post) and 63
from Denmark (29 pre; 34 post) (Table S9). Although to fully conclude if
such studies are underpowered, simulations specific to those exact epidemics
would be needed. Importantly, if those studies were indeed underpowered,
the fact that they did not find any signatures of epidemic-driven selection
does not necessarily rule out the possibility that such selection took place.
Hence larger future studies of the same epidemics could still be interesting
to conduct.

It should be noted that SOS, and the results presented here, do have
some limitations. To begin with, SOS requires different curated inputs (Fig.
1A) making it non-trivial to use. This includes having to know specific
information regarding the epidemic one wishes to simulate. Moreover, we
have shown with our results how the criteria for finding a selected variant
plays a crucial role in detection power (Fig. 5 and Fig. S7-8). Unsurprisingly,
we observe that by using alternative criteria, such as physical distance over
LD, one’s power of detection increases. However, it of course comes at the
cost that the causal variant may be difficult to find. Importantly, all our
presented results were based on a naive outlier approach, mainly chosen
because it is the most commonly used approach in similar studies [6–9].
However, being an outlier is evidently not enough to determine whether a
variant has been under selection, and therefore it is not necessarily the most
optimal approach. A potential alternative, especially in the case of the Dead
versus Survivor sampling scheme, is to use p-values from per SNP association
tests, which is also implemented in SOS.

Another limitation is that currently SOS’s simulations builds on the
assumption that everyone in the population was exposed to the disease-
inducing pathogen. Simulating parts of the population that are not exposed
would be a more realistic way of modelling an epidemic and a relevant con-
sideration for power. It is also worth noting that while we explore recessive
and additive models of selection, other modes of inheritance can be appro-
priate if there is already known information about the host’s susceptibility
to the pathogen. Furthermore, our results have been generated under the
assumption of perfect data. This means that we have simulated perfect geno-
types. If this is a concern it should be possible to add a layer of errors with
existing tools like NGSNGS [41], so that the simulated data better mimics
the actual data a user has available, including low depth, DNA damage,
contamination, etc. While this has not been implemented in this study it
is possible to do so using the raw outputs produced by SOS and this could
help prevent overly optimistic power estimates. Finally, in our simulations
we have assumed that we have accurate information about who has died of
the epidemic and who has survived. This may of course not be the case.
For this reason SOS has a built-in option called “mixed cemetery”, which
allows users to specify a fraction of the individuals that perished from the
epidemic and the individuals that survived to be swapped, thereby mimick-
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ing the uncertainty in determining cause of death in a burial site. This could
be relevant to use if there is a substantial concern that the determination of
the cause of death is not accurate.

From a broader perspective, we note that SOS can also be used to ex-
plore power for other critical events with significant death-tolls over a short
time, besides epidemics. Recent short-term selection is of strong relevance
to a wider community interested in understanding the impact anthropogenic
disturbances has had on several species. Some of these phenomena include
tusklessness in elephants due to drastic ivory pouching [42], pesticide-driven
population declines in honeybees [43], and the cattle anti-inflammatory drug
threat to white-rumped vultures [44, 45]. Users interested in similar episodic
pressures would also be able to use SOS to design a study with appropriate
power.

In conclusion, while SOS needs to be used with care and can be further
improved, the examples in this paper clearly show that it can be highly
beneficial in designing well-powered studies. Therefore, we believe and hope
that SOS provides a valuable step in the long-term journey towards under-
standing the extent that epidemic-driven selection has affected present-day
populations.
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4 Materials and Methods

4.1 Description of the selection models used

4.1.1 Notation

In our epidemic-driven selection model we work with viabilities and use the
following notation:

We are focusing on a locus with three genotypes aa (WT), Aa (heterozy-
gous carrier of an advantageous mutation) and AA (homozygous carrier of an
advantageous mutation). In this locus, we denote the number of individuals
in the three genotype categories in generation i N i

aa, N
i
Aa and N i

AA. We also
denote the viabilities of the three genotypes Vaa,VAa and VAA. Note that
these translate into relative fitnesses with the following selection coefficients:

saa =
VAA − Vaa

VAA
sAa =

VAA − VAa

VAA

using the the following relative fitness model:

waa = 1− saa wAa = 1− sAa wAA = 1

4.1.2 Recessive, additive and dominant selection

With this notation then if we have a recessive model with saa = sAa we get
the viabilities Vaa = VAa as this gives us

saa =
VAA − Vaa

VAA
=

VAA − VAa

VAA
= sAa

Similarly, if we have an additive model with saa = 2sAa we get that VAA−Vaa

= 2(VAA − VAa) as this gives us

saa =
VAA − Vaa

VAA
=

2(VAA − VAa)

VAA
= 2

VAA − VAa

VAA
= 2sAa

In other words in an additive model the difference in viabilities of the geno-
types aa and AA (VAA − Vaa) has to be twice as high as the difference in
viabilities of the genotypes Aa and AA (VAA − VAa).

Finally, if we have a dominant model with sAa = 0 (and thus wAa =
1− sAa = 1 = wAA) we get the viabilities VAa = VAA as this gives us

sAa =
VAA − VAa

VAA
=

VAA − VAA

VAA
= 0

4.1.3 Calculating viabilities that give rise to a specified bottle-
neck size

Now assume we need to reduce the population size to X via viabilities while
taking into account the genotype counts. I.e. so

VaaNaa + VAaNAa + VAANAA = X (1)

where X is a specific populations size.
Under recessive selection we want to find Vaa and VAa and we know

that Vaa = VAa and therefore we can insert that into equation (1) and solve
for VAa:
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VaaNaa + VAaNAa + VAANAA = X

VAaNaa + VAaNAa + VAANAA = X

VAa(Naa +NAa) + VAANAA = X

VAa =
X − VAANAA

Naa +NAa

(2)

which means we have an expression for VAa (and thus Vaa) if we know X,
Naa, NAa, NAA, and VAA.

For an additive model we know per definition that VAA-Vaa = 2(VAA-
VAa). This means that

VAA − Vaa = 2(VAA − VAa)

−Vaa = VAA − 2VAa

Vaa = 2VAa − VAA

(3)

which we can then plug into equation (1):

VaaNaa + VAaNAa + VAANAA = X

(2VAa − VAA)Naa + VAaNAa + VAANAA = X

2VAaNaa − VAANaa + VAaNAa + VAANAA = X

VAa =
X − VAA(NAA −Naa)

2Naa +NAa

(4)

Similar to recessive selection, we know that in a dominant model, VAa

= VAA as per definition and thus we can also use this in equation (1) to solve
for Vaa:

VaaNaa + VAaNAa + VAANAA = X

VaaNaa + VAANAa + VAANAA = X

VAA(NAa +NAA) + VaaNaa = X

Vaa =
X − VAA(NAa −NAA)

Naa

(5)

4.2 Simulations

All simulations were performed in SLiM [22] with tree-sequence recording.
We first simulated the demographic history of each organism under a Wright-
Fisher model as described in below for Cape Buffalo and Medieval Swedes.
The recorded tree-sequence was then used as input into SLiM to simulate
the epidemic bottleneck under a non Wright-Fisher model as detailed below
for rinderpest and plague. For the epidemic phase of the simulation, we
maintained non-overlapping generations but simulated viabilities (absolute
fitnesses in SLiM) parameterised by the size of the epidemic bottleneck, the
assumed selection model and strength (see above Methods 4.1), and the
initial frequency of the target variant. We simulated two chromosomes in
SLiM with a total length of 6.89 Mb. Following the completion of each
epidemic forward-simulation, we recapitated the population using msprime

[46] with the respective ancestral population size, recombination rate, and
mutation rate for each organism. For each epidemic scenario—rinderpest and
plague—we performed 10 replicate simulations. Each of these simulations
were subsampled 100 times, leading to a total of 1000 replicates for each
combination of sampling scheme and parameters (fA, VAA, n).

We performed the following genome-wide selection scans and neutrality
statistics on the simulation replicates: FST , jSFS, iHS, π, and Tajima’s D.
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4.2.1 African Cape buffalo and rinderpest

Demography

We used the demographic history (Fig. S1) estimated for the KNP Cape
Buffalo by Quinn et al. [23]. Specifically we used the estimates for population
sizes for the first 40,000 generations, assuming a generation time of 7.5 years
based on previous studies of Cape buffalo [24]. We initiated simulations with
a population size of 100,000 diploid individuals, a mutation rate of 1.5×10−8,
and a uniform recombination rate of 1 × 10−8. Specifics on the population
splits, expansions, and bottlenecks can be seen in Fig. S1 and in the Github
repository.

Epidemic

We used population sizes estimated from census data on Cape buffalo pub-
lished in a previous study [24]. In particular we simulated the epidemic to
last a single generation (generation 40,002) and gradually recovered the pop-
ulation to present-day sizes in 15 generations. We saved the population data
in a tree sequence for the following time points: Before (40,000), During
(40,002), After (40,003), and the Present (40,017). For downstream analyses
we further divided the During time point into Dead and Survivors. Specifics
of the simulation set up can be seen in Fig. S2 and in the Github repository.

4.2.2 Medieval Sweden and Y.pestis

Demography

The demographic history for Medieval Sweden was simulated using the
Gravel model [32] as provided by SLiM recipes. We used a variable re-
combination rate using the HapMap phase II recombination map for hg19
and a constant mutation rate of 2.36 × 10−8. We took the European-like
population in the model and exponentially grew it using the same expansion
rate as in the original Gravel model until reaching the respective population
size for Medieval Sweden before the epidemic (700,000).

Epidemic

From historical records and relevant literature [33, 34], we simulated the
plague epidemic as multigenerational taking place in two different genera-
tions which, together lead to a 50% reduction in the population when com-
pared to the generation before the epidemic (58796). A general depiction
of the plague model can be seen below in Fig. S4. Specifics for the plague
epidemic simulation set-up can be found in Table S8.

4.2.3 Pairwise population statistics: FST and jSFS

Across all comparative sampling schemes we calculated Hudson’s FST [47]
and jSFS using scikit-allel [48]. We calculated these two statistics per
SNP. If the target variant itself or if a site was in strong LD (e.g. r2 >= 0.8)
with the target variant was among the top three candidates, the variant
was then considered detected for that respective method in that respective
simulation replicate. Each candidate had to be at least 1 Mb away from
each other. We performed in-house tests (data not shown) to choose which
number of top candidates was appropriate for the length of the simulated
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genome when considering a variant as a true detected outlier; i.e. too many
top candidates can lead to detecting the selected variant by chance.

Specifically for jSFS, in addition to the aforementioned conditions, we
considered an outlier a top candidate by using a two-dimensional kernel
density estimation [49] whereby the least dense outliers were considered.

4.2.4 Single population statistics: iHS, π, Tajima’s D

Single-population statistics (e.g. iHS, π, Tajima’s D) were performed on
samplings from the Present generation. We computed iHS using rehh [50]
with a minor allele frequency filter of 0.05 (min maf=0.05) and allele fre-
quency bin size of 0.01 (freqbin=0.01). Notably we performed this selec-
tion scan on only a few scenarios (rinderpest; n = 20 and n = 1000) because
of how long and computationally demanding it was across 1000 replicates
(i.e. 524.056 hrs using 75 cores).

We computed Tajima’s D and π with a 10 Kb sliding window and a 2
Kb step using scikit-allel.

4.3 Code Availability Statement

SOS can be installed using conda or mamba. The code developed for the
SimOutbreakSelection (SOS) framework, simulating data, and analysis
presented here can be found at the GitHub repository:
https://github.com/santaci/SimOutbreakSelection
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