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Abstract

Extraction of meaningful biological insight from gene expression profiling often focuses
on the identification of statistically enriched terms or pathways. These methods typically
use gene sets as input data, and subsequently return overrepresented terms along with
associated statistics describing their enrichment. This approach does not cater to analyses
focused on a single gene-of-interest, particularly when the gene lacks prior functional
characterization. To address this, we formulated GeneCOCOA, a method which utilizes
context-specific gene co-expression and curated functional gene sets, but focuses on
a user-supplied gene-of-interest. The co-expression between the gene-of-interest and
subsets of genes from functional groups (e.g. pathways, GO terms) is derived using linear
regression, and resulting root-mean-square error values are compared against background
values obtained from randomly selected genes. The resulting p values provide a statistical
ranking of functional gene sets from any collection, along with their associated terms,
based on their co-expression with the gene of interest in a manner specific to the context
and experiment. GeneCOCOA thereby provides biological insight into both gene function,
and putative regulatory mechanisms by which the expression of the gene-of-interest is
controlled. Despite its relative simplicity, GeneCOCOA outperforms similar methods in
the accurate recall of known gene-disease associations. GeneCOCOA is formulated as an
R package for ease-of-use, available at https://github.com/si-ze/geneCOCOA.

Author summary

Understanding the biological functions of different genes and their respective products
is a key element of modern biological research. While one can examine the relative
abundance of a gene product in transcriptomics data, this alone does not provide any
clue to the biological relevance of the gene. Using a type of analysis called co-expression,
it is possible to identify other genes which have similar patterns of regulation to a
gene-of-interest, but again, this cannot tell you what a gene does. Genes whose function
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has previously been studied are often assembled into groups (e.g. pathways, ontologies),
which can be used to annotate gene sets of interest. However, if a gene has not yet been
characterized, it will not appear in these gene set enrichment analyses. Here, we propose
a new method - GeneCOCOA - which uses co-expression of a single gene with genes in
functional groups to identify which functional group a gene is most similar too, resulting
in a putative function for the gene, even if it has not been studied before. We tested
GeneCOCOA by using it to find gene-disease links which have already been scientifically
studied, and showed that GeneCOCOA can do this more effectively than other available
methods.

Introduction 1

Advances in sequencing technology have decreased the costs and increased the accuracy of 2

transcriptome profiling [1]. This has resulted in an abundance of datasets generated from 3

a wide variety of experimental conditions, many of which are made publicly available [2–4]. 4

As such, interrogation of public sequencing data has become an increasingly important 5

step in research focused on a specific gene or gene product of interest. Normally, this 6

is limited to detecting whether the gene-of-interest is expressed in a given dataset or 7

whether the expression of the gene changes in a particular experimental condition [5]. 8

However, this approach does not supply insight into any potential functions of the gene- 9

of-interest in the data, or any regulatory mechanisms which might govern expression of 10

the gene. 11

Functional enrichment analyses carried out in the course of differential gene expression 12

analysis usually relies upon the input of one or more gene sets which are derived 13

throughout the course of the analysis (e.g. differentially expressed genes) [6]. Curated 14

associations between each gene and sets of annotations such as ontologies [7], pathways 15

[8,9] and diseases [10] are then computed. These associations are subsequently statistically 16

analyzed for overrepresented terms, considering the size of the input gene set, the 17

number of genes associated with the given term, and enrichment in hits compared to an 18

appropriate background gene set [11–15]. The outcome of these analyses is a list of terms 19

stratified by statistical values such as p value, adjusted p value, precision and recall. 20

Results from these approaches have the potential to inform future research directions and 21

wet-lab experiments. However, they cannot provide insight into the functional relevance 22

of individual genes, especially when genes lack prior functional characterization. 23

One approach that can be used to examine potential function of an individual gene-of- 24

interest (GOI) is to model the expression of the GOI against the expression of other genes 25

present in a given dataset, in a co-expression analysis [16]. Co-expression pertains to 26

identification of genes which display common patterns of regulation, and may therefore be 27

subject to similar gene regulatory mechanisms (e.g. transcription factors). Methods for 28

co-expression analysis range from simple models of linear regression between expression 29

values of genes [17], to construction of weighted co-expression networks consisting of 30

gene modules [18] and deep learning-based approaches [19]. Assigning functional and 31

biological significance to an individual gene based on co-expression requires further 32

analysis, however, the dissection and stratification of results of co-expression analyses 33

can be challenging [20]. This means that potentially interesting insight into functions of 34

individual genes may be lost during transitions between methods. 35

Methods aiming to determine the functions of individual genes are available, and 36

implement different approaches (see Table 1). Some have the objective to identify genes 37

or genetic variation relevant to certain tissues, cell types, or cell lines (e.g. CONTENT 38

[21], and ContNeXt [22]). While these methods are useful for the identification of 39

significant gene-context associations, they do not predict the biological function of the 40

given gene. Other methods use network properties (e.g. NetDecoder [23]) or apply 41
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coessentiality analyses (FIREWORKS [24]) to characterize gene-gene associations in a 42

given context. These tools help to identify other genes significantly associated with a 43

GOI in a context-specific manner, but again do not link these results with biological 44

meaning. GeneWalk [25], DAVID [14, 26] and Correlation AnalyzeR [27] are three tools 45

which come closest to determining the function of individual genes, in that they aim 46

to provide context-specific biological meaning whilst being able to focus on individual 47

genes. 48

GeneWalk [25] takes a user-provided input list of genes and assembles a network 49

composed of these genes and associated Gene Ontology (GO) terms. Network repre- 50

sentation learning with random walks is then performed on the network. Statistical 51

association between a given gene and GO terms is determined through comparison 52

of node similarities between the true network and a null distribution based on node 53

similarities in randomized networks. 54

Alternatively, associations between individual genes and biological functions can be 55

performed using DAVID [14,26], which takes a list of genes as input and returns GO 56

terms, protein domain information and curated pathways which are statistically enriched 57

in their association with a given gene, computed using Fisher’s exact test. While these 58

approaches do provide insight into putative functions of individual genes, neither method 59

considers the expression of the provided genes or other genes relevant to the GO terms 60

in question. Not considering expression as a feature in these analyses could result in 61

missing dynamic relationships between the gene-of-interest and the genes, or subsets of 62

genes, associated with the given term. Additionally, the implementation of GeneWalk is 63

limited to the use of GO terms, and cannot be implemented with other curated gene 64

sets which may provide more relevant functional annotations in a specific context, such 65

as disease. 66

One method which considers co-expression and outputs putative gene function is 67

Correlation AnalyzeR [27]. Here, weighted Pearson correlations between normalized gene 68

expression counts are calculated between a gene-of- interest and other genes present in 69

the expression data. A ranked gene list is then assembled from the resulting correlation 70

values, which is used as input to gene set enrichment analysis, resulting in statistically 71

enriched terms which are theoretically co-expressed with the gene-of-interest. However, 72

the authors state that for a robust analysis, datasets of more than 30 samples and at 73

least 4 different studies should be used, limiting the contexts in which this method can 74

be used. 75

We sought to explore how co-expression and functional enrichment analyses can be 76

combined into a single workflow which provides insight into the function of a specific 77

GOI in a given context provided by the input data. Such a method would permit a 78

comprehensive assessment of expression patterns and putative functions of a GOI across 79

multiple experimental conditions using experimental data generated by the user. To this 80

end, we propose GeneCOCOA, an R package which identifies and ranks functional gene 81

sets which are co-expressed with a user-supplied GOI. GeneCOCOA may be run using 82

either user-supplied or publicly available gene expression data, and can utilize several 83

curated databases of gene annotations in order to compute functional enrichments in 84

co-expression. 85

Materials and methods 86

Databases 87

For the functionality of GeneCOCOA described herein, curated gene sets from the 88

Hallmark database [28], as well as genes annotated to the Biological Process domain of 89

Gene Ontology [29] (GO:BP) were used. 90
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Input data 91

The use cases described in this manuscript utilized publicly available transcriptome 92

profiling data available from Gene Expression Omnibus [2,3] under the accession numbers 93

GSE36980 [30], GSE28253 [31], GSE5406 [32], GSE9006 [33], GSE48060 [34], GSE17048 94

[35], and GSE114922 [36]. 95

The RNA-sequencing data arising from acute myeloid leukemia patients [37] is 96

available publicly from the European Genome-Phenome Archive [38] under the accession 97

EGAD00001008484, and initial access prior to the publication of the data was provided 98

by Prof. Dr. Thomas Oellerich and Dr. Sebastian Wolf (Goethe University Frankfurt, 99

University Hospital Frankfurt). 100

Preprocessing 101

Raw reads were aligned against the hg38 genome using Bowtie2 (v2.3.5.1) [39], with 102

default parameters, and quantified using Salmon (v1.5.2) [40], with default parameters. 103

Curated quantified and normalized expression data sets were fetched with gemma.R [41]. 104

Detection of gene sets which are co-expressed with a gene-of- 105

interest 106

Determining number of gene subsets 107

The number of gene subsets sampled from each gene set i is implemented as a user- 108

controlled parameter. In test runs, we determined i = 1000 to provide an acceptable 109

compromise between efficiency and statistical power (see Supplementary Figure S1). 110

Therefore, we set i = 1000 for all analyses in this manuscript. 111

Generation of gene subsets 112

Initially, a number of subsets (default 1000) are derived from a given gene set (e.g. 113

pathway, GO term), as described by the following: 114

Gi ⊂ g1, g2, ..., gN , where |Gi| = n for i = 1, 2, ..., 1000 (1)

where Gi is the i-th subset of n genes g1, g2, ..., gN which make up the total gene set G. 115

Linear regression models 116

The dataset-specific expression values of each gene in a subset of genes serve as predictor 117

variables in a linear regression model with the expression of a GOI being the outcome 118

variable, as described by: 119

y = β0 + β1g1 + β2g2 + ...+ βngn + ε (2)

where g1, g2, ..., gn represent the dataset-specific expression values of the genes of the 120

subset, β0, β1, β2, ..., βn are the coefficients for each predictor variable, y represents the 121

predicted expression of the GOI, and ε represents the error of the linear regression model. 122

Root-mean-square error calculation 123

For each gene subset, the linear regression model produces predicted values ŷi based 124

on the predictors gi. The root-mean-square error (RMSE) for the i-th subset is then 125

calculated as: 126
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RMSEi =

√√√√ 1

n

n∑
j=1

(yj − ŷij)2 (3)

where yj is the true expression of the GOI and ŷij is the predicted expression from the 127

linear regression model for the j-th observation using the subset Gi. 128

The same procedure is performed for a size-matched set of randomly sampled genes, 129

resulting in two sets of RMSE values. One derived from linear regression models 130

predicting the expression of the GOI from subsets of genes from a given gene set, and 131

one derived from linear regression models predicting the expression of the GOI from 132

randomly sampled subsets of genes expressed in the given dataset. 133

Computation of gene set-specific enrichment P values 134

RMSE values RMSEi, ..., RMSE1000 derived from subsets Gi, ..., G1000 of a given gene 135

set G are compared against RMSE values rRMSEi, ..., rRMSE1000 derived from ran- 136

domly subset genes using a Student’s t-test. The resulting P value is subsequently 137

adjusted using the Benjamini-Hochberg method [42]. This results in an adjusted p value 138

for each gene set in a given curated database, describing the strength of association 139

between the genes comprising each gene set and the user-provided GOI. 140

Inter-gene set comparison and visualization 141

In order to further stratify gene sets of potential interest, the direction of co-expression 142

between the GOI and curated gene sets is also calculated during the course of the 143

workflow, and is included as a parameter for visualization of results. This value is 144

calculated as follows: 145

impacti = log2

(∏n
j=1 Corr(GOI,Gj)∏n
k=1 Corr(GOI,Rk)

)
(4)

where Corr(GOI,Gj) represents the correlation between the GOI and a gene of a given 146

gene set G of size n, and Corr(GOI,Rk) represents the correlation between the GOI 147

and a gene from a size-matched set of randomly sampled genes R. impacti > 0 thus 148

indicates that the co-expression between the GOI and the gene set G is smaller than a 149

random baseline mean co-expression. 150

Comparison to similar methods 151

GeneCOCOA was compared to other methods which aim to annotate the functions of 152

individual genes by testing the ability of each tool to accurately link genes associated 153

with a given disease to GO terms implicated in the same disease. The methods considered 154

for comparison were DAVID [14], GeneWalk [25] and Correlation AnalyzeR [27]. 155

Definition of disease-relevant genes 156

In order to define a relevant gene set for each condition to be studied, the DisGeNET [43] 157

platform was queried via web interface (https://www.disgenet.org/search) with the 158

full name of each condition (“Amyotrophic Lateral Sclerosis”, “Alzheimer’s Disease”, 159

“Dilated Cardiomyopathy”, “Insulin-dependent Diabetes Mellitus”, “Myocardial Infarc- 160

tion” and “Multiple Sclerosis”). As of 14-06-2023, the top-ranked hits were the entries 161

with the UMLS/concept IDs C0002736, C0002395, C0007193, C0011854, C0027051 162

and C0026769. From each summary of gene-disease associations (GDA), genes with a 163
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Scoregda ≥ 0.5 were considered as substantially associated with the disease and included 164

in the input set of disease-relevant genes. 165

Definition of disease-relevant terms/gene sets 166

To obtain disease-relevant gene sets, the MalaCards database [44] was queried via 167

web interface (https://www.malacards.org/) with the full name of the condition 168

(“Alzheimer’s Disease”, “Amyotrophic Lateral Sclerosis”, “Dilated Cardiomyopathy”, 169

“Insulin-dependent Diabetes Mellitus”, “Myocardial Infarction” and “Multiple Sclerosis”) 170

on 14-06-2023. The top hit was selected based on the MalaCards InFormaTion Score 171

and the Solr relevance score provided by MalaCards. For each disease card (MalaCards 172

IDs ALZ065, AMY091, DLT002, TYP008, MYC007 and MLT020, respectively), the 173

complete list of Gene Ontology Biological Process terms was downloaded and treated as 174

the ground truth collection T for the respective disease. 175

Construction of input gene lists for GeneWalk and DAVID 176

To assemble a context-specific gene network, GeneWalk requires a list of relevant genes 177

obtained from a specific experimental assay as an input. To this end, GEO2R [3] was used 178

to obtain a list of differentially expressed (DE) genes for each of the publicly available 179

transcriptomic gene sets. Any gene with an adjusted p < 0.05 between control and 180

disease condition, as calculated by DESeq2 [45], was considered differentially expressed. 181

To ensure that all disease-relevant genes obtained via DisGeNET would be included as 182

well, the union of disease-relevant genes and DE genes was obtained. Thus, a context-set 183

C was created for each condition. 184

Systematic comparison of GeneCOCOA, Correlation AnalyzeR, GeneWalk 185

and DAVID 186

Each method was used to determine the association of disease-relevant genes (as per 187

defined via DisGeNET, see subsection Definition of disease-relevant genes) with disease- 188

relevant gene sets (as defined via MalaCards, see previous subsection). Since GeneWalk 189

results are computed on Gene Ontology annotations [7], we restricted the comparison to 190

gene sets from the GO:BP collection. 191

The ability of each tool to report any disease-relevant GO:BP term for a list of 192

disease-relevant genes-of-interest across different diseases was tested. We distinguished 193

two cases: (1) A disease-relevant gene is analyzed in a condition matching its disease. In 194

this case, we expect the method to report a significant association between the gene and 195

any of the disease-relevant GO:BP terms reported in MalaCards (”true positive”). (2) A 196

disease-relevant gene-of-interest is analyzed using data arising from a separate disease 197

where said gene is not annotated as being important in DisGeNet, therefore a significant 198

association between the gene and the terms present in the MalaCard for the disease is 199

not expected (”false positive”). 200

GeneCOCOA, GeneWalk, DAVID and Correlation AnalyzeR [27] were run for every 201

combination of disease-relevant genes – Alzheimer’s Disease (AD): 24, Amyotrophic 202

Lateral Sclerosis (ALS): 16, Dilated Cardiomyopathy (DC): 12, Diabetes Mellitus (DM): 203

4, Myocardial Infarction (MI): 21, Multiple Sclerosis (MS): 7 – and diseases. In each case, 204

a disease-specific expression data set was provided as input, a single disease-relevant 205

gene was provided as the gene-of-interest, and the GO:BP ontology provided as the 206

collection of gene sets to rank. For each disease, GeneWalk and DAVID were run with 207

the appropriate context-set C (see previous subsection) as the input list (including the 208

additional genes-of-interest which are not functionally linked to the disease in question, 209
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see case (2) above). Gene-of-interest-associated GO:BP terms were parsed from the 210

results of each method using a threshold of padjusted < 0.05. 211

GeneCOCOA R package 212

GeneCOCOA is formulated as an R package and is hosted on GitHub at the URL 213

https://github.com/si-ze/geneCOCOA. 214

Results 215

GeneCOCOA identifies functional gene sets co-expressed with a 216

gene-of-interest 217

The COmparative CO-expression Analysis focused on a Gene-of-interest (GeneCOCOA) 218

presented here incorporates multiple approaches which aim to functionally annotate 219

genes following gene expression profiling (Fig. 1A). Several approaches exist for the 220

analysis of experiment-specific co-expression patterns (e.g. WGCNA [18], CemiTool [46]), 221

the harnessing of curated knowledge (e.g. Molecular Signature Database (MSigDB) [28]), 222

as well as for the integration of prior knowledge with experiment-specific co-expression 223

patterns (e.g. GSEA [47], Enrichr [12]). Some methods also aim to apply prior knowledge 224

to predict the functions of individual genes, most notably DAVID [26], GeneWalk [25] 225

and Correlation AnalyzeR [27]. However, few methods exist which utilize co-expression 226

and curated gene sets to predict gene function (summarized in Table 1). To our 227

knowledge, only Correlation AnalyzeR [27] provides this option in single-gene mode. Yet, 228

its results are based on a single correlation analysis. GeneCOCOA has been developed 229

as an integrative method which aims to apply curated knowledge to experiment-specific 230

expression data in a gene-centric manner based on a robust bootstrapping approach. 231

The input to GeneCOCOA is a list of curated gene sets (e.g. from Gene Ontology, 232

MSigDB, pathways), a gene-of-interest (GOI) that the user wishes to interrogate, and 233

a gene expression matrix of sample ∗ gene (Fig. 1B, top). From each gene set, n 234

genes are sampled and used as predictor variables in a linear regression modelling the 235

expression of the GOI as the outcome variable (Fig. 1B, middle). A background 236

model is created analogously by sampling n random genes from the complete expression 237

data set. For bootstrapping, this procedure is repeated i times, i being a parameter 238

that can be specified by the user. Testing different values of i, we found i = 1000 to 239

provide the best tradeoff between efficiency and power (see Supp. Fig. S1). The i gene 240

set model errors and i random model errors are compared in a t-test. Gene sets with 241

padjusted < 0.05 are considered to model the expression of the GOI better than random, 242

and the padjusted values are used to stratify and rank gene sets (Fig. 1B, bottom). 243

The results output by GeneCOCOA aim to provide insight into potential functions of 244

the gene-of-interest in the specific context provided by the gene expression data. 245

Detection of context-specific changes in gene function using 246

GeneCOCOA 247

To test the ability of GeneCOCOA to detect changes in gene function resulting from 248

disease, it was applied to identify functions of the gene FMS-like tyrosine kinase 3 (FLT3 ) 249

in acute myeloid leukemia (AML). AML is a malignancy of the hematopoietic system 250

affecting the differentiation and maturation of myeloid blood cells. Characterized by 251

a complex genetic landscape, AML can be divided into various subtypes, which differ 252

in both phenotype and prognosis. One common (25% of patients [60]) mutation linked 253

to AML is the internal tandem duplication (ITD) of FLT3. Normally, expression and 254
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Table 1. Available methods for downstream analysis of disease contexts and
genes of interest
(a) Approaches to co-expression analysis (not supporting individual gene perspective)

Method Input data Description
WGCNA [18] Expression matrix Identifies modules of highly correlated genes, identifies most relevant

genes of a module, relates modules to one another and to external traits
such as GO-terms.

CEMiTool [46] Expression matrix Identifies modules of highly correlated genes, identifies most relevant
genes of a module, integrates external data (e.g. interactome, pathways).

FIREWORKS [24] Gene list Ranks top correlations and anticorrelations in an undirected, unweighted
network and returns gene-gene associations. No knowledge distillation.

CONTENT [21] Expression matrix +
SNPs

Computes associations between SNPs and tissues by decomposing ex-
pression data across samples into context-shared and context-specific
components. No knowledge distillation.

GeneFriends [48] Gene list Uses the gene list as a seed for the construction of co-expression network
to find highly correlated genes in pre-computed expression data of a
selected tissue. Thereby allows for functional annotation of a single-gene.

COXPRESdb [49] Gene list Queries a precomputed database to identify highly coexpressed genes,
genes with the same GO annotation and genes which are co-expressed
with the GOIs in a selected tissue of a selected organism.

diffcoexp [50] Expression data of
two conditions

Compares two expression data sets against each other and identifies gene
pairs with significantly different correlation coefficients under the two
conditions. No knowledge distillation.

HGCA [51] GOI Identifies top co-expressed genes for the provided GOI (precomputed
on representative tissue samples), performs various built-in gene term
enrichment analyses on the co-expression module.

(b) Approaches to knowledge distillation (not supporting individual gene perspective)

Method Input data Description
Myers et al. (2008)
[52]

Various types of raw
data

Trains a support vector machine classifier on the raw data and a list of
GO terms using annotated genes as positive examples to predict gene
function.

ClusterProfiler [53] Differential expres-
sion analysis results

Returns relevant terms (e.g. GO terms, KEGG, ...) associated with
enriched gene sets.

PANTHER.db Gene list Returns relevant terms (e.g. GO terms, pathways, ...) associated with
enriched gene sets.

ReactomePA Gene list Supports hypergeometric tests and gene set enrichment analyses, returns
enriched REACTOME pathways.

NOA [54] Gene list Infers link ontology for given gene set using associated GO terms, performs
enrichment analysis on resulting network.

activation levels of FLT3 are important for maintaining a balance of proliferation and 255

differentiation in hematopoietic cells [61]. FLT3 -ITD results in a constitutive activation 256

of the kinase, promoting a hyperproliferative state and cell survival [62]. FLT3 -ITD 257

is associated with a higher disease burden, higher relapse rate and inferior overall 258

survival [14]. 259

A whole-transcriptome RNA-sequencing dataset of 136 AML patients [37] was sub- 260

set for patients with FLT3 -ITD mutations (31 patients). Taking FLT3 as the GOI, 261
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(c) Gene function prediction based on a user-provided context

Method Input data Description
DAVID [26] Gene list Summarises genes based on shared categorical data from public resources,

runs modified Fisher’s Exact Test for gene-enrichment analysis. Individual
gene-GO associations retrievable.

GeneWalk [25] Gene list Assembles context-specific network from provided gene list, associates
GO terms using public resources, applies an unsupervised network rep-
resentation learning to retrieve most relevant GO terms. Individual
gene-GO associations retrievable.

NetDecoder [23] GOI + Phenotype
data of two traits

Computes differential gene-gene associations and network characteristics
(e.g. genes with high flow differences between trait 1 and trait 2). No
knowledge distillation.

Correlation Ana-
lyzeR [27]

GOI + Expression
matrix

Takes custom expression data or fetches public data sets. Uses genome-
wide Pearson correlations as a ranking metric for GSEA algorithm, returns
gene sets correlated with a gene of interest.

(d) Gene function prediction agnostic to user-provided context

Method Input data Description
GeneMANIA [55] GOI Builds association networks from different publicly available data types

(co-expression, co-regulation, co-localisation, shared protein domains, ...).
Not customisable to individual experiment.

ContNeXt [22] Gene list Computes gene-tissue associations across three different contexts (i.e.,
tissues, cell types, and cell lines). No knowledge distillation. Expression
data precomputed.

GIANT [56] GOI Integrates thousands of datasets to predict interactions of the provided
GOI and provide associated GO terms.

NewGOA [57] GOI Combines publicly available data on protein interactions and GO an-
notations in a graph and uses a random walk to predict function. Not
customisable to individual experiment.

BiRWLGO [58] G OI Combines lncRNA-lncRNA similarity, lncRNA-protein interaction and
protein-protein interaction data into hybrid graph, applies bi-random walk
to predict lncRNA function. Not customisable to individual experiment.

NMFGO [59] GOI Builds gene-term association matrix, uses a semantic similarity approach
to predict gene function.

GeneCOCOA was used to assess the significance of the association between FLT3 and 262

gene sets defined by GO Biological Processes (GO:BP). For comparison, a control set of 263

48 healthy CD34+ bone marrow samples was constructed from data under the GEO 264

accession GSE114922 [36]. Again, GeneCOCOA was used to detect and rank associations 265

between FLT3 and GO:BP terms (Fig. 2A). 266

Physiologically, FLT3 is involved in immune function and regulation of hematopoi- 267

etic cell proliferation and differentiation [61]. Accordingly, among the GO:BP terms 268

associated with FLT3 by GeneCOCOA in healthy CD34+ cells are terms associated 269

with immune response (e.g. ”Regulation of humoral immune response”, ”Chronic inflam- 270

matory response”) and terms indicating both proliferative processes (e.g. ”Nucleoside 271

monophosphate biosynthetic process”) and differentiation (e.g. ”Positive regulation of 272

B-cell mediated immunity”, ”Regulation of phenotypic switching”) (Fig. 2B). This 273

complex profile is lost in the GeneCOCOA results for FLT3 co-expression patterns 274

in AML blasts (Fig. 2C). The top 10 GO:BP terms reflect mitochondrial processes 275

(e.g. ”Mitochondrial gene expression”) and cell growth/division (e.g. ”Regulation of 276
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DNA-dependent DNA replication”, ”Ribosome biogenesis”), reflecting the switch to a 277

predominantly proliferative profile. The results thus replicate dysregulation of FLT3 278

expression and function previously described in literature, indicating that GeneCOCOA 279

may be able to detect context-dependent changes in gene function, given appropriate 280

data. 281

GeneCOCOA detects disease-driven alterations in gene co-expression282
patterns 283

In further proof-of-principle testing, GeneCOCOA was applied to gene expression datasets 284

arising from diseases with well-studied causative genes. Here, the direction of co- 285

expression between the gene-of-interest and each curated gene set was also analyzed in 286

each case (denoted ’Impact ’, see Eq. 4 in Materials and methods). Disease data sets 287

were compared against healthy control data sets in terms of their co-expression patterns 288

between a known causative GOI and fifty MSigDB Hallmark gene sets [28]. 289

One disease in which causative genes have been suggested in literature is amyotrophic 290

lateral sclerosis (ALS). The first gene to be identified as causative for this neurodegenera- 291

tive disease was superoxide dismutase 1 (SOD1 ) [63]. SOD1 codes for Cu/Zn superoxide 292

dismutase type-1, an enzyme crucial for cellular antioxidant defense mechanisms. Muta- 293

tions of SOD1 in ALS are known to destabilize the protein, leading to misfolding. This 294

triggers various pathophysiological events such as protein accumulation, mitochondrial 295

and/or proteasome dysfunction and accumulation of reactive oxygen species (ROS). 296

This switch between contexts is reflected in the GeneCOCOA results when SOD1 is 297

taken as the gene-of-interest, along with gene expression data from disease and healthy 298

conditions. When GeneCOCOA was run with gene expression data from lymphocytes 299

of 11 healthy donors, SOD1 was closely linked with immune function (e.g. ”Allograft 300

rejection”, ”TNF-α signalling via NF-κB”, ”Inflammatory response”), as well as gene 301

sets related to oxidative stress (e.g. ”Peroxisome”, ”ROS Pathway”) (Fig. 3A, left). In 302

accordance with literature [64,65], many of these associations are lost in the lymphocyte 303

transcriptomes of 11 patients with ALS. Instead, a gain in association between SOD1 and 304

genes associated with oxidative phosphorylation could be observed, reflecting potential 305

mitochondrial defects (Fig. 3A, right). Also indicative of the pathophysiology of 306

SOD1 -driven ALS was the association between SOD1 expression and the Hallmark gene 307

set ”Unfolded protein response”. The detection of this term – specifically in the disease 308

samples – demonstrates that GeneCOCOA has the potential to identify context-specific 309

co-expression patterns with disease relevance. 310

In another use case, GeneCOCOA was run using gene expression data originating from 311

isolated lymphocytes of 10 patients with familial hypercholesterolemia (FH), comparing 312

them to 13 healthy control samples. FH is an autosomal dominant disorder of lipoprotein 313

metabolism characterized by high levels of cholesterol. The most common causes are 314

mutations in the gene coding for low-density lipoprotein receptor (LDLR). Physiologically, 315

the LDL transmembrane receptor mediates the internalization and lysosomal degradation 316

of LDL. Mutations disrupting the function of LDLR lead to elevated plasma levels of 317

LDL, promoting accelerated atherosclerosis and coronary heart disease [66, 67]. In 318

correspondence with these mechanisms described in literature, the GeneCOCOA results 319

indicated that the functional association between LDLR and genes annotated to be 320

important for ”Cholesterol homeostasis” became stronger in FH samples compared to 321

control samples (Fig. 3B). Again, these results suggest that GeneCOCOA is able to 322

detect changes in gene co-expression which are pertinent to disease-specific conditions. 323

While these results were promising, the question remained of how the approach 324

implemented in GeneCOCOA compared to methods with the similar aim of functionally 325

annotating individual genes. 326
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GeneCOCOA provides a comprehensive gene-focused co-expression 327

and functional analysis missing from similar methods 328

To our knowledge, only few approaches to the problem of inferring the function of a 329

specific gene-of-interest (GOI) been published (Table 1), most notably DAVID [14], 330

GeneWalk [25] and Correlation AnalyzeR [27]. 331

DAVID is a web-accessible set of functional annotation tools which allows for the 332

rapid mining of a wide range of public resources. Provided with a list of gene identifiers, 333

DAVID summarizes them, based on shared categorical data in gene ontology, protein 334

domain, and biochemical pathway membership, returning a modified Fisher Exact p-value 335

for gene-enrichment analysis. 336

GeneWalk allows for the GO enrichment analysis of an experiment-specific gene set 337

(e.g. differentially expressed genes). Using publicly available resources, GeneWalk first 338

assembles a context-specific gene network which represents both interactions between 339

the provided genes and links to GO terms, then applies an unsupervised network 340

representation learning algorithm (DeepWalk [68]) to retrieve the GO terms of highest 341

statistical relevance. 342

Correlation AnalyzeR [27] has been developed for the exploration of co-expression 343

correlations in a given data set, and in single-gene mode also supports the prediction 344

of individual gene functions and gene-gene relationships. In an adaption of the Gene 345

Set Enrichment Analysis [47] (GSEA) algorithm, it employs genome-wide Pearson 346

correlations as a ranking metric to determine the gene sets correlated with a GOI. 347

GeneCOCOA and Correlation AnalyzeR [27] exploit the user-provided expression 348

data to gain insight into gene correlations in a context-specific manner. GeneWalk and, 349

less explicitly, DAVID, require a list of input genes to assemble the context. Using 350

gemma.R [41] and GEO2R [3] for the selection of potential input data sets, we therefore 351

focused on sufficiently large (n > 10) transcriptomic data sets in which we could reliably 352

identify a set of DE genes. Six curated data sets met our criteria. Disease-relevant 353

GO:BP terms were then retrieved from MalaCards [44], and disease-relevant genes from 354

DisGeNET [10, 43]. 355

In a systematic comparison, DAVID, GeneWalk, Correlation AnalyzeR [27] and 356

GeneCOCOA were used to search for statistically significant associations between match- 357

ing disease-relevant genes and disease-relevant GO:BP terms (Fig. 4A). Each method 358

was run for every combination of disease (AD: Alzheimer’s Disease, ALS: Amyotrophic 359

Lateral Sclerosis, DC: Dilated Cardiomyopathy, DM: Insulin-dependent Diabetes Mellitus, 360

MI: Myocardial Infarction and MS: Multiple Sclerosis) and disease-relevant genes (total 361

genes AD: 24, ALS: 16, DC: 12, DM: 4, MI: 21, MS: 7). For each method, a statistically 362

significant (padjusted < 0.05) association between a given gene and a condition-relevant 363

term was recorded. If the gene belonged to the matching disease-relevant gene set, this 364

was considered a true positive, whereas if the gene was a member of one of the other 365

disease sets, it was considered a false positive. Although these terms are not strictly 366

accurate given the nature of these types of analysis, they are used here in an attempt to 367

compare these methods in an objective and unbiased manner, and this matter is further 368

covered in the Discussion. 369

Across all conditions, GeneCOCOA had a substantially higher true positive rate than 370

either DAVID or GeneWalk, and in all but one case also a higher true positive rate 371

than Correlation Analyzer (Fig. 4B). In order to confirm that GeneCOCOA was not 372

just returning spurious significant associations for every provided gene, the proportions 373

of false positives across all conditions for all methods was further analyzed. Overall, 374

GeneCOCOA reported more false positives than the other methods (Fig. 4C, Supp. 375

Fig. S2 & S3). However, when considering the results in a gene-set-focused perspective, 376

GeneCOCOA recalls more true positives per gene set than false positives (corresponds to 377

the summary of row counts in Fig. 4C; see also Supp. Fig. S2, S3 & S4. This is truly 378
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independent of the disease expression set provided. From a condition-wise perspective 379

(corresponding to columns in Fig. 4C), GeneCOCOA consistently reports a higher 380

proportion of true positives than false positives across all conditions ( Supplementary 381

Figure S3). For GeneWalk and DAVID, the proportions of true and false positives were 382

negligible, resulting in both methods having high true negative rates, but accompanying 383

high false negative rates as well. Correlation Analyzer managed to recover more true 384

positives than the prior two methods, yet in the majority of cases the false positive 385

rate was at least as high as the true positive rate (see Supp. Fig. S3 ). Thus, 386

GeneCOCOA recovers the most relevant disease terms whilst maintaining an acceptable 387

level of specificity, independent of disease type. 388

Taken together, the results presented here demonstrate that GeneCOCOA is capable 389

of identifying statistically significant functional co-expression patterns linked to a gene-of- 390

interest. Dynamics in context also seem to be detectable, as well as gene-specific functions. 391

GeneCOCOA offers a different approach to other methods, which appears to identify 392

more biologically relevant gene functions than similar tools, although benchmarking 393

these kinds of approaches remains highly challenging. 394

Discussion 395

This manuscript describes GeneCOCOA, a method designed to implement both co- 396

expression and functional enrichment analyses focused on a gene-of-interest (GOI). 397

Evidence of the functionality of GeneCOCOA was demonstrated by using transcriptome 398

profiling data arising from monogenic diseases, and identifying co-expressed gene sets 399

with a relevant gene in each scenario. The use of GeneCOCOA to detect context-specific 400

alterations in gene function was illustrated using RNA-sequencing data arising from a 401

large cohort of patients suffering from acute myeloid leukemia. Here, functional gene 402

sets associated with disease progression and prognosis could be found to be significantly 403

co-expressed with FLT3, a known driver of the disease. The performance of GeneCOCOA 404

relative to similar methods was compared across several distinct contexts, and showed 405

that GeneCOCOA has the potential to fill a previously underpopulated niche in the 406

toolkit of gene expression data analysis. 407

Advancements in next-generation sequencing technology have resulted in an abun- 408

dance of high quality, publicly available transcriptome profiling data from a wide range 409

of species, conditions and stimuli [3]. This has shifted the experimental bottleneck 410

from data generation towards data analysis, with a resulting requirement for robust, 411

efficient methods to extract maximal insight from these data. This must be accomplished 412

whilst simultaneously maintaining ease-of-use for the user, many of whom are not expert 413

computational biologists. Another by-product of this wealth of data is that researchers 414

with specific genes-of-interest can query these data for metrics such as co-expression. 415

However, manually curating co-expression results to derive biological insight can be 416

complex and time-consuming. 417

Herein, we demonstrated that GeneCOCOA is capable of providing the user with 418

functional gene sets which are enriched in their co-expression with a GOI. The func- 419

tionality of GeneCOCOA in conjunction with data from large cohort experiments was 420

demonstrated with a large data set consisting of 79 RNA-sequencing samples [36,37], 421

where the known functional role of FLT3 could be recapitulated. In this illustrative 422

example, the link between the gene-of-interest and experimental condition is extremely 423

well established. This makes it difficult to truly assess the sensitivity of GeneCOCOA 424

for discovering de novo functional roles of a GOI in a given condition. 425

In further illustrative use cases, GeneCOCOA was implemented on genes implicated 426

as being causative for amyotrophic lateral sclerosis and familial hypercholesterolemia, 427

specifically the GOIs SOD1 [69] and LDLR [66]. In each case, GeneCOCOA identified 428
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functional, co-expressed enriched terms pertinent to the given disease. It should be 429

noted, however, that in each case there were several replicates per condition (11 vs. 430

11, and 13 vs. 10, respectively). These replicate numbers are relatively uncommon in 431

experimental setups designed around cell culture systems, where three biological replicates 432

per biological condition is common [70]. The identification of robust enrichments when 433

GeneCOCOA is provided with datasets of this smaller size is more challenging than when 434

using larger datasets, and certainly represents a potential drawback of the approach. 435

However, transcriptome profiling of larger patient cohorts is becoming increasingly 436

common and accessible [71–73], providing ideal input for GeneCOCOA and similar tools. 437

Another caveat to consider in the course of analysis of transcriptomic data with 438

GeneCOCOA or any similar method, is the disconnect between expression and true 439

function. Whilst GeneCOCOA is capable of using an array of curated gene annotation 440

databases to infer potential functionality, a vast number of genes remain uncharacterized 441

with regard to functional importance [74]. These genes are therefore excluded from the 442

analysis, despite potentially interesting co-expression with the gene in question. Similarly, 443

in a native co-expression analysis without any functional subsetting of genes, genes 444

co-expressed with one another may in fact have diverse functions. For example, genes 445

whose products make up negative feedback loops may be similarly regulated in order to 446

provide a controlled response to a stimulus, despite having antagonistic functions [75]. 447

In a systematic comparison of GeneCOCOA against similar methods (GeneWalk, 448

DAVID and Correlation AnalyzeR), GeneCOCOA was able to identify a greater pro- 449

portion of evidence-linked disease-relevant gene-GO term relationships. By computing 450

these links across a number of diseases, it could be shown that disease-relevant associa- 451

tions reported by GeneCOCOA tended to be enriched in specificity for the diseases in 452

question. However, it should be stated that making concrete conclusions on the relative 453

performance of these types of methods is highly challenging, given the difficulties in 454

ascribing true positive and true negative validation sets. This arises from the curated 455

nature of gene sets, which rely wholly on published gene functions, as well as the extent 456

and quality of databases used to record and document relationships between genes and 457

functions. A consequence of this approach is that there may be genes not yet linked to a 458

function or disease, which may just be unstudied in that capacity rather than irrelevant. 459

For example, inflammatory genes such as TNF and TGFB1 (both annotated as being 460

important to myocardial infarction) are not included in the list of genes associated with 461

Alzheimer’s disease on DisGeNET. As a consequence, significant associations reported 462

for these genes (Supp. Fig. S4) with Alzheimer’s-relevant terms were marked as 463

quasi-false positives. Yet, dysregulations related to these genes have been linked to the 464

development of Alzheimer’s disease in prior research [76–79]. Similarly, GeneCOCOA 465

also reported false positive associations in the amyotrophic lateral sclerosis (ALS) data 466

set for the genes BCL2 and BAX. While they are present in the Alzheimer’s disease gene 467

set, these apoptotic genes have also been described as mediators of motor neuron loss in 468

ALS [80–82]. Thus, the supposedly false positive associations returned by GeneCOCOA 469

might, in several cases, hint at biologically meaningful GOI-disease associations which 470

are not reflected in our strict approach to the definitions of ground truth. 471

From a methodological perspective, it was interesting that the relatively simple meth- 472

ods employed by Correlation AnalyzeR and GeneCOCOA both outperformed the more 473

complex method implemented in GeneWalk. Correlation Analyzer ’s approach of consid- 474

ering entire gene sets in their enrichment analysis could result in a decreased sensitivity 475

compared to GeneCOCOA, which samples subsets of gene sets. This would explain the 476

greater sensitivity (but additionally increased false positive rate) of GeneCOCOA. The 477

authors of Correlation AnalyzeR recommend input data with many samples in order for 478

a robust analysis, whereas the iterative sampling approach of GeneCOCOA might permit 479

increased performance on smaller datasets. What the performance of these two similar 480
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methods shows, is that using co-expression in combination with functional enrichment is 481

a valid approach for inferring gene function, particularly of previously unstudied genes. 482

Which specific method of co-expression analysis and functional enrichment should be 483

used likely depends on the type and extent of the input data. 484

The formulation of GeneCOCOA to provide a functionally-resolved co-expression 485

analysis framework is designed to minimize both data and time loss when moving 486

data between different methods. Performance is largely determined by the iterative 487

computation of background gene sets, the number of which may be set by the user. 488

We aimed to maximize ease-of-use by formulating GeneCOCOA as an R [83] package, 489

thereby making it simple to integrate the analysis with common workflows such as 490

differential gene expression analysis [45,84]. 491

In summary, GeneCOCOA provides a method by which users can infer putative 492

functions of a gene-of-interest based on co-expression of the given gene with curated 493

sets of functionally-annotated genes. GeneCOCOA therefore empowers users to take 494

advantage of the growing number of publicly available transcriptome profiling datasets, 495

in order to provide greater functional insight and generate new hypotheses pertaining to 496

the roles of individual genes in different contexts. 497

Conclusion 498

• GeneCOCOA is a combined method for the identification of functional gene sets 499

which are significantly co-expressed with a gene-of-interest. 500

• The method can be used in a highly flexible manner on user-supplied or publicly 501

available transcriptome profiling data. 502

• Function gene sets can be provided by the user, or taken from curated, publicly 503

available databases which hold information on ontologies, pathways and diseases. 504

• GeneCOCOA successfully recapitulates functional signatures of genes implicated 505

in monogenic diseases. 506

• GeneCOCOA detects greater numbers of evidence-linked gene-disease relationships 507

than similar methods. 508

Supporting information 509

S1 Fig. Selection of default iteration number for GeneCOCOA. 510

S2 Fig. Comparison of true positives and false positives across gene sets 511

per method in gene-disease evaluation. 512

S2 Fig. Comparison between proportions of true positive and false positive 513

disease-linked genes across conditions, per method. 514

S3 Fig. True positive and false positive matrices from gene-disease evaluation 515

for all three methods with gene symbols. 516
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28. Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P.
The molecular signatures database hallmark gene set collection. Cell Systems.
2015;1(6):417–425.

29. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene
ontology: tool for the unification of biology. Nature Genetics. 2000;25(1):25–29.

30. Hokama M, Oka S, Leon J, Ninomiya T, Honda H, Sasaki K, et al. Altered
expression of diabetes-related genes in Alzheimer’s disease brains: the Hisayama
study. Cerebral Cortex. 2014;24(9):2476–2488.

31. Mougeot JLC, Li Z, Price AE, Wright FA, Brooks BR. Microarray analysis of
peripheral blood lymphocytes from ALS patients and the SAFE detection of the
KEGG ALS pathway. BMC Medical Genomics. 2011;4:1–19.

32. Hannenhalli S, Putt ME, Gilmore JM, Wang J, Parmacek MS, Epstein JA, et al.
Transcriptional genomics associates FOX transcription factors with human heart
failure. Circulation. 2006;114(12):1269–1276.

33. Kaizer EC, Glaser CL, Chaussabel D, Banchereau J, Pascual V, White PC. Gene
expression in peripheral blood mononuclear cells from children with diabetes. The
Journal of Clinical Endocrinology & Metabolism. 2007;92(9):3705–3711.

34. Suresh R, Li X, Chiriac A, Goel K, Terzic A, Perez-Terzic C, et al. Transcriptome
from circulating cells suggests dysregulated pathways associated with long-term
recurrent events following first-time myocardial infarction. Journal of Molecular
and Cellular Cardiology. 2014;74:13–21.

35. Gandhi KS, McKay FC, Cox M, Riveros C, Armstrong N, Heard RN, et al. The
multiple sclerosis whole blood mRNA transcriptome and genetic associations indi-
cate dysregulation of specific T cell pathways in pathogenesis. Human Molecular
Genetics. 2010;19(11):2134–2143.

36. Pellagatti A, Armstrong RN, Steeples V, Sharma E, Repapi E, Singh S, et al.
Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated
genes/pathways and clinical associations. Blood, The Journal of the American
Society of Hematology. 2018;132(12):1225–1240.

37. Jayavelu AK, Wolf S, Buettner F, Alexe G, Häupl B, Comoglio F, et al. The
proteogenomic subtypes of acute myeloid leukemia. Cancer Cell. 2022;40(3):301–
317.

38. Lappalainen I, Almeida-King J, Kumanduri V, Senf A, Spalding JD, Ur-Rehman
S, et al. The European Genome-phenome Archive of human data consented for
biomedical research. Nature Genetics. 2015;47(7):692–695.

June 26, 2024 17/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2024. ; https://doi.org/10.1101/2024.06.27.600936doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.600936
http://creativecommons.org/licenses/by/4.0/


39. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature
Methods. 2012;9(4):357–359.

40. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and
bias-aware quantification of transcript expression. Nature Methods. 2017;14(4):417–
419.

41. Lim N, Tesar S, Belmadani M, Poirier-Morency G, Mancarci BO, Sicherman
J, et al. Curation of over 10 000 transcriptomic studies to enable data reuse.
Database. 2021;2021:baab006.

42. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society:
Series B (Methodological). 1995;57(1):289–300.

43. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J,
Centeno E, et al. DisGeNET: a comprehensive platform integrating information
on human disease-associated genes and variants. Nucleic Acids Research. 2016; p.
gkw943.

44. Rappaport N, Twik M, Plaschkes I, Nudel R, Iny Stein T, Levitt J, et al. MalaC-
ards: an amalgamated human disease compendium with diverse clinical and genetic
annotation and structured search. Nucleic Acids Research. 2017;45(D1):D877–
D887.

45. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion
for RNA-seq data with DESeq2. Genome Biology. 2014;15(12):1–21.

46. Russo PS, Ferreira GR, Cardozo LE, Bürger MC, Arias-Carrasco R, Maruyama
SR, et al. CEMiTool: a Bioconductor package for performing comprehensive
modular co-expression analyses. BMC Bioinformatics. 2018;19(1):1–13.

47. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA,
et al. Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proceedings of the National Academy of Sciences.
2005;102(43):15545–15550.

48. Raina P, Guinea R, Chatsirisupachai K, Lopes I, Farooq Z, Guinea C, et al.
GeneFriends: gene co-expression databases and tools for humans and model
organisms. Nucleic Acids Research. 2023;51(D1):D145–D158.

49. Obayashi T, Hayashi S, Shibaoka M, Saeki M, Ohta H, Kinoshita K. COXPRESdb:
a database of coexpressed gene networks in mammals. Nucleic acids research.
2007;36(suppl 1):D77–D82.

50. Wenbin Wei SA. diffcoexp; 2018. Available from: https://bioconductor.org/
packages/diffcoexp.

51. Zogopoulos VL, Malatras A, Kyriakidis K, Charalampous C, Makrygianni EA,
Duguez S, et al. HGCA2.0: An RNA-Seq Based Webtool for Gene Coexpression
Analysis in Homo sapiens. Cells. 2023;12(3):388. doi:10.3390/cells12030388.

52. Guan Y, Myers CL, Hess DC, Barutcuoglu Z, Caudy AA, Troyanskaya OG.
Predicting gene function in a hierarchical context with an ensemble of classifiers.
Genome Biology. 2008;9:1–18.

June 26, 2024 18/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2024. ; https://doi.org/10.1101/2024.06.27.600936doi: bioRxiv preprint 

https://bioconductor.org/packages/diffcoexp
https://bioconductor.org/packages/diffcoexp
https://doi.org/10.1101/2024.06.27.600936
http://creativecommons.org/licenses/by/4.0/


53. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics: a journal of integrative biology.
2012;16(5):284–287.

54. Wang J, Huang Q, Liu ZP, Wang Y, Wu LY, Chen L, et al. NOA: a novel Network
Ontology Analysis method. Nucleic Acids Research. 2011;39(13):e87–e87.

55. Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a
real-time multiple association network integration algorithm for predicting gene
function. Genome Biology. 2008;9:1–15.

56. Wong AK, Krishnan A, Troyanskaya OG. GIANT 2.0: genome-scale integrated
analysis of gene networks in tissues. Nucleic Acids Research. 2018;46(W1):W65–
W70.

57. Yu G, Fu G, Wang J, Zhao Y. NewGOA: Predicting new GO annotations of
proteins by bi-random walks on a hybrid graph. IEEE/ACM Transactions on
Computational Biology and Bioinformatics. 2017;15(4):1390–1402.

58. Zhang J, Zou S, Deng L. Gene Ontology-based function prediction of long non-
coding RNAs using bi-random walk. BMC Medical Genomics. 2018;11:1–10.

59. Yu G, Wang K, Fu G, Guo M, Wang J. NMFGO: Gene function prediction via
nonnegative matrix factorization with gene ontology. IEEE/ACM transactions on
computational biology and bioinformatics. 2018;17(1):238–249.

60. Kennedy VE, Smith CC. FLT3 mutations in acute myeloid leukemia: key concepts
and emerging controversies. Frontiers in Oncology. 2020;10:612880.

61. Grafone T, Palmisano M, Nicci C, Storti S. An overview on the role of FLT3-
tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol-
ogy Reviews. 2012;6(1).

62. Friedman R. The molecular mechanisms behind activation of FLT3 in acute
myeloid leukemia and resistance to therapy by selective inhibitors. Biochimica et
Biophysica Acta (BBA)-Reviews on Cancer. 2022;1877(1):188666.

63. Bunton-Stasyshyn RK, Saccon RA, Fratta P, Fisher EM. SOD1 function and
its implications for amyotrophic lateral sclerosis pathology: new and renascent
themes. The Neuroscientist. 2015;21(5):519–529.

64. Saccon RA, Bunton-Stasyshyn RK, Fisher EM, Fratta P. Is SOD1 loss of function
involved in amyotrophic lateral sclerosis? Brain. 2013;136(8):2342–2358.

65. Pansarasa O, Bordoni M, Diamanti L, Sproviero D, Gagliardi S, Cereda C. SOD1
in amyotrophic lateral sclerosis:“ambivalent” behavior connected to the disease.
International Journal of Molecular Sciences. 2018;19(5):1345.

66. Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor
gene in familial hypercholesterolemia. Human Mutation. 1992;1(6):445–466.

67. Chora JR, Medeiros AM, Alves AC, Bourbon M. Analysis of publicly available
LDLR, APOB, and PCSK9 variants associated with familial hypercholesterolemia:
application of ACMG guidelines and implications for familial hypercholesterolemia
diagnosis. Genetics in Medicine. 2018;20(6):591–598.

68. Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations.
In: Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining; 2014. p. 701–710.

June 26, 2024 19/20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2024. ; https://doi.org/10.1101/2024.06.27.600936doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.27.600936
http://creativecommons.org/licenses/by/4.0/


69. Kiskinis E, Sandoe J, Williams LA, Boulting GL, Moccia R, Wainger BJ, et al.
Pathways disrupted in human ALS motor neurons identified through genetic
correction of mutant SOD1. Cell Stem Cell. 2014;14(6):781–795.

70. Robasky K, Lewis NE, Church GM. The role of replicates for error mitigation in
next-generation sequencing. Nature Reviews Genetics. 2014;15(1):56–62.

71. Zhu Y, Qiu P, Ji Y. TCGA-assembler: open-source software for retrieving and
processing TCGA data. Nature Methods. 2014;11(6):599–600.

72. Consortium G, Ardlie KG, Deluca DS, Segrè AV, Sullivan TJ, Young TR, et al. The
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Figure 1. GeneCOCOA workflow for identification of functional gene sets co-expressed with a 
gene-of-interest. (A) Strategies and related methods for statistically associating genes to putative 
functions, summarized into gene-centric (GeneWalk, DAVID), prior knowledge (GO, Reactome, MSigDB) 
and co-expression (WGCNA, CemiTool) approaches. GeneCOCOA incorporates elements of each of 
these approaches into a single workflow. (B) Schematic representation of the GeneCOCOA workflow, 
which takes as input user-provided functional gene sets, a gene-of-interest (GOI) and gene expression 
data to report statistically ranked gene sets associated with the provided GOI. This is achieved by 
comparing root-mean-square error (RMSE) values from bootstrapped linear regression models predicting 
the expression of the GOI using either genes arising from a single gene set, or randomly sampled genes 
from the expression data. Gene set errors and random errors are statistically compared, and the resulting 
p values are adjusted, resulting in an output list of functional gene sets ranked statistically by the strength 
of their association with the provided gene-of-interest.
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Figure 2. Example use case of GeneCOCOA to predict context-specific FLT3 function using 
expression data from hematopoietic stem cells and acute myeloid leukemia blasts. (A) In an 
exemplary use case, GeneCOCOA was applied to study the co-expression patterns of FLT3 with Gene 
Ontology Biological Process (GO:BP) terms in bulk RNA-sequencing of CD34+ hematopoietic stem cells 
(HSCs) from 48 healthy subjects, and blasts from 31 patients with acute myeloid leukemia (AML) positive 
for FLT3-ITD mutations. (B) The 10 highest-ranked GO:BP terms with FLT3 in HSCs from healthy 
donors, as computed by GeneCOCOA. The corresponding significance values in AML blasts are 
provided for comparison. Ranks are annotated next to the bars; non-significant terms are not annotated. 
(C) The 10 highest-ranked GO:BP terms with FLT3 in patients with AML and FLT3-ITD mutations, as 
computed by GeneCOCOA. The corresponding significance values in healthy HSCs are provided for 
comparison. Ranks are annotated next to the bars; non-significant terms are not annotated.
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Figure 3. Gene-COCOA detects cellular responses to diseases with monogenic signatures. (A) 
GeneCOCOA results reporting the strength of association in co-expression between SOD1 and 
MSigDB Hallmark gene sets, in lymphocytes isolated from healthy donors (left) and lymphocytes 
isolated from patients with amyotrophic lateral sclerosis (right). (B) GeneCOCOA results reporting the 
strength of association in co-expression between LDLR and MSigDB Hallmark gene sets in 
monocytes from healthy donors (control, left) and monocytes isolated from patients with familial 
hypercholesterolemia (disease, right). The size of the points in each plot reflects the relative mean 
expression level of each gene set.
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Figure 4. Systematic comparison of GeneCOCOA, DAVID, Correlation AnalyzeR and GeneWalk 
for their performance in statistically linking disease-relevant genes and GO:BP terms. (A)
GeneCOCOA, DAVID, Correlation AnalyzeR (CA) and GeneWalk were each run to identify significantly 
associated disease-relevant genes from DisGeNet and disease-associated Gene Ontology Biological 
Process terms (GO:BP) as listed on MalaCards. Genes significantly associated to the matching disease 
terms were considered true positives (TP), and genes statistically linked to terms from other diseases 
as false positives (FP). (B) Proportion of true positive associations between disease-relevant genes and 
matching disease GO:BP terms by GeneCOCOA, GeneWalk, Correlation AnalyzeR (CA) and DAVID 
(AD: Alzheimer’s disease, ALS: Amyotrophic lateral sclerosis, DC: Dilated cardiomyopathy, DM: 
Diabetes mellitus, MI: Myocardial infarction, MS: Multiple sclerosis). (C) Summary of true positive and 
false positive gene-term associations per set of disease-relevant genes across all diseases, as 
computed by GeneCOCOA, GeneWalk, Correlation AnalyzeR and DAVID.
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Figure S1. Identification of recommended number of bootstraps. With different values for number of

bootstrapping rounds were tested, i=1000 was found to provide the best trade-off between efficiency and

power. Displayed here are exemplary results for the association between FLT3 and the 50 MSigDB

hallmark gene sets in the expression data set of 136 AML patients. We inspected the results of 16

GeneCOCOA runs with bootstrap rounds ranging from 2 to 100k. All terms which were identified as

significant (Padj<0.05) in any of the runs are listed as rows, while columns indicate the different

GeneCOCOA runs. White tiles indicate that this term was not identified as significant in the respective

GeneCOCOA run, while red indicates that it was returned as one of the terms significantly associated with

FLT3 expression.
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(A) GeneCOCOA

(B) DAVID

GeneWalk(C)

Figure S2. Comparison of true positives and false positives hits across gene sets. For each gene set,

we evaluated the number of hits by method, differentiating true positives (TP; hits in the original disease

context) from false positives (FP; hits in other disease contexts). (A) Across gene sets, the number of hits

returned by GeneCOCOA in the TP condition is either higher or comparable to any other number of hits in

FP contexts. DAVID and GeneWalk recover a smaller number of hits in general. While GeneWalk – except

for the case of MI – manages to retain a good TP:FP ratio (C), DAVID (B) and Correlation AnalyzeR (D)

report more FP than TP hits in a third of the cases.

(D) Correlation AnalyzeR
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(A) GeneCOCOA

(B) DAVID

GeneWalk(C)

Figure S3. Comparison of true positives and false positives across conditions. For each condition,

the set of genes which are disease-relevant as per DisGeNET can be defined as the true data set, all other

genes are defined as other. (A) Comparing the proportions of true genes with disease-relevant term hits

against the proportion of other genes with disease-relevant term hits, GeneCOCOA consistently manages

to recover more true hits than other hits across all conditions. (B) DAVID and (C) GeneWalk show only a

negligible proportion of other hits. Yet, these methods also fail to recover a substantial amount of true hits.

(D) In two cases, Correlation AnalyzeR shows slightly more true than other hits. Yet, in all other cases there

are at least as many other as true hits. The overall percentage of true hits recovered is smaller than in the

GeneCOCOA runs.

(D) Correlation AnalyzeR
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Figure S4. False/true positive matrices for all three methods with gene symbols. Summary of

true positive and false positive gene-term associations per set of disease-relevant genes across all

diseases, as computed by DAVID, GeneWalk, Correlation AnalyzeR and GeneCOCOA.

False PositiveTrue Positive

GeneCOCOAGeneWalkDAVID
Correlation 
Analyzer
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