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ABSTRACT

Humans  have  become  one  of  the  greatest  evolutionary  forces,  and  their

perturbations are expected to elicit strong evolutionary responses. Accordingly, during (size)

selective  overharvesting  of  wild  populations,  marked  phenotypic  changes  have  been

documented,  while  the  evolutionary  basis  is  often  unresolved.  Time-series  collections

combined  with  genomic  tools  present  unique  opportunities  to  study  how  evolutionary

changes are manifested at the genome-wide level. Here, we take advantage of a unique

temporal dataset from the overexploited Eastern Baltic cod (Gadus morhua) population that

exhibited a 48% decrease in asymptotic body length over the last 25 years. A genome-wide

association study revealed pronounced peaks of outliers linked to growth performance. The

contributing loci showed signals of directional selection with significantly high autocovariance

in the allele frequency and excessive intersections with regions of high Fst as well as genes

relevant to growth and reproduction. Moreover, pattern of directional selection for ancestral

haplotype of the well-known chromosomal inversions in Atlantic cod (on linkage group 12)

was observed, while the double crossover (~1Mb) enharbouring the vitellogenin genes within

this region showed signs of drift  or balancing selection.  Our results demonstrate evident

response  of  the  genome  over  a  relatively  short  time  frame  and  further  underscore

implications  for  fisheries  management  and  conservation  policy  regarding  the  adaptive

potential of marine populations.
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INTRODUCTION

Human beings play a significant ecological and evolutionary role as they manipulate

and disrupt environments and organisms by habitat alteration, pollution, climate change and

harvesting  (Palumbi 2001). This impact extends beyond a population’s distribution and its

relevant ecological landscape of one time point and influences future generations by exerting

strong  selective  pressures  (Vitousek  et  al.  1997;  Palumbi  2001;  Hendry,  Gotanda,  and

Svensson  2017).  Rapid  evolutionary  changes  caused  by  anthropogenic  pressures,  e.g.,

overfishing,  pose  special  challenges  in  detecting  induced  selection  processes,  as  the

changes usually span a relatively short time frame insufficient for a conventional sweep-like

pattern causing the complete fixation of focal alleles. Here, historical time-series samples

provide a special lens to the past in detecting evolution in action by enabling direct access to

allele frequency changes in genomic data  (Franssen, Kofler, and Schlötterer 2017). In the

context of fisheries induced evolution, one of the strongest human perturbations caused by

size selectivity or added mortality onto a fish population, so far, the only compelling evidence

for genome-level responses to overfishing comes from a 40 years of annual time series data

of Atlantic salmon. A clear decrease in age at maturity in Atlantic salmon was accompanied

by directional change in the allele frequency of vgll3 gene (Erkinaro et al. 2019; Czorlich et

al. 2018), a large effect locus explaining 39% of the phenotypic variation (Barson et al. 2015;

Ayllon et al.  2015), which was significantly correlated with fishing pressure for the target

species as well as a food species in salmon aquacultures (Czorlich et al. 2022). However, as

most traits under fishing induced selection, including life history traits like growth rate, have a

polygenic  basis  with  a  large number  of  small  effect  loci,  challenges  remain  in  both  the

identification of the contributing loci and the detection of subtle changes in frequency of the

loci (see (Reid, Star, and Pinsky 2023; Pinsky et al. 2021)). 

Eastern Baltic cod (EBC) is an Atlantic cod (Gadus morhua) population residing in

the central Baltic Sea, with the last remaining spawning ground being the Bornholm Basin

(ICES 2022).  The population  diverged from other  Atlantic  cod populations  7-8  thousand

years ago when the Baltic Sea with its current salinity regime emerged after a series of

postglacial  tectonic  shifts in combination with sea-level  changes  (Matschiner et al.  2022;

Schmölcke  et  al.  2006;  Martínez-García  et  al.  2021).  Currently,  it  is  biologically  and

genetically differentiated from all other ecotypes, e.g. western Baltic (WBC) and North Sea

cod and adapted to the peculiar  Baltic  environment and experiences low salinities,  high

pCO2,  prevalent  hypoxia,  and  inconsistent  and  highly  variable  seasonal  patterns  of

temperature,  salinity  and  oxygen  contents  (Reusch  et  al.  2018;  Zillén  et  al.  2008;
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Stockmayer  and  Lehmann  2023).  These  fluctuating  environmental  conditions  have

contributed  to  the  indistinguishable  pattern  in  the  otolith  rings  for  age  readings,

compromising the age-related data for stock assessments of EBC (Heimbrand et al. 2020).

At present, EBC is isolated from neighbouring WBC in the absence of genetic inflow (Paul R.

Berg et  al.  2015;  Hemmer-Hansen et  al.  2019),  even though some limited hybridization

occurred historically, at high population abundance (Helmerson et al. 2023).

EBC plays a major role not only ecologically as a key predator species in the food

web, particularly notable in the Baltic’s uniquely low biodiversity  (Ojaveer et al. 2010), but

also economically as it has been fished recreationally and was the largest target species for

commercial fisheries with an annual catch of up to 400,000 tons in the mid-1980s  (ICES

2022). However, overfishing and size-selective fishing continued with excessively high total

allowable catch resulting in fishing mortality typically 2-3 times higher than the maximum

sustainable yield (MSY) (Birgersson 2022; ICES 2019; Eero et al. 2011; Zeller et al. 2011).

Since the mid-1990s, multiple aspects of the EBC population have been deteriorating and

have  recently  reached  the  unprecedented  lowest  point  in  their  state  since  the  1950s

(Birgersson 2022; Eero et al. 2023). The spawning stock biomass (fish sized over 35cm) has

declined sharply in recent years, together with recruitment and loss of two major spawning

grounds  (Cardinale  and  Svedäng  2011;  Köster  et  al.  2017).  Higher  mortality  on  older

individuals can lead to size truncation, growth retardation, and worsened condition (weight-

at-length) (Eero et al. 2023; Möllmann et al. 2009; Svedäng and Hornborg 2014; 2017). The

size at first maturity and condition of the fish marked the lowest value of L50 (length at 50%

of population reaches maturity) under 20 cm in recent years (Eero et al. 2015; ICES 2021;

Mion et  al.  2021;  Svedäng  and Hornborg 2017).  A  complete  collapse  of  the  stock  has

resulted in a ban on targeted fishing on EBC since 2019 (ban renewed for 2024) but the

condition of the population has not been able to recover to a healthy status so far. 

Despite the prominent changes in body length in the EBC, the genetic basis of the

change, thus the evolutionary consequences of overfishing, has not been investigated until

now.  Here,  we  investigated  whether  or  not  changes  in  a  heritable  trait  under  selection

caused by size-selective trawling translates to a detectable response of the genomes over

time. To this  end,  we modelled individual  growth using archived otoliths and sequenced

whole-genomes  of  the  population  over  multiple  time  points  in  the  period  of  1996-2019

(referred as “temporal population” hereafter). Individuals caught in Bornholm Basin (Figure

1A) were selected to cover the full  breadth of time and phenotype spectrum, by random

sampling along the length distribution for each time point  (a sample set  called “random”

hereafter), then including individuals at the both tails of the distribution (called “phenotype”).

A genotype-phenotype association study (GWAS) identified pronounced peaks of outlier loci

near genes linked to growth and maturity,  which in  turn showed signals  of  selection.  In
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parallel, we found a heterogeneous pattern of selection in a large inverted region in linkage

group (LG) 12. This study is, to the best of our knowledge, the first in a fully marine species

to  provide  leads  that  suggest  genomic  changes  to  underlie  phenotypic  evolution  of  a

polygenic trait in response to overfishing in the field. It showcases the strength of combining

temporal  genomics  of  wild  population  with  its  phenotype  data  and eventually  guides  us

through connecting dots of fisheries induced evolution.

RESULTS

Temporal Changes in Growth Rates

To demonstrate a phenotypic change under size-selective fishing pressure over the

last 25 years (1996-2019), we focused on individual growth rates as the key heritable trait.

We first aged archived otolith samples of 152 EBC individuals from Bornholm Basin using a

novel  method  of  biochemical  reading  as  age  information  of  EBC  recorded  through  a

conventional method has been unreliable (Hüssy et al. 2021). The oldest fish was a 7-year-

old caught in 1996 while individuals as old as 5 years old could be sampled in more recent

years (2014 and 2019)  (Table  S1).  Using  the distance from the core  to each chemical

annulus, the estimated otolith radii, von Bertalanffy growth parameters were estimated for

each fish individual and each temporal population (von Bertalanffy 1957); Table S2). Fish in

1996  grew to  reach  a  larger  terminal  maximum size,  and  had  a  smaller  Brody  growth

coefficient  k,  meaning they  took longer  to  approach their  terminal  length  than fish from

recent years. The median of estimated individual length at infinity,  L∞, decreased by 48%

from 1996 to 2019, with a small inconsistency in 2008 (Figure 1B and S1A). Remarkably,

this translates to a maximal fish length (L∞) decrease from 1150 mm in 1996 to 539 mm in

2019  when  back-calculating  fish  body  length  from  otolith  radii.  Accordingly,  growth

coefficient k increases over the period with the same trend in 2008 in both group parameters

and individual parameters (Figure S1B). A growth performance index (Φ) for each fish of

different years, which summarises the growth (Moreau, Bambino, and Pauly 1986), showed

a consistent decrease in time (Figure 1C). Additionally, the otolith radii at age 1 for all fish

were back-calculated to body length and compared to examine any deviation in the juvenile

growth of EBC in temporal trend (Figure S1C). Although mean distances to the first-year

radii do not differ, the variance of the radii significantly reduced over time (Bartlett’s test for

variance, p-value = 0.02868), indicating truncated phenotypic diversity in juvenile growth.

Here,  the  condition  of  individual  fish  at  catch  (relative  condition  factor  (Le Cren  1951))

showed statistically different population mean only for 2002 (Figure S2A). When tested for
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correlation, individuals' condition did not predict either the growth parameters, L∞ and k, or Φ

(r = -0.03 (p > 0.05), r = 0.09 (p > 0.05), and r = 0.09 (p > 0.05) respectively). (Figure S2B-

D). Overall, this supports that the population has shifted to grow slower and reach smaller

size when older during the study period of heavy fishing pressure. 

Genome-wide Temporal differentiation 

In order to investigate any temporal differentiation of EBC which might potentially

correspond to the phenotypic change, we subjected a set of 5,847,389 SNPs (MAF > 0.005)

identified  for  115  “random”  samples  to  population  summary  statistics.  First,  a  principal

component  analysis  (PCA)  using  SNPs  outside  previously  reported  large  chromosomal

inversions revealed a panmictic population structure among time points (Figure 1D). The

variances explained  by PC1 and PC2 were relatively  small  (1.26 and 1.03%) while  the

loadings for each PC were well distributed along the whole genome. Second, we applied a

temporal  covariance  analysis  developed  by  Buffalo  and  Coop  (Buffalo  and  Coop 2019;

2020) to test genome-wide pattern of selection signature. The pairwise autocovariance of

allele frequency changes in all  time windows showed a pattern that resembled that of a

simulated  neutral  scenario  (Figure  S3  and  S4).  The  observed  temporal  autocovariance

values from the samples were within the distribution of the expected under drift (p > 0.05 for

all  paired autocovariances),  which shows a lack of genome-wide selection signal  (Figure

S5).  Lastly,  genome-wide  nucleotide  diversity  (π)  and  absolute  divergence  between

populations (dxy), calculated for 50 kb - windows varied only little among years (Figure S6).

As expected,  windowed π and dxy varied along linkage groups depending on differences in

recombination  rate  along  the  chromosome,  e.g.  centromere  regions  featuring  less

recombination  (Sardell  and Kirkpatrick 2020;  Tigano et  al.  2021).  Some divergence was

observed at the beginning of LG2 and in the central section of LG7, which were most likely

caused by the varying frequency of the inverted regions. Overall pattern shows comparable

genome-wide π (ranging from lowest value of 0.0071 for 1996 to highest value of 0.0077 for

2008) and consistent slight increase in dxy values as the sampling points are more distant,

which indicates drift over time. 

Genotype-Phenotype Association and Selection of SNPs linked to growth

In  the  lack  of  genome-wide  signal  of  selection,  we  sought  to  identify  loci  under

directional selection by a genome-wide association (GWA) analysis using individual growth

performance index (Φ) as a phenotype and 679,584 biallelic SNPs (MAF > 0.05). Three

regions of the genome were clear outlier peaks with -log10P values around 6 and most likely

to be associated with growth performance (Figure 2). The distribution of moderate p-values

(3 < -log10P <5) across the genome in itself shows the polygenic nature of growth as well as
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the methodological limitations of GWA analysis given our relatively low sample size of 152.

Under a formal correction for multiple testing only a few regions remained at p = 0.05. As

this study was designed as an explorative approach, an outlier status was assigned to 338

SNP loci that lie in the lowest 0.05% of the distribution of p-values. 

Regions with a peak of clustered outliers with flanking SNPs with low p-values were

examined in depth to seek biological relevance of the SNP sites. Genes which span over 5

Kb up- and downstream of  the outliers  were listed as candidate genes linked to growth

variations. Amongst these candidate genes, the three most evident peaks of outliers in LG3,

LG6  and  LG14  contained  genes  which  were  most  relevant  to  growth  or  maturity  from

functional annotation and previous research (Figure 2B-D, Table 1): LG3 contains  ncapg,

which is differentially expressed in puberty in salmon  (Crespo et al.  2019) and  fam184b,

which is associated with body weight at first egg in chicken (Fan et al. 2017). Linkage group

6 included pde4d gene which showed response in the transcriptome of fast growth line in a

rainbow trout (Cleveland, Gao, and Leeds 2020). Finally, in linkage group 14 mettl21e which

was linked to growth in pupfishes and intramuscular fat deposition in cattle (Fonseca et al.

2020; Patton et al. 2022).  

In order to understand if the genomic regions explaining phenotypic variation were

under  selection  through  time,  we  calculated  covariance  values  for  the  GWA outliers  to

observe directional change in their allele frequency. Specifically, lag-2 (i.e. cov(Δ1996-2008,

Δ2002-2014) and  cov(Δ2002-2014, Δ2008-2019)) and lag-3 (i.e. cov(Δ1996-2014, Δ2002-

2019))  autocovariance  (as  illustrated  in  inlets  of  Figure  S7)  were  calculated.  Temporal

covariances  of  allele  frequency  changes of  338  outlier  SNPs exhibited  remarkably  high

values of 0.00154 and 0.00187 for lag-2 and 0.00537 for lag-3 (Figure S7). Based on 1000

random permutations of covariance values of 338 SNPs sites, the observed covariances of

GWA  outliers  markedly  exceed  the  ranges  of  null-distributions  (p  <  0.001).  This  result

strongly  supports  that  the  GWA  outliers,  highly  correlated  to  the  growth  performance

collectively, experienced selection and responded accordingly with a directional frequency

change over time. 

Integration of the selection scan and GWAS

As a complementary approach to detect directional selection of loci linked to growth,

we combined the GWA results with a selection test. An Fst scan on 20 Kb sliding windows

across the genome was conducted  comparing the temporal population of 1996 and 2019.

Despite the lack of genome-wide signal of selection among temporal populations, we were

able to identify regions of higher differentiation (Figure 3). While the genome-wide Fst value

was xxx, a low value as expected for  a single spatial  population,  some  regions showed

higher Fst values up to 0.1. When outlier windows of 5% highest p-values were assigned to
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intersect with GWAS outliers, 33 windows overlapped. To test the statistical significance of

this overlap, a null distribution was produced with a randomization test which the observed

values can be compared to. Based on 5000 random permutations, wherein 338 SNPs were

randomly chosen to overlap with the outlier windows, the observed number exceeded the

upper tail  of the expected distribution (Figure S8). This signifies that loci associated with

growth performance are predicted to reside in the regions of highest Fst between 1996 and

2019. Those two lines of evidence, the positive temporal covariance values of GWA outliers

and their significant overlap with high Fst windows, strongly indicate the impact of directional

selection on the genetic factors under growth variations in EBC. 

The biological significance of these overlapping regions was further explored through

a gene ontology (GO) term enrichment test on overlapping Fst windows (Table 2). Multiple

pathways involved  in  ultradian  rhythm,  water  homeostasis,  and protein  metabolism,  and

meiotic cell cycle were enriched. Ultradian rhythm is important in diverse functions including

growth, reproduction, and metabolism in fish  (Cowan, Azpeleta, and López-Olmeda 2017;

Frøland Steindal and Whitmore 2019; Sánchez-Vázquez et al. 2019; Zhdanova and Reebs

2006). Diverse metabolic processes involving amino acids were also significantly enriched,

which is critical for fish growth rates (Finn and Fyhn 2010; Pelletier et al. 1994). Interestingly,

folic acid deficiency in diet has direct implications in fish growth (Hardy and Kaushik 2021;

John  and  Mahajan  1979;  Lin,  Lin,  and  Shiau  2011;  Miao  et  al.  2013).  The  dietary

requirement of folic acid in fish emphasises its role in not only growth performance but also

diverse functions such as immune responses (Badran and Ali 2021; Trichet 2010). Pathways

involved  in  mitotic  cell  cycle  and  development  (e.g.,  regulation  of  mitotic  cell  cycle,

embryonic,  myotome  development)  together  with  multicellular  organismal  water

homeostasis, form a large part of the list. These pathways have in common that they relate

to a biological process called “oocyte maturation”.  In fish, oocyte maturation takes place

before ovulation and is necessary for a successful fertilisation  (Nagahama and Yamashita

2008), which may be indirectly linked to growth. 

Regions of Temporal Selection 

Along with selection signals observed in regions associated with growth phenotype,

we were able to identify selection signatures in other parts of the genome. In the Fst selection

scan, pronounced high Fst values in LG2 and LG12 as well as low values in LG7, where

previously  reported inversions  reside  (marked in  pink),  were  observed along with  highly

conspicuous deviations of  π values (Figure S6). Thus, we calculated the frequency of a

haplotype for each inversion in the temporal populations. Interestingly, only the inversion in

LG12  was  decreasing  in  its  frequency  consistently  over  time  (Mann-Kendall  test  for

monotonic trend: p-value = 0.03) (Figure 4). Within this inversion, another block of inverted
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region, so called “double crossover” (DC), was reported to be private to the EBC population

(Matschiner et al. 2022). Thus, we identified the DC within the inversion in our sequence

data  (Figure  S9)  to  examine  the  temporal  trend  of  its  frequency.  Unlike  the  consistent

decrease in the haplotype frequency of LG12, frequency of the DC within only decreases

until 2014 then picks up in 2019. So, it seems that while the large inversion in LG12 behaves

under directional selection as a whole,  the DC escapes from this selection and is rather

either drifting or under balancing selection on its own. 

Additionally, the highest Fst values outside inverted regions were spread across the

genome, some of which appear in peaks of clustered outliers. GO term enrichment analysis

was conducted using 575 genes residing within the outlier windows of top 5% (Table S3).

Several GO terms were enriched in sub-categories, which are highly related to the growth of

a fish. For example, metabolisms and processing of macromolecules such as amino acids,

fatty  acids,  and carbohydrates which  in  turn  are  key to any growth process.  Fatty  acid

oxidation is strongly related to use of energy sources in response to feeding conditions (J. Ø.

Hansen et al. 2008; Stubhaug, Lie, and Torstensen 2007; Turchini and Francis 2009) and

cAMP  biosynthesis  is  part  of  processing  ATP,  which  is  also  critical  in  regulations  of

hormones involved in metabolism and reproductions  (Miki,  Van Heerden,  and Fitzpatrick

1997; Takahashi and Ogiwara 2023). Also, regulation of TOR pathway, which is crucial in

sensing growth hormone, nutrient or oxygen condition  (Dobrenel et al. 2016; Hietakangas

and  Cohen  2009),  was  found  to  be  enriched.  As  expected,  some  enriched  biological

pathways do not always show direct relevance to growth. Other highly represented clusters

of  GO term  are  in  regard  to  developments  such  as  gastrulation,  convergent  extension

involved in  axis  elongation,  and tissue morphogenesis.  Interestingly,  regulation  of  neural

retina  development  together  with  melanosome  transport,  which  is  involved  retinal

pigmentation,  may suggest  temporal  differentiation  in  the visual  sensory system in EBC

which is potentially relevant to depth adaptation, thus vertical movements (P. R. Berg et al.

2017; Pampoulie et al. 2015).

DISCUSSION

This study identifies, for the first time to our knowledge in an exploited marine fish

population, the genomic regions with associated gene functions that are linked to growth

impairment.  Reassuringly,  they  were  also  found  to  be  under  directional  selection  using

genome scans and temporal covariance approaches. Temporal selection was likely driven

by strong and documented overfishing on Eastern Baltic cod that ultimately led to the life-
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history change by fisheries induced evolution. A drastic decrease in the individual growth is

accompanied by the contributing loci demonstrating clear evidence of directional selection

with  significantly  positive  temporal  autocovariances  of  allele  frequency  changes  and  an

excess number of overlaps with regions of high Fst. The combination of a selection test and

GWA used here is a powerful implementation of detecting an adaptive polygenic trait (Bosse

et al.  2017;  Brennan et al.  2018;  Barghi,  Hermisson,  and Schlötterer 2020), which have

responded to a selective pressure. In addition, observed directional change in the frequency

of  ancestral  haplotype  of  inversion  in  LG12  but  not  for  its  double  crossover  region

underscores the heterogeneous response of the genome under selection.  

Overall Patterns of Temporal Genomic Change

Non-significant change of nucleotide diversity, a lack of clustering pattern in PCA,

and genome-wide covariance patterns resembling neutral population suggest that migration,

gene flow and other non-adaptive processes were negligible over the study period, at least

not  at  the  resolution  provided  by  the  methods  employed.  In  addition,  heterogeneous

response of the genome, by utilising standing genetic variation across the genome, may

have  been  driving  the  changes  in  phenotype  potentially  through  different  metabolic

processes  (Crespel et al. 2021). Hence, the premise of this study, namely that EBC is a

closed, self-sustained gene pool without immigration of divergent genotypes, is supported.

Moreover, the possibility of other traits undergoing selection or drift in divergent directions

than the targeted trait, could potentially obscure the genome-wide signal of size selective

fishing in wild populations. For example, in EBC, an opposing selection pressure against

small female body size can be hypothesised. This is because larger females produce larger

and more buoyant eggs that permit them to float higher in the water column (Nissling and

Vallin 1996), away from the near-bottom where the oxygen conditions are worsening. 

Absence of evidence of overall pattern does not equate to evidence of absence of

selection (Bosse et al. 2017; Fuller et al. 2020). Despite the lack of overall pattern, evident

non-random signals were observed when targeting specific regions, the inverted region of

LG12 and the candidate  loci  of  GWA.  Against  the  background  of  no overall  change  in

genomic patterns (Figure S5 and S6) the directional change in the frequency of inversion in

LG12 clearly suggests selection in parallel to the apparent decline of growth rates. In EBC,

apart from some adaptive loci linked to salinity and oxygen found within the chromosomal

inversion in LG2 (Paul R. Berg et al. 2015), any evidence on adaptive or ecological roles of

inversion  haplotypes  is  generally  lacking.  Although  no  GO term  was  found  significantly

enriched for genes located within the inverted region of LG12, the ancestral homozygous

status of individuals, together with body size, had a correlation to lower survival rate in an

Atlantic cod population in the North Sea (Barth et al. 2019). In addition, SNP loci within this
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inverted region were highly correlated with temperature and oxygen level at the surface likely

driving the differentiation of cod populations  (Paul R. Berg et al.  2015). Interestingly,  the

frequency  of  double  crossover  (DC)  within  the  inverted  region  seems  to  be  fluctuating

independently  of the large inversion.  This region is densely packed with genes including

three vitellogenin genes, which are crucial for creating buoyancy of eggs for the survival and

successful spawning in EBC (Nissling and Westin 1991). In this context, we speculate that

the selection pressure acts upon the inversion as a whole, but is relaxed for the crucial set of

genes in  the DC by broken linkage disequilibrium.  This  scenario  might  also  explain  the

hypothesis of the opposite selection pressure on body size of females mentioned above. 

Functional relevance of selected loci

Several enriched GO pathways for the overlapping regions of GWA and Fst outliers

suggest that the selected gene functions are causally linked to altered growth in EBC (Table

1).  Light  manipulation  to  tweak  the  ultradian  rhythm  of  individuals,  thus  the  long  term

seasonality,  is a very common method to control growth and maturity in fish aquaculture

including Atlantic cod  (Skulstad et al. 2013; Taranger et al. 2010; Karlsen et al. 2006; T.

Hansen  et  al.  2001).  Depending  on  the  applied  photoperiod,  sexual  maturation  can  be

controlled, either postponed or advanced, which is tightly entangled to somatic growth of a

fish  (T.  Hansen  et  al.  2001;  Davie,  Porter,  and  Bromage  2003).  In  addition,  water

homeostasis is important in egg hydration during the oocyte maturation process to make

floaty eggs, which is one of the major evolutionary acquisitions for pelagic teleost fish (Fyhn

et  al.  1999).  Oocyte  maturation  takes  place  before  ovulation  and  is  necessary  for  a

successful  fertilisation  (Nagahama  and  Yamashita  2008).  Specific  hypotheses  directly

connecting oocyte maturation and growth are currently lacking in the field. Nevertheless, it is

well conceivable that the timing of spawning, through control of oocyte maturation, may be

critical  for  successful  reproduction,  as  maturation  process  is  highly  affected  by  energy

allocation  (Roff 1993), thus tightly linked to somatic growth in a fish’s lifespan. Lastly, the

biological  process  of  “response  to  heat”  is  indeed  highly  linked  to  growth  traits  in  fish.

Warmer temperatures as the Baltic sea has been experiencing (Meier et al. 2022), critically

impact the species throughout the lifespan from larva to adult stage  (Oomen et al. 2022;

Righton et al. 2010) and are dynamically interlinked with other environmental factors such as

oxygen. Thus, it may suggest that the slow growth trait was also mediated or accompanied

by shifts in temperature response over time. 

In spite of the obvious, functionally aligned links to growth from candidate loci, there

seems to be a general lack of congruency in the genetic contents compared to previous

studies  which  experimentally  addressed  the  genomic  effects  of  size-selective  harvest

selection. Therkildsen et al. (2019) resequenced samples from the seminal study of Conover
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and  Munch  (2002)  that  subjected  Atlantic  silversides  to  5  generations  of  upwards  and

downward selection with respect to body size. They listed enriched GO terms from highly

differentiated loci accompanied by body size changes under different harvest regimes. Data

from  the  present  study  found  no  intersection  to  above  results,  which  is  perhaps  not

surprising  given  that  Therkildsen  et  al.  (2019)  itself  observed  highly  divergent  genomic

responses across replicates under the same treatment.  In another experimental  study in

zebrafish, Uusi-Heikkila (2015) identified another set of genes selected by fishing pressure

that were also not present among the genes listed as outliers in this study. Lastly, the vgll3

and six6 genes that are of high effective size in age at maturity in salmonids species (Barson

et al. 2015; Ayllon et al. 2015), a tightly linked yet different life history trait, were not found to

be significant in any of the present analyses. This lack of consistent patterns of identified

genes and pathways in this study compared to previous studies of FIE as well as among the

studies indicate that there are heterogeneous responses in the genome level either under

same phenotype changes, growth, or under same selective pressure, size-selective fishing. 

Future directions and Implications in Fisheries Management 

With  promising  results  showcasing  EBC  as  an  evolving  population  with  stunted

growth, this study directs to important future research agendas and implications in managing

the stock. First,  it  is important to note that these evolutionary responses occurred in the

context  of  dynamic  interplays  of  fisheries  and  adverse  environmental  factors.  Examples

abound that overexploitation will cause evolutionary change, but these responses are always

highly  context  dependent.  Depending  on the life  history  traits  under  selection  and  their

genomic architecture, strength, length, and types of selection pressure together with natural

selection  by  various  environmental  factors  may  be  reinforcing  or  counteracting  the  trait

evolution in a convoluting manner. Environmental factors, such as hypoxia and temperature

increase as well as ecological variables, such as prey and predator interactions and inter-

species  competition  in  the  Baltic  Sea,  have  been  directly  and  indirectly  influencing  the

population at the same time (Casini et al. 2016; Eero et al. 2012; Limburg and Casini 2018;

2019; Neuenfeldt et al. 2020), which may or may not have exerted an evolutionary pressure.

For example,  sea surface temperature has risen around 1.5 °C during the study period

(Siegel  and Gerth,  2018) and can only  maximally  explain  a 6 % decrease in  body size

according to gill-oxygen limitation theory (Pauly and Cheung 2018). Then the hypoxia in the

bottom water in the Baltic Sea has been continuously deteriorating since the 1930s and the

extent to which Bornholm Basin has been directly impacted were variable depending on

inflow from North  Sea and surrounding  rivers  (Carstensen et  al.  2014;  Stockmayer  and

Lehmann 2023). Thus, given time-series data of an adequate resolution, direct associations

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.06.27.601002doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601002
http://creativecommons.org/licenses/by-nc-nd/4.0/


of genotypes and fishing pressure as well as environmental variables are an essential further

step to take. 

Secondly, this study focuses on the critical period of a steep decline and lowest point

in  growth  from  1996  to  2019  and  provides  a  contemporary  snapshot  of  the  long-term

population  dynamics  of  EBC.  However,  it  is  crucial  to  acknowledge  that  growth  has

fluctuated, with an increase during the 1960s to 1980s, followed by a noticeable decline from

the  1990s  to  the  present  (Mion  et  al.  2021).  Thus,  the  direct  causes  and  evolutionary

responses shaping the growth trend warrant further investigation within a longer timeframe,

preceding and succeeding the study period. Especially, when an inherent lag in evolutionary

response,  referred  to  as  “Darwinian  debt”  (Ulf  Dieckman  in  an  interview  by  Cookson,

Financial  Times)  may be contributing  to  the delay  of  recovery  by  compromising  growth

potentials  and  population  resilience  (Anderson  et  al.  2008;  Ahti,  Kuparinen,  and  Uusi-

Heikkilä  2020),  it  urges  a  comprehensive  examination  of  long-term  ecological  and

evolutionary consequences.

Lastly, successful management plans for EBC must incorporate evolutionary aspects

into  their  framework,  e.g.  introducing  Fevol (Hutchings  2009),  integrating  evolutionary

processes into economic assessments of management plans (Eikeset et al. 2013; Schenk,

Zimmermann, and Quaas 2023). Having said that, the impact of such measures on fisheries

management may be limited at this stage as the damage has already been done. At present,

the evolutionary debt has been accumulated and despite the current moratorium, the stock

recovery  falls  short  of  expectations  due  to  concurrent  contribution  of  ecological  and

environmental factors to stock condition (Eero et al. 2023). Whether this lack of recovery is

already one consequence of the Darwinian debt is an interesting hypothesis to explore in the

future. 

MATERIALS AND METHODS

Sample Collections

In total 152 cod individuals were used in this study after excluding individuals which

were identified as either a western Baltic cod from genetic analysis (9 samples), an outlier

from growth analysis with measurement errors (1 samples), and of low sequencing quality (2

samples). Sampling was done in two different ways to cover the available time period and

the full  range of  phenotype in  the sampling pool.  1)  A set  of  samples,  called  “random”

hereafter, were randomly sampled along the length distribution for five catch years; 31 from

1996, 22 from 2002, 24 from 2008, 20 from 2014, and 20 from 2019. 2) As another set of
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samples, called “phenotype” hereafter, 19 smallest mature fish and 18 largest immature fish

were  selected  from the  catch  year  1996-1998.  As  any  age  information  of  the  archived

samples was not available, neither sample based on the cohort nor on length at first maturity

was possible. The rationale was that by sampling immature fish, which would be first mature

in the following year if they had not been caught, and small, presumably young, mature fish,

we attempted to cover as wide a range of phenotype variation as possible. 

Otoliths  and finclips  were collected in  the Baltic  Sea Integrative  Long-Term Data

Series  of  the  research  division  Marine  Evolutionary  Ecology  at  GEOMAR,  carried  out

annually since 1996. They were taken on board from cod caught in Bornholm Basin (Figure

1A), of which their phenotype data (e.g., body length, weight, maturity stage, and sex) was

recorded (Table  S1).  Otoliths  were stored in  paper  bags.  Finclips  were stored in  100%

ethanol at -20 . ℃

Age Reading of Otoliths 

As the conventional otolith reading method has not been reliable for EBC, a newly

developed method was employed to acquire age information of the sequenced samples in

order to model growth based on Hüssy et al.  2021. For chemical analysis,  otoliths were

embedded in Epoxy resin (Struers®) and cut to have exposed surface of the core and the

rostral part. Trace element analysis were conducted by Laser Ablation Inductively Coupled

Plasma Mass Spectrometry (LA-ICP-MS) to measure magnesium (25Mg), phosphorus (31P),

and calcium (43Ca), which exhibit seasonal variations in EBC (Heimbrand et al. 2020; Hüssy

et al.  2021). Since the elements were read from the core of an otolith to the edge, the

measured element traces represent the chemical characteristics of an individual’s lifespan

from the hatch to catch. With the measured element profile, a statistical analysis was carried

out to determine the age. Chemical minima were identified using local polynomial regression

function “loess” and “peaks” in R (R Development Core Team, 2022). The arguments were

set based on the settings used in age reading of tag-and-recapture cod samples in previous

studies.  The numbers of minima in Mg and P,  which suggest  the fish’s exposure to the

coldest temperature of a year (February and March), are counted as the age of an individual

(Figure 2 in Hüssy et al. 2021). When the two values disagreed, the element profiles were

visually examined. This approach is not as stable for the signals near the otolith edge. Thus,

visual assessment was conducted for the samples caught in the first quarter of a year. As a

result, annual chemical radii for each individual, total otolith radius, as well as the age at

catch were extracted. The exact details of preparation of otoliths, procedures concerning LA-

ICP-MS, and the statistical analysis can be found in Hüssy et al. 2021. 
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Modelling Individual Growth Rates

To acquire a heritable phenotype that may have been affected by fishing pressure,

we modelled individual growth using the age information. Although it was recently confirmed

that the growth of EBC has impaired over last decades  (Mion et al. 2021), it is crucial to

obtain the growth pattern of sequenced individuals to integrate genotypes and phenotype. 

To fully utilise the hierarchical nature of the estimated otolith chemical annuli at age

of fish individuals from different catch years, Bayesian hierarchical modelling was applied

using R2jags v0.7.1 R package (Su and Yajima 2021). The von Bertalanffy growth function

(von Bertalanffy 1957) was fitted to distance from core to chemical annuli at age on otoliths: 

La=L∞(1−e
−k (t a−t0)),

where La is distance from otolith core to each chemical annulus,  ta is the estimated

age at the annulus, L∞ is asymptotic length in an otolith scale, which is hypothetical otolith

length at age of infinity,  k is a growth coefficient,  and  t0 is hypothetical age when length

equals zero. Three levels of hierarchy included measurements of annuli at age, nested in a

fish individual, again nested in a group of a catch year. As a result,  L∞ and k parameters

were estimated for each individual and also each catch year. We took the most conservative

approach of priors, applying a gamma distribution for catch years and normal distribution for

individuals with relaxed standard deviations (details in the script). To fit the model, 100,000

iterations were observed for three MCMC chains and the first 10,000 were discarded as

burn-in. The median of Rhat values were 1.0036 and model convergence of the chains were

visually  examined  in  addition  (Figure  S10).  As  an  additional  assessment  of  the  model,

residuals were calculated from estimated otolith length from the model and observed length

of otolith annuli (Figure S11). Here, the variance of residuals is larger for the first year which

could be caused by the uneven number of observations that were fed to the model for each

age. Nevertheless, the overall residuals remain near zero for all years. To avoid any bias of

condition  towards  bigger  fish,  relative  condition  factor  (Le Cren 1951) was used to test

whether fish condition could predict any of the growth parameters and Φ. Back-calculation of

fish length was conducted using an equation from (Hüssy, Eero, and Radtke 2018), using

biological intercepts specific (Campana 1990) for Baltic cod. Accordingly, L0, which is the fish

length at age 0, was set to 4.3 and O0, the otolith length at age 0 was set to 0.01. 

DNA Extractions

For genetic materials,  DNA was extracted using otoliths from earlier years (1996-

1998, 2002, and 2008) and fin clips from recent years, 2014 and 2019. Otoliths and finclips

were always handled with tools (e.g., forceps) which were cleaned with ethanol 70% and

sterilised in between each individual sample to avoid cross contamination. The extraction
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procedure for both otoliths and finclips were conducted following the standard protocols from

either DNeasy® Blood & Tissue Kit (Qiagen, Aarhus, Denmark) or NucleoSpin® Tissue Kit

(Macherey-Nagel,  Düren,  Germany).  Otoliths  were fully  submerged in the lysis  buffer  to

lysate any remnant tissues then removed from the buffer. The lysate then was treated as in

the  manuals  provided  by  the  kits.  Fin  clips  were  cut  into  small  pieces  (up  to  25mg),

submerged in a lysis buffer, then continued following the protocols. The extracted DNA was

purified  using  Qiagen QIAquick® PCR Purification  Kit  (Qiagen,  Aarhus,  Denmark).  DNA

quality was checked with standard electrophoresis in 1% agarose gel and the quantity was

measured using NanoDropTM and Qubit Assay (Thermo Fisher ScientificTM, Carlsbad, USA). 

To  validate  cross  contamination  that  might  have  occurred  during  the  sample

collection, archiving process, and DNA extraction, microsatellite (MSAT) analysis was done

for DNA extracted from otolith samples. Four MSAT sites were used. A multiplex PCR was

conducted with four primer pairs on a 96-well plate. The PCR product was mixed with Hi-DiTM

mix (Thermo Fisher Applied BiosystemsTM, Carlsbad, USA) with GeneScantm LIZ dye Size

standardtm  (Thermo Fisher Applied BiosystemsTM, Carlsbad, USA). Capillary electrophoresis

was done with the reaction mix using ABI PRISM 3100 Genetic Analyzer (Thermo Fisher

Applied  BiosystemsTM,  Carlsbad,  USA).  The  MSAT  peaks  were  analysed  using

GeneMarker®  software  (Softgenetics,  State  College,  USA).  As  the  chosen  MSAT  loci

typically show more than ten alleles per site in a population, when samples are mixed the

likelihoods of  encompassing the same allele  at  a single MSAT locus are small  and are

virtually zero if several such loci are combined. Thus, samples showing multiple peaks for

any MSAT locus were identified as cross contaminated and subsequently excluded from the

data set (see examples in Figure S12). 

Library Preparation and Sequencing

2x100 bp paired end library preparation for 16 samples from 1996 was done in the

Ancient DNA Laboratory at the Institute of Clinical Molecular Biology (IKMB) as a pilot to

check  if  they  should  be  treated  specially  like  historic  DNA samples.  The  details  of  the

manual library preparation can be found in the method section in Krause-Kyora et al. 2018.

For the finclip samples from 2014 and 2019, 2x150bp paired end libraries were prepared

using Illumina  DNA Prep kit  (Illumina,  San Diego,  USA)  by  the Competence Centre for

Genomic Analysis (CCGA) Kiel. These libraries (16 otolith samples from 1996 from pilot and

40 finclip  samples  from 2014 and 2019)  were sequenced on Illumina 6000 S4 Flowcell

(Illumina, San Diego, USA) by CCGA Kiel.  In the end it  was concluded that older otolith

samples can be treated the same as the rest, yielding sequence data of comparable quality.

Thus, rest of the samples, including “phenotype” samples from 1996-1998 and “random”

samples of 1996,  2002 and 2008, were sent to Norwegian sequencing center (NSC) for
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2x150 bp library preparation using Illumina Nextera DNA library preparation kit (Illumina, San

Diego, USA) followed by sequencing on Illumina NovaSeq S4 Flowcell (Illumina, San Diego,

USA). 

Read Processing and Variant Calling 

All  sequenced  reads  from  this  study  were  processed  together  with  published

population data from Barth et al. 2019, to include 23 EBC (named BOR), 22 WBC (KIE), and

24 North Sea (NOR) cod samples, which were later partitioned out. This was to identify WBC

in our samples and test for any sequencing bias in our samples (Figure S13) as well as to

conduct  ancestry painting,  which includes WBC and EBC individuals  of  known inversion

status as reference (explained below). All sequenced reads were processed following the

GATK best Practices workflow by Broad Institute (GATK v4.1.9.0) (Van Der Auwera et al.

2013). All  the detailed commands, parameters,  and filtering options in the bioinformatics

workflow are included in the provided git repository. Mapping to the reference genome of

Atlantic cod, gadMor3.0 (NCBI accession ID: GCF_902167405.1), the median coverage of

each individual ranged from 4x to 31x with a median of 12x for all samples. Two samples

from 1996 were excluded based on their low mapping coverage below 4x. 

After  variant  calling,  raw SNP variants  were first  hard  filtered based on different

qualities of variant sites according to best practices. Then, only biallelic SNPs were selected

and filtered again based on genotyping quality, missingness, read depths, and minor allele

frequency (MAF) of  0.005 to produce the final  variant  call  file in  a vcf format containing

5,847,389 variants. When possible,  this full  set of variants based on MAF > 0.005 were

used,  although  some  analyses  were  carried  out  using  4,685,343  variants  filtered  with

MAF>0.01 due to the processing time and resource limitation. 

Further analyses were done with two separate sets of variants resulting from different

partitioning of the total sample set (also partitioned from WBC and North Sea samples), as

parts of the sampling was intentionally biased for “phenotype” samples as explained earlier.

i) 115 of “random” samples were used for the analysis identifying signatures of selection

over time. ii) A total of 152 samples including “random” and “phenotype” samples were used

for genotype-phenotype association.  The subset of the master vcf file was created using

bcftools  v1.2  (Danecek  et  al.  2021) then  fixed  sites  were  removed  using  GATK

SelectVariants (v4.1.9.0). 

Population Statistics and Principal Component Analysis

To examine any temporal differentiation in EBC independent of phenotypic data, 115

“random”  samples  were  used  to  compute  Nucleotide  diversity  (π),  between  population

nucleotide divergence (dxy), Fst and principal component analysis (PCA). For calculating  π
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and dxy, guides provided by Pixy (1.2.7.beta1) (Korunes and Samuk 2021) were followed. A

vcf file containing invariant sites was created, using GATK GenotypeGVCFs with option –all-

sites followed by site filtering steps using GATK VariantFiltration with same criteria as in hard

filtering of variants and followed by vcftools v0.1.16 (Danecek et al. 2011) on missingness of

0.8 and mean read depths of 10. This filtered all-site file was combined with the final variant

file to create the input vcf file for Pixy. A total of 81,462,138 records including invariant and

variant sites, were used to calculate  π for each catch year and pairwise dxy in 50kb non-

overlapping windows. For genome-wide nucleotide diversity for each temporal population,

average π value for all windows was calculated according to the equation provided by Pixy. 

PCA on the subset of SNPs (4,685,343 after filtering for MAF > 0.01) was carried out

using  the  R  package  pcadapt  v4.3.3  (Privé  et  al.  2020).  Scree  plots  of  total  variance

explained by each principal component (PC) were examined to decide up to which PCs to

investigate. When all  sites were included, a unique clustering pattern driven by inversion

status of individuals appeared (Figure S14). Thus, sites within the inverted regions (identified

as described in  Identifying inversion status) were excluded then pruned based on linkage

disequilibrium (2,030,929 SNPs) to examine the remaining population structure. 

Weir  and Cockerham’s Fst was calculated using vcftools  v0.1.16 in  20kb windows.  Only

weighted Fst was used for plotting and interpretation of the data. All plots were created in R

(R Development Core Team, 2022) using the base “plot” function. 

Genome-wide Temporal Covariance and Simulation

Genome-wide temporal covariance was calculated using a modified python script in

Jupyter  notebook  based  on  the  functions  in  cvtkpy  (http://github.com/vsbuffalo/cvtk)

published  in  Buffalo  and  Coop  (2020).  Error  bars  were  calculated  by  bootstrapping

covariance  values,  resampling  blocks  of  loci  5000  times,  using  the  bootstrap  function

provided by cvtkpy. As initial  genome-wide temporal covariance showed an inconclusive

pattern, we simulated a neutrally evolving population to compare the covariance values as a

control.  First,  backward-in-time  simulation  was  employed  to  create  a  population  with

matching diversity using msprime v1.2 (Baumdicker et al. 2022), with mutation rate 3.5e-9,

recombination  rate  3.11e-8,  5000  genomes,  and  a  sequence  length  of  30Mb.  With  this

population as a founding population, a forward-in-time simulation was conducted using SLiM

v2 (Haller and Messer 2017). Additional 100 generations were burned in at the beginning of

the simulated time. From generation 101, 20 individuals were sampled from the simulated

population for five generations, to imitate the sampling scheme of wild population. Final vcf

file was created to calculate the covariance of the simulated temporal populations. This was

replicated 100 times to create a distribution of patterns from neutrally evolving populations.
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For the calculation of temporal covariance, a custom script in R language was used which

replicated the functions in cvtkpy. 

Genome-wide association analysis (GWA)

To identify  specific  genomic  regions  responsible  for  growth  variation  in  the  EBC

population,  genome-wide  association  study  was  conducted.  Growth  performance  was

converted into an index using the growth estimates, Φ = log k+2 log L∞ (Moreau, Bambino,

and Pauly 1986; Munro and Pauly 1983). Subsequently,  this variable was subjected to a

univariate nonlinear mixed model to identify loci associated with the growth change using

GEMMA v0.98.3  (Zhou and Stephens  2012).  A  total  of  679,584  SNPs were used  after

filtering for minor allele frequency of 0.05 and missingness of 0.1 as recommended by the

developers. Genetic population structure was considered as a random effect and sex as

covariates to incorporate and eliminate possible other contributing factors. Genomic inflation

factors and QQ plots showed that systematic biases were adequately corrected from the

other  contributing  factors  (Figure  S15).  After  correcting  for  multiple  testing,  using  false

discovery rate (Benjamini and Hochberg 1995), with the number SNPs sites not in linkage

disequilibrium (174,541), there were no SNP sites with genome-wide significance for Wald

test p-values observed. Instead, as an exploratory approach to identify the loci that are most

likely  to be associated with growth,  a cutoff  which includes the most  obvious peaks but

excludes  more  spurious  signals  in  the  Manhattan  plot  were  set.  As  results,  SNP  loci

occupying the 0.05% tail  of  distribution  of  the p-values,  338 variants,  were assigned as

outliers for further analysis (referred to as “GWA outliers”). 

Calculating and Bootstrapping Temporal Autocovariance of GWA outliers

To demonstrate the directional changes over time in allele frequencies of the GWA

outliers which are accountable for the growth variations, temporal covariance of the outlier

loci was calculated in R. We used delta values of different time windows, lag-2 and lag-3,

contrary to those with lag-1 provided in the cvtkpy package, which always uses consecutive

time points to calculate the allele frequency changes. This was to avoid including a shared

time point  in  calculating  autocovariance which showed positive covariance values in  the

simulated neutral populations and was likely driven by the shared time point rather than a

true signal of selection. To assess the significance of observed covariance, a permutation

test was conducted calculating temporal covariance values using 338 random loci sampled

from all SNP sites in GWA analysis. The observed values were compared to the distribution

of 1000 random permutations. 

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.06.27.601002doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601002
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gene Identification and Gene Ontology (GO) Term Analysis 

To  further  assess  the  biological  relevance  of  any  outlier  loci  or  windows  from

genomic  analysis,  two  approaches  were  employed,  1)  by  searching  for  functional

annotations in targeted genes for GWA outlier SNPs and 2) by gene ontology (GO) term

enrichment analysis using a set of outliers. For 1), among the 338 SNPs assigned as GWA

outliers, only regions with clustering outliers with flanking SNPs with low values (marked with

red arrows in Figure 12) were examined in depth. Genes located at or within 5 Kb up- and

downstream  of  the  outliers  were  further  searched  for  their  biological  functions  in  the

literature. The search was carried out using the gene names or descriptions, targeted with or

without key words, e.g., fish, growth, maturity, and reproduction to find the most relevant

functions  to  this  study.  Genes were listed  by cross  referencing  each SNP to  annotated

genes in the gadMor3.0 annotation database ("gmorhua_gene_ensembl") in Ensembl using

the BioMart v2.54.1 R package  (Durinck et al. 2005). Same database and workflow were

used in identifying genes lying within Fst  outlier windows and in overlapping windows of Fst

and GWA outliers. With the listed sets of genes, enriched GO terms were identified using the

GO  terms  provided  in  the  annotations  of  the  gadMor3.0  database  as  “universe.”  The

workflow was based on the vignette provided by GOstats v2.64.0 R package  (Falcon and

Gentleman 2007). 

Identifying Inversion Status 

Four large (5-17 Mbp) chromosomal inversions in Atlantic cod species have been

previously  identified  (Paul  R.  Berg et  al.  2015;  Kirubakaran et  al.  2016;  Sodeland et  al.

2016), three of which are polymorphic in the EBC population. We targeted these regions as

candidate  supergenes  which  may  have  undergone  selection  over  the  study  period  and

examined  how  their  frequency  changed  over  time.  With  prior  knowledge  of  inversions

located in LG2, 7 and 12, PCA was done on subset vcf files of each chromosome. Three

distinct  clusters  of  individuals  of  different  inversion  status  (homozygous  ancestral,

homozygous derived, and heterozygous, “ancestral” status adopted from Matschiner et al.

2022)  were observed,  which was used for  individual  assignment.  Then,  Fst values  were

calculated  among these  three groups  (each  pairwise  and  global)  and  plotted to  identify

boundaries  of  the  inversions  (Figure  S16).  These  boundaries  were  used  to  subset  the

bedfiles  to  feed as  input  of  local  PCA analysis.  The inversion status of  individuals  was

verified again by visually examining local PCA plots for each inversion status (Figure S17).

When ambiguous, the individuals were visually examined for their genotypes in IGV v2.12.0

(Thorvaldsdóttir, Robinson, and Mesirov 2013). 

To identify the individual status of double crossover, ancestry painting was carried

out following a tutorial from a git repository of M. Matschiner

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.06.27.601002doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.601002
http://creativecommons.org/licenses/by-nc-nd/4.0/


(github.com/mmatschiner/tutorials/tree/master/analysis_of_introgression_with_snp_data).

We  used  four  samples  (homozygotes  ancestral:  KIE1203003,  BOR1205002  and

homozygotes derived:  KIE1202006,  KIE1203020 from Barth et  al.  2019)  as reference of

ancestral and derived homozygotes and two EBC (BOR1205003, BOR1205007; identified in

Matschiner et al. 2021) as “control” of double crossover. SNP sites between positions 6.5Mb

and 7.5Mb in LG12, (Note that the location is different than reported in Matschiner et al. as

different reference genomes were used) which are fixed 80% in these reference individuals,

allowing  for  20% of  missingness,  were  painted  two different  colours  in  EBC individuals

(Figure S9). Double crossover status, either ancestral/derived homozygous or heterozygous,

was assigned by visual examination. 
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Figure 1. Sampling location in the Baltic Sea and population response over time 

A. Map of the Baltic Sea showing the sampling sites in Bornholm Basin, the major spawning

ground  for  EBC.  Their  spawning  grounds  in  Gotland  Basin  and  Gdansk  Deep  are  not

recognized as viable anymore. B.  Estimated von Bertalanffy growth curves for each catch

year.  The von Bertalanffy growth curves are based on otolith readings and were plotted

using  estimated  sets  of  parameters  for  each  temporal  population  of  “random”  and

“phenotype”  samples.  The temporal  group 1996 in  this  figure  also  includes  “phenotype”

samples (catch year from 1996-1998) as they are treated as one temporal population in the

model. Each point depicts observed otolith radius to chemical annuli at age coloured based

on the individuals’ catch year.  C. Boxplots of individual growth performance,  Φ, calculated

using estimated individual von Bertalanffy growth parameters (L∞ and k) over time. Colour

codes  are  based  on  individuals’  catch  years  as  in  the  legend  in  panel  B.  D.  Principal

component analysis of 115 "random" samples. A set of SNPs were pruned based on linkage

disequilibrium and removed of sites within the inversions in LG2, 7, and 12. PC1 explains

1.3%, and 1% for PC2, of all variations in the genotypes. Each individual is coded in colour

according to the catch years as in legend in panel B. 
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Figure 2. Manhattan plot of -logP values in genome-wide association (GWA) analysis.

A.  Manhattan plot of -logP values in genome-wide association (GWA) analysis. A total of

152 samples were subjected to GWA using the sequenced genotypes, 679,584 SNPs (>0.05

MAF), and estimated growth performance index Φ as phenotype. Negative log transformed

Wald  test  p-values  for  each  SNP  were  plotted  along  the  genome.  Outlier  status  was

assigned for 338 SNPs with lowest 0.05% p-values (in red circles). The cutoff for outliers

were selected based on the visual  examination  of  this  Manhattan plot,  so as to include

distinctive peaks with clustering outliers (marked with red arrows)  and at  the same time

exclude spurious outliers consisting of single SNPs only. Regions marked with red arrows

were zoomed in, B. in LG3 C. LG6, and D. LG14 and genes residing at or near (5 Kb up-

and downstream) the outliers are annotated (Table 1).
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Figure 3. Fst values in 20kb windows along the genome. 

Pairwise Fst values of 1996 and 2019 in 20 Kb non-overlapping windows were calculated

along the whole genome. Filled purple points indicate the highest top 5% of genome-wide Fst

outlier  windows.  Regions  with  exceptionally  high  and  low Fst  values  show the  inverted

regions in cod genome in LG2, LG7, and LG12 and were marked with pink shades. Among

outlier windows, windows overlapping with GWA outliers were marked as red. 
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Figure 4. Frequency change of inversion haplotypes.

The frequency of ancestral allele of each inverted region in LG2, LG7, and LG12, and the

double crossover within LG12 are plotted over study period. The inversions in LG2 and LG7

display  an  inconsistent  pattern.  For  the  inversion  in  LG12,  a  monotonic  decrease  in

frequency  over  time  is  observed  that  is  statistically  significant  (Mann-Kendall  test  for

monotonic trend:  p-value = 0.03),  whereas the frequency of  double crossover within the

region changes independently. 
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Table 1. A list of genes intersecting or neighbouring with GWA outlier SNPs with its

position and description. 

A list of genes unique in the "ensembl_gene_id" located at or 10 Kb surrounding regions of

GWA outlier SNPs was subjected to a search for their functional annotations in the literature.

Columns,  ensembl_gene_id,  chromosome_name,  external_gene_name,  description,

start_position,  and  end_position,  are  annotations  in  the  gadMor3.0  reference  genome

extracted from Ensembl database. When the external_gene_name were not provided by the

database,  search in  the NCBI  gene database or  orthologs'  name were filled  in  (Genes,

NCBI).  Functional  annotations  of  the  genes,  in  the  most  relevant  context  to  this  study,

"known biological functions from literature", were listed by searching the gene names with or

without  keywords (e.g.,  fish,  growth,  weight,  maturity,  and reproduction)  in  the  literature

search.  When  there  were  no  search  results  which  showed  direct  or  indirect  biological

relevance in  the  targeted context,  they were marked as  "Not  found in  literature".  Some

genes  were  catalogued  with  only  weak  matches  to  orthologs  in  other  species  in  the

database, thus marked as "NA (Not applicable)".  Rows containing genes which are most

relevant to this study are highlighted in grey. 

ensembl_gene_id
external
_gene_n
ame

chromos
ome_na
me

known biological 
functions from literature description

start_po
sition

end_positi
on

At the outlier loci

ENSGMOG0000003
2747

HEPACA
M

3
cell-adhesion, cell 
motility, cancer 
suppressor gene

carcinoembryonic antigen-
related cell adhesion 
molecule 6-like [Source:NCBI 
gene (formerly 
Entrezgene);Acc:115540996]

1379069
9

13856484

ENSGMOG0000001
5953

mnd1 3 meiotic arrest, 
recombination

meiotic nuclear divisions 1 
homolog (S. cerevisiae) 
[Source:NCBI gene (formerly 
Entrezgene);Acc:115540214]

2067760
7

20683019

ENSGMOG0000001
2895

NA 3 NA NA 2175678
2

21778636

ENSGMOG0000001
6255

haspin 3
mitosis, ciritical larval 
growth and survival in 
zebrafish

histone H3 associated protein
kinase [Source:NCBI gene 
(formerly 
Entrezgene);Acc:115540151]

2526749
1

25278374

ENSGMOG0000001
6202

ncapg 3 DEGs in salmon puberty

non-SMC condensin I 
complex, subunit G 
[Source:NCBI gene (formerly 
Entrezgene);Acc:115540152]

2530500
1

25318049

ENSGMOG0000000
7843

PDE4D 6

a rainbow trout line 
selectively bred for fast 
growth (growth line, GL) . 
Transcriptomic response . 
Several key components 
of the cAMP signaling 
pathway were reduced in 
the GL, including 
adenylate cyclase-type 6 
(adcy6) and 
phosphodiesterase 4D 
(pde4d)

phosphodiesterase 4D, 
cAMP-specific [Source:NCBI 
gene (formerly 
Entrezgene);Acc:115545011]

1694727
0

17078303

ENSGMOG0000001
3441

trpm1b 9 retina pigment 
development

transient receptor potential 
cation channel subfamily M 
member 1-like [Source:NCBI 
gene (formerly 

2173057
0

21750419

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206
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Entrezgene);Acc:115550405]

ENSGMOG0000003
7198 ciart 9

Transcriptional changes in
the process of 
reproductive hormone 
affecting circadian rythm 
in zebrafish. generally 
circadian regulation of 
gene expression 

circadian-associated 
transcriptional repressor-like 
[Source:NCBI gene (formerly 
Entrezgene);Acc:115550867]

2182347
0 21831852

ENSGMOG0000001
7135

coro1ca 13 Not found in literature

coronin, actin binding 
protein, 1Ca [Source:NCBI 
gene (formerly 
Entrezgene);Acc:115556521]

2584127
3

25924738

ENSGMOG0000000
8588 ercc5 14

higher rate of 
malformations and 
decreased embryo 
viability in fish, COFS 
syndrome in human. 

excision repair cross-
complementation group 5 
[Source:NCBI gene (formerly 
Entrezgene);Acc:115558732]

2154397
9 21552546

ENSGMOG0000001
6695

PPFIBP2 
(ortholo
gs)

14 human fetal abnormality
PPFIA binding protein 2a 
[Source:ZFIN;Acc:ZDB-GENE-
070705-277]

2226907
4

22285193

ENSGMOG0000001
8629

kcnk2b 
(ortholo
g)

21
increased expression 
during puberty in 
zebrafish 

NA 4143319 4168663

ENSGMOG0000001
3114

snx17 21

intracelluar protein 
transport, in a conserved 
genomic region (together 
with atraid) associated 
with miR-133b which is 
involved in oogenesis in a 
tilapia

sorting nexin 17 [Source:NCBI
gene (formerly 
Entrezgene);Acc:115534617]

4307230 4333109

5 Kb up- and down-stream

ENSGMOG0000002
6566

NA 3 NA NA 1381081
6

13811780

ENSGMOG0000001
5878

TMEM1
31L 3 Not found in literature

transmembrane 131 like 
[Source:NCBI gene (formerly 
Entrezgene);Acc:115540213]

2064281
5 20676221

ENSGMOG0000003
0622

NA 3 NA NA
2527597
4

25276992

ENSGMOG0000003
6363

fam184b 3
chicken body weight at 
first egg 

family with sequence 
similarity 184 member B 
[Source:NCBI gene (formerly 
Entrezgene);Acc:115540150]

2528024
4

25303554

ENSGMOG0000002
2331

lcorl 3

human: Expression of 
the LCORL gene was 
significantly associated 
with length of the 
neonate at birth

ligand dependent nuclear 
receptor corepressor-like 
[Source:NCBI gene (formerly 
Entrezgene);Acc:115540149]

2531977
6

25337592

ENSGMOG0000003
6563

NA 13 NA NA
2592821
0

25928944

ENSGMOG0000003
3950

cenpq 14 Not found in literature
centromere protein Q 
[Source:NCBI gene (formerly 
Entrezgene);Acc:115559135]

2139876
6

21402387

ENSGMOG0000002
5157

gmo-
mir-155

14 Not found in literature
gmo-mir-155 
[Source:miRBase;Acc:MI0036
008]

2141010
3

21410161

ENSGMOG0000000
3226

ephrin-
B2a-like

14 angiogenesis
ephrin-B2a-like [Source:NCBI 
gene (formerly 
Entrezgene);Acc:115559324 ]

2141125
6

21419004

ENSGMOG0000002
5102 trmt10c 14 Not found in literature

tRNA methyltransferase 10C, 
mitochondrial RNase P 
subunit 
[Source:ZFIN;Acc:ZDB-GENE-
041114-12]

2153636
4 21543958

ENSGMOG0000003
5263

blzf1 14
heart function, 
development in medaka

basic leucine zipper nuclear 
factor 1 [Source:NCBI gene 
(formerly 
Entrezgene);Acc:115558734]

2153876
4

21543958

ENSGMOG0000003
0760

mettl21e 14 linked to growth in 
pupfishes, intramuscular 

methyltransferase like 21e 
[Source:NCBI gene (formerly 

2155235
2

21557877
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fat deposition in cattle Entrezgene);Acc:115558735]

ENSGMOG0000002
4865

NA 14

differentially expressed in 
response to temperature 
in stickleback, also 
generally skeletal muscle 
development related 

protein-lysine 
methyltransferase 
METTL21C-like [Source:NCBI 
gene (formerly 
Entrezgene);Acc:115558577]

2156058
3

21565349

ENSGMOG0000001
3100

atraid 21 bone differentiation

all-trans retinoic acid-induced
differentiation factor 
[Source:NCBI gene (formerly 
Entrezgene);Acc:115534618]

4334479 4337000

Table 2. A list of enriched GO terms using genes within Fst windows that overlap with

GWA outlier SNPs. 

To identify loci which are highly correlated with growth performance and selected over time,

the intersections of Fst outlier windows and GWA outlier SNPs were investigated. When a

GWA outlier  SNP resides within  an Fst  outlier  window,  this  window was counted as an

overlapping outlier  window (marked as red in  Figure3).  Any genes residing within  these

overlapping  outlier  windows  were  subjected  to  gene  ontology  (GO)  enrichment  test  to

identify any biological functions that correlate to growth performance and at the same time

differentiated the most over time. P values are adjusted using false discovery rate. Only

biological processes were presented among GO categories for the analysis. 

GO.term GO.name p.value.adjusted

GO:0007624 ultradian rhythm 0.01203089399

GO:0050891 multicellular organismal water homeostasis 0.01442325268

GO:0034080 CENP-A containing chromatin assembly 0.01442325268

GO:0006546 glycine catabolic process 0.02048356121

GO:0035825 homologous recombination 0.02098495744

GO:0007131 reciprocal meiotic recombination 0.02098495744

GO:0009396 folic acid-containing compound biosynthetic process 0.02214772591

GO:0009408 response to heat 0.02678127453

GO:0000122 negative regulation of transcription by RNA polymerase II 0.0330299368

GO:0009069 serine family amino acid metabolic process 0.03431805692

GO:0140013 meiotic nuclear division 0.03509647983

GO:1901606 alpha-amino acid catabolic process 0.03509647983

GO:0042558 pteridine-containing compound metabolic process 0.03509647983

GO:0061982 meiosis I cell cycle process 0.03509647983

GO:0051321 meiotic cell cycle 0.04643225312

GO:0001755 neural crest cell migration 0.04698068426
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