

GeneCOCOA: Detecting context-specific functions of individual genes using co-expression data

Simonida Zehr^{1,2}, Sebastian Wolf³, Thomas Oellerich³, Matthias S. Leisegang^{1,2}, Ralf P. Brandes^{1,2}, Marcel H. Schulz^{2,4} and Timothy Warwick^{1,2*}

1 Goethe University Frankfurt, Institute for Cardiovascular Physiology, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Hesse, Germany

2 German Centre for Cardiovascular Research (DZHK), Partner site Rhine-Main, Frankfurt am Main, 60590, Hesse, Germany

3 Goethe University Frankfurt, University Hospital, Department of Medicine II, Haematology/Oncology, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Hesse, Germany

4 Goethe University Frankfurt, Institute for Computational Genomic Medicine, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Hesse, Germany

* Corresponding author. Email: warwick@vrc.uni-frankfurt.de

Abstract

Extraction of meaningful biological insight from gene expression profiling often focuses on the identification of statistically enriched terms or pathways. These methods typically use gene sets as input data, and subsequently return overrepresented terms along with associated statistics describing their enrichment. This approach does not cater to analyses focused on a single gene-of-interest, particularly when the gene lacks prior functional characterization. To address this, we formulated *GeneCOCOA*, a method which utilizes context-specific gene co-expression and curated functional gene sets, but focuses on a user-supplied gene-of-interest. The co-expression between the gene-of-interest and subsets of genes from functional groups (e.g. pathways, GO terms) is derived using linear regression, and resulting root-mean-square error values are compared against background values obtained from randomly selected genes. The resulting *p* values provide a statistical ranking of functional gene sets from any collection, along with their associated terms, based on their co-expression with the gene of interest in a manner specific to the context and experiment. *GeneCOCOA* thereby provides biological insight into both gene function, and putative regulatory mechanisms by which the expression of the gene-of-interest is controlled. Despite its relative simplicity, *GeneCOCOA* outperforms similar methods in the accurate recall of known gene-disease associations. *GeneCOCOA* is formulated as an R package for ease-of-use, available at <https://github.com/si-ze/geneCOCOA>.

Author summary

Understanding the biological functions of different genes and their respective products is a key element of modern biological research. While one can examine the relative abundance of a gene product in transcriptomics data, this alone does not provide any clue to the biological relevance of the gene. Using a type of analysis called co-expression, it is possible to identify other genes which have similar patterns of regulation to a gene-of-interest, but again, this cannot tell you what a gene does. Genes whose function

has previously been studied are often assembled into groups (e.g. pathways, ontologies), which can be used to annotate gene sets of interest. However, if a gene has not yet been characterized, it will not appear in these gene set enrichment analyses. Here, we propose a new method - *GeneCOCOA* - which uses co-expression of a single gene with genes in functional groups to identify which functional group a gene is most similar to, resulting in a putative function for the gene, even if it has not been studied before. We tested *GeneCOCOA* by using it to find gene-disease links which have already been scientifically studied, and showed that *GeneCOCOA* can do this more effectively than other available methods.

Introduction

Advances in sequencing technology have decreased the costs and increased the accuracy of transcriptome profiling [1]. This has resulted in an abundance of datasets generated from a wide variety of experimental conditions, many of which are made publicly available [2–4]. As such, interrogation of public sequencing data has become an increasingly important step in research focused on a specific gene or gene product of interest. Normally, this is limited to detecting whether the gene-of-interest is expressed in a given dataset or whether the expression of the gene changes in a particular experimental condition [5]. However, this approach does not supply insight into any potential functions of the gene-of-interest in the data, or any regulatory mechanisms which might govern expression of the gene.

Functional enrichment analyses carried out in the course of differential gene expression analysis usually relies upon the input of one or more gene sets which are derived throughout the course of the analysis (e.g. differentially expressed genes) [6]. Curated associations between each gene and sets of annotations such as ontologies [7], pathways [8,9] and diseases [10] are then computed. These associations are subsequently statistically analyzed for overrepresented terms, considering the size of the input gene set, the number of genes associated with the given term, and enrichment in hits compared to an appropriate background gene set [11–15]. The outcome of these analyses is a list of terms stratified by statistical values such as *p* value, adjusted *p* value, precision and recall. Results from these approaches have the potential to inform future research directions and wet-lab experiments. However, they cannot provide insight into the functional relevance of individual genes, especially when genes lack prior functional characterization.

One approach that can be used to examine potential function of an individual gene-of-interest (GOI) is to model the expression of the GOI against the expression of other genes present in a given dataset, in a co-expression analysis [16]. Co-expression pertains to identification of genes which display common patterns of regulation, and may therefore be subject to similar gene regulatory mechanisms (e.g. transcription factors). Methods for co-expression analysis range from simple models of linear regression between expression values of genes [17], to construction of weighted co-expression networks consisting of gene modules [18] and deep learning-based approaches [19]. Assigning functional and biological significance to an individual gene based on co-expression requires further analysis, however, the dissection and stratification of results of co-expression analyses can be challenging [20]. This means that potentially interesting insight into functions of individual genes may be lost during transitions between methods.

Methods aiming to determine the functions of individual genes are available, and implement different approaches (see **Table 1**). Some have the objective to identify genes or genetic variation relevant to certain tissues, cell types, or cell lines (e.g. *CONTENT* [21], and *ContNeXt* [22]). While these methods are useful for the identification of significant gene-context associations, they do not predict the biological function of the given gene. Other methods use network properties (e.g. *NetDecoder* [23]) or apply

coessentiality analyses (*FIREWORKS* [24]) to characterize gene-gene associations in a given context. These tools help to identify other genes significantly associated with a GOI in a context-specific manner, but again do not link these results with biological meaning. *GeneWalk* [25], *DAVID* [14, 26] and *Correlation AnalyzeR* [27] are three tools which come closest to determining the function of individual genes, in that they aim to provide context-specific biological meaning whilst being able to focus on individual genes.

GeneWalk [25] takes a user-provided input list of genes and assembles a network composed of these genes and associated Gene Ontology (GO) terms. Network representation learning with random walks is then performed on the network. Statistical association between a given gene and GO terms is determined through comparison of node similarities between the true network and a null distribution based on node similarities in randomized networks.

Alternatively, associations between individual genes and biological functions can be performed using *DAVID* [14, 26], which takes a list of genes as input and returns GO terms, protein domain information and curated pathways which are statistically enriched in their association with a given gene, computed using Fisher's exact test. While these approaches do provide insight into putative functions of individual genes, neither method considers the expression of the provided genes or other genes relevant to the GO terms in question. Not considering expression as a feature in these analyses could result in missing dynamic relationships between the gene-of-interest and the genes, or subsets of genes, associated with the given term. Additionally, the implementation of *GeneWalk* is limited to the use of GO terms, and cannot be implemented with other curated gene sets which may provide more relevant functional annotations in a specific context, such as disease.

One method which considers co-expression and outputs putative gene function is *Correlation AnalyzeR* [27]. Here, weighted Pearson correlations between normalized gene expression counts are calculated between a gene-of- interest and other genes present in the expression data. A ranked gene list is then assembled from the resulting correlation values, which is used as input to gene set enrichment analysis, resulting in statistically enriched terms which are theoretically co-expressed with the gene-of-interest. However, the authors state that for a robust analysis, datasets of more than 30 samples and at least 4 different studies should be used, limiting the contexts in which this method can be used.

We sought to explore how co-expression and functional enrichment analyses can be combined into a single workflow which provides insight into the function of a specific GOI in a given context provided by the input data. Such a method would permit a comprehensive assessment of expression patterns and putative functions of a GOI across multiple experimental conditions using experimental data generated by the user. To this end, we propose *GeneCOCOA*, an *R* package which identifies and ranks functional gene sets which are co-expressed with a user-supplied GOI. *GeneCOCOA* may be run using either user-supplied or publicly available gene expression data, and can utilize several curated databases of gene annotations in order to compute functional enrichments in co-expression.

Materials and methods

Databases

For the functionality of *GeneCOCOA* described herein, curated gene sets from the Hallmark database [28], as well as genes annotated to the Biological Process domain of Gene Ontology [29] (GO:BP) were used.

Input data

The use cases described in this manuscript utilized publicly available transcriptome profiling data available from *Gene Expression Omnibus* [2,3] under the accession numbers GSE36980 [30], GSE28253 [31], GSE5406 [32], GSE9006 [33], GSE48060 [34], GSE17048 [35], and GSE114922 [36].

The RNA-sequencing data arising from acute myeloid leukemia patients [37] is available publicly from the *European Genome-Phenome Archive* [38] under the accession EGAD00001008484, and initial access prior to the publication of the data was provided by Prof. Dr. Thomas Oellerich and Dr. Sebastian Wolf (Goethe University Frankfurt, University Hospital Frankfurt).

Preprocessing

Raw reads were aligned against the *hg38* genome using *Bowtie2* (v2.3.5.1) [39], with default parameters, and quantified using *Salmon* (v1.5.2) [40], with default parameters. Curated quantified and normalized expression data sets were fetched with *gemma.R* [41].

Detection of gene sets which are co-expressed with a gene-of-interest

Determining number of gene subsets

The number of gene subsets sampled from each gene set i is implemented as a user-controlled parameter. In test runs, we determined $i = 1000$ to provide an acceptable compromise between efficiency and statistical power (see **Supplementary Figure S1**). Therefore, we set $i = 1000$ for all analyses in this manuscript.

Generation of gene subsets

Initially, a number of subsets (default 1000) are derived from a given gene set (e.g. pathway, GO term), as described by the following:

$$G_i \subset g_1, g_2, \dots, g_N, \text{where } |G_i| = n \text{ for } i = 1, 2, \dots, 1000 \quad (1)$$

where G_i is the i -th subset of n genes g_1, g_2, \dots, g_N which make up the total gene set G .

Linear regression models

The dataset-specific expression values of each gene in a subset of genes serve as predictor variables in a linear regression model with the expression of a GOI being the outcome variable, as described by:

$$y = \beta_0 + \beta_1 g_1 + \beta_2 g_2 + \dots + \beta_n g_n + \varepsilon \quad (2)$$

where g_1, g_2, \dots, g_n represent the dataset-specific expression values of the genes of the subset, $\beta_0, \beta_1, \beta_2, \dots, \beta_n$ are the coefficients for each predictor variable, y represents the predicted expression of the GOI, and ε represents the error of the linear regression model.

Root-mean-square error calculation

For each gene subset, the linear regression model produces predicted values \hat{y}_i based on the predictors g_i . The root-mean-square error (RMSE) for the i -th subset is then calculated as:

$$RMSE_i = \sqrt{\frac{1}{n} \sum_{j=1}^n (y_j - \hat{y}_{ij})^2} \quad (3)$$

where y_j is the true expression of the GOI and \hat{y}_{ij} is the predicted expression from the linear regression model for the j -th observation using the subset G_i .

The same procedure is performed for a size-matched set of randomly sampled genes, resulting in two sets of RMSE values. One derived from linear regression models predicting the expression of the GOI from subsets of genes from a given gene set, and one derived from linear regression models predicting the expression of the GOI from randomly sampled subsets of genes expressed in the given dataset.

Computation of gene set-specific enrichment P values

RMSE values $RMSE_i, \dots, RMSE_{1000}$ derived from subsets G_i, \dots, G_{1000} of a given gene set G are compared against RMSE values ${}_rRMSE_i, \dots, {}_rRMSE_{1000}$ derived from randomly subset genes using a Student's t-test. The resulting P value is subsequently adjusted using the Benjamini-Hochberg method [42]. This results in an adjusted p value for each gene set in a given curated database, describing the strength of association between the genes comprising each gene set and the user-provided GOI.

Inter-gene set comparison and visualization

In order to further stratify gene sets of potential interest, the direction of co-expression between the GOI and curated gene sets is also calculated during the course of the workflow, and is included as a parameter for visualization of results. This value is calculated as follows:

$$impact_i = \log_2 \left(\frac{\prod_{j=1}^n \text{Corr}(GOI, G_j)}{\prod_{k=1}^n \text{Corr}(GOI, R_k)} \right) \quad (4)$$

where $\text{Corr}(GOI, G_j)$ represents the correlation between the GOI and a gene of a given gene set G of size n , and $\text{Corr}(GOI, R_k)$ represents the correlation between the GOI and a gene from a size-matched set of randomly sampled genes R . $impact_i > 0$ thus indicates that the co-expression between the GOI and the gene set G is smaller than a random baseline mean co-expression.

Comparison to similar methods

GeneCOCOA was compared to other methods which aim to annotate the functions of individual genes by testing the ability of each tool to accurately link genes associated with a given disease to GO terms implicated in the same disease. The methods considered for comparison were DAVID [14], GeneWalk [25] and Correlation AnalyzeR [27].

Definition of disease-relevant genes

In order to define a relevant gene set for each condition to be studied, the DisGeNET [43] platform was queried via web interface (<https://www.disgenet.org/search>) with the full name of each condition ("Amyotrophic Lateral Sclerosis", "Alzheimer's Disease", "Dilated Cardiomyopathy", "Insulin-dependent Diabetes Mellitus", "Myocardial Infarction" and "Multiple Sclerosis"). As of 14-06-2023, the top-ranked hits were the entries with the UMLS/concept IDs C0002736, C0002395, C0007193, C0011854, C0027051 and C0026769. From each summary of gene-disease associations (GDA), genes with a

$Score_{gda} \geq 0.5$ were considered as substantially associated with the disease and included in the input set of disease-relevant genes. 164
165

Definition of disease-relevant terms/gene sets 166

To obtain disease-relevant gene sets, the MalaCards database [44] was queried via 167
168
169
170
171
172
173
174
175
web interface (<https://www.malacards.org/>) with the full name of the condition (“Alzheimer’s Disease”, “Amyotrophic Lateral Sclerosis”, “Dilated Cardiomyopathy”, “Insulin-dependent Diabetes Mellitus”, “Myocardial Infarction” and “Multiple Sclerosis”) on 14-06-2023. The top hit was selected based on the MalaCards InForMaTion Score and the Solr relevance score provided by MalaCards. For each disease card (MalaCards IDs ALZ065, AMY091, DLT002, TYP008, MYC007 and MLT020, respectively), the complete list of Gene Ontology Biological Process terms was downloaded and treated as the ground truth collection T for the respective disease.

Construction of input gene lists for GeneWalk and DAVID 176

To assemble a context-specific gene network, GeneWalk requires a list of relevant genes 177
178
179
180
181
182
183
184
obtained from a specific experimental assay as an input. To this end, GEO2R [3] was used to obtain a list of differentially expressed (DE) genes for each of the publicly available transcriptomic gene sets. Any gene with an adjusted $p < 0.05$ between control and disease condition, as calculated by DESeq2 [45], was considered differentially expressed. To ensure that all disease-relevant genes obtained via DisGeNET would be included as well, the union of disease-relevant genes and DE genes was obtained. Thus, a context-set C was created for each condition.

Systematic comparison of GeneCOCOA, Correlation AnalyzeR, Gene Walk 185 and DAVID 186

Each method was used to determine the association of disease-relevant genes (as per 187
188
189
190
191
defined via DisGeNET, see subsection *Definition of disease-relevant genes*) with disease-relevant gene sets (as defined via MalaCards, see previous subsection). Since GeneWalk 192
193
194
195
196
197
198
199
results are computed on Gene Ontology annotations [7], we restricted the comparison to 200
gene sets from the GO:BP collection.

The ability of each tool to report any disease-relevant GO:BP term for a list of 201
202
203
204
205
206
207
208
disease-relevant genes-of-interest across different diseases was tested. We distinguished 209
two cases: (1) A disease-relevant gene is analyzed in a condition matching its disease. In 210
this case, we expect the method to report a significant association between the gene and 211
any of the disease-relevant GO:BP terms reported in MalaCards (“true positive”). (2) A 212
disease-relevant gene-of-interest is analyzed using data arising from a separate disease 213
where said gene is not annotated as being important in DisGeNet, therefore a significant 214
association between the gene and the terms present in the MalaCard for the disease is 215
not expected (“false positive”).

GeneCOCOA, *GeneWalk*, *DAVID* and *Correlation AnalyzeR* [27] were run for every 216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
55310
55311
55312
55313
55314
55315
55316
55317
55318
55319
55320
55321
55322
55323
55324
55325
55326
55327
55328
55329
55330
55331
55332
55333
55334
55335
55336
55337
55338
55339
55340
55341
55342
55343
55344
55345
55346
55347
55348
55349
55350
55351
55352
55353
55354
55355
55356
55357
55358
55359
55360
55361
55362
55363
55364
55365
55366
55367
55368
55369
55370
55371
55372
55373
55374
55375
55376
55377
55378
55379
55380
55381
55382
55383
55384
55385
55386
55387
55388
55389
55390
55391
55392
55393
55394
55395
55396
55397
55398
55399
553100
553101
553102
553103
553104
553105
553106
553107
553108
553109
553110
553111
553112
553113
553114
553115
553116
553117
553118
553119
553120
553121
553122
553123
553124
553125
553126
553127
553128
553129
553130
553131
553132
553133
553134
553135
553136
553137
553138
553139
553140
553141
553142
553143
553144
553145
553146
553147
553148
553149
553150
553151
553152
553153
553154
553155
553156
553157
553158
553159
553160
553161
553162
553163
553164
553165
553166
553167
553168
553169
553170
553171
553172
553173
553174
553175
553176
553177
553178
553179
553180
553181
553182
553183
553184
553185
553186
553187
553188
553189
553190
553191
553192
553193
553194
553195
553196
553197
553198
553199
553200
553201
553202
553203
553204
553205
553206
553207
553208
553209
553210
553211
553212
553213
553214
553215
553216
553217
553218
553219
553220
553221
553222
553223
553224
553225
553226
553227
553228
553229
553230
553231
553232
553233
553234
553235
553236
553237
553238
553239
553240
553241
553242
553243
553244
553245
553246
553247
553248
553249
553250
553251
553252
553253
553254
553255
553256
553257
553258
553259
553260
553261
553262
553263
553264
553265
553266
553267
553268
553269
553270
553271
553272
553273
553274
553275
553276
553277
553278
553279
553280
553281
553282
553283
553284
553285
553286
553287
553288
553289
553290
553291
553292
553293
553294
553295
553296
553297
553298
553299
553300
553301
553302
553303
553304
553305
553306
553307
553308
553309
553310
553311
553312
553313
553314
553315
553316
553317
553318
553319
553320
553321
553322
553323
553324
553325
553326
553327
553328
553329
553330
553331
553332
553333
553334
553335
553336
553337
553338
553339
5533310
5533311
5533312
5533313
5533314
5533315
5533316
5533317
5533318
5533319
55333100
55333101
55333102
55333103
55333104
55333105
55333106
55333107
55333108
55333109
55333110
55333111
55333112
55333113
55333114
55333115
55333116
55333117
55333118
55333119
553331100
553331101
553331102
553331103
553331104
553331105
553331106
553331107
553331108
553331109
553331110
553331111
553331112
553331113
553331114
553331115
553331116
553331117
553331118
553331119
5533311100
5533311101
5533311102
5533311103
5533311104
5533311105
5533311106
5533311107
5533311108
5533311109
5533311110
5533311111
5533311112
5533311113
5533311114
5533311115
5533311116
5533311117
5533311118
5533311119
55333111100
55333111101
55333111102
55333111103
55333111104
55333111105
55333111106
55333111107
55333111108
55333111109
55333111110
55333111111
55333111112
55333111113
55333111114
55333111115
55333111116
55333111117
55333111118
55333111119
553331111100
553331111101
553331111102
553331111103
553331111104
553331111105
553331111106
553331111107
553331111108
553331111109
553331111110
553331111111
553331111112
553331111113
553331111114
553331111115
553331111116
553331111117
553331111118
553331111119
5533311111100
5533311111101
5533311111102
5533311111103
5533311111104
5533311111105
5533311111106
5533311111107
5533311111108
5533311111109
5533311111110
5533311111111
5533311111112
5533311111113
5533311111114
5533311111115
5533311111116
5533311111117
5533311111118
5533311111119
55333111111100
55333111111101
55333111111102
55333111111103
55333111111104
55333111111105
55333111111106
55333111111107
55333111111108
55333111111109
55333111111110
55333111111111
55333111111112
55333111111113
55333111111114
55333111111115
55333111111116
55333111111117
55333111111118
55333111111119
553331111111100
553331111111101
553331111111102
553331111111103
553331111111104
553331111111105
553331111111106
553331111111107
553331111111108
553331111111109
553331111111110
553331111111111
553331111111112
553331111111113
553331111111114
553331111111115
553331111111116
553331111111117
553331111111118
553331111111119
5533311111111100
5533311111111101
5533311111111102
5533311111111103
5533311111111104
5533311111111105
5533311111111106
5533311111111107
5533311111111108
5533311111111109
5533311111111110
5533311111111111
5533311111111112
5533311111111113
5533311111111114
5533311111111115
5533311111111116
5533311111111117
5533311111111118
5533311111111119
55333111111111100
55333111111111101
55333111111111102
55333111111111103
55333111111111104
55333111111111105
55333111111111106
55333111111111107
55333111111111108
55333111111111109
55333111111111110
55333111111111111
55333111111111112
55333111111111113
55333111111111114
55333111111111115
55333111111111116
55333111111111117
55333111111111118
55333111111111119
553331111111111100
553331111111111101
553331111111111102
553331111111111103
553331111111111104
553331111111111105
553331111111111106
553331111111111107
553331111111111108
553331111111111109
553331111111111110
553331111111111111
553331111111111112
553331111111111113
553331111111111114
553331111111111115
553331111111111116
553331111111111117
553331111111111118
553331111111111119
5533311111111111100
5533311111111111101
5533311111111111102
5533311111111111103
5533311111111111104
5533311111111111105
5533311111111111106
5533311111111111107
5533311111111111108
5533311111111111109
5533311111111111110
5533311111111111111
5533311111111111112
5533311111111111113
5533311111111111114
5533311111111111115
5533311111111111116
5533311111111111117
5533311111111111118
5533311111111111119
55333111111111111100
55333111111111111101
55333111111111111102
55333111111111111103
55333111111111111104
55333111111111111105
55333111111111111106
55333111111111111107
55333111111111111108
55333111111111111109
55333111111111111110
55333111111111111111
55333111111111111112
55333111111111111113
55333111111111111114
55333111111111111115
55333111111111111116
55333111111111111117
55333111111111111118
55333111111111111119
553331111111111111100
553331111111111111101
553331111111111111102
553331111111111111103
553331111111111111104
553331111111111111105
553331111111111111106
553331111111111111107
553331111111111111108
553331111111111111109
553331111111111111110
553331111111111111111
553331111111111111112
553331111111111111113
553331111111111111114
553331111111111111115
553331111111111111116
553331111111111111117
553331111111111111118
553331111111111111119
5533311111111111111100
5533311111111111111101
5533311111111111111102
5533311111111111111103
5533311111111111111104
5533311111111111111105
5533311111111111111106
5533311111111111111107
5533311111111111111108
5533311111111111111109
5533311111111111111110
5533311111111111111111
5533311111111111111112
5533311111111111111113
5533311111111111111114
5533311111111111111115
5533311111111111111116
5533311111111111111117
5533311111111111111118
5533311111111111111119
55333111111111111111100
55333111111111111111101
55333111111111111111102
55333111111111111111103
55333111111111111111104
55333111111111111111105
55333111111111111111106
55333111111111111111107
55333111111111111111108
55333111111111111111109
55333111111111111111110
5533311111

see case (2) above). Gene-of-interest-associated GO:BP terms were parsed from the results of each method using a threshold of $p_{adjusted} < 0.05$.
210
211

GeneCOCOA R package

GeneCOCOA is formulated as an R package and is hosted on GitHub at the URL <https://github.com/si-ze/geneCOCOA>.
212
213
214

Results

GeneCOCOA identifies functional gene sets co-expressed with a gene-of-interest

The COmparative CO-expression Analysis focused on a Gene-of-interest (*GeneCOCOA*) presented here incorporates multiple approaches which aim to functionally annotate genes following gene expression profiling (Fig. 1A). Several approaches exist for the analysis of experiment-specific co-expression patterns (e.g. *WGCNA* [18], *CemiTool* [46]), the harnessing of curated knowledge (e.g. Molecular Signature Database (*MSigDB*) [28]), as well as for the integration of prior knowledge with experiment-specific co-expression patterns (e.g. *GSEA* [47], *Enrichr* [12]). Some methods also aim to apply prior knowledge to predict the functions of individual genes, most notably *DAVID* [26], *GeneWalk* [25] and *Correlation AnalyzeR* [27]. However, few methods exist which utilize co-expression and curated gene sets to predict gene function (summarized in Table 1). To our knowledge, only *Correlation AnalyzeR* [27] provides this option in *single-gene mode*. Yet, its results are based on a single correlation analysis. *GeneCOCOA* has been developed as an integrative method which aims to apply curated knowledge to experiment-specific expression data in a gene-centric manner based on a robust bootstrapping approach.
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

The input to *GeneCOCOA* is a list of curated gene sets (e.g. from Gene Ontology, *MSigDB*, pathways), a gene-of-interest (GOI) that the user wishes to interrogate, and a gene expression matrix of *sample * gene* (Fig. 1B, top). From each gene set, n genes are sampled and used as predictor variables in a linear regression modelling the expression of the GOI as the outcome variable (Fig. 1B, middle). A background model is created analogously by sampling n random genes from the complete expression data set. For bootstrapping, this procedure is repeated i times, i being a parameter that can be specified by the user. Testing different values of i , we found $i = 1000$ to provide the best tradeoff between efficiency and power (see Supp. Fig. S1). The i gene set model errors and i random model errors are compared in a t-test. Gene sets with $p_{adjusted} < 0.05$ are considered to model the expression of the GOI better than random, and the $p_{adjusted}$ values are used to stratify and rank gene sets (Fig. 1B, bottom). The results output by *GeneCOCOA* aim to provide insight into potential functions of the gene-of-interest in the specific context provided by the gene expression data.
248
249
250
251
252
253
254

Detection of context-specific changes in gene function using GeneCOCOA

To test the ability of *GeneCOCOA* to detect changes in gene function resulting from disease, it was applied to identify functions of the gene FMS-like tyrosine kinase 3 (*FLT3*) in acute myeloid leukemia (AML). AML is a malignancy of the hematopoietic system affecting the differentiation and maturation of myeloid blood cells. Characterized by a complex genetic landscape, AML can be divided into various subtypes, which differ in both phenotype and prognosis. One common (25% of patients [60]) mutation linked to AML is the internal tandem duplication (ITD) of *FLT3*. Normally, expression and
248
249
250
251
252
253
254

Table 1. Available methods for downstream analysis of disease contexts and genes of interest

(a) Approaches to co-expression analysis (not supporting individual gene perspective)

Method	Input data	Description
WGCNA [18]	Expression matrix	Identifies modules of highly correlated genes, identifies most relevant genes of a module, relates modules to one another and to external traits such as GO-terms.
CEMiTool [46]	Expression matrix	Identifies modules of highly correlated genes, identifies most relevant genes of a module, integrates external data (e.g. interactome, pathways).
FIREWORKS [24]	Gene list	Ranks top correlations and anticorrelations in an undirected, unweighted network and returns gene-gene associations. No knowledge distillation.
CONTENT [21]	Expression matrix + SNPs	Computes associations between SNPs and tissues by decomposing expression data across samples into context-shared and context-specific components. No knowledge distillation.
GeneFriends [48]	Gene list	Uses the gene list as a seed for the construction of co-expression network to find highly correlated genes in pre-computed expression data of a selected tissue. Thereby allows for functional annotation of a single-gene.
COXPRESdb [49]	Gene list	Queries a precomputed database to identify highly coexpressed genes, genes with the same GO annotation and genes which are co-expressed with the GOIs in a selected tissue of a selected organism.
diffcoexp [50]	Expression data of two conditions	Compares two expression data sets against each other and identifies gene pairs with significantly different correlation coefficients under the two conditions. No knowledge distillation.
HGCA [51]	GOI	Identifies top co-expressed genes for the provided GOI (precomputed on representative tissue samples), performs various built-in gene term enrichment analyses on the co-expression module.

(b) Approaches to knowledge distillation (not supporting individual gene perspective)

Method	Input data	Description
Myers et al. (2008) [52]	Various types of raw data	Trains a support vector machine classifier on the raw data and a list of GO terms using annotated genes as positive examples to predict gene function.
ClusterProfiler [53]	Differential expression analysis results	Returns relevant terms (e.g. GO terms, KEGG, ...) associated with enriched gene sets.
PANTHER.db	Gene list	Returns relevant terms (e.g. GO terms, pathways, ...) associated with enriched gene sets.
ReactomePA	Gene list	Supports hypergeometric tests and gene set enrichment analyses, returns enriched REACTOME pathways.
NOA [54]	Gene list	Infers link ontology for given gene set using associated GO terms, performs enrichment analysis on resulting network.

activation levels of *FLT3* are important for maintaining a balance of proliferation and differentiation in hematopoietic cells [61]. *FLT3*-ITD results in a constitutive activation of the kinase, promoting a hyperproliferative state and cell survival [62]. *FLT3*-ITD is associated with a higher disease burden, higher relapse rate and inferior overall survival [14].

A whole-transcriptome RNA-sequencing dataset of 136 AML patients [37] was subset for patients with *FLT3*-ITD mutations (31 patients). Taking *FLT3* as the GOI,

(c) Gene function prediction based on a user-provided context

Method	Input data	Description
DAVID [26]	Gene list	Summarises genes based on shared categorical data from public resources, runs modified Fisher's Exact Test for gene-enrichment analysis. Individual gene-GO associations retrievable.
GeneWalk [25]	Gene list	Assembles context-specific network from provided gene list, associates GO terms using public resources, applies an unsupervised network representation learning to retrieve most relevant GO terms. Individual gene-GO associations retrievable.
NetDecoder [23]	GOI + Phenotype data of two traits	Computes differential gene-gene associations and network characteristics (e.g. genes with high flow differences between trait 1 and trait 2). No knowledge distillation.
Correlation AnalyzeR [27]	GOI + Expression matrix	Takes custom expression data or fetches public data sets. Uses genome-wide Pearson correlations as a ranking metric for GSEA algorithm, returns gene sets correlated with a gene of interest.

(d) Gene function prediction agnostic to user-provided context

Method	Input data	Description
GeneMANIA [55]	GOI	Builds association networks from different publicly available data types (co-expression, co-regulation, co-localisation, shared protein domains, ...). Not customisable to individual experiment.
ContNeXt [22]	Gene list	Computes gene-tissue associations across three different contexts (i.e., tissues, cell types, and cell lines). No knowledge distillation. Expression data precomputed.
GIANT [56]	GOI	Integrates thousands of datasets to predict interactions of the provided GOI and provide associated GO terms.
NewGOA [57]	GOI	Combines publicly available data on protein interactions and GO annotations in a graph and uses a random walk to predict function. Not customisable to individual experiment.
BiRWLGO [58]	GOI	Combines lncRNA-lncRNA similarity, lncRNA-protein interaction and protein-protein interaction data into hybrid graph, applies bi-random walk to predict lncRNA function. Not customisable to individual experiment.
NMFGO [59]	GOI	Builds gene-term association matrix, uses a semantic similarity approach to predict gene function.

GeneCOCOA was used to assess the significance of the association between *FLT3* and gene sets defined by GO Biological Processes (GO:BP). For comparison, a control set of 48 healthy *CD34+* bone marrow samples was constructed from data under the GEO accession GSE114922 [36]. Again, *GeneCOCOA* was used to detect and rank associations between *FLT3* and GO:BP terms (**Fig. 2A**). 262
263
264
265
266

Physiologically, *FLT3* is involved in immune function and regulation of hematopoietic cell proliferation and differentiation [61]. Accordingly, among the GO:BP terms associated with *FLT3* by *GeneCOCOA* in healthy *CD34+* cells are terms associated with immune response (e.g. "Regulation of humoral immune response", "Chronic inflammatory response") and terms indicating both proliferative processes (e.g. "Nucleoside monophosphate biosynthetic process") and differentiation (e.g. "Positive regulation of B-cell mediated immunity", "Regulation of phenotypic switching") (**Fig. 2B**). This complex profile is lost in the *GeneCOCOA* results for *FLT3* co-expression patterns in AML blasts (**Fig. 2C**). The top 10 GO:BP terms reflect mitochondrial processes (e.g. "Mitochondrial gene expression") and cell growth/division (e.g. "Regulation of 267
268
269
270
271
272
273
274
275
276

DNA-dependent DNA replication", "Ribosome biogenesis"), reflecting the switch to a predominantly proliferative profile. The results thus replicate dysregulation of *FLT3* expression and function previously described in literature, indicating that *GeneCOCOA* may be able to detect context-dependent changes in gene function, given appropriate data.

GeneCOCOA detects disease-driven alterations in gene co-expression patterns

In further proof-of-principle testing, *GeneCOCOA* was applied to gene expression datasets arising from diseases with well-studied causative genes. Here, the direction of co-expression between the gene-of-interest and each curated gene set was also analyzed in each case (denoted '*Impact*', see **Eq. 4** in *Materials and methods*). Disease data sets were compared against healthy control data sets in terms of their co-expression patterns between a known causative GOI and fifty MSigDB Hallmark gene sets [28].

One disease in which causative genes have been suggested in literature is amyotrophic lateral sclerosis (ALS). The first gene to be identified as causative for this neurodegenerative disease was superoxide dismutase 1 (*SOD1*) [63]. *SOD1* codes for Cu/Zn superoxide dismutase type-1, an enzyme crucial for cellular antioxidant defense mechanisms. Mutations of *SOD1* in ALS are known to destabilize the protein, leading to misfolding. This triggers various pathophysiological events such as protein accumulation, mitochondrial and/or proteasome dysfunction and accumulation of reactive oxygen species (ROS). This switch between contexts is reflected in the *GeneCOCOA* results when *SOD1* is taken as the gene-of-interest, along with gene expression data from disease and healthy conditions. When *GeneCOCOA* was run with gene expression data from lymphocytes of 11 healthy donors, *SOD1* was closely linked with immune function (e.g. "Allograft rejection", "TNF- α signalling via NF- κ B", "Inflammatory response"), as well as gene sets related to oxidative stress (e.g. "Peroxisome", "ROS Pathway") (**Fig. 3A, left**). In accordance with literature [64, 65], many of these associations are lost in the lymphocyte transcriptomes of 11 patients with ALS. Instead, a gain in association between *SOD1* and genes associated with oxidative phosphorylation could be observed, reflecting potential mitochondrial defects (**Fig. 3A, right**). Also indicative of the pathophysiology of *SOD1*-driven ALS was the association between *SOD1* expression and the Hallmark gene set "Unfolded protein response". The detection of this term – specifically in the disease samples – demonstrates that *GeneCOCOA* has the potential to identify context-specific co-expression patterns with disease relevance.

In another use case, *GeneCOCOA* was run using gene expression data originating from isolated lymphocytes of 10 patients with familial hypercholesterolemia (FH), comparing them to 13 healthy control samples. FH is an autosomal dominant disorder of lipoprotein metabolism characterized by high levels of cholesterol. The most common causes are mutations in the gene coding for low-density lipoprotein receptor (*LDLR*). Physiologically, the LDL transmembrane receptor mediates the internalization and lysosomal degradation of LDL. Mutations disrupting the function of *LDLR* lead to elevated plasma levels of LDL, promoting accelerated atherosclerosis and coronary heart disease [66, 67]. In correspondence with these mechanisms described in literature, the *GeneCOCOA* results indicated that the functional association between *LDLR* and genes annotated to be important for "Cholesterol homeostasis" became stronger in FH samples compared to control samples (**Fig. 3B**). Again, these results suggest that *GeneCOCOA* is able to detect changes in gene co-expression which are pertinent to disease-specific conditions.

While these results were promising, the question remained of how the approach implemented in *GeneCOCOA* compared to methods with the similar aim of functionally annotating individual genes.

GeneCOCOA provides a comprehensive gene-focused co-expression and functional analysis missing from similar methods

To our knowledge, only few approaches to the problem of inferring the function of a specific gene-of-interest (GOI) been published (**Table 1**), most notably *DAVID* [14], *GeneWalk* [25] and *Correlation AnalyzeR* [27].

DAVID is a web-accessible set of functional annotation tools which allows for the rapid mining of a wide range of public resources. Provided with a list of gene identifiers, *DAVID* summarizes them, based on shared categorical data in gene ontology, protein domain, and biochemical pathway membership, returning a modified Fisher Exact *p*-value for gene-enrichment analysis.

GeneWalk allows for the GO enrichment analysis of an experiment-specific gene set (e.g. differentially expressed genes). Using publicly available resources, *GeneWalk* first assembles a context-specific gene network which represents both interactions between the provided genes and links to GO terms, then applies an unsupervised network representation learning algorithm (*DeepWalk* [68]) to retrieve the GO terms of highest statistical relevance.

Correlation AnalyzeR [27] has been developed for the exploration of co-expression correlations in a given data set, and in *single-gene mode* also supports the prediction of individual gene functions and gene-gene relationships. In an adaption of the Gene Set Enrichment Analysis [47] (GSEA) algorithm, it employs genome-wide Pearson correlations as a ranking metric to determine the gene sets correlated with a GOI.

GeneCOCOA and *Correlation AnalyzeR* [27] exploit the user-provided expression data to gain insight into gene correlations in a context-specific manner. *GeneWalk* and, less explicitly, *DAVID*, require a list of input genes to assemble the context. Using *gemma.R* [41] and *GEO2R* [3] for the selection of potential input data sets, we therefore focused on sufficiently large ($n > 10$) transcriptomic data sets in which we could reliably identify a set of DE genes. Six curated data sets met our criteria. Disease-relevant GO:BP terms were then retrieved from *MalaCards* [44], and disease-relevant genes from *DisGeNET* [10, 43].

In a systematic comparison, *DAVID*, *GeneWalk*, *Correlation AnalyzeR* [27] and *GeneCOCOA* were used to search for statistically significant associations between matching disease-relevant genes and disease-relevant GO:BP terms (**Fig. 4A**). Each method was run for every combination of disease (AD: Alzheimer's Disease, ALS: Amyotrophic Lateral Sclerosis, DC: Dilated Cardiomyopathy, DM: Insulin-dependent Diabetes Mellitus, MI: Myocardial Infarction and MS: Multiple Sclerosis) and disease-relevant genes (total genes AD: 24, ALS: 16, DC: 12, DM: 4, MI: 21, MS: 7). For each method, a statistically significant ($p_{adjusted} < 0.05$) association between a given gene and a condition-relevant term was recorded. If the gene belonged to the matching disease-relevant gene set, this was considered a true positive, whereas if the gene was a member of one of the other disease sets, it was considered a false positive. Although these terms are not strictly accurate given the nature of these types of analysis, they are used here in an attempt to compare these methods in an objective and unbiased manner, and this matter is further covered in the *Discussion*.

Across all conditions, *GeneCOCOA* had a substantially higher true positive rate than either *DAVID* or *GeneWalk*, and in all but one case also a higher true positive rate than *Correlation Analyzer* (**Fig. 4B**). In order to confirm that *GeneCOCOA* was not just returning spurious significant associations for every provided gene, the proportions of false positives across all conditions for all methods was further analyzed. Overall, *GeneCOCOA* reported more false positives than the other methods (**Fig. 4C, Supp. Fig. S2 & S3**). However, when considering the results in a gene-set-focused perspective, *GeneCOCOA* recalls more true positives per gene set than false positives (corresponds to the summary of row counts in **Fig. 4C**; see also **Supp. Fig. S2, S3 & S4**). This is truly

independent of the disease expression set provided. From a condition-wise perspective (corresponding to columns in **Fig. 4C**), *GeneCOCOA* consistently reports a higher proportion of true positives than false positives across all conditions (**Supplementary Figure S3**). For *GeneWalk* and *DAVID*, the proportions of true and false positives were negligible, resulting in both methods having high true negative rates, but accompanying high false negative rates as well. *Correlation Analyzer* managed to recover more true positives than the prior two methods, yet in the majority of cases the false positive rate was at least as high as the true positive rate (see **Supp. Fig. S3**). Thus, *GeneCOCOA* recovers the most relevant disease terms whilst maintaining an acceptable level of specificity, independent of disease type.

Taken together, the results presented here demonstrate that *GeneCOCOA* is capable of identifying statistically significant functional co-expression patterns linked to a gene-of-interest. Dynamics in context also seem to be detectable, as well as gene-specific functions. *GeneCOCOA* offers a different approach to other methods, which appears to identify more biologically relevant gene functions than similar tools, although benchmarking these kinds of approaches remains highly challenging.

Discussion

This manuscript describes *GeneCOCOA*, a method designed to implement both co-expression and functional enrichment analyses focused on a gene-of-interest (GOI). Evidence of the functionality of *GeneCOCOA* was demonstrated by using transcriptome profiling data arising from monogenic diseases, and identifying co-expressed gene sets with a relevant gene in each scenario. The use of *GeneCOCOA* to detect context-specific alterations in gene function was illustrated using RNA-sequencing data arising from a large cohort of patients suffering from acute myeloid leukemia. Here, functional gene sets associated with disease progression and prognosis could be found to be significantly co-expressed with *FLT3*, a known driver of the disease. The performance of *GeneCOCOA* relative to similar methods was compared across several distinct contexts, and showed that *GeneCOCOA* has the potential to fill a previously underpopulated niche in the toolkit of gene expression data analysis.

Advancements in next-generation sequencing technology have resulted in an abundance of high quality, publicly available transcriptome profiling data from a wide range of species, conditions and stimuli [3]. This has shifted the experimental bottleneck from data generation towards data analysis, with a resulting requirement for robust, efficient methods to extract maximal insight from these data. This must be accomplished whilst simultaneously maintaining ease-of-use for the user, many of whom are not expert computational biologists. Another by-product of this wealth of data is that researchers with specific genes-of-interest can query these data for metrics such as co-expression. However, manually curating co-expression results to derive biological insight can be complex and time-consuming.

Herein, we demonstrated that *GeneCOCOA* is capable of providing the user with functional gene sets which are enriched in their co-expression with a GOI. The functionality of *GeneCOCOA* in conjunction with data from large cohort experiments was demonstrated with a large data set consisting of 79 RNA-sequencing samples [36, 37], where the known functional role of *FLT3* could be recapitulated. In this illustrative example, the link between the gene-of-interest and experimental condition is extremely well established. This makes it difficult to truly assess the sensitivity of *GeneCOCOA* for discovering *de novo* functional roles of a GOI in a given condition.

In further illustrative use cases, *GeneCOCOA* was implemented on genes implicated as being causative for amyotrophic lateral sclerosis and familial hypercholesterolemia, specifically the GOIs *SOD1* [69] and *LDLR* [66]. In each case, *GeneCOCOA* identified

functional, co-expressed enriched terms pertinent to the given disease. It should be noted, however, that in each case there were several replicates per condition (11 vs. 11, and 13 vs. 10, respectively). These replicate numbers are relatively uncommon in experimental setups designed around cell culture systems, where three biological replicates per biological condition is common [70]. The identification of robust enrichments when *GeneCOCOA* is provided with datasets of this smaller size is more challenging than when using larger datasets, and certainly represents a potential drawback of the approach. However, transcriptome profiling of larger patient cohorts is becoming increasingly common and accessible [71–73], providing ideal input for *GeneCOCOA* and similar tools.

Another caveat to consider in the course of analysis of transcriptomic data with *GeneCOCOA* or any similar method, is the disconnect between expression and true function. Whilst *GeneCOCOA* is capable of using an array of curated gene annotation databases to infer potential functionality, a vast number of genes remain uncharacterized with regard to functional importance [74]. These genes are therefore excluded from the analysis, despite potentially interesting co-expression with the gene in question. Similarly, in a native co-expression analysis without any functional subsetting of genes, genes co-expressed with one another may in fact have diverse functions. For example, genes whose products make up negative feedback loops may be similarly regulated in order to provide a controlled response to a stimulus, despite having antagonistic functions [75].

In a systematic comparison of *GeneCOCOA* against similar methods (*GeneWalk*, *DAVID* and *Correlation AnalyzeR*), *GeneCOCOA* was able to identify a greater proportion of evidence-linked disease-relevant gene-GO term relationships. By computing these links across a number of diseases, it could be shown that disease-relevant associations reported by *GeneCOCOA* tended to be enriched in specificity for the diseases in question. However, it should be stated that making concrete conclusions on the relative performance of these types of methods is highly challenging, given the difficulties in ascribing true positive and true negative validation sets. This arises from the curated nature of gene sets, which rely wholly on published gene functions, as well as the extent and quality of databases used to record and document relationships between genes and functions. A consequence of this approach is that there may be genes not yet linked to a function or disease, which may just be unstudied in that capacity rather than irrelevant. For example, inflammatory genes such as *TNF* and *TGFB1* (both annotated as being important to myocardial infarction) are not included in the list of genes associated with Alzheimer's disease on *DisGeNET*. As a consequence, significant associations reported for these genes (**Supp. Fig. S4**) with Alzheimer's-relevant terms were marked as quasi-false positives. Yet, dysregulations related to these genes have been linked to the development of Alzheimer's disease in prior research [76–79]. Similarly, *GeneCOCOA* also reported false positive associations in the amyotrophic lateral sclerosis (ALS) data set for the genes *BCL2* and *BAX*. While they are present in the Alzheimer's disease gene set, these apoptotic genes have also been described as mediators of motor neuron loss in ALS [80–82]. Thus, the supposedly false positive associations returned by *GeneCOCOA* might, in several cases, hint at biologically meaningful GOI-disease associations which are not reflected in our strict approach to the definitions of ground truth.

From a methodological perspective, it was interesting that the relatively simple methods employed by *Correlation AnalyzeR* and *GeneCOCOA* both outperformed the more complex method implemented in *GeneWalk*. *Correlation Analyzer*'s approach of considering entire gene sets in their enrichment analysis could result in a decreased sensitivity compared to *GeneCOCOA*, which samples subsets of gene sets. This would explain the greater sensitivity (but additionally increased false positive rate) of *GeneCOCOA*. The authors of *Correlation AnalyzeR* recommend input data with many samples in order for a robust analysis, whereas the iterative sampling approach of *GeneCOCOA* might permit increased performance on smaller datasets. What the performance of these two similar

methods shows, is that using co-expression in combination with functional enrichment is a valid approach for inferring gene function, particularly of previously unstudied genes. Which specific method of co-expression analysis and functional enrichment should be used likely depends on the type and extent of the input data.

The formulation of *GeneCOCOA* to provide a functionally-resolved co-expression analysis framework is designed to minimize both data and time loss when moving data between different methods. Performance is largely determined by the iterative computation of background gene sets, the number of which may be set by the user. We aimed to maximize ease-of-use by formulating *GeneCOCOA* as an R [83] package, thereby making it simple to integrate the analysis with common workflows such as differential gene expression analysis [45, 84].

In summary, *GeneCOCOA* provides a method by which users can infer putative functions of a gene-of-interest based on co-expression of the given gene with curated sets of functionally-annotated genes. *GeneCOCOA* therefore empowers users to take advantage of the growing number of publicly available transcriptome profiling datasets, in order to provide greater functional insight and generate new hypotheses pertaining to the roles of individual genes in different contexts.

Conclusion

- *GeneCOCOA* is a combined method for the identification of functional gene sets which are significantly co-expressed with a gene-of-interest.
- The method can be used in a highly flexible manner on user-supplied or publicly available transcriptome profiling data.
- Function gene sets can be provided by the user, or taken from curated, publicly available databases which hold information on ontologies, pathways and diseases.
- *GeneCOCOA* successfully recapitulates functional signatures of genes implicated in monogenic diseases.
- *GeneCOCOA* detects greater numbers of evidence-linked gene-disease relationships than similar methods.

Supporting information

S1 Fig. Selection of default iteration number for GeneCOCOA.

S2 Fig. Comparison of true positives and false positives across gene sets per method in gene-disease evaluation.

S2 Fig. Comparison between proportions of true positive and false positive disease-linked genes across conditions, per method.

S3 Fig. True positive and false positive matrices from gene-disease evaluation for all three methods with gene symbols.

Funding

This work was supported by the Goethe University Frankfurt am Main, the German Centre for Cardiovascular Research (DZHK), the DFG excellence cluster EXS2026 (Cardio-Pulmonary Institute), and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project-ID 403584255 - TRR 267.

Conflicts of interest

The authors declare no conflicts of interest.

Authors contributions

S.Z., M.H.S. and T.W. conceived the idea for the study. R.P.B, M.S.L, S.W. and T.O. provided key data and input. S.Z. performed the analyses. S.Z. and T.W. wrote the code and formulated the manuscript. All listed authors read, commented on and edited the manuscript.

References

1. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. *Nature Reviews Genetics*. 2016;17(6):333–351.
2. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. *Nucleic Acids Research*. 2002;30(1):207–210.
3. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets—update. *Nucleic Acids Research*. 2012;41(D1):D991–D995.
4. Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, et al. Database resources of the national center for biotechnology information. *Nucleic Acids Research*. 2021;49(D1):D10.
5. Rung J, Brazma A. Reuse of public genome-wide gene expression data. *Nature Reviews Genetics*. 2013;14(2):89–99.
6. Geistlinger L, Csaba G, Santarelli M, Ramos M, Schiffer L, Turaga N, et al. Toward a gold standard for benchmarking gene set enrichment analysis. *Briefings in Bioinformatics*. 2021;22(1):545–556.
7. Consortium GO. The gene ontology resource: 20 years and still GOing strong. *Nucleic Acids Research*. 2019;47(D1):D330–D338.
8. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. *Nucleic Acids Research*. 2023;51(D1):D587–D592.
9. Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, et al. The reactome pathway knowledgebase 2022. *Nucleic Acids Research*. 2022;50(D1):D687–D692.

10. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. *Nucleic Acids Research*. 2020;48(D1):D845–D855.
11. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. *The Innovation*. 2021;2(3):100141.
12. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. *Nucleic Acids Research*. 2016;44(W1):W90–W97.
13. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic Acids Research*. 2019;47(W1):W191–W198.
14. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. *Genome Biology*. 2003;4(9):1–11.
15. Mi H, Huang X, Muruganujan A, Tang H, Mills C, Kang D, et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. *Nucleic Acids Research*. 2017;45(D1):D183–D189.
16. Fuller T, Langfelder P, Presson A, Horvath S. Review of weighted gene coexpression network analysis. *Handbook of Statistical Bioinformatics*. 2011; p. 369–388.
17. Song L, Langfelder P, Horvath S. Comparison of co-expression measures: mutual information, correlation, and model based indices. *BMC Bioinformatics*. 2012;13(1):1–21.
18. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. *BMC Bioinformatics*. 2008;9(1):1–13.
19. Tasaki S, Gaiteri C, Mostafavi S, Wang Y. Deep learning decodes the principles of differential gene expression. *Nature Machine Intelligence*. 2020;2(7):376–386.
20. Van Dam S, Vosa U, van der Graaf A, Franke L, de Magalhaes JP. Gene co-expression analysis for functional classification and gene–disease predictions. *Briefings in Bioinformatics*. 2018;19(4):575–592.
21. Thompson M, Gordon MG, Lu A, Tandon A, Halperin E, Gusev A, et al. Multi-context genetic modeling of transcriptional regulation resolves novel disease loci. *Nature Communications*. 2022;13(1):5704.
22. Figueiredo RQ, Del Ser SD, Raschka T, Hofmann-Apitius M, Kodamullil AT, Mubeen S, et al. Elucidating gene expression patterns across multiple biological contexts through a large-scale investigation of transcriptomic datasets. *BMC bioinformatics*. 2022;23(1):231.
23. Da Rocha EL, Ung CY, McGehee CD, Correia C, Li H. NetDecoder: a network biology platform that decodes context-specific biological networks and gene activities. *Nucleic acids research*. 2016;44(10):e100–e100.
24. Amici DR, Jackson JM, Truica MI, Smith RS, Abdulkadir SA, Mendillo ML. FIREWORKS: a bottom-up approach to integrative coessentiality network analysis. *Life science alliance*. 2021;4(2).

25. Ietswaart R, Gyori BM, Bachman JA, Sorger PK, Churchman LS. GeneWalk identifies relevant gene functions for a biological context using network representation learning. *Genome Biology*. 2021;22:1–35.
26. Huang DW, Sherman BT, Tan Q, Kir J, Liu D, Bryant D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. *Nucleic Acids Research*. 2007;35(suppl_2):W169–W175.
27. Miller HE, Bishop AJ. Correlation AnalyzeR: functional predictions from gene co-expression correlations. *BMC Bioinformatics*. 2021;22:1–19.
28. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database hallmark gene set collection. *Cell Systems*. 2015;1(6):417–425.
29. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. *Nature Genetics*. 2000;25(1):25–29.
30. Hokama M, Oka S, Leon J, Ninomiya T, Honda H, Sasaki K, et al. Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study. *Cerebral Cortex*. 2014;24(9):2476–2488.
31. Mougeot JLC, Li Z, Price AE, Wright FA, Brooks BR. Microarray analysis of peripheral blood lymphocytes from ALS patients and the SAFE detection of the KEGG ALS pathway. *BMC Medical Genomics*. 2011;4:1–19.
32. Hannenhalli S, Putt ME, Gilmore JM, Wang J, Parmacek MS, Epstein JA, et al. Transcriptional genomics associates FOX transcription factors with human heart failure. *Circulation*. 2006;114(12):1269–1276.
33. Kaizer EC, Glaser CL, Chaussabel D, Banchereau J, Pascual V, White PC. Gene expression in peripheral blood mononuclear cells from children with diabetes. *The Journal of Clinical Endocrinology & Metabolism*. 2007;92(9):3705–3711.
34. Suresh R, Li X, Chiriac A, Goel K, Terzic A, Perez-Terzic C, et al. Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction. *Journal of Molecular and Cellular Cardiology*. 2014;74:13–21.
35. Gandhi KS, McKay FC, Cox M, Riveros C, Armstrong N, Heard RN, et al. The multiple sclerosis whole blood mRNA transcriptome and genetic associations indicate dysregulation of specific T cell pathways in pathogenesis. *Human Molecular Genetics*. 2010;19(11):2134–2143.
36. Pellagatti A, Armstrong RN, Steeples V, Sharma E, Repapi E, Singh S, et al. Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations. *Blood, The Journal of the American Society of Hematology*. 2018;132(12):1225–1240.
37. Jayavelu AK, Wolf S, Buettnner F, Alexe G, Häupl B, Comoglio F, et al. The proteogenomic subtypes of acute myeloid leukemia. *Cancer Cell*. 2022;40(3):301–317.
38. Lappalainen I, Almeida-King J, Kumanduri V, Senf A, Spalding JD, Ur-Rehman S, et al. The European Genome-phenome Archive of human data consented for biomedical research. *Nature Genetics*. 2015;47(7):692–695.

39. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nature Methods*. 2012;9(4):357–359.
40. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. *Nature Methods*. 2017;14(4):417–419.
41. Lim N, Tesar S, Belmadani M, Poirier-Morency G, Mancarci BO, Sicherman J, et al. Curation of over 10 000 transcriptomic studies to enable data reuse. *Database*. 2021;2021:baab006.
42. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *Journal of the Royal Statistical Society: Series B (Methodological)*. 1995;57(1):289–300.
43. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno E, et al. DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants. *Nucleic Acids Research*. 2016; p. gkw943.
44. Rappaport N, Twik M, Plaschkes I, Nudel R, Iny Stein T, Levitt J, et al. MalaCards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. *Nucleic Acids Research*. 2017;45(D1):D877–D887.
45. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology*. 2014;15(12):1–21.
46. Russo PS, Ferreira GR, Cardozo LE, Bürger MC, Arias-Carrasco R, Maruyama SR, et al. CEMiTool: a Bioconductor package for performing comprehensive modular co-expression analyses. *BMC Bioinformatics*. 2018;19(1):1–13.
47. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proceedings of the National Academy of Sciences*. 2005;102(43):15545–15550.
48. Raina P, Guinea R, Chatsirisupachai K, Lopes I, Farooq Z, Guinea C, et al. GeneFriends: gene co-expression databases and tools for humans and model organisms. *Nucleic Acids Research*. 2023;51(D1):D145–D158.
49. Obayashi T, Hayashi S, Shibaoka M, Saeki M, Ohta H, Kinoshita K. COXPRESdb: a database of coexpressed gene networks in mammals. *Nucleic acids research*. 2007;36(suppl_1):D77–D82.
50. Wenbin Wei SA. diffcoexp; 2018. Available from: <https://bioconductor.org/packages/diffcoexp/>
51. Zogopoulos VL, Malatas A, Kyriakidis K, Charalampous C, Makrygianni EA, Duguez S, et al. HGCA2.0: An RNA-Seq Based Webtool for Gene Coexpression Analysis in Homo sapiens. *Cells*. 2023;12(3):388. doi:10.3390/cells12030388.
52. Guan Y, Myers CL, Hess DC, Barutcuoglu Z, Caudy AA, Troyanskaya OG. Predicting gene function in a hierarchical context with an ensemble of classifiers. *Genome Biology*. 2008;9:1–18.

53. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. *Omics: a journal of integrative biology*. 2012;16(5):284–287.
54. Wang J, Huang Q, Liu ZP, Wang Y, Wu LY, Chen L, et al. NOA: a novel Network Ontology Analysis method. *Nucleic Acids Research*. 2011;39(13):e87–e87.
55. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. *Genome Biology*. 2008;9:1–15.
56. Wong AK, Krishnan A, Troyanskaya OG. GIANT 2.0: genome-scale integrated analysis of gene networks in tissues. *Nucleic Acids Research*. 2018;46(W1):W65–W70.
57. Yu G, Fu G, Wang J, Zhao Y. NewGOA: Predicting new GO annotations of proteins by bi-random walks on a hybrid graph. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*. 2017;15(4):1390–1402.
58. Zhang J, Zou S, Deng L. Gene Ontology-based function prediction of long non-coding RNAs using bi-random walk. *BMC Medical Genomics*. 2018;11:1–10.
59. Yu G, Wang K, Fu G, Guo M, Wang J. NMFGO: Gene function prediction via nonnegative matrix factorization with gene ontology. *IEEE/ACM transactions on computational biology and bioinformatics*. 2018;17(1):238–249.
60. Kennedy VE, Smith CC. FLT3 mutations in acute myeloid leukemia: key concepts and emerging controversies. *Frontiers in Oncology*. 2020;10:612880.
61. Grafone T, Palmisano M, Nicci C, Storti S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. *Oncology Reviews*. 2012;6(1).
62. Friedman R. The molecular mechanisms behind activation of FLT3 in acute myeloid leukemia and resistance to therapy by selective inhibitors. *Biochimica et Biophysica Acta (BBA)-Reviews on Cancer*. 2022;1877(1):188666.
63. Bunton-Stasyshyn RK, Saccon RA, Fratta P, Fisher EM. SOD1 function and its implications for amyotrophic lateral sclerosis pathology: new and renascent themes. *The Neuroscientist*. 2015;21(5):519–529.
64. Saccon RA, Bunton-Stasyshyn RK, Fisher EM, Fratta P. Is SOD1 loss of function involved in amyotrophic lateral sclerosis? *Brain*. 2013;136(8):2342–2358.
65. Pansarasa O, Bordoni M, Diamanti L, Sproviero D, Gagliardi S, Cereda C. SOD1 in amyotrophic lateral sclerosis: “ambivalent” behavior connected to the disease. *International Journal of Molecular Sciences*. 2018;19(5):1345.
66. Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. *Human Mutation*. 1992;1(6):445–466.
67. Chora JR, Medeiros AM, Alves AC, Bourbon M. Analysis of publicly available LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia: application of ACMG guidelines and implications for familial hypercholesterolemia diagnosis. *Genetics in Medicine*. 2018;20(6):591–598.
68. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining; 2014. p. 701–710.

69. Kiskinis E, Sandoe J, Williams LA, Boulting GL, Moccia R, Wainger BJ, et al. Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1. *Cell Stem Cell*. 2014;14(6):781–795.
70. Robasky K, Lewis NE, Church GM. The role of replicates for error mitigation in next-generation sequencing. *Nature Reviews Genetics*. 2014;15(1):56–62.
71. Zhu Y, Qiu P, Ji Y. TCGA-assembler: open-source software for retrieving and processing TCGA data. *Nature Methods*. 2014;11(6):599–600.
72. Consortium G, Ardlie KG, Deluca DS, Segrè AV, Sullivan TJ, Young TR, et al. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. *Science*. 2015;348(6235):648–660.
73. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. *Nucleic Acids Research*. 2017;45(W1):W98–W102.
74. Wood V, Lock A, Harris MA, Rutherford K, Bähler J, Oliver SG. Hidden in plain sight: what remains to be discovered in the eukaryotic proteome? *Open Biology*. 2019;9(2):180241.
75. Likhoshvai VA, Golubyatnikov VP, Khlebodarova TM. Limit cycles in models of circular gene networks regulated by negative feedback loops. *BMC Bioinformatics*. 2020;21(11):1–15.
76. Chang R, Yee KL, Sumbria RK. Tumor necrosis factor α inhibition for Alzheimer's disease. *Journal of Central Nervous System Disease*. 2017;9:1179573517709278.
77. Decourt B, K Lahiri D, N Sabbagh M. Targeting tumor necrosis factor alpha for Alzheimer's disease. *Current Alzheimer Research*. 2017;14(4):412–425.
78. Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML, et al. TGF- β 1 pathway as a new target for neuroprotection in Alzheimer's disease. *CNS Neuroscience & Therapeutics*. 2011;17(4):237–249.
79. Von Bernhardi R, Cornejo F, Parada GE, Eugenín J. Role of TGF β signaling in the pathogenesis of Alzheimer's disease. *Frontiers in Cellular Neuroscience*. 2015;9:426.
80. Mu X, He J, Anderson DW, Springer JE, Trojanowski JQ. Altered expression of bcl-2 and bax mRNA in amyotrophic lateral sclerosis spinal cord motor neurons. *Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society*. 1996;40(3):379–386.
81. Vukosavic S, Dubois-Dauphin M, Romero N, Przedborski S. Bax and Bcl-2 interaction in a transgenic mouse model of familial amyotrophic lateral sclerosis. *Journal of Neurochemistry*. 1999;73(6):2460–2468.
82. Hetz C, Thielen P, Fisher J, Pasinelli P, Brown R, Korsmeyer S, et al. The proapoptotic BCL-2 family member BIM mediates motoneuron loss in a model of amyotrophic lateral sclerosis. *Cell Death & Differentiation*. 2007;14(7):1386–1389.
83. R Core Team. R: A Language and Environment for Statistical Computing; 2022. Available from: <https://www.R-project.org/>.
84. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics*. 2010;26(1):139–140.

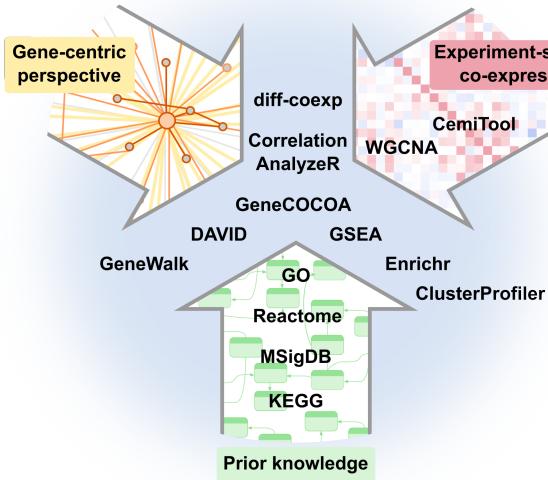
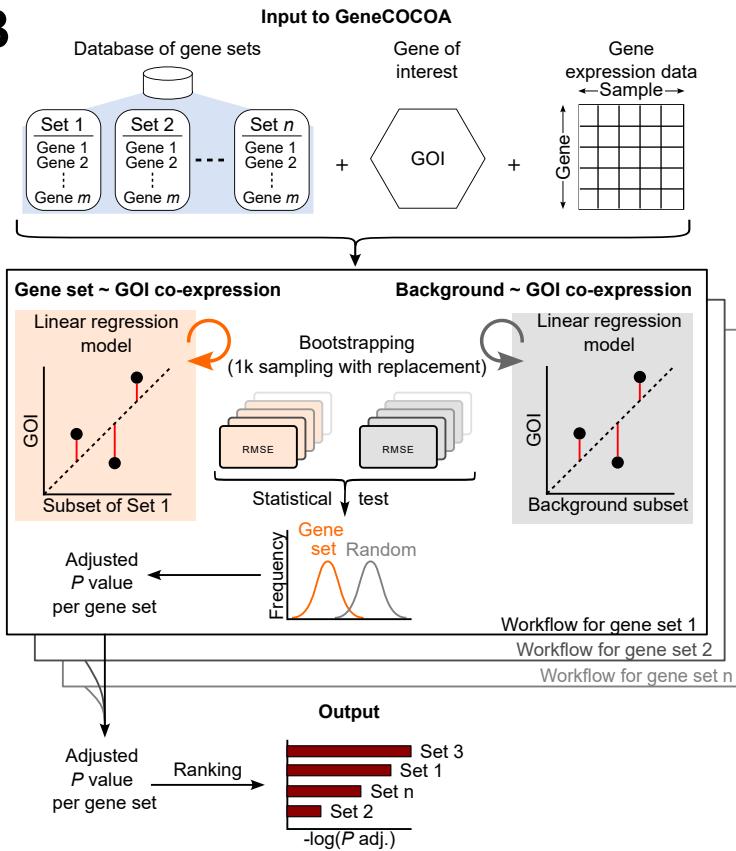
A**B**

Figure 1. GeneCOCOA workflow for identification of functional gene sets co-expressed with a gene-of-interest. (A) Strategies and related methods for statistically associating genes to putative functions, summarized into gene-centric (GeneWalk, DAVID), prior knowledge (GO, Reactome, MSigDB) and co-expression (WGCNA, CemiTool) approaches. GeneCOCOA incorporates elements of each of these approaches into a single workflow. **(B)** Schematic representation of the GeneCOCOA workflow, which takes as input user-provided functional gene sets, a gene-of-interest (GOI) and gene expression data to report statistically ranked gene sets associated with the provided GOI. This is achieved by comparing root-mean-square error (RMSE) values from bootstrapped linear regression models predicting the expression of the GOI using either genes arising from a single gene set, or randomly sampled genes from the expression data. Gene set errors and random errors are statistically compared, and the resulting p values are adjusted, resulting in an output list of functional gene sets ranked statistically by the strength of their association with the provided gene-of-interest.

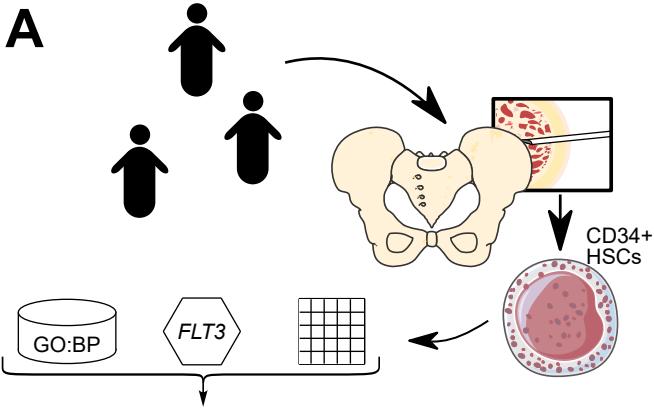
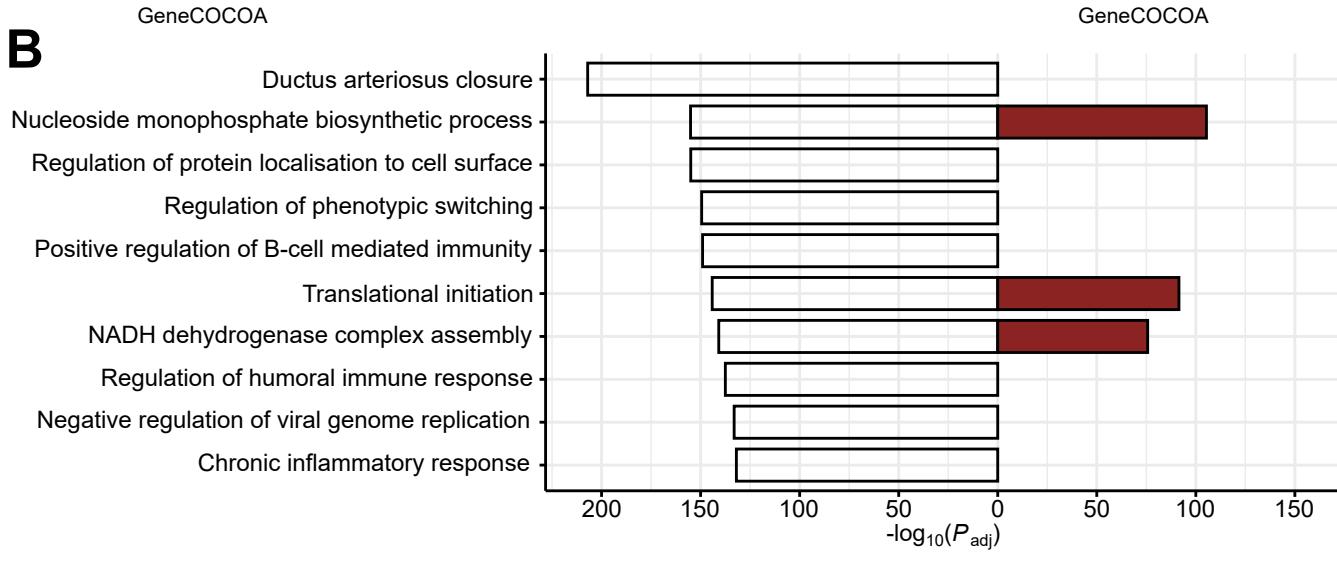
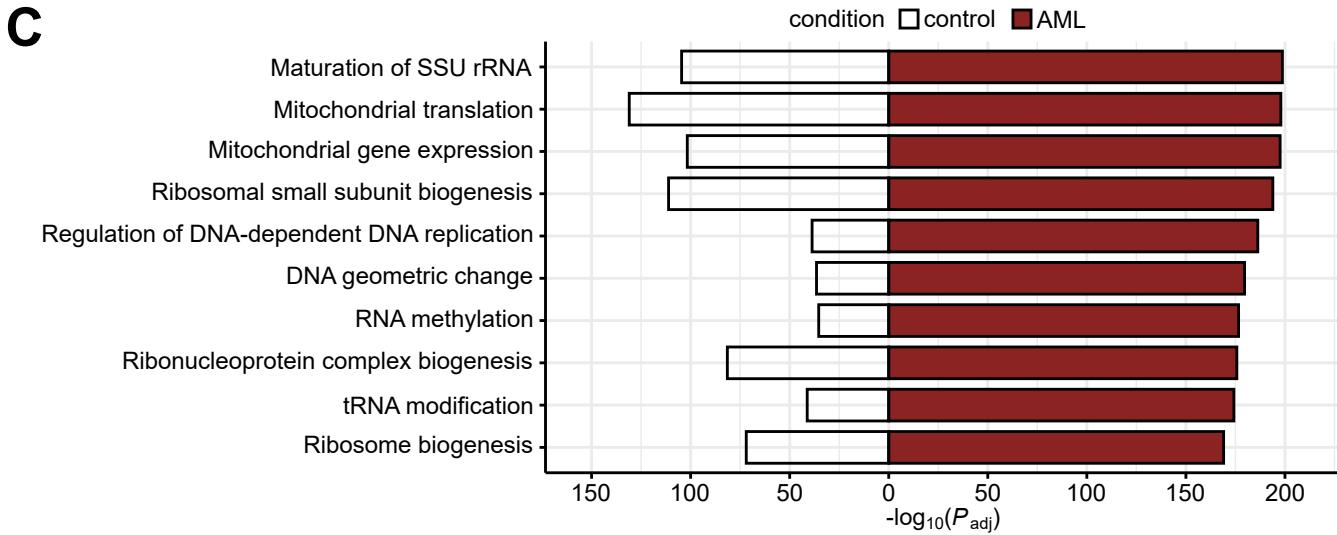


Figure 2. Example use case of GeneCOCOA to predict context-specific *FLT3* function using expression data from hematopoietic stem cells and acute myeloid leukemia blasts. (A) In an exemplary use case, GeneCOCOA was applied to study the co-expression patterns of *FLT3* with Gene Ontology Biological Process (GO:BP) terms in bulk RNA-sequencing of CD34+ hematopoietic stem cells (HSCs) from 48 healthy subjects, and blasts from 31 patients with acute myeloid leukemia (AML) positive for *FLT3*-ITD mutations. (B) The 10 highest-ranked GO:BP terms with *FLT3* in HSCs from healthy donors, as computed by GeneCOCOA. The corresponding significance values in AML blasts are provided for comparison. Ranks are annotated next to the bars; non-significant terms are not annotated. (C) The 10 highest-ranked GO:BP terms with *FLT3* in patients with AML and *FLT3*-ITD mutations, as computed by GeneCOCOA. The corresponding significance values in healthy HSCs are provided for comparison. Ranks are annotated next to the bars; non-significant terms are not annotated.

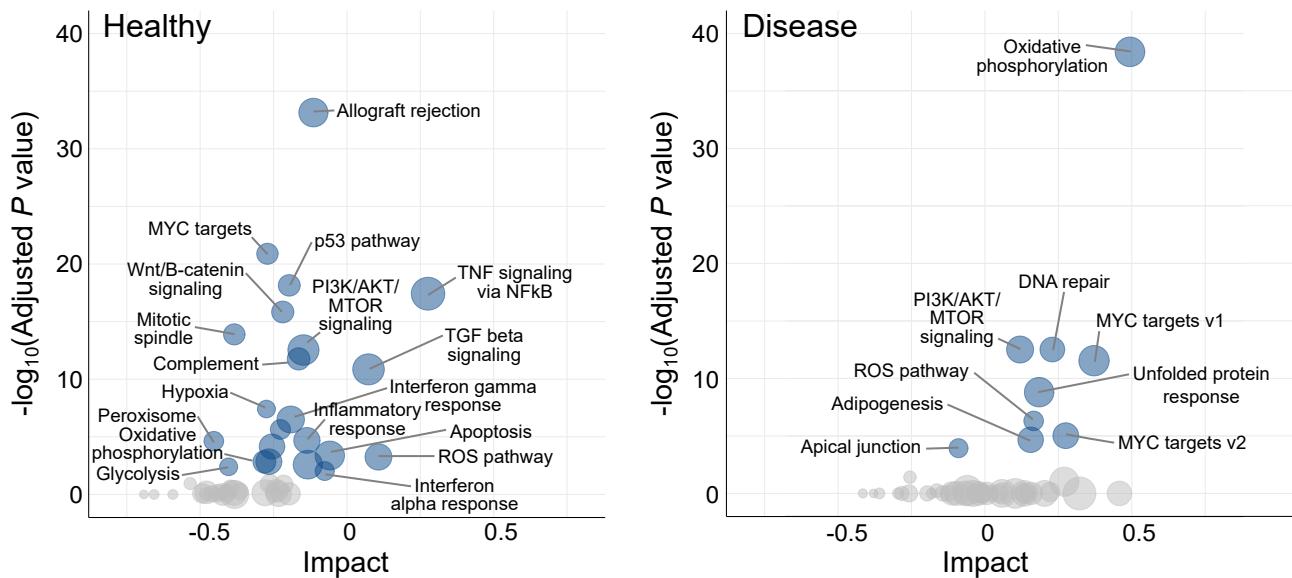
A**Amyotrophic lateral sclerosis (GOI: *SOD1*)****B****Familial hypercholesterolemia (GOI: *LDLR*)**

Figure 3. GeneCOCOA detects cellular responses to diseases with monogenic signatures. (A) GeneCOCOA results reporting the strength of association in co-expression between *SOD1* and MSigDB Hallmark gene sets, in lymphocytes isolated from healthy donors (left) and lymphocytes isolated from patients with amyotrophic lateral sclerosis (right). **(B)** GeneCOCOA results reporting the strength of association in co-expression between *LDLR* and MSigDB Hallmark gene sets in monocytes from healthy donors (control, left) and monocytes isolated from patients with familial hypercholesterolemia (disease, right). The size of the points in each plot reflects the relative mean expression level of each gene set.

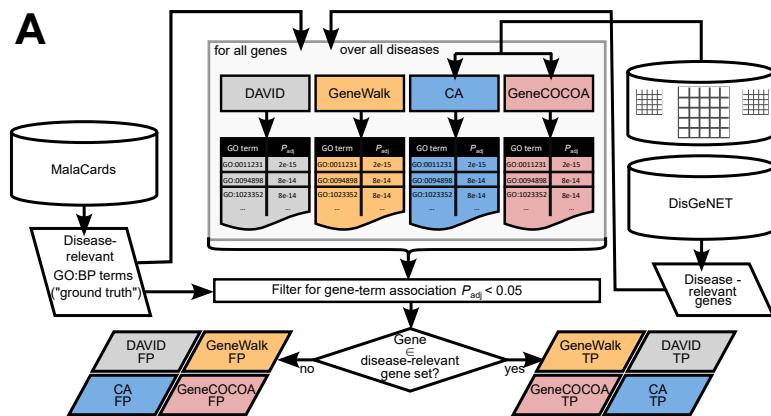
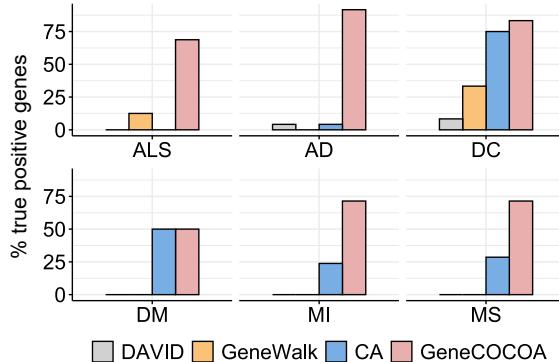
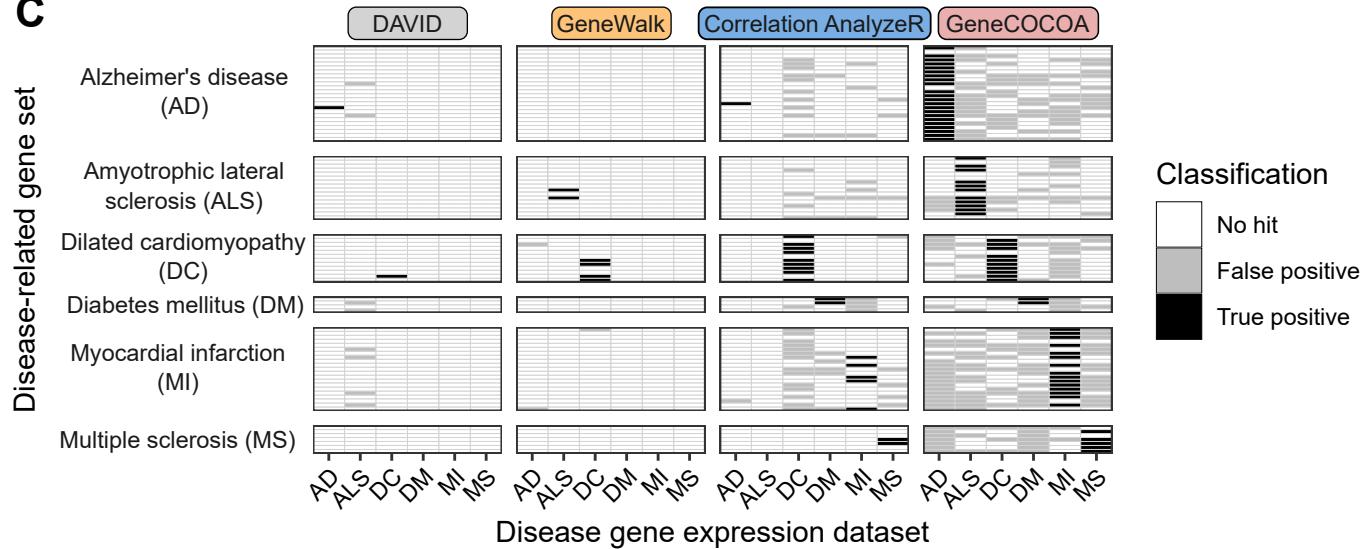
A**B****C**

Figure 4. Systematic comparison of GeneCOCOA, DAVID, Correlation AnalyzeR and GeneWalk for their performance in statistically linking disease-relevant genes and GO:BP terms. (A) GeneCOCOA, DAVID, Correlation AnalyzeR (CA) and GeneWalk were each run to identify significantly associated disease-relevant genes from DisGeNet and disease-associated Gene Ontology Biological Process terms (GO:BP) as listed on MalaCards. Genes significantly associated to the matching disease terms were considered true positives (TP), and genes statistically linked to terms from other diseases as false positives (FP). **(B)** Proportion of true positive associations between disease-relevant genes and matching disease GO:BP terms by GeneCOCOA, GeneWalk, Correlation AnalyzeR (CA) and DAVID (AD: Alzheimer's disease, ALS: Amyotrophic lateral sclerosis, DC: Dilated cardiomyopathy, DM: Diabetes mellitus, MI: Myocardial infarction, MS: Multiple sclerosis). **(C)** Summary of true positive and false positive gene-term associations per set of disease-relevant genes across all diseases, as computed by GeneCOCOA, GeneWalk, Correlation AnalyzeR and DAVID.

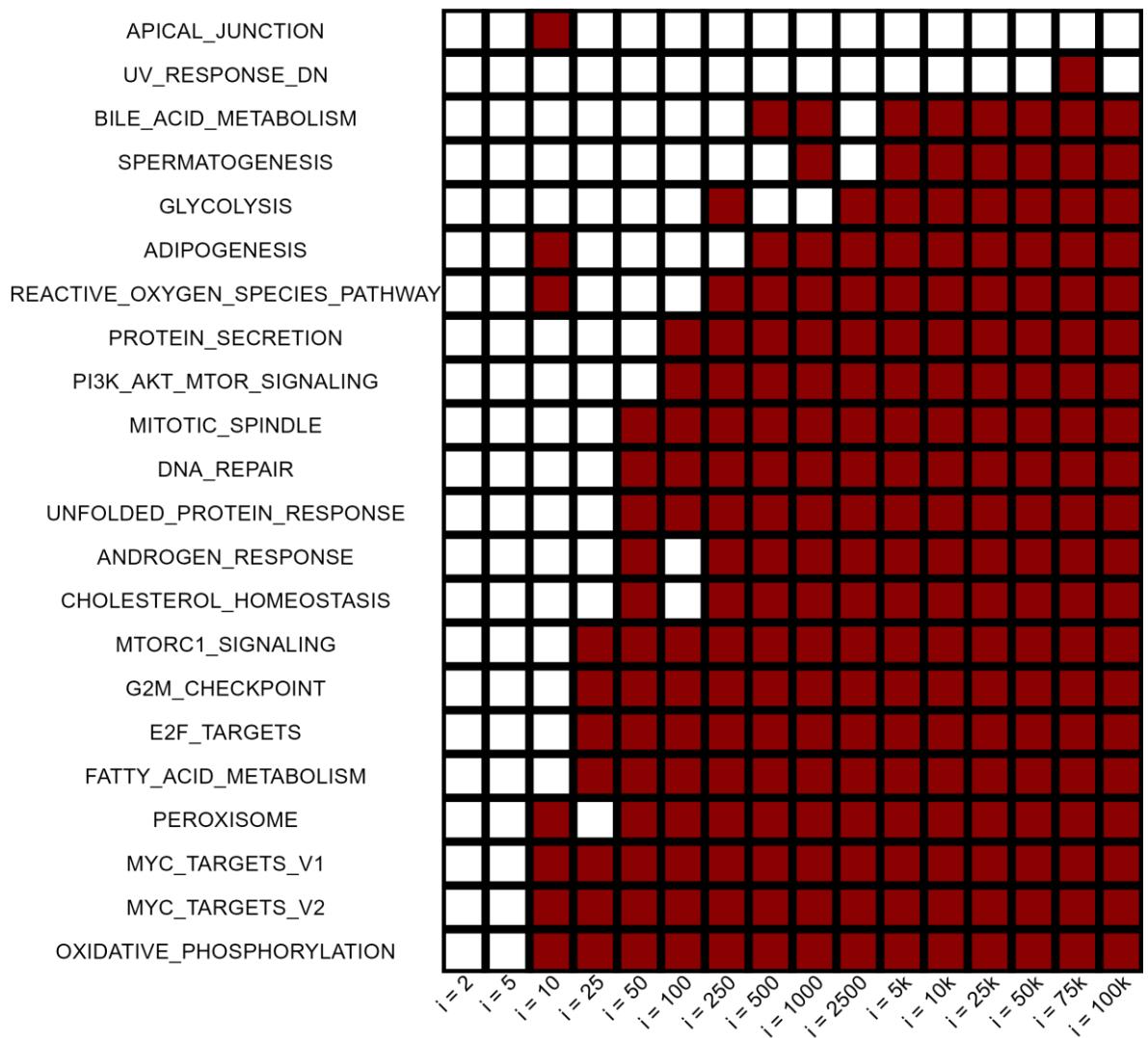


Figure S1. Identification of recommended number of bootstraps. With different values for number of bootstrapping rounds were tested, $i=1000$ was found to provide the best trade-off between efficiency and power. Displayed here are exemplary results for the association between *FLT3* and the 50 MSigDB hallmark gene sets in the expression data set of 136 AML patients. We inspected the results of 16 GeneCOCOA runs with bootstrap rounds ranging from 2 to 100k. All terms which were identified as significant ($P_{\text{adj}} < 0.05$) in any of the runs are listed as rows, while columns indicate the different GeneCOCOA runs. White tiles indicate that this term was not identified as significant in the respective GeneCOCOA run, while red indicates that it was returned as one of the terms significantly associated with *FLT3* expression.

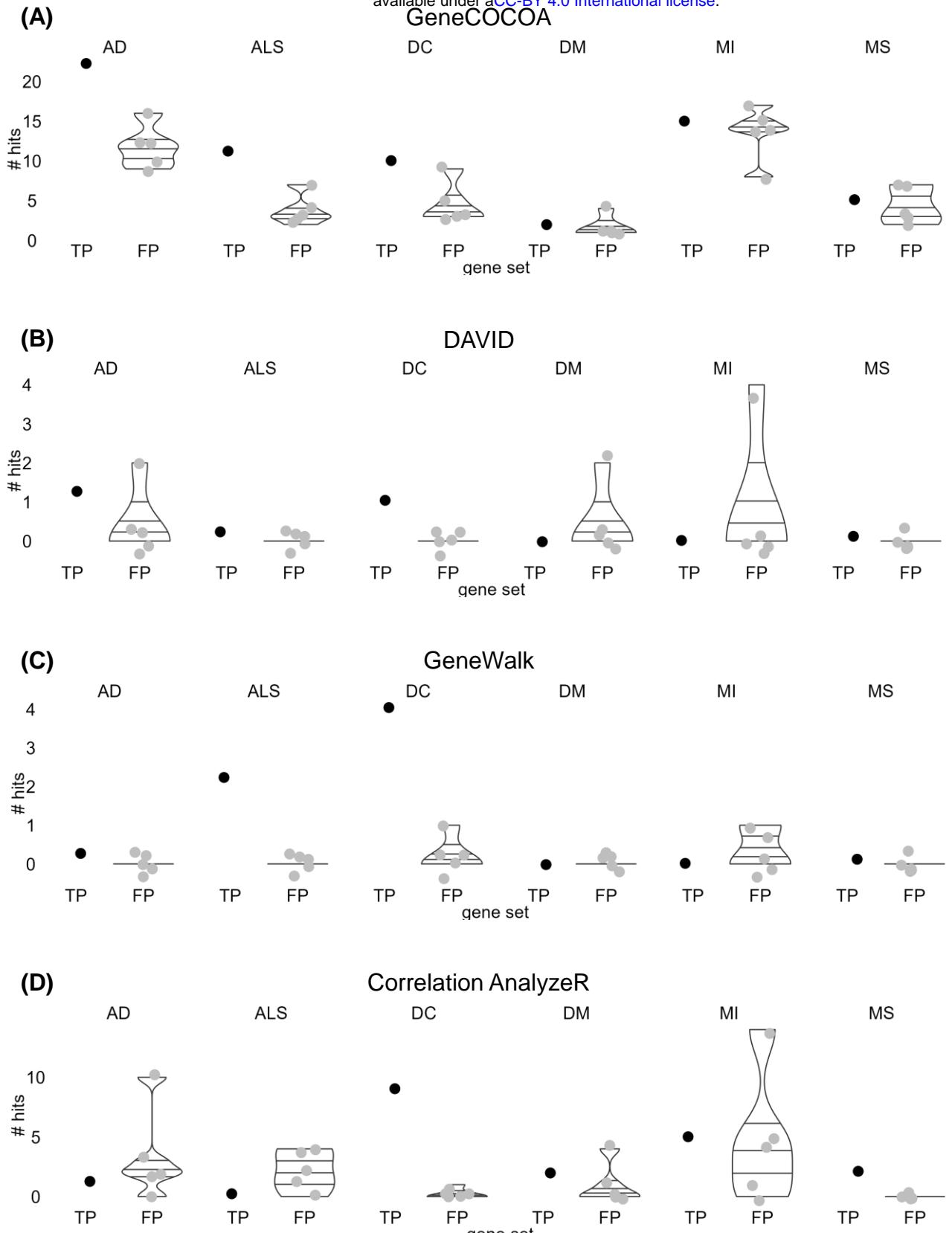
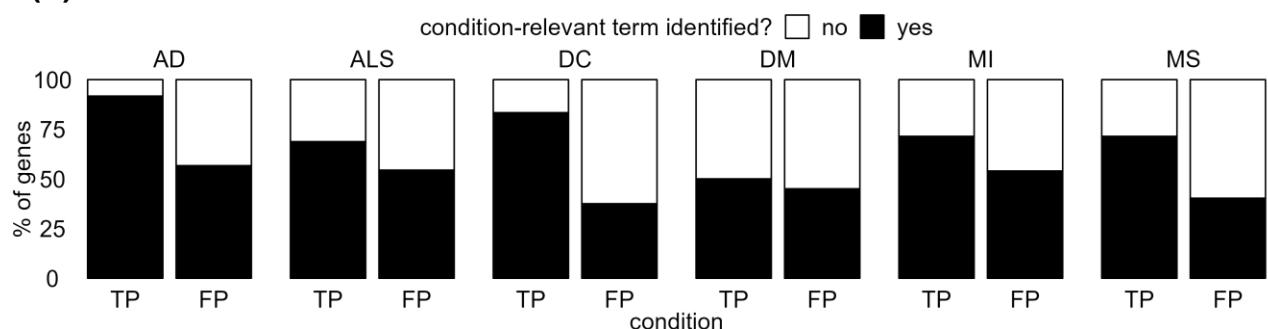


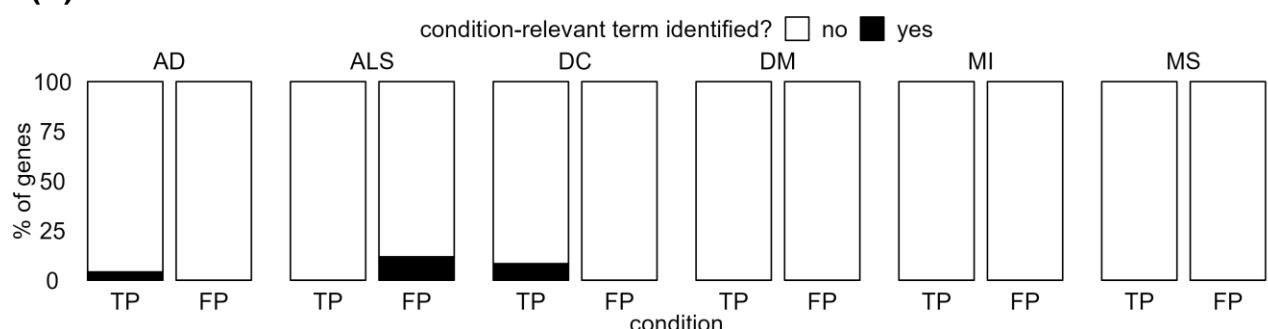
Figure S2. Comparison of true positives and false positives hits across gene sets. For each gene set, we evaluated the number of hits by method, differentiating true positives (TP; hits in the original disease context) from false positives (FP; hits in other disease contexts). **(A)** Across gene sets, the number of hits returned by GeneCOCOA in the TP condition is either higher or comparable to any other number of hits in FP contexts. DAVID and GeneWalk recover a smaller number of hits in general. While GeneWalk – except for the case of MI – manages to retain a good TP:FP ratio **(C)**, DAVID **(B)** and Correlation AnalyzeR **(D)** report more FP than TP hits in a third of the cases.

(A)



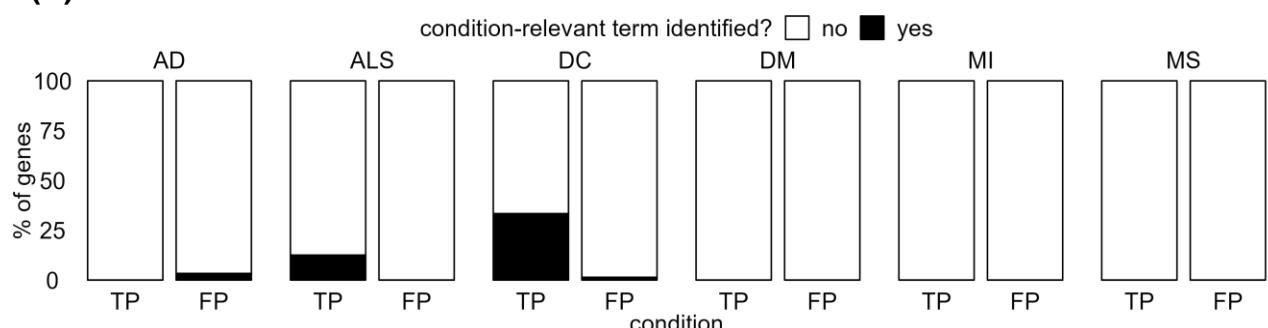
(B)

DAVID



(C)

GeneWalk



(D)

Correlation AnalyzeR

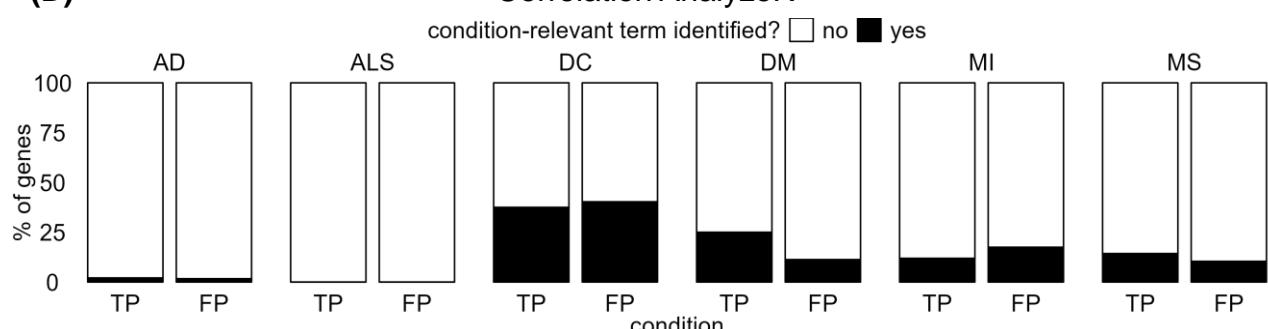


Figure S3. Comparison of true positives and false positives across conditions. For each condition, the set of genes which are disease-relevant as per DisGeNET can be defined as the *true* data set, all other genes are defined as *other*. (A) Comparing the proportions of *true* genes with disease-relevant term hits against the proportion of *other* genes with disease-relevant term hits, GeneCOCOA consistently manages to recover more *true* hits than *other* hits across all conditions. (B) DAVID and (C) GeneWalk show only a negligible proportion of *other* hits. Yet, these methods also fail to recover a substantial amount of *true* hits. (D) In two cases, Correlation AnalyzeR shows slightly more *true* than *other* hits. Yet, in all other cases there are at least as many *other* as *true* hits. The overall percentage of *true* hits recovered is smaller than in the GeneCOCOA runs.

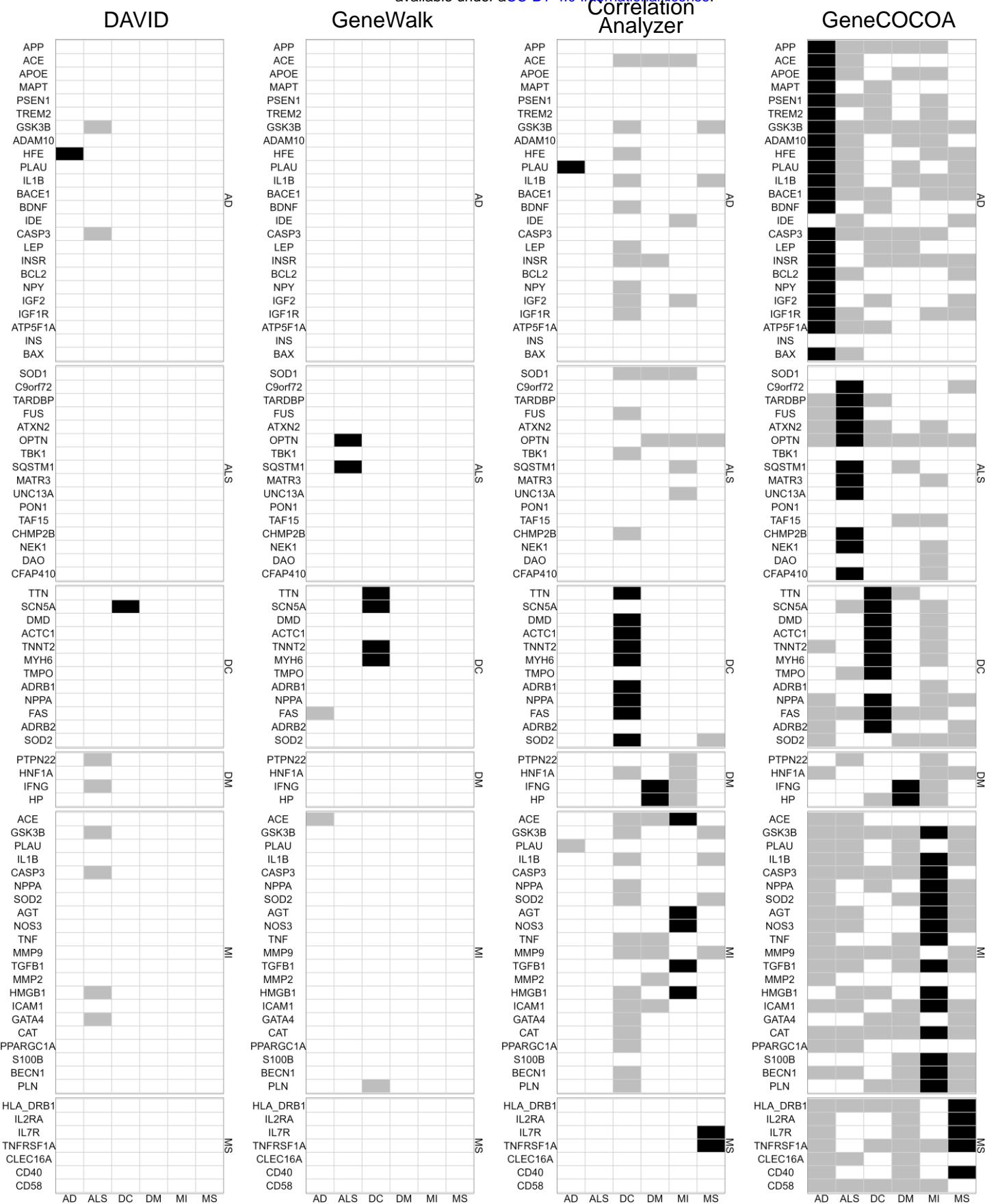


Figure S4. False/true positive matrices for all three methods with gene symbols. Summary of true positive and false positive gene-term associations per set of disease-relevant genes across all diseases, as computed by DAVID, GeneWalk, Correlation AnalyzeR and GeneCOCOA.