

# 1 Genomic Evidence of Fisheries Induced Evolution

## 2 in Eastern Baltic cod

3 Kwi Young Han<sup>1\*</sup>, Reid S. Brennan<sup>1</sup>, Christopher T. Monk<sup>1</sup>, Sissel Jentoft<sup>2</sup>, Cecilia  
4 Helmerson<sup>2</sup>, Jan Dierking<sup>1</sup>, Karin Hüsse<sup>3</sup>, Érika Endo Kokubun<sup>1</sup>, Janina Fuss<sup>4</sup>, Ben Krause-  
5 Kyora<sup>4</sup>, Tonny B. Thomsen<sup>5</sup>, Benjamin D. Heredia<sup>5</sup>, Thorsten B.H. Reusch<sup>1</sup>

6

7 <sup>1</sup> GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

8 <sup>2</sup> Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences,  
9 University of Oslo, Oslo, Norway

10 <sup>3</sup> National Institute of Aquatic Resources, Technical University of Denmark, Kgs. Lyngby,  
11 Denmark

12 <sup>4</sup> Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel 24105,  
13 Germany.

14 <sup>5</sup> Geological Survey of Denmark and Greenland, Copenhagen, Denmark

15 \*Corresponding author. Email: khan@geomar.de

16

## ABSTRACT

17 Humans have become one of the greatest evolutionary forces, and their  
18 perturbations are expected to elicit strong evolutionary responses. Accordingly, during (size)  
19 selective overharvesting of wild populations, marked phenotypic changes have been  
20 documented, while the evolutionary basis is often unresolved. Time-series collections  
21 combined with genomic tools present unique opportunities to study how evolutionary  
22 changes are manifested at the genome-wide level. Here, we take advantage of a unique  
23 temporal dataset from the overexploited Eastern Baltic cod (*Gadus morhua*) population that  
24 exhibited a 48% decrease in asymptotic body length over the last 25 years. A genome-wide  
25 association study revealed pronounced peaks of outliers linked to growth performance. The  
26 contributing loci showed signals of directional selection with significantly high autocovariance  
27 in the allele frequency and excessive intersections with regions of high  $F_{st}$  as well as genes  
28 relevant to growth and reproduction. Moreover, pattern of directional selection for ancestral  
29 haplotype of the well-known chromosomal inversions in Atlantic cod (on linkage group 12)  
30 was observed, while the double crossover (~1Mb) harbouring the vitellogenin genes within  
31 this region showed signs of drift or balancing selection. Our results demonstrate evident  
32 response of the genome over a relatively short time frame and further underscore  
33 implications for fisheries management and conservation policy regarding the adaptive  
34 potential of marine populations.

## 35 INTRODUCTION

36 Human beings play a significant ecological and evolutionary role as they manipulate  
37 and disrupt environments and organisms by habitat alteration, pollution, climate change and  
38 harvesting (Palumbi 2001). This impact extends beyond a population's distribution and its  
39 relevant ecological landscape of one time point and influences future generations by exerting  
40 strong selective pressures (Vitousek et al. 1997; Palumbi 2001; Hendry, Gotanda, and  
41 Svensson 2017). Rapid evolutionary changes caused by anthropogenic pressures, e.g.,  
42 overfishing, pose special challenges in detecting induced selection processes, as the  
43 changes usually span a relatively short time frame insufficient for a conventional sweep-like  
44 pattern causing the complete fixation of focal alleles. Here, historical time-series samples  
45 provide a special lens to the past in detecting evolution in action by enabling direct access to  
46 allele frequency changes in genomic data (Franssen, Kofler, and Schlötterer 2017). In the  
47 context of fisheries induced evolution, one of the strongest human perturbations caused by  
48 size selectivity or added mortality onto a fish population, so far, the only compelling evidence  
49 for genome-level responses to overfishing comes from a 40 years of annual time series data  
50 of Atlantic salmon. A clear decrease in age at maturity in Atlantic salmon was accompanied  
51 by directional change in the allele frequency of *vgl3* gene (Erkinaro et al. 2019; Czorlich et  
52 al. 2018), a large effect locus explaining 39% of the phenotypic variation (Barson et al. 2015;  
53 Ayllon et al. 2015), which was significantly correlated with fishing pressure for the target  
54 species as well as a food species in salmon aquacultures (Czorlich et al. 2022). However, as  
55 most traits under fishing induced selection, including life history traits like growth rate, have a  
56 polygenic basis with a large number of small effect loci, challenges remain in both the  
57 identification of the contributing loci and the detection of subtle changes in frequency of the  
58 loci (see (Reid, Star, and Pinsky 2023; Pinsky et al. 2021)).

59 Eastern Baltic cod (EBC) is an Atlantic cod (*Gadus morhua*) population residing in  
60 the central Baltic Sea, with the last remaining spawning ground being the Bornholm Basin  
61 (ICES 2022). The population diverged from other Atlantic cod populations 7-8 thousand  
62 years ago when the Baltic Sea with its current salinity regime emerged after a series of  
63 postglacial tectonic shifts in combination with sea-level changes (Matschiner et al. 2022;  
64 Schmölcke et al. 2006; Martínez-García et al. 2021). Currently, it is biologically and  
65 genetically differentiated from all other ecotypes, e.g. western Baltic (WBC) and North Sea  
66 cod and adapted to the peculiar Baltic environment and experiences low salinities, high  
67 pCO<sub>2</sub>, prevalent hypoxia, and inconsistent and highly variable seasonal patterns of  
68 temperature, salinity and oxygen contents (Reusch et al. 2018; Zillén et al. 2008;

69 Stockmayer and Lehmann 2023). These fluctuating environmental conditions have  
70 contributed to the indistinguishable pattern in the otolith rings for age readings,  
71 compromising the age-related data for stock assessments of EBC (Heimbrand et al. 2020).  
72 At present, EBC is isolated from neighbouring WBC in the absence of genetic inflow (Paul R.  
73 Berg et al. 2015; Hemmer-Hansen et al. 2019), even though some limited hybridization  
74 occurred historically, at high population abundance (Helmerson et al. 2023).

75 EBC plays a major role not only ecologically as a key predator species in the food  
76 web, particularly notable in the Baltic's uniquely low biodiversity (Ojaveer et al. 2010), but  
77 also economically as it has been fished recreationally and was the largest target species for  
78 commercial fisheries with an annual catch of up to 400,000 tons in the mid-1980s (ICES  
79 2022). However, overfishing and size-selective fishing continued with excessively high total  
80 allowable catch resulting in fishing mortality typically 2-3 times higher than the maximum  
81 sustainable yield (MSY) (Birgersson 2022; ICES 2019; Eero et al. 2011; Zeller et al. 2011).  
82 Since the mid-1990s, multiple aspects of the EBC population have been deteriorating and  
83 have recently reached the unprecedented lowest point in their state since the 1950s  
84 (Birgersson 2022; Eero et al. 2023). The spawning stock biomass (fish sized over 35cm) has  
85 declined sharply in recent years, together with recruitment and loss of two major spawning  
86 grounds (Cardinale and Svedäng 2011; Köster et al. 2017). Higher mortality on older  
87 individuals can lead to size truncation, growth retardation, and worsened condition (weight-  
88 at-length) (Eero et al. 2023; Möllmann et al. 2009; Svedäng and Hornborg 2014; 2017). The  
89 size at first maturity and condition of the fish marked the lowest value of L50 (length at 50%  
90 of population reaches maturity) under 20 cm in recent years (Eero et al. 2015; ICES 2021;  
91 Mion et al. 2021; Svedäng and Hornborg 2017). A complete collapse of the stock has  
92 resulted in a ban on targeted fishing on EBC since 2019 (ban renewed for 2024) but the  
93 condition of the population has not been able to recover to a healthy status so far.

94 Despite the prominent changes in body length in the EBC, the genetic basis of the  
95 change, thus the evolutionary consequences of overfishing, has not been investigated until  
96 now. Here, we investigated whether or not changes in a heritable trait under selection  
97 caused by size-selective trawling translates to a detectable response of the genomes over  
98 time. To this end, we modelled individual growth using archived otoliths and sequenced  
99 whole-genomes of the population over multiple time points in the period of 1996-2019  
100 (referred as "temporal population" hereafter). Individuals caught in Bornholm Basin (Figure  
101 1A) were selected to cover the full breadth of time and phenotype spectrum, by random  
102 sampling along the length distribution for each time point (a sample set called "random"  
103 hereafter), then including individuals at the both tails of the distribution (called "phenotype").  
104 A genotype-phenotype association study (GWAS) identified pronounced peaks of outlier loci  
105 near genes linked to growth and maturity, which in turn showed signals of selection. In

106 parallel, we found a heterogeneous pattern of selection in a large inverted region in linkage  
107 group (LG) 12. This study is, to the best of our knowledge, the first in a fully marine species  
108 to provide leads that suggest genomic changes to underlie phenotypic evolution of a  
109 polygenic trait in response to overfishing in the field. It showcases the strength of combining  
110 temporal genomics of wild population with its phenotype data and eventually guides us  
111 through connecting dots of fisheries induced evolution.

112

## 113 RESULTS

### 114 Temporal Changes in Growth Rates

115 To demonstrate a phenotypic change under size-selective fishing pressure over the  
116 last 25 years (1996-2019), we focused on individual growth rates as the key heritable trait.  
117 We first aged archived otolith samples of 152 EBC individuals from Bornholm Basin using a  
118 novel method of biochemical reading as age information of EBC recorded through a  
119 conventional method has been unreliable (Hüssy et al. 2021). The oldest fish was a 7-year-  
120 old caught in 1996 while individuals as old as 5 years old could be sampled in more recent  
121 years (2014 and 2019) (Table S1). Using the distance from the core to each chemical  
122 annulus, the estimated otolith radii, von Bertalanffy growth parameters were estimated for  
123 each fish individual and each temporal population (von Bertalanffy 1957); Table S2). Fish in  
124 1996 grew to reach a larger terminal maximum size, and had a smaller Brody growth  
125 coefficient  $k$ , meaning they took longer to approach their terminal length than fish from  
126 recent years. The median of estimated individual length at infinity,  $L_\infty$ , decreased by 48%  
127 from 1996 to 2019, with a small inconsistency in 2008 (Figure 1B and S1A). Remarkably,  
128 this translates to a maximal fish length ( $L_\infty$ ) decrease from 1150 mm in 1996 to 539 mm in  
129 2019 when back-calculating fish body length from otolith radii. Accordingly, growth  
130 coefficient  $k$  increases over the period with the same trend in 2008 in both group parameters  
131 and individual parameters (Figure S1B). A growth performance index ( $\Phi$ ) for each fish of  
132 different years, which summarises the growth (Moreau, Bambino, and Pauly 1986), showed  
133 a consistent decrease in time (Figure 1C). Additionally, the otolith radii at age 1 for all fish  
134 were back-calculated to body length and compared to examine any deviation in the juvenile  
135 growth of EBC in temporal trend (Figure S1C). Although mean distances to the first-year  
136 radii do not differ, the variance of the radii significantly reduced over time (Bartlett's test for  
137 variance,  $p$ -value = 0.02868), indicating truncated phenotypic diversity in juvenile growth.  
138 Here, the condition of individual fish at catch (relative condition factor (Le Cren 1951))  
139 showed statistically different population mean only for 2002 (Figure S2A). When tested for

140 correlation, individuals' condition did not predict either the growth parameters,  $L_\infty$  and  $k$ , or  $\Phi$   
141 ( $r = -0.03$  ( $p > 0.05$ )),  $r = 0.09$  ( $p > 0.05$ ), and  $r = 0.09$  ( $p > 0.05$ ) respectively). (Figure S2B-  
142 D). Overall, this supports that the population has shifted to grow slower and reach smaller  
143 size when older during the study period of heavy fishing pressure.

144

#### 145 **Genome-wide Temporal differentiation**

146 In order to investigate any temporal differentiation of EBC which might potentially  
147 correspond to the phenotypic change, we subjected a set of 5,847,389 SNPs (MAF > 0.005)  
148 identified for 115 "random" samples to population summary statistics. First, a principal  
149 component analysis (PCA) using SNPs outside previously reported large chromosomal  
150 inversions revealed a panmictic population structure among time points (Figure 1D). The  
151 variances explained by PC1 and PC2 were relatively small (1.26 and 1.03%) while the  
152 loadings for each PC were well distributed along the whole genome. Second, we applied a  
153 temporal covariance analysis developed by Buffalo and Coop (Buffalo and Coop 2019;  
154 2020) to test genome-wide pattern of selection signature. The pairwise autocovariance of  
155 allele frequency changes in all time windows showed a pattern that resembled that of a  
156 simulated neutral scenario (Figure S3 and S4). The observed temporal autocovariance  
157 values from the samples were within the distribution of the expected under drift ( $p > 0.05$  for  
158 all paired autocovariances), which shows a lack of genome-wide selection signal (Figure  
159 S5). Lastly, genome-wide nucleotide diversity ( $\pi$ ) and absolute divergence between  
160 populations ( $d_{xy}$ ), calculated for 50 kb - windows varied only little among years (Figure S6).  
161 As expected, windowed  $\pi$  and  $d_{xy}$  varied along linkage groups depending on differences in  
162 recombination rate along the chromosome, e.g. centromere regions featuring less  
163 recombination (Sardell and Kirkpatrick 2020; Tigano et al. 2021). Some divergence was  
164 observed at the beginning of LG2 and in the central section of LG7, which were most likely  
165 caused by the varying frequency of the inverted regions. Overall pattern shows comparable  
166 genome-wide  $\pi$  (ranging from lowest value of 0.0071 for 1996 to highest value of 0.0077 for  
167 2008) and consistent slight increase in  $d_{xy}$  values as the sampling points are more distant,  
168 which indicates drift over time.

169

#### 170 **Genotype-Phenotype Association and Selection of SNPs linked to growth**

171 In the lack of genome-wide signal of selection, we sought to identify loci under  
172 directional selection by a genome-wide association (GWA) analysis using individual growth  
173 performance index ( $\Phi$ ) as a phenotype and 679,584 biallelic SNPs (MAF > 0.05). Three  
174 regions of the genome were clear outlier peaks with  $-\log_{10}P$  values around 6 and most likely  
175 to be associated with growth performance (Figure 2). The distribution of moderate p-values  
176 ( $3 < -\log_{10}P < 5$ ) across the genome in itself shows the polygenic nature of growth as well as

177 the methodological limitations of GWA analysis given our relatively low sample size of 152.  
178 Under a formal correction for multiple testing only a few regions remained at  $p = 0.05$ . As  
179 this study was designed as an explorative approach, an outlier status was assigned to 338  
180 SNP loci that lie in the lowest 0.05% of the distribution of p-values.

181 Regions with a peak of clustered outliers with flanking SNPs with low p-values were  
182 examined in depth to seek biological relevance of the SNP sites. Genes which span over 5  
183 Kb up- and downstream of the outliers were listed as candidate genes linked to growth  
184 variations. Amongst these candidate genes, the three most evident peaks of outliers in LG3,  
185 LG6 and LG14 contained genes which were most relevant to growth or maturity from  
186 functional annotation and previous research (Figure 2B-D, Table 1): LG3 contains *ncapg*,  
187 which is differentially expressed in puberty in salmon (Crespo et al. 2019) and *fam184b*,  
188 which is associated with body weight at first egg in chicken (Fan et al. 2017). Linkage group  
189 6 included *pde4d* gene which showed response in the transcriptome of fast growth line in a  
190 rainbow trout (Cleveland, Gao, and Leeds 2020). Finally, in linkage group 14 *mettl21e* which  
191 was linked to growth in pupfishes and intramuscular fat deposition in cattle (Fonseca et al.  
192 2020; Patton et al. 2022).

193 In order to understand if the genomic regions explaining phenotypic variation were  
194 under selection through time, we calculated covariance values for the GWA outliers to  
195 observe directional change in their allele frequency. Specifically, lag-2 (i.e.  $\text{cov}(\Delta 1996-2008,$   
196  $\Delta 2002-2014)$  and  $\text{cov}(\Delta 2002-2014, \Delta 2008-2019)$ ) and lag-3 (i.e.  $\text{cov}(\Delta 1996-2014, \Delta 2002-$   
197 2019)) autocovariance (as illustrated in inlets of Figure S7) were calculated. Temporal  
198 covariances of allele frequency changes of 338 outlier SNPs exhibited remarkably high  
199 values of 0.00154 and 0.00187 for lag-2 and 0.00537 for lag-3 (Figure S7). Based on 1000  
200 random permutations of covariance values of 338 SNPs sites, the observed covariances of  
201 GWA outliers markedly exceed the ranges of null-distributions ( $p < 0.001$ ). This result  
202 strongly supports that the GWA outliers, highly correlated to the growth performance  
203 collectively, experienced selection and responded accordingly with a directional frequency  
204 change over time.

205

## 206 **Integration of the selection scan and GWAS**

207 As a complementary approach to detect directional selection of loci linked to growth,  
208 we combined the GWA results with a selection test. An  $F_{st}$  scan on 20 Kb sliding windows  
209 across the genome was conducted comparing the temporal population of 1996 and 2019.  
210 Despite the lack of genome-wide signal of selection among temporal populations, we were  
211 able to identify regions of higher differentiation (Figure 3). While the genome-wide  $F_{st}$  value  
212 was xxx, a low value as expected for a single spatial population, some regions showed  
213 higher  $F_{st}$  values up to 0.1. When outlier windows of 5% highest p-values were assigned to

214 intersect with GWAS outliers, 33 windows overlapped. To test the statistical significance of  
215 this overlap, a null distribution was produced with a randomization test which the observed  
216 values can be compared to. Based on 5000 random permutations, wherein 338 SNPs were  
217 randomly chosen to overlap with the outlier windows, the observed number exceeded the  
218 upper tail of the expected distribution (Figure S8). This signifies that loci associated with  
219 growth performance are predicted to reside in the regions of highest  $F_{st}$  between 1996 and  
220 2019. Those two lines of evidence, the positive temporal covariance values of GWA outliers  
221 and their significant overlap with high  $F_{st}$  windows, strongly indicate the impact of directional  
222 selection on the genetic factors under growth variations in EBC.

223 The biological significance of these overlapping regions was further explored through  
224 a gene ontology (GO) term enrichment test on overlapping  $F_{st}$  windows (Table 2). Multiple  
225 pathways involved in ultradian rhythm, water homeostasis, and protein metabolism, and  
226 meiotic cell cycle were enriched. Ultradian rhythm is important in diverse functions including  
227 growth, reproduction, and metabolism in fish (Cowan, Azpeleta, and López-Olmeda 2017;  
228 Frøland Steindal and Whitmore 2019; Sánchez-Vázquez et al. 2019; Zhdanova and Reebs  
229 2006). Diverse metabolic processes involving amino acids were also significantly enriched,  
230 which is critical for fish growth rates (Finn and Fyhn 2010; Pelletier et al. 1994). Interestingly,  
231 folic acid deficiency in diet has direct implications in fish growth (Hardy and Kaushik 2021;  
232 John and Mahajan 1979; Lin, Lin, and Shiao 2011; Miao et al. 2013). The dietary  
233 requirement of folic acid in fish emphasises its role in not only growth performance but also  
234 diverse functions such as immune responses (Badran and Ali 2021; Trichet 2010). Pathways  
235 involved in mitotic cell cycle and development (e.g., regulation of mitotic cell cycle,  
236 embryonic, myotome development) together with multicellular organismal water  
237 homeostasis, form a large part of the list. These pathways have in common that they relate  
238 to a biological process called “oocyte maturation”. In fish, oocyte maturation takes place  
239 before ovulation and is necessary for a successful fertilisation (Nagahama and Yamashita  
240 2008), which may be indirectly linked to growth.

241

## 242 **Regions of Temporal Selection**

243 Along with selection signals observed in regions associated with growth phenotype,  
244 we were able to identify selection signatures in other parts of the genome. In the  $F_{st}$  selection  
245 scan, pronounced high  $F_{st}$  values in LG2 and LG12 as well as low values in LG7, where  
246 previously reported inversions reside (marked in pink), were observed along with highly  
247 conspicuous deviations of  $\pi$  values (Figure S6). Thus, we calculated the frequency of a  
248 haplotype for each inversion in the temporal populations. Interestingly, only the inversion in  
249 LG12 was decreasing in its frequency consistently over time (Mann-Kendall test for  
250 monotonic trend: p-value = 0.03) (Figure 4). Within this inversion, another block of inverted

251 region, so called “double crossover” (DC), was reported to be private to the EBC population  
252 (Matschiner et al. 2022). Thus, we identified the DC within the inversion in our sequence  
253 data (Figure S9) to examine the temporal trend of its frequency. Unlike the consistent  
254 decrease in the haplotype frequency of LG12, frequency of the DC within only decreases  
255 until 2014 then picks up in 2019. So, it seems that while the large inversion in LG12 behaves  
256 under directional selection as a whole, the DC escapes from this selection and is rather  
257 either drifting or under balancing selection on its own.

258 Additionally, the highest  $F_{st}$  values outside inverted regions were spread across the  
259 genome, some of which appear in peaks of clustered outliers. GO term enrichment analysis  
260 was conducted using 575 genes residing within the outlier windows of top 5% (Table S3).  
261 Several GO terms were enriched in sub-categories, which are highly related to the growth of  
262 a fish. For example, metabolisms and processing of macromolecules such as amino acids,  
263 fatty acids, and carbohydrates which in turn are key to any growth process. Fatty acid  
264 oxidation is strongly related to use of energy sources in response to feeding conditions (J. Ø.  
265 Hansen et al. 2008; Stubhaug, Lie, and Torstensen 2007; Turchini and Francis 2009) and  
266 cAMP biosynthesis is part of processing ATP, which is also critical in regulations of  
267 hormones involved in metabolism and reproductions (Miki, Van Heerden, and Fitzpatrick  
268 1997; Takahashi and Ogiwara 2023). Also, regulation of TOR pathway, which is crucial in  
269 sensing growth hormone, nutrient or oxygen condition (Dobrenel et al. 2016; Hietakangas  
270 and Cohen 2009), was found to be enriched. As expected, some enriched biological  
271 pathways do not always show direct relevance to growth. Other highly represented clusters  
272 of GO term are in regard to developments such as gastrulation, convergent extension  
273 involved in axis elongation, and tissue morphogenesis. Interestingly, regulation of neural  
274 retina development together with melanosome transport, which is involved retinal  
275 pigmentation, may suggest temporal differentiation in the visual sensory system in EBC  
276 which is potentially relevant to depth adaptation, thus vertical movements (P. R. Berg et al.  
277 2017; Pampoulie et al. 2015).

278

## 279 DISCUSSION

280 This study identifies, for the first time to our knowledge in an exploited marine fish  
281 population, the genomic regions with associated gene functions that are linked to growth  
282 impairment. Reassuringly, they were also found to be under directional selection using  
283 genome scans and temporal covariance approaches. Temporal selection was likely driven  
284 by strong and documented overfishing on Eastern Baltic cod that ultimately led to the life-

285 history change by fisheries induced evolution. A drastic decrease in the individual growth is  
286 accompanied by the contributing loci demonstrating clear evidence of directional selection  
287 with significantly positive temporal autocovariances of allele frequency changes and an  
288 excess number of overlaps with regions of high  $F_{st}$ . The combination of a selection test and  
289 GWA used here is a powerful implementation of detecting an adaptive polygenic trait (Bosse  
290 et al. 2017; Brennan et al. 2018; Barghi, Hermissen, and Schlötterer 2020), which have  
291 responded to a selective pressure. In addition, observed directional change in the frequency  
292 of ancestral haplotype of inversion in LG12 but not for its double crossover region  
293 underscores the heterogeneous response of the genome under selection.

294

## 295 **Overall Patterns of Temporal Genomic Change**

296 Non-significant change of nucleotide diversity, a lack of clustering pattern in PCA,  
297 and genome-wide covariance patterns resembling neutral population suggest that migration,  
298 gene flow and other non-adaptive processes were negligible over the study period, at least  
299 not at the resolution provided by the methods employed. In addition, heterogeneous  
300 response of the genome, by utilising standing genetic variation across the genome, may  
301 have been driving the changes in phenotype potentially through different metabolic  
302 processes (Crespel et al. 2021). Hence, the premise of this study, namely that EBC is a  
303 closed, self-sustained gene pool without immigration of divergent genotypes, is supported.  
304 Moreover, the possibility of other traits undergoing selection or drift in divergent directions  
305 than the targeted trait, could potentially obscure the genome-wide signal of size selective  
306 fishing in wild populations. For example, in EBC, an opposing selection pressure against  
307 small female body size can be hypothesised. This is because larger females produce larger  
308 and more buoyant eggs that permit them to float higher in the water column (Nissling and  
309 Vallin 1996), away from the near-bottom where the oxygen conditions are worsening.

310 Absence of evidence of overall pattern does not equate to evidence of absence of  
311 selection (Bosse et al. 2017; Fuller et al. 2020). Despite the lack of overall pattern, evident  
312 non-random signals were observed when targeting specific regions, the inverted region of  
313 LG12 and the candidate loci of GWA. Against the background of no overall change in  
314 genomic patterns (Figure S5 and S6) the directional change in the frequency of inversion in  
315 LG12 clearly suggests selection in parallel to the apparent decline of growth rates. In EBC,  
316 apart from some adaptive loci linked to salinity and oxygen found within the chromosomal  
317 inversion in LG2 (Paul R. Berg et al. 2015), any evidence on adaptive or ecological roles of  
318 inversion haplotypes is generally lacking. Although no GO term was found significantly  
319 enriched for genes located within the inverted region of LG12, the ancestral homozygous  
320 status of individuals, together with body size, had a correlation to lower survival rate in an  
321 Atlantic cod population in the North Sea (Barth et al. 2019). In addition, SNP loci within this

322 inverted region were highly correlated with temperature and oxygen level at the surface likely  
323 driving the differentiation of cod populations (Paul R. Berg et al. 2015). Interestingly, the  
324 frequency of double crossover (DC) within the inverted region seems to be fluctuating  
325 independently of the large inversion. This region is densely packed with genes including  
326 three vitellogenin genes, which are crucial for creating buoyancy of eggs for the survival and  
327 successful spawning in EBC (Nissling and Westin 1991). In this context, we speculate that  
328 the selection pressure acts upon the inversion as a whole, but is relaxed for the crucial set of  
329 genes in the DC by broken linkage disequilibrium. This scenario might also explain the  
330 hypothesis of the opposite selection pressure on body size of females mentioned above.

331

### 332 **Functional relevance of selected loci**

333 Several enriched GO pathways for the overlapping regions of GWA and  $F_{st}$  outliers  
334 suggest that the selected gene functions are causally linked to altered growth in EBC (Table  
335 1). Light manipulation to tweak the ultradian rhythm of individuals, thus the long term  
336 seasonality, is a very common method to control growth and maturity in fish aquaculture  
337 including Atlantic cod (Skulstad et al. 2013; Taranger et al. 2010; Karlsen et al. 2006; T.  
338 Hansen et al. 2001). Depending on the applied photoperiod, sexual maturation can be  
339 controlled, either postponed or advanced, which is tightly entangled to somatic growth of a  
340 fish (T. Hansen et al. 2001; Davie, Porter, and Bromage 2003). In addition, water  
341 homeostasis is important in egg hydration during the oocyte maturation process to make  
342 floaty eggs, which is one of the major evolutionary acquisitions for pelagic teleost fish (Fyhn  
343 et al. 1999). Oocyte maturation takes place before ovulation and is necessary for a  
344 successful fertilisation (Nagahama and Yamashita 2008). Specific hypotheses directly  
345 connecting oocyte maturation and growth are currently lacking in the field. Nevertheless, it is  
346 well conceivable that the timing of spawning, through control of oocyte maturation, may be  
347 critical for successful reproduction, as maturation process is highly affected by energy  
348 allocation (Roff 1993), thus tightly linked to somatic growth in a fish's lifespan. Lastly, the  
349 biological process of "response to heat" is indeed highly linked to growth traits in fish.  
350 Warmer temperatures as the Baltic sea has been experiencing (Meier et al. 2022), critically  
351 impact the species throughout the lifespan from larva to adult stage (Oomen et al. 2022;  
352 Righton et al. 2010) and are dynamically interlinked with other environmental factors such as  
353 oxygen. Thus, it may suggest that the slow growth trait was also mediated or accompanied  
354 by shifts in temperature response over time.

355 In spite of the obvious, functionally aligned links to growth from candidate loci, there  
356 seems to be a general lack of congruency in the genetic contents compared to previous  
357 studies which experimentally addressed the genomic effects of size-selective harvest  
358 selection. Therkildsen et al. (2019) resequenced samples from the seminal study of Conover

359 and Munch (2002) that subjected Atlantic silversides to 5 generations of upwards and  
360 downward selection with respect to body size. They listed enriched GO terms from highly  
361 differentiated loci accompanied by body size changes under different harvest regimes. Data  
362 from the present study found no intersection to above results, which is perhaps not  
363 surprising given that Therkildsen et al. (2019) itself observed highly divergent genomic  
364 responses across replicates under the same treatment. In another experimental study in  
365 zebrafish, Uusi-Heikkila (2015) identified another set of genes selected by fishing pressure  
366 that were also not present among the genes listed as outliers in this study. Lastly, the *vgl3*  
367 and *six6* genes that are of high effective size in age at maturity in salmonids species (Barson  
368 et al. 2015; Ayllon et al. 2015), a tightly linked yet different life history trait, were not found to  
369 be significant in any of the present analyses. This lack of consistent patterns of identified  
370 genes and pathways in this study compared to previous studies of FIE as well as among the  
371 studies indicate that there are heterogeneous responses in the genome level either under  
372 same phenotype changes, growth, or under same selective pressure, size-selective fishing.

373

#### 374 **Future directions and Implications in Fisheries Management**

375 With promising results showcasing EBC as an evolving population with stunted  
376 growth, this study directs to important future research agendas and implications in managing  
377 the stock. First, it is important to note that these evolutionary responses occurred in the  
378 context of dynamic interplays of fisheries and adverse environmental factors. Examples  
379 abound that overexploitation will cause evolutionary change, but these responses are always  
380 highly context dependent. Depending on the life history traits under selection and their  
381 genomic architecture, strength, length, and types of selection pressure together with natural  
382 selection by various environmental factors may be reinforcing or counteracting the trait  
383 evolution in a convoluting manner. Environmental factors, such as hypoxia and temperature  
384 increase as well as ecological variables, such as prey and predator interactions and inter-  
385 species competition in the Baltic Sea, have been directly and indirectly influencing the  
386 population at the same time (Casini et al. 2016; Eero et al. 2012; Limburg and Casini 2018;  
387 2019; Neuenfeldt et al. 2020), which may or may not have exerted an evolutionary pressure.  
388 For example, sea surface temperature has risen around 1.5 °C during the study period  
389 (Siegel and Gerth, 2018) and can only maximally explain a 6 % decrease in body size  
390 according to gill-oxygen limitation theory (Pauly and Cheung 2018). Then the hypoxia in the  
391 bottom water in the Baltic Sea has been continuously deteriorating since the 1930s and the  
392 extent to which Bornholm Basin has been directly impacted were variable depending on  
393 inflow from North Sea and surrounding rivers (Carstensen et al. 2014; Stockmayer and  
394 Lehmann 2023). Thus, given time-series data of an adequate resolution, direct associations

395 of genotypes and fishing pressure as well as environmental variables are an essential further  
396 step to take.

397 Secondly, this study focuses on the critical period of a steep decline and lowest point  
398 in growth from 1996 to 2019 and provides a contemporary snapshot of the long-term  
399 population dynamics of EBC. However, it is crucial to acknowledge that growth has  
400 fluctuated, with an increase during the 1960s to 1980s, followed by a noticeable decline from  
401 the 1990s to the present (Mion et al. 2021). Thus, the direct causes and evolutionary  
402 responses shaping the growth trend warrant further investigation within a longer timeframe,  
403 preceding and succeeding the study period. Especially, when an inherent lag in evolutionary  
404 response, referred to as “Darwinian debt” (Ulf Dieckman in an interview by Cookson,  
405 *Financial Times*) may be contributing to the delay of recovery by compromising growth  
406 potentials and population resilience (Anderson et al. 2008; Ahti, Kuparinen, and Uusi-  
407 Heikkilä 2020), it urges a comprehensive examination of long-term ecological and  
408 evolutionary consequences.

409 Lastly, successful management plans for EBC must incorporate evolutionary aspects  
410 into their framework, e.g. introducing  $F_{\text{evol}}$  (Hutchings 2009), integrating evolutionary  
411 processes into economic assessments of management plans (Eikeset et al. 2013; Schenk,  
412 Zimmermann, and Quaas 2023). Having said that, the impact of such measures on fisheries  
413 management may be limited at this stage as the damage has already been done. At present,  
414 the evolutionary debt has been accumulated and despite the current moratorium, the stock  
415 recovery falls short of expectations due to concurrent contribution of ecological and  
416 environmental factors to stock condition (Eero et al. 2023). Whether this lack of recovery is  
417 already one consequence of the Darwinian debt is an interesting hypothesis to explore in the  
418 future.

419

## 420 MATERIALS AND METHODS

### 421 Sample Collections

422 In total 152 cod individuals were used in this study after excluding individuals which  
423 were identified as either a western Baltic cod from genetic analysis (9 samples), an outlier  
424 from growth analysis with measurement errors (1 samples), and of low sequencing quality (2  
425 samples). Sampling was done in two different ways to cover the available time period and  
426 the full range of phenotype in the sampling pool. 1) A set of samples, called “random”  
427 hereafter, were randomly sampled along the length distribution for five catch years; 31 from  
428 1996, 22 from 2002, 24 from 2008, 20 from 2014, and 20 from 2019. 2) As another set of

429 samples, called “phenotype” hereafter, 19 smallest mature fish and 18 largest immature fish  
430 were selected from the catch year 1996-1998. As any age information of the archived  
431 samples was not available, neither sample based on the cohort nor on length at first maturity  
432 was possible. The rationale was that by sampling immature fish, which would be first mature  
433 in the following year if they had not been caught, and small, presumably young, mature fish,  
434 we attempted to cover as wide a range of phenotype variation as possible.

435 Otoliths and finclips were collected in the Baltic Sea Integrative Long-Term Data  
436 Series of the research division Marine Evolutionary Ecology at GEOMAR, carried out  
437 annually since 1996. They were taken on board from cod caught in Bornholm Basin (Figure  
438 1A), of which their phenotype data (e.g., body length, weight, maturity stage, and sex) was  
439 recorded (Table S1). Otoliths were stored in paper bags. Finclips were stored in 100%  
440 ethanol at -20 °C.

441

#### 442 **Age Reading of Otoliths**

443 As the conventional otolith reading method has not been reliable for EBC, a newly  
444 developed method was employed to acquire age information of the sequenced samples in  
445 order to model growth based on Hüssy et al. 2021. For chemical analysis, otoliths were  
446 embedded in Epoxy resin (Struers®) and cut to have exposed surface of the core and the  
447 rostral part. Trace element analysis were conducted by Laser Ablation Inductively Coupled  
448 Plasma Mass Spectrometry (LA-ICP-MS) to measure magnesium ( $^{25}\text{Mg}$ ), phosphorus ( $^{31}\text{P}$ ),  
449 and calcium ( $^{43}\text{Ca}$ ), which exhibit seasonal variations in EBC (Heimbrand et al. 2020; Hüssy  
450 et al. 2021). Since the elements were read from the core of an otolith to the edge, the  
451 measured element traces represent the chemical characteristics of an individual’s lifespan  
452 from the hatch to catch. With the measured element profile, a statistical analysis was carried  
453 out to determine the age. Chemical minima were identified using local polynomial regression  
454 function “loess” and “peaks” in R (R Development Core Team, 2022). The arguments were  
455 set based on the settings used in age reading of tag-and-recapture cod samples in previous  
456 studies. The numbers of minima in Mg and P, which suggest the fish’s exposure to the  
457 coldest temperature of a year (February and March), are counted as the age of an individual  
458 (Figure 2 in Hüssy et al. 2021). When the two values disagreed, the element profiles were  
459 visually examined. This approach is not as stable for the signals near the otolith edge. Thus,  
460 visual assessment was conducted for the samples caught in the first quarter of a year. As a  
461 result, annual chemical radii for each individual, total otolith radius, as well as the age at  
462 catch were extracted. The exact details of preparation of otoliths, procedures concerning LA-  
463 ICP-MS, and the statistical analysis can be found in Hüssy et al. 2021.

464

465 **Modelling Individual Growth Rates**

466 To acquire a heritable phenotype that may have been affected by fishing pressure,  
467 we modelled individual growth using the age information. Although it was recently confirmed  
468 that the growth of EBC has impaired over last decades (Mion et al. 2021), it is crucial to  
469 obtain the growth pattern of sequenced individuals to integrate genotypes and phenotype.

470 To fully utilise the hierarchical nature of the estimated otolith chemical annuli at age  
471 of fish individuals from different catch years, Bayesian hierarchical modelling was applied  
472 using R2jags v0.7.1 R package (Su and Yajima 2021). The von Bertalanffy growth function  
473 (von Bertalanffy 1957) was fitted to distance from core to chemical annuli at age on otoliths:

474 
$$L_a = L_\infty (1 - e^{-k(t_a - t_0)}),$$

475 where  $L_a$  is distance from otolith core to each chemical annulus,  $t_a$  is the estimated  
476 age at the annulus,  $L_\infty$  is asymptotic length in an otolith scale, which is hypothetical otolith  
477 length at age of infinity,  $k$  is a growth coefficient, and  $t_0$  is hypothetical age when length  
478 equals zero. Three levels of hierarchy included measurements of annuli at age, nested in a  
479 fish individual, again nested in a group of a catch year. As a result,  $L_\infty$  and  $k$  parameters  
480 were estimated for each individual and also each catch year. We took the most conservative  
481 approach of priors, applying a gamma distribution for catch years and normal distribution for  
482 individuals with relaxed standard deviations (details in the script). To fit the model, 100,000  
483 iterations were observed for three MCMC chains and the first 10,000 were discarded as  
484 burn-in. The median of Rhat values were 1.0036 and model convergence of the chains were  
485 visually examined in addition (Figure S10). As an additional assessment of the model,  
486 residuals were calculated from estimated otolith length from the model and observed length  
487 of otolith annuli (Figure S11). Here, the variance of residuals is larger for the first year which  
488 could be caused by the uneven number of observations that were fed to the model for each  
489 age. Nevertheless, the overall residuals remain near zero for all years. To avoid any bias of  
490 condition towards bigger fish, relative condition factor (Le Cren 1951) was used to test  
491 whether fish condition could predict any of the growth parameters and  $\Phi$ . Back-calculation of  
492 fish length was conducted using an equation from (Hüssy, Eero, and Radtke 2018), using  
493 biological intercepts specific (Campana 1990) for Baltic cod. Accordingly,  $L_0$ , which is the fish  
494 length at age 0, was set to 4.3 and  $O_0$ , the otolith length at age 0 was set to 0.01.

495

496 **DNA Extractions**

497 For genetic materials, DNA was extracted using otoliths from earlier years (1996-  
498 1998, 2002, and 2008) and fin clips from recent years, 2014 and 2019. Otoliths and finclips  
499 were always handled with tools (e.g., forceps) which were cleaned with ethanol 70% and  
500 sterilised in between each individual sample to avoid cross contamination. The extraction

501 procedure for both otoliths and finclips were conducted following the standard protocols from  
502 either DNeasy® Blood & Tissue Kit (Qiagen, Aarhus, Denmark) or NucleoSpin® Tissue Kit  
503 (Macherey-Nagel, Düren, Germany). Otoliths were fully submerged in the lysis buffer to  
504 lysate any remnant tissues then removed from the buffer. The lysate then was treated as in  
505 the manuals provided by the kits. Fin clips were cut into small pieces (up to 25mg),  
506 submerged in a lysis buffer, then continued following the protocols. The extracted DNA was  
507 purified using Qiagen QIAquick® PCR Purification Kit (Qiagen, Aarhus, Denmark). DNA  
508 quality was checked with standard electrophoresis in 1% agarose gel and the quantity was  
509 measured using NanoDrop™ and Qubit Assay (Thermo Fisher Scientific™, Carlsbad, USA).

510 To validate cross contamination that might have occurred during the sample  
511 collection, archiving process, and DNA extraction, microsatellite (MSAT) analysis was done  
512 for DNA extracted from otolith samples. Four MSAT sites were used. A multiplex PCR was  
513 conducted with four primer pairs on a 96-well plate. The PCR product was mixed with Hi-Di™  
514 mix (Thermo Fisher Applied Biosystems™, Carlsbad, USA) with GeneScan™ LIZ dye Size  
515 standard™ (Thermo Fisher Applied Biosystems™, Carlsbad, USA). Capillary electrophoresis  
516 was done with the reaction mix using ABI PRISM 3100 Genetic Analyzer (Thermo Fisher  
517 Applied Biosystems™, Carlsbad, USA). The MSAT peaks were analysed using  
518 GeneMarker® software (Softgenetics, State College, USA). As the chosen MSAT loci  
519 typically show more than ten alleles per site in a population, when samples are mixed the  
520 likelihoods of encompassing the same allele at a single MSAT locus are small and are  
521 virtually zero if several such loci are combined. Thus, samples showing multiple peaks for  
522 any MSAT locus were identified as cross contaminated and subsequently excluded from the  
523 data set (see examples in Figure S12).

524

## 525 **Library Preparation and Sequencing**

526 2x100 bp paired end library preparation for 16 samples from 1996 was done in the  
527 Ancient DNA Laboratory at the Institute of Clinical Molecular Biology (IKMB) as a pilot to  
528 check if they should be treated specially like historic DNA samples. The details of the  
529 manual library preparation can be found in the method section in Krause-Kyora et al. 2018.  
530 For the finclip samples from 2014 and 2019, 2x150bp paired end libraries were prepared  
531 using Illumina DNA Prep kit (Illumina, San Diego, USA) by the Competence Centre for  
532 Genomic Analysis (CCGA) Kiel. These libraries (16 otolith samples from 1996 from pilot and  
533 40 finclip samples from 2014 and 2019) were sequenced on Illumina 6000 S4 Flowcell  
534 (Illumina, San Diego, USA) by CCGA Kiel. In the end it was concluded that older otolith  
535 samples can be treated the same as the rest, yielding sequence data of comparable quality.  
536 Thus, rest of the samples, including “phenotype” samples from 1996-1998 and “random”  
537 samples of 1996, 2002 and 2008, were sent to Norwegian sequencing center (NSC) for

538 2x150 bp library preparation using Illumina Nextera DNA library preparation kit (Illumina, San  
539 Diego, USA) followed by sequencing on Illumina NovaSeq S4 Flowcell (Illumina, San Diego,  
540 USA).

541

#### 542 **Read Processing and Variant Calling**

543 All sequenced reads from this study were processed together with published  
544 population data from Barth et al. 2019, to include 23 EBC (named BOR), 22 WBC (KIE), and  
545 24 North Sea (NOR) cod samples, which were later partitioned out. This was to identify WBC  
546 in our samples and test for any sequencing bias in our samples (Figure S13) as well as to  
547 conduct ancestry painting, which includes WBC and EBC individuals of known inversion  
548 status as reference (explained below). All sequenced reads were processed following the  
549 GATK best Practices workflow by Broad Institute (GATK v4.1.9.0) (Van Der Auwera et al.  
550 2013). All the detailed commands, parameters, and filtering options in the bioinformatics  
551 workflow are included in the provided git repository. Mapping to the reference genome of  
552 Atlantic cod, gadMor3.0 (NCBI accession ID: GCF\_902167405.1), the median coverage of  
553 each individual ranged from 4x to 31x with a median of 12x for all samples. Two samples  
554 from 1996 were excluded based on their low mapping coverage below 4x.

555 After variant calling, raw SNP variants were first hard filtered based on different  
556 qualities of variant sites according to best practices. Then, only biallelic SNPs were selected  
557 and filtered again based on genotyping quality, missingness, read depths, and minor allele  
558 frequency (MAF) of 0.005 to produce the final variant call file in a vcf format containing  
559 5,847,389 variants. When possible, this full set of variants based on MAF > 0.005 were  
560 used, although some analyses were carried out using 4,685,343 variants filtered with  
561 MAF>0.01 due to the processing time and resource limitation.

562 Further analyses were done with two separate sets of variants resulting from different  
563 partitioning of the total sample set (also partitioned from WBC and North Sea samples), as  
564 parts of the sampling was intentionally biased for “phenotype” samples as explained earlier.  
565 i) 115 of “random” samples were used for the analysis identifying signatures of selection  
566 over time. ii) A total of 152 samples including “random” and “phenotype” samples were used  
567 for genotype-phenotype association. The subset of the master vcf file was created using  
568 bcftools v1.2 (Danecek et al. 2021) then fixed sites were removed using GATK  
569 SelectVariants (v4.1.9.0).

570

#### 571 **Population Statistics and Principal Component Analysis**

572 To examine any temporal differentiation in EBC independent of phenotypic data, 115  
573 “random” samples were used to compute Nucleotide diversity ( $\pi$ ), between population  
574 nucleotide divergence ( $d_{xy}$ ),  $F_{st}$  and principal component analysis (PCA). For calculating  $\pi$

575 and  $d_{xy}$ , guides provided by Pixy (1.2.7.beta1) (Korunes and Samuk 2021) were followed. A  
576 vcf file containing invariant sites was created, using GATK GenotypeGVCFs with option –all-  
577 sites followed by site filtering steps using GATK VariantFiltration with same criteria as in hard  
578 filtering of variants and followed by vcftools v0.1.16 (Danecek et al. 2011) on missingness of  
579 0.8 and mean read depths of 10. This filtered all-site file was combined with the final variant  
580 file to create the input vcf file for Pixy. A total of 81,462,138 records including invariant and  
581 variant sites, were used to calculate  $\pi$  for each catch year and pairwise  $d_{xy}$  in 50kb non-  
582 overlapping windows. For genome-wide nucleotide diversity for each temporal population,  
583 average  $\pi$  value for all windows was calculated according to the equation provided by Pixy.

584 PCA on the subset of SNPs (4,685,343 after filtering for MAF > 0.01) was carried out  
585 using the R package pcadapt v4.3.3 (Privé et al. 2020). Scree plots of total variance  
586 explained by each principal component (PC) were examined to decide up to which PCs to  
587 investigate. When all sites were included, a unique clustering pattern driven by inversion  
588 status of individuals appeared (Figure S14). Thus, sites within the inverted regions (identified  
589 as described in *Identifying inversion status*) were excluded then pruned based on linkage  
590 disequilibrium (2,030,929 SNPs) to examine the remaining population structure.

591 Weir and Cockerham's  $F_{st}$  was calculated using vcftools v0.1.16 in 20kb windows. Only  
592 weighted  $F_{st}$  was used for plotting and interpretation of the data. All plots were created in R  
593 (R Development Core Team, 2022) using the base “plot” function.

594

## 595 **Genome-wide Temporal Covariance and Simulation**

596 Genome-wide temporal covariance was calculated using a modified python script in  
597 Jupyter notebook based on the functions in cvtkpy (<http://github.com/vsbuffalo/cvtk>)  
598 published in Buffalo and Coop (2020). Error bars were calculated by bootstrapping  
599 covariance values, resampling blocks of loci 5000 times, using the bootstrap function  
600 provided by cvtkpy. As initial genome-wide temporal covariance showed an inconclusive  
601 pattern, we simulated a neutrally evolving population to compare the covariance values as a  
602 control. First, backward-in-time simulation was employed to create a population with  
603 matching diversity using msprime v1.2 (Baumdicker et al. 2022), with mutation rate 3.5e-9,  
604 recombination rate 3.11e-8, 5000 genomes, and a sequence length of 30Mb. With this  
605 population as a founding population, a forward-in-time simulation was conducted using SLiM  
606 v2 (Haller and Messer 2017). Additional 100 generations were burned in at the beginning of  
607 the simulated time. From generation 101, 20 individuals were sampled from the simulated  
608 population for five generations, to imitate the sampling scheme of wild population. Final vcf  
609 file was created to calculate the covariance of the simulated temporal populations. This was  
610 replicated 100 times to create a distribution of patterns from neutrally evolving populations.

611 For the calculation of temporal covariance, a custom script in R language was used which  
612 replicated the functions in cvtkpy.

613

614

## 615 **Genome-wide association analysis (GWA)**

616 To identify specific genomic regions responsible for growth variation in the EBC  
617 population, genome-wide association study was conducted. Growth performance was  
618 converted into an index using the growth estimates,  $\Phi = \log k + 2 \log L^\infty$  (Moreau, Bambino,  
619 and Pauly 1986; Munro and Pauly 1983). Subsequently, this variable was subjected to a  
620 univariate nonlinear mixed model to identify loci associated with the growth change using  
621 GEMMA v0.98.3 (Zhou and Stephens 2012). A total of 679,584 SNPs were used after  
622 filtering for minor allele frequency of 0.05 and missingness of 0.1 as recommended by the  
623 developers. Genetic population structure was considered as a random effect and sex as  
624 covariates to incorporate and eliminate possible other contributing factors. Genomic inflation  
625 factors and QQ plots showed that systematic biases were adequately corrected from the  
626 other contributing factors (Figure S15). After correcting for multiple testing, using false  
627 discovery rate (Benjamini and Hochberg 1995), with the number SNPs sites not in linkage  
628 disequilibrium (174,541), there were no SNP sites with genome-wide significance for Wald  
629 test p-values observed. Instead, as an exploratory approach to identify the loci that are most  
630 likely to be associated with growth, a cutoff which includes the most obvious peaks but  
631 excludes more spurious signals in the Manhattan plot were set. As results, SNP loci  
632 occupying the 0.05% tail of distribution of the p-values, 338 variants, were assigned as  
633 outliers for further analysis (referred to as “GWA outliers”).

634

## 635 **Calculating and Bootstrapping Temporal Autocovariance of GWA outliers**

636 To demonstrate the directional changes over time in allele frequencies of the GWA  
637 outliers which are accountable for the growth variations, temporal covariance of the outlier  
638 loci was calculated in R. We used delta values of different time windows, lag-2 and lag-3,  
639 contrary to those with lag-1 provided in the cvtkpy package, which always uses consecutive  
640 time points to calculate the allele frequency changes. This was to avoid including a shared  
641 time point in calculating autocovariance which showed positive covariance values in the  
642 simulated neutral populations and was likely driven by the shared time point rather than a  
643 true signal of selection. To assess the significance of observed covariance, a permutation  
644 test was conducted calculating temporal covariance values using 338 random loci sampled  
645 from all SNP sites in GWA analysis. The observed values were compared to the distribution  
646 of 1000 random permutations.

647

648 **Gene Identification and Gene Ontology (GO) Term Analysis**

649 To further assess the biological relevance of any outlier loci or windows from  
650 genomic analysis, two approaches were employed, 1) by searching for functional  
651 annotations in targeted genes for GWA outlier SNPs and 2) by gene ontology (GO) term  
652 enrichment analysis using a set of outliers. For 1), among the 338 SNPs assigned as GWA  
653 outliers, only regions with clustering outliers with flanking SNPs with low values (marked with  
654 red arrows in Figure 12) were examined in depth. Genes located at or within 5 Kb up- and  
655 downstream of the outliers were further searched for their biological functions in the  
656 literature. The search was carried out using the gene names or descriptions, targeted with or  
657 without key words, e.g., fish, growth, maturity, and reproduction to find the most relevant  
658 functions to this study. Genes were listed by cross referencing each SNP to annotated  
659 genes in the gadMor3.0 annotation database ("gmorhua\_gene\_ensembl") in Ensembl using  
660 the BioMart v2.54.1 R package (Durinck et al. 2005). Same database and workflow were  
661 used in identifying genes lying within  $F_{st}$  outlier windows and in overlapping windows of  $F_{st}$   
662 and GWA outliers. With the listed sets of genes, enriched GO terms were identified using the  
663 GO terms provided in the annotations of the gadMor3.0 database as "universe." The  
664 workflow was based on the vignette provided by GOstats v2.64.0 R package (Falcon and  
665 Gentleman 2007).

666

667 **Identifying Inversion Status**

668 Four large (5-17 Mbp) chromosomal inversions in Atlantic cod species have been  
669 previously identified (Paul R. Berg et al. 2015; Kirubakaran et al. 2016; Sodeland et al.  
670 2016), three of which are polymorphic in the EBC population. We targeted these regions as  
671 candidate supergenes which may have undergone selection over the study period and  
672 examined how their frequency changed over time. With prior knowledge of inversions  
673 located in LG2, 7 and 12, PCA was done on subset vcf files of each chromosome. Three  
674 distinct clusters of individuals of different inversion status (homozygous ancestral,  
675 homozygous derived, and heterozygous, "ancestral" status adopted from Matschiner et al.  
676 2022) were observed, which was used for individual assignment. Then,  $F_{st}$  values were  
677 calculated among these three groups (each pairwise and global) and plotted to identify  
678 boundaries of the inversions (Figure S16). These boundaries were used to subset the  
679 bedfiles to feed as input of local PCA analysis. The inversion status of individuals was  
680 verified again by visually examining local PCA plots for each inversion status (Figure S17).  
681 When ambiguous, the individuals were visually examined for their genotypes in IGV v2.12.0  
682 (Thorvaldsdóttir, Robinson, and Mesirov 2013).

683 To identify the individual status of double crossover, ancestry painting was carried  
684 out following a tutorial from a git repository of M. Matschiner

685 (github.com/mmatschiner/tutorials/tree/master/analysis\_of\_introgression\_with\_snp\_data).  
686 We used four samples (homozygotes ancestral: KIE1203003, BOR1205002 and  
687 homozygotes derived: KIE1202006, KIE1203020 from Barth et al. 2019) as reference of  
688 ancestral and derived homozygotes and two EBC (BOR1205003, BOR1205007; identified in  
689 Matschiner et al. 2021) as “control” of double crossover. SNP sites between positions 6.5Mb  
690 and 7.5Mb in LG12, (Note that the location is different than reported in Matschiner et al. as  
691 different reference genomes were used) which are fixed 80% in these reference individuals,  
692 allowing for 20% of missingness, were painted two different colours in EBC individuals  
693 (Figure S9). Double crossover status, either ancestral/derived homozygous or heterozygous,  
694 was assigned by visual examination.

## 695 ACKNOWLEDGEMENTS

### 696 **Funding:**

697 This work was funded by the Research Training Group Translational Evolutionary Research  
698 (GRK 2501; project 1.1)

699

### 700 **Author contributions:**

701 Conceptualization: TBHR, KYH, JD  
702 Sample Acquisition: KYH, TBHR, JD  
703 Methodology: KYH, EEK, JD, SJ, CH, JF, BKK, KH, TBT, BDH  
704 Investigation: KYH, RB, CM  
705 Visualization: KYH  
706 Supervision: TBHR  
707 Writing—original draft: KYH, SJ, TBHR  
708 Writing—review & editing: all authors

709

### 710 **Competing interests:**

711 Authors declare that they have no competing interests.

712

### 713 **Data and materials availability:**

714 The sequence data is archived under NCBI BioProject PRJNA1128530  
715 The scripts and metadata used in this study are archived in a Gitlab repository  
716 [https://github.com/kwiyounghan/FIE\\_Baltic\\_cod](https://github.com/kwiyounghan/FIE_Baltic_cod)

717

## 718 REFERENCES

719 Ahti, Pauliina A., Anna Kuparinen, and Silva Uusi-Heikkilä. 2020. "Size Does Matter — the  
720 Eco-Evolutionary Effects of Changing Body Size in Fish." *Environmental Reviews* 28  
721 (3): 311–24. <https://doi.org/10.1139/er-2019-0076>.

722 Anderson, Christian N. K., Chih-hao Hsieh, Stuart A. Sandin, Roger Hewitt, Anne Hollowed,  
723 John Beddington, Robert M. May, and George Sugihara. 2008. "Why Fishing  
724 Magnifies Fluctuations in Fish Abundance." *Nature* 452 (7189): 835–39.  
725 <https://doi.org/10.1038/nature06851>.

726 Ayllon, Fernando, Erik Kjærner-Semb, Tomasz Furmanek, Vidar Wennevik, Monica F.  
727 Solberg, Geir Dahle, Geir Lasse Taranger, et al. 2015. "The VgII3 Locus Controls  
728 Age at Maturity in Wild and Domesticated Atlantic Salmon (*Salmo Salar L.*) Males." *PLOS Genetics* 11 (11): e1005628. <https://doi.org/10.1371/journal.pgen.1005628>.

729 Badran, Mohamed F., and Mervat A. M. Ali. 2021. "Effects of Folic Acid on Growth  
730 Performance and Blood Parameters of Flathead Grey Mullet, *Mugil Cephalus*." *Aquaculture* 536 (April):736459. <https://doi.org/10.1016/j.aquaculture.2021.736459>.

731 Barghi, Neda, Joachim Hermisson, and Christian Schlötterer. 2020. "Polygenic Adaptation: A  
732 Unifying Framework to Understand Positive Selection." *Nature Reviews Genetics* 21  
733 (12): 769–81. <https://doi.org/10.1038/s41576-020-0250-z>.

734 Barson, Nicola J., Tutku Aykanat, Kjetil Hindar, Matthew Baranski, Geir H. Bolstad, Peder  
735 Fiske, Céleste Jacq, et al. 2015. "Sex-Dependent Dominance at a Single Locus  
736 Maintains Variation in Age at Maturity in Salmon." *Nature* 528 (7582): 405–8.  
737 <https://doi.org/10.1038/nature16062>.

738 Barth, Julia M. I., David Villegas-Ríos, Carla Freitas, Even Moland, Bastiaan Star, Carl  
739 André, Halvor Knutsen, et al. 2019. "Disentangling Structural Genomic and  
740 Behavioural Barriers in a Sea of Connectivity." *Molecular Ecology* 28 (6): 1394–1411.  
741 <https://doi.org/10.1111/mec.15010>.

742 Baumdicker, Franz, Gertjan Bisschop, Daniel Goldstein, Graham Gower, Aaron P Ragsdale,  
743 Georgia Tsambos, Sha Zhu, et al. 2022. "Efficient Ancestry and Mutation Simulation  
744 with Msprime 1.0." Edited by S Browning. *Genetics* 220 (3): iyab229.  
745 <https://doi.org/10.1093/genetics/iyab229>.

746 Benjamini, Yoav, and Yosef Hochberg. 1995. "Controlling the False Discovery Rate: A  
747 Practical and Powerful Approach to Multiple Testing." *Journal of the Royal Statistical  
748 Society: Series B (Methodological)* 57 (1): 289–300. <https://doi.org/10.1111/j.2517-6161.1995.tb02031.x>.

749 Berg, P. R., B. Star, C. Pampoulie, I. R. Bradbury, P. Bentzen, J. A. Hutchings, S. Jentoft,  
750 and K. S. Jakobsen. 2017. "Trans-Oceanic Genomic Divergence of Atlantic Cod  
751 Ecotypes Is Associated with Large Inversions." *Heredity* 119 (6): 418–28.  
752 <https://doi.org/10.1038/hdy.2017.54>.

753 Berg, Paul R., Sissel Jentoft, Bastiaan Star, Kristoffer H. Ring, Halvor Knutsen, Sigbjørn  
754 Lien, Kjetill S. Jakobsen, and Carl André. 2015. "Adaptation to Low Salinity Promotes  
755 Genomic Divergence in Atlantic Cod (*Gadus Morhua L.*)." *Genome Biology and  
756 Evolution* 7 (6): 1644–63. <https://doi.org/10.1093/gbe/evv093>.

757 Bertalanffy, Ludwig von. 1957. "Quantitative Laws in Metabolism and Growth." *The Quarterly  
758 Review of Biology* 32 (3): 217–31. <https://doi.org/10.1086/401873>.

759 Birgersson, Lina. 2022. "The Decline of Cod in the Baltic Sea – A Review of Biology,  
760 Fisheries and Management, Including Recommendations for Cod Recovery." The  
761 Fisheries Secretariat. [https://www.fishsec.org/app/uploads/2022/04/FishSec-Report-  
763 Decline-Baltic-Cod-March2022.pdf](https://www.fishsec.org/app/uploads/2022/04/FishSec-Report-<br/>762 Decline-Baltic-Cod-March2022.pdf).

764 Bosse, Mirte, Lewis G. Spurgin, Veronika N. Laine, Ella F. Cole, Josh A. Firth, Phillip  
765 Gienapp, Andrew G. Gosler, et al. 2017. "Recent Natural Selection Causes Adaptive  
766

768 Evolution of an Avian Polygenic Trait." *Science* 358 (6361): 365–68.  
769 <https://doi.org/10.1126/science.aal3298>.

770 Brennan, Reid S, Timothy M Healy, Heather J Bryant, Man Van La, Patricia M Schulte, and  
771 Andrew Whitehead. 2018. "Integrative Population and Physiological Genomics  
772 Reveals Mechanisms of Adaptation in Killifish." *Molecular Biology and Evolution* 35  
773 (11): 2639–53. <https://doi.org/10.1093/molbev/msy154>.

774 Buffalo, Vince, and Graham Coop. 2019. "The Linked Selection Signature of Rapid  
775 Adaptation in Temporal Genomic Data." *Genetics* 213 (3): 1007–45.  
776 <https://doi.org/10.1534/genetics.119.302581>.

777 ———. 2020. "Estimating the Genome-Wide Contribution of Selection to Temporal Allele  
778 Frequency Change." *Proceedings of the National Academy of Sciences* 117 (34):  
779 20672–80. <https://doi.org/10.1073/pnas.1919039117>.

780 Campana, Steven E. 1990. "How Reliable Are Growth Back-Calculations Based on  
781 Otoliths?" *Canadian Journal of Fisheries and Aquatic Sciences* 47 (11): 2219–27.  
782 <https://doi.org/10.1139/f90-246>.

783 Cardinale, M, and H Svedäng. 2011. "The Beauty of Simplicity in Science: Baltic Cod Stock  
784 Improves Rapidly in a 'Cod Hostile' Ecosystem State." *Marine Ecology Progress Series*  
785 Series 425 (March):297–301. <https://doi.org/10.3354/meps09098>.

786 Carstensen, Jacob, Jesper H. Andersen, Bo G. Gustafsson, and Daniel J. Conley. 2014.  
787 "Deoxygenation of the Baltic Sea during the Last Century." *Proceedings of the  
788 National Academy of Sciences* 111 (15): 5628–33.  
789 <https://doi.org/10.1073/pnas.1323156111>.

790 Casini, Michele, Filip Käll, Martin Hansson, Maris Plikshs, Tatjana Baranova, Olle Karlsson,  
791 Karl Lundström, Stefan Neuenfeldt, Anna Gårdmark, and Joakim Hjelm. 2016.  
792 "Hypoxic Areas, Density-Dependence and Food Limitation Drive the Body Condition  
793 of a Heavily Exploited Marine Fish Predator." *Royal Society Open Science* 3 (10):  
794 160416. <https://doi.org/10.1098/rsos.160416>.

795 Cleveland, Beth M., Guangtu Gao, and Timothy D. Leeds. 2020. "Transcriptomic Response  
796 to Selective Breeding for Fast Growth in Rainbow Trout (*Oncorhynchus Mykiss*)."  
797 *Marine Biotechnology* 22 (4): 539–50. <https://doi.org/10.1007/s10126-020-09974-3>.

798 Cowan, Mairi, Clara Azpeleta, and Jose Fernando López-Olmeda. 2017. "Rhythms in the  
799 Endocrine System of Fish: A Review." *Journal of Comparative Physiology B* 187 (8):  
800 1057–89. <https://doi.org/10.1007/s00360-017-1094-5>.

801 Crespel, Amélie, Kevin Schneider, Toby Miller, Anita Rácz, Arne Jacobs, Jan Lindström,  
802 Kathryn R. Elmer, and Shaun S. Killen. 2021. "Genomic Basis of Fishing-Associated  
803 Selection Varies with Population Density." *Proceedings of the National Academy of  
804 Sciences* 118 (51): e2020833118. <https://doi.org/10.1073/pnas.2020833118>.

805 Crespo, Diego, Jan Bogerd, Elisabeth Sambroni, Florence LeGac, Eva Andersson, Rolf B.  
806 Edvardsen, Elisabeth Jönsson Bergman, Björn Thrandur Björnsson, Geir Lasse  
807 Taranger, and Rüdiger W. Schulz. 2019. "The Initiation of Puberty in Atlantic Salmon  
808 Brings about Large Changes in Testicular Gene Expression That Are Modulated by  
809 the Energy Status." *BMC Genomics* 20 (1): 475. <https://doi.org/10.1186/s12864-019-5869-9>.

810 Czorlich, Y., T. Aykanat, J. Erkinaro, P. Orell, and C. R. Primmer. 2022. "Rapid Evolution in  
811 Salmon Life History Induced by Direct and Indirect Effects of Fishing." *Science* 376  
812 (6591): 420–23. <https://doi.org/10.1126/science.abg5980>.

813 Czorlich, Yann, Tutku Aykanat, Jaakko Erkinaro, Panu Orell, and Craig Robert Primmer.  
814 2018. "Rapid Sex-Specific Evolution of Age at Maturity Is Shaped by Genetic  
815 Architecture in Atlantic Salmon." *Nature Ecology & Evolution* 2 (11): 1800–1807.  
816 <https://doi.org/10.1038/s41559-018-0681-5>.

817 Danecek, Petr, Adam Auton, Goncalo Abecasis, Cornelis A. Albers, Eric Banks, Mark A.  
818 DePristo, Robert E. Handsaker, et al. 2011. "The Variant Call Format and VCFtools."  
819 *Bioinformatics* 27 (15): 2156–58. <https://doi.org/10.1093/bioinformatics/btr330>.

820

821 Danecek, Petr, James K. Bonfield, Jennifer Liddle, John Marshall, Valeriu Ohan, Martin O.  
822 Pollard, Andrew Whitwham, et al. 2021. "Twelve Years of SAMtools and BCFtools." *GigaScience* 10 (2): giab008. <https://doi.org/10.1093/gigascience/giab008>.

823 Davie, A., M.J.R. Porter, and N.R. Bromage. 2003. "Photoperiod Manipulation of Maturation  
824 and Growth of Atlantic Cod (*Gadus Morhua*)." *Fish Physiology and Biochemistry* 28  
825 (1): 399–401. <https://doi.org/10.1023/B:FISH.0000030605.19179.f8>.

826 Dobrenel, Thomas, Camila Caldana, Johannes Hanson, Christophe Robaglia, Michel  
827 Vincentz, Bruce Veit, and Christian Meyer. 2016. "TOR Signaling and Nutrient  
828 Sensing." *Annual Review of Plant Biology* 67 (1): 261–85.  
829 <https://doi.org/10.1146/annurev-arplant-043014-114648>.

830 Durinck, Steffen, Yves Moreau, Arek Kasprzyk, Sean Davis, Bart De Moor, Alvis Brazma,  
831 and Wolfgang Huber. 2005. "BioMart and Bioconductor: A Powerful Link between  
832 Biological Databases and Microarray Data Analysis." *Bioinformatics* 21 (16): 3439–  
833 40. <https://doi.org/10.1093/bioinformatics/bti525>.

834 Eero, Margit, Keith Brander, Tatjana Baranova, Uwe Krumme, Krzysztof Radtke, and Jane  
835 W. Behrens. 2023. "New Insights into the Recent Collapse of Eastern Baltic Cod from  
836 Historical Data on Stock Health." *PLOS ONE* 18 (5): e0286247.  
837 <https://doi.org/10.1371/journal.pone.0286247>.

838 Eero, Margit, Joakim Hjelm, Jane Behrens, Kurt Buchmann, Massimiliano Cardinale,  
839 Michele Casini, Pavel Gasyukov, et al. 2015. "Eastern Baltic Cod in Distress:  
840 Biological Changes and Challenges for Stock Assessment." *ICES Journal of Marine  
841 Science* 72 (8): 2180–86. <https://doi.org/10.1093/icesjms/fsv109>.

842 Eero, Margit, Brian R. MacKenzie, Friedrich W. Köster, and Henrik Gislason. 2011. "Multi-  
843 Decadal Responses of a Cod (*Gadus Morhua*) Population to Human-Induced Trophic  
844 Changes, Fishing, and Climate." *Ecological Applications* 21 (1): 214–26.  
845 <https://doi.org/10.1890/09-1879.1>.

846 Eero, Margit, Morten Vinther, Holger Haslob, Bastian Huwer, Michele Casini, Marie Storr-  
847 Paulsen, and Friedrich W. Köster. 2012. "Spatial Management of Marine Resources  
848 Can Enhance the Recovery of Predators and Avoid Local Depletion of Forage Fish." *Conservation  
849 Letters* 5 (6): 486–92. [https://doi.org/10.1111/j.1755-  
850 263X.2012.00266.x](https://doi.org/10.1111/j.1755-263X.2012.00266.x).

851 Eikeset, Anne Maria, Andries Richter, Erin S. Dunlop, Ulf Dieckmann, and Nils Chr.  
852 Stenseth. 2013. "Economic Repercussions of Fisheries-Induced Evolution." *Proceedings of the National Academy of Sciences* 110 (30): 12259–64.  
853 <https://doi.org/10.1073/pnas.1212593110>.

854 Erkinaro, Jaakko, Yann Czorlich, Panu Orell, Jorma Kuusela, Morten Falkegård, Maija  
855 Länsman, Henni Pulkkinen, Craig R. Primmer, and Eero Niemelä. 2019. "Life History  
856 Variation across Four Decades in a Diverse Population Complex of Atlantic Salmon  
857 in a Large Subarctic River." *Canadian Journal of Fisheries and Aquatic Sciences* 76  
858 (1): 42–55. <https://doi.org/10.1139/cjfas-2017-0343>.

859 Falcon, S., and R. Gentleman. 2007. "Using GOstats to Test Gene Lists for GO Term  
860 Association." *Bioinformatics* 23 (2): 257–58.  
861 <https://doi.org/10.1093/bioinformatics/btl567>.

862 Fan, Q.C., P.F. Wu, G.J. Dai, G.X. Zhang, T. Zhang, Q. Xue, H.Q. Shi, and J.Y. Wang.  
863 2017. "Identification of 19 Loci for Reproductive Traits in a Local Chinese Chicken by  
864 Genome-Wide Study." *Genetics and Molecular Research* 16 (1).  
865 <https://doi.org/10.4238/gmr16019431>.

866 Finn, Roderick Nigel, and Hans Jørgen Fyhn. 2010. "Requirement for Amino Acids in  
867 Ontogeny of Fish." *Aquaculture Research* 41 (5): 684–716.  
868 <https://doi.org/10.1111/j.1365-2109.2009.02220.x>.

869 Fonseca, Larissa Fernanda Simielli, Danielly Beraldo Dos Santos Silva, Daniele Fernanda  
870 Jovino Gimenez, Fernando Baldi, Jesus Aparecido Ferro, Luis Artur Loyola  
871 Chardulo, and Lucia Galvão De Albuquerque. 2020. "Gene Expression Profiling and  
872 Identification of Hub Genes in Nellore Cattle with Different Marbling Score Levels." *Genomics*  
873 112 (1): 873–79. <https://doi.org/10.1016/j.ygeno.2019.06.001>.

874

875

876 Franssen, S U, R. Kofler, and C. Schlötterer. 2017. "Uncovering the Genetic Signature of  
877 Quantitative Trait Evolution with Replicated Time Series Data." *Heredity* 118 (1): 42–  
878 51. <https://doi.org/10.1038/hdy.2016.98>.

879 Frøland Steindal, Inga A., and David Whitmore. 2019. "Circadian Clocks in Fish—What Have  
880 We Learned so Far?" *Biology* 8 (1): 17. <https://doi.org/10.3390/biology8010017>.

881 Fuller, Zachary L., Veronique J. L. Mocellin, Luke A. Morris, Neal Cantin, Jianne Shepherd,  
882 Luke Sarre, Julie Peng, et al. 2020. "Population Genetics of the Coral Acropora  
883 Millepora: Toward Genomic Prediction of Bleaching." *Science* 369 (6501): eaba4674.  
884 <https://doi.org/10.1126/science.aba4674>.

885 Fyhn, Hans Jørgen, Roderick Nigel Finn, Michael Reith, and Birgitta Norberg. 1999. "Yolk  
886 Protein Hydrolysis and Oocyte Free Amino Acids as Key Features in the Adaptive  
887 Evolution of Teleost Fishes to Seawater." *Sarsia* 84 (5–6): 451–56.  
888 <https://doi.org/10.1080/00364827.1999.10807350>.

889 Haller, Benjamin C., and Philipp W. Messer. 2017. "SLiM 2: Flexible, Interactive Forward  
890 Genetic Simulations." *Molecular Biology and Evolution* 34 (1): 230–40.  
891 <https://doi.org/10.1093/molbev/msw211>.

892 Hansen, Jon Øvrum, Gerd Marit Berge, Marie Hillestad, Åshild Krogdahl, Trina F. Galloway,  
893 Halvor Holm, Jørgen Holm, and Bente Ruyter. 2008. "Apparent Digestion and  
894 Apparent Retention of Lipid and Fatty Acids in Atlantic Cod (*Gadus Morhua*) Fed  
895 Increasing Dietary Lipid Levels." *Aquaculture* 284 (1): 159–66.  
896 <https://doi.org/10.1016/j.aquaculture.2008.07.043>.

897 Hansen, Tom, Ørjan Karlsen, Geir Lasse Taranger, Gro-Ingunn Hemre, Jens Christian  
898 Holm, and Olav Sigurd Kjesbu. 2001. "Growth, Gonadal Development and Spawning  
899 Time of Atlantic Cod (*Gadus Morhua*) Reared under Different Photoperiods." *Aquaculture*  
900 203 (1): 51–67. [https://doi.org/10.1016/S0044-8486\(01\)00610-X](https://doi.org/10.1016/S0044-8486(01)00610-X).

901 Hardy, Ronald W., and Sadasivam J. Kaushik. 2021. *Fish Nutrition*. Academic Press.

902 Heimbrand, Yvette, Karin E. Limburg, Karin Hüssy, Michele Casini, Rajlie Sjöberg, Anne-  
903 Marie Palmén Bratt, Svend-Erik Levinsky, Anastasia Karpushevskaya, Krzysztof  
904 Radtke, and Jill Öhlund. 2020. "Seeking the True Time: Exploring Otolith Chemistry  
905 as an Age-determination Tool." *Journal of Fish Biology* 97 (2): 552–65.  
906 <https://doi.org/10.1111/jfb.14422>.

907 Helmerson, Cecilia, Peggy Weist, Marine Servane Ono Brieuc, Marius F. Maurstad,  
908 Franziska Maria Schade, Jan Dierking, Christoph Petereit, et al. 2023. "Evidence of  
909 Hybridization between Genetically Distinct Baltic Cod Stocks during Peak Population  
910 Abundance(s)." *Evolutionary Applications* 16 (7): 1359–76.  
911 <https://doi.org/10.1111/eva.13575>.

912 Hemmer-Hansen, Jakob, Karin Hüssy, Henrik Baktoft, Bastian Huwer, Dorte Bekkevold,  
913 Holger Haslob, Jens-Peter Herrmann, et al. 2019. "Genetic Analyses Reveal  
914 Complex Dynamics within a Marine Fish Management Area." *Evolutionary  
915 Applications* 12 (4): 830–44. <https://doi.org/10.1111/eva.12760>.

916 Hendry, Andrew P., Kiyoko M. Gotanda, and Erik I. Svensson. 2017. "Human Influences on  
917 Evolution, and the Ecological and Societal Consequences." *Philosophical  
918 Transactions of the Royal Society B: Biological Sciences* 372 (1712): 20160028.  
919 <https://doi.org/10.1098/rstb.2016.0028>.

920 Hietakangas, Ville, and Stephen M. Cohen. 2009. "Regulation of Tissue Growth through  
921 Nutrient Sensing." *Annual Review of Genetics* 43 (1): 389–410.  
922 <https://doi.org/10.1146/annurev-genet-102108-134815>.

923 Hüssy, Karin, Margit Eero, and Krzysztof Radtke. 2018. "Faster or Slower: Has Growth of  
924 Eastern Baltic Cod Changed?" *Marine Biology Research* 14 (6): 598–609.  
925 <https://doi.org/10.1080/17451000.2018.1502446>.

926 Hüssy, Karin, Maria Krüger-Johnsen, Tonny Bernt Thomsen, Benjamin Dominguez Heredia,  
927 Tomas Næraa, Karin E. Limburg, Yvette Heimbrand, et al. 2021. "It's Elemental, My  
928 Dear Watson: Validating Seasonal Patterns in Otolith Chemical Chronologies." *Canadian  
929 Journal of Fisheries and Aquatic Sciences* 78 (5): 551–66.  
930 <https://doi.org/10.1139/cjfas-2020-0388>.

931 Hutchings, Jeffrey A. 2009. "ORIGINAL ARTICLE: Avoidance of Fisheries-Induced  
932 Evolution: Management Implications for Catch Selectivity and Limit Reference  
933 Points." *Evolutionary Applications* 2 (3): 324–34. <https://doi.org/10.1111/j.1752-4571.2009.00085.x>.

935 ICES. 2019. "Benchmark Workshop on Baltic Cod Stocks (WKBALTCOD2)." <https://doi.org/10.17895/ICES.PUB.4984>.

937 ———. 2021. "Cod (*Gadus Morhua*) in Subdivisions 24?32, Eastern Baltic Stock (Eastern  
938 Baltic Sea)." <https://doi.org/10.17895/ICES.ADVICE.7745>.

939 ———. 2022. "Baltic Fisheries Assessment Working Group (WGBFAS)." Report. ICES  
940 Scientific Reports. <https://doi.org/10.17895/ices.pub.19793014.v2>.

941 John, M. J., and C. L. Mahajan. 1979. "The Physiological Response of Fishes to a  
942 Deficiency of Cyanocobalamin and Folic Acid." *Journal of Fish Biology* 14 (2): 127–  
943 33. <https://doi.org/10.1111/j.1095-8649.1979.tb03502.x>.

944 Karlsen, Ø., G. -I. Hemre, K. Tveit, and G. Rosenlund. 2006. "Effect of Varying Levels of  
945 Macro-Nutrients and Continuous Light on Growth, Energy Deposits and Maturation in  
946 Farmed Atlantic Cod (*Gadus Morhua* L.)." *Aquaculture* 255 (1): 242–54.  
947 <https://doi.org/10.1016/j.aquaculture.2005.12.029>.

948 Kirubakaran, Tina Graceline, Harald Grove, Matthew P. Kent, Simen R. Sandve, Matthew  
949 Baranski, Torfinn Nome, Maria Cristina De Rosa, et al. 2016. "Two Adjacent  
950 Inversions Maintain Genomic Differentiation between Migratory and Stationary  
951 Ecotypes of Atlantic Cod." *Molecular Ecology* 25 (10): 2130–43.  
952 <https://doi.org/10.1111/mec.13592>.

953 Korunes, Katharine L., and Kieran Samuk. 2021. "Pixy: Unbiased Estimation of Nucleotide  
954 Diversity and Divergence in the Presence of Missing Data." *Molecular Ecology  
955 Resources* 21 (4): 1359–68. <https://doi.org/10.1111/1755-0998.13326>.

956 Köster, Friedrich W., Bastian Huwer, Hans-Harald Hinrichsen, Viola Neumann, Andrei  
957 Makarchouk, Margit Eero, Burkhard V. Dewitz, et al. 2017. "Eastern Baltic Cod  
958 Recruitment Revisited—Dynamics and Impacting Factors." *ICES Journal of Marine  
959 Science* 74 (1): 3–19. <https://doi.org/10.1093/icesjms/fsw172>.

960 Le Cren, E. D. 1951. "The Length-Weight Relationship and Seasonal Cycle in Gonad Weight  
961 and Condition in the Perch (*Perca Fluviatilis*)."*Journal of Animal Ecology* 20 (2):  
962 201–19. <https://doi.org/10.2307/1540>.

963 Limburg, Karin E., and Michele Casini. 2018. "Effect of Marine Hypoxia on Baltic Sea Cod  
964 *Gadus Morhua*: Evidence From Otolith Chemical Proxies." *Frontiers in Marine  
965 Science* 5. <https://www.frontiersin.org/articles/10.3389/fmars.2018.00482>.

966 ———. 2019. "Otolith Chemistry Indicates Recent Worsened Baltic Cod Condition Is Linked  
967 to Hypoxia Exposure." *Biology Letters* 15 (12): 20190352.  
968 <https://doi.org/10.1098/rsbl.2019.0352>.

969 Lin, Yu-Hung, Hui-You Lin, and Shi-Yen Shiau. 2011. "Dietary Folic Acid Requirement of  
970 Grouper, *Epinephelus Malabaricus*, and Its Effects on Non-Specific Immune  
971 Responses." *Aquaculture* 317 (1): 133–37.  
972 <https://doi.org/10.1016/j.aquaculture.2011.04.010>.

973 Martínez-García, Lourdes, Giada Ferrari, Tom Oosting, Rachel Ballantyne, Inge van der  
974 Jagt, Ingrid Ystgaard, Jennifer Harland, et al. 2021. "Historical Demographic  
975 Processes Dominate Genetic Variation in Ancient Atlantic Cod Mitogenomes."  
976 *Frontiers in Ecology and Evolution* 9.  
977 <https://www.frontiersin.org/articles/10.3389/fevo.2021.671281>.

978 Matschiner, Michael, Julia Maria Isis Barth, Ole Kristian Tørresen, Bastiaan Star, Helle  
979 Tessand Baalsrud, Marine Servane Ono Brieuc, Christophe Pampoulie, Ian  
980 Bradbury, Kjetill Sigurd Jakobsen, and Sissel Jentoft. 2022. "Supergene Origin and  
981 Maintenance in Atlantic Cod." *Nature Ecology & Evolution* 6 (4): 469–81.  
982 <https://doi.org/10.1038/s41559-022-01661-x>.

983 Meier, H. E. Markus, Christian Dieterich, Matthias Gröger, Cyril Dutheil, Florian Börgel,  
984 Kseniia Safonova, Ole B. Christensen, and Erik Kjellström. 2022. "Oceanographic



1040 Dieter Ebert and Molly Przeworski. *eLife* 11 (May):e72905.  
1041 <https://doi.org/10.7554/eLife.72905>.

1042 Pauly, Daniel, and William W. L. Cheung. 2018. "Sound Physiological Knowledge and  
1043 Principles in Modeling Shrinking of Fishes under Climate Change." *Global Change  
1044 Biology* 24 (1): e15–26. <https://doi.org/10.1111/gcb.13831>.

1045 Pelletier, D., J. -D. Dutil, P. Blier, and H. Guderley. 1994. "Relation between Growth Rate  
1046 and Metabolic Organization of White Muscle, Liver and Digestive Tract in Cod,  
1047 *Gadus Morhua*." *Journal of Comparative Physiology B* 164 (3): 179–90.  
1048 <https://doi.org/10.1007/BF00354078>.

1049 Pinsky, Malin L., Anne Maria Eikeset, Cecilia Helmerson, Ian R. Bradbury, Paul Bentzen,  
1050 Corey Morris, Agata T. Gondek-Wyrozemska, et al. 2021. "Genomic Stability through  
1051 Time despite Decades of Exploitation in Cod on Both Sides of the Atlantic." *Proceedings of the National Academy of Sciences* 118 (15): e2025453118.  
1052 <https://doi.org/10.1073/pnas.2025453118>.

1053 Reid, Brendan N., Bastiaan Star, and Malin L. Pinsky. 2023. "Detecting Parallel Polygenic  
1054 Adaptation to Novel Evolutionary Pressure in Wild Populations: A Case Study in  
1055 Atlantic Cod (*Gadus Morhua*)." *Philosophical Transactions of the Royal Society B:  
1056 Biological Sciences* 378 (1881): 20220190. <https://doi.org/10.1098/rstb.2022.0190>.

1057 Reusch, Thorsten B. H., Jan Dierking, Helen C. Andersson, Erik Bonsdorff, Jacob  
1058 Carstensen, Michele Casini, Mikolaj Czajkowski, et al. 2018. "The Baltic Sea as a  
1059 Time Machine for the Future Coastal Ocean." *Science Advances* 4 (5): eaar8195.  
1060 <https://doi.org/10.1126/sciadv.aar8195>.

1061 Righton, Da, Kh Andersen, F Neat, V Thorsteinsson, P Steingrund, H Svedäng, K  
1062 Michalsen, et al. 2010. "Thermal Niche of Atlantic Cod *Gadus Morhua*: Limits,  
1063 Tolerance and Optima." *Marine Ecology Progress Series* 420 (December):1–13.  
1064 <https://doi.org/10.3354/meps08889>.

1065 Roff, Derek. 1993. *Evolution Of Life Histories: Theory and Analysis*. Springer Science &  
1066 Business Media.

1067 Sánchez-Vázquez, Francisco Javier, Jose Fernando López-Olmeda, Luisa Maria Vera,  
1068 Herve Migaud, Marcos Antonio López-Patiño, and Jesús M. Míguez. 2019.  
1069 "Environmental Cycles, Melatonin, and Circadian Control of Stress Response in  
1070 Fish." *Frontiers in Endocrinology* 10.  
1071 <https://www.frontiersin.org/articles/10.3389/fendo.2019.00279>.

1072 Sardell, Jason M., and Mark Kirkpatrick. 2020. "Sex Differences in the Recombination  
1073 Landscape." *The American Naturalist* 195 (2): 361–79.  
1074 <https://doi.org/10.1086/704943>.

1075 Schenk, Hanna, Fabian Zimmermann, and Martin Quaas. 2023. "The Economics of  
1076 Reversing Fisheries-Induced Evolution." *Nature Sustainability* 6 (6): 706–11.  
1077 <https://doi.org/10.1038/s41893-023-01078-9>.

1078 Schmölcke, Ulrich, Elisabeth Endtmann, Stefanie Klooss, Michael Meyer, Dierk Michaelis,  
1079 Björn-Henning Rickert, and Doreen Rößler. 2006. "Changes of Sea Level,  
1080 Landscape and Culture: A Review of the South-Western Baltic Area between 8800  
1081 and 4000BC." *Palaeogeography, Palaeoclimatology, Palaeoecology* 240 (3): 423–38.  
1082 <https://doi.org/10.1016/j.palaeo.2006.02.009>.

1083 Siegel, Herbert, and Monika Gerth. 2018 "Sea Surface Temperature in the Baltic Sea 2018."  
1084 Skulstad, Ole Fredrik, John Taylor, Andrew Davie, Herve Migaud, Tore Kristiansen, Ian  
1085 Mayer, Geir Lasse Taranger, Rolf Erik Olsen, and Ørjan Karlsen. 2013. "Effects of  
1086 Light Regime on Diurnal Plasma Melatonin Levels and Vertical Distribution in Farmed  
1087 Atlantic Cod (*Gadus Morhua* L.)." *Aquaculture* 414–415 (November):280–87.  
1088 <https://doi.org/10.1016/j.aquaculture.2013.08.007>.

1089 Sodeland, Marte, Per Erik Jorde, Sigmund Lien, Sissel Jentoft, Paul R. Berg, Harald Grove,  
1090 Matthew P. Kent, Mariann Arnyasi, Esben Moland Olsen, and Halvor Knutsen. 2016.  
1091 "Islands of Divergence' in the Atlantic Cod Genome Represent Polymorphic  
1092 Chromosomal Rearrangements." *Genome Biology and Evolution* 8 (4): 1012–22.  
1093 <https://doi.org/10.1093/gbe/evw057>.

1094

1095 Stockmayer, Vera, and Andreas Lehmann. 2023. "Variations of Temperature, Salinity and  
1096 Oxygen of the Baltic Sea for the Period 1950 to 2020." *Oceanologia* 65 (3): 466–83.  
1097 <https://doi.org/10.1016/j.oceano.2023.02.002>.

1098 Stubhaug, I., Ø. Lie, and B.e. Torstensen. 2007. "Fatty Acid Productive Value and  $\beta$ -  
1099 Oxidation Capacity in Atlantic Salmon (*Salmo Salar L.*) Fed on Different Lipid  
1100 Sources along the Whole Growth Period." *Aquaculture Nutrition* 13 (2): 145–55.  
1101 <https://doi.org/10.1111/j.1365-2095.2007.00462.x>.

1102 Su, Yu-Sung, and Masanao Yajima. 2021. "R2jags: Using R to Run 'JAGS.'" R.  
1103 <https://CRAN.R-project.org/package=R2jags>.

1104 Svedäng, Henrik, and Sara Hornborg. 2014. "Selective Fishing Induces Density-Dependent  
1105 Growth." *Nature Communications* 5 (1): 4152. <https://doi.org/10.1038/ncomms5152>.

1106 ———. 2017. "Historic Changes in Length Distributions of Three Baltic Cod (*Gadus Morhua*  
1107 ) Stocks: Evidence of Growth Retardation." *Ecology and Evolution* 7 (16): 6089–  
1108 6102. <https://doi.org/10.1002/ece3.3173>.

1109 Takahashi, Takayuki, and Katsueki Ogiwara. 2023. "cAMP Signaling in Ovarian Physiology  
1110 in Teleosts: A Review." *Cellular Signalling* 101 (January):110499.  
1111 <https://doi.org/10.1016/j.cellsig.2022.110499>.

1112 Taranger, Geir Lasse, Manuel Carrillo, Rüdiger W. Schulz, Pascal Fontaine, Silvia Zanuy,  
1113 Alicia Felip, Finn-Arne Weltzien, et al. 2010. "Control of Puberty in Farmed Fish."  
1114 *General and Comparative Endocrinology, Fish Reproduction*, 165 (3): 483–515.  
1115 <https://doi.org/10.1016/j.ygcen.2009.05.004>.

1116 Thorvaldsdóttir, Helga, James T. Robinson, and Jill P. Mesirov. 2013. "Integrative Genomics  
1117 Viewer (IGV): High-Performance Genomics Data Visualization and Exploration."  
1118 *Briefings in Bioinformatics* 14 (2): 178–92. <https://doi.org/10.1093/bib/bbs017>.

1119 Tigano, Anna, Arne Jacobs, Aryn P Wilder, Ankita Nand, Ye Zhan, Job Dekker, and Nina  
1120 Overgaard Therkildsen. 2021. "Chromosome-Level Assembly of the Atlantic  
1121 Silverside Genome Reveals Extreme Levels of Sequence Diversity and Structural  
1122 Genetic Variation." *Genome Biology and Evolution* 13 (6): evab098.  
1123 <https://doi.org/10.1093/gbe/evab098>.

1124 Trichet, Viviane Verlhac. 2010. "Nutrition and Immunity: An Update." *Aquaculture Research*  
1125 41 (3): 356–72. <https://doi.org/10.1111/j.1365-2109.2009.02374.x>.

1126 Turchini, Giovanni M., and David S. Francis. 2009. "Fatty Acid Metabolism (Desaturation,  
1127 Elongation and  $\beta$ -Oxidation) in Rainbow Trout Fed Fish Oil- or Linseed Oil-Based  
1128 Diets." *British Journal of Nutrition* 102 (1): 69–81.  
1129 <https://doi.org/10.1017/S0007114508137874>.

1130 Vitousek, Peter M., Harold A. Mooney, Jane Lubchenco, and Jerry M. Melillo. 1997. "Human  
1131 Domination of Earth's Ecosystems." *Science* 277 (5325): 494–99.  
1132 <https://doi.org/10.1126/science.277.5325.494>.

1133 Zeller, D., P. Rossing, S. Harper, L. Persson, S. Booth, and D. Pauly. 2011. "The Baltic Sea:  
1134 Estimates of Total Fisheries Removals 1950–2007." *Fisheries Research* 108 (2):  
1135 356–63. <https://doi.org/10.1016/j.fishres.2010.10.024>.

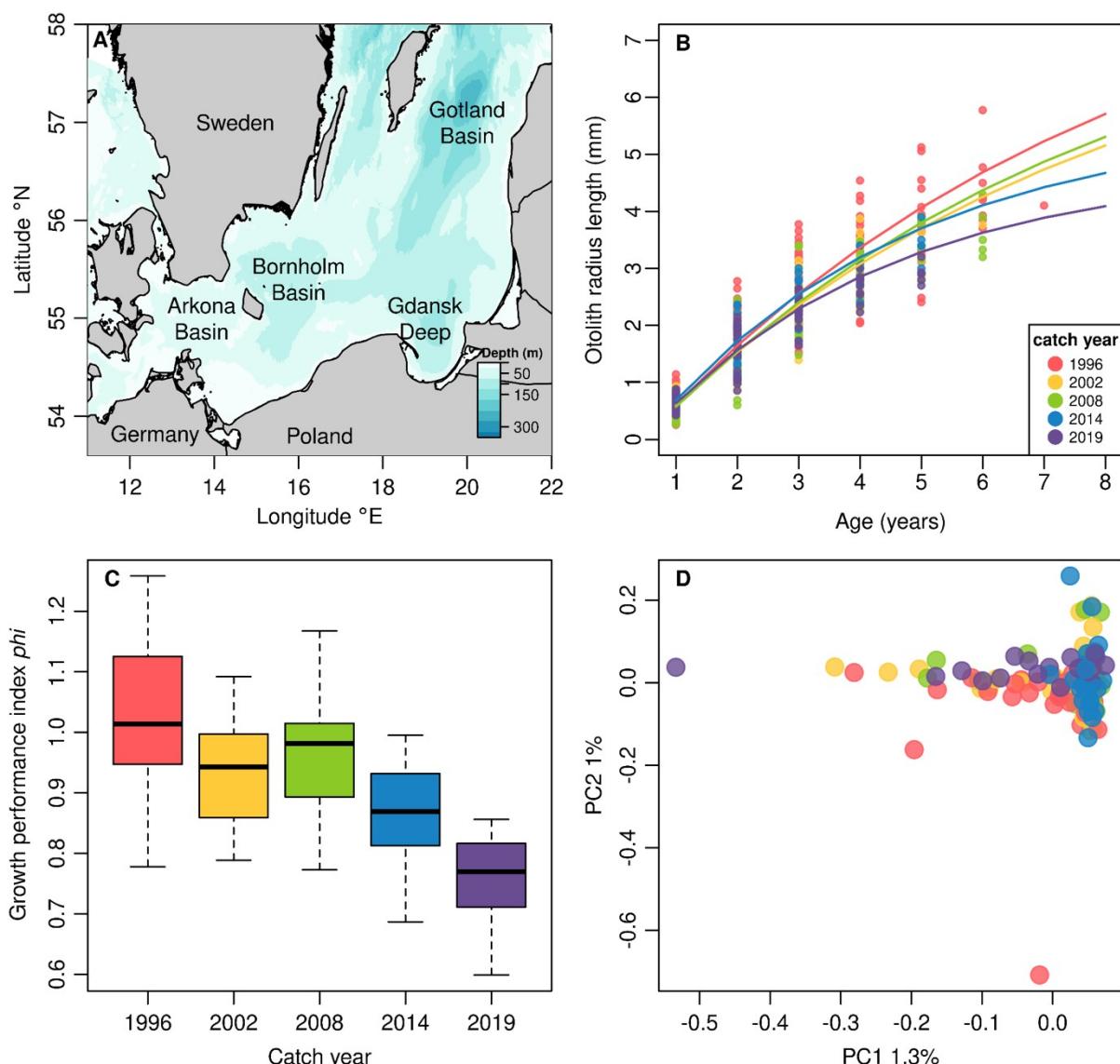
1136 Zhdanova, Irina, and Stéphan Reebs. 2006. "Circadian Rhythms in Fish." In *Fish Physiology*,  
1137 24:197–238. [https://doi.org/10.1016/S1546-5098\(05\)24006-2](https://doi.org/10.1016/S1546-5098(05)24006-2).

1138 Zhou, Xiang, and Matthew Stephens. 2012. "Genome-Wide Efficient Mixed-Model Analysis  
1139 for Association Studies." *Nature Genetics* 44 (7): 821–24.  
1140 <https://doi.org/10.1038/ng.2310>.

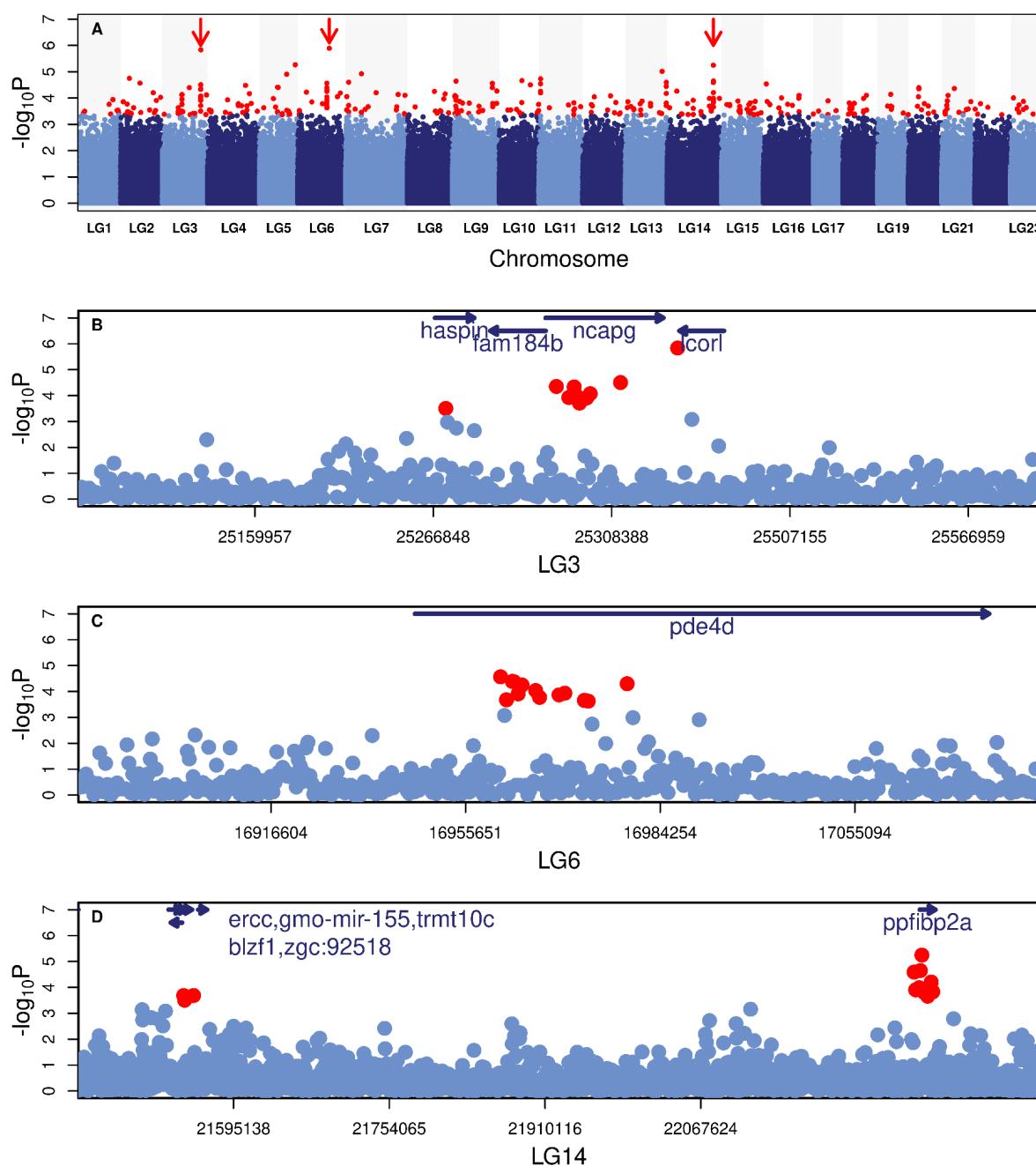
1141 Zillén, Lovisa, Daniel J. Conley, Thomas Andrén, Elinor Andrén, and Svante Björck. 2008.  
1142 "Past Occurrences of Hypoxia in the Baltic Sea and the Role of Climate Variability,  
1143 Environmental Change and Human Impact." *Earth-Science Reviews* 91 (1): 77–92.  
1144 <https://doi.org/10.1016/j.earscirev.2008.10.001>.

1145

1146

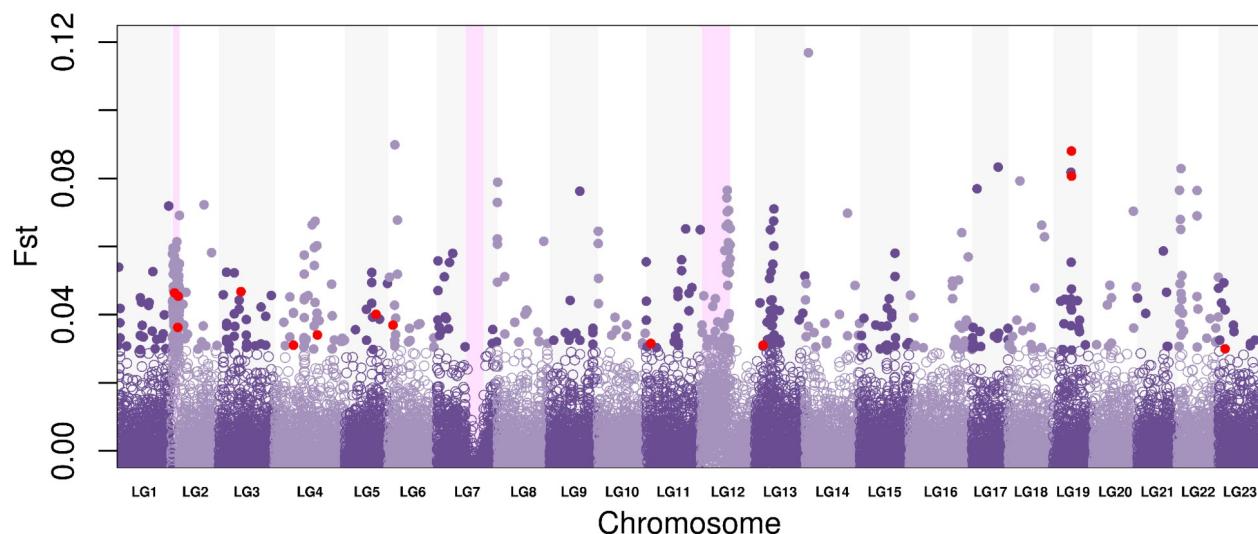

1147

1148


1149

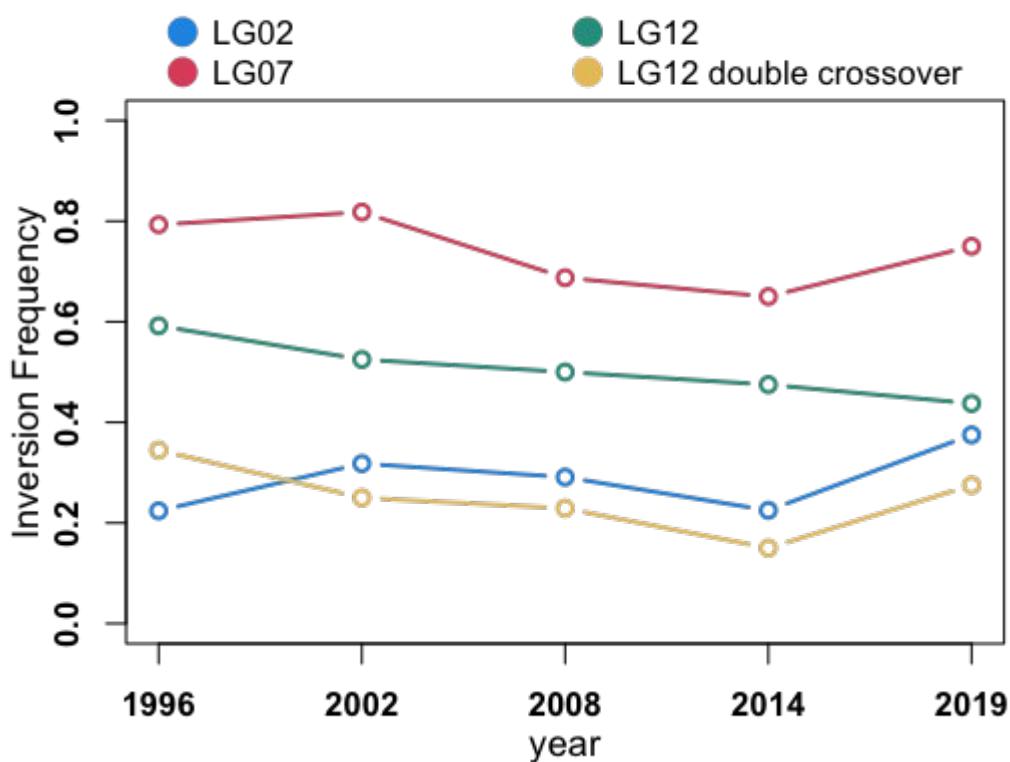
1150 **Figure 1. Sampling location in the Baltic Sea and population response over time**

1151 **A.** Map of the Baltic Sea showing the sampling sites in Bornholm Basin, the major spawning  
1152 ground for EBC. Their spawning grounds in Gotland Basin and Gdansk Deep are not  
1153 recognized as viable anymore. **B.** Estimated von Bertalanffy growth curves for each catch  
1154 year. The von Bertalanffy growth curves are based on otolith readings and were plotted  
1155 using estimated sets of parameters for each temporal population of "random" and  
1156 "phenotype" samples. The temporal group 1996 in this figure also includes "phenotype"  
1157 samples (catch year from 1996-1998) as they are treated as one temporal population in the  
1158 model. Each point depicts observed otolith radius to chemical annuli at age coloured based  
1159 on the individuals' catch year. **C.** Boxplots of individual growth performance,  $\Phi$ , calculated  
1160 using estimated individual von Bertalanffy growth parameters ( $L^\infty$  and  $k$ ) over time. Colour  
1161 codes are based on individuals' catch years as in the legend in panel B. **D.** Principal  
1162 component analysis of 115 "random" samples. A set of SNPs were pruned based on linkage  
1163 disequilibrium and removed of sites within the inversions in LG2, 7, and 12. PC1 explains  
1164 1.3%, and 1% for PC2, of all variations in the genotypes. Each individual is coded in colour  
1165 according to the catch years as in legend in panel B.




1166 **Figure 2. Manhattan plot of -logP values in genome-wide association (GWA) analysis.**  
1167 **A.** Manhattan plot of -logP values in genome-wide association (GWA) analysis. A total of  
1168 152 samples were subjected to GWA using the sequenced genotypes, 679,584 SNPs (>0.05  
1169 MAF), and estimated growth performance index  $\Phi$  as phenotype. Negative log transformed  
1170 Wald test p-values for each SNP were plotted along the genome. Outlier status was  
1171 assigned for 338 SNPs with lowest 0.05% p-values (in red circles). The cutoff for outliers  
1172 were selected based on the visual examination of this Manhattan plot, so as to include  
1173 distinctive peaks with clustering outliers (marked with red arrows) and at the same time  
1174 exclude spurious outliers consisting of single SNPs only. Regions marked with red arrows  
1175 were zoomed in, **B.** in LG3 **C.** LG6, and **D.** LG14 and genes residing at or near (5 Kb up-  
1176 and downstream) the outliers are annotated (Table 1).




1177 **Figure 3.  $F_{st}$  values in 20kb windows along the genome.**

1178 Pairwise  $F_{st}$  values of 1996 and 2019 in 20 Kb non-overlapping windows were calculated  
1179 along the whole genome. Filled purple points indicate the highest top 5% of genome-wide  $F_{st}$   
1180 outlier windows. Regions with exceptionally high and low  $F_{st}$  values show the inverted  
1181 regions in cod genome in LG2, LG7, and LG12 and were marked with pink shades. Among  
1182 outlier windows, windows overlapping with GWA outliers were marked as red.



1183 **Figure 4. Frequency change of inversion haplotypes.**

1184 The frequency of ancestral allele of each inverted region in LG2, LG7, and LG12, and the  
1185 double crossover within LG12 are plotted over study period. The inversions in LG2 and LG7  
1186 display an inconsistent pattern. For the inversion in LG12, a monotonic decrease in  
1187 frequency over time is observed that is statistically significant (Mann-Kendall test for  
1188 monotonic trend: p-value = 0.03), whereas the frequency of double crossover within the  
1189 region changes independently.



1191 **Table 1. A list of genes intersecting or neighbouring with GWA outlier SNPs with its  
1192 position and description.**

1193 A list of genes unique in the "ensembl\_gene\_id" located at or 10 Kb surrounding regions of  
1194 GWA outlier SNPs was subjected to a search for their functional annotations in the literature.  
1195 Columns, ensembl\_gene\_id, chromosome\_name, external\_gene\_name, description,  
1196 start\_position, and end\_position, are annotations in the gadMor3.0 reference genome  
1197 extracted from Ensembl database. When the external\_gene\_name were not provided by the  
1198 database, search in the NCBI gene database or orthologs' name were filled in (Genes,  
1199 NCBI). Functional annotations of the genes, in the most relevant context to this study,  
1200 "known biological functions from literature", were listed by searching the gene names with or  
1201 without keywords (e.g., fish, growth, weight, maturity, and reproduction) in the literature  
1202 search. When there were no search results which showed direct or indirect biological  
1203 relevance in the targeted context, they were marked as "Not found in literature". Some  
1204 genes were catalogued with only weak matches to orthologs in other species in the  
1205 database, thus marked as "NA (Not applicable)". Rows containing genes which are most  
1206 relevant to this study are highlighted in grey.

| ensembl_gene_id     | external_gene_name | chromosome_name | known biological functions from literature                                                                                                                                                                                                                   | description                                                                                                           | start_position | end_position |
|---------------------|--------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------|--------------|
| At the outlier loci |                    |                 |                                                                                                                                                                                                                                                              |                                                                                                                       |                |              |
| ENSGMOG00000032747  | HEPACAM            | 3               | cell-adhesion, cell motility, cancer suppressor gene                                                                                                                                                                                                         | carcinoembryonic antigen-related cell adhesion molecule 6-like [Source:NCBI gene (formerly Entrezgene);Acc:115540996] | 13790699       | 13856484     |
| ENSGMOG00000015953  | mnd1               | 3               | meiotic arrest, recombination                                                                                                                                                                                                                                | meiotic nuclear divisions 1 homolog (S. cerevisiae) [Source:NCBI gene (formerly Entrezgene);Acc:115540214]            | 20677607       | 20683019     |
| ENSGMOG00000012895  | NA                 | 3               | NA                                                                                                                                                                                                                                                           | NA                                                                                                                    | 21756782       | 21778636     |
| ENSGMOG00000016255  | haspin             | 3               | mitosis, critical larval growth and survival in zebrafish                                                                                                                                                                                                    | histone H3 associated protein kinase [Source:NCBI gene (formerly Entrezgene);Acc:115540151]                           | 25267491       | 25278374     |
| ENSGMOG00000016202  | ncapg              | 3               | DEGs in salmon puberty                                                                                                                                                                                                                                       | non-SMC condensin I complex, subunit G [Source:NCBI gene (formerly Entrezgene);Acc:115540152]                         | 25305001       | 25318049     |
| ENSGMOG00000007843  | PDE4D              | 6               | a rainbow trout line selectively bred for fast growth (growth line, GL) . Transcriptomic response . Several key components of the cAMP signaling pathway were reduced in the GL, including adenylate cyclase-type 6 (adcy6) and phosphodiesterase 4D (pde4d) | phosphodiesterase 4D, cAMP-specific [Source:NCBI gene (formerly Entrezgene);Acc:115545011]                            | 16947270       | 17078303     |
| ENSGMOG00000013441  | trpm1b             | 9               | retina pigment development                                                                                                                                                                                                                                   | transient receptor potential cation channel subfamily M member 1-like [Source:NCBI gene (formerly                     | 21730570       | 21750419     |

|                    |                     |    |                                                                                                                                                            |                                                                                                            |          |          |
|--------------------|---------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------|----------|
|                    |                     |    |                                                                                                                                                            | Entrezgene);Acc:115550405]                                                                                 |          |          |
| ENSGMOG00000037198 | ciart               | 9  | Transcriptional changes in the process of reproductive hormone affecting circadian rythm in zebrafish. generally circadian regulation of gene expression   | circadian-associated transcriptional repressor-like [Source:NCBI gene (formerly Entrezgene);Acc:115550867] | 21823470 | 21831852 |
| ENSGMOG00000017135 | coro1ca             | 13 | Not found in literature                                                                                                                                    | coronin, actin binding protein, 1Ca [Source:NCBI gene (formerly Entrezgene);Acc:115556521]                 | 25841273 | 25924738 |
| ENSGMOG00000008588 | ercc5               | 14 | higher rate of malformations and decreased embryo viability in fish, COFS syndrome in human.                                                               | excision repair cross-complementation group 5 [Source:NCBI gene (formerly Entrezgene);Acc:115558732]       | 21543979 | 21552546 |
| ENSGMOG00000016695 | PPFIBP2 (orthologs) | 14 | human fetal abnormality                                                                                                                                    | PPFIA binding protein 2a [Source:ZFIN;Acc:ZDB-GENE-070705-277]                                             | 22269074 | 22285193 |
| ENSGMOG00000018629 | kcnk2b (ortholog)   | 21 | increased expression during puberty in zebrafish                                                                                                           | NA                                                                                                         | 4143319  | 4168663  |
| ENSGMOG00000013114 | snx17               | 21 | intracellular protein transport, in a conserved genomic region (together with atraid) associated with miR-133b which is involved in oogenesis in a tilapia | sorting nexin 17 [Source:NCBI gene (formerly Entrezgene);Acc:115534617]                                    | 4307230  | 4333109  |

5 Kb up- and down-stream

|                    |                 |    |                                                                                                     |                                                                                                           |          |          |
|--------------------|-----------------|----|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|----------|
| ENSGMOG00000026566 | NA              | 3  | NA                                                                                                  | NA                                                                                                        | 13810816 | 13811780 |
| ENSGMOG00000015878 | TMEM131L        | 3  | Not found in literature                                                                             | transmembrane 131 like [Source:NCBI gene (formerly Entrezgene);Acc:115540213]                             | 20642815 | 20676221 |
| ENSGMOG00000030622 | NA              | 3  | NA                                                                                                  | NA                                                                                                        | 25275974 | 25276992 |
| ENSGMOG00000036363 | fam184b         | 3  | chicken body weight at first egg                                                                    | family with sequence similarity 184 member B [Source:NCBI gene (formerly Entrezgene);Acc:115540150]       | 25280244 | 25303554 |
| ENSGMOG00000022331 | lcrl            | 3  | human: Expression of the LCRL gene was significantly associated with length of the neonate at birth | ligand dependent nuclear receptor corepressor-like [Source:NCBI gene (formerly Entrezgene);Acc:115540149] | 25319776 | 25337592 |
| ENSGMOG00000036563 | NA              | 13 | NA                                                                                                  | NA                                                                                                        | 25928210 | 25928944 |
| ENSGMOG00000033950 | cenpq           | 14 | Not found in literature                                                                             | centromere protein Q [Source:NCBI gene (formerly Entrezgene);Acc:115559135]                               | 21398766 | 21402387 |
| ENSGMOG00000025157 | gmo-mir-155     | 14 | Not found in literature                                                                             | gmo-mir-155 [Source:miRBase;Acc:MI0036008]                                                                | 21410103 | 21410161 |
| ENSGMOG00000003226 | ephrin-B2a-like | 14 | angiogenesis                                                                                        | ephrin-B2a-like [Source:NCBI gene (formerly Entrezgene);Acc:115559324 ]                                   | 21411256 | 21419004 |
| ENSGMOG00000025102 | trmt10c         | 14 | Not found in literature                                                                             | tRNA methyltransferase 10C, mitochondrial RNase P subunit [Source:ZFIN;Acc:ZDB-GENE-041114-12]            | 21536364 | 21543958 |
| ENSGMOG00000035263 | blzf1           | 14 | heart function, development in medaka                                                               | basic leucine zipper nuclear factor 1 [Source:NCBI gene (formerly Entrezgene);Acc:115558734]              | 21538764 | 21543958 |
| ENSGMOG00000030760 | mettl21e        | 14 | linked to growth in pupfishes, intramuscular                                                        | methyltransferase like 21e [Source:NCBI gene (formerly                                                    | 21552352 | 21557877 |

|                    |        |    |                                                                                                                        |                                                                                                               |          |          |
|--------------------|--------|----|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------|----------|
|                    |        |    | fat deposition in cattle                                                                                               | Entrezgene);Acc:115558735]                                                                                    |          |          |
| ENSGMOG00000024865 | NA     | 14 | differentially expressed in response to temperature in stickleback, also generally skeletal muscle development related | protein-lysine methyltransferase METTL21C-like [Source:NCBI gene (formerly Entrezgene);Acc:115558577]         | 21560583 | 21565349 |
| ENSGMOG00000013100 | atraig | 21 | bone differentiation                                                                                                   | all-trans retinoic acid-induced differentiation factor [Source:NCBI gene (formerly Entrezgene);Acc:115534618] | 4334479  | 4337000  |

1207

1208 **Table 2. A list of enriched GO terms using genes within Fst windows that overlap with**  
1209 **GWA outlier SNPs.**

1210 To identify loci which are highly correlated with growth performance and selected over time,  
1211 the intersections of Fst outlier windows and GWA outlier SNPs were investigated. When a  
1212 GWA outlier SNP resides within an Fst outlier window, this window was counted as an  
1213 overlapping outlier window (marked as red in Figure3). Any genes residing within these  
1214 overlapping outlier windows were subjected to gene ontology (GO) enrichment test to  
1215 identify any biological functions that correlate to growth performance and at the same time  
1216 differentiated the most over time. P values are adjusted using false discovery rate. Only  
1217 biological processes were presented among GO categories for the analysis.

| GO.term    | GO.name                                                   | p.value.adjusted |
|------------|-----------------------------------------------------------|------------------|
| GO:0007624 | ultradian rhythm                                          | 0.01203089399    |
| GO:0050891 | multicellular organismal water homeostasis                | 0.01442325268    |
| GO:0034080 | CENP-A containing chromatin assembly                      | 0.01442325268    |
| GO:0006546 | glycine catabolic process                                 | 0.02048356121    |
| GO:0035825 | homologous recombination                                  | 0.02098495744    |
| GO:0007131 | reciprocal meiotic recombination                          | 0.02098495744    |
| GO:0009396 | folic acid-containing compound biosynthetic process       | 0.02214772591    |
| GO:0009408 | response to heat                                          | 0.02678127453    |
| GO:0000122 | negative regulation of transcription by RNA polymerase II | 0.0330299368     |
| GO:0009069 | serine family amino acid metabolic process                | 0.03431805692    |
| GO:0140013 | meiotic nuclear division                                  | 0.03509647983    |
| GO:1901606 | alpha-amino acid catabolic process                        | 0.03509647983    |
| GO:0042558 | pteridine-containing compound metabolic process           | 0.03509647983    |
| GO:0061982 | meiosis I cell cycle process                              | 0.03509647983    |
| GO:0051321 | meiotic cell cycle                                        | 0.04643225312    |
| GO:0001755 | neural crest cell migration                               | 0.04698068426    |

1218