

1 **Microsporidian *Nosema bombycis* secretes serine protease inhibitor
2 to suppress host cell apoptosis via caspase BmICE**

3 Maoshuang Ran^{1,2†}, Jialing Bao^{1,2†}, Boning Li^{1,2}, Yulian Shi^{1,2}, Wenxin Yang^{1,2}, Xianzhi Meng^{1,2}, Jie
4 Chen^{1,2}, Junhong Wei^{1,2}, Mengxian Long^{1,2}, Tian Li^{1,2}, Chunfeng Li^{1,2}, Guoqing Pan^{1,2*}, Zeyang
5 Zhou^{1,2,3*}

6 ¹State Key Laboratory of Resource Insects, Southwest University, Chongqing, China.

7 ²Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing,
8 China.

9 ³Key Laboratory of Conservation and Utilization of Pollinator Insect of the Upper Reaches of the
10 Yangtze River (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs,
11 Chongqing Normal University, Chongqing, China.

12 Corresponding author E-mail: pan_guoqing@yeah.net; zyzhou@swu.edu.cn (ZZ);

13 [†]These authors contributed equally to this work.

14

15 **Abstract**

16 Microsporidia are a group of intracellular pathogens that actively
17 manipulate host cell biological processes to facilitate their intracellular niche.
18 Apoptosis is an important defense mechanism by which host cell control
19 intracellular pathogens. Microsporidia modulating host cell apoptosis has
20 been reported previously, however the molecular mechanism is not yet clear.
21 In this report, we describe that the microsporidia *Nosema bombycis* inhibits
22 apoptosis of *Bombyx mori* cells through a secreted protein NbSPN14, which
23 is a serine protease inhibitor (Serpine). An immunofluorescent assay
24 demonstrated that upon infection with *N. bombycis*, NbSPN14 was initially
25 found in the *B. mori* cell cytoplasm and then became enriched in the host cell
26 nucleus. Overexpression and RNA-interference (RNAi) of NbSPN14 in *B.*
27 *mori* embryo cells confirmed that NbSPN14 inhibited host cell apoptosis.
28 Immunofluorescent and Co-IP assays verified the co-localization and
29 interaction of NbSPN14 with the BmICE, the caspase 3 homolog in *B. mori*.
30 Knocking out of BmICE or mutating the BmICE-interacting P1 site of
31 NbSPN14, eliminated the localization of NbSPN14 into the host nucleus and
32 prevented the apoptosis-inhibiting effect of NbSPN14, which also proved that
33 the interaction between BmICE and NbSPN14 occurred in host cytoplasm and

34 the NbSPN14 translocation into host cell nucleus is dependent on BmICE.
35 These data elucidate that *N. bombycis* secretory protein NbSPN14 inhibits
36 host cell apoptosis by directly inhibiting the caspase protease BmICE, which
37 provides an important insight for understanding pathogen-host interactions
38 and a potential therapeutic target for *N. bombycis* proliferation.

39 **Author Summary**

40 Microsporidia constitute a class of eukaryotic pathogens that exclusively
41 reside within host cells. The species *Nosema bombycis* is the first
42 microsporidian identified as the pathogen of silkworm Pébrine disease. In our
43 research, we discovered how *N. bombycis* cleverly evades the host's defenses.
44 It has developed a strategy to survive inside host cells by manipulating host
45 cell apoptosis, disarming the host cell's self-destruct mechanism. In this study,
46 we discovered that the *N. bombycis* secretes a serine protease inhibitor named
47 NbSPN14, which infiltrates the cytoplasm of the host cell. The NbSPN14
48 interacts with the executioner Caspase protease BmICE within the silkworm's
49 apoptotic pathway, effectively neutralizing its apoptotic activity and thus
50 curbing the apoptosis of the host cells.

51

52 **Keywords:** Microsporidia, *Nosema bombycis*, serpin, inhibition of
53 apoptosis, Caspase 3, BmICE

54 **Introduction**

55 Microsporidia are a large group of single-celled, eukaryotic, obligate
56 intracellular pathogens which infect both vertebrates and invertebrate hosts [1,
57 2]. The first microsporidia species was identified in 1857, which described as
58 the *Nosema bombycis* [3], as the causative pathogen of Pébrine disease in
59 silkworms [4]. Since then, more than 1700 species in 220 genera have been
60 identified [5]. The effects of microsporidia infections on their hosts cause
61 significant economic loss to animal husbandry and are threats to public health
62 [6, 7].

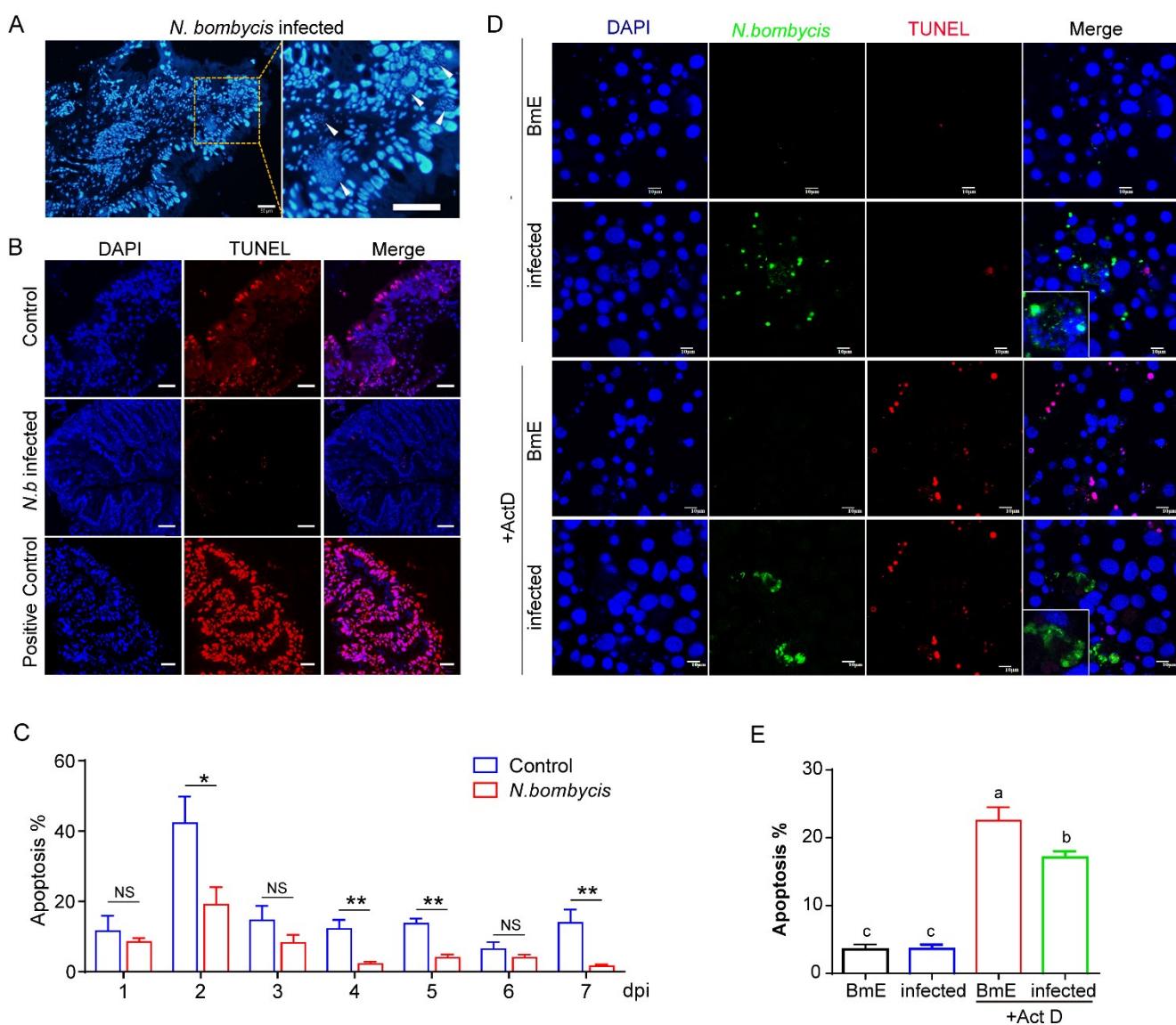
63 Apoptosis is a key feature of eukaryotic cells and is essential for the
64 proper development of multicellular organisms [8]. In addition, as a defense
65 mechanism, studies have demonstrated that host cells undergo apoptosis to
66 purge invading pathogens, many pathogens, such as viruses and bacteria

67 manipulate apoptosis to aid their intracellular survival [9-12]. The
68 phenomenon of microsporidia modulating host cell apoptosis has been
69 reported previously [13-18]. As early as 1999, Scalon et al. found that *Nosema*
70 *algerae* (now called *Anncalicia algerae*) infected human lung fibroblasts cells
71 (HLF) did not induce apoptosis, the survival time of infected cells *in vitro*
72 increased several days compared to uninfected cells [19]. Aguila et al. have
73 reported that *Encephalitozoon cuniculi* infection could suppress the apoptosis
74 of host cells. Upon further analysis, it was discovered that the nuclear
75 translocation of p53 and the activation of caspase 3 was markedly attenuated
76 in Vero cells post-infection with *E. cuniculi* [18]. Similarly, both *Nosema apis*
77 and *Nosema ceranae* reduce host cell apoptosis in bee epithelial cells [15, 16,
78 20, 21]. *N. bombycis* infecting the ovarian cells of *Bombyx mori* (BmN cells)
79 has been shown to inhibit the host cell apoptosis by downregulating the
80 expression of genes associated with the mitochondrial apoptosis pathway [17].
81 However, now which effector of microsporidia inhibit the host cell apoptosis
82 is unknown.

83 Serine protease inhibitors (Serpins) are a group of protease inhibitors that
84 are found in almost all organisms [26]. Serpins form complexes with target
85 proteases, thereby, regulating various biological processes such as blood
86 homeostasis [27], inflammatory responses [28], and cell apoptosis [29][30].
87 Serpins from pathogens have been reported to manipulate the host immune
88 and apoptotic processes of host cells by regulating the activity of host
89 proteases, which is beneficial for pathogen evasion against immune of host
90 and pathogen self-proliferation [31]. SPI-2 and CrmA are the most extensively
91 studied poxvirus serine protease inhibitors, they are non-essential for virus
92 replication, but are involved in multiple immunomodulatory events [34]. It
93 has been reported that SPI-2 and CrmA inhibit apoptosis and host
94 inflammatory responses [35]. SPI-2 and CrmA target caspase 1 to protect
95 virus-infected cells from TNF-mediated and Fas-mediated apoptosis as well
96 as prevent the proteolytic activation of interleukin-1 β [36, 37]. In the
97 Microsporidia, a total of 53 serpins have been exclusively identified within
98 the genus *Nosema*, and of these, 21 possess predicted signal peptides.
99 Nineteen serpin members have been identified in *N. bombycis*, eight serpins
100 with predicted signal peptides. The phylogenetic analysis demonstrated that
101 the *N. bombycis* serpins clustered with the poxvirus serpins [32, 33]. In general,

102 above clues strongly suggest that the serpin protein encoded by *N. bombycis*
103 may be involved in inhibiting host cell apoptosis.

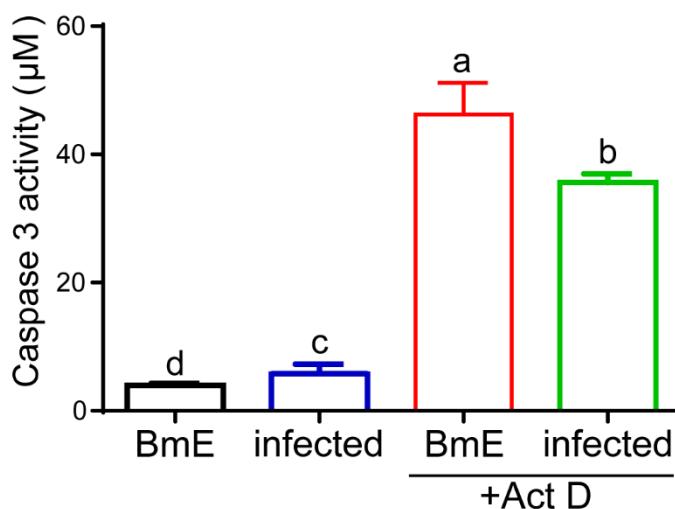
104 Herein, we report that *N. bombycis* secretes a serpin protein, NbSPN14
105 into host cell cytoplasm, where it directly interacts with silkworm homolog
106 Caspase 3, BmICE, the key executing effector in the silkworm apoptosis
107 pathway. Subsequently, NbSPN14 inhibits the BmICE activity to suppress the
108 host cell apoptosis, which ultimately facilitate the intracellular proliferation
109 of *N. bombycis*.


110 **Results**

111

112 ***N. bombycis* infection inhibits *B. mori* cell apoptosis**

113 The presence of *N. bombycis* within infected host midgut tissues and
114 culture cells was verified using an immunofluorescent assay by Hoechst33342
115 nuclear staining (Fig. 1A). Terminal deoxynucleotidyl transferase dUTP nick
116 end labeling (TUNEL) assay was then used to detect DNA fragmentation.
117 Compared to un-infected and DNase I-treated positive controls, DNA
118 fragmentations in the midgut tissues of infected silkworms were significantly
119 reduced (Fig. 1B). The results from 1 to 7 days after infection were quantified
120 by averaging the numbers of apoptotic cells from 5 to 10 observed fields under
121 confocal microscopy. As shown in Fig. 1C, the percentage of midgut cell
122 apoptosis was significantly decreased after *N. bombycis* infection. In addition,
123 a silkworm embryonic cell line (BmE) was applied to confirm the above
124 observations. The BmE cells were either un-infected, infected by *N. bombycis*,
125 or further treated with the apoptosis inducer actinomycin D (Act D, 150
126 ng/mL). The results demonstrated that there was no significant difference in
127 apoptosis between *N. bombycis*-infected and un-infected groups (Fig. 1D).
128 However, when the two groups of cells were treated with actinomycin D, the
129 percent of cell apoptosis of *N. bombycis*-infected BmE cells was significantly
130 lower than that of the uninfected control (Fig.1E). Then, we determined the
131 Caspase 3 activity in *N. bombycis*-infected cells, both before and after
132 treatment with ActD. The findings revealed an elevation in Caspase 3 activity
133 post-infection. However, upon ActD treatment, the Caspase 3 activity in the
134 infected cells notably diminished compared to uninfected cells. (Fig.S1). The
135 above results indicated that *N. bombycis* infection inhibits host cell apoptosis.


136

137

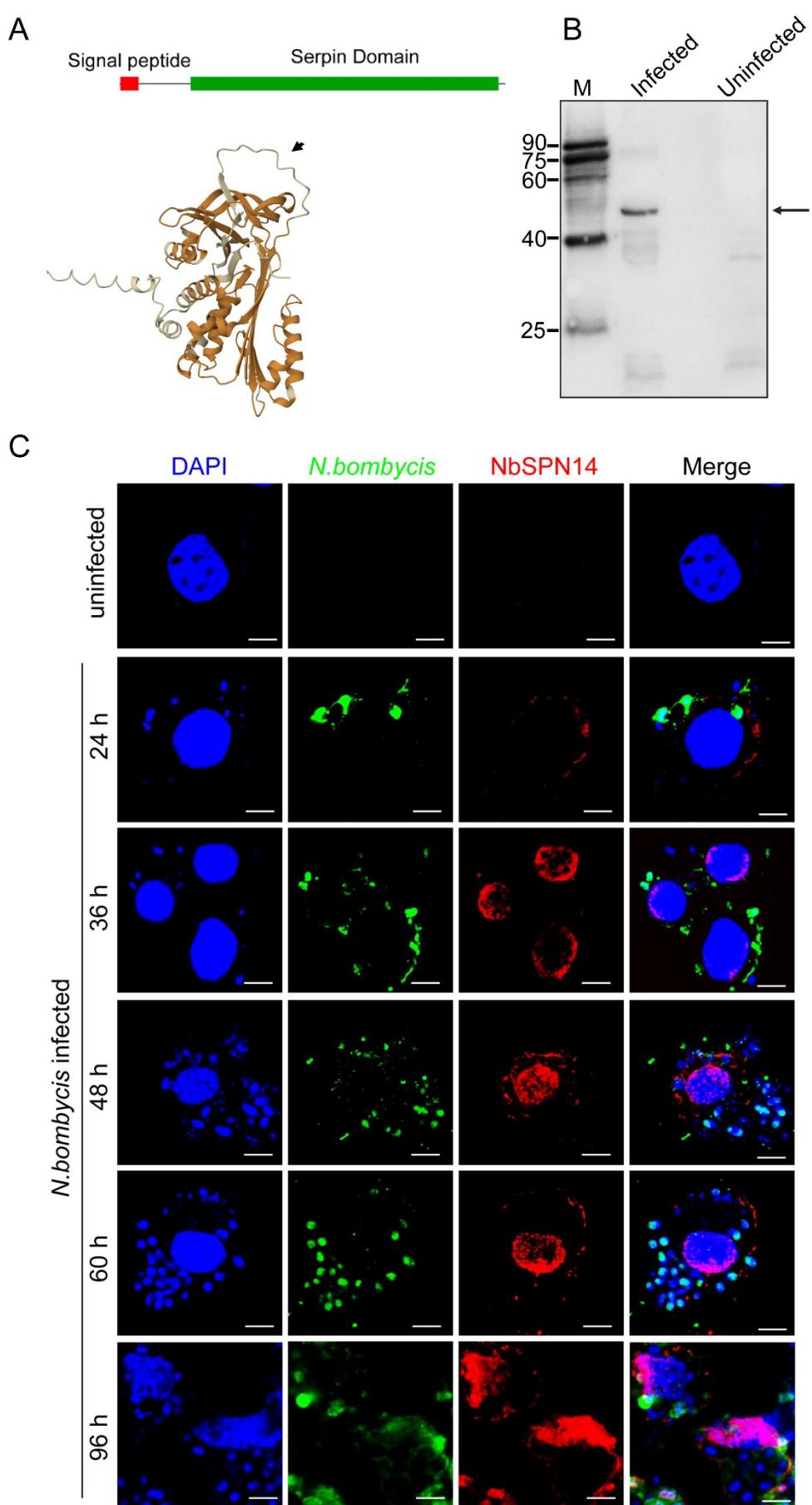
138 **Fig. 1 *N. bombycis* infection inhibits host cell apoptosis.** A. Observation on the sections of
139 silkworm midgut infected with *N. bombycis*, the white triangle is the *N. bombycis* nucleus marked by
140 Hoechst33342, bar, 50 μ m; B. TUNEL assay to detect apoptotic cells in transverse sections of infected
141 and uninfected silkworm midgut, blue: nucleus, red: TUNEL positive signal; C. Quantitation of
142 apoptosis in silkworm midgut cells 1 to 7 days after infection with *N. bombycis*. D. TUNEL analysis of
143 the host cell apoptosis with *N. bombycis* infection 48h, green: *N. bombycis*; red: TUNEL positive signal;
144 scale bar, 10 μ m; E. Quantitation of apoptosis of BmE cells infected with *N. bombycis* for 48 hours,
145 Different and same letters indicate values with statistically significant ($p < 0.05$) and non-significant ($p >$
146 0.05) differences, respectively.

147

148

149 **Fig. S1 Analysis of Caspase 3 activity after *N. bombycis* infection and Act D induced apoptosis**
150 **of BmE cells.** The Caspase 3 activity of BmE cells infected with *N. bombycis* for 48 hours and
151 treatment with Act D for 6 hours, Different and same letters indicate values with statistically significant
152 ($p < 0.05$) and non-significant ($p > 0.05$) differences, respectively.

153 ***N. bombycis* secretes NbSPN14 into its host cell**

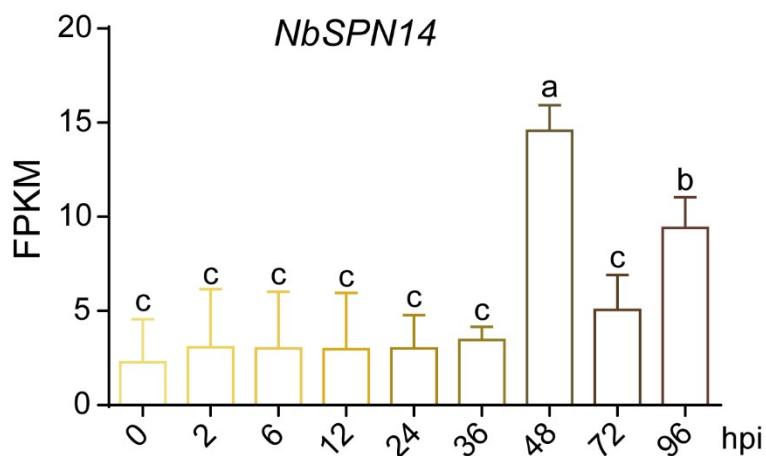

154 As a member of the *N. bombycis* serpin family, NbSPN14 was predicted
155 with a secretory signal peptide (1-19Aa) and a typical serpin domain, the
156 molecular weight is about 45kDa (Fig.2A). The polyclonal antibody of
157 NbSPN14 reacts to the corresponding antigenic band in *N. bombycis*-infected
158 cell lysates thus confirmed the presence of this protein (Fig.2B). Transcripts
159 of NbSPN14 could be detected after infection, with the highest transcript level
160 at 48 h post-infection (Fig.S2A). As shown in Fig.2C, *N. bombycis* was
161 labeled by the specific antibody, while the NbSPN14 was found within host
162 cells. Further analysis demonstrated that at 36 h after infection, NbSPN14 was
163 mostly localized in the host cytoplasm, at 48-60 h post-infection, NbSPN14
164 had partially translocated into the host cell nucleus; and at 96 hours after
165 infection (when the pathogenic load is very high) most of the NbSPN14 was
166 translocated into the host cell nucleus. The transient expression of V5-tagged
167 NbSPN14 in BmE cells also demonstrated that NbSPN14 could localize to the
168 cytoplasm and nucleus of host cells (Fig.S2B). These findings confirm that
169 NbSPN14 is a secreted protein, and the localization of NbSPN14 to the host

170 cell nucleus suggests that NbSPN14 may interact with a host cell protein
171 during proliferation.

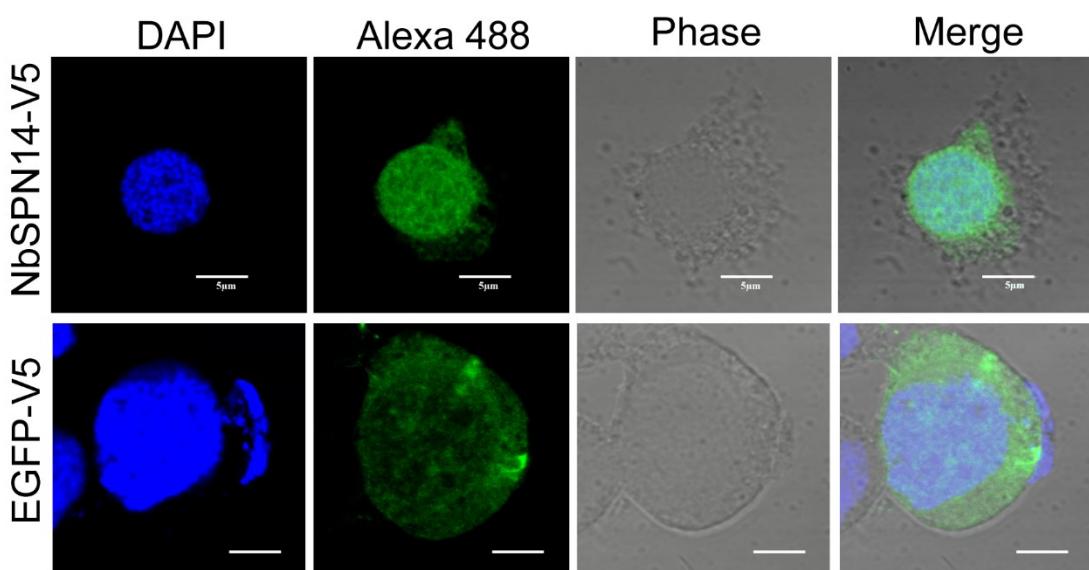
172 In order to study NbSPN14 function, NbSPN14 was expressed in cells to
173 mimic the secretion of pathogens into host cells. The signal peptide sequence
174 of NbSPN14 was removed from the coding sequence, and the remaining
175 coding sequence was constructed into a pBac vector, then the recombinant
176 vector was transfected into BmE cells (Fig.S3A). The transgenic cell line
177 stably expressing NbSPN14 protein was obtained by Geneticin selection
178 (Fig.S3B). PCR analysis shows that the NbSPN14 gene was integrated into
179 the host cell genome and transcribed successfully. (Fig.S3C). Western blotting
180 analysis showed that the cell line expressed the NbSPN14 protein successfully
181 (Fig.S3D).

182

183


184

185 **Fig. 2** *N. bombycis* secretes NbSPN14 into host cell. A. NbSPN14 Signal Peptide, Serpin Domain and
186 the predicted three-dimensional structure with typical structural characteristics of the serpin protein
187 Reactive Center Loop exposure by AlphaFold Protein Structure Database. B. The protein expression
188 level of NbSPN14 in infected BmE cell lines was analyzed using a Western blot, the arrow refers to the
189 NbSPN14 band. C. Observations of the subcellular localization of NbSPN14 in infected BmE cells at
190 24, 36, 48, 60, 96 h post-infection by laser scanning confocal microscope. Nuclei are labeled with
191 Hoechst 33342 (blue); NbSPN14 (red), and *N. bombycis* (green) labeled with relevant antibodies,
192 respectively.

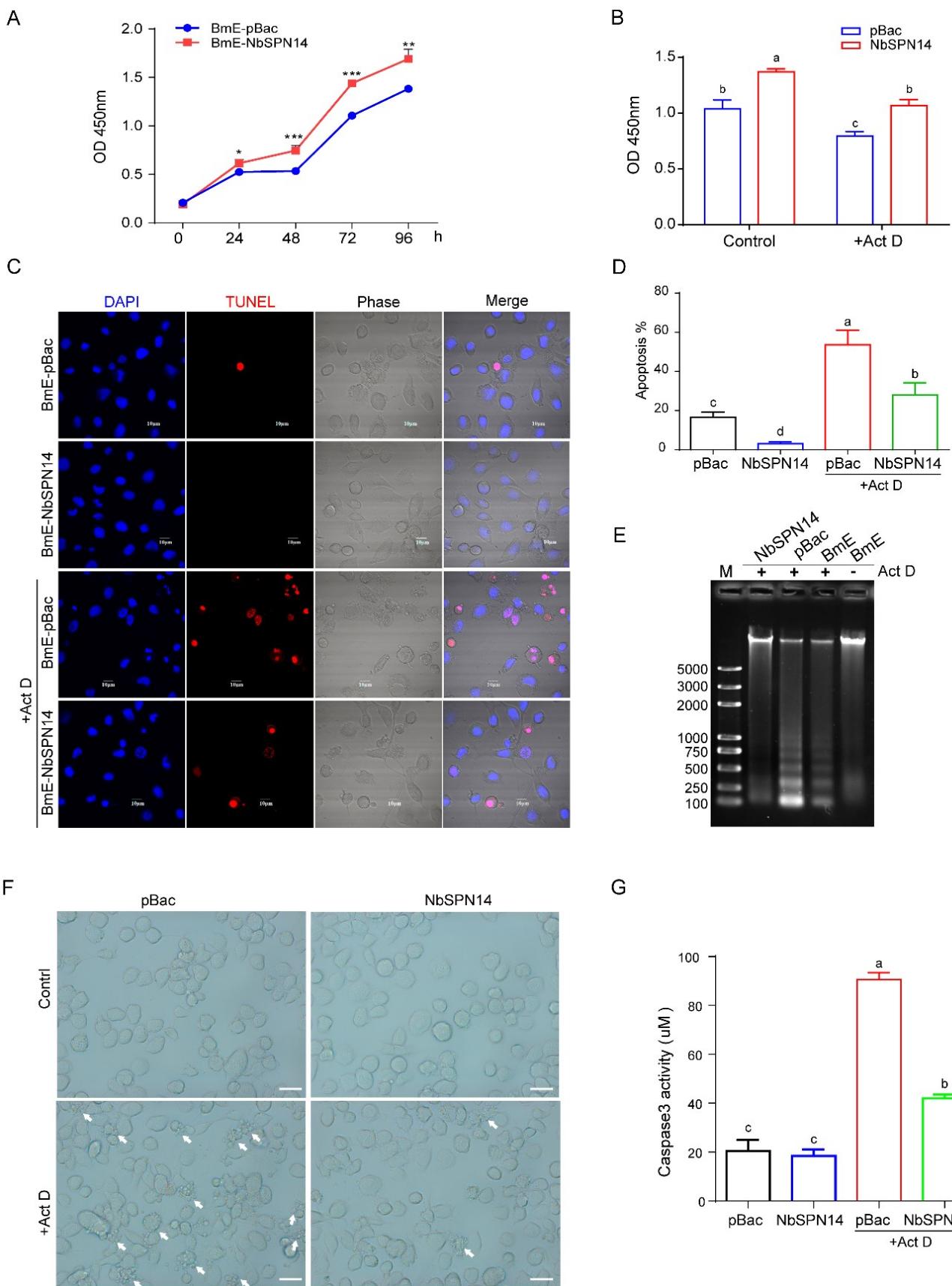

193

194

A

B

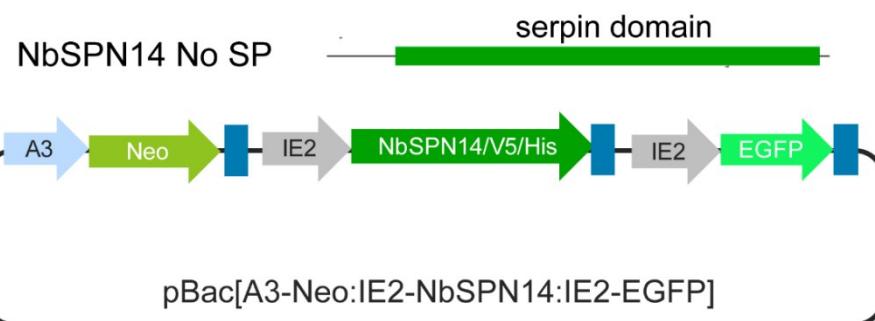
195 **Fig. S2 Transcriptional characterization of NbSPN14 in infected cell and expression localization**
196 **of NbSPN14 in BmE cell.** A. Analysis of NbSPN14 transcripts at 0, 2, 6, 12, 24, 36, 48, 72, and 92 h
197 after infection with BmE cells showed that all transcripts were recorded, which was the highest at 48 h,
198 followed by 96 h after infection. Different and same letters indicate values with statistically significant
199 ($p < 0.05$) and non-significant ($p > 0.05$) differences, respectively. B. Forty-eight hours after transfection
200 of the psl1180-IE2-NbSPN14-V5 expression vector into BmE cells, the localization of NbSPN14 fusion
201 protein was analyzed by IFA. The primary antibody uses the V5-tagged mouse monoclonal antibody,
202 the secondary antibody was the Goat anti-Mouse IgG with Alexa Fluor® 488.

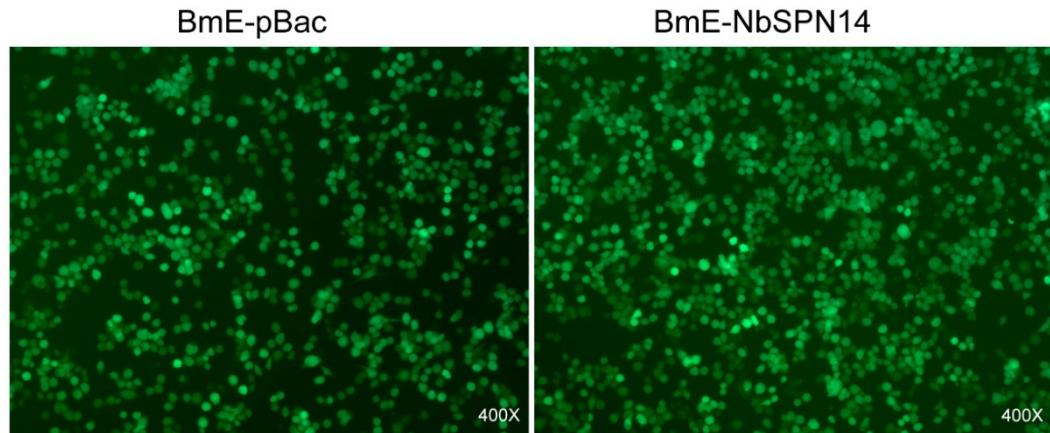

203

204 **NbSPN14 inhibits host cell apoptosis**

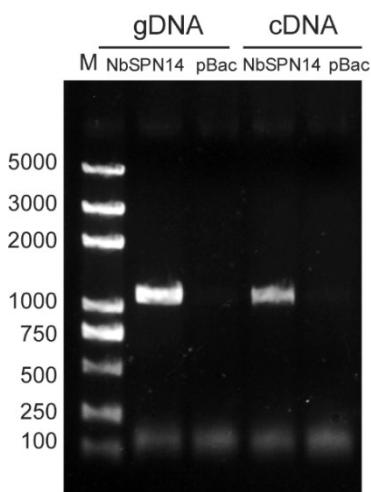
205 CCK8 assays demonstrated that transgenic BmE cells expressing
206 NbSPN14 possessed significantly higher cell viability compared to control
207 cells (Fig.3A). Next, both groups of cells were treated with Act D, it was found
208 that the proliferation activity of NbSPN14 transgenic cells were significantly
209 higher than control ones (Fig.3B); TUNEL assay results showed that Act D
210 could strongly induce apoptosis of BmE cells, and the cell number of
211 apoptosis increased significantly after treatment with Act D; However, the
212 apoptosis rate of the transgenic cell line expressed NbSPN14 was significantly
213 lower than that of empty vector cell line (Fig.3C-D). Apoptosis can be
214 visualized as a ladder pattern of 180-200 bp in standard agarose gel
215 electrophoresis due to DNA cleavage by the activation of a nuclear
216 endonuclease. The result showed the formation of the DNA ladder in gel
217 electrophoresis by induction of apoptosis in NbSPN14 transgenic cells is
218 much weaker than that of the control cell (Fig.3E). Similarly, the
219 morphological changes of apoptosis can be clearly observed in phase with a
220 larger number of apoptotic cells with the apoptotic body in the control group
221 and slight apoptotic cells in the NbSPN14 transgenic cells (Fig.3F). What's
222 more, caspase 3 activity is an important indicator of apoptosis, as shown in
223 Fig.3G, compared with control, the activity of Caspase 3 in the transgenic cell
224 line expressed NbSPN14 was decreased significantly after Act D treatment,
225 indicating that NbSPN14 play an important role in inhibiting host cell
226 apoptosis.

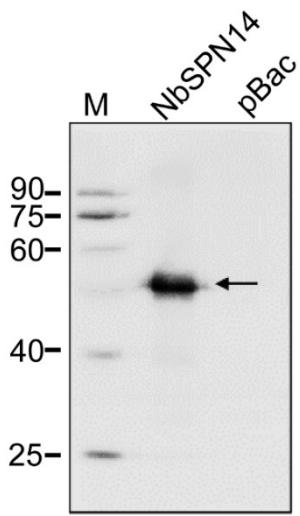
227


228


230

231 **Fig. 3 Inhibition of host cell apoptosis by overexpression of NbSPN14 in BmE cell lines.** A. CCK-
232 8 analysis of the cell proliferation after continuous culture of NbSPN14 transgenic cells at 0-96 h, and
233 the x-coordinate was the continuous culture time; B. CCK-8 analysis of the NbSPN14 transgenic cells
234 treated with Act D at 48h. C. TUNEL analysis the apoptosis of BmE-NbSPN14 transgenic cell line,
235 red: TUNEL positive signal means the cell in a state of apoptosis; D. Quantification of the NbSPN14
236 transgenic cells apoptosis rate induced by Act D. E. DNA ladder analysis was used to detect the
237 apoptosis of NbSPN14 transgenic cells after treatment with Act D. F. Morphological observation of
238 NbSPN14 transgenic cells after induction of apoptosis by Act D treatment 12 h. Arrows indicate
239 apoptotic cells, which are shrinking and bubbling to form many apoptotic vesicles. G. Caspase 3
240 activity analysis of NbSPN14 transgenic cells. Different and same letters indicate values with
241 statistically significant ($p < 0.05$) and non-significant ($p > 0.05$) differences, respectively.


A

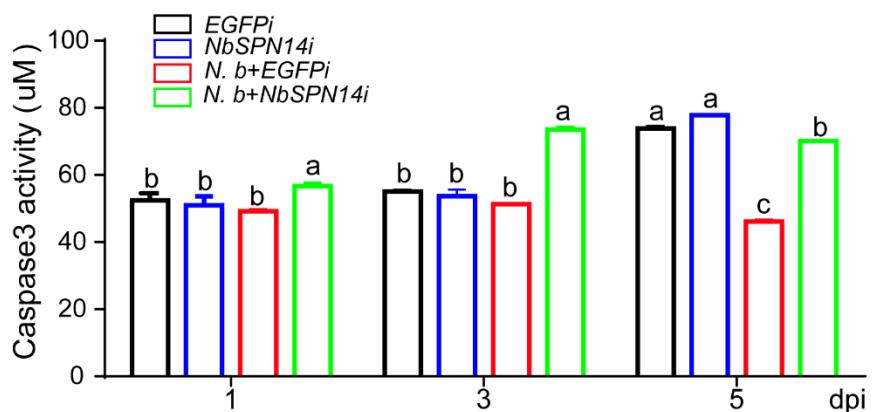

B

C

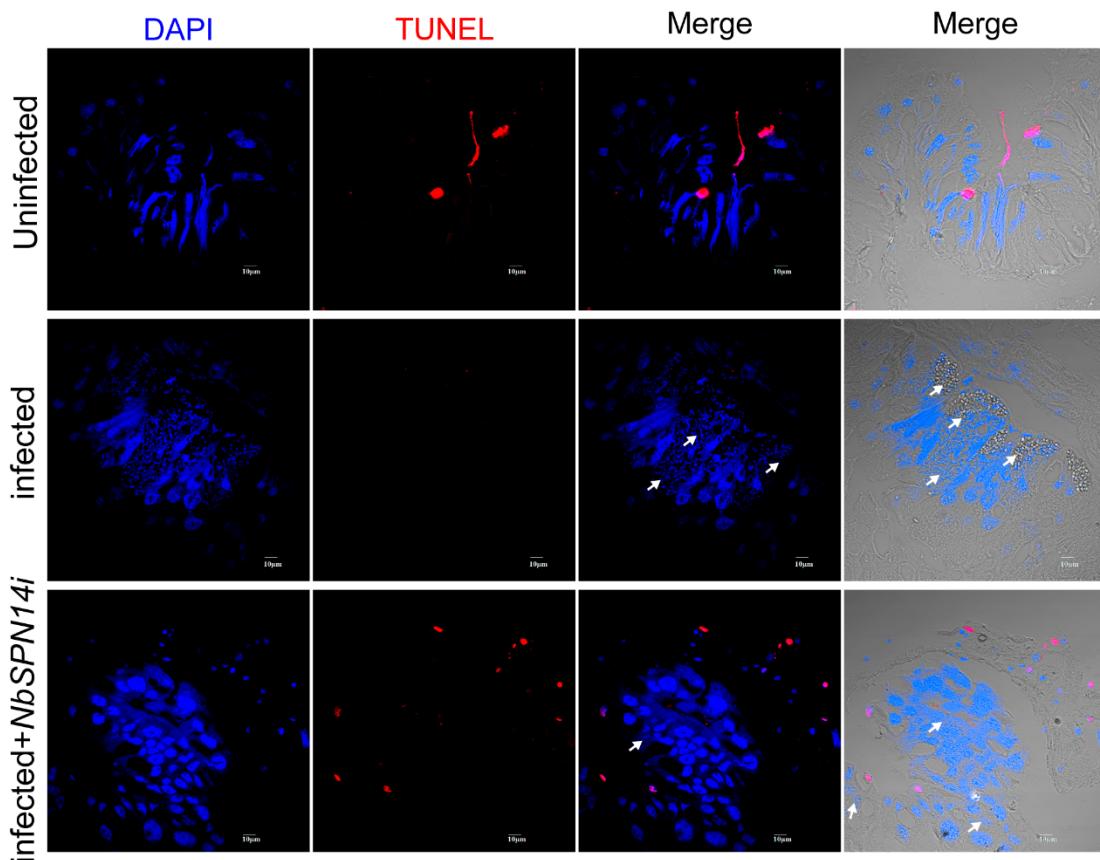
D

242

243 **Fig. S3 Construction and identification of NbSPN14 transgenic cells.** A. The NbSPN14 signal
244 peptide sequence was removed to mimic the secretion of NbSPN14 by *N. bombycis* into the host cell,


245 and the schematic diagram of recombinant vector pBac [A3-Neo-SV40]-[IE2-NbSPN14-V5-SV40]-
246 [IE2-EGFP-SV40], the vector pBac [A3-Neo-SV40] -[IE2-EGFP-SV40] as control; B. The pBac
247 recombinant vector was transfected into BmE cells, and screened by Geneticin for 1 month. The
248 percentage of cells with green fluorescence was more than 98%. C. The genomic DNA of transgenic
249 cells was extracted, and the NbSPN14 gene fragment was successfully integrated into the host cell
250 genome confirmed by PCR using a specific primer. The total RNA was extracted and reverse-
251 transcribed into cDNA, and the successful transcription of NbSPN14 was verified. The pBac
252 transgenic cells as a control. D. Total proteins from transgenic cells were extracted using RIAP lysate
253 buffer. Western blotting was used to verify the expression of NbSPN14 in the transgenic cells;

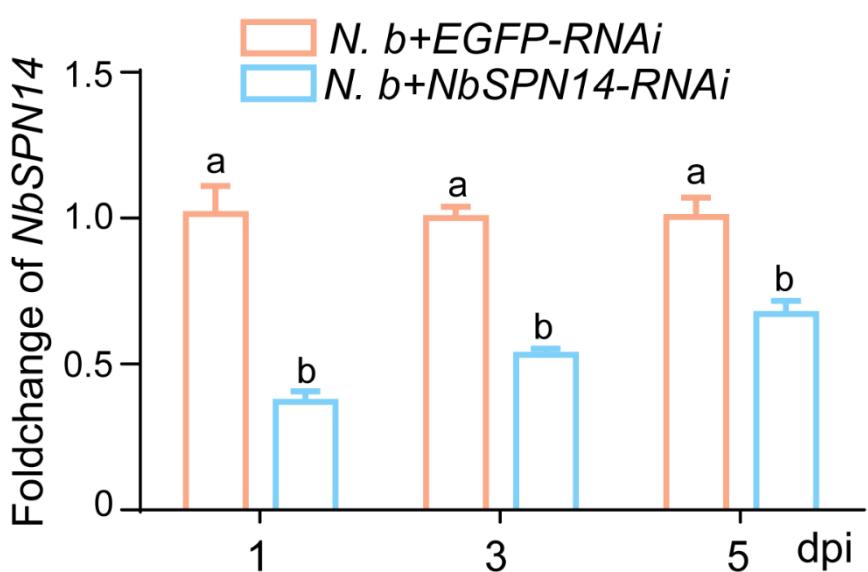
254


255 To further confirm the key function of NbSPN14 in inhibiting host cell
256 apoptosis, we down-regulated the expression of NbSPN14 by transfecting the
257 double-stranded dsRNA interference fragment targeting NbSPN14 gene into
258 infected cells. The expression of NbSPN14 was detected by quantitative PCR
259 and Western blotting, the results showed that the expression of NbSPN14 was
260 down-regulated compared with the control group transfected with EGFP
261 double-stranded dsRNA interference fragments (Fig.S4A-B). The results of
262 caspase 3 activity assay showed that the infection of *N. bombycis* could inhibit
263 the host cells' Caspase 3 activity, down-regulating the expression of NbSPN14
264 led to the increase of caspase 3 activity of infected cells (Fig.4A). We utilized
265 RNAi to block the expression of NbSPN14 in *N. bombycis* infected silkworm
266 larvae. NbSPN14-dsRNA and the control EGFP-dsRNA were injected into the
267 silkworms respectively after *N. bombycis* infection. The expression of
268 NbSPN14 of the midgut determined by RT-PCR was drawn from 3 dpi to 4
269 dpi (Fig.S4C), and the results showed that NbSPN14 expression was
270 successfully knocked down. TUNEL analysis result of midgut cell apoptosis
271 after NbSPN14 interference was shown in Fig.4B. Compared with the
272 uninfected group, the infected group midgut cells with the positive signals of
273 TUNEL were significantly reduced. The apoptosis was significantly increased
274 in response to the interference of NbSPN14 expression in the silkworm
275 midgut compared with the infected group. These results confirmed that
276 NbSPN14 is an important effector in *N. bombycis* inhibiting host cell
277 apoptosis.

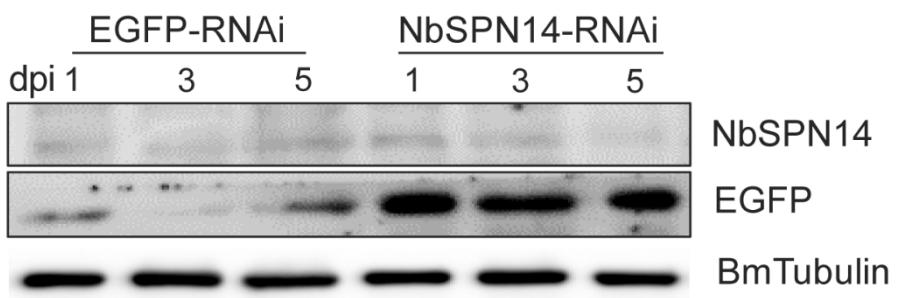
278

A

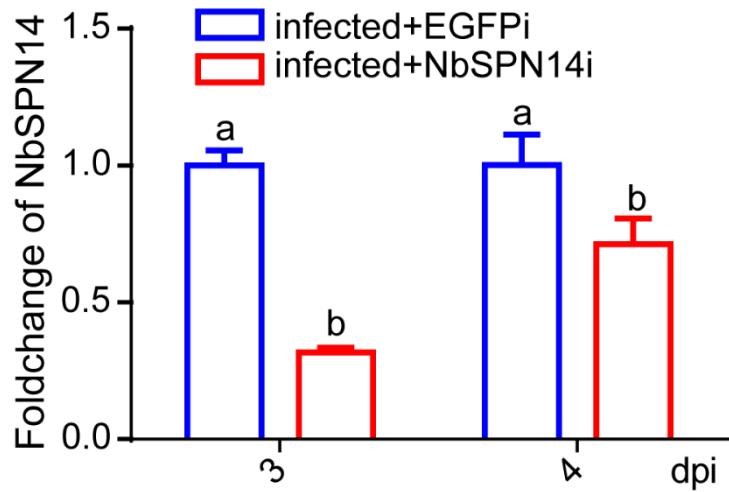
B


279

280 **Fig. 4 Host cell apoptosis increased after down-regulation of NbSPN14 expression by RNAi**
281 **interference.** A. Analysis of Caspase 3 activity in cells withNbSPN14-RNAi was significantly lower
282 than the control group. Different and same letters indicate values with statistically significant ($p < 0.05$)


283 and non-significant ($p > 0.05$) differences, respectively. B. The apoptosis of midgut cells of silkworm
284 infected by *N. bombycis* were analyzed by TUNEL, the apoptotic signal of midgut cells increased
285 significantly after NbSPN14 interference.

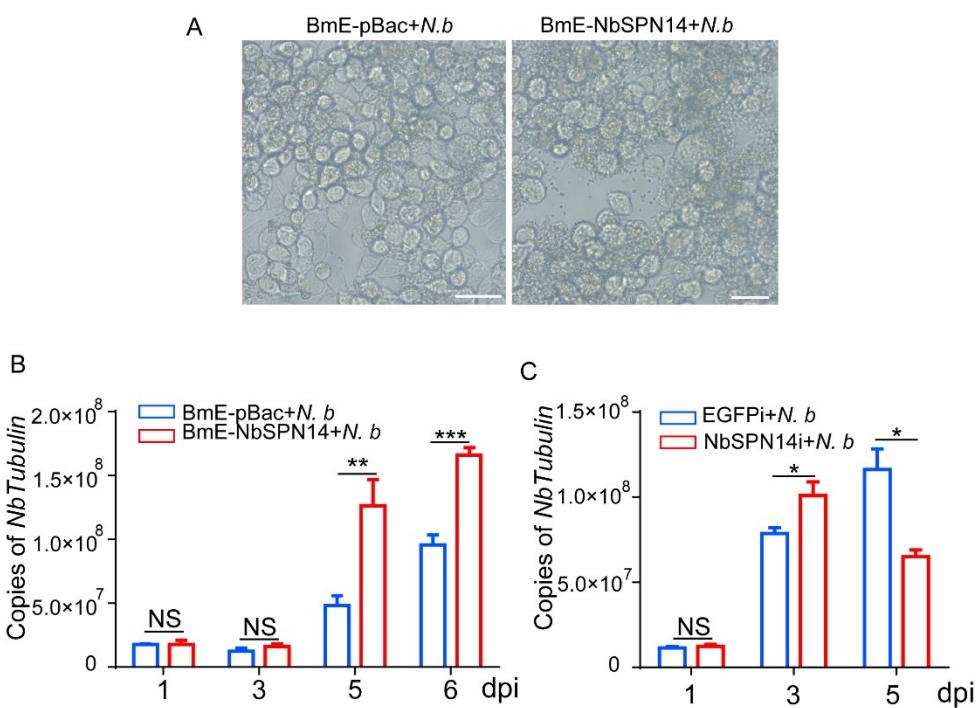
286


A

B

C

288 **Fig.S4 *In vitro* and *vivo* interference NbSPN14 expression verification.** A. At the cellular level,
289 NbSPN14 transcription analysis was performed after transfection of NbSPN14 interfered with double-
290 stranded fragments, with transfected EGFP interference fragments as control. B. At the cellular level,
291 Western blot was used to analyze the expression of NbSPN14 after transfection of interference
292 fragments, and the transfected EGFP interference fragments were used as control. C. At the individual
293 level, the transcription of NbSPN14 in the midgut was analyzed 3-4 days after injection of interference
294 fragments into the stomata of silkworms infected with *N. bombycis*. Different and same letters indicate
295 values with statistically significant ($p < 0.05$) and non-significant ($p > 0.05$) differences, respectively.


296

297 **NbSPN14 inhibiting apoptosis increases *N. bombycis*
298 proliferation**

299 To explore whether NbSPN14 inhibiting host cell apoptosis promotes the
300 proliferation of pathogens in host cells, the proliferation of *N. bombycis* in
301 host cells was analyzed following *N. bombycis* infection in NbSPN14
302 transgenic cell line and infected culture cells with NbSPN14 interference,
303 respectively (Fig.5A). The copy number of *Nb β-tubulin* was used to the
304 represent the pathogen load of the two groups. As shown in Fig.5B, the *Nb β-*
305 *tubulin* copies in NbSPN14 transgenic cells were significantly higher than
306 those in empty control cells at the middle and late stages of infection. However,
307 the pathogen load in host cells was significantly reduced after NbSPN14
308 expression was down-regulated by RNA interference in infected cells at 5dpi
309 (Fig.5C). The results showed that NbSPN14 inhibiting host cell apoptosis was
310 important for *N. bombycis* intracellular proliferation.

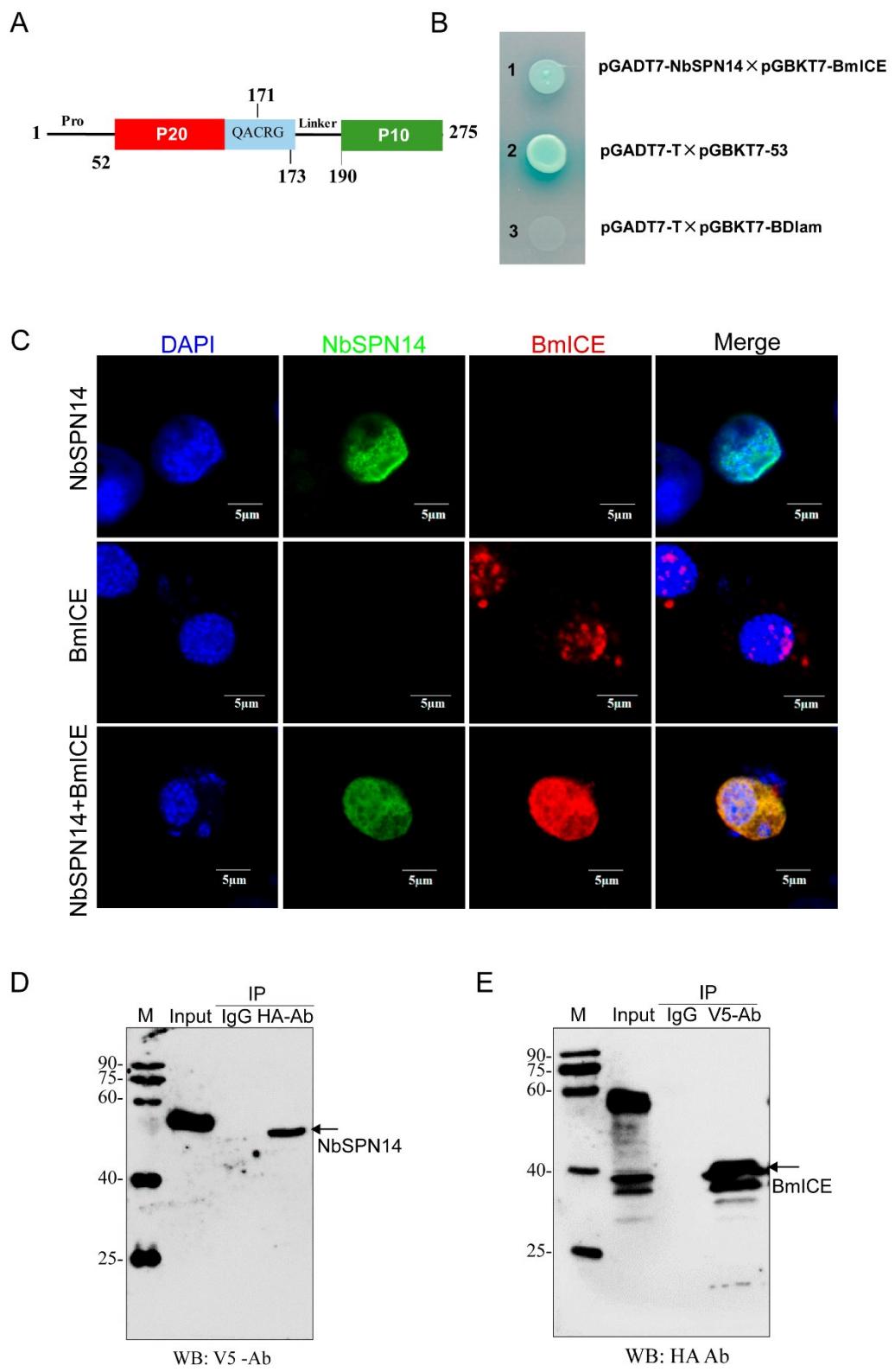
311

312

313 **Fig. 5. NbSPN14 can increase the proliferation of *N. bombycis* by inhibiting cell apoptosis.** A. 314 BmE-NbSPN14 transgenic cells morphology observation after 5 days of infection with *N. bombycis*, 315 Bar scale 50 μ m. B: The β -tubulin copies level in BmE-NbSPN14 transgenic cells was higher than that 316 of empty Vector control cells in *N. bombycis* infection. C. The β -tubulin level in infected BmE cells 317 knock-down NbSPN14. NS, no significant difference; *Indicates significant difference ($P < 0.05$), 318 **indicates extremely significant difference ($P < 0.01$), ***indicates exorbitant difference ($P < 0.001$).

319 **BmICE is the target enzyme of NbSPN14**

320 To investigate the target protein and the mechanism by which NbSPN14 321 inhibits the host cell apoptosis pathway, we analyzed Caspase 3 activity in 322 cells following treatment with Ultraviolet light, Act D, and Staurosporine 323 (STS). The results showed that the Caspase 3 activity of NbSPN14 transgenic 324 cells after treatment with apoptosis inducers was significantly lower than that 325 of the control group (Fig. S5A). NbSPN14 can inhibit apoptosis triggered by 326 a variety of apoptotic agents, suggesting that the protein it targets plays a 327 pivotal role in the apoptotic pathway. Then, we analyzed the transcription of 328 genes related to the apoptosis pathway in NbSPN14 transgenic cells, and 329 found that the pro-apoptotic gene *BmICE* was significantly up-regulated. In 330 contrast, while the upstream apoptosis-related genes *BmDronc* and *BmDredd*

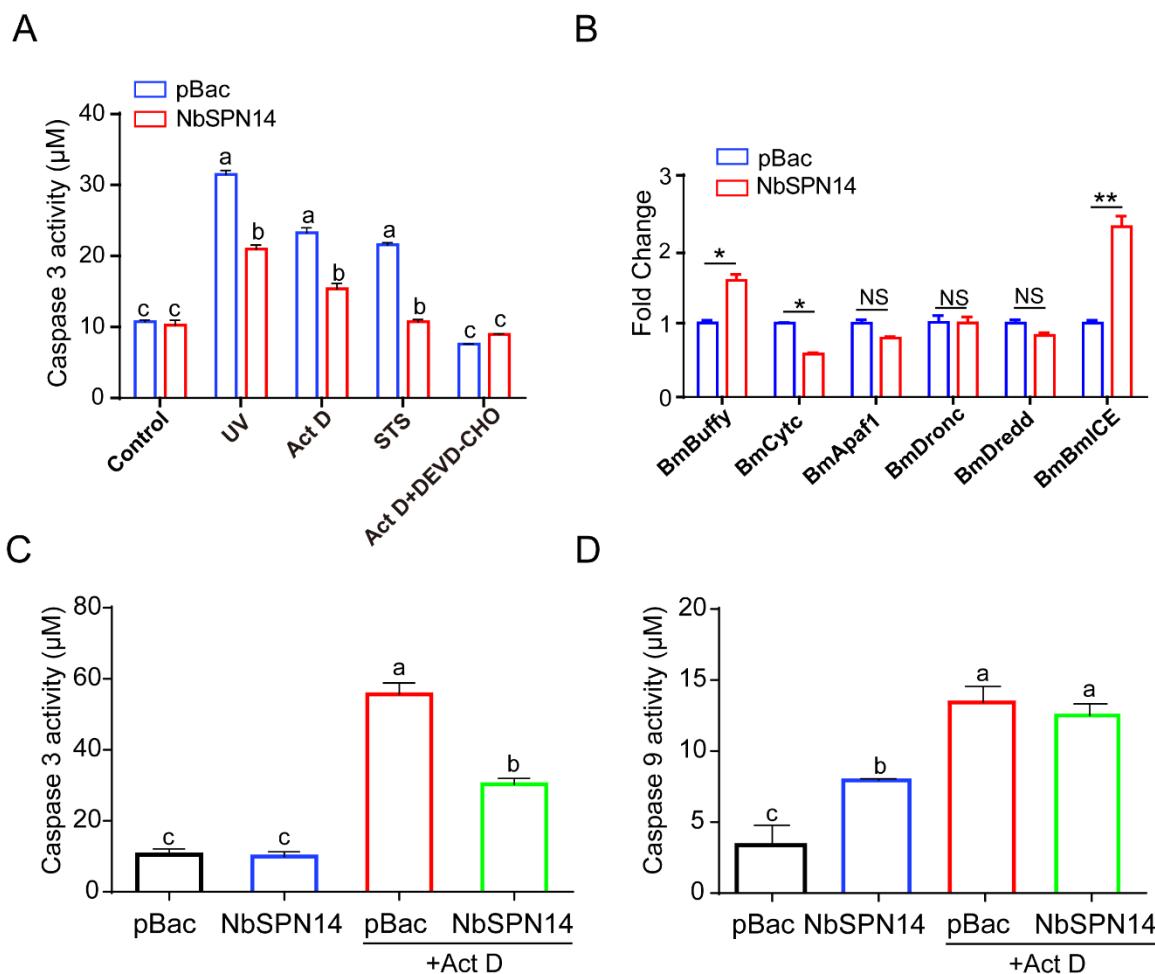

331 showed no significant changes (Fig. S5B). Transcriptional analysis revealed a
332 significant increase in BmICE levels; however, its activity was suppressed,
333 which could be attributed to a rise in compensatory transcription. To ascertain
334 whether NbSPN14 suppresses Caspase 3 activity by targeting upstream
335 Caspase 9, we conducted enzyme activity assays. The results, depicted in
336 Figure S5C-D, demonstrated that NbSPN14 is capable of inhibiting Caspase
337 3 activity instead of Caspase 9. Collectively, these findings imply that
338 NbSPN14 may directly inhibit Caspase 3 activity.

339 The BmICE, the silkworm homolog of Caspase 3, behaving as the key
340 executing effector in silkworm apoptosis pathway, is composed of the P10 and
341 P20 subunits and includes the conserved pentapeptide motif QACRG. [22]
342 (Fig.6A). It was predicted that the NbSPN14 P1 site at position 348th was
343 aspartic acid D, which could be recognized by caspase. Furthermore, we
344 discovered that the amino acid located at the P1 site of NbSPN14 is identical
345 to the amino acid found at the P1 site of CrmA, a serpin protein encoded by
346 the Cowpox virus. [37] Notably, CrmA is known to effectively hinders host
347 cell apoptosis by suppressing caspase activity [43, 44]. This finding hints that
348 NbSPN14 could possibly employ a similar mechanism to achieve inhibition
349 of host cell apoptosis.

350 Combined all the information above, we presumed that the candidate of
351 the NbSPN14-inhibiting target protein was BmICE. To confirm the hypothesis,
352 we utilized the yeast two-hybrid system, revealing a clear interaction between
353 NbSPN14 and BmICE (Fig.6B). At the same time, we co-expressed NbSPN14
354 and BmICE in BmE cells, and found that they were co-localized in the host
355 cytoplasm and nucleus, indicating that there may be an interaction between
356 NbSPN14 and BmICE (Fig.6C). To further verify the interactions between
357 NbSPN14 and BmICE, Co-IP was performed we simultaneously expressed
358 fusion proteins: V5-tagged NbSPN14 and HA-tagged BmICE in BmE cells.
359 The cell total protein samples were immunoprecipitated using a HA antibody,
360 and the detection was performed using the V5 antibody. The V5 antibody
361 confirmed the specificity of the NbSPN14 signal in immunoprecipitates,
362 reverse verification can also be used to detect BmICE specific bands in
363 immunoprecipitate as shown in Fig. 6D. The above results indicate that the
364 NbSPN14 could interact with BmICE directly.

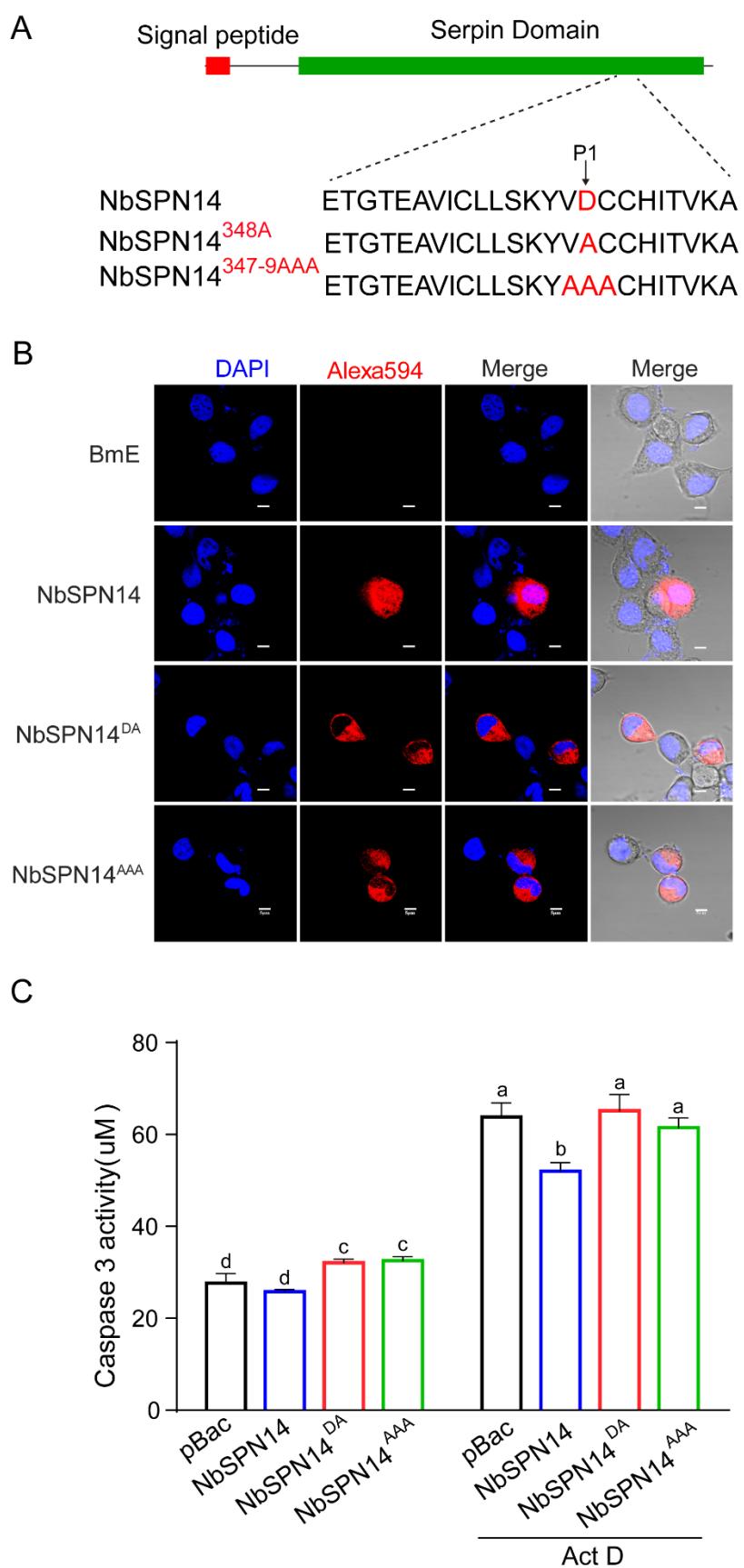
365 The amino acid residues of the P1 site in the RCL region of serpin protein

366 play an important role in inhibiting target protease. Through site-directed
367 mutagenesis, the 348th amino acid D of NbSPN14 was mutated to alanine A
368 as NbSPN14^{348A}, and the 347-349 amino acids were mutated into alanine A as
369 NbSPN14^{347-9AAA}(Fig.7A). Subcellular localization was analyzed after
370 transient expression of NbSPN14 mutants in BmE cells. As shown in Fig.7B,
371 NbSPN14 mutants (including NbSPN14^{348A}, NbSPN14^{347-9AAA}) only
372 localized in cytoplasm, could not enter the host cell nucleus. After
373 constructing the cell line expressing NbSPN14 mutant protein, then we
374 evaluated the function of the NbSPN14 mutant to inhibit host cell apoptosis
375 (Fig.7C). The results showed that the Caspase 3 activity of mutated NbSPN14
376 transgenic cells was higher than that of wild-type NbSPN14 transgenic cells,
377 which indicates that the P1 site amino acid residue D played a decisive role in
378 NbSPN14 inhibiting the BmICE caspase activity.


379

380

381 **Fig. 6 BmICE is the target protease inhibited by NbSPN14.** A. The BmICE protein domain shows
382 that BmICE has a pro domain and P10 and P20 subunits. B. Yeast two-hybrid assay to verify the
383 interaction between NbSPN14 and BmICE. Interaction of pGADT7-NbSPN14 with pGBT7-BmICE
384 was screened by SD/-Ade/-His/-Leu/-Trp/X- α -gal/AbA medium. C. Co-localization assay of NbSPN14-
385 V5 and BmICE-HA co-expression in BmE cells. Nuclei were stained by DAPI, NbSPN14 was detected
386 using a V5 mouse monoclonal antibody and an Alexa-488 secondary antibody, BmICE was detected
387 using an HA rabbit monoclonal antibody and an Alexa-594 secondary antibody. D. Lysates from cells
388 co-expressing protein NbSPN14-V5 and protein BmICE-HA were subjected to Co-IP using an anti-HA
389 antibody, followed by Western blot detection with an anti-V5 antibody. E. Lysates from cells co-
390 expressing protein NbSPN14-V5 and protein BmICE-HA were subjected to Co-IP using an anti-V5
391 antibody, followed by Western blot detection with an anti-HA antibody. Input: samples of co-expressed
392 cells, IgG: negative control.


393

394

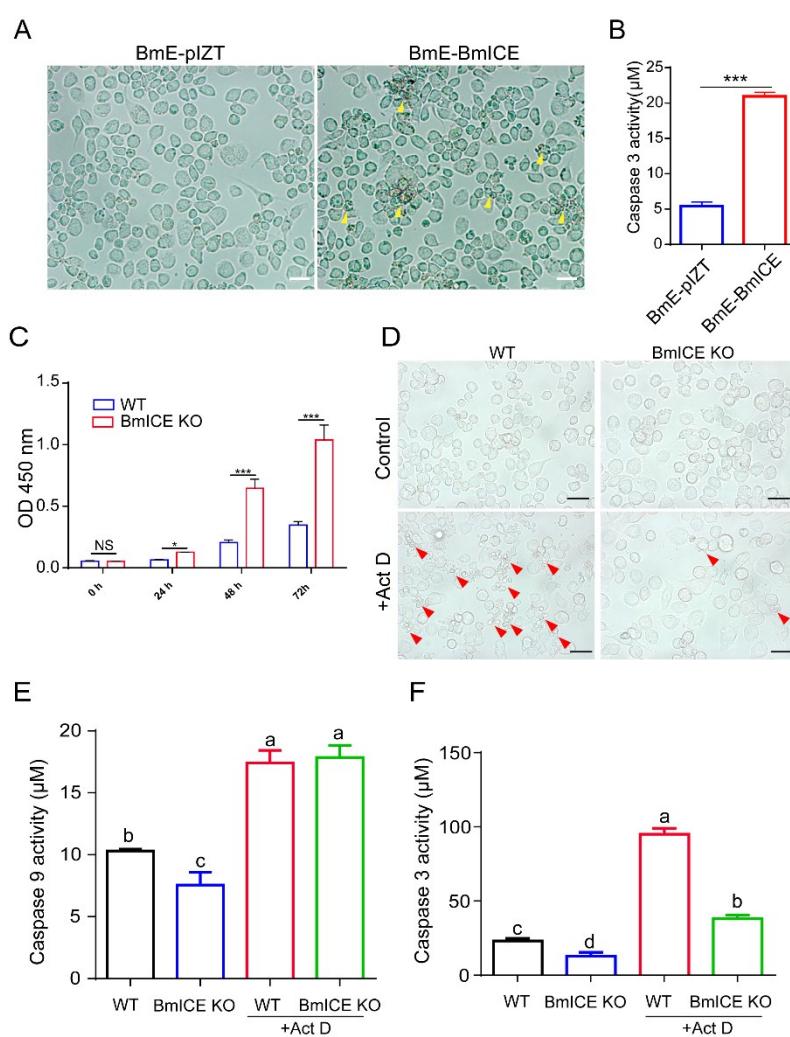
395 **Fig. S5. Analysis of NbSPN14 inhibition of apoptosis pathway in the host cell.** A. NbSPN14
396 transgenic cells inhibit host cell Caspase 3 activity induced by Ultraviolet, Staurosporine (STS), and
397 Actinomycin D (Act D) treatment. Ac-DEVD-CHO is a Caspase 3 specific inhibitor, as positive control.
398 B. Quantitative PCR analysis was used to analyze the transcription of *BmBuffy*, *BmCytc*, *BmAraf1*,
399 *BmDronc*, *BmDredd*, and *BmICE* genes related to the apoptosis pathway in NbSPN14 transgenic cells.;
400 **indicating extremely significant difference ($P < 0.01$). C. Caspase 9 activity analysis of NbSPN14
401 transgenic cells with Act D treated 12h. D. Caspase 3 activity analysis of NbSPN14 transgenic cells
402 treated with Act D for 12 h. Caspase 3 and Caspase 9 activity were assayed from the same sample,
403 respectively. Different and same letters indicate values with statistically significant ($p < 0.05$) and non-
404 significant ($p > 0.05$) differences, respectively.

405

406

407 **Fig. 7. NbSPN14 P1 mutants are unable to enter the nucleus and inhibit apoptosis.** A. NbSPN14
408 RCL sequence and P1 mutant schematic diagram. B. NbSPN14 and its mutant transient expression
409 vector psL1180 [IE-NbSPN14mut-V5-SV40] were transfected into BmE cells for 48 hours to analyze
410 the subcellular localization by immunofluorescence. The primary antibody uses the V5-tagged mouse
411 monoclonal antibody, the secondary antibody was the Goat anti-Mouse IgG with Alexa Fluor® 594.
412 C. Caspase3 activity analysis of NbSPN14 and NbSPN14 mutation transgenic cells with Act D treated
413 12h. Different and same letters indicate values with statistically significant ($p < 0.05$) and non-
414 significant ($p > 0.05$) differences, respectively.

415

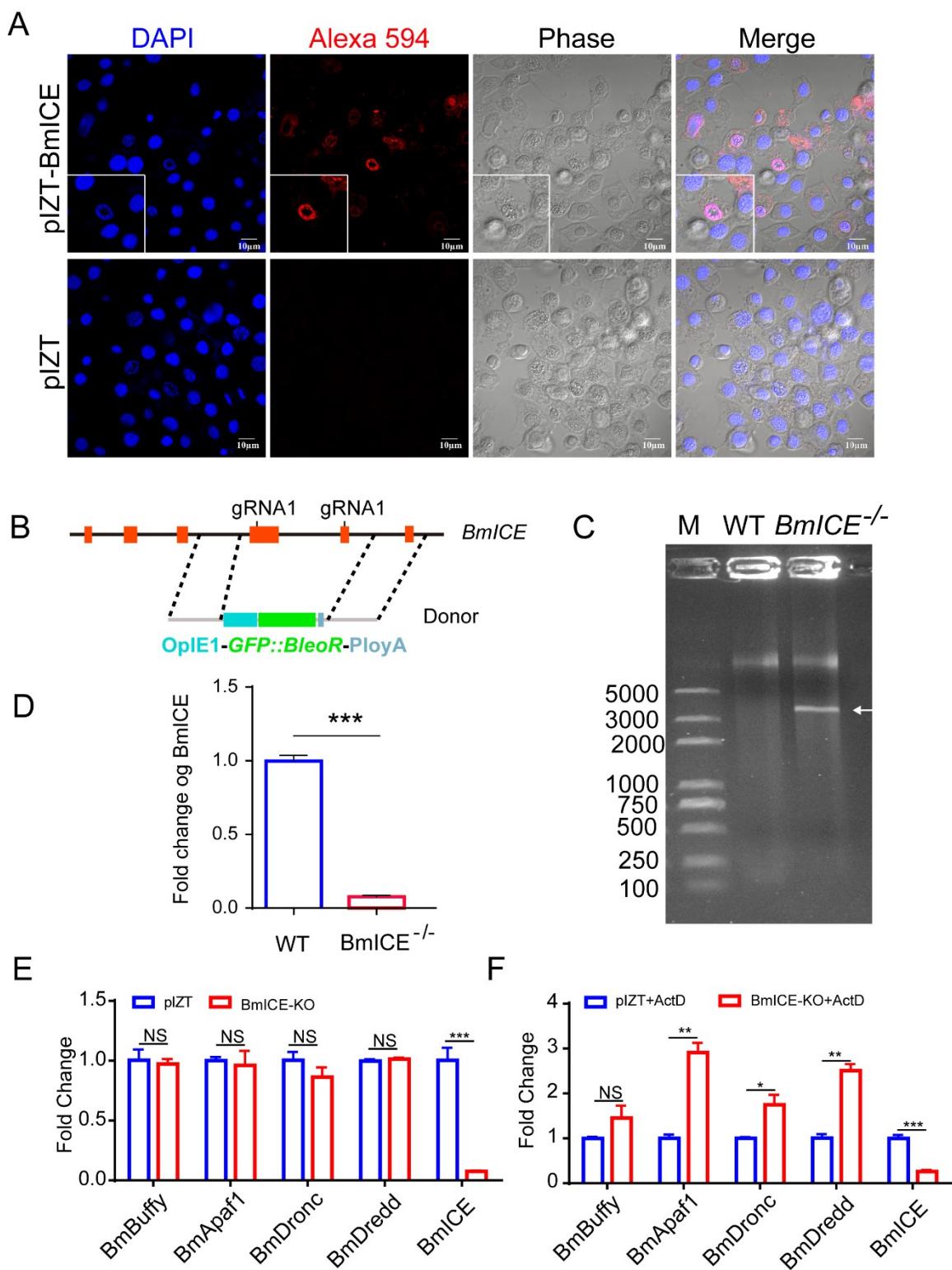

416 **BmICE plays an important role in silkworm apoptosis**

417 To ascertain the role of BmICE in the apoptosis pathway of silkworm
418 cells, we constructed a BmICE-overexpressing cell line and monitored the
419 growth status of the cells. The results indicated that the growth index of
420 BmICE-overexpressing cells was inferior to that of the control group, with an
421 increased number of cells exhibiting apoptotic morphology and a significant
422 rise in Caspase 3 activity. (Fig. 8A-B). Immunofluorescence assay (IFA)
423 analysis revealed that BmICE, when overexpressed in cells, is localized to
424 both the cytoplasm and the nucleus. Notably, during periods when cells
425 display pronounced apoptotic features, including nuclear condensation, there
426 is a marked accumulation of BmICE within the nucleus. (Fig. S6A).

427 To further validate the function of BmICE in cell apoptosis. We used the
428 CRISPR/Cas9 system to knock out the BmICE gene, and used double gRNA
429 guidance to cleave the fourth and fifth exons of the BmICE gene and insert
430 the GFP/Zeocin report/screened gene into its locus by homologous
431 recombination (Fig. S6B). Primers were designed upstream and downstream
432 of the recombination site for PCR validation, and the results showed that
433 corresponding sized bands could be amplified, indicating successful knockout
434 of the BmICE gene (Fig. S6C). BmICE knockout cells exhibited intact cell
435 morphology and robust growth during the culture process. The proliferative
436 activity of these cells was evaluated using the CCK-8 assay. Results showed
437 that at 24h, 48h, and 72h post-cell seeding, the cell viability of BmICE
438 knockout cells was significantly higher than that of the empty vector control
439 group (Figure 8C). Additionally, after a 12-hour treatment with Actinomycin

440 D (Act D), the number of cells displaying apoptotic phenotypes in the BmICE
441 knockout cell population was markedly lower than that in the control group
442 (Figure 8D). Then, the Caspase 3 and Caspase 9 activities in BmICE knockout
443 cells were detected and the results showed that the Caspase 3 activity of the
444 knockout cells was significantly lower than that of the control group, there
445 was no significant difference in Caspase 9 activity between the BmICE
446 knockout cells and the control group (Fig. 8E-F). The results indicate that
447 BmICE plays a crucial role in the apoptosis pathway of silkworm cells.

448



449 **Fig.8 BmICE plays an important role in silkworm apoptosis.** A. Observation of the morphology of
450 BmICE overexpressed cells, white triangles indicate shrinking, foaming cells undergoing apoptosis; B:
451 Caspase 3 activity of BmICE overexpressed cells were significantly higher than that of control empty

452 vector cells. D. Observation of apoptotic morphology of BmICE knockout cells after Act D treatment
453 12h, the red triangle shows apoptotic cells. The apoptosis of BmICE knockout cells was significantly
454 less than that of the control group. E. Analysis of Caspase 9 activity of BmICE knockout cells after Act
455 D treatment showed no significant difference compared with the control group. F: Caspase3 activity of
456 BmICE knockout cells after ActD treatment was significantly lower than that of control cells.

457

458

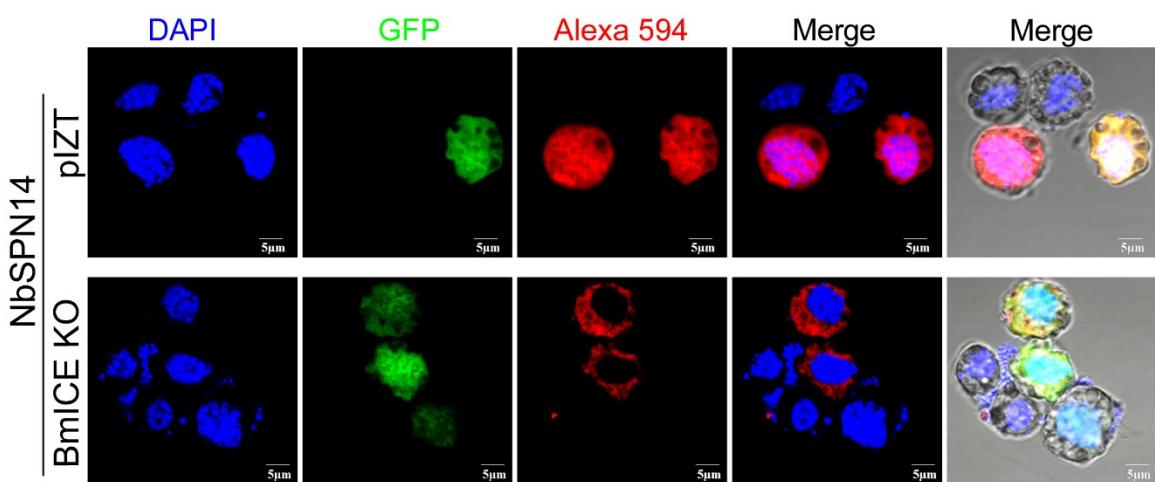
459

460

461

462 **Fig. S6. BmICE plays an important role in silkworm apoptosis.** A. The PIZT-[IE1-BmICE-HA-sv40]
463 expression vector was constructed and transfected into BmE cells. BmICE-HA is able to localize to the
464 host cytoplasm and nucleus. Subcellular localization analysis of BmICE-HA recombinant proteins using
465 HA-tagged rabbit antibody. The Alexa594-conjugated goat anti-rabbit antibody is the secondary
466 antibody. B. Schematic diagram of the construction of BmICE knockout cells with two gRNA and
467 homologous replacement fragment [OpIE1-GFP::BleoR-PloyA]; C. PCR verifies the integration of the
468 gene fragment of the homologous donor [OpIE1-GFP::BleoR-PloyA] of the "GFP :: BleoR " fragment
469 into the genome. D. RT-qPCR analyzed the expression of *BmICE* in knockout cells. E. In *BmICE*
470 knockout cells, RT-qPCR analysis of the *BmBuffy/BmApafl/BmDronc/BmDredd/BmICE* gene
471 expression in the apoptosis pathway showed that there was no significant difference between the
472 experimental and the control group, only the expression of BmICE was significantly down-regulated. F.
473 After the *BmICE* knockout cells were treated with Act D for 12 hours, the apoptosis-related genes
474 *BmBuffy/BmApafl/BmDronc/BmDredd/BmICE* genes expression was analyzed by quantitative PCR.
475 The results showed that the apoptosis pathway was activated, but BmICE was still at a low
476 transcriptional level.

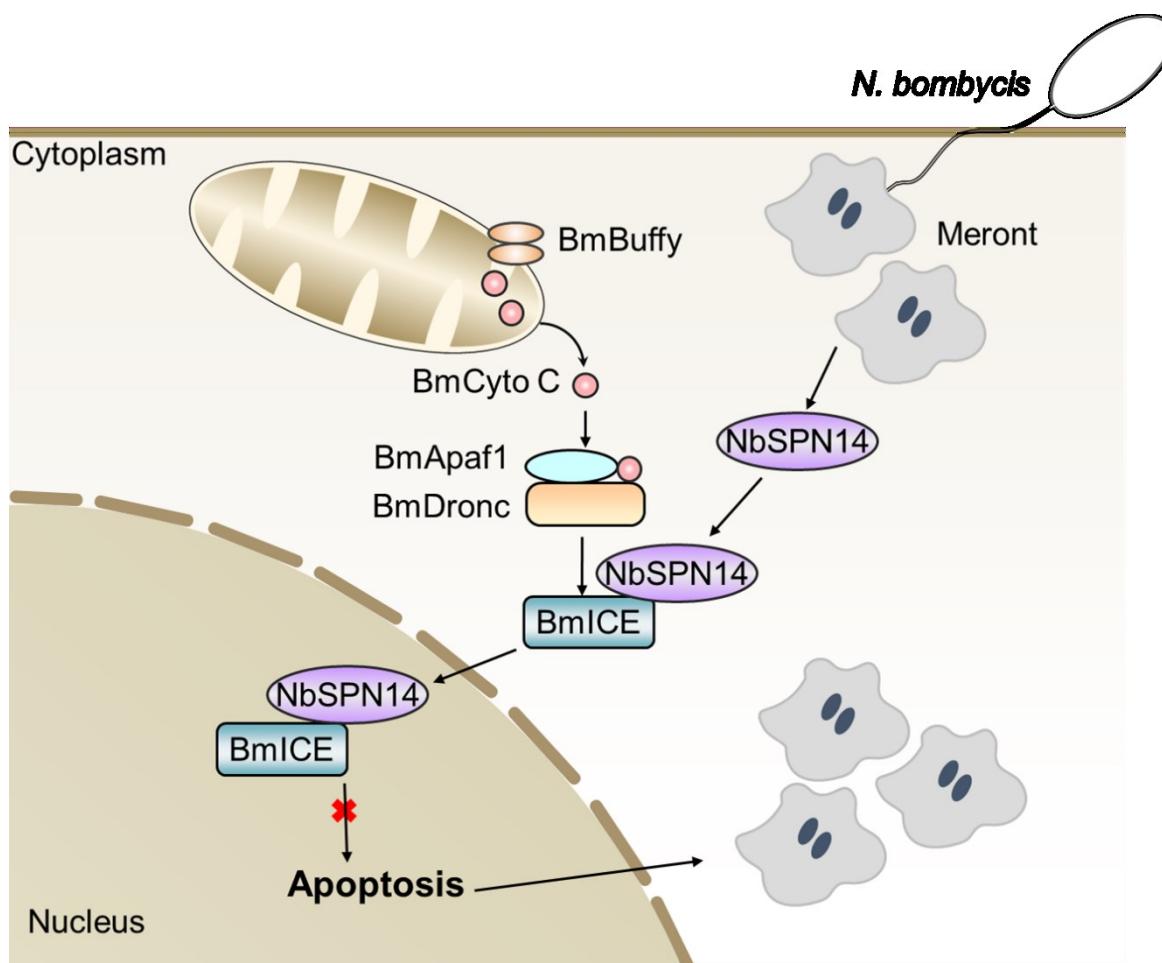
477


478 **NbSPN14 entering the host cell nucleus depends on BmICE**

479 Both in *N. bombycis*-infected cells and overexpressed NbSPN14 in cells,
480 it was found that NbSPN14 localized in the host cell cytoplasm and
481 translocated into the host cell nucleus. However, subcellular localization
482 prediction analysis showed that NbSPN14 has no nuclear localization motif,
483 while BmICE can enter the nucleus[45]. We assume that NbSPN14 enters the
484 nucleus after interacting with the target protein BmICE in the cytoplasm. To
485 confirm our hypothesis, the transient expression vector of NbSPN14 was
486 transfected into BmICE knockout cells, and the localization of NbSPN14 in
487 BmICE knockout cells was analyzed by IFA (Fig.9). The results showed that
488 the localization signal of NbSPN14 was distributed only in the cytoplasm, but
489 not in nucleus in BmICE-knockout cells, while NbSPN14 could be localized
490 throughout the entire cell including the nucleus in control cells. The results
491 indicated that NbSPN14 relied on the interaction with BmICE to enter the
492 nucleus.

493

494


495

496

497 **Fig. 9 NbSPN14 entering the host cell nucleus depends on BmICE.** A. Localization of transient
498 expression of NbSPN14 in *BmICE* knockout cells. The recombinant NbSPN14 vector was transfected
499 into *BmICE* knockout cells, and the location of recombinant protein NbSPN14-V5 in the cells was
500 analyzed by V5 mouse monoclonal antibody with Alexa-594 conjugated secondary antibody. The results
501 showed that NbSPN14 was not located in the host nucleus after *BmICE* knockout.

502

503 **Fig. 10. The schematic diagram of *N. bombycis* NbSPN14 inhibiting host cell apoptosis.** *N.*
504 *bombycis* infects the host cell through the polar tube injection and then enters become the meront that
505 is the fission and proliferation stage. NbSPN14 is secreted into the cytoplasm of host cells by *N.*
506 *bombycis* meront. Then, NbSPN14 binds to activated BmICE in the cytoplasm and subsequently
507 translocated into the nucleus. NbSPN14 inhibits the BmICE activity, blocks apoptosis, and increases the
508 *N. bombycis* proliferation.

509

510

511 **Discussion**

512 As a group of intracellular eukaryotic parasites, it was reported that
513 microsporidian infection could inhibit host cell apoptosis [36-41]. However,
514 it was unclear which effector was secreted into host cells to inhibit apoptosis.
515 In this study, we demonstrated that *N. bombycis* secretes NbSPN14 into the

516 host cell and inhibits the activity of the key apoptotic effector Caspase enzyme
517 BmICE, thereby inhibiting host cell apoptosis. NbSPN14 binds to the
518 activated BmICE in the cytoplasm and inhibits the caspase activity of BmICE;
519 then the BmICE-Nbserpin14 complex enters the host cell nucleus. However,
520 BmICE has been deactivated and lost its effector function--hydrolyzing cell
521 components function in subsequent cell apoptosis, which thereby facilitates
522 pathogen proliferation in the infected host cell (Fig.10).

523 Phylogeny analysis indicates that *N. bombycis* serpin genes are clustered
524 with the poxvirus serpin genes [33]. The P1 site amino acid residue of the
525 NbSPN14 reactive center loop was Aspartic acid, which is consistent with that
526 of the Cowpox-Virus serpin, CrmA. It has been reported that CrmA inhibits
527 apoptosis in a variety of cells [35]. Moreover, CrmA also inhibits the activity
528 of Caspase protease, interleukin-1 beta-converting enzyme (ICE) in
529 *Caenorhabditis elegans* [46]. Thus, we speculated that the target protein of
530 NbSPN14 was the *B. mori* homolog BmICE. Our protein-protein interaction
531 results confirmed that the target protein inhibited by NbSPN14 was BmICE.
532 Although *N. bombycis* and poxvirus are far apart in the phylogenetic tree of
533 species, the molecular mechanism that *N. bombycis* secreting NbSPN14 to
534 inhibit host cell apoptosis is similar to that of serpin in poxvirus [47].

535 Microsporidia, including *E. cuniculi*, *Vittaforma corneae*, *Nosema apis*
536 and *Nosema ceranae* infection can inhibit host cell apoptosis [16, 18, 48].
537 However, the molecular mechanism(s) of inhibition of host cell apoptosis may
538 not be identical in these microsporidia. The previous research results showed
539 that microsporidia infection could inhibit host cell apoptosis through the
540 typical Caspase pathway. The expression patterns of apoptosis-related genes
541 were distinct after *E. cuniculi* and *V. corneae* infection of human macrophages
542 THP-1, respectively; however, the Cysteine-aspartate protease (Caspase 3)
543 activity was inhibited after THP-1 macrophages infected by both *E. cuniculi*
544 and *V. corneae* [48]. Similarly, *E. cuniculi* infection prevented Caspase 3
545 cleavage in Vero cells [18]. Immunocytochemistry results demonstrated the
546 depletion of Caspase 3 in the ventricular epithelial cells of honeybees infected
547 with *N. ceranae* [20]. In this study, we confirmed that the secretion of
548 NbSPN14 by *N. bombycis* inhibits caspase activity and inhibits host cell
549 apoptosis. However, in the microsporidia, now only the *Nosema* genus has
550 serpin family genes annotated, other microsporidia without serpin may inhibit

551 host cell apoptosis through other effectors or different molecular mechanisms.
552 Apoptosis Inhibitory Proteins (IAPs) are a highly conserved family of anti-
553 apoptotic factors, which act directly on the caspase family and inhibit their
554 activity [49]. IAP genes have been identified in a variety of microsporidia [50],
555 so further study should focus on their functions involved in the regulation of
556 host cell apoptosis. In addition, whether Serpins of other species of the
557 *Nosema* genus are involved in inhibiting host cell apoptosis needs to be
558 verified.

559 NbSPN14 is dependent on BmICE for entry into the host cell nucleus.
560 NbSPN14 has a predicted secreted signal peptide but no nuclear localization
561 signal (NLS). In the early stages of *N. bombycis* infection, NbSPN14 is
562 secreted into the host cytoplasm, and then translocated to the host nucleus as
563 the infection progresses (Fig 2). In the current study we have shown that
564 NbSPN14 localizes to the host cell cytoplasm and interacts with BmICE. The
565 interaction leads to the loss of caspase activity and the inhibition of host cell
566 apoptosis. A previous study has shown that the Caspase 3 homolog BmICE
567 acts as an effector factor in regulating apoptosis [22, 51]. Caspase 3 is
568 predominantly localized in the cytoplasm in the form of pro-enzyme [45].
569 During the process of apoptosis, activated Caspase 3 is translocated into the
570 nucleus to cleave its nuclear substrates, resulting in characteristic apoptotic
571 nuclear changes such as DNA fragmentation, chromatin agglutination, and
572 nuclear disruption [52, 53]. We demonstrated that NbSPN14 binds to BmICE
573 in the host cytoplasm and then was translocated to the host cell nucleus. We
574 expressed NbSPN14 in BmICE knockout cells and found that NbSPN14 could
575 not be translocated into the host cell nucleus, confirming that NbSPN14
576 inhibits BmICE activity in the cytoplasm and then be translocated into the
577 host cell nucleus along with BmICE.

578 NbSPN14 inhibits host cell apoptosis, which increases pathogen
579 proliferation. Intracellular infection depends on the survival of host cells for
580 pathogen proliferation [54]. Inhibition of host cell apoptosis by pathogenic
581 secreted effectors is a common strategy for the survival of intracellular
582 pathogens [55]. Herein, we demonstrated that NbSPN14 is a key effector
583 molecule in host cell apoptosis inhibition, which is essential for robust *N.*
584 *bombycis* proliferation. It raises the possibility that therapeutic compounds
585 targeting this pathway or genetic manipulation of the host could protect

586 silkworms from infection with *N. bombycis*. Previous studies have shown that
587 the transgenic expression of monoclonal antibody single-chain variable
588 fragments (scFvs) targeting *N. bombycis* protein in silkworm or host cell lines
589 reduced *N. bombycis* infection and proliferation [56-58]. As host cell
590 apoptosis promotes the clearing of infected cells and reduces the load of *N.*
591 *bombycis*, we can express monoclonal antibody scFv against NbSPN14 in
592 silkworm to block the *N. bombycis* serpin inhibiting host cell apoptosis; as a
593 result, the resistance of the host silkworm to *N. bombycis* will enhance. In
594 addition, serpin usually contains a conformation relaxed reactive center loop
595 (RCL) that is cut between P1 and P1' residues by a target protease [59, 60].
596 The RCL P1 site amino acid residues are critical for serpin function and
597 specificity [61]. After the reaction between the protease and serpin, the
598 protease is trapped in a covalent complex with serpin[62]. Consequently the
599 RCL is rapidly incorporated as a new central β -strand into the serpin A β -
600 sheet[63]. It has been reported that specific RCL-derived peptides could
601 mimic the RCL insertion strand within serpin domain 4A [64-67], and cause
602 the serpin function loss [68]. Thus, it is feasible to devise peptides derived
603 from NbSPN14 RCL that can hinder the function of NbSPN14, thereby
604 preventing the inhibition of host cell apoptosis, ultimately aiming to bolster
605 the silkworm's resistance against Pébrine disease.

606

607 **Materials and methods**

608 **Silkworm rearing and cell culture**

609 The silkworm strain Dazao was obtained from the Gene Resource Library
610 of Domesticated Silkworm (Southwest University, Chongqing, China).
611 Silkworms were reared with fresh mulberry leaves at a temperature of 25°C
612 and relative humidity of 70%. Silkworm cell lines were maintained at 28 °C
613 in Grace's medium (Thermo Fisher Scientific, United States) supplemented
614 with 10% (V/V) fetal bovine serum (FBS) (Thermo Fisher Scientific, United
615 States) and 1% (V/V) penicillin-streptomycin[38].

616 ***N. bombycis* infections *in vitro* and *in vivo***

617 Mature *N. bombycis* spores were isolated from infected silkworm pupae and
618 purified by Percoll density gradient centrifugation (21,000g, 40 min) [39].
619 Purified *N. bombycis* mature spores were treated with 0.1 M KOH 3 minutes

620 and then the spores were incubated with BmE cells at 10:1 ratio in Grace's
621 medium at 28°C. The medium was replaced after 2 hours, and the cells were
622 cultured at 28 °C in Grace's medium supplemented with 10% (V/V) fetal
623 bovine serum (FBS) and 1% (V/V) penicillin-streptomycin. Silkworms were
624 raised to the third day of the fourth instar, and then were fed on mulberry
625 leaves (1 cm²) spread with 105 mature spores.

626 **Tissue paraffin section**

627 For histological analysis of midgut cell apoptosis (infected and uninfected),
628 the midgut of the fourth abdomen was isolated and fixed with 4%
629 paraformaldehyde for 24h at room temperature, then dehydrated through the
630 series of ethanol, and embedded in paraffin. Then this material was sectioned
631 into 5-μm slices and placed on slides. After deparaffinisation and hydration,
632 sections of the slides were stained with hoechst33342 and TUNEL to analyze
633 the apoptosis of midgut cells.

634 **Terminal uridine nick-end labeling (TUNEL) assay**

635 Apoptosis in Silkworm midgut and cultured BmE cells was detected using a
636 terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end
637 labeling (TUNEL) assay (Beyotime, China).

638 For this assay, the midguts of infected silkworms were fixed in 4%
639 paraformaldehyde, embedded in paraffin for 24h, sectioned into 5-μm slices,
640 and placed on slides. After deparaffinisation and hydration, the slides were
641 stained with TUNEL by incubation with TdT Reaction Buffer at 37 °C for 10
642 min, followed by the incubation with a TdT reaction mixture at 37 °C for 1 h.
643 The slides were then incubated with a TUNEL reaction cocktail at 37 °C for
644 30 min, counterstained with Hoechst 33342. Images were acquired using a
645 confocal microscope (OLYMPUS).

646 For this assay, BmE cells were cultured in twelve well plates and infected with
647 1×10⁶ spores for 48h. Cells were fixed with 4% paraformaldehyde for 15 min
648 then incubated with PBS containing 0.3% Triton X-100 incubated for 5
649 minutes at room temperature. The cells were then stained with TUNEL and
650 IFA. Images were acquired using a confocal microscope (OLYMPUS).

651 **Indirect Immunofluorescence Assay (IFA)**

652 In order to characterize the location of NbSPN14 in the process of infection.

653 BmE cells infected for varying lengths of time with *N. bombycis* were fixed
654 with 4% paraformaldehyde for 10 min at room temperature, washed three
655 times with 1xPBS, and then permeabilized using 0.1% Triton X-100 for 15
656 min. The cells were then blocked in 1xPBST containing 5% BSA and 10%
657 goat serum for 1 h at room temperature. Next, the cells were incubated with
658 mouse and rabbit polyclonal antibodies against NbSPN14 (anti-NbSPN14)
659 and *N. bombycis* (anti-*N. b* total protein) diluted 1:100 in a blocking solution
660 for 2 h at room temperature. The cells were then washed three times with
661 1xPBST, and incubated for 1 h with a 1:1000 dilution of Alexa Fluor 488
662 conjugate Goat anti-Mouse IgG (Invitrogen A32723, Rockford, Illinois, USA)
663 and Alexa Fluor 594 conjugate Goat anti- Mouse IgG (Invitrogen A32742,
664 Rockford, Illinois, USA) in a dark moist chamber at room temperature. The
665 cell nucleus was stained with DAPI (1:1000 dilution, Sigma-Aldrich 28718-
666 90-3, St. Louis, MO, USA) at room temperature for 15 min. The samples were
667 finally observed and photographed using an Olympus FV1200 laser scanning
668 confocal microscope.

669 **Protein structure prediction**

670 The protein structure of NbSPN14 was modeled using AlphaFold2 online
671 (<https://alphafold.com/>) employing the default settings. [40] (no structural
672 template was used). All five AlphaFold2 models were then tested. The
673 structures of the five AlphaFold2 models were consistent and the first model
674 was selected for the predicted structure of NbSPN14.

675 **Western blot**

676 Western blotting was used to detect the expression of NbSPN14 in infected
677 cells, the total protein of BmE cells infected with *N. bombycis* was extracted
678 using 300 μ l RIAP strong lysis buffer containing PMSF ice for 15 min, and
679 then centrifuged at 12,000 g at 4°C for 15 min. The supernatant was then used
680 for 10% SDS-PAGE and then transferred to a PVDF membrane (Roche). The
681 PVDF membrane was then blocked with 5% (w/v) skim milk (37 °C, 1h),
682 followed by incubation with the antibody for 1.5 h at room temperature.
683 Membranes were then washed 3 times (5 min each) with TBST buffer (10 mM
684 Tris, 150 mM NaCl, 0.1% Tween-20), incubated with goat anti-mouse/rabbit
685 IgG peroxidase antibody for 50 min at room temperature, and washed 3 times
686 with TBST buffer. The antibody binding was detected using Clarity™ Western

687 ECL substrate (Bio-Rad). Western blot experiments, such as detecting protein
688 expression in transgenic cells and verifying interactions used the same
689 methods as described above.

690 **Construction of NbSPN14 transgenic cell lines**

691 The amino acid sequence of NbSPN14 was submitted to SignalP 6.0 Server
692 (<http://www.cbs.dtu.dk/services/SignalP/>) and NCBI
693 (<https://www.ncbi.nlm.nih.gov/>) for the signal peptide and domain predictions.
694 The *NbSPN14* of *N. bombycis* (GenBank Accession No. FJ705061.1) was
695 amplified from genomic DNA (gDNA) by PCR. The NbSPN14 signal peptide
696 sequence was removed, and the forward primer containing a BamH I
697 restriction site and the reverse primer 5 containing a Not I restriction site were
698 used. The amplification reaction consisted of 30 cycles of 95 °C for 15 s, 55 °C
699 for 30 s, and 72 °C for 1 min. The PCR products were recovered, integrated
700 into the pSL1180[IE2--SV40] vector, then the [IE2-NbSPN14-SV40]
701 sequence fragment was amplified by primer pairs ‘pBac-F - pBac-R’ and
702 ligated into the PiggyBac vector [A3-EGFP-SV40+A3-Neo-SV40-]. The
703 recombinant vector PiggyBac [A3-EGFP-SV40+A3-Neo-SV40+IE2-
704 NbSPN14-SV40] was extracted from the DH5 α cells with the TIANpure Mini
705 Plasmid Kit (TIANGEN, China). BmE cells were transfected with 2 μ g of this
706 recombinant plasmid and A3 helper plasmid using X-tremeGENE HP DNA
707 Transfection Reagent (Roche, Switzerland), and the culture medium was
708 changed after 6 h. Three days later, the cells were cultured in Grace insect
709 complete medium containing G418 (200 μ g/mL) (Merck, Germany), and the
710 culture medium was changed once every 3 d. Screening continued for two
711 months until the proportion of cells with fluorescent green exceeded 98% [41].

712 **CCK8 assay**

713 The cell proliferation of BmE cells was tested using cell counting kit-8 (CCK8)
714 (MCE, HY-K0301). According to the instructions of manufacturer, BmE cells
715 in the logarithmic growth phase were seeded into the 96-well plates (5000
716 cells/well). Cells were incubated at 280c for 0, 24, 48, 72, or 96 h and 10 μ L
717 of CCK8 reagent was added to each well After 3 h of incubation, the
718 absorbance at 450 nm was measured to determine the cell viability using a
719 multifunctional enzyme-labeling instrument. All experiments were performed
720 in triplicate.

721 Caspase 3/9 activity assay

722 NbSPN14 Transgenic cells were seeded into a 6-well culture plate and
723 incubated in Grace supplemented with 10% FBS. After being treated as
724 described above, protein extracts were prepared following the manufacturer's
725 instructions using a Bradford Protein Assay kit (Beyotime Institute of
726 Biotechnology, Nantong, Jiangsu, China). Caspase 3 activity was measured
727 using a Caspase 3 Activity Assay kit (Beyotime Institute of Biotechnology,
728 Jiangsu, China) in which cell extracts were mixed with Ac-DEVD-pNA
729 substrate for 2 h at 37 °C in 96-well plates prior to colorimetric measurement
730 of *p*-nitroanilide product at 405 nm. The Caspase 9 activity assay was the same
731 as the Caspase 3 activity assay, except that Ac-LEHD-pNA is used as the
732 substrate.

733 RNA interference

734 The sequence of *NbSPN14* was submitted to BLOCK-iT™ RNAi Designer
735 (<http://rnaidesigner.thermofisher.com/rnaiexpress/design.do>). Two fragments
736 that contain five potential interferential dsRNA fragments were amplified by
737 the primers NbSPN14-1T7 and NbSPN14-2T7 (Table S1). A DsRNA-EGFP
738 fragment was used as the mock group[42]. The amplified product was used as
739 a template to synthesize dsRNA using a RiboMAX Large Scale System-T7
740 Kit (Promega, Madison, WI, USA). The dsRNA was then isolated and purified,
741 stored at -80 °C. To evaluate the effect of RNAi, the ds-RNA and X-
742 tremeGENE HP DNA Transfection Reagent were mixed at a ratio of 1:1 (m/v)
743 and added dropwise to the BmE cells, which were then infected with *N.*
744 *bombycis*. Host cell apoptosis was analyzed at 1dpi, 3dpi and 5dpi.

745 To block the expression of NbSPN14 in silkworms, 10 µL (3 µg) dsRNA was
746 injected into the silkworm hemocoel of the fifth instar; EGFP gene dsRNA
747 was injected into the hemocoel of the control insects. These injections were
748 performed immediately after the silkworms were orally inoculated with *N.*
749 *bombycis* spores. A second injection of the same dose was administered after
750 24 hours. To confirm the interference efficiency, NbSPN14 transcript levels
751 were determined by qRT-PCR.

752 Yeast two-hybrid analysis

753 A yeast two-hybrid assay was used to investigate the interaction of NbSPN14
754 with BmICE. The detailed procedure was described previously (Bouzahzah et

755 al., 2010). NbSPN14 was cloned into a pGADT7 plasmid, and PPAE was
756 cloned into a pGBKT7 plasmid (Clontech, Takara Bio USA). The plasmids
757 were used to transform competent yeast cells using YeastMaker Yeast
758 Transformation System 2 (Takara, Mountain View, CA94043, USA), and the
759 binding was validated in synthetic dropout-Leu-Trp-His-Ade medium
760 supplemented with X- α -gal. The fusion strain of pGBKT7-53 with pGADT7-
761 T was used as the positive control; the fusion strain of pGBKT7-lam with
762 pGADT7-T was used as the negative control.

763 **Co-Immunoprecipitation (Co-IP)**

764 Protein A + G agarose beads (Bio-Rad) were bound to V5 or HA antibody for
765 30 min, washed 3 times with 0.1% PBST, incubated with protein that had been
766 extracted from NbSPN14-V5 and BmICE-HA recombinant protein co-
767 expressed cells at 4 °C 4h, and then washed 3 times. The beads were then
768 added (60 μ L) to 1 \times SDS PAGE loading buffer, the samples were boiled (10
769 min), and then used for western blotting.

770 **Construction BmICE knockout cell lines**

771 sgRNA was designed based on the *BmICE* gene sequence and the
772 CRISPRdirect online website (<http://crispr.dbcls.jp/>). Two sgRNA were
773 designed in the fourth and fifth exon regions of the *BmICE* gene. Design
774 primers based on the *BmICE* gene target sequence for expressing the sgRNA
775 sequence fragment, then anneal the forward and reverse primers to form
776 double-stranded DNA with sticky ends, which is connected to the sgRNA
777 transcription vector pSL1180-U6-sgRNA containing the U6 promoter. 5' end
778 of the first gRNA target of the BmICE gene, and 3' end downstream of the
779 second gRNA target, 1000~1500bp were selected respectively as the
780 homologous arm sequence of the donor. The 5' donor fragment, [oPIE1-
781 *GFP*::*BleoR*-Sv40] fluorescence reporter resistance gene fragment, and the 3'
782 donor fragment were ligated into a pESI vector using a Hieff Clone® Plus
783 Multi One Step Cloning Kit (Yisheng, 10912ES10, China). BmE cells were
784 inoculated into a 6-well cell culture plate. Then, the pSL1180-U6-sgRNA
785 vector and pESI donor vector were co-transfected into these BmE cells, and
786 72 hours after transfection, the screening medium containing 200 μ g / mL
787 Zeocin was replaced. The nutrient medium was replaced every 2 days until
788 the green fluorescent cells ratio reached 98%.

789 RNA extraction and qRT-PCR

790 The infected BmE cells and NbSPN14 transgenic cells' total RNA was isolated
791 using TRIzol reagent (Invitrogen), and the mRNA in this preparation was then
792 reverse transcribed into cDNA using the Hifair® AdvanceFast One-step RT-
793 gDNA Digestion SuperMix for qPCR (Yeasen) according to the
794 manufacturer's instructions. qRT-PCR was then performed using the Hieff
795 qPCR SYBR Green Master Mix (Yeasen), and *Nb-β tubulin* and *BmRPL3*
796 were used as the internal control. Three biological replicates were performed
797 for each experiment. All PCR primers used are listed in supplemental Table
798 S1.

799 Statistics

800 The difference between control and experimental assays was evaluated using
801 a two-tailed Student's T test employing GraphPad Prism 5 software.
802 Statistical differences between two groups of $p < 0.01$ were selected to
803 indicate highly significant differences, while $p < 0.05$ represented significant
804 differences, and $p \geq 0.05$ indicated the lack of significant difference.

805

806 Acknowledgments

807 We are very grateful to Professor Louis M. Weiss from the Department of
808 Pathology, Albert Einstein College of Medicine, for his guidance and
809 assistance in writing the manuscript of the article.

810 Funding

811 This study was funded by the National Natural Science Foundation of China
812 (Grant No. 32272942, 31470250), The Chongqing Modern Agricultural
813 Industry Technology System (COMAITS202311), Chongqing elite,
814 innovation and entrepreneurship demonstration team (CQYC202203091213),
815 Special Funding for Chongqing Postdoctoral Research Project
816 (2023CQBSHTB3030) and Fundamental Research Funds for the Central
817 Universities (SWU-XDJH202322).

818

819 References

- 820 1. Keeling PJ, Fast NM. Microsporidia: Biology and evolution of highly reduced intracellular parasites.
821 Annual Review Of Microbiology. 2002;56:93-116. doi: 10.1146/annurev.micro.56.012302.160854.
822 PubMed PMID: WOS:000179054200005.

823 2. Franzen C. Microsporidia: A Review of 150 Years of Research. *The Open Parasitology Journal*.
824 2008;2:1-34.

825 3. Nageli KW. *Über die neue Krankheit der Seidenraupe und verwandte Organismen*. 1857.

826 4. L P. *Études sur la maladie des vers à soie*1870.

827 5. Han B, Pan GQ, Weiss LM. Microsporidiosis in Humans. *Clinical microbiology reviews*.
828 2021;34(4):e0001020. doi: ARTN e00010-20
829 10.1128/CMR.00010-20. PubMed PMID: WOS:000732481400015.

830 6. Stentiford, G. D, Becnel, J. J, Weiss, L. M, et al. Microsporidia – Emergent Pathogens in the Global
831 Food Chain. *Trends in parasitology*. 2016.

832 7. Szumowski SC, Troemel ER. Microsporidia-host interactions. *PLoS Pathog*. 2015;26:10-6. Epub
833 2016/11/18
834 2015/04/08. doi: 10.1371/journal.ppat.1005870
835 10.1016/j.mib.2015.03.006. PubMed PMID: 25847674; PubMed Central PMCID: PMCPmc5113988
836 Pmc4577307.

837 8. Hadian K, Stockwell BR. The therapeutic potential of targeting regulated non-apoptotic cell death.
838 2023;22(9):723-42. doi: 10.1038/s41573-023-00749-8. PubMed PMID: 37550363.

839 9. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular
840 definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death
841 2012. *Cell Death & Differentiation*. 2012;19(1):107-20.

842 10. Dockrell DH. Apoptotic cell death in the pathogenesis of infectious diseases. *The Journal of
843 infection*. 2001;42(4):227-34. Epub 2001/09/08. doi: 10.1053/jinf.2001.0836. PubMed PMID: 11545564.

844 11. Tummers B, Green DR. The evolution of regulated cell death pathways in animals and their
845 evasion by pathogens. *Physiological reviews*. 2022;102(1):411-54.

846 12. Lüder CG, Gross U, Lopes MF. Intracellular protozoan parasites and apoptosis: diverse strategies
847 to modulate parasite-host interactions. *Trends Parasitol*. 2001;17(10):480-6. Epub 2001/10/06. doi:
848 10.1016/s1471-4922(01)02016-5. PubMed PMID: 11587962.

849 13. Nash PB, Purner MB, Leon RP, Clarke P, Duke RC, Curiel TJ. *Toxoplasma gondii*-infected cells are
850 resistant to multiple inducers of apoptosis. *Journal of immunology* (Baltimore, Md : 1950).
851 1998;160(4):1824-30. Epub 1998/02/20. PubMed PMID: 9469443.

852 14. Sokolova YY, Bowers LC, Alvarez X, Didier ES. *Encephalitozoon cuniculi* and *Vittaforma corneae*
853 (Phylum Microsporidia) inhibit staurosporine-induced apoptosis in human THP-1 macrophages in
854 vitro. *Parasitology*. 2019;146(5):569-79. Epub 2018/11/30. doi: 10.1017/s0031182018001968. PubMed
855 PMID: 30486909; PubMed Central PMCID: PMCPMC6435431.

856 15. Kurze C, Le Conte Y, Kryger P, Lewkowski O, Müller T, Moritz RFA. Infection dynamics of *Nosema*
857 *ceranae* in honey bee midgut and host cell apoptosis. *Journal of invertebrate pathology*. 2018;154:1-
858 4. Epub 2018/03/20. doi: 10.1016/j.jip.2018.03.008. PubMed PMID: 29550404.

859 16. Martín-Hernández R, Higes M, Sagastume S, Juarranz Á, Dias-Almeida J, Budge GE, et al.
860 Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis. *PLoS one*.
861 2017;12(2):e0170183. Epub 2017/02/06. doi: 10.1371/journal.pone.0170183. PubMed PMID:
862 28152065; PubMed Central PMCID: PMCPMC5289437 manuscript have the following competing
863 interests: RMH is employed by the Fundación Parque Científico y Tecnológico de Albacete. GEB and
864 NB are employed by the commercial company FERA. This does not alter our adherence to PLOS ONE
865 policies on sharing data and materials.

866 17. He X, Fu Z, Li M, Liu H, Cai S, Man N, et al. *Nosema bombycis* (Microsporidia) suppresses
867 apoptosis in BmN cells (*Bombyx mori*). *Acta biochimica et biophysica Sinica*. 2015;47(9):696-702. Epub
868 2015/07/19. doi: 10.1093/abbs/gmv062. PubMed PMID: 26188202.

869 18. del Aguila C, Izquierdo F, Granja AG, Hurtado C, Fenoy S, Fresno M, et al. *Encephalitozoon*

870 microsporidia modulates p53-mediated apoptosis in infected cells. International journal for
871 parasitology. 2006;36(8):869-76. Epub 2006/06/07. doi: 10.1016/j.ijpara.2006.04.002. PubMed PMID:
872 16753166.

873 19. Scanlon M, Leitch GJ, Shaw AP, Moura H, Visvesvara GS. Susceptibility to apoptosis is reduced in
874 the Microsporidia-infected host cell. The Journal of eukaryotic microbiology. 1999;46(5):34s-5s. Epub
875 1999/10/16. PubMed PMID: 10519237.

876 20. Higes M, Juarranz Á, Dias-Almeida J, Lucena S, Botías C, Meana A, et al. Apoptosis in the
877 pathogenesis of Nosema ceranae (Microsporidia: Nosematidae) in honey bees (*Apis mellifera*).
878 Environmental microbiology reports. 2013;5(4):530-6. Epub 2013/07/19. doi: 10.1111/1758-
879 2229.12059. PubMed PMID: 23864567.

880 21. Kurze C, Le Conte Y, Dussaubat C, Erler S, Kryger P, Lewkowski O, et al. Nosema Tolerant
881 Honeybees (*Apis mellifera*) Escape Parasitic Manipulation of Apoptosis. PLoS one.
882 2015;10(10):e0140174. Epub 2015/10/09. doi: 10.1371/journal.pone.0140174. PubMed PMID:
883 26445372; PubMed Central PMCID: PMCPmc4596554.

884 22. Zhang JY, Pan MH, Sun ZY, Huang SJ, Yu ZS, Liu D, et al. The genomic underpinnings of apoptosis
885 in the silkworm, *Bombyx mori*. BMC genomics. 2010;11:611. Epub 2010/11/03. doi: 10.1186/1471-
886 2164-11-611. PubMed PMID: 21040523; PubMed Central PMCID: PMCPMC3091752.

887 23. Pan C, Hu YF, Yi HS, Song J, Wang L, Pan MH, et al. Role of Bmbuffy in hydroxycamptothecine-
888 induced apoptosis in BmN-SWU1 cells of the silkworm, *Bombyx mori*. Biochemical and biophysical
889 research communications. 2014;447(2):237-43. Epub 2014/04/03. doi: 10.1016/j.bbrc.2014.03.093.
890 PubMed PMID: 24690173.

891 24. Yamada H, Kitaguchi K, Hamajima R, Kobayashi M, Ikeda M. Novel apoptosis suppressor Apsup
892 from the baculovirus *Lymantria dispar* multiple nucleopolyhedrovirus precludes apoptosis by
893 preventing proteolytic processing of initiator caspase Dronc. Journal of virology. 2013;87(23):12925-
894 34. Epub 2013/09/27. doi: 10.1128/jvi.02065-13. PubMed PMID: 24067961; PubMed Central PMCID:
895 PMCPMC3838142.

896 25. Hu J, Wang X, Xiao X, Sun C, Xia Q, Wang F. A tandem death effector domain-containing protein
897 inhibits the IMD signaling pathway via forming amyloid-like aggregates with the caspase-8 homolog
898 DREDD. Insect biochemistry and molecular biology. 2019;114:103225. Epub 2019/08/26. doi:
899 10.1016/j.ibmb.2019.103225. PubMed PMID: 31446032.

900 26. Bouton MC, Geiger M, Sheffield WP, Irving JA, Lomas DA, Song SH, et al. The under-appreciated
901 world of the serpin family of serine proteinase inhibitors. EMBO molecular medicine.
902 2023;15(6):e17144. doi: ARTN e17144
903 10.15252/emmm.202217144. PubMed PMID: WOS:000985671500001.

904 27. Huntington JA. Thrombin inhibition by the serpins. Journal of thrombosis and haemostasis : JTH.
905 2013;11 Suppl 1:254-64. Epub 2013/07/17. doi: 10.1111/jth.12252. PubMed PMID: 23809129.

906 28. Burgener SS, Leborgne NGF, Snipas SJ, Salvesen GS, Bird PI, Benarafa C. Cathepsin G Inhibition
907 by Serpinb1 and Serpinb6 Prevents Programmed Necrosis in Neutrophils and Monocytes and Reduces
908 GSDMD-Driven Inflammation. Cell reports. 2019;27(12):3646-56.e5. Epub 2019/06/20. doi:
909 10.1016/j.celrep.2019.05.065. PubMed PMID: 31216481; PubMed Central PMCID: PMCPMC7350907.

910 29. Vidalino L, Doria A, Quarta S, Zen M, Gatta A, Pontisso P. SERPINB3, apoptosis and autoimmunity.
911 Autoimmunity reviews. 2009;9(2):108-12. Epub 2009/04/01. doi: 10.1016/j.autrev.2009.03.011.
912 PubMed PMID: 19332150.

913 30. Huntington JA. Serpin structure, function and dysfunction. Journal of Thrombosis & Haemostasis
914 Jth. 2011;9(Supplement s1):26-34.

915 31. Jialing, Bao, Guoqing, Pan, Mortimer, Poncz, et al. Serpin functions in host-pathogen interactions.
916 PeerJ. 2018.

917 32. Pan G, Xu J, Li T, Xia Q, Liu SL, Zhang G, et al. Comparative genomics of parasitic silkworm
918 microsporidia reveal an association between genome expansion and host adaptation. *BMC genomics*.
919 2013;14:186. Epub 2013/03/19. doi: 10.1186/1471-2164-14-186. PubMed PMID: 23496955; PubMed
920 Central PMCID: PMCPmc3614468.

921 33. Ran M, Shi Y, Li B, Xiang H. Genome-Wide Characterization and Comparative Genomic Analysis
922 of the Serpin Gene Family in Microsporidian *Nosema bombycis*. 2022;24(1). doi:
923 10.3390/ijms24010550. PubMed PMID: 36613990.

924 34. Nathaniel R, MacNeill AL, Wang YX, Turner PC, Moyer RW. Cowpox virus CrmA, Myxoma virus
925 SERP2 and baculovirus P35 are not functionally interchangeable caspase inhibitors in poxvirus
926 infections. *The Journal of general virology*. 2004;85(Pt 5):1267-78. Epub 2004/04/24. doi:
927 10.1099/vir.0.79905-0. PubMed PMID: 15105544.

928 35. Gagliardini V, Fernandez PA, Lee RK, Drexler HC, Rotello RJ, Fishman MC, et al. Prevention of
929 vertebrate neuronal death by the crmA gene. *Science (New York, NY)*. 1994;263(5148):826-8. Epub
930 1994/02/11. doi: 10.1126/science.8303301. PubMed PMID: 8303301.

931 36. Hardwick JM. Apoptosis in viral pathogenesis. *Cell death and differentiation*. 2001;8(2):109-10.
932 Epub 2001/04/21. doi: 10.1038/sj.cdd.4400820. PubMed PMID: 11313711.

933 37. Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, et al. Viral inhibition of
934 inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. *Cell*.
935 1992;69(4):597-604. Epub 1992/05/15. doi: 10.1016/0092-8674(92)90223-y. PubMed PMID: 1339309.

936 38. Pan MH, Xiao SQ, Chen M, Hong XJ, Lu C. Establishment and characterization of two embryonic
937 cell lines of *Bombyx mori*. *In vitro cellular & developmental biology Animal*. 2007;43(2):101-4. Epub
938 2007/06/16. doi: 10.1007/s11626-006-9009-x. PubMed PMID: 17570024.

939 39. Wu Z, Li Y, Pan G, Tan X, Hu J, Zhou Z, et al. Proteomic analysis of spore wall proteins and
940 identification of two spore wall proteins from *Nosema bombycis* (Microsporidia). *Proteomics*.
941 2008;8(12):2447-61. Epub 2008/06/20. doi: 10.1002/pmic.200700584. PubMed PMID: 18563739.

942 40. Jumper J, Evans R, Pritzel A, Green T. Highly accurate protein structure prediction with AlphaFold.
943 2021;596(7873):583-9. doi: 10.1038/s41586-021-03819-2. PubMed PMID: 34265844.

944 41. Xue RY, Li X, Zhao Y, Xingliang P, Zhu XX, Cao GL, et al. Elementary research into the
945 transformation BmN cells mediated by the piggyBac transposon vector. *Journal of biotechnology*.
946 2009;144(4):272-8. Epub 2009/09/19. doi: 10.1016/j.jbiotec.2009.09.004. PubMed PMID:
947 WOS:000273024700005.

948 42. Huang YK, Zheng SY, Mei XG, Yu B, Sun B, Li BN, et al. A secretory hexokinase plays an active role
949 in the proliferation of *Nosema bombycis*. *PeerJ*. 2018;6:e5658. Epub 2018/09/28. doi: ARTN e5658
950 10.7717/peerj.5658. PubMed PMID: WOS:000446941300009; PubMed Central PMCID:
951 PMCPMC6152459.

952 43. Los M, Van de Craen M, Penning LC, Schenk H, Westendorp M, Baeuerle PA, et al. Requirement
953 of an ICE/CED-3 protease for Fas/APO-1-mediated apoptosis. *Nature*. 1995;375(6526):81-3. Epub
954 1995/05/04. doi: 10.1038/375081a0. PubMed PMID: 7536901.

955 44. Komiya T, Ray CA, Pickup DJ, Howard AD, Thornberry NA, Peterson EP, et al. Inhibition of
956 interleukin-1 beta converting enzyme by the cowpox virus serpin CrmA. An example of cross-class
957 inhibition. *The Journal of biological chemistry*. 1994;269(30):19331-7. Epub 1994/07/29. PubMed
958 PMID: 8034697.

959 45. Earnshaw WC, Martins LM, Kaufmann SH. Mammalian caspases: structure, activation, substrates,
960 and functions during apoptosis. *Annual review of biochemistry*. 1999;68:383-424. Epub 2000/06/29.
961 doi: 10.1146/annurev.biochem.68.1.383. PubMed PMID: 10872455.

962 46. Enari M, Hug H, Nagata S. Involvement of an ICE-like protease in Fas-mediated apoptosis. *Nature*.
963 1995;375(6526):78-81. Epub 1995/05/04. doi: 10.1038/375078a0. PubMed PMID: 7536900.

964 47. Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, et al. Yama/CPP32 beta, a
965 mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate
966 poly(ADP-ribose) polymerase. *Cell*. 1995;81(5):801-9. Epub 1995/06/02. doi: 10.1016/0092-
967 8674(95)90541-3. PubMed PMID: 7774019.

968 48. Sokolova YY, Bowers LC, Alvarez X, Didier ES. Encephalitozoon cuniculi and Vittaforma corneae
969 (Phylum Microsporidia) inhibit staurosporine-induced apoptosis in human THP-1 macrophages in
970 vitro. 2019;146(5):569-79. doi: 10.1017/s0031182018001968. PubMed PMID: 30486909.

971 49. Yang YL, Li XM. The IAP family: endogenous caspase inhibitors with multiple biological activities.
972 *Cell research*. 2000;10(3):169-77. Epub 2000/10/14. doi: 10.1038/sj.cr.7290046. PubMed PMID:
973 11032169.

974 50. Zhu F, Xiao S, Qin X, Liu Q, Li H, Ming D, et al. Identification and subcellular localization of NblAP
975 in the microsporidian Nosema bombycis. *Journal of invertebrate pathology*. 2022;195:107846. Epub
976 2022/10/26. doi: 10.1016/j.jip.2022.107846. PubMed PMID: 36283467.

977 51. Jun D. Cloning and Sequence Analysis of the Caspase Gene, Bmlce, Related to the Apoptosis in
978 the Silkworm. *Acta Sericologica Sinica*. 2005;31(3):261-7.

979 52. Kamada S, Kikkawa U, Tsujimoto Y, Hunter T. Nuclear translocation of caspase-3 is dependent on
980 its proteolytic activation and recognition of a substrate-like protein(s). *The Journal of biological
981 chemistry*. 2005;280(2):857-60. Epub 2004/12/01. doi: 10.1074/jbc.C400538200. PubMed PMID:
982 15569692.

983 53. Sahara S, Aoto M, Eguchi Y, Imamoto N, Yoneda Y, Tsujimoto Y. Acinus is a caspase-3-activated
984 protein required for apoptotic chromatin condensation. *Nature*. 1999;401(6749):168-73. Epub
985 1999/09/18. doi: 10.1038/43678. PubMed PMID: 10490026.

986 54. Jo EK. Interplay between host and pathogen: immune defense and beyond. *Experimental &
987 molecular medicine*. 2019;51(12):1-3. Epub 2019/12/13. doi: 10.1038/s12276-019-0281-8. PubMed
988 PMID: 31827066; PubMed Central PMCID: PMCPmc6906370.

989 55. Thakur A, Mikkelsen H, Jungersen G. Intracellular Pathogens: Host Immunity and Microbial
990 Persistence Strategies. 2019;2019:1356540. doi: 10.1155/2019/1356540. PubMed PMID: 31111075.

991 56. Huang Y, Chen J, Sun B, Zheng R, Li B, Li Z, et al. Engineered resistance to Nosema bombycis by
992 in vitro expression of a single-chain antibody in Sf9-III cells. 2018;13(2):e0193065. doi:
993 10.1371/journal.pone.0193065. PubMed PMID: 29447266.

994 57. Dolgikh VV, Senderskiy IV. Construction of scFv Antibodies against the Outer Loops of the
995 Microsporidium Nosema bombycis ATP/ADP-Transporters and Selection of the Fragment Efficiently
996 Inhibiting Parasite Growth. 2022;23(23). doi: 10.3390/ijms232315307. PubMed PMID: 36499634.

997 58. Yu B, Zheng R, Bian M, Liu T, Lu K, Bao J, et al. A monoclonal antibody targeting spore wall protein
998 1 inhibits the proliferation of Nosema bombycis in Bombyx mori. 2023;11(6):e0068123. doi:
999 10.1128/spectrum.00681-23. PubMed PMID: 37811955.

1000 59. Gettins PG. Serpin structure, mechanism, and function. *Chemical reviews*. 2002;102(12):4751-804.
1001 Epub 2002/12/12. doi: 10.1021/cr010170+. PubMed PMID: 12475206.

1002 60. Marijanovic EM, Fodor J, Riley BT. Reactive centre loop dynamics and serpin specificity.
1003 2019;9(1):3870. doi: 10.1038/s41598-019-40432-w. PubMed PMID: 30846766.

1004 61. Giri Rao VVH, Gosavi S. On the folding of a structurally complex protein to its metastable active
1005 state. *Proceedings of the National Academy of Sciences of the United States of America*.
1006 2018;115(9):1998-2003. Epub 2018/01/19. doi: 10.1073/pnas.1708173115. PubMed PMID: 29343647;
1007 PubMed Central PMCID: PMCPmc5834667.

1008 62. Irving JA, Pike RN, Lesk AM, Whisstock JC. Phylogeny of the serpin superfamily: implications of
1009 patterns of amino acid conservation for structure and function. *Genome research*. 2000;10(12):1845-
1010 64. Epub 2000/12/16. doi: 10.1101/gr.gr-1478r. PubMed PMID: 11116082.

1011 63. Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, et al. An overview of the
1012 serpin superfamily. *Genome biology*. 2006;7(5):216. Epub 2006/06/02. doi: 10.1186/gb-2006-7-5-216.
1013 PubMed PMID: 16737556; PubMed Central PMCID: PMCPMC1779521.

1014 64. Schulze AJ, Baumann U, Knof S, Jaeger E, Huber R, Laurell CB. Structural transition of alpha 1-
1015 antitrypsin by a peptide sequentially similar to beta-strand s4A. *European journal of biochemistry*.
1016 1990;194(1):51-6. Epub 1990/11/26. doi: 10.1111/j.1432-1033.1990.tb19425.x. PubMed PMID:
1017 2253623.

1018 65. Zhou A, Stein PE, Huntington JA, Sivasothy P, Lomas DA, Carrell RW. How small peptides block
1019 and reverse serpin polymerisation. *Journal of molecular biology*. 2004;342(3):931-41. Epub
1020 2004/09/03. doi: 10.1016/j.jmb.2004.07.078. PubMed PMID: 15342247.

1021 66. D'Amico S, Martial JA, Struman I. A peptide mimicking the C-terminal part of the reactive center
1022 loop induces the transition to the latent form of plasminogen activator inhibitor type-1. *FEBS letters*.
1023 2012;586(6):686-92. Epub 2012/03/28. doi: 10.1016/j.febslet.2012.02.013. PubMed PMID: 22449964.

1024 67. Björk I, Ylinenjärvi K, Olson ST, Bock PE. Conversion of antithrombin from an inhibitor of thrombin
1025 to a substrate with reduced heparin affinity and enhanced conformational stability by binding of a
1026 tetradecapeptide corresponding to the P1 to P14 region of the putative reactive bond loop of the
1027 inhibitor. *The Journal of biological chemistry*. 1992;267(3):1976-82. Epub 1992/01/25. PubMed PMID:
1028 1730729.

1029 68. Lv Q, Wang L, Fan Y, Meng X, Liu K, Zhou B, et al. Identification and characterization a novel polar
1030 tube protein (NbPTP6) from the microsporidian Nosema bombycis. *Parasites & vectors*. 2020;13(1):475.
1031 Epub 2020/09/17. doi: 10.1186/s13071-020-04348-z. PubMed PMID: 32933572; PubMed Central
1032 PMCID: PMCPMC7493173.

1033