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Abstract

Extraction of meaningful biological insight from gene expression profiling often focuses
on the identification of statistically enriched terms or pathways. These methods typically
use gene sets as input data, and subsequently return overrepresented terms along with
associated statistics describing their enrichment. This approach does not cater to analyses
focused on a single gene-of-interest, particularly when the gene lacks prior functional
characterization. To address this, we formulated GeneCOCOA, a method which utilizes
context-specific gene co-expression and curated functional gene sets, but focuses on
a user-supplied gene-of-interest. The co-expression between the gene-of-interest and
subsets of genes from functional groups (e.g. pathways, GO terms) is derived using linear
regression, and resulting root-mean-square error values are compared against background
values obtained from randomly selected genes. The resulting p values provide a statistical
ranking of functional gene sets from any collection, along with their associated terms,
based on their co-expression with the gene of interest in a manner specific to the context
and experiment. GeneCOCOA thereby provides biological insight into both gene function,
and putative regulatory mechanisms by which the expression of the gene-of-interest is
controlled. Despite its relative simplicity, GeneCOCOA outperforms similar methods in
the accurate recall of known gene-disease associations. GeneCOCOA is formulated as an
R package for ease-of-use, available at https://github.com/si-ze/geneCOCOA.

Author summary

Understanding the biological functions of different genes and their respective products
is a key element of modern biological research. While one can examine the relative
abundance of a gene product in transcriptomics data, this alone does not provide any
clue to the biological relevance of the gene. Using a type of analysis called co-expression,
it is possible to identify other genes which have similar patterns of regulation to a
gene-of-interest, but again, this cannot tell you what a gene does. Genes whose function
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has previously been studied are often assembled into groups (e.g. pathways, ontologies),
which can be used to annotate gene sets of interest. However, if a gene has not yet been
characterized, it will not appear in these gene set enrichment analyses. Here, we propose
a new method - GeneCOCOA - which uses co-expression of a single gene with genes in
functional groups to identify which functional group a gene is most similar too, resulting
in a putative function for the gene, even if it has not been studied before. We tested
GeneCOCOA by using it to find gene-disease links which have already been scientifically
studied, and showed that GeneCOCOA can do this more effectively than other available
methods.

Introduction

Advances in sequencing technology have decreased the costs and increased the accuracy of
transcriptome profiling [1]. This has resulted in an abundance of datasets generated from
a wide variety of experimental conditions, many of which are made publicly available [2-4].
As such, interrogation of public sequencing data has become an increasingly important
step in research focused on a specific gene or gene product of interest. Normally, this
is limited to detecting whether the gene-of-interest is expressed in a given dataset or
whether the expression of the gene changes in a particular experimental condition [5].
However, this approach does not supply insight into any potential functions of the gene-
of-interest in the data, or any regulatory mechanisms which might govern expression of
the gene.

Functional enrichment analyses carried out in the course of differential gene expression
analysis usually relies upon the input of one or more gene sets which are derived
throughout the course of the analysis (e.g. differentially expressed genes) [6]. Curated
associations between each gene and sets of annotations such as ontologies 7], pathways
[89] and diseases |10] are then computed. These associations are subsequently statistically
analyzed for overrepresented terms, considering the size of the input gene set, the
number of genes associated with the given term, and enrichment in hits compared to an
appropriate background gene set [11-15]. The outcome of these analyses is a list of terms
stratified by statistical values such as p value, adjusted p value, precision and recall.
Results from these approaches have the potential to inform future research directions and
wet-lab experiments. However, they cannot provide insight into the functional relevance
of individual genes, especially when genes lack prior functional characterization.

One approach that can be used to examine potential function of an individual gene-of-
interest (GOI) is to model the expression of the GOI against the expression of other genes
present in a given dataset, in a co-expression analysis [16]. Co-expression pertains to
identification of genes which display common patterns of regulation, and may therefore be
subject to similar gene regulatory mechanisms (e.g. transcription factors). Methods for
co-expression analysis range from simple models of linear regression between expression
values of genes [17], to construction of weighted co-expression networks consisting of
gene modules [18] and deep learning-based approaches [19]. Assigning functional and
biological significance to an individual gene based on co-expression requires further
analysis, however, the dissection and stratification of results of co-expression analyses
can be challenging [20]. This means that potentially interesting insight into functions of
individual genes may be lost during transitions between methods.

Methods aiming to determine the functions of individual genes are available, and
implement different approaches (see Table 1). Some have the objective to identify genes
or genetic variation relevant to certain tissues, cell types, or cell lines (e.g. CONTENT
[21], and ContNeXt [22]). While these methods are useful for the identification of
significant gene-context associations, they do not predict the biological function of the
given gene. Other methods use network properties (e.g. NetDecoder [23]) or apply
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coessentiality analyses (FIREWORKS |24]) to characterize gene-gene associations in a
given context. These tools help to identify other genes significantly associated with a
GOl in a context-specific manner, but again do not link these results with biological
meaning. GeneWalk |25], DAVID [14,26] and Correlation AnalyzeR |27] are three tools
which come closest to determining the function of individual genes, in that they aim
to provide context-specific biological meaning whilst being able to focus on individual
genes.

GeneWalk [25] takes a user-provided input list of genes and assembles a network
composed of these genes and associated Gene Ontology (GO) terms. Network repre-
sentation learning with random walks is then performed on the network. Statistical
association between a given gene and GO terms is determined through comparison
of node similarities between the true network and a null distribution based on node
similarities in randomized networks.

Alternatively, associations between individual genes and biological functions can be
performed using DAVID [14.[26], which takes a list of genes as input and returns GO
terms, protein domain information and curated pathways which are statistically enriched
in their association with a given gene, computed using Fisher’s exact test. While these
approaches do provide insight into putative functions of individual genes, neither method
considers the expression of the provided genes or other genes relevant to the GO terms
in question. Not considering expression as a feature in these analyses could result in
missing dynamic relationships between the gene-of-interest and the genes, or subsets of
genes, associated with the given term. Additionally, the implementation of GeneWalk is
limited to the use of GO terms, and cannot be implemented with other curated gene
sets which may provide more relevant functional annotations in a specific context, such
as disease.

One method which considers co-expression and outputs putative gene function is
Correlation AnalyzeR [27). Here, weighted Pearson correlations between normalized gene
expression counts are calculated between a gene-of- interest and other genes present in
the expression data. A ranked gene list is then assembled from the resulting correlation
values, which is used as input to gene set enrichment analysis, resulting in statistically
enriched terms which are theoretically co-expressed with the gene-of-interest. However,
the authors state that for a robust analysis, datasets of more than 30 samples and at
least 4 different studies should be used, limiting the contexts in which this method can
be used.

We sought to explore how co-expression and functional enrichment analyses can be
combined into a single workflow which provides insight into the function of a specific
GOI in a given context provided by the input data. Such a method would permit a
comprehensive assessment of expression patterns and putative functions of a GOI across
multiple experimental conditions using experimental data generated by the user. To this
end, we propose GeneCOCOA, an R package which identifies and ranks functional gene
sets which are co-expressed with a user-supplied GOI. GeneCOCOA may be run using
either user-supplied or publicly available gene expression data, and can utilize several
curated databases of gene annotations in order to compute functional enrichments in
co-expression.

Materials and methods

Databases

For the functionality of GeneCOCOA described herein, curated gene sets from the
Hallmark database [28], as well as genes annotated to the Biological Process domain of
Gene Ontology [29] (GO:BP) were used.
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Input data

The use cases described in this manuscript utilized publicly available transcriptome
profiling data available from Gene Ezpression Omnibus |2}3] under the accession numbers
GSE36980 [30], GSE28253 |31], GSE5406 [32], GSE9006 [33], GSE48060 [34], GSE17048
[35], and GSE114922 |36].

The RNA-sequencing data arising from acute myeloid leukemia patients [37] is
available publicly from the Furopean Genome-Phenome Archive [38] under the accession
EGADO00001008484, and initial access prior to the publication of the data was provided
by Prof. Dr. Thomas Oellerich and Dr. Sebastian Wolf (Goethe University Frankfurt,
University Hospital Frankfurt).

Preprocessing

Raw reads were aligned against the hg38 genome using Bowtie2 (v2.3.5.1) [39], with
default parameters, and quantified using Salmon (v1.5.2) [40], with default parameters.
Curated quantified and normalized expression data sets were fetched with gemma.R |41].

Detection of gene sets which are co-expressed with a gene-of-
interest

Determining number of gene subsets

The number of gene subsets sampled from each gene set i is implemented as a user-
controlled parameter. In test runs, we determined ¢ = 1000 to provide an acceptable
compromise between efficiency and statistical power (see Supplementary Figure S1).
Therefore, we set ¢ = 1000 for all analyses in this manuscript.

Generation of gene subsets

Initially, a number of subsets (default 1000) are derived from a given gene set (e.g.
pathway, GO term), as described by the following:

G; C 91,92, ..., 9N, where |G;| =n fori=1,2,...,1000 (1)

where G; is the i-th subset of n genes g1, go, ..., gv which make up the total gene set G.

Linear regression models

The dataset-specific expression values of each gene in a subset of genes serve as predictor
variables in a linear regression model with the expression of a GOI being the outcome
variable, as described by:

y = Po+ B1g1 + Bago + ... + Bngn + € (2)

where g1, go, ..., gn represent the dataset-specific expression values of the genes of the
subset, Bg, 51, B2, ..., Bn are the coefficients for each predictor variable, y represents the
predicted expression of the GOI, and & represents the error of the linear regression model.

Root-mean-square error calculation

For each gene subset, the linear regression model produces predicted values ¢; based
on the predictors g;. The root-mean-square error (RMSE) for the i-th subset is then
calculated as:
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RMSE; =

S|

Z(yj — 9ij)? (3)

where y; is the true expression of the GOI and g;; is the predicted expression from the
linear regression model for the j-th observation using the subset G;.

The same procedure is performed for a size-matched set of randomly sampled genes,
resulting in two sets of RMSE values. One derived from linear regression models
predicting the expression of the GOI from subsets of genes from a given gene set, and
one derived from linear regression models predicting the expression of the GOI from
randomly sampled subsets of genes expressed in the given dataset.

Computation of gene set-specific enrichment P values

RMSE values RMSE;, ..., RM S FEyygp derived from subsets G, ..., G1gog of a given gene
set G are compared against RMSE values ,RMSE;, ..., .RM S F1p90 derived from ran-
domly subset genes using a Student’s t-test. The resulting P value is subsequently
adjusted using the Benjamini-Hochberg method [42]. This results in an adjusted p value
for each gene set in a given curated database, describing the strength of association
between the genes comprising each gene set and the user-provided GOI.

Inter-gene set comparison and visualization

In order to further stratify gene sets of potential interest, the direction of co-expression
between the GOI and curated gene sets is also calculated during the course of the
workflow, and is included as a parameter for visualization of results. This value is
calculated as follows:

(4)

[[}j=, Corr(GOI,Gj)
[1;_, Corr(GOIL, Ry,)

impact; = logy (

where Corr(GOI, G;) represents the correlation between the GOI and a gene of a given
gene set G of size n, and Corr(GOI, Ry,) represents the correlation between the GOI
and a gene from a size-matched set of randomly sampled genes R. impact; > 0 thus
indicates that the co-expression between the GOI and the gene set G is smaller than a
random baseline mean co-expression.

Comparison to similar methods

GeneCOCOA was compared to other methods which aim to annotate the functions of
individual genes by testing the ability of each tool to accurately link genes associated
with a given disease to GO terms implicated in the same disease. The methods considered
for comparison were DAVID [14], GeneWalk [25] and Correlation AnalyzeR, [27].

Definition of disease-relevant genes

In order to define a relevant gene set for each condition to be studied, the DisGeNET [43]
platform was queried via web interface (https://www.disgenet.org/search) with the
full name of each condition (“Amyotrophic Lateral Sclerosis”, “Alzheimer’s Disease”,
“Dilated Cardiomyopathy”, “Insulin-dependent Diabetes Mellitus”, “Myocardial Infarc-
tion” and “Multiple Sclerosis”). As of 14-06-2023, the top-ranked hits were the entries
with the UMLS/concept IDs C0002736, C0002395, C0007193, C0011854, C0027051
and C0026769. From each summary of gene-disease associations (GDA), genes with a
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Scoregqq, > 0.5 were considered as substantially associated with the disease and included
in the input set of disease-relevant genes.

Definition of disease-relevant terms/gene sets

To obtain disease-relevant gene sets, the MalaCards database [44] was queried via
web interface (https://www.malacards.org/) with the full name of the condition
(“Alzheimer’s Disease”, “Amyotrophic Lateral Sclerosis”, “Dilated Cardiomyopathy”,
“Insulin-dependent Diabetes Mellitus”, “Myocardial Infarction” and “Multiple Sclerosis”)
on 14-06-2023. The top hit was selected based on the MalaCards InFormaTion Score
and the Solr relevance score provided by MalaCards. For each disease card (MalaCards
IDs ALZ065, AMY091, DLT002, TYP008, MYCO007 and MLT020, respectively), the
complete list of Gene Ontology Biological Process terms was downloaded and treated as
the ground truth collection T for the respective disease.

Construction of input gene lists for GeneWalk and DAVID

To assemble a context-specific gene network, GeneWalk requires a list of relevant genes
obtained from a specific experimental assay as an input. To this end, GEO2R [3] was used
to obtain a list of differentially expressed (DE) genes for each of the publicly available
transcriptomic gene sets. Any gene with an adjusted p < 0.05 between control and
disease condition, as calculated by DESeq2 [45], was considered differentially expressed.
To ensure that all disease-relevant genes obtained via DisGeNET would be included as
well, the union of disease-relevant genes and DE genes was obtained. Thus, a context-set
C was created for each condition.

Systematic comparison of GeneCOCOA, Correlation AnalyzeR, GeneWalk
and DAVID

Each method was used to determine the association of disease-relevant genes (as per
defined via DisGeNET, see subsection Definition of disease-relevant genes) with disease-
relevant gene sets (as defined via MalaCards, see previous subsection). Since GeneWalk
results are computed on Gene Ontology annotations [7], we restricted the comparison to
gene sets from the GO:BP collection.

The ability of each tool to report any disease-relevant GO:BP term for a list of
disease-relevant genes-of-interest across different diseases was tested. We distinguished
two cases: (1) A disease-relevant gene is analyzed in a condition matching its disease. In
this case, we expect the method to report a significant association between the gene and
any of the disease-relevant GO:BP terms reported in MalaCards (”true positive”). (2) A
disease-relevant gene-of-interest is analyzed using data arising from a separate disease
where said gene is not annotated as being important in DisGeNet, therefore a significant
association between the gene and the terms present in the MalaCard for the disease is
not expected (”false positive”).

GeneCOCOA, GeneWalk, DAVID and Correlation AnalyzeR [27] were run for every
combination of disease-relevant genes — Alzheimer’s Disease (AD): 24, Amyotrophic
Lateral Sclerosis (ALS): 16, Dilated Cardiomyopathy (DC): 12, Diabetes Mellitus (DM):
4, Myocardial Infarction (MI): 21, Multiple Sclerosis (MS): 7 — and diseases. In each case,
a disease-specific expression data set was provided as input, a single disease-relevant
gene was provided as the gene-of-interest, and the GO:BP ontology provided as the
collection of gene sets to rank. For each disease, Gene Walk and DAVID were run with
the appropriate context-set C' (see previous subsection) as the input list (including the
additional genes-of-interest which are not functionally linked to the disease in question,

June 26, 2024

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209


https://www.malacards.org/
https://doi.org/10.1101/2024.06.27.600936
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.27.600936; this version posted June 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

see case (2) above). Gene-of-interest-associated GO:BP terms were parsed from the
results of each method using a threshold of pgjustea < 0.05.

GeneCOCOA R package

GeneCOCOA is formulated as an R package and is hosted on GitHub at the URL
https://github.com/si-ze/geneCOCOA.

Results

GeneCOCOA identifies functional gene sets co-expressed with a
gene-of-interest

The COmparative CO-expression Analysis focused on a Gene-of-interest (GeneCOCOA)
presented here incorporates multiple approaches which aim to functionally annotate
genes following gene expression profiling (Fig. 1A). Several approaches exist for the
analysis of experiment-specific co-expression patterns (e.g. WGCNA [18], CemiTool |46]),
the harnessing of curated knowledge (e.g. Molecular Signature Database (MSigDB) [28]),
as well as for the integration of prior knowledge with experiment-specific co-expression
patterns (e.g. GSEA [47|, Enrichr [12]). Some methods also aim to apply prior knowledge
to predict the functions of individual genes, most notably DAVID [26], Gene Walk [25)
and Correlation AnalyzeR [27]. However, few methods exist which utilize co-expression
and curated gene sets to predict gene function (summarized in Table 1). To our
knowledge, only Correlation AnalyzeR |27] provides this option in single-gene mode. Yet,
its results are based on a single correlation analysis. GeneCOCOA has been developed
as an integrative method which aims to apply curated knowledge to experiment-specific
expression data in a gene-centric manner based on a robust bootstrapping approach.

The input to GeneCOCOA is a list of curated gene sets (e.g. from Gene Ontology,
MSigDB, pathways), a gene-of-interest (GOI) that the user wishes to interrogate, and
a gene expression matrix of sample x gene (Fig. 1B, top). From each gene set, n
genes are sampled and used as predictor variables in a linear regression modelling the
expression of the GOI as the outcome variable (Fig. 1B, middle). A background
model is created analogously by sampling n random genes from the complete expression
data set. For bootstrapping, this procedure is repeated ¢ times, ¢ being a parameter
that can be specified by the user. Testing different values of i, we found ¢ = 1000 to
provide the best tradeoff between efficiency and power (see Supp. Fig. S1). The ¢ gene
set model errors and ¢ random model errors are compared in a t-test. Gene sets with
Dadjusted < 0.05 are considered to model the expression of the GOI better than random,
and the pogjustea values are used to stratify and rank gene sets (Fig. 1B, bottom).
The results output by GeneCOCOA aim to provide insight into potential functions of
the gene-of-interest in the specific context provided by the gene expression data.

Detection of context-specific changes in gene function using
GeneCOCOA

To test the ability of GeneCOCOA to detect changes in gene function resulting from
disease, it was applied to identify functions of the gene FMS-like tyrosine kinase 3 (FLT3)
in acute myeloid leukemia (AML). AML is a malignancy of the hematopoietic system
affecting the differentiation and maturation of myeloid blood cells. Characterized by
a complex genetic landscape, AML can be divided into various subtypes, which differ
in both phenotype and prognosis. One common (25% of patients [60]) mutation linked
to AML is the internal tandem duplication (ITD) of FLT3. Normally, expression and
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Table 1. Available methods for downstream analysis of disease contexts and

genes of interest

(a) Approaches to co-expression analysis (not supporting individual gene perspective)

Method

Input data

Description

WGCNA [1§]

CEMiTool [46)
FIREWORKS [24]

CONTENT [21]

GeneFriends [48]

COXPRESdb [49]

diffcoexp [50]

HGCA [51]

Expression matrix

Expression matrix
Gene list

Expression matrix +
SNPs

Gene list

Gene list

Expression data of

two conditions

GOl

Identifies modules of highly correlated genes, identifies most relevant
genes of a module, relates modules to one another and to external traits
such as GO-terms.

Identifies modules of highly correlated genes, identifies most relevant
genes of a module, integrates external data (e.g. interactome, pathways).
Ranks top correlations and anticorrelations in an undirected, unweighted
network and returns gene-gene associations. No knowledge distillation.

Computes associations between SNPs and tissues by decomposing ex-
pression data across samples into context-shared and context-specific
components. No knowledge distillation.

Uses the gene list as a seed for the construction of co-expression network
to find highly correlated genes in pre-computed expression data of a
selected tissue. Thereby allows for functional annotation of a single-gene.
Queries a precomputed database to identify highly coexpressed genes,
genes with the same GO annotation and genes which are co-expressed
with the GOIs in a selected tissue of a selected organism.

Compares two expression data sets against each other and identifies gene
pairs with significantly different correlation coefficients under the two
conditions. No knowledge distillation.

Identifies top co-expressed genes for the provided GOI (precomputed
on representative tissue samples), performs various built-in gene term
enrichment analyses on the co-expression module.

(b) Approaches to knowledge distillation (not supporting individual gene perspective)

Method

Input data

Description

Myers et al. (2008)
b2

ClusterProfiler 53]
PANTHER.db
ReactomePA

NOA [54]

Various types of raw
data

Differential expres-
sion analysis results
Gene list

Gene list

Gene list

Trains a support vector machine classifier on the raw data and a list of
GO terms using annotated genes as positive examples to predict gene
function.

Returns relevant terms (e.g. GO terms, KEGG, ...) associated with
enriched gene sets.

Returns relevant terms (e.g. GO terms, pathways, ..
enriched gene sets.

Supports hypergeometric tests and gene set enrichment analyses, returns
enriched REACTOME pathways.

Infers link ontology for given gene set using associated GO terms, performs
enrichment analysis on resulting network.

.) associated with

activation levels of FLTS are important for maintaining a balance of proliferation and
differentiation in hematopoietic cells [61]. FLT3-ITD results in a constitutive activation
of the kinase, promoting a hyperproliferative state and cell survival [62]. FLT3-ITD
is associated with a higher disease burden, higher relapse rate and inferior overall
survival [14].

A whole-transcriptome RNA-sequencing dataset of 136 AML patients [37] was sub-
set for patients with FLT3-ITD mutations (31 patients). Taking FLT$ as the GOI,
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(c) Gene function prediction based on a user-provided context

NetDecoder [23]

Correlation
lyzeR, [27]

Ana-

Method Input data Description

DAVID |26] Gene list Summarises genes based on shared categorical data from public resources,
runs modified Fisher’s Exact Test for gene-enrichment analysis. Individual
gene-GO associations retrievable.

GeneWalk [25] Gene list Assembles context-specific network from provided gene list, associates

GOI + Phenotype
data of two traits

GOI + Expression

matrix

GO terms using public resources, applies an unsupervised network rep-
resentation learning to retrieve most relevant GO terms. Individual
gene-GO associations retrievable.

Computes differential gene-gene associations and network characteristics
(e.g. genes with high flow differences between trait 1 and trait 2). No
knowledge distillation.

Takes custom expression data or fetches public data sets. Uses genome-
wide Pearson correlations as a ranking metric for GSEA algorithm, returns
gene sets correlated with a gene of interest.

(d) Gene function prediction agnostic to user-provided context

Method

Input data

Description

ContNeXt [22]

GIANT 56

NewGOA [57]

BiRWLGO [58]

NMFGO [59]

GeneMANTIA [55]

GOI

Gene list

GOl

GOI

G Ol

GOI

Builds association networks from different publicly available data types
(co-expression, co-regulation, co-localisation, shared protein domains, ...).
Not customisable to individual experiment.

Computes gene-tissue associations across three different contexts (i.e.,
tissues, cell types, and cell lines). No knowledge distillation. Expression
data precomputed.

Integrates thousands of datasets to predict interactions of the provided
GOI and provide associated GO terms.

Combines publicly available data on protein interactions and GO an-
notations in a graph and uses a random walk to predict function. Not
customisable to individual experiment.

Combines IncRNA-IncRNA similarity, IncRNA-protein interaction and
protein-protein interaction data into hybrid graph, applies bi-random walk
to predict IncRNA function. Not customisable to individual experiment.
Builds gene-term association matrix, uses a semantic similarity approach
to predict gene function.

GeneCOCOA was used to assess the significance of the association between FLTS and
gene sets defined by GO Biological Processes (GO:BP). For comparison, a control set of
48 healthy CD34+ bone marrow samples was constructed from data under the GEO
accession GSE114922 [36]. Again, GeneCOCOA was used to detect and rank associations
between FLT3 and GO:BP terms (Fig. 2A).

Physiologically, FLT3 is involved in immune function and regulation of hematopoi-
etic cell proliferation and differentiation [61]. Accordingly, among the GO:BP terms
associated with FLT8 by GeneCOCOA in healthy CD3/+ cells are terms associated
with immune response (e.g. "Regulation of humoral immune response”, ” Chronic inflam-
matory response”) and terms indicating both proliferative processes (e.g. ”Nucleoside
monophosphate biosynthetic process”) and differentiation (e.g. ”Positive regulation of
B-cell mediated immunity”, ”Regulation of phenotypic switching”) (Fig. 2B). This
complex profile is lost in the GeneCOCOA results for FLT3 co-expression patterns
in AML blasts (Fig. 2C). The top 10 GO:BP terms reflect mitochondrial processes
(e.g. ”Mitochondrial gene expression”) and cell growth/division (e.g. ”Regulation of
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DNA-dependent DNA replication”, ”Ribosome biogenesis”), reflecting the switch to a
predominantly proliferative profile. The results thus replicate dysregulation of FLT3
expression and function previously described in literature, indicating that GeneCOCOA
may be able to detect context-dependent changes in gene function, given appropriate
data.

277

278

279

280

281

GeneCOCOA detects disease-driven alterations in gene co-expressions

patterns

In further proof-of-principle testing, GeneCOCOA was applied to gene expression datasets
arising from diseases with well-studied causative genes. Here, the direction of co-
expression between the gene-of-interest and each curated gene set was also analyzed in
each case (denoted "Impact’, see Eq. |[4]in Materials and methods). Disease data sets
were compared against healthy control data sets in terms of their co-expression patterns
between a known causative GOI and fifty MSigDB Hallmark gene sets [28].

One disease in which causative genes have been suggested in literature is amyotrophic
lateral sclerosis (ALS). The first gene to be identified as causative for this neurodegenera-
tive disease was superoxide dismutase 1 (SOD?) [63]. SOD1 codes for Cu/Zn superoxide
dismutase type-1, an enzyme crucial for cellular antioxidant defense mechanisms. Muta-
tions of SODI in ALS are known to destabilize the protein, leading to misfolding. This
triggers various pathophysiological events such as protein accumulation, mitochondrial
and/or proteasome dysfunction and accumulation of reactive oxygen species (ROS).
This switch between contexts is reflected in the GeneCOCOA results when SODI is
taken as the gene-of-interest, along with gene expression data from disease and healthy
conditions. When GeneCOCOA was run with gene expression data from lymphocytes
of 11 healthy donors, SODI was closely linked with immune function (e.g. ” Allograft
rejection”, ”TNF-« signalling via NF-xB”, ”Inflammatory response”), as well as gene
sets related to oxidative stress (e.g. "Peroxisome”, "ROS Pathway”) (Fig. 3A, left). In
accordance with literature [641/65], many of these associations are lost in the lymphocyte
transcriptomes of 11 patients with ALS. Instead, a gain in association between SODI and
genes associated with oxidative phosphorylation could be observed, reflecting potential
mitochondrial defects (Fig. 3A, right). Also indicative of the pathophysiology of
SOD1-driven ALS was the association between SODI expression and the Hallmark gene
set " Unfolded protein response”. The detection of this term — specifically in the disease
samples — demonstrates that GeneCOCOA has the potential to identify context-specific
co-expression patterns with disease relevance.

In another use case, GeneCOCOA was run using gene expression data originating from
isolated lymphocytes of 10 patients with familial hypercholesterolemia (FH), comparing
them to 13 healthy control samples. FH is an autosomal dominant disorder of lipoprotein
metabolism characterized by high levels of cholesterol. The most common causes are
mutations in the gene coding for low-density lipoprotein receptor (LDLR). Physiologically,
the LDL transmembrane receptor mediates the internalization and lysosomal degradation
of LDL. Mutations disrupting the function of LDLR lead to elevated plasma levels of
LDL, promoting accelerated atherosclerosis and coronary heart disease [66,/67]. In
correspondence with these mechanisms described in literature, the GeneCOCOA results
indicated that the functional association between LDLR and genes annotated to be
important for ” Cholesterol homeostasis” became stronger in FH samples compared to
control samples (Fig. 3B). Again, these results suggest that GeneCOCOA is able to
detect changes in gene co-expression which are pertinent to disease-specific conditions.

While these results were promising, the question remained of how the approach
implemented in GeneCOCOA compared to methods with the similar aim of functionally
annotating individual genes.
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GeneCOCOA provides a comprehensive gene-focused co-expression
and functional analysis missing from similar methods

To our knowledge, only few approaches to the problem of inferring the function of a
specific gene-of-interest (GOI) been published (Table 1), most notably DAVID [14],
GeneWalk [25] and Correlation AnalyzeR [27].

DAVID is a web-accessible set of functional annotation tools which allows for the
rapid mining of a wide range of public resources. Provided with a list of gene identifiers,
DAVID summarizes them, based on shared categorical data in gene ontology, protein
domain, and biochemical pathway membership, returning a modified Fisher Exact p-value
for gene-enrichment analysis.

GeneWalk allows for the GO enrichment analysis of an experiment-specific gene set
(e.g. differentially expressed genes). Using publicly available resources, Gene Walk first
assembles a context-specific gene network which represents both interactions between
the provided genes and links to GO terms, then applies an unsupervised network
representation learning algorithm (Deep Walk [68]) to retrieve the GO terms of highest
statistical relevance.

Correlation AnalyzeR |27] has been developed for the exploration of co-expression
correlations in a given data set, and in single-gene mode also supports the prediction
of individual gene functions and gene-gene relationships. In an adaption of the Gene
Set Enrichment Analysis [47] (GSEA) algorithm, it employs genome-wide Pearson
correlations as a ranking metric to determine the gene sets correlated with a GOI.

GeneCOCOA and Correlation AnalyzeR [27] exploit the user-provided expression
data to gain insight into gene correlations in a context-specific manner. GeneWalk and,
less explicitly, DAVID, require a list of input genes to assemble the context. Using
gemma.R |41] and GEO2R [3] for the selection of potential input data sets, we therefore
focused on sufficiently large (n > 10) transcriptomic data sets in which we could reliably
identify a set of DE genes. Six curated data sets met our criteria. Disease-relevant
GO:BP terms were then retrieved from MalaCards [44], and disease-relevant genes from
DisGeNET [101/43].

In a systematic comparison, DAVID, GeneWalk, Correlation AnalyzeR [27] and
GeneCOCOA were used to search for statistically significant associations between match-
ing disease-relevant genes and disease-relevant GO:BP terms (Fig. 4A). Each method
was run for every combination of disease (AD: Alzheimer’s Disease, ALS: Amyotrophic
Lateral Sclerosis, DC: Dilated Cardiomyopathy, DM: Insulin-dependent Diabetes Mellitus,
MI: Myocardial Infarction and MS: Multiple Sclerosis) and disease-relevant genes (total
genes AD: 24, ALS: 16, DC: 12, DM: 4, MI: 21, MS: 7). For each method, a statistically
significant (pagjustea < 0.05) association between a given gene and a condition-relevant
term was recorded. If the gene belonged to the matching disease-relevant gene set, this
was considered a true positive, whereas if the gene was a member of one of the other
disease sets, it was considered a false positive. Although these terms are not strictly
accurate given the nature of these types of analysis, they are used here in an attempt to
compare these methods in an objective and unbiased manner, and this matter is further
covered in the Discussion.

Across all conditions, GeneCOCOA had a substantially higher true positive rate than
either DAVID or GeneWalk, and in all but one case also a higher true positive rate
than Correlation Analyzer (Fig. 4B). In order to confirm that GeneCOCOA was not
just returning spurious significant associations for every provided gene, the proportions
of false positives across all conditions for all methods was further analyzed. Overall,
GeneCOCOA reported more false positives than the other methods (Fig. 4C, Supp.
Fig. S2 & S3). However, when considering the results in a gene-set-focused perspective,
GeneCOCOA recalls more true positives per gene set than false positives (corresponds to
the summary of row counts in Fig. 4C; see also Supp. Fig. S2, S3 & S4. This is truly
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independent of the disease expression set provided. From a condition-wise perspective
(corresponding to columns in Fig. 4C), GeneCOCOA consistently reports a higher
proportion of true positives than false positives across all conditions ( Supplementary
Figure S3). For GeneWalk and DAVID, the proportions of true and false positives were
negligible, resulting in both methods having high true negative rates, but accompanying
high false negative rates as well. Correlation Analyzer managed to recover more true
positives than the prior two methods, yet in the majority of cases the false positive
rate was at least as high as the true positive rate (see Supp. Fig. S3 ). Thus,
GeneCOCOA recovers the most relevant disease terms whilst maintaining an acceptable
level of specificity, independent of disease type.

Taken together, the results presented here demonstrate that GeneCOCOA is capable
of identifying statistically significant functional co-expression patterns linked to a gene-of-
interest. Dynamics in context also seem to be detectable, as well as gene-specific functions.
GeneCOCOA offers a different approach to other methods, which appears to identify
more biologically relevant gene functions than similar tools, although benchmarking
these kinds of approaches remains highly challenging.

Discussion

This manuscript describes GeneCOCOA, a method designed to implement both co-
expression and functional enrichment analyses focused on a gene-of-interest (GOI).
Evidence of the functionality of GeneCOCOA was demonstrated by using transcriptome
profiling data arising from monogenic diseases, and identifying co-expressed gene sets
with a relevant gene in each scenario. The use of GeneCOCOA to detect context-specific
alterations in gene function was illustrated using RNA-sequencing data arising from a
large cohort of patients suffering from acute myeloid leukemia. Here, functional gene
sets associated with disease progression and prognosis could be found to be significantly
co-expressed with FLT3, a known driver of the disease. The performance of GeneCOCOA
relative to similar methods was compared across several distinct contexts, and showed
that GeneCOCOA has the potential to fill a previously underpopulated niche in the
toolkit of gene expression data analysis.

Advancements in next-generation sequencing technology have resulted in an abun-
dance of high quality, publicly available transcriptome profiling data from a wide range
of species, conditions and stimuli [3]. This has shifted the experimental bottleneck
from data generation towards data analysis, with a resulting requirement for robust,
efficient methods to extract maximal insight from these data. This must be accomplished
whilst simultaneously maintaining ease-of-use for the user, many of whom are not expert
computational biologists. Another by-product of this wealth of data is that researchers
with specific genes-of-interest can query these data for metrics such as co-expression.
However, manually curating co-expression results to derive biological insight can be
complex and time-consuming.

Herein, we demonstrated that GeneCOCOA is capable of providing the user with
functional gene sets which are enriched in their co-expression with a GOI. The func-
tionality of GeneCOCOA in conjunction with data from large cohort experiments was
demonstrated with a large data set consisting of 79 RNA-sequencing samples [36}37],
where the known functional role of FLTS& could be recapitulated. In this illustrative
example, the link between the gene-of-interest and experimental condition is extremely
well established. This makes it difficult to truly assess the sensitivity of GeneCOCOA
for discovering de novo functional roles of a GOI in a given condition.

In further illustrative use cases, GeneCOCOA was implemented on genes implicated
as being causative for amyotrophic lateral sclerosis and familial hypercholesterolemia,
specifically the GOIs SODI [69] and LDLR [66]. In each case, GeneCOCOA identified
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functional, co-expressed enriched terms pertinent to the given disease. It should be
noted, however, that in each case there were several replicates per condition (11 vs.
11, and 13 vs. 10, respectively). These replicate numbers are relatively uncommon in
experimental setups designed around cell culture systems, where three biological replicates
per biological condition is common [70]. The identification of robust enrichments when
GeneCOCOA is provided with datasets of this smaller size is more challenging than when
using larger datasets, and certainly represents a potential drawback of the approach.
However, transcriptome profiling of larger patient cohorts is becoming increasingly
common and accessible [71H73], providing ideal input for GeneCOCOA and similar tools.

Another caveat to consider in the course of analysis of transcriptomic data with
GeneCOCOA or any similar method, is the disconnect between expression and true
function. Whilst GeneCOCOA is capable of using an array of curated gene annotation
databases to infer potential functionality, a vast number of genes remain uncharacterized
with regard to functional importance [74]. These genes are therefore excluded from the
analysis, despite potentially interesting co-expression with the gene in question. Similarly,
in a native co-expression analysis without any functional subsetting of genes, genes
co-expressed with one another may in fact have diverse functions. For example, genes
whose products make up negative feedback loops may be similarly regulated in order to
provide a controlled response to a stimulus, despite having antagonistic functions [75].

In a systematic comparison of GeneCOCOA against similar methods (Gene Walk,
DAVID and Correlation AnalyzeR), GeneCOCOA was able to identify a greater pro-
portion of evidence-linked disease-relevant gene-GO term relationships. By computing
these links across a number of diseases, it could be shown that disease-relevant associa-
tions reported by GeneCOCOA tended to be enriched in specificity for the diseases in
question. However, it should be stated that making concrete conclusions on the relative
performance of these types of methods is highly challenging, given the difficulties in
ascribing true positive and true negative validation sets. This arises from the curated
nature of gene sets, which rely wholly on published gene functions, as well as the extent
and quality of databases used to record and document relationships between genes and
functions. A consequence of this approach is that there may be genes not yet linked to a
function or disease, which may just be unstudied in that capacity rather than irrelevant.
For example, inflammatory genes such as TNF and TGFBI (both annotated as being
important to myocardial infarction) are not included in the list of genes associated with
Alzheimer’s disease on DisGeNET. As a consequence, significant associations reported
for these genes (Supp. Fig. S4) with Alzheimer’s-relevant terms were marked as
quasi-false positives. Yet, dysregulations related to these genes have been linked to the
development of Alzheimer’s disease in prior research [76H79]. Similarly, GeneCOCOA
also reported false positive associations in the amyotrophic lateral sclerosis (ALS) data
set for the genes BCL2 and BAX. While they are present in the Alzheimer’s disease gene
set, these apoptotic genes have also been described as mediators of motor neuron loss in
ALS [80-82]. Thus, the supposedly false positive associations returned by GeneCOCOA
might, in several cases, hint at biologically meaningful GOI-disease associations which
are not reflected in our strict approach to the definitions of ground truth.

From a methodological perspective, it was interesting that the relatively simple meth-
ods employed by Correlation AnalyzeR and GeneCOCOA both outperformed the more
complex method implemented in GeneWalk. Correlation Analyzer’s approach of consid-
ering entire gene sets in their enrichment analysis could result in a decreased sensitivity
compared to GeneCOCOA, which samples subsets of gene sets. This would explain the
greater sensitivity (but additionally increased false positive rate) of GeneCOCOA. The
authors of Correlation AnalyzeR recommend input data with many samples in order for
a robust analysis, whereas the iterative sampling approach of GeneCOCOA might permit
increased performance on smaller datasets. What the performance of these two similar
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methods shows, is that using co-expression in combination with functional enrichment is

a valid approach for inferring gene function, particularly of previously unstudied genes.

Which specific method of co-expression analysis and functional enrichment should be
used likely depends on the type and extent of the input data.

The formulation of GeneCOCOA to provide a functionally-resolved co-expression
analysis framework is designed to minimize both data and time loss when moving
data between different methods. Performance is largely determined by the iterative
computation of background gene sets, the number of which may be set by the user.
We aimed to maximize ease-of-use by formulating GeneCOCOA as an R [83] package,
thereby making it simple to integrate the analysis with common workflows such as
differential gene expression analysis [451(84].

In summary, GeneCOCOA provides a method by which users can infer putative
functions of a gene-of-interest based on co-expression of the given gene with curated
sets of functionally-annotated genes. GeneCOCOA therefore empowers users to take
advantage of the growing number of publicly available transcriptome profiling datasets,
in order to provide greater functional insight and generate new hypotheses pertaining to
the roles of individual genes in different contexts.

Conclusion

e GeneCOCOA is a combined method for the identification of functional gene sets
which are significantly co-expressed with a gene-of-interest.

e The method can be used in a highly flexible manner on user-supplied or publicly
available transcriptome profiling data.

e Function gene sets can be provided by the user, or taken from curated, publicly
available databases which hold information on ontologies, pathways and diseases.

o (GeneCOCOA successfully recapitulates functional signatures of genes implicated
in monogenic diseases.

e GeneCOCOA detects greater numbers of evidence-linked gene-disease relationships
than similar methods.

Supporting information

S1 Fig. Selection of default iteration number for GeneCOCOA.

S2 Fig. Comparison of true positives and false positives across gene sets
per method in gene-disease evaluation.

S2 Fig. Comparison between proportions of true positive and false positive
disease-linked genes across conditions, per method.

S3 Fig. True positive and false positive matrices from gene-disease evaluation
for all three methods with gene symbols.
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Figure 1. GeneCOCOA workflow for identification of functional gene sets co-expressed with a
gene-of-interest. (A) Strategies and related methods for statistically associating genes to putative
functions, summarized into gene-centric (GeneWalk, DAVID), prior knowledge (GO, Reactome, MSigDB)
and co-expression (WGCNA, CemiTool) approaches. GeneCOCOA incorporates elements of each of
these approaches into a single workflow. (B) Schematic representation of the GeneCOCOA workflow,
which takes as input user-provided functional gene sets, a gene-of-interest (GOI) and gene expression
data to report statistically ranked gene sets associated with the provided GOI. This is achieved by
comparing root-mean-square error (RMSE) values from bootstrapped linear regression models predicting
the expression of the GOI using either genes arising from a single gene set, or randomly sampled genes
from the expression data. Gene set errors and random errors are statistically compared, and the resulting
p values are adjusted, resulting in an output list of functional gene sets ranked statistically by the strength
of their association with the provided gene-of-interest.
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Figure 2. Example use case of GeneCOCOA to predict context-specific FLT3 function using
expression data from hematopoietic stem cells and acute myeloid leukemia blasts. (A) In an
exemplary use case, GeneCOCOA was applied to study the co-expression patterns of FLT3 with Gene
Ontology Biological Process (GO:BP) terms in bulk RNA-sequencing of CD34+ hematopoietic stem cells
(HSCs) from 48 healthy subjects, and blasts from 31 patients with acute myeloid leukemia (AML) positive
for FLT3-ITD mutations. (B) The 10 highest-ranked GO:BP terms with FLT3 in HSCs from healthy
donors, as computed by GeneCOCOA. The corresponding significance values in AML blasts are
provided for comparison. Ranks are annotated next to the bars; non-significant terms are not annotated.
(C) The 10 highest-ranked GO:BP terms with FLT3 in patients with AML and FLT3-ITD mutations, as
computed by GeneCOCOA. The corresponding significance values in healthy HSCs are provided for
comparison. Ranks are annotated next to the bars; non-significant terms are not annotated.
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Figure 3. Gene-COCOA detects cellular responses to diseases with monogenic signatures. (A)
GeneCOCOA results reporting the strength of association in co-expression between SOD17 and
MSigDB Hallmark gene sets, in lymphocytes isolated from healthy donors (left) and lymphocytes
isolated from patients with amyotrophic lateral sclerosis (right). (B) GeneCOCOA results reporting the
strength of association in co-expression between LDLR and MSigDB Hallmark gene sets in
monocytes from healthy donors (control, left) and monocytes isolated from patients with familial
hypercholesterolemia (disease, right). The size of the points in each plot reflects the relative mean
expression level of each gene set.
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Figure 4. Systematic comparison of GeneCOCOA, DAVID, Correlation AnalyzeR and GeneWalk
for their performance in statistically linking disease-relevant genes and GO:BP terms. (A)
GeneCOCOA, DAVID, Correlation AnalyzeR (CA) and GeneWalk were each run to identify significantly
associated disease-relevant genes from DisGeNet and disease-associated Gene Ontology Biological
Process terms (GO:BP) as listed on MalaCards. Genes significantly associated to the matching disease
terms were considered true positives (TP), and genes statistically linked to terms from other diseases
as false positives (FP). (B) Proportion of true positive associations between disease-relevant genes and
matching disease GO:BP terms by GeneCOCOA, GeneWalk, Correlation AnalyzeR (CA) and DAVID
(AD: Alzheimer’s disease, ALS: Amyotrophic lateral sclerosis, DC: Dilated cardiomyopathy, DM:
Diabetes mellitus, MI: Myocardial infarction, MS: Multiple sclerosis). (C) Summary of true positive and
false positive gene-term associations per set of disease-relevant genes across all diseases, as
computed by GeneCOCOA, GeneWalk, Correlation AnalyzeR and DAVID.
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Figure S1. Identification of recommended number of bootstraps. With different values for number of
bootstrapping rounds were tested, i=1000 was found to provide the best trade-off between efficiency and
power. Displayed here are exemplary results for the association between FLT3 and the 50 MSigDB
hallmark gene sets in the expression data set of 136 AML patients. We inspected the results of 16
GeneCOCOA runs with bootstrap rounds ranging from 2 to 100k. All terms which were identified as
significant (P,4<0.05) in any of the runs are listed as rows, while columns indicate the different
GeneCOCOA runs. White tiles indicate that this term was not identified as significant in the respective
GeneCOCOA run, while red indicates that it was returned as one of the terms significantly associated with
FLT3 expression.
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Figure S2. Comparison of true positives and false positives hits across gene sets. For each gene set,
we evaluated the number of hits by method, differentiating true positives (TP; hits in the original disease
context) from false positives (FP; hits in other disease contexts). (A) Across gene sets, the number of hits
returned by GeneCOCOA in the TP condition is either higher or comparable to any other number of hits in
FP contexts. DAVID and GeneWalk recover a smaller number of hits in general. While GeneWalk — except
for the case of Ml — manages to retain a good TP:FP ratio (C), DAVID (B) and Correlation AnalyzeR (D)

report more FP than TP hits in a third of the cases.
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Figure S3. Comparison of true positives and false positives across conditions. For each condition,
the set of genes which are disease-relevant as per DisGeNET can be defined as the true data set, all other
genes are defined as other. (A) Comparing the proportions of true genes with disease-relevant term hits
against the proportion of other genes with disease-relevant term hits, GeneCOCOA consistently manages
to recover more true hits than other hits across all conditions. (B) DAVID and (C) GeneWalk show only a
negligible proportion of other hits. Yet, these methods also fail to recover a substantial amount of true hits.
(D) In two cases, Correlation AnalyzeR shows slightly more true than other hits. Yet, in all other cases there
are at least as many other as true hits. The overall percentage of true hits recovered is smaller than in the

GeneCOCOA runs.
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Figure S4. False/true positive matrices for all three methods with gene symbols. Summary of
true positive and false positive gene-term associations per set of disease-relevant genes across all
diseases, as computed by DAVID, GeneWalk, Correlation AnalyzeR and GeneCOCOA.
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