

1 **SLC7A5 is required for citrulline-dependent growth in arginine limited conditions**

2

3 Kyle N. Dunlap¹, Austin Bender¹, Alexis Bowles¹, Alex J. Bott^{1,2}, Jared Rutter^{1,2}, Gregory S.
4 Ducker^{1*}

5

6 **Affiliations**

7 ¹Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA.

8 ²Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT
9 84112, USA.

10 *Corresponding author: greg.ducker@biochem.utah.edu

11

12 **Summary**

13 Tumor cells must optimize metabolite acquisition between synthesis and uptake from their
14 surroundings. The tumor microenvironment is characterized by hypoxia, lactate accumulation, and
15 depletion of many circulating metabolites, including amino acids such as arginine. We performed
16 a metabolism-focused functional screen using CRISPR/Cas9 in a melanoma cell line to identify
17 pathways and factors that enable tumor growth in an arginine-depleted environment. Our screen
18 identified the SLC-family transporter SLC7A5 as required for growth, and we hypothesized that
19 this protein functions as a high-affinity citrulline transporter. Citrulline, an essential precursor to
20 arginine synthesis, is present in human serum at 40 μ M and supports localized arginine synthesis
21 across diverse tissues. Using isotopic tracing experiments, we show that citrulline uptake and
22 metabolism are dependent upon expression of this transporter. Pharmacological inhibition of
23 SLC7A5 blocks growth in low arginine conditions across a diverse group of cancer cell lines. Loss
24 of SLC7A5 reduces tumor growth and citrulline import in a mouse tumor model. Overall, we
25 identify a conditionally essential role for SLC7A5 in arginine metabolism as a mediator of
26 citrulline uptake, and we propose that SLC7A5-targeting therapeutic strategies in cancer may be
27 especially effective in the context of arginine limitation.

28

29 **Key Points**

30 • SLC7A5 is required for proliferation in arginine-free conditions when citrulline is present.

31 • SLC7A5 loss impairs arginine metabolism.

32 • Citrulline import is uniquely dependent on SLC7A5.

33 • Small molecule inhibitors of SLC7A5 can be paired with senolytic drugs to drive apoptosis.

34 • *SLC7A5* knockout decreases citrulline import in a xenograft model.

35

36 **Introduction**

37 The distribution of nutrients via circulation enables individual cells and tissues to either
38 acquire or synthesize nutrients depending upon their niche and function. Diet provides a steady
39 stream of all proteinogenic amino acids, but humans remain capable of synthesizing approximately
40 half of them, giving cells multiple strategies for acquiring amino acids¹. Despite this theoretical
41 flexibility, non-essential amino acids are limiting in proliferative contexts such as immune cell
42 expansion^{2,3} or tumor growth⁴. Strategies to boost or inhibit amino acid acquisition through
43 transport or synthesis have been elucidated for multiple tumor and immune cell interactions^{5,6}.
44 Arginine is both a proteinogenic amino acid and a precursor for biochemical processes such as
45 polyamine synthesis and nitric oxide production and signaling. Blocking arginine availability has
46 major effects on tumor growth and T-cell function in multiple systems⁷⁻¹¹. It has been shown that
47 T-cells may be able to circumvent the loss of environmental arginine through the uptake of
48 citrulline from the serum to fuel the de novo synthesis of arginine¹².

49 Citrulline is a neutral non-proteinogenic amino acid whose primary physiological function
50 is to serve as an essential intermediate in the urea cycle to detoxify ammonia in the liver¹³.
51 Citrulline and aspartate are combined into arginosuccinate by the enzyme Argininosuccinate
52 Synthase 1 (ASS1). Fumarate is then cleaved from arginosuccinate to generate arginine by the
53 action of Argininosuccinate Lyase (ASL). Loss of citrulline catabolism by mutations in *ASS1*
54 blocks urea cycle function, leading to citrullinemia type 1, a buildup of citrulline and ammonia in
55 the blood¹⁴. *ASS1* and *ASL* are widely expressed, and citrulline metabolism enables arginine

56 synthesis in peripheral tissues¹⁵. The total arginine synthesis capacity is large as citrulline is
57 sufficient to sustain serum arginine and ornithine levels, even in the presence of exogenously
58 administered arginases¹⁶.

59 *ASS1* is both up and down-regulated within tumors,¹⁷ suggesting that cancers face differing
60 pressures on arginine availability and placing citrulline acquisition as a key node in tumor
61 metabolism. *ASS1* expression is repressed by epigenetic silencing in multiple cancer types,
62 including melanoma¹⁸, mesothelioma¹⁹, and hepatocellular carcinoma^{7,20}. Loss of *ASS1* can aid
63 tumor growth by sparing aspartate for nucleotide synthesis^{7,21}. Unsurprisingly, these tumors are
64 exquisitely sensitive to arginine depletion, leading to clinical trials seeking to exploit this
65 metabolic vulnerability by using an arginine deiminase enzyme therapy (ADI-PEG20) to
66 catabolize circulating arginine into citrulline and the ammonium ion²². A recent phase II clinical
67 trial in mesothelioma showed increased overall survival in patients treated with ADI-PEG20,
68 although *ASS1* expression was not a patient-specific variable in this study²³. Re-expression of *ASS1*
69 could enable tumor cells to escape arginine-depletion treatment by utilizing citrulline²⁴. More
70 broadly, overexpression of *ASS1* may be a signal that the tumor microenvironment is depleted of
71 arginine and that citrulline acquisition and utilization may represent a targetable metabolic
72 vulnerability.

73 In this study, we sought to characterize systemic citrulline metabolism and quantify
74 citrulline consumption across tissues. To understand the necessary metabolic networks required
75 for citrulline metabolism, we performed a functional genomics screen using CRISPR. This screen
76 identified *SLC7A5*, which encodes a neutral amino acid transporter, as essential for citrulline to
77 rescue growth when arginine is limited. We demonstrate that this essentiality is due to the loss of
78 citrulline import and de novo arginine synthesis, as well as the specificity of citrulline for *SLC7A5*
79 compared to other annotated amino acid targets. We show that a small molecule inhibitor of
80 *SLC7A5* can pair with arginine starvation in *ASS1*-high cells to inhibit cell growth. Finally, we
81 show *in vivo* that *SLC7A5* deficient tumors have reduced growth and attenuated citrulline import.

82 **Results**

83 **A functional genomics screen identifies *SLC7A5* as required for growth on citrulline.**

84 Citrulline is a human plasma metabolite used for arginine synthesis (Fig. 1A), but its role
85 in metabolism outside of the liver and the urea cycle has been a subject of ongoing investigation.

86 To measure citrulline concentration and flux in circulation, we infused [$1-^{13}\text{C}$]-citrulline and
87 [$^{13}\text{C}_6$]-arginine over three hours into fasted 9-week-old mice through a surgically implanted jugular
88 vein catheter. We measured the fasting serum concentration of citrulline to be $66 \pm 5 \text{ }\mu\text{M}$, and
89 arginine to be $103 \pm 15 \text{ }\mu\text{M}$, consistent with prior reports from both mice and humans²⁵ (Fig. 1B).
90 Upon infusion (parameters listed in methods), both tracers reached steady state enrichments (28%
91 isotope enrichment for citrulline and 14% for arginine) during the infusion period (Fig. S1A). From
92 serum isotopic enrichment at steady state, we quantified the endogenous rate of appearance (R_a)
93 of citrulline and arginine. Our quantified arginine production flux ($12.5 \pm 1.7 \text{ nmol/g/min}$) was
94 more than four times that of citrulline ($2.6 \pm 0.3 \text{ nmol/g/min}$) (Fig. 1C). As circulating
95 concentrations of arginine and citrulline were constant during this infusion period, we can also
96 assume that total tissue disposal fluxes (R_d) were equivalent to R_a and higher for arginine than
97 citrulline. [$1-^{13}\text{C}$]-citrulline infusion led to the labeling of serum arginine, indicating active
98 arginine synthesis from citrulline (Fig. S1B). [$^{13}\text{C}_6$]-arginine infusion resulted in M+5 labelled
99 citrulline that linearly increased during the infusion, indicating systemic nitrous oxide synthetase
100 activity^{26,27} (Fig S1C). These data show that in mice, systemic arginine and citrulline metabolism
101 are closely interconnected.

102 To identify cellular mechanisms regulating arginine synthesis from citrulline, we designed
103 a functional genomics screen to identify genes involved in citrulline uptake and metabolism. We
104 generated a cell line that was dependent upon citrulline metabolism for growth in arginine-depleted
105 conditions by overexpressing ASS1 in the naturally ASS1-low melanoma cell line A375m
106 (A375m^{ASS1-OE}) (Fig. S1D). To establish reliance upon de novo arginine synthesis, we cultured
107 these cells in media with limiting levels of arginine (Fig. 1D). We supplemented RPMI media
108 formulated without arginine with $40 \text{ }\mu\text{M}$ citrulline, the concentration of citrulline contained in
109 Human Plasma Like Media (HPLM)²⁵. We then added back either $10 \text{ }\mu\text{M}$ Arg (Low Arg), a near-
110 starvation concentration, or $110 \text{ }\mu\text{M}$ Arg (High Arg), the concentration of Arg in HPLM and
111 similar to what we observed in mouse serum²⁸ (Fig. 1B). We performed growth assays and
112 observed a slight reduction in growth in the A375m^{ASS1-OE}-Low Arg condition compared to the
113 A375m^{ASS1-OE}-High Arg condition, but without citrulline present, growth was fully suppressed
114 after one doubling, consistent with the exhaustion of pre-existing arginine and citrulline (Fig. 1E).
115 To test whether ASS1 activity could fully support cell growth, we cultured cells in
116 supraphysiological levels of citrulline ($200 \text{ }\mu\text{M}$) and rescued proliferation back to High Arg levels

117 (Fig. S1E). To confirm that citrulline metabolism was increased by ASS1 overexpression, we
118 quantified citrulline and arginine consumption from media using A375m^{ASS1-OE} and ASS1
119 knockout (A375m^{ASS1-KO}) cell lines. A375m^{ASS1-OE} cells consumed more citrulline and less
120 arginine in High Arg conditions compared to A375m^{ASS1-KO} cells (Fig. S1F). ASS1 overexpression
121 enabled citrulline consumption in Low Arg media compared to the A375m^{ASS1-KO} cells.
122 Furthermore, ornithine, another non-proteinogenic amino acid member of the urea cycle, could not
123 rescue growth in arginine-limiting conditions, demonstrating a lack of ornithine transcarbamylase
124 (OTC) enzyme expression in our cell line (Fig. S1G). This result supports prior reports that OTC
125 is only expressed in the liver and parts of the intestine and not expressed in the vast majority of
126 cultured cell lines (Fig. S1H, A375 cell line highlighted in magenta)^{29,30}.

127 Having established the arginine synthesis phenotype in our engineered cell lines, we then
128 performed a functional genomics screen using CRISPR/Cas9 in culture media with differing
129 defined arginine and citrulline concentrations. We employed a previously published metabolism
130 focused library that consists of ~24,000 sgRNAs targeting ~3,000 genes and enzymes relating to
131 human metabolism and small molecule transporters (8 sgRNA/gene) and 50 control sgRNAs in a
132 Cas9-expressing lentiviral vector^{31,32}. We transduced A375m^{ASS1-OE} cells with the sgRNA library,
133 passaged the pool of cells in either Low Arg or High Arg media for 14 population doublings, and
134 quantified sgRNA abundances before and after the experiment (Fig. 1F). We utilized MAGeCK
135 software³³ to calculate gene scores based on the essentiality of the gene for cellular fitness. As
136 expected, most genes scored similarly between the Low and High Arg conditions (Fig. 1G).
137 Consistent with our system design, genes within the urea cycle scored as highly essential in Low
138 Arg conditions. The second most differentially essential gene was *ASL*, which encodes the enzyme
139 arginosuccinate lyase, the final step in generating arginine from citrulline (Fig. 1G, 1H, S1I). A
140 canonical arginine transporter, *SLC7A1*⁷, was also a top hit (Fig. 1G, 1H, S1I). However, the most
141 differentially essential gene between the Low Arg and High Arg conditions was *SLC7A5* (Fig. 1G,
142 1H, S1I, S1J). It ranked as the most essential gene in the A375m^{ASS1-OE}-Low Arg condition, and
143 the #182 most essential gene in the A375m^{ASS1-OE}-High Arg condition (Fig. S1I). *SLC7A5* (also
144 referred to as LAT1) is a sodium- and pH-independent amino acid antiporter³⁴. It is a well-
145 annotated high-affinity transporter of large, neutral amino acids such as leucine, phenylalanine,
146 and tryptophan³⁴⁻³⁶. As citrulline is neutral at physiologic pH and the most differentially essential

147 gene in our screen, we hypothesized that SLC7A5 was responsible for its transport in low arginine
148 conditions.

149 **SLC7A5 is required for citrulline uptake, metabolism, and growth in arginine-free media.**

150 To validate the essential role of SLC7A5 for cell growth in low arginine conditions, we
151 generated two clonal *SLC7A5* knockout lines in our A375m^{ASS1-OE} cell background using
152 CRISPR/Cas9 (Fig. 2A). A375m^{ASS1-OE} WT and *SLC7A5* KO cells were grown over 4 days in
153 arginine-free RPMI supplemented with equimolar amounts of either arginine or citrulline (110 μ M
154 each). A modest but significant reduction in doubling time was observed in some *SLC7A5*
155 knockout clones compared to A375m^{ASS1-OE} WT cells when cultured with arginine (Fig 2B, S2C).
156 However, when cultured on citrulline in place of arginine, *SLC7A5* KO cells were unable to
157 proliferate at all (Fig. 2B). Re-expression of *SLC7A5* cDNA rescued growth in media containing
158 citrulline (Fig. S2A, S2B). To examine if this phenotype was broadly applicable across cell types,
159 we used CRISPR-Cas9 to knock out *SLC7A5* in the naturally ASS1-high (Fig. S5C) MCF7 breast
160 cancer cell line (Fig 2C)³⁰. Like A375m^{ASS1-OE} cells, knockout of *SLC7A5* inhibited growth of
161 MCF7 cells when they were cultured with citrulline in place of arginine (Fig. 2D).

162 To understand whether our citrulline-dependent growth phenotype was related to the
163 transport function of SLC7A5, we examined the metabolic consequences of SLC7A5 KO (KO #2
164 was used for all subsequent experiments) using liquid chromatography-mass spectrometry (LC-
165 MS). SLC7A5 is a neutral amino acid antiporter that utilizes glutamine³⁷, and intracellular
166 glutamine levels were increased in SLC7A5 KO cell lines in arginine-free media (Fig. S2D, S2E).
167 We next quantified the effects of SLC7A5 deletion on the total consumption of citrulline in
168 arginine-free media. Citrulline uptake rate was calculated by measuring the media citrulline
169 concentration over time and normalizing it to cell growth. Knockout of SLC7A5 fully blocked
170 consumption of citrulline in both cell lines (Fig. 2E, 2F). Re-expression of *SLC7A5* cDNA rescued
171 citrulline consumption (Fig. S2F). To compliment these measurements, we quantified cellular
172 uptake of [1-¹³C]-citrulline in A375m WT (not overexpressing ASS1) cells over a period of 15
173 minutes and found that SLC7A5 KO cells show reduced uptake of labeled citrulline (Fig. 2G). We
174 traced the ASS1-catalyzed conversion of citrulline to arginosuccinate using [1-¹³C]-citrulline. In
175 A375m^{ASS1-OE} cells given [1-¹³C]-citrulline, we observed ¹³C isotope labeling of arginosuccinate
176 that was no longer detectable in A375m^{ASS1-OE} SLC7A5 KO cells (Fig 2H). Total intracellular

177 levels of argininosuccinate were also significantly reduced in SLC7A5 KO cells cultured in
178 citrulline (Fig. 2I, 2J). Restoration of SLC7A5 rescued argininosuccinate levels (Fig S2G). Because
179 of this defect in arginine synthesis, total intracellular arginine levels were significantly reduced in
180 KO cells in both cell lines (Fig 2K, 2L). Arginine levels were increased when SLC7A5 was re-
181 expressed (Fig. S2H). Collectively, these data suggest that SLC7A5 is essential for the uptake of
182 citrulline and synthesis of arginine in cultured cell lines.

183 **Under physiological amino acid concentrations, citrulline uptake is uniquely dependent upon**
184 **SLC7A5.**

185 SLC7A5 is a high-affinity transporter for neutral amino acids such as leucine and
186 phenylalanine and has been reported to affect mTOR signaling due to its leucine transport
187 activity^{38,39}. To determine whether the growth defects we observed in low arginine conditions were
188 confounded due to loss of transport of these amino acids, we performed growth assays with
189 variable concentrations of these metabolites. We reasoned that if SLC7A5 was important for the
190 uptake of these amino acids, A375m^{ASS1-OE} SLC7A5 KO cells would exhibit deficient growth
191 when cultured in low levels of these amino acids. At physiological levels of leucine and
192 phenylalanine, we failed to observe a growth defect in SLC7A5 KO cells (Fig. 3A, B; see dashed
193 line). For leucine, we did not observe a genotype specific growth defect until levels were ~1/8 (25
194 μ M) of physiologic concentrations. For phenylalanine, the effect was seen at ~1/3 of physiologic
195 levels (25 μ M). As we predicted based on published data, cells cultured in very low levels of
196 leucine displayed both an increase in SLC7A5 expression and ATF4 expression confirming the
197 high affinity transport role of SLC7A5 (Fig. S3A). In contrast, when we grew cells in media
198 without arginine supplemented with citrulline over a range of concentrations both above and below
199 physiological levels, we observed a large growth defect when SLC7A5 was absent (Fig 3C). Based
200 on regression analysis, the amino acid concentration that reduced cell growth to half of maximal
201 was less than 7 μ M for leucine and phenylalanine in both WT and KO cells, while for citrulline,
202 220 μ M was required to support half maximal growth in KO cell lines (Fig. S3B). Citrulline only
203 rescued growth in SLC7A5 KO at ~10 times the physiological concentration of this metabolite,
204 implying the existence of a second, very low-affinity mechanism of citrulline transport. We
205 confirmed these amino acid growth dependencies in a second cell line, MCF7 (Fig. 3D-F, S3C).
206 These data suggest that SLC7A5 is essential for citrulline import at physiological concentrations,

207 while other amino acid transporters can compensate for the transport of leucine and phenylalanine
208 at serum concentrations of these amino acids.

209 ***SLC7A5* and *ASS1* are upregulated in response to arginine starvation.**

210 If *SLC7A5* was necessary for growth in arginine limited conditions, we asked if restricting
211 arginine would lead to increased *SLC7A5* expression. Arginine starvation in A375m (*ASS1* WT)
212 cells led to arginine stress as evidenced by increased transcript levels of ATF4, a transcription
213 factor involved in the integrated stress response responsive to arginine⁴⁰, and commensurate
214 upregulation of transcripts of the arginine metabolic enzyme *ASS1* and the arginine transporter
215 *SLC7A1* (Fig. 4A). *SLC7A5* transcripts were also significantly upregulated in response to this
216 condition (Fig. 4A). In multiple *ASS1*-low cell lines, arginine starvation increased expression of
217 both *ASS1* and *SLC7A5* protein (Fig. 4B). We next asked if a similar mechanism accounted for
218 these increases. In A375m WT cells, we observed that loss of arginine in the presence of citrulline
219 led to global increase in intracellular levels of amino acids, including neutral essential amino acids.
220 (Fig. 4C, S4G, red vs blue bars). This result phenocopies an earlier study focusing on glutamine
221 deprivation, where it was found that glutamine-starved environments have increased intracellular
222 amino acid levels.⁴¹ This led us to ask whether *SLC7A5* and *ASS1* were regulated downstream of
223 the general control nonderepressible 2 (GCN2) response to uncharged tRNA. Treatment with
224 GCN2iB, a GCN2 inhibitor, largely normalized cellular amino acid levels (Fig. 4C, S4G, red vs
225 pink bars). Inhibition of GCN2 blocked ATF4 expression in response to arginine starvation but
226 did not impact *SLC7A5* expression (Fig 4D). In response to arginine starvation, *SLC7A5* is
227 upregulated alongside known arginine metabolism genes, albeit through an ATF4-independent
228 mechanism.

229 While *SLC7A5* and *ASS1* are both necessary for growth on citrulline, we asked how they
230 cooperated to control citrulline metabolic fluxes. We assayed citrulline uptake across a panel of 6
231 cancer cell lines and in A375m^{ASS1-OE} cells. Citrulline uptake varied widely in media containing
232 both citrulline and arginine among the cell lines and was closely associated with growth rate in
233 media containing citrulline, but not in media containing arginine (Fig S4A, S4B). We then
234 immunoblotted for *ASS1* and *SLC7A5* levels in our cell lines and observed a strong correlation
235 between growth rate on citrulline and *ASS1* but not *SLC7A5* expression (Fig S4B, S4C). To
236 explore whether *SLC7A5* expression was necessary for arginine synthesis in human cancers, we

237 examined the correlation between *SLC7A5* and *ASS1* mRNA expression. Data from cancerous
238 breast tissue cataloged in The Cancer Genome Atlas (TCGA) shows significant co-expression
239 between *SLC7A5* and *ASS1* among all breast cancers (Fig. 4E), of which strongest correlation
240 occurred in the more aggressive Luminal B subtype (Fig. S4D), while Luminal A tumors showed
241 a much weaker correlation (Fig. S4E). In kidney chromophobe cancer, a rare subtype that
242 originates from intercalated cells of distal tubules⁴², a strong correlation was also observed (Fig.
243 S4F).

244 **A small molecule inhibitor of SLC7A5 sensitizes cells to arginine deprivation.**

245 JPH203 is a potent and selective inhibitor of SLC7A5 currently in clinical trials for biliary
246 tract cancer⁴³. We asked whether treatment with JPH203 would selectively target cancer cells in
247 arginine depleted conditions. JPH203 (1 μ M) inhibited growth of six different cancer cell lines
248 when arginine was restricted and citrulline provided (Fig. 5A, red dots). Importantly, at this dose,
249 JPH203 did not affect growth of cells grown in arginine, indicating that this may be a citrulline-
250 dependent phenotype and not a general result of blocking proteinogenic amino acid uptake (Fig.
251 5A, blue dots). To confirm that this effect is transport-specific, we added either a
252 supraphysiological amount of citrulline (1 mM) or physiologic arginine (110 μ M) to the media
253 and found that they both rescue growth (Fig. 5B). As we observed in SLC7A5 KO cells (Fig 2),
254 JPH203 treatment significantly reduced arginosuccinate and arginine levels in cells (Fig. 5C, 5D,
255 S5A).

256 Cells deprived of arginine enter senescence, and it was recently reported that senolytic
257 drugs can be paired with arginine starvation to further slow proliferation⁷. We tested whether
258 JPH203 inhibition of citrulline metabolism would yield a similar result. We found that when
259 JPH203 is paired with GCN2iB and the senolytic BCL-2 inhibitor ABT263, proliferation was
260 inhibited when cells are plated in media containing citrulline without arginine (Fig 5E).
261 Importantly, this combination of inhibitors has no effect on cells cultured in arginine (Fig. S5B).
262 We then performed immunoblotting on two apoptotic markers, Cleaved PARP and Cleaved
263 Caspase-3⁴⁴⁻⁴⁷. Apoptosis was apparent when JPH203 was combined with GCN2iB and further
264 enhanced by addition of ABT-263 in citrulline dependent growth conditions (Fig 5F). This
265 suggests that cells treated with JPH203 are growth arrested, but not apoptotic until the addition of
266 GCN2iB, which inhibits *ASS1* re-expression, and the senolytic agent ABT-263.

267 **SLC7A5 regulates citrulline metabolism in an *in vivo* xenograft model.**

268 To examine the effects of SLC7A5 inhibition on citrulline metabolism and tumor growth
269 in an *in vivo* setting, we injected A375m WT and SLC7A5 KO cells bilaterally into the flanks of
270 6-week-old female nude mice and tracked tumor growth. Loss of SLC7A5 resulted in significantly
271 reduced tumor growth rate (Fig. 6A, 6B, S6A). To determine levels of citrulline import in these
272 tumors, we injected 0.07g/kg of [1-¹³C]-citrulline intraperitoneally in mice bearing the tumors in
273 Fig. 7A-B and sacrificed the mice 1 hour later. Serum enrichment of [1-¹³C]-citrulline was 34 ±
274 4% one hour after injection (Fig. 6C). We observed a significant decrease [1-¹³C]-citrulline within
275 KO tumors compared to their WT counterparts in the same mouse (Fig 6D).

276 Finally, we examined the relationship between ASS1 and SLC7A5 *in vivo* by utilizing our
277 A375m^{ASS1-OE} and A375m^{ASS1-OE/SLC7A5 KO} cells. A375m^{ASS1-OE} tumors grew slower than the
278 parental A375m tumors. These data are in line with suppression of ASS1 in tumors; cancer cells
279 downregulate ASS1 to promote nucleotide production, and forced overexpression of ASS1
280 exhausts aspartate pools, thereby limiting the growing cells capacity to synthesize necessary
281 nucleotides²¹. Counterintuitively, loss of SLC7A5 in the A375m^{ASS1-OE} tumor rescued tumor
282 growth (Fig. 6E). Consistent with loss of SLC7A5 leading to loss of citrulline uptake,
283 arginosuccinate levels were suppressed in the KO tumors (Fig. 6F). As expected in arginine replete
284 serum, tumor arginine levels however were not changed (Fig. 6G). In summary, these data show
285 that SLC7A5 can interact with ASS1 *in vivo* to regulate tumor growth, likely via the transport of
286 citrulline.

287

288 **Discussion**

289 The uptake of nutrients from the serum serves as a critical control point for metabolic
290 regulation. Differential transport helps underpin cell-type variation in metabolism and contributes
291 to tumor growth. Despite this, the elucidation of many of these transport pathways remains
292 unsolved, although new screening methodologies have now enabled a resurgence in transporter
293 annotation and discovery^{31,48–50}. In this study, we asked how a common non-proteinogenic amino
294 acid, citrulline, is used to fuel arginine metabolism. Using a functional genomics screen, we
295 identified the neutral amino acid transporter *SLC7A5* to be an essential gene when cells are

296 dependent upon citrulline uptake for arginine synthesis. Our metabolic analysis revealed that
297 SLC7A5 enables citrulline uptake and conversion into arginine in diverse mammalian cell lines.
298 Small-molecule inhibition of SLC7A5 inhibits cell growth in arginine depleted conditions and,
299 when combined with senolytic agents, leads to apoptosis. Finally, we showed that loss of SLC7A5
300 results in decreased tumor xenograft growth, which was associated with attenuated citrulline
301 import into tumors.

302 Diet is a poor source of citrulline in humans, with the most concentrated food source being
303 watermelon (*Citrullus lanatus*)⁵¹. Data from arterial-venous sampling studies shows that citrulline
304 is largely produced in and exported from intestine enterocytes and synthesized from glutamine and
305 arginine^{15,52,53}. A study examining metabolite exchange between organs in pigs show that the leg
306 muscle, spleen, and kidney uptake significant amounts of citrulline, illustrating that localized
307 arginine synthesis is important for protein homeostasis and cell proliferation⁵⁴. Kidney is well-
308 annotated to convert citrulline back into arginine for redistribution in the circulation⁵⁵. Our mouse
309 data matched what was found in pigs, with muscle, spleen and kidney being 3 of the top 4 organs
310 for citrulline import in mice (Fig S6C). Synthesis of arginine appears to be highest in the kidney,
311 heart and brain (Fig. S6D). While the liver has the highest urea cycle activity of any organ⁵⁶,
312 relatively low arginine labelling levels may be related to the high levels of unlabeled arginine
313 present. Our data from circulating citrulline combined with our data from tissue uptake highlights
314 the interplay between citrulline and arginine metabolism in multiple organ systems, far beyond
315 just the liver.

316 Our discovery of SLC7A5 as a citrulline transporter essential for arginine synthesis places
317 it squarely in the de novo synthesis pathway of arginine. Our results indicate that SLC7A5 is
318 necessary but not sufficient for citrulline uptake and, in Figure 4, we showed that ASS1 expression
319 levels drive relative citrulline consumption fluxes. Outside of hepatocytes, the only way to produce
320 arginine is from citrulline³⁰. In tissues, co-expression of ASS1 and SLC7A5 are required for
321 arginine synthesis. In addition to generally supplying arginine for protein homeostasis, SLC7A5
322 mediated citrulline uptake is important for proliferation. Werner et al. reported that citrulline
323 uptake by SLC7A5 was required for the proliferation of T-cells cultured in arginine depleted
324 conditions¹². Coupled with this finding, our data suggests that in the proliferative context, SLC7A5
325 may be the only way to import citrulline required for arginine synthesis.

326 The role of SLC7A5 as a neutral amino acid transporter has been characterized in detail^{34,57}.
327 At physiological levels of leucine and phenylalanine, we show that SLC7A5 is not required for
328 proliferation. Importantly, in our screen and follow-up experiments, leucine and phenylalanine
329 were supplied at standard RPMI concentrations, in excess of physiological values. This was a
330 surprising result and raises the possibility that other lower-affinity transporters for leucine can
331 compensate for the loss of SLC7A5 to sustain proliferation under replete amino acid conditions.
332 These may include other members of the LAT family, such as SLC7A6, SLC7A7 and SLC7A8⁵⁸.
333 In the tumor microenvironment, however, depleted levels of essential amino acids may increase
334 the dependency upon SLC7A5 for growth. In contrast, for citrulline, our data suggests that only
335 very low-affinity transporters outside of SLC7A5 exist to transport this metabolite. The reason for
336 these transporters being low-affinity for citrulline but higher-affinity for leucine and phenylalanine
337 is an avenue for future biochemical investigation. Additionally, since leucine and arginine can both
338 activate the mTOR complex, it remains an open question as to what conditions SLC7A5-dependent
339 transport of leucine and citrulline is required for mTOR activation⁵⁹.

340 The citrulline transport activity of SLC7A5 is most clearly identifiable when arginine is
341 depleted and/or limiting. This can be accomplished therapeutically by ADI-PEG20, which breaks
342 down serum arginine into citrulline and the ammonium ion. Clinical trials are ongoing to treat
343 ASS1-low cancers using ADI-PEG20. In general, these clinical trials have had shown some
344 improvement in interim endpoints, but not durable increases in progression free-survival⁶⁰⁻⁶³. The
345 limited success of these clinical trials may be due to the fact that treatment with this agent
346 drastically spikes circulating citrulline, and tumors begin to re-express ASS1^{24,64}. In this situation,
347 citrulline metabolism enables tumor cells to escape arginine-depleting treatment. Inhibition of
348 SLC7A5 may sensitize tumors to an arginine depletion agent such as ADI-PEG20 and improve
349 therapeutic efficacy. Beyond co-treatment with arginine depleting agents, the efficacy of SLC7A5
350 agents may reveal tumors with limited arginine availability in the TME^{65,66}. Numerous studies
351 have shown that JPH203 treatment slows tumor growth in xenograft models⁶⁷⁻⁷⁰. Interestingly,
352 these tumors have not been metabolically profiled to examine which of the amino acids imported
353 by SLC7A5 drives this reduction in tumor burden. Given findings in T-cells, SLC7A5 inhibition
354 may have deleterious roles for T-cell antitumor activation in some contexts⁷¹. Overall, the finding
355 that SLC7A5 is required for proliferation in arginine-low environments identifies tumor contexts
356 that may be particularly amenable to treatment with these agents.

357 **Limitations:** Metabolomics and isotope tracing suggest a role of SLC7A5 as the main citrulline
358 transporter in mammalian cells. Cell lines do not fully recapitulate *in vivo* variation, and it is
359 possible that other transporters besides SLC7A5 perform this function *in vivo*. The data from the
360 CRISPR screen performed in this study is limited by the choice of cell line and media. In primary
361 cells, there may be additional high-affinity transporters that can fully rescue citrulline import and
362 arginine-deficient growth when SLC7A5 is absent. Additionally, the mice used for tumor
363 modeling in this study were immunodeficient. Arginine has been suggested to play a significant
364 role in T-cell metabolism¹⁰. Further studies using immunocompetent mouse models will be
365 required to understand the therapeutic feasibility of inhibiting citrulline uptake in the tumor
366 microenvironment.

367

368

369 **Acknowledgements**

370 We thank Kivanc Birsoy for the Human Metabolism CRISPR Knockout Library. We thank Adam
371 Hughes for his input on the experimental strategy and close reading of the manuscript. Research
372 reported in this publication utilized the High-Throughput Genomics and Cancer Bioinformatics
373 Shared Resource at Huntsman Cancer Institute at the University of Utah. Research reported in this
374 publication also utilized the Preclinical Research Shared Resource at Huntsman Cancer Institute
375 at the University of Utah. Both are supported by the National Cancer Institute of the National
376 Institutes of Health under Award Number P30CA042014. Additionally, we thank the Flow
377 Cytometry Core at the University of Utah, supported by the Office of The Director of the National
378 Institutes of Health under Award Number S10OD026959. The content is solely the responsibility
379 of the authors and does not necessarily represent the official views of the NIH. G.S.D. was
380 supported by funding from the NIH (R00 CA215307), The American Cancer Society (DBG-23-
381 1037804-01-TBE) and the Nuclear Control of Cell Growth and Differentiation Research Group of
382 the Huntsman Cancer Institute of the University of Utah.

383

384

385 **Author Contributions**

386 Conceptualization, K.N.D., A.J.B. and G.S.D.; methodology, K.N.D and G.S.D.; analysis, K.N.D
387 and G.S.D.; investigation, K.N.D, A.Be., A. Bo., A.J.B.; writing and editing, K.N.D., A.J.B, J.R.
388 and G.S.D.; funding acquisition G.S.D.

389

390 **Declaration of Interests**

391 The authors declare no conflicts of interest.

392

393

394 **Methods**

395 **Cell Lines**

396 A375m, MCF7, HCT15, HCT116, EO771, NCI-H460, LN229 and MDA-MB-468 cell lines were
397 maintained at 37°C and 5% CO₂ and tested regularly for mycoplasma contamination using a
398 mycoplasma detection kit (Applied Biological Materials, G238). Cells were cultured in either
399 RPMI (Thermo, 11875) or DMEM (Thermo, 11965). The media was supplemented with 10% fetal
400 bovine serum (FBS). (Thermo, 10437028) and 100 U/mL penicillin/100 µg/mL streptomycin
401 (Thermo, 15140122). MDA-MB-468 cells were supplemented with 5% sodium pyruvate (Thermo,
402 11360070).

403 **Lentivirus Production and Transfection to Make Overexpressing Cell Lines**

404 7.5x10⁵ HEK293-FT cells were plated in each well of a 6-well dish coated with 50 µg/mL of
405 Poly-D-Lysine (Thermo, A3890401). ASS1 and SLC7A5 cDNA in the vectors pLX304
406 (Addgene #25890) and pLX307 (#41392), respectively, along with packaging vectors psPAX2
407 (#12260) and PMD2.G (#12259) were transfected into the HEK293-FT cells using XTremeGene
408 9 (Sigma Aldrich, 6365779001) (A375m) or Lipofectamine 3000 (Thermo, L3000008) (MCF7).
409 Media was changed 6 to 12 hours after transfection. The virus-containing supernatant was

410 collected 36 to 48 hours after the media change, spun at 400 x g for 5 minutes at room temp, and
411 passed through a .45 μ m filter to eliminate cells.

412 For infection, we infected 50,000 cells in 6-well tissue culture plates with 1mL media
413 containing 10 μ g/mL polybrene and either 500, 300, 150, 30, 15 or 0 μ L of virus. 2 days after
414 infection, the virus-containing media was removed and changed to media containing either 1
415 μ g/mL blasticidin (A375m, ASS1 cDNA), or 1 μ g/mL puromycin (A375m, SLC7A5 cDNA).
416 The cells that survived blasticidin or puromycin treatment were expanded, overexpression of
417 protein was validated using western blotting, and used for downstream experiments.

418 **Generation of CRISPR Knockouts**

419 To make CRISPR knockouts, we followed the protocol in Ran, 2013²⁶. Briefly, sgRNAs
420 (oligonucleotide sequences in the table elsewhere) were cloned into pSpCas9(BB)-2A-Puro
421 (Addgene #62988) or pSpCas9(BB)-2A-GFP (#48138). The resulting plasmid was then
422 transfected into cells using Lipofectamine 3000. After 2-3 days, cells were either sorted by FACS
423 for GFP, or selected for puromycin. After selection, cells were single-cell sorted with a flow
424 cytometer into the wells of a 96-well plates containing 100 μ L of RPMI and 15% FBS. Cells were
425 grown until sufficient size, and then expanded so that the loss of the target protein could be
426 validated via western blotting, and then used for downstream experiments.

427 **Cell Lysate Preparation and Western Blotting**

428 Cells were plated in 6 well plates and allowed to grow for 1-4 days (depending on the experiment)
429 at 37°C and 5% CO₂. The cells were washed with cold PBS and lysed in RIPA buffer (50 mM
430 Tris, 150 mM NaCl, 0.1% SDS, 0.5% sodium deoxycholate, 1% NP-40) supplemented with 1 mM
431 phenylmethylsulfonyl fluoride (PMSF, Cell Signaling 8553S), 1 mM sodium orthovanadate
432 (Sigma-Aldrich, S6508), and 1% protease inhibitor cocktail (Sigma, P2714). The lysing occurred
433 by scraping the cells off the plates with a cell scraper. Lysate was then agitated on ice for 15-30
434 minutes and then briefly sonicated (Branson Ultrasonics) and centrifuged at 16,000 x g for 15
435 minutes at 4C. Supernatant containing protein was then placed in a fresh tube. Protein
436 concentration was quantified using the Pierce BCA Protein Assay Kit (Thermo, 23225). Samples
437 were mixed with 3X Laemmli Sample Buffer (BioRad, 1610747) and 2-mercaptoethanol to a final
438 concentration of 3.33% and incubated at 80-90°C for 10 min. Depending on the protein target, 1-
439 20 μ g of total protein was resolved on a 4-20% polyacrylamide gel (BioRad, 4561096) at 100 V

440 for 60-90 minutes. Gels were blotted on 0.2 μ m nitrocellulose membranes (BioRad, 1704270) via
441 the Trans-Blot Turbo Transfer System (BioRad, 1704150) according to standard procedure at 25
442 V for 30 min. After blocking with 5% non-fat milk (Sigma, M7409)/Tris-buffered saline with
443 0.05% Tween 20 (TBS-T) for 1 hr, the membrane was washed with TBS-T and incubated
444 overnight in 5% bovine serum albumin (Sigma, A6003)/TBS-T with 1:1000 of the primary
445 antibody (see the materials table for a list). The membrane was then washed with TBS-T and
446 incubated with 1:10000 goat anti-rabbit or rabbit anti-mouse poly-HRP secondary antibody
447 (Thermo, 32260) and 1:5000 anti- β -actin-peroxidase antibody (Sigma, A3854) in TBS-T for 1 hr.
448 The membrane was then washed with TBS-T and chemiluminescence was assessed with the
449 BioRad ChemiDoc MP Imaging System (BioRad, 12003154).

450 **Proliferation Assays**

451 Depending on the cell line, between 1500 and 5000 cells were plated in each well of a 96 well
452 plate. For growth experiments not involving drugs, cells were plated in their indicated media. For
453 experiments involving JPH203, GCN2iB or ABT-263, cells were plated in RPMI + 110 μ M
454 Arginine, and changed to experimental media the next day. Media was changed every 2 days. At
455 indicated time points, 10 μ L per 100 μ L of media of .03% resazurin salt (Sigma, R7017) solution
456 was added and incubated for 2 hours. After this incubation period, cell growth was read as
457 fluorescence intensity using a multi-mode plate reader (BioTek) and expressed as relative
458 growth.

459 **Metabolite Extraction in vitro**

460 Cells were grown in 6 cm tissue culture dishes for 16-48 hours, depending on the experiment. For
461 amino acid labeling experiments, media was changed at indicated times before harvesting. Cell
462 plates were washed with ice cold PBS 2x and then 80:20 methanol:water was added at 60x of the
463 PCV (packed cell volume) (MidSci, TP87005) count. The resulting mixture was incubated on dry
464 ice, scraped, collected into a microfuge tube, vortexed, rested on dry ice for 5 minutes and
465 centrifuged at 16000 \times g for 10 min. Supernatant was placed into a fresh tube which was then
466 centrifuged again at 16000 x for 10 min. The supernatant was placed in an MS tube (Agilent 5188-
467 2788) for downstream analysis.

468 **Creation of Custom Media**

469 Media involving citrulline, leucine, or arginine manipulations were made from a source stock
470 containing all components of RPMI without leucine, lysine, and arginine (US Biologicals, R8999-
471 03A). Media involving phenylalanine manipulations originated with a -glucose and -amino acid
472 stock (US Biologicals, R9010-02). Experimental media was then made by adding back in amino
473 acids at concentrations indicated in individual experimental protocols (pH 7.4).

474 **RNA isolation and Quantitative Real-Time PCR**

475 Cells were plated on 6-well plates and allowed to grow for 1-4 days (depending on the
476 experimental setup) at 37°C and 5% CO₂. Cells were washed with PBS and RNA was isolated
477 using the Qiagen RNeasy Mini Kit (Qiagen, 74104) according to the manufacturer's specifications.
478 cDNA was then generated using QuantaBio qScript cDNA SuperMix (QuantaBio 101414-102).
479 qPCR master mixes were prepared consisting of 2.5% 100 μM forward primer, 2.5% 100 μM
480 reverse primer, and 62.5% PowerTrack SYBR Green Master Mix (Thermo, A46109) in RNase-
481 free water. Master mixes were combined 4:1 with the cDNA reactions and plated in duplicate.
482 qPCR was performed using the LC480 PCR Lightcycler (Roche, 05015278001) using the "Mono
483 Color Hydrolysis Probe/UPL probe" detection format. The temperature cycle consisted of an initial
484 2 min period at 95°C and 40 cycles of 95°C for 15 sec and 60°C for 50 sec set to single acquisition
485 mode. The housekeeping gene *RPS2* was used as an internal control for cDNA quantification and
486 normalization of the amplified products.

487 **Metabolite Extraction from Serum**

488 4 μL of serum was added to 68 μL 100% methanol, vortexed, and put on dry ice for at least 5
489 minutes. This mixture was then centrifuged for 10 minutes at 16,000 x g at 4C. Supernatant was
490 placed into a fresh tube and mixed 1:1 with 80% methanol. The sample was vortexed and
491 centrifuged again for 10 minutes at 16,000 x g at 4C. 100 μL of supernatant was transferred to an
492 MS tube for LC-MS analysis.

493 **Metabolite Extraction from Tissue**

494 30-40 mg sections of snap frozen mouse tissue were transferred to pre-chilled Safe-Lock tubes
495 (Eppendorf, 022363352) containing a cold 5/16 in. diameter stainless steel ball (Grainger,
496 4RJL8). The tissue was disrupted by shaking at 25 Hz for 30 sec under liquid nitrogen using the
497 Retsch CryoMill (Retsch, 20.749.0001). 15 μL per mg of tissue of a polar metabolite extraction

498 solution containing 40:40:20 Acetonitrile:Methanol:Water and .1% Formic Acid was added to
499 homogenized tissue Samples were briefly vortexed before neutralizing with 8 mL of 15%
500 ammonium bicarbonate per 100 mL of extraction solvent. Samples were vortexed again and
501 centrifuged at 16,000 x g for 10 minutes at 4C. Supernatant was put into a fresh tube. 40:40:20
502 ACN:MeOH:H₂O with no formic acid was added to the original tube, vortexed, centrifuged at
503 16,000 x g for 10 minutes at 4C. Supernatant was added to the same fresh tube mentioned above.
504 50% chloroform was added to the fresh tube and vortexed to induce phase separation. Samples
505 were again vortexed and centrifuged at 16,000 x g for 10 minutes at 4C. Supernatant (~400 μ L)
506 was placed into a fresh tube and centrifuged at 16,000 x for 10 minutes at 4C for the final time.
507 Supernatant (~200 μ L) was placed in an MS tube for LC-MS analysis.

508 **CRISPR/Cas9 Functional Genomic Screens.**

509 Metabolism-scale functional screens using CRISPR were performed as described in previous
510 work^{31,32}. Briefly, 2,989 genes encoding metabolic enzymes, some transcription factors, and
511 small molecular transporters were targeted with a total of 23,777 sgRNAs and 50 controls
512 targeting intergenic regions. After cloning into lentiCRISPR-v2 puro (Addgene #982990), the
513 pooled plasmid library was used to produce lentivirus-containing supernatants. The optimal
514 volume of lentiviral supernatants to use for the screen was determined by infection of target cells
515 at a range of virus and counting the number of puromycin-resistant cells after 3 days of selection.
516 For the screens, 100x10⁶ target cells were infected at an MOI of ~0.3 and selected with 1 μ g/mL
517 puromycin. An initial pool of ~30x10⁶ cells were harvested for genomic DNA extraction at the
518 beginning of the screen. Blasticidin was present in the media at a concentration of 1 μ g/mL
519 throughout the duration of the screen, due to the ASS1 overexpressor construct. 24x10⁶ cells at a
520 concentration of 4.8x10⁶ per 15cm plate were subjected to each experimental condition and
521 passaged every 2 days until 14 cumulative population doublings were reached. On the final day
522 of screening, cells were harvested for genomic DNA extraction. Genomic DNA was extracted
523 using a DNeasy Blood & Tissue Kit (Qiagen) and amplification of sgRNA inserts was performed
524 via PCR using barcoded primers for each condition. PCR amplicons were purified and sequenced
525 on a NovaSeq (Illumina). Fastq files were analyzed using MAGeCK software. Gene score is
526 defined as the median log₂ fold-change in the abundance of all sgRNAs targeting a particular
527 gene between the initial and final populations.

528 **LC-MS Methodology**

529 Extracted aqueous and polar metabolites were analyzed by LC-MS using a Vanquish HPLC system
530 (Thermo Fisher Scientific) and a QExactive Plus Orbitrap mass spectrometer (Thermo Fisher
531 Scientific). For aqueous phase polar metabolites, separation was achieved by hydrophilic
532 interaction liquid chromatography (HILIC) performed on an Atlantis Premier BEH Z-HILIC
533 column or a Waters BEH HILIC column. For the Z-HILIC column, the specifications were as
534 follows: (2.1 mm X 50 mm, 1.7 μ M particular size, 95 \AA pore size, Waters Co., 186009978) run
535 with a gradient of solvent A (10 mM ammonium acetate in 100% water, pH 9.2) and solvent B
536 (100% acetonitrile) at a constant flow rate of 350 μ L/min. The gradient function was: 0 min, 95%
537 B; 10.4 min, 45% B; 11.5 min, 45% B; 11.6 min, 95% B; 15 min, 95% B. For the HILIC column,
538 the specifications are as follows: (2.5 μ m particular size, 2.1 mm X 150 mm, 230 \AA pore size,
539 Waters Co., 186006724) run with a gradient of solvent A (10 mM ammonium acetate in 100%
540 water, pH 9.2) and solvent B (100% acetonitrile) at a constant flow rate of 350 μ L/min. The
541 gradient function was: 0 min, 90% B; 3 min, 75% B; 9 min, 70% B; 10 min, 50% B; 13 min, 25%
542 B. For both columns, the autosampler temperature was 4°C, column temperature was 30°C, and
543 injection volume was 3 μ L. Samples were injected into the mass spectrometer by electrospray
544 ionization operating in either negative or positive ion mode. Samples were analyzed using a full
545 scan method with a resolving power of 70,000 at m/z of 200 and range of 74 – 1110 m/z. Full scan
546 data were analyzed using the Maven software package with specific peaks assigned based on exact
547 mass and comparison with known standards⁷². Extracted peak intensities were corrected for natural
548 isotopic abundance using the R package AccuCor⁷³.

549 **Citrulline Uptake and Import Measurements**

550 For the short-term uptake measurements, cells were plated in 6cm dishes overnight. 15 minutes
551 before metabolite extraction, media was changed to RPMI containing 40 μ M [1-¹³C]-Citrulline
552 (Cambridge Isotopes). Then, metabolites were extracted from cells as described previously and
553 run on the LC-MS.

554 For long-term experiments, cells were plated and media was taken, metabolites extracted, and
555 run on the LC-MS at the time of plating (time 0) and 48 hours later. To normalize to cell count,
556 packed cell volume (PCV) measurements were taken for each cell line at 0, 24, and 48 hours

557 after plating. The equation used to calculate nmol Citrulline or Arginine consumed per hr/µL of
558 cells is: $nmols\ consumed\ per\ hr\ \mu L = \frac{Final\ nmols\ in\ media - Initial\ nmols\ in\ media}{\int_0^{48} Y_0 e^{kt} dt}$

559 **In vivo Isotope Tracing**

560 Mice with catheters pre-placed in the jugular vein were purchased from Charles River. [1-¹³C]-
561 citrulline (10 mM, 0.1 µl g⁻¹ min⁻¹), or [¹³C₆]-arginine (20 mM, 0.1 µl g⁻¹ min⁻¹) (Cambridge
562 Isotopes) were infused into 3-hour fasted mice for 3 hours. For non-terminal infusions, a bolus at
563 the rate of 1.6 µl g⁻¹ min⁻¹ for one minute at the beginning of the infusion. Blood samples were
564 collected from the tail vein to measure the enrichment of infused isotopes. For experiments
565 measuring intra-organ labeling, mice were euthanized after the 3-hour infusion by cervical
566 dislocation and various organs were quickly snap frozen in liquid nitrogen using a pre-cooled
567 Wollenberger clamp. Organ labeling was normalized to serum citrulline label. For the 1-hour
568 citrulline injection in Figure 7, mice were fasted overnight and ~83 mM (0.07g/kg) of [1-¹³C]-
569 Citrulline was injected intraperitoneally. mice were taken down 1 hour after the citrulline
570 injection.

571 **Mouse Xenografts**

572 All animal studies were approved and conducted under the supervision of the University of Utah
573 Institutional Animal Care and Use Committee. For mice injected with A375m^{ASS1-OE} cells, it was
574 done so at a concentration of 4x10⁵ cells in 100 µL of Matrigel, and cells were injected into the
575 flank. For A375m parental cells, the concentration was 3x10⁵ cells in 100 µL of Matrigel. These
576 mice were given a standard chow diet. For these experiments, WT and SLC7A5 KO genotypes
577 were compared. WT and KO cells were implanted bilaterally on the same animal in growth media.
578 Tumor growth measurements were taken biweekly. Animals were euthanized when the largest
579 tumors reached approximately 600-1000 mm³ or if they displayed any signs of distress or
580 morbidity.

581 **References**

- 582 1. Chandel, N. S. Amino Acid Metabolism. *Cold Spring Harb. Perspect. Biol.* **13**, a040584 (2021).
- 583 2. Mak, T. W. *et al.* Glutathione Primes T Cell Metabolism for Inflammation. *Immunity* **46**, 675–
584 689 (2017).

585 3. Levring, T. B. *et al.* Human CD4+ T cells require exogenous cystine for glutathione and DNA
586 synthesis. *Oncotarget* **6**, 21853–21864 (2015).

587 4. Sullivan, M. R. *et al.* Increased Serine Synthesis Provides an Advantage for Tumors Arising in
588 Tissues Where Serine Levels Are Limiting. *Cell Metab.* **29**, 1410-1421.e4 (2019).

589 5. Fultang, L. *et al.* Metabolic engineering against the arginine microenvironment enhances
590 CAR-T cell proliferation and therapeutic activity. *Blood* **136**, 1155–1160 (2020).

591 6. Panetti, S. *et al.* Engineering amino acid uptake or catabolism promotes CAR T-cell adaption
592 to the tumor environment. *Blood Adv.* **7**, 1754–1761 (2023).

593 7. Missiaen, R. *et al.* GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells
594 to senolytic treatment. *Cell Metab.* **34**, 1151-1167.e7 (2022).

595 8. Changou, C. A. *et al.* Arginine starvation-associated atypical cellular death involves
596 mitochondrial dysfunction, nuclear DNA leakage, and chromatin autophagy. *Proc. Natl. Acad.*
597 *Sci.* **111**, 14147–14152 (2014).

598 9. Rodriguez, P. C., Quiceno, D. G. & Ochoa, A. C. L-arginine availability regulates T-lymphocyte
599 cell-cycle progression. *Blood* **109**, 1568–1573 (2007).

600 10. Geiger, R. *et al.* L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-
601 tumor Activity. *Cell* **167**, 829-842.e13 (2016).

602 11. Tong, B. C. & Barbul, A. Cellular and physiological effects of arginine. *Mini Rev. Med.*
603 *Chem.* **4**, 823–832 (2004).

604 12. Werner, A. *et al.* Reconstitution of T Cell Proliferation under Arginine Limitation:
605 Activated Human T Cells Take Up Citrulline via L-Type Amino Acid Transporter 1 and Use It to
606 Regenerate Arginine after Induction of Argininosuccinate Synthase Expression. *Front.*
607 *Immunol.* **8**, 864 (2017).

608 13. Matsumoto, S. *et al.* Urea cycle disorders—update. *J. Hum. Genet.* **64**, 833–847 (2019).

609 14. Quinonez, S. C. & Lee, K. N. Citrullinemia Type I. in *GeneReviews*® (eds. Adam, M. P. et
610 al.) (University of Washington, Seattle, Seattle (WA), 1993).

611 15. Maric, S. *et al.* Citrulline, Biomarker of Enterocyte Functional Mass and Dietary
612 Supplement. Metabolism, Transport, and Current Evidence for Clinical Use. *Nutrients* **13**,
613 2794 (2021).

614 16. Wijnands, K. A. P. *et al.* Citrulline Supplementation Improves Organ Perfusion and
615 Arginine Availability under Conditions with Enhanced Arginase Activity. *Nutrients* **7**, 5217–
616 5238 (2015).

617 17. Ding, Q., Li, R., Wang, Q., Yu, L. & Zi, F. A pan-cancer analysis of the role of
618 argininosuccinate synthase 1 in human tumors. *Front. Oncol.* **13**, 1049147 (2023).

619 18. Long, Y. *et al.* Arginine Deiminase Resistance in Melanoma Cells Is Associated with
620 Metabolic Reprogramming, Glucose Dependence and Glutamine Addiction. *Mol. Cancer
621 Ther.* **12**, 10.1158/1535-7163.MCT-13–0302 (2013).

622 19. Szlosarek, P. W. *et al.* In vivo loss of expression of argininosuccinate synthetase in
623 malignant pleural mesothelioma is a biomarker for susceptibility to arginine depletion. *Clin.
624 Cancer Res. Off. J. Am. Assoc. Cancer Res.* **12**, 7126–7131 (2006).

625 20. McAlpine, J. A., Lu, H.-T., Wu, K. C., Knowles, S. K. & Thomson, J. A. Down-regulation of
626 argininosuccinate synthetase is associated with cisplatin resistance in hepatocellular
627 carcinoma cell lines: implications for PEGylated arginine deiminase combination therapy.
628 *BMC Cancer* **14**, 621 (2014).

629 21. Rabinovich, S. *et al.* Diversion of aspartate in ASS1-deficient tumours fosters de novo
630 pyrimidine synthesis. *Nature* **527**, 379–383 (2015).

631 22. Feun, L. & Savaraj, N. Pegylated arginine deiminase: a novel anticancer enzyme agent.
632 *Expert Opin. Investig. Drugs* **15**, 815–822 (2006).

633 23. Szlosarek, P. W. *et al.* Pegargiminase Plus First-Line Chemotherapy in Patients With
634 Nonepithelioid Pleural Mesothelioma: The ATOMIC-Meso Randomized Clinical Trial. *JAMA*
635 *Oncol.* e236789 (2024) doi:10.1001/jamaoncol.2023.6789.

636 24. Kremer, J. C. *et al.* Arginine Deprivation Inhibits the Warburg Effect and Upregulates
637 Glutamine Anaplerosis and Serine Biosynthesis in ASS1-Deficient Cancers. *Cell Rep.* **18**, 991–
638 1004 (2017).

639 25. Cantor, J. R. *et al.* Physiologic Medium Rewires Cellular Metabolism and Reveals Uric
640 Acid as an Endogenous Inhibitor of UMP Synthase. *Cell* **169**, 258-272.e17 (2017).

641 26. Król, M. & Kepinska, M. Human Nitric Oxide Synthase—Its Functions, Polymorphisms,
642 and Inhibitors in the Context of Inflammation, Diabetes and Cardiovascular Diseases. *Int. J.*
643 *Mol. Sci.* **22**, 56 (2020).

644 27. Alderton, W. K., Cooper, C. E. & Knowles, R. G. Nitric oxide synthases: structure, function
645 and inhibition. *Biochem. J.* **357**, 593–615 (2001).

646 28. Rodriguez, P. C. *et al.* L-Arginine Consumption by Macrophages Modulates the
647 Expression of CD3 ζ Chain in T Lymphocytes. *J. Immunol.* **171**, 1232–1239 (2003).

648 29. Couchet, M. *et al.* Ornithine Transcarbamylase – From Structure to Metabolism: An
649 Update. *Front. Physiol.* **12**, 748249 (2021).

650 30. Barretina, J. *et al.* The Cancer Cell Line Encyclopedia enables predictive modeling of
651 anticancer drug sensitivity. *Nature* **483**, 603–607 (2012).

652 31. Kenny, T. C. *et al.* Integrative genetic analysis identifies FLVCR1 as a plasma-membrane
653 choline transporter in mammals. *Cell Metab.* **35**, 1057-1071.e12 (2023).

654 32. Birsoy, K. *et al.* An Essential Role of the Mitochondrial Electron Transport Chain in Cell
655 Proliferation Is to Enable Aspartate Synthesis. *Cell* **162**, 540–551 (2015).

656 33. Li, W. *et al.* MAGeCK enables robust identification of essential genes from genome-scale
657 CRISPR/Cas9 knockout screens. *Genome Biol.* **15**, 554 (2014).

658 34. Scalise, M., Galluccio, M., Console, L., Pochini, L. & Indiveri, C. The Human SLC7A5
659 (LAT1): The Intriguing Histidine/Large Neutral Amino Acid Transporter and Its Relevance to
660 Human Health. *Front. Chem.* **6**, 243 (2018).

661 35. El Ansari, R. *et al.* The amino acid transporter SLC7A5 confers a poor prognosis in the
662 highly proliferative breast cancer subtypes and is a key therapeutic target in luminal B
663 tumours. *Breast Cancer Res. BCR* **20**, 21 (2018).

664 36. Kanai, Y. *et al.* Expression cloning and characterization of a transporter for large neutral
665 amino acids activated by the heavy chain of 4F2 antigen (CD98). *J. Biol. Chem.* **273**, 23629–
666 23632 (1998).

667 37. Najumudeen, A. K. *et al.* The amino acid transporter SLC7A5 is required for efficient
668 growth of KRAS-mutant colorectal cancer. *Nat. Genet.* **53**, 16–26 (2021).

669 38. Sokolov, A. M., Holmberg, J. C. & Feliciano, D. M. The amino acid transporter Slc7a5
670 regulates the mTOR pathway and is required for granule cell development. *Hum. Mol. Genet.*
671 **29**, 3003–3013 (2020).

672 39. Son, S. M. *et al.* Leucine Signals to mTORC1 via Its Metabolite Acetyl-Coenzyme A. *Cell*
673 *Metab.* **29**, 192–201.e7 (2019).

674 40. Neill, G. & Masson, G. R. A stay of execution: ATF4 regulation and potential outcomes
675 for the integrated stress response. *Front. Mol. Neurosci.* **16**, 1112253 (2023).

676 41. Pavlova, N. N. *et al.* As Extracellular Glutamine Levels Decline, Asparagine Becomes an
677 Essential Amino Acid. *Cell Metab.* **27**, 428–438.e5 (2018).

678 42. Alaghehbandan, R., Przybycin, C. G., Verkarre, V. & Mehra, R. Chromophobe renal cell
679 carcinoma: Novel molecular insights and clinicopathologic updates. *Asian J. Urol.* **9**, 1–11
680 (2022).

681 43. Okano, N. *et al.* First-in-human phase I study of JPH203, an L-type amino acid
682 transporter 1 inhibitor, in patients with advanced solid tumors. *Invest. New Drugs* **38**, 1495–
683 1506 (2020).

684 44. Kaufmann, S. H., Desnoyers, S., Ottaviano, Y., Davidson, N. E. & Poirier, G. G. Specific
685 proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-
686 induced apoptosis. *Cancer Res.* **53**, 3976–3985 (1993).

687 45. Tewari, M. *et al.* Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-
688 inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. *Cell* **81**,
689 801–809 (1995).

690 46. Silva, F. F. V. e *et al.* Caspase 3 and Cleaved Caspase 3 Expression in Tumorigenesis and
691 Its Correlations with Prognosis in Head and Neck Cancer: A Systematic Review and Meta-
692 Analysis. *Int. J. Mol. Sci.* **23**, 11937 (2022).

693 47. Damiani, E., Yuecel, R. & Wallace, H. M. Repurposing of idebenone as a potential anti-
694 cancer agent. *Biochem. J.* **476**, 245–259 (2019).

695 48. Kory, N. *et al.* SFXN1 is a mitochondrial serine transporter required for one-carbon
696 metabolism. *Science* **362**, eaat9528 (2018).

697 49. Chidley, C. *et al.* A CRISPRi/a screening platform to study cellular nutrient transport in
698 diverse microenvironments. *Nat. Cell Biol.* **26**, 825–838 (2024).

699 50. Rossiter, N. J. *et al.* CRISPR screens in physiologic medium reveal conditionally essential
700 genes in human cells. *Cell Metab.* **33**, 1248–1263.e9 (2021).

701 51. Allerton, T. D. *et al.* L-Citrulline Supplementation: Impact on Cardiometabolic Health.
702 *Nutrients* **10**, 921 (2018).

703 52. Windmueller, H. G. & Spaeth, A. E. Source and fate of circulating citrulline. *Am. J.*
704 *Physiol.* **241**, E473-480 (1981).

705 53. Bailly-Botuha, C. *et al.* Plasma Citrulline Concentration Reflects Enterocyte Mass in
706 Children With Short Bowel Syndrome. *Pediatr. Res.* **65**, 559–563 (2009).

707 54. Jang, C. *et al.* Metabolite Exchange between Mammalian Organs Quantified in Pigs. *Cell*
708 *Metab.* **30**, 594-606.e3 (2019).

709 55. Marini, J. C., Didelija, I. C. & Fiorotto, M. L. Extrarenal citrulline disposal in mice with
710 impaired renal function. *Am. J. Physiol. - Ren. Physiol.* **307**, F660–F665 (2014).

711 56. Hajaj, E., Sciacovelli, M., Frezza, C. & Erez, A. The context-specific roles of urea cycle
712 enzymes in tumorigenesis. *Mol. Cell* **81**, 3749–3759 (2021).

713 57. Napolitano, L. *et al.* LAT1 is the transport competent unit of the LAT1/CD98
714 heterodimeric amino acid transporter. *Int. J. Biochem. Cell Biol.* **67**, 25–33 (2015).

715 58. Bröer, S. & Bröer, A. Amino acid homeostasis and signalling in mammalian cells and
716 organisms. *Biochem. J.* **474**, 1935–1963 (2017).

717 59. Saxton, R. A. *et al.* Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway.
718 *Science* **351**, 53–58 (2016).

719 60. Yao, S. *et al.* Phase 1 trial of ADI-PEG 20 and liposomal doxorubicin in patients with
720 metastatic solid tumors. *Cancer Med.* **11**, 340–347 (2022).

721 61. Tomlinson, B. K. *et al.* Phase I Trial of Arginine Deprivation Therapy with ADI-PEG 20 Plus
722 Docetaxel in Patients with Advanced Malignant Solid Tumors. *Clin. Cancer Res. Off. J. Am.*
723 *Assoc. Cancer Res.* **21**, 2480–2486 (2015).

724 62. Feun, L. G. *et al.* Negative argininosuccinate synthetase expression in melanoma
725 tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine
726 deiminase. *Br. J. Cancer* **106**, 1481–1485 (2012).

727 63. Ott, P. A. *et al.* Phase I/II study of pegylated arginine deiminase (ADI-PEG 20) in patients
728 with advanced melanoma. *Invest. New Drugs* **31**, 425–434 (2013).

729 64. Rogers, L. C. & Van Tine, B. A. Innate and adaptive resistance mechanisms to arginine
730 deprivation therapies in sarcoma and other cancers. *Cancer Drug Resist. Alhambra Calif* **2**,
731 516–526 (2019).

732 65. Apiz Saab, J. J. *et al.* Pancreatic tumors exhibit myeloid-driven amino acid stress and
733 upregulate arginine biosynthesis. *eLife* **12**, e81289 (2023).

734 66. Sullivan, M. R. *et al.* Quantification of microenvironmental metabolites in murine
735 cancers reveals determinants of tumor nutrient availability. *eLife* **8**, e44235 (2019).

736 67. Quan, L. *et al.* Amino acid transporter LAT1 in tumor-associated vascular endothelium
737 promotes angiogenesis by regulating cell proliferation and VEGF-A-dependent mTORC1
738 activation. *J. Exp. Clin. Cancer Res.* **39**, 266 (2020).

739 68. Yothaisong, S. *et al.* Inhibition of L-type amino acid transporter 1 activity as a new
740 therapeutic target for cholangiocarcinoma treatment. *Tumour Biol. J. Int. Soc.*
741 *Oncodevelopmental Biol. Med.* **39**, 1010428317694545 (2017).

742 69. Oda, K. *et al.* L-type amino acid transporter 1 inhibitors inhibit tumor cell growth. *Cancer*
743 *Sci. 101*, 173–179 (2010).

744 70. Enomoto, K. *et al.* A novel therapeutic approach for anaplastic thyroid cancer through
745 inhibition of LAT1. *Sci. Rep. 9*, 14616 (2019).

746 71. Crump, N. T. *et al.* Chromatin accessibility governs the differential response of cancer
747 and T cells to arginine starvation. *Cell Rep. 35*, 109101 (2021).

748 72. Clasquin, M. F., Melamud, E. & Rabinowitz, J. D. LC-MS data processing with MAVEN: a
749 metabolomic analysis and visualization engine. *Curr. Protoc. Bioinforma. Chapter 14*,
750 Unit14.11 (2012).

751 73. Su, X., Lu, W. & Rabinowitz, J. D. Metabolite Spectral Accuracy on Orbitraps. *Anal. Chem.*
752 **89**, 5940–5948 (2017).

753

754

755

756

757

758

759

760

761

762 **Figure Legends**

763 **Figure 1: A functional genomics screen identifies SLC7A5 as required for growth on**
764 **citrulline.**

765 A: Schematic of citrulline synthesis into arginine.

766 B: Concentrations of arginine and citrulline in mouse serum. (mean \pm SD, n = 5).

767 C: Rates of appearance of arginine and citrulline as determined from a steady state labeling fraction
768 after a 3-hour infusion. (mean \pm SD, n = 5).

769 D: Media conditions used for the CRISPR screen.

770 E: Growth of A375m^{ASS1-OE} cells in Low Arg, High Arg, and Low Arg - Cit media. Data is
771 expressed in terms of relative growth, where the readings at day 0 are normalized to 1. (mean \pm
772 SD, n = 4).

773 F: Schematic of the CRISPR-based screen to identify metabolic genes required for growth in low
774 arginine.

775 G: Gene scores in cells grown in Low Arg vs. High Arg. SLC7A5, the top hit, is highlighted in
776 red. SLC7A1 (arginine transporter) and ASL (arginosuccinate lyase) are also highlighted. The red
777 line is the equation $y = x$ passing through (0,0) to highlight differential essentiality.

778 H: Top 25 genes scoring as selectively essential in Low Arg vs. High Arg. Genes linked to
779 glycosylation are in blue, the urea cycle in red, transport in purple, Reactive Oxygen Species (ROS)
780 metabolism in orange, and other genes in green.

781 **Figure 2: SLC7A5 is required for citrulline uptake, metabolism, and growth in arginine-free**
782 **media.**

783 A: Immunoblot of two clones of the SLC7A5 KO and ASS1-OE in the A375m^{ASS1-OE} (melanoma)
784 cell line.

785 B: A375m^{ASS1-OE} and SLC7A5 KO cells were grown in indicated media. The base media was
786 RPMI without arginine supplemented with 110 μ M arginine or citrulline was added as indicated.
787 Media was refreshed on day 2. (mean \pm SD, n = 4).

788 C: Immunoblot of two clones of the SLC7A5 KO and ASS1-OE in the MCF7 (breast cancer) cell
789 line.

790 D: MCF7 SLC7A5 WT and KO cells were grown in indicated media. Media was refreshed on day
791 2. (mean \pm SD, n = 4).

792 E: Citrulline consumption from the media with over 48-hour period, A375m^{ASS1-OE} and SLC7A5
793 KO. Media: RPMI + 110 μ M Arg + 110 μ M Cit. (mean \pm SD, n = 4). ** p < .01, unpaired, two-
794 tailed t-test.

795 F: Citrulline consumption from the media with SLC7A5 WT and KO over a 48-hour period, MCF7
796 WT and SLC7A5 KO. Media: RPMI + 110 μ M Arg + 110 μ M Cit. (mean \pm SD, n = 4). *** p <
797 .001, unpaired, two-tailed t-test.

798 G: Uptake of [1-¹³C]-Citrulline over a 15-minute period in A375m WT and SLC7A5 KO cells.
799 Media: RPMI + 110 μ M Arg + 40 μ M Cit. (mean \pm SD, n = 3). *** p < .001, unpaired, two-tailed
800 t-test.

801 H: Ion count of unlabeled (M+0) and labeled (M+1) argininosuccinate. Cells were plated in RPMI
802 + 110 μ M [1-¹³C]-Citrulline for 16 hours and then metabolites were extracted and analyzed using
803 LC-MS.

804 I: Intracellular argininosuccinate levels in A375m^{ASS1-OE} cells after 24 hours of culture in RPMI +
805 110 μ M Cit. (mean \pm SD, n = 4). *** p < .001, unpaired, two-tailed t-test.

806 J: Intracellular argininosuccinate levels in MCF7 cells after 24 hours of culture in RPMI + 110 μ M
807 Cit. (mean \pm SD, n = 4). **** p < .0001, unpaired, two-tailed t-test.

808 K: Intracellular arginine levels in A375m^{ASS1-OE} cells after 24 hours of culture in RPMI + 110 μ M
809 Cit. (mean \pm SD, n = 4). *** p < .001, unpaired, two-tailed t-test.

810 L: Intracellular arginine levels in MCF7 cells after 24 hours of culture in RPMI + 110 μ M Cit.
811 (mean \pm SD, n = 4). **** p < .0001, unpaired, two-tailed t-test.

812 **Figure 3: Under physiological amino acid concentrations, citrulline uptake is uniquely
813 dependent upon SLC7A5.**

814 A: Growth of A375m^{ASS1-OE} WT and SLC7A5 KO cells in RPMI + variable amounts of leucine.
815 The dashed line is 160 μ M, the concentration of leucine in HPLM. Doublings per day data

816 calculated after 3 days of growth in the respective media. Media was refreshed on day 2. (mean ±
817 SD, n = 4). ** p < .01, unpaired, two-tailed t-test. The line of best fit for all graphs in this figure
818 was calculated as $Y = 10^{(slope * \log(X) + Y_{intercept})}$.

819 B: Growth of A375m^{ASS1-OE} WT and SLC7A5 KO cells in RPMI + variable amounts of
820 phenylalanine. The dashed line is 80 μ M, the concentration of phenylalanine in HPLM. Doublings
821 per day data calculated after 3 days of growth in the respective media. Media was refreshed on day
822 2. (mean ± SD, n = 4). n.s. not significant, ** p < .01, *** p < .001, **** p < .0001, unpaired, two-
823 tailed t-test.

824 C: Growth of A375m^{ASS1-OE} WT and SLC7A5 KO cells in RPMI + variable amounts of citrulline.
825 This media did not contain arginine. The dashed line is 40 μ M, the concentration of citrulline in
826 HPLM. Doublings per day data calculated after 3 days of growth in the respective media. Media
827 was refreshed on day 2. (mean ± SD, n = 4). n.s. not significant, **** p < .0001, unpaired, two-
828 tailed t-test.

829 D: Growth curves of MCF7 WT and SLC7A5 KO cells in RPMI + variable amounts of leucine.
830 The dashed line is 160 μ M, the concentration of leucine in HPLM. Doublings per day data
831 calculated after 4 days of growth in the respective media. Media was refreshed on day 2. (mean ±
832 SD, n = 4). n.s. not significant, *** p < .001, unpaired, two-tailed t-test.

833 E: Growth curves of MCF7 WT and SLC7A5 KO cells in RPMI + variable amounts of phenylalanine.
834 The dashed line is 80 μ M, the concentration of phenylalanine in HPLM. Doublings
835 per day data calculated after 4 days of growth in the respective media. Media was refreshed on day
836 2. (mean ± SD, n = 4). n.s. not significant, *** p < .001, **** p < .0001, unpaired, two-tailed t-
837 test.

838 F: Growth curves of MCF7 WT and SLC7A5 KO cells in RPMI + variable amounts of citrulline.
839 This media did not contain arginine. The dashed line is 40 μ M, the concentration of citrulline in
840 HPLM. Doublings per day data calculated after 4 days of growth in the respective media. Media
841 was refreshed on day 2. (mean ± SD, n = 4). n.s. not significant, *** p < .001, **** p < .0001,
842 unpaired, two-tailed t-test.

843 **Figure 4: SLC7A5 and ASS1 are upregulated in response to arginine starvation.**

844 A: Relative transcript levels of *ATF4*, *ASS1*, *SLC7A5* and *SLC7A1* in A375m WT cells cultured in
845 the indicated media as determined by qRT-PCR. *RPS2* was used as a normalizing gene. (mean \pm
846 SD, n = 4). ** p < .01, *** p < .001, **** p < .0001, 2-way ANOVA and multiple comparisons
847 were corrected for using the Sidak method.

848 B: Immunoblots of *SLC7A5* and *ASS1* from A375m, HCT116 and LN229 WT cells plated for 48
849 hours in indicated media conditions.

850 C: Relative amino acid levels of cells plated for 24 hours in either RPMI + 110 μ M Cit (Cit, red),
851 RPMI + 110 μ M Arg (Arg, blue), RPMI + 110 μ M Cit + 1 μ M GCN2iB (Cit + GCN2iB, salmon)
852 or RPMI + 110 μ M Arg + 1 μ M GCN2iB (Arg + GCN2iB, periwinkle). (mean \pm SD, n = 3-4). *
853 = p < .05, **** = p < .0001, multiple comparisons-corrected 2-way ANOVA.

854 D: Immunoblot of *SLC7A5* and *ATF4* in A375m cells plated for 48 hours in indicated media
855 conditions in media containing indicated combinations of RPMI + 110 μ M Cit or RPMI + 110 μ M
856 Arg. GCN2iB was dosed at 1 μ M.

857 E: Correlation between transcript levels of *SLC7A5* versus *ASS1* in breast cancer (BRCA) tumor
858 transcript data taken from TCGA. The gray area around the linear regression line indicates the
859 95% confidence interval.

860 **Figure 5: A small molecule inhibitor of *SLC7A5* sensitizes cells to arginine deprivation.**

861 A: Growth of cancer cell lines cultured in RPMI + Arg, RPMI + Cit, with and without 1 μ M
862 JPH203, or vehicle. Data presented after 3 or 4 days of growth, depending on the cell line. Media
863 was refreshed on Day 2. (mean \pm SD, n = 4). *** p > .001. **** p < .0001, 2-way ANOVA.

864 B: Rescue of growth in the Cit + JPH203 condition with either 1 mM citrulline or 110 μ M Arginine.
865 Media was refreshed on Day 2. (mean \pm SD, n = 4).

866 C: Intracellular argininosuccinate levels in A375m^{ASS1-OE} cells with vehicle control or 1 μ M
867 JPH203, metabolites extracted after 24 hours of culture in RPMI + 110 μ M Cit. (mean \pm SD, n =
868 4). **** p < .0001, unpaired, two-tailed t-test.

869 D: Intracellular arginine levels in A375m^{ASS1-OE} cells with vehicle control or 1 μ M JPH203,
870 metabolites extracted after 24 hours of culture in RPMI + 110 μ M Cit. (mean \pm SD, n = 4). ** p <
871 .01, unpaired, two-tailed t-test.

872 E: Growth of A375m^{ASS1-OE} cells treated with a combination of inhibitors. JPH203, GCN2iB, and
873 ABT-263 were all dosed at 1 μ M. Cells grown in RPMI + 110 μ M Cit. (mean \pm SD, n = 4). **** p
874 < .0001, one-way ANOVA.

875 F: Immunoblot of A375m^{ASS1-OE} cells treated for 48 hours in RPMI + 110 μ M Cit and indicated
876 inhibitors, which were all dosed at 1 μ M. DMSO was used as a vehicle control in non-drug wells.

877 **Figure 6: SLC7A5 regulates citrulline metabolism in an in vivo xenograft model.**

878 A: Immunoblot of SLC7A5 in tumors originating from A375m xenografts. β -actin used as a
879 loading control.

880 B: Growth of bilateral A375m WT and SLC7A5 KO xenograft tumors. Mice were fed a standard
881 chow diet. (mean \pm SEM, n = 10). ** = p < .01, paired, two-tailed t-test.

882 C: Labeling fraction of [1-¹³C]-citrulline in the serum of mice 1 hour after intraperitoneal injection
883 (mean \pm SD, n = 5).

884 D: Tumor 1-¹³C-citrulline uptake normalized to serum citrulline. Mice were injected with ~83
885 mM (0.07g/kg) of [1-¹³C]-citrulline. (mean \pm SEM, n = 5). * = p < 0.05, paired, two-tailed t-test.

886 E: Growth curves of A375m^{ASS1-OE} WT and SLC7A5 KO xenograft tumors. (mean \pm SD, n = 10).
887 * = p < 0.05, ** = p < 0.01, *** = p < 0.001, paired, two-tailed t-test.

888 F: Intra-tumoral argininosuccinate levels in A375m^{ASS1-OE} WT and SLC7A5 KO xenografts.
889 (mean \pm SD, n = 5), unpaired, two-tailed t-test.

890 G: Intra-tumoral arginine levels in tumors originating from A375m^{ASS1-OE} WT and SLC7A5 KO
891 xenografts. (mean \pm SD, n = 5), unpaired, two-tailed t-test.

892 **Supplemental Figure Legends**

893 **Supplemental Figure 1.**

894 A: Fractional label of serum M+1 citrulline or M+6 arginine at indicated time points during a 3-
895 hour infusion with 10 mM [1-¹³C]-Citrulline or 20 mM [¹³C₆]-Arginine.

896 B: [1-¹³C]-Citrulline or [1-¹³C]-Arginine labeling in the serum after 3 hours of a [1-¹³C]-Citrulline
897 infusion.

898 C: Fully-carbon labelled [^{13}C -5]-Citrulline or [$^{13}\text{C}_6$]-Arginine labeling in the serum after 3 hours
899 of a [$^{13}\text{C}_6$]-Arginine infusion.

900 D: Immunoblot of A375m cells containing WT ASS1, ASS1 knocked out by CRISPR (KO), or
901 ASS1 overexpressed (OE) by a lentiviral construct. β -actin is used as a loading control.

902 E: Growth curve of A375m^{ASS1-OE} cells grown in various concentrations of citrulline and arginine
903 in RPMI media without arginine. (mean \pm SD, n = 4).

904 F: Consumption of arginine or citrulline from the media in A375m^{ASS1-KO} or A375m^{ASS1-OE} cells
905 in either Low Arg (Low) or High Arg (High). (mean \pm SD, n = 3).

906 G: A375m^{ASS1-OE} cells grown over 3 days in various amounts of arginine (Arg), citrulline (Cit) and
907 ornithine (Orn). (mean \pm SD, n = 4).

908 H: Transcript expression data across $\text{Log}_2(\text{TPM}+1)$ of OTC across 1,489 cell lines in the Cancer
909 Cell Line Encyclopedia (CCLE). Expression of OTC in A375 cells is highlighted in magenta.

910 I: Essentiality ranks for each gene in both conditions, ranked 1 through 2,989. Genes are ranked
911 by their essentiality score from most essential (#1) to least essential (#2989). Data presented as
912 Log_2 of the rank.

913 J: Changes in abundance in the individual SLC7A5 sgRNAs in Low Arg and High Arg.

914 **Supplemental Figure 2.**

915 A: Immunoblot of SLC7A5 re-expression in A375m^{ASS1-OE} SLC7A5 KO cells. β -actin is used as
916 a loading control.

917 B: Growth curve of A375m^{ASS1-OE} cells with SLC7A5 knocked out by CRISPR (7A5 KO), or 7A5
918 KO cells with a lentiviral SLC7A5 cDNA (7A5 cDNA) construct present. Cells grown in either
919 RPMI + 110 μM Arg or RPMI + 110 μM Cit. (mean \pm SD, n = 4). **** p < .0001, unpaired, two-
920 tailed t-test at the last day timepoint.

921 C: A375m^{ASS1-OE} WT and SLC7A5 KO cells were grown in indicated media. Media was refreshed
922 on day 2. Data represented as doublings per day. n.s = not significant, (mean \pm SD, n = 4), **** p
923 < .0001, one-way ANOVA.

924 D: Intracellular glutamine levels in A375m^{ASS1-OE} cells, metabolites extracted after 24 hours of
925 culture in RPMI + 110 μM Cit. (mean \pm SD, n = 4). * p < .05, unpaired, two-tailed t-test.

926 E: Intracellular glutamine levels in MCF7 cells, metabolites extracted after 24 hours of culture in
927 RPMI + 110 μ M Cit. (mean \pm SD, n = 4). *** = p < .0001, unpaired, two-tailed t-test.

928 F: Citrulline consumption from the media with A375m^{ASS1-OE} cell line with SLC7A5 WT, SLC7A5
929 KO, and SLC7A5 cDNA (7A5 OE) over a 48-hour period. Media: RPMI + 110 μ M Arg + 110 μ M
930 Cit. (mean \pm SD, n = 4). * p < .05, unpaired, two-tailed t-test.

931 G: Intracellular argininosuccinate in A375m^{ASS1-OE} cells, SLC7A5 WT, KO and OE. Metabolites
932 extracted after 24 hours of culture in RPMI + 110 μ M Cit. (mean \pm SD, n = 4). *** p < .0001,
933 one-way ANOVA.

934 H: Intracellular arginine levels in A375m^{ASS1-OE} cells, SLC7A5 WT, KO and OE. Metabolites
935 extracted after 24 hours of culture in RPMI + 110 μ M Cit. (mean \pm SD, n = 4). n.s not significant,
936 one-way ANOVA.

937 **Supplemental Figure 3.**

938 A: Immunoblot of ATF4 and SLC7A5 in RPMI + variable amounts of leucine, cultured for 48
939 hours before protein extraction. β -actin is used as a loading control.

940 B: Concentration of indicated amino acid required to support the growth rate of half of the peak
941 growth rate of the respective metabolite and genotype combination. Data extrapolated from the
942 best-fit line in Fig. 3, where the concentration (X) was solved for given a known Y (half of the
943 doublings per day at the highest concentration of that amino acid). A375m^{ASS1-OE} cells.

944 C: Concentration of indicated amino acid required to support the growth rate of half of the peak
945 growth rate of the respective metabolite and genotype combination. Data extrapolated from the
946 best-fit line in Fig. 3, where the concentration (X) was solved for given a known Y (half of the
947 doublings per day at the highest concentration of that amino acid). MCF7 cells.

948 **Supplemental Figure 4.**

949 A: Citrulline consumption from the media in a panel of cell lines over a 48-hour period. Media:
950 RPMI + 110 μ M Arg + 110 μ M Cit. (mean \pm SD, n = 4). The cell line labels in panel A correspond
951 to the groups directly below in B and C.

952 B: Growth in RPMI + 110 μ M Cit (red) or RPMI + 110 μ M Arg (blue) in a doublings per day
953 format. Growth data is presented after either 3 or 4 days of growth, depending on the cell line.
954 Media was refreshed on day 2. (mean \pm SD, n = 4).

955 C: Immunoblot of a panel of proliferating human cell lines. ASS1 and SLC7A5 were blotted for,
956 with β -actin as a loading control.

957 D: Correlation between mRNA levels of *SLC7A5* versus *ASS1* in Luminal B (LumB) mRNA
958 subtypes of breast cancer (BRCA) tumor transcripts data taken from TCGA. The gray area around
959 the linear regression line indicates the 95% confidence interval (CI).

960 E: Correlation between mRNA levels of *SLC7A5* versus *ASS1* in Luminal A (LumA) mRNA
961 subtypes of breast cancer (BRCA) tumor transcripts data taken from TCGA. The gray area around
962 the linear regression line indicates the 95% confidence interval (CI).

963 F: Correlation between mRNA levels of *SLC7A5* versus *ASS1* in kidney chromophobe (KICH)
964 tumor transcript data taken from TCGA. The gray area around the linear regression line indicates
965 the 95% confidence interval (CI).

966 G: Relative amino acid levels of cells plated for 24 hours in either RPMI + 110 μ M Cit (Cit, red),
967 RPMI + 110 μ M Arg (Arg, blue), RPMI + 110 μ M Cit + 1 μ M GCN2iB (Cit + GCN2iB, pink) or
968 RPMI + 110 μ M Arg + 1 μ M GCN2iB (Arg + GCN2iB, periwinkle).

969 **Supplemental Figure 5.**

970 A: Intracellular argininosuccinate levels in HCT15 cells with vehicle control or 1 μ M JPH203,
971 metabolites extracted after 24 hours of culture in RPMI + 110 μ M Cit. Argininosuccinate was not
972 detected by LC-MS in the JPH203 condition. (mean \pm SD, n = 4). ** p < .01, unpaired, two-tailed
973 t-test.

974 B: Growth of A375m^{ASS1-OE} cells treated with a combination of inhibitors. JPH203, GCN2iB, and
975 ABT-263 were all dosed at 1 μ M. Cells grown in RPMI + 110 μ M Arg. (mean \pm SD, n = 4).

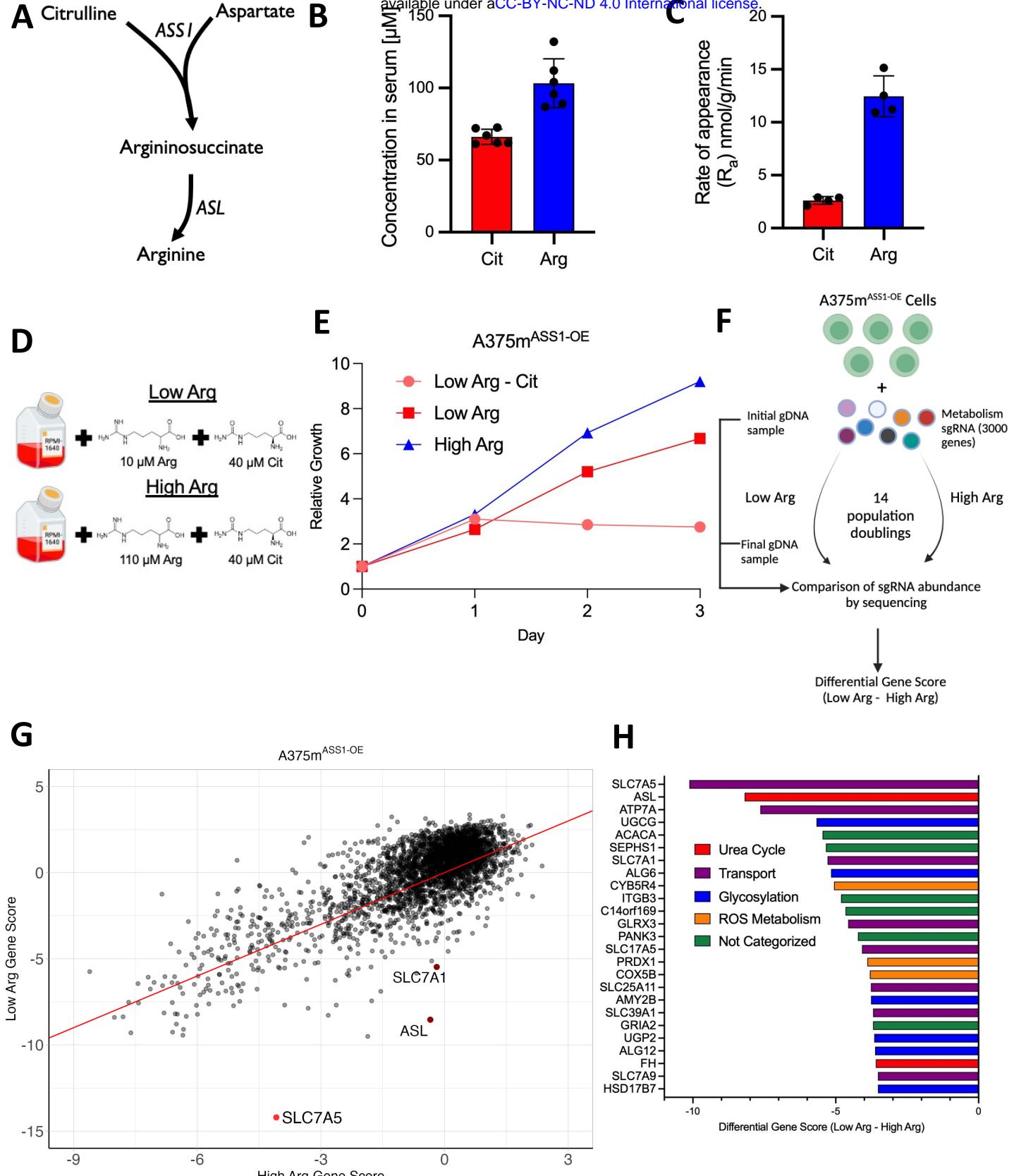
976 **Supplemental Figure 6.**

977 A: Tumor growth data of individual tumors as shown in Fig. 6B. n = 10 per color.

978 B: Mouse weight in grams, corresponding to mice in Fig. 6B and Fig. S6A.

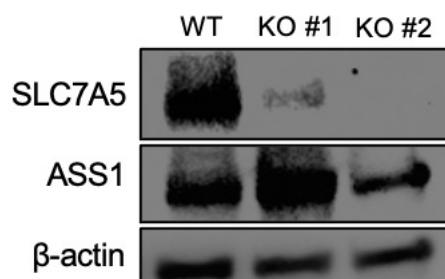
979 C: Serum and tissue isotope labeling of citrulline after the 3-hour [1-¹³C]-Cit infusion. Data is
980 normalized to the serum citrulline isotope label in each mouse. (mean ± SD, n = 4).

981 D: Serum and tissue isotope labeling of arginine from citrulline after the 3-hour [1-¹³C]-Cit
982 infusion. Data is expressed as a fraction of arginine label over citrulline label. (mean ± SD, n = 4).


983

984 **KEY RESOURCES TABLE**

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Rabbit polyclonal anti-LAT1(SLC7A5)	Cell Signaling Technology	Cat#5347; RRID: AB_10695104
Rabbit polyclonal anti-PARP	Cell Signaling Technology	Cat#9542; RRID: AB_2160739
Rabbit monoclonal anti-Cleaved PARP	Cell Signaling Technology	Cat#5625; RRID: AB_10699459
Rabbit monoclonal anti-Caspase 3	Cell Signaling Technology	Cat#14220; RRID: AB_2798429
Rabbit monoclonal anti-Cleaved Caspase 3	Cell Signaling Technology	Cat#9664; RRID: AB_2070042
Rabbit monoclonal anti-ATF4	Cell Signaling Technology	Cat#11815; RRID: AB_2616025
Mouse monoclonal β-Actin-Peroxidase	Sigma Aldrich	Cat#A3854; RRID: AB_262011
Goat Anti-Rabbit IgG-HRP	ThermoFisher	Cat#32260; RRID: AB_1965959
Bacterial and virus strains		
Invitrogen™ One Shot™ Stbl3™ Chemically Competent <i>E. coli</i>	ThermoFisher	Cat#C737303
Chemicals, peptides, and recombinant proteins		
RPMI	ThermoFisher	Cat#11875
DMEM	ThermoFisher	Cat#11965
SOC Media	New England Biolabs	Cat#B9020S
Fetal Bovine Serum	ThermoFisher	Cat#10437028
Dialyzed Fetal Bovine Serum	Sigma-Aldrich	Cat#F0392
Packed Cell Volume (PCV) Tubes	MidSci	Cat#TP87005
Trypsin-EDTA w/ phenol red	ThermoFisher	Cat#25200056
L-Arginine monohydrochloride	Sigma-Aldrich	Cat#A5131
L-Citrulline	Sigma-Aldrich	Cat#C7629
L-Phenylalanine	Sigma-Aldrich	Cat#P5482
L-Leucine	Sigma-Aldrich	Cat#L8000
L-Lysine monohydrochloride	Sigma-Aldrich	Cat#L5626
RPMI 1640 Media w/o L-Arginine, L-Leucine, L-Lysine (Powder)	US Biologicals	Cat#R8999-03A
RPMI 1640 Media w/o L-Glutamine, w/o Amino Acids, Glucose, Phenol Red (Powder)	US Biologicals	Cat#R9010-02
GCN2iB	MedChem Express	Cat#HY-112654
JPH203	Selleck Chemical	Cat#S8667
ABT-263	AdooQ Bioscience	Cat#A10022


Puromycin Dihydrochloride	ThermoFisher	Cat#A1113803
Blasticidin S HCl, powder	ThermoFisher	Cat#R21001
HPLC Grade Methanol	Fisher Scientific	Cat#A452-4
HPLC Grade Water	Fisher Scientific	Cat#W5SK-4
HPLC Grade Acetonitrile	Fisher Scientific	Cat#14 650 359
RIPA Buffer	Cell Signaling	Cat#9806S
Phosphatase Inhibitor Cocktail Powder	Sigma-Aldrich	Cat#P2714-1BTL
Sodium Orthovanadate	Sigma-Aldrich	Cat#S6508
Tween-20	Sigma-Aldrich	Cat#P9416
4x Lammeli Sample Buffer	BioRad	Cat#1610747
2-Mercaptoethanol	Sigma-Aldrich	Cat#M6250
Proteinase K	New England Biolabs	Cat#P8107S
Trypan Blue 0.4%	ThermoFisher	Cat#15250061
PMSF	Cell Signaling	Cat#8553S
Polybrene	Sigma Aldrich	Cat#TR-1003
Poly-D-Lysine	ThermoFisher	Cat#A3890401
Lipofectamine 3000 Transfection Reagent	ThermoFisher	Cat#L3000008
L-Amino Acid Diet	Research Diets	Cat#A10021Bi
L-Amino Acid Diet -Arginine	Research Diets	Cat#A10036i
qScript cDNA SuperMix	VWR	Cat#95048
Resazurin sodium salt	Sigma-Aldrich	Cat#R7017
SYBR Green Master Mix	ThermoFisher	Cat#A46109
NEBNext Ultra II Q5 Master Mix	New England Biolabs	Cat#M0544L
[1- ¹³ C]Citrulline	Cambridge Isotopes	Cat#CLM-4899
[U- ¹³ C]Arginine	Cambridge Isotopes	Cat#CLM-2265
XTremeGene 9	Sigma-Aldrich	Cat#6365779001
Phosphate Buffered Saline, pH 7.4	ThermoFisher	Cat#10010031
Critical commercial assays		
Pierce BCA Protein Assay Kit	Thermo Scientific	Cat#23227
Pierce Rapid Gold BCA Protein Assay Kit	Thermo Scientific	Cat#A52335
Trans Blot Turbo RTA Transfer Kit	BioRad	Cat#1704270
QIAprep Spin Miniprep Kit	Qiagen	Cat#27106
RNAeasy Mini Kit	Qiagen	Cat#74104
QNeasy Blood & Tissue Kit	Qiagen	Cat#69504
QIAamp DNA Blood Maxi Kit	Qiagen	Cat#51192
Mycoplasma PCR Detection Kit	ABM	Cat#G238
BioRad Gels 4-20%	BioRad	Cat#4561096
Experimental models: Cell lines		
Human: A375m	Roh-Johnson Lab, University of Utah	N/A
Human: HCT116	Rabinowitz Lab, Princeton	N/A
Human: HCT15	Rutter Lab, U of U	N/A
Human: HEK-293FT	Roh-Johnson Lab, U of U	N/A
Human: LN229	Rabinowitz Lab, Princeton	N/A
Human: MCF7	Rutter Lab, U of U	N/A
Human: MDA-MB-468	Roh-Johnson Lab, U of U	N/A
Human: NCI-H460	McMahon Lab, U of U	N/A
Mouse: EO771	Hilgendorf Lab, U of U	N/A

Experimental models: Organisms/strains		
NOD.Cg- <i>Rag1</i> ^{tm1Mom} / <i>I2rg</i> ^{tm1Wjl} /SzJ (NRG)	University of Utah Preclinical Research Resource Core	N/A
C57BL6	Charles River	Cat#027
Oligonucleotides		
sgRNA for CRISPR KO and qPCR Oligonucleotides	This study	Table S1
Recombinant DNA		
Human ASS1 in pLX304	DNASU	Cat#HSCD00438196
Human SLC7A5 in pDONR221	DNASU	Cat#HSCD00042452
pLX307 Empty Vector	Addgene	Cat#41392
Human SLC7A5 in pLX307	This study	N/A
pSpCas9(BB)-2A-GFP (PX458)-ASS1_exon11	This study	N/A
pSpCas9(BB)-2A-Puro (PX459) V2.0-SLC7A5_exon2	This study	N/A
pSpCas9(BB)-2A-Puro (PX459) V2.0	Addgene	Cat#62988
pSpCas9(BB)-2A-GFP (PX458)	Addgene	Cat#48138
Human CRISPR Metabolic Gene Knockout Library	Addgene	Cat#110066
psPAX2	Addgene	Cat#12260
PMD2.G	Addgene	Cat#12259
Software and algorithms		
MAGECK	GitHub	https://github.com/liu-lab-dfci/MAGECK
GraphPad Prism 10	GraphPad Software	https://www.graphpad.com/
R Version 4.4.0	R	https://cran.r-project.org/
EL-MAVEN Software	Elucidata	PMID: 31119671
AccuCor	GitHub	https://github.com/XiaoyangSu/AccuCor
Biorender	Biorender	https://www.biorender.com/
Other		
Countess 3 Automated Cell Counter	Invitrogen	Cat#AMQAX2000
BioTek Synergy Neo2 Hybrid Multimode Reader	Agilent	N/A
BioRad ChemiDoc MP Imaging System	BioRad	Cat#12003154
Cryomill	Retsch	N/A
LC480 PCR Lightcycler	Roche	Cat#05015278001

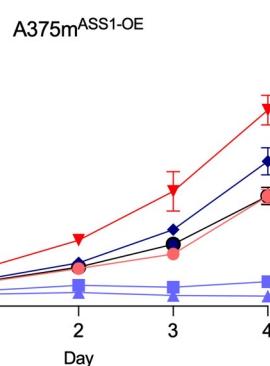
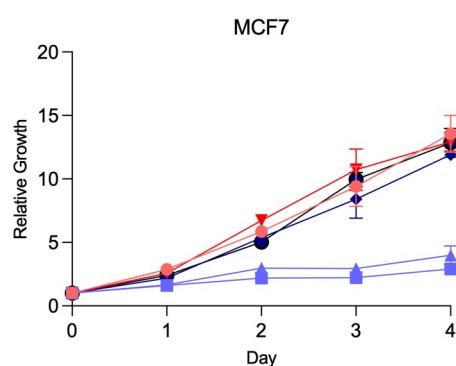
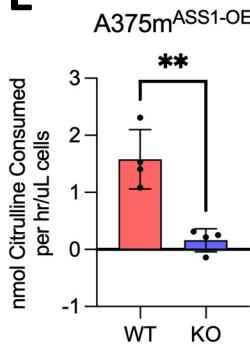


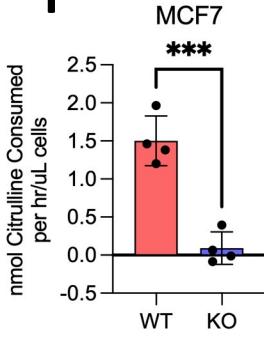
Figure 1: A functional genomics screen identifies SLC7A5 as required for growth on citrulline.


A

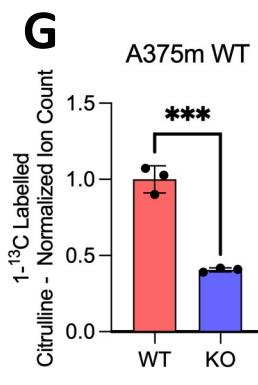
B

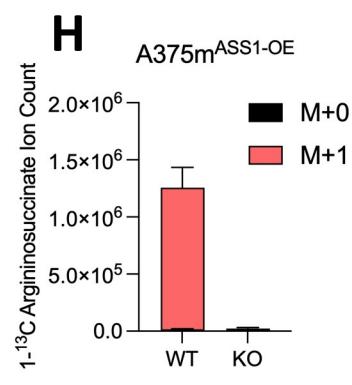


D

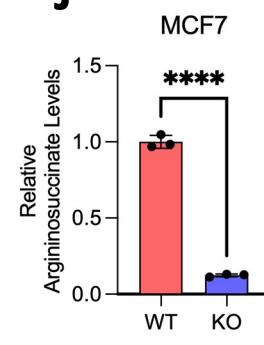


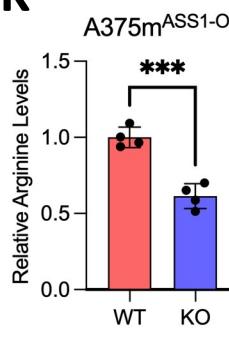
- ▼ SLC7A5 WT, 110 μ M Arg
- ◆ SLC7A5 KO #1, 110 μ M Arg
- SLC7A5 KO #2, 110 μ M Arg
- SLC7A5 WT, 110 μ M Cit
- SLC7A5 KO #1, 110 μ M Cit
- ▲ SLC7A5 KO #2, 110 μ M Cit

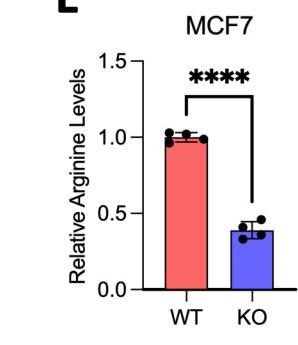

E

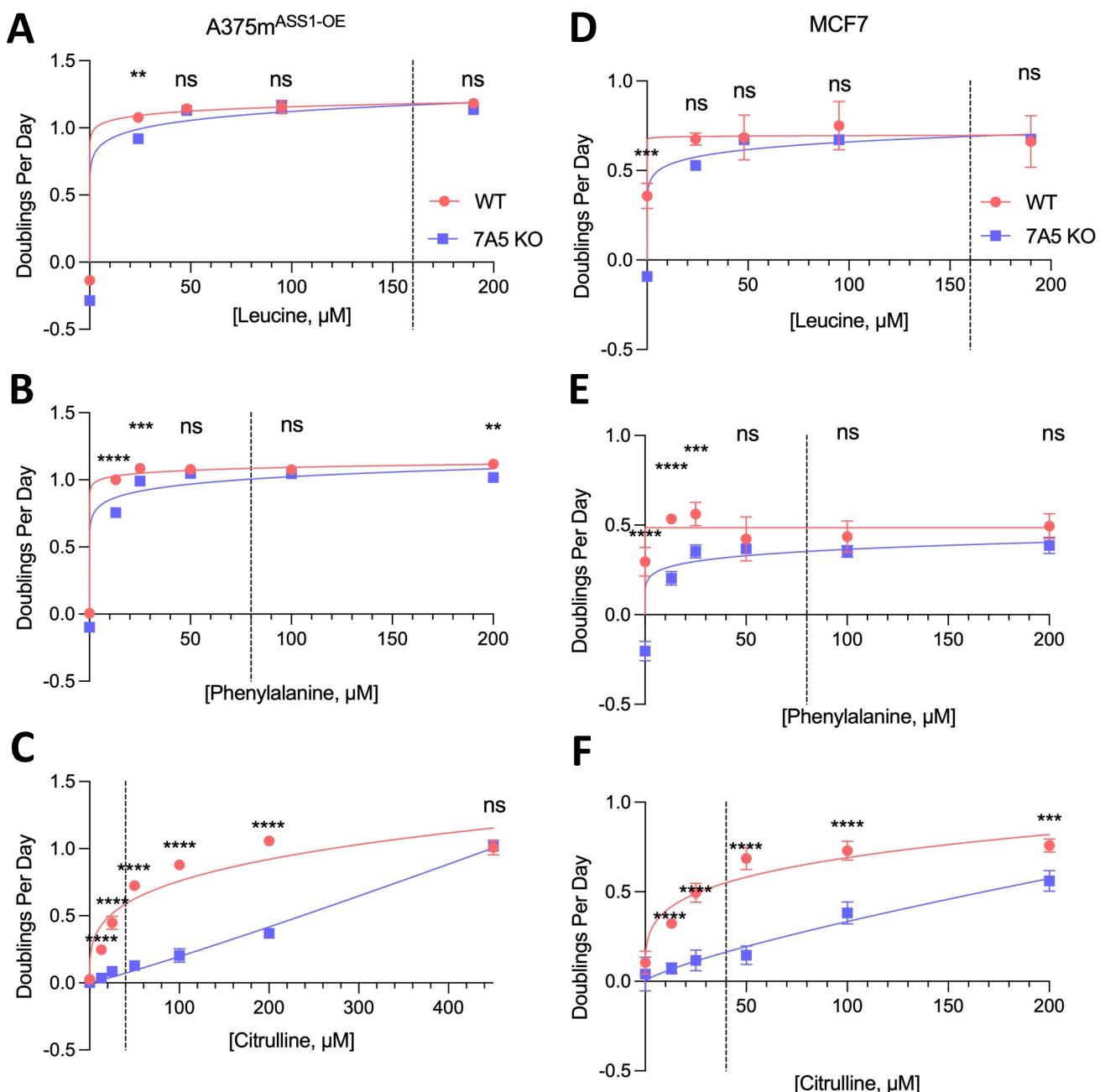

F

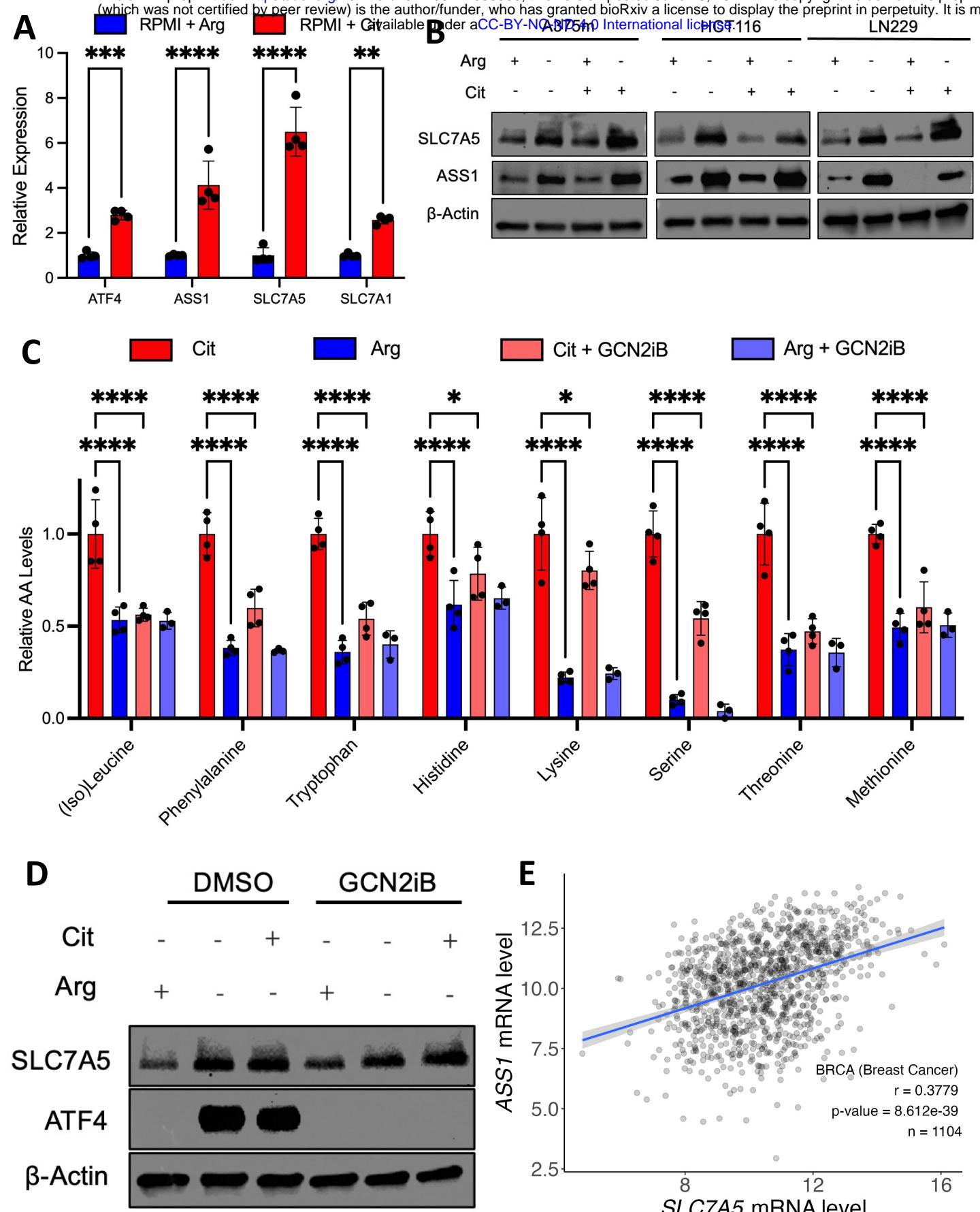
G

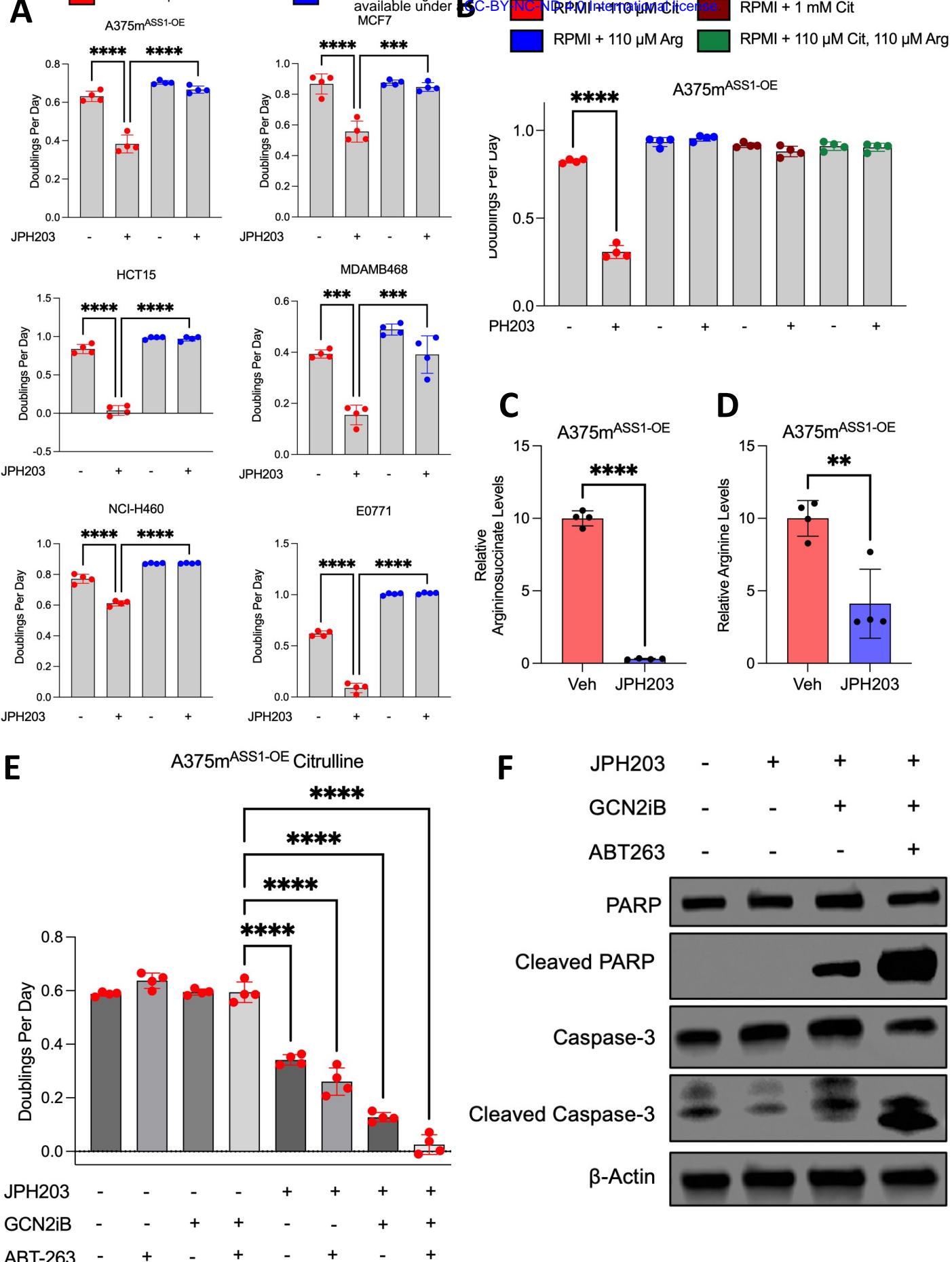

H


I


J


K


L


Figure 2: SLC7A5 is required for citrulline uptake, metabolism and growth in arginine-free media.

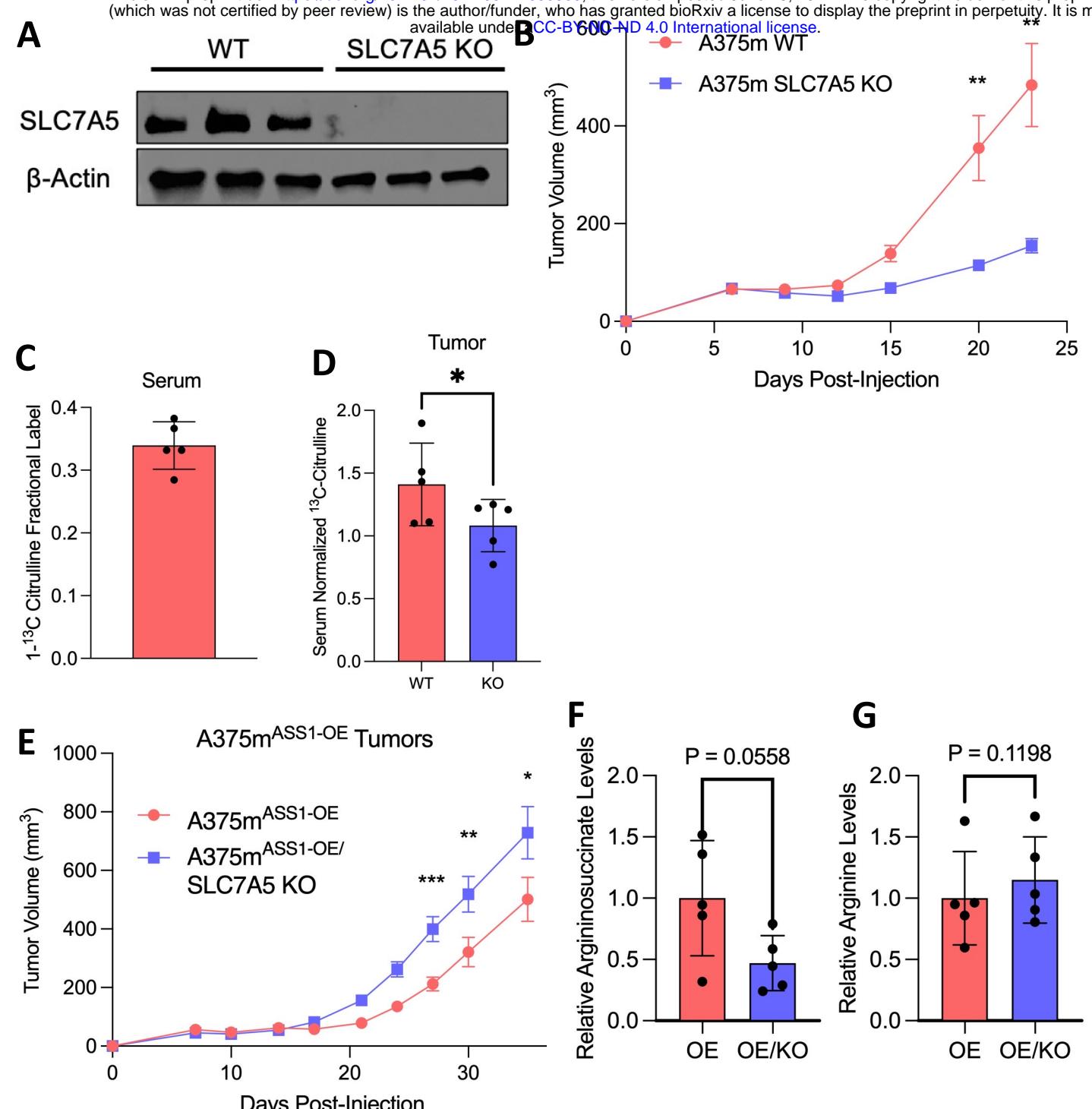

Figure 3: Under physiological amino acid concentrations, citrulline uptake is uniquely dependent upon SLC7A5.

Figure 4: *SLC7A5* and *ASS1* are upregulated in response to arginine starvation.

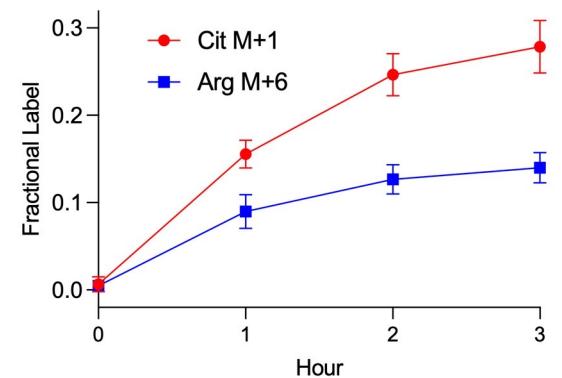


Figure 5: A small molecule inhibitor of SLC7A5 sensitizes cells to arginine deprivation.

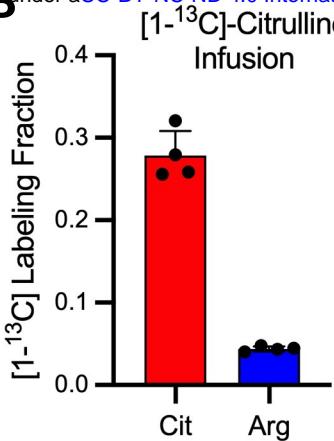
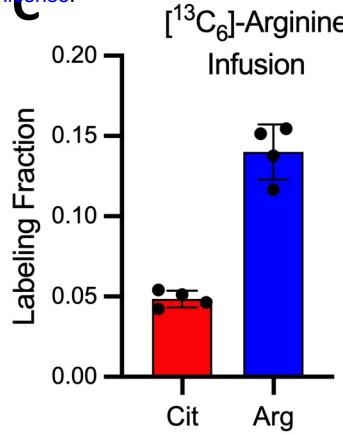
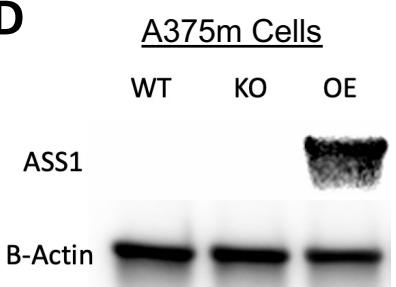
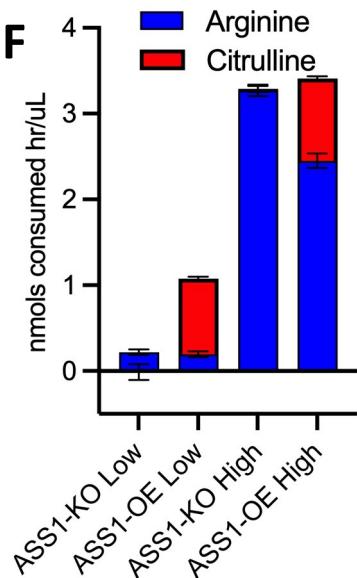


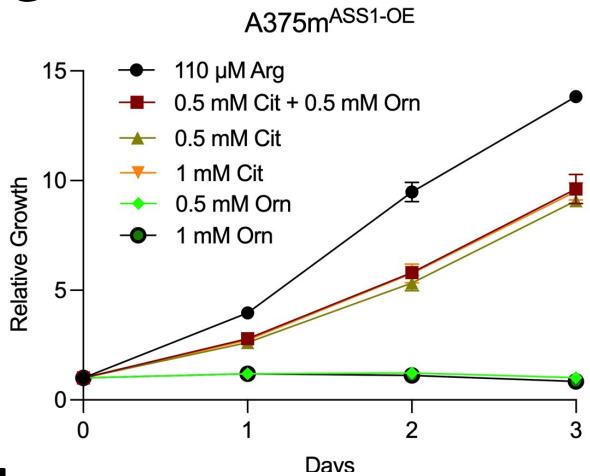
Figure 6: SLC7A5 regulates citrulline metabolism in an in vivo xenograft model.

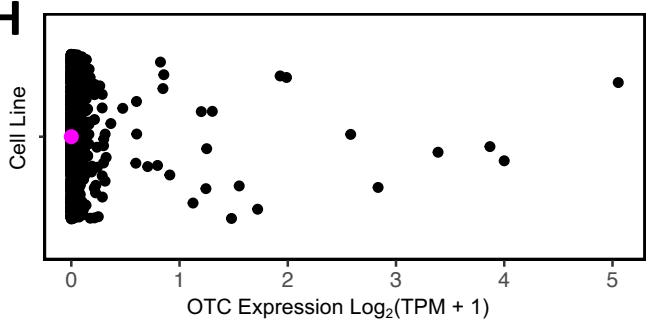

A

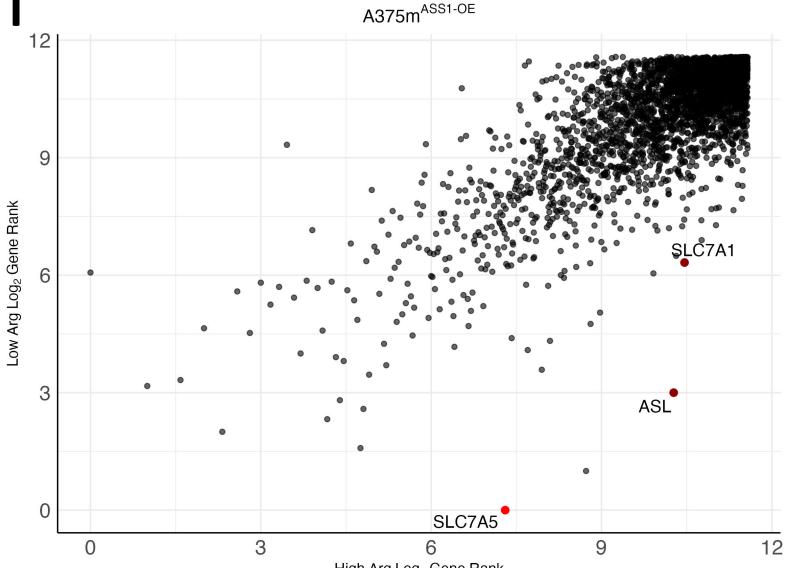

B

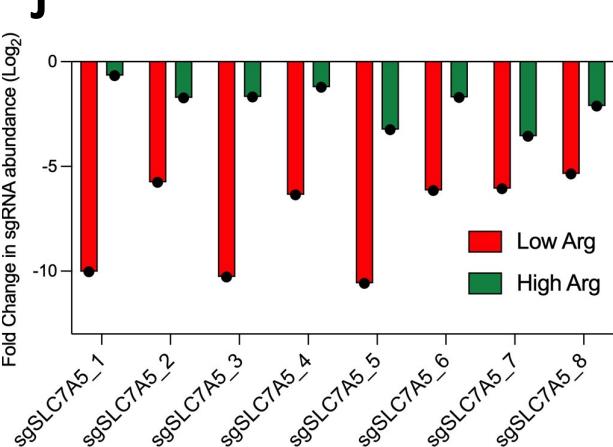
C


D

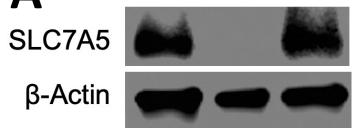

E


F

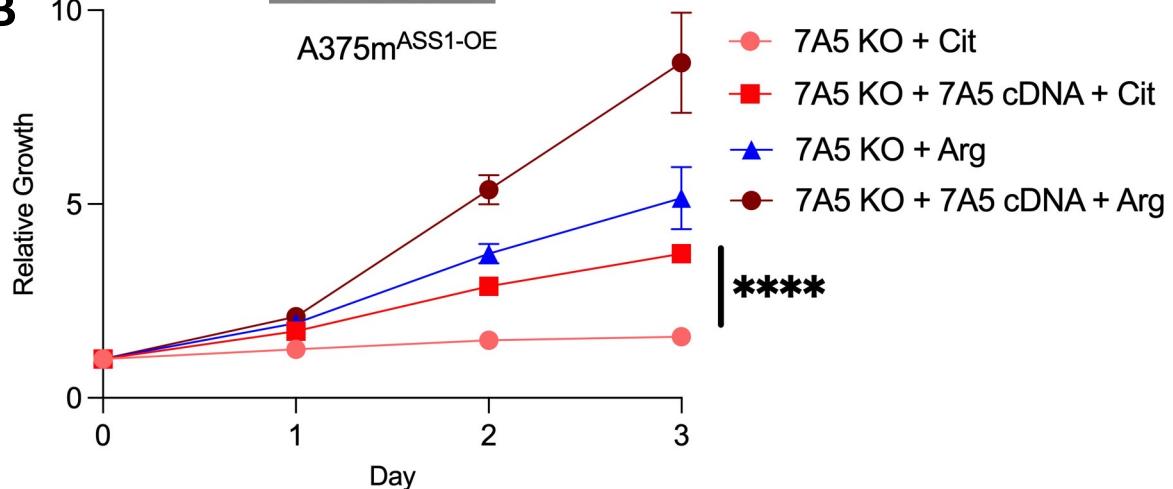

G


H

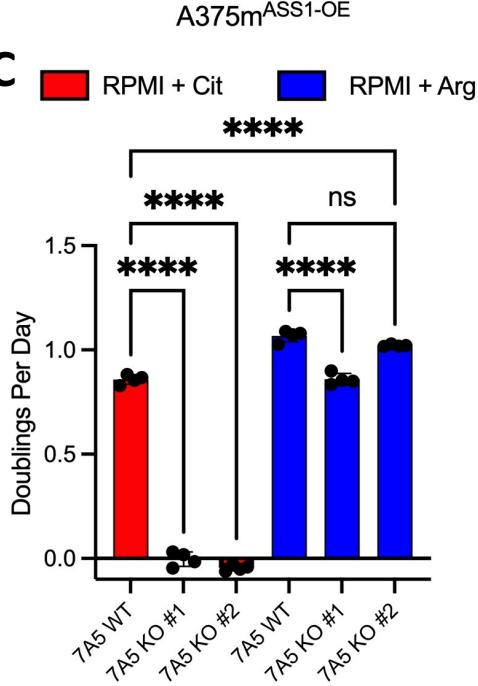
I

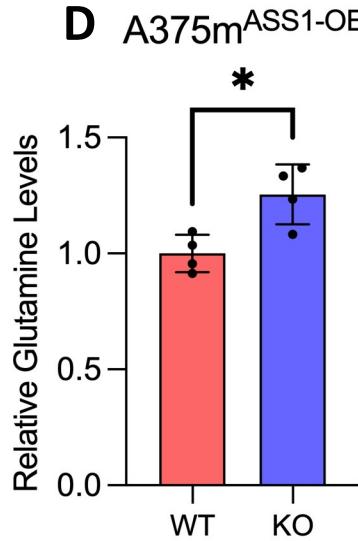


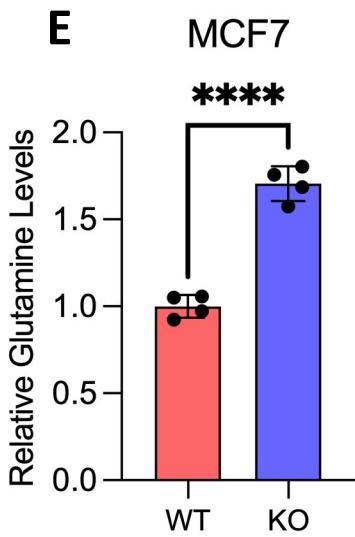
J

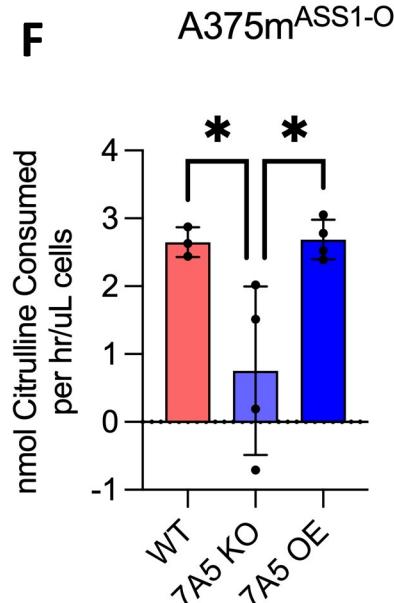


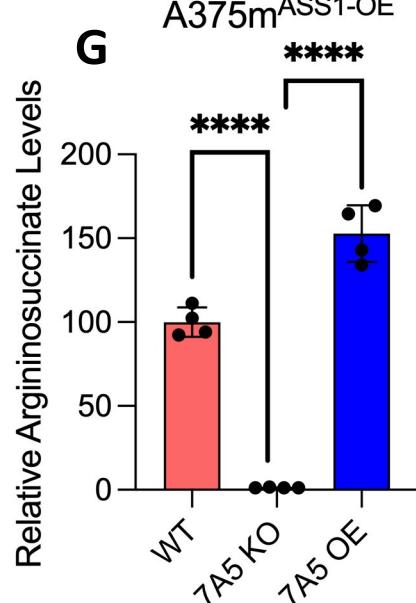
Supplemental Figure 1

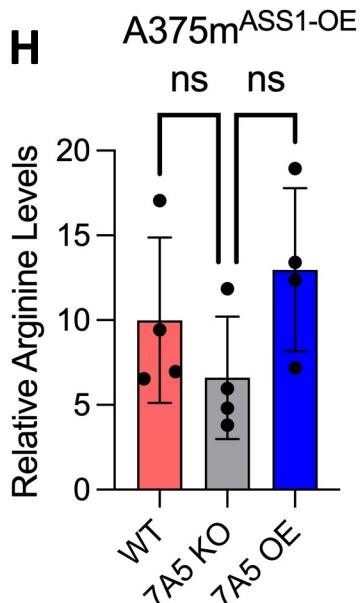

A

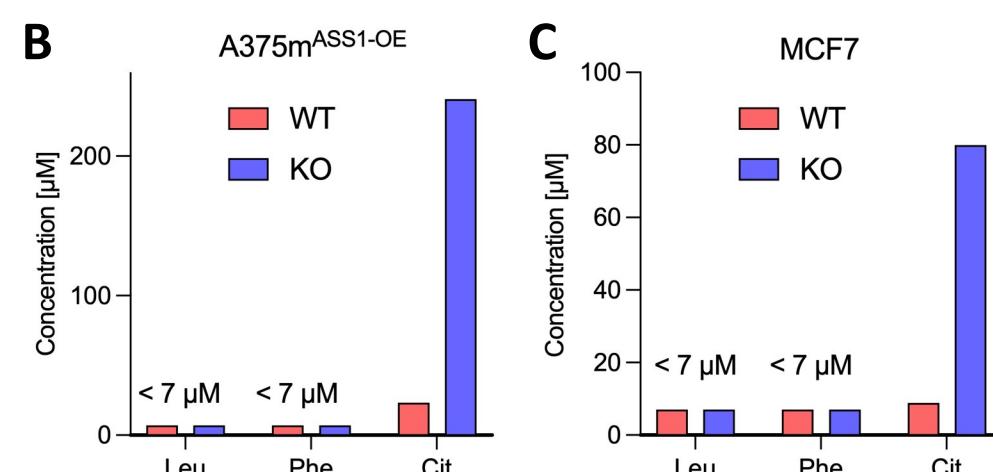
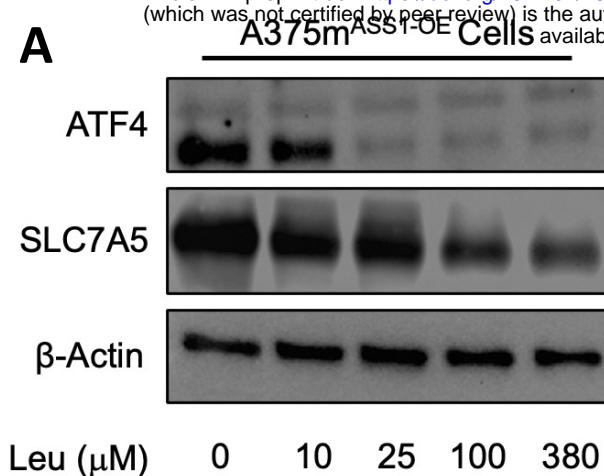

B


C

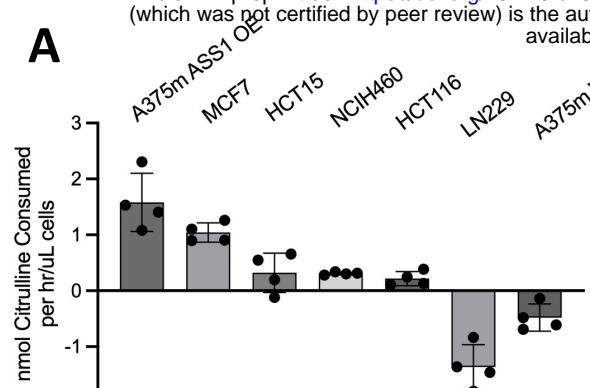

D


E

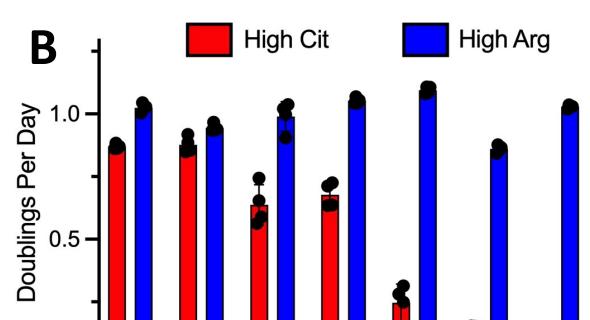

F

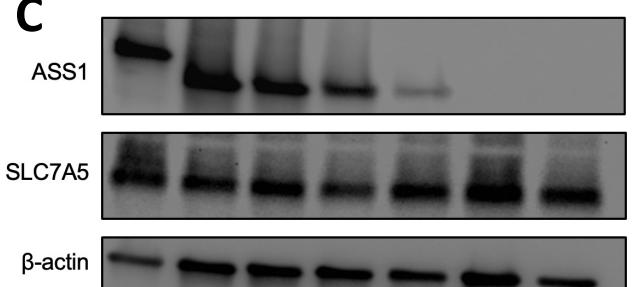



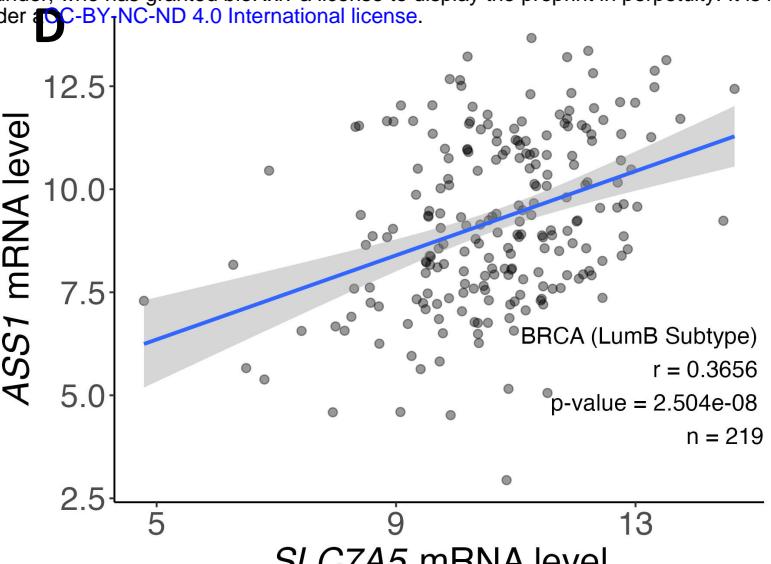
G

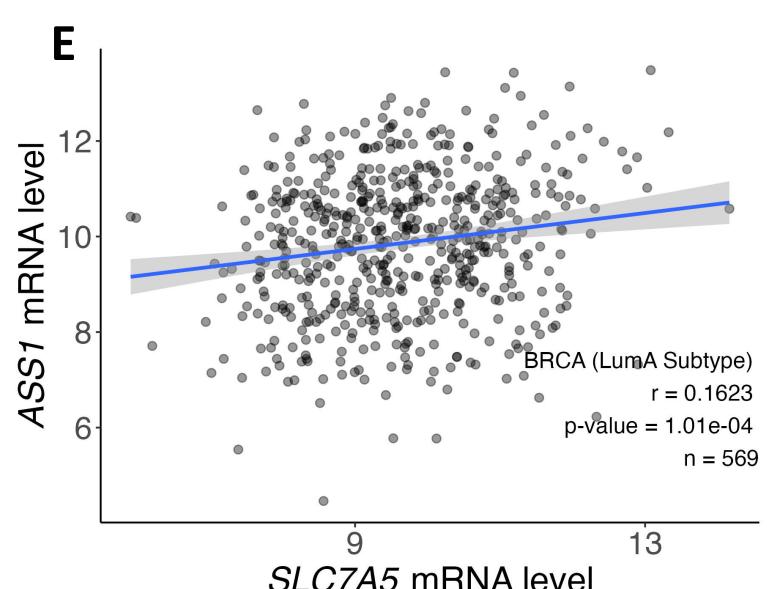


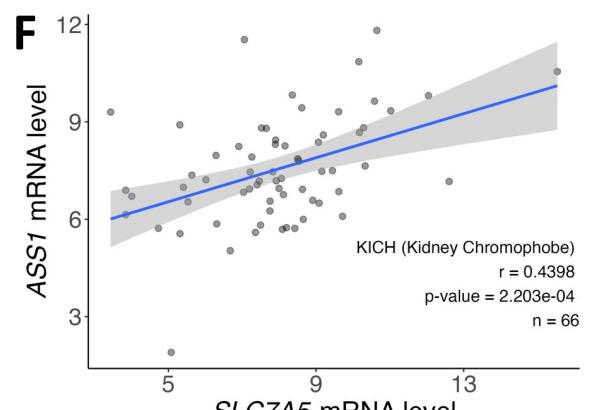
H

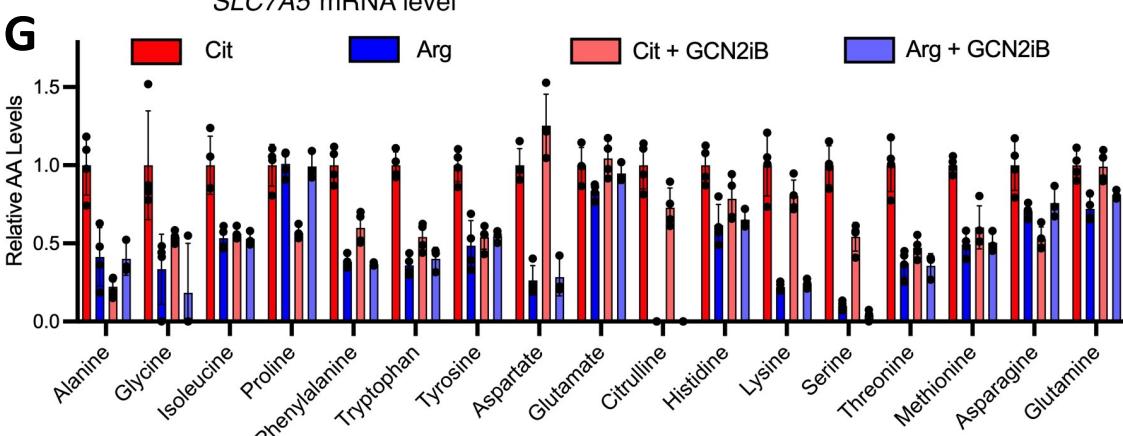



A

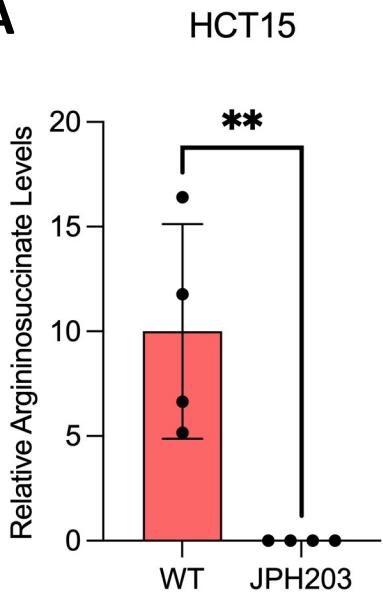

B


C

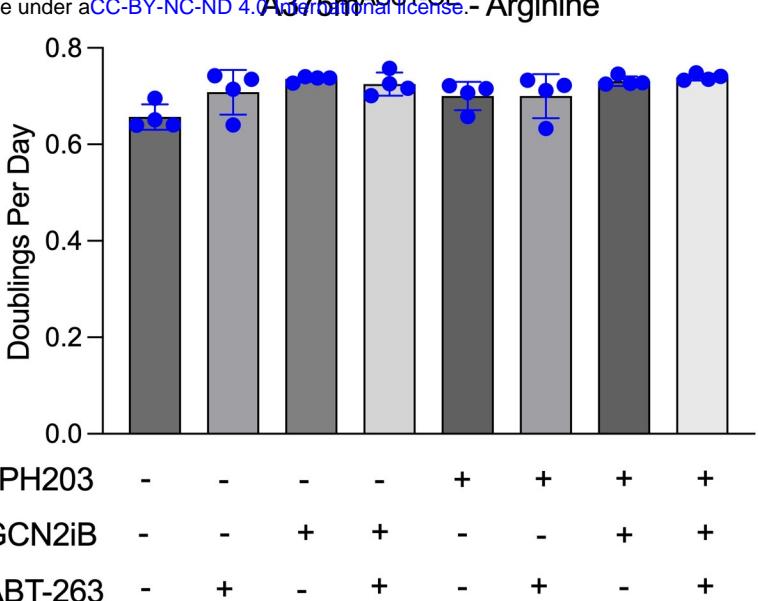

D

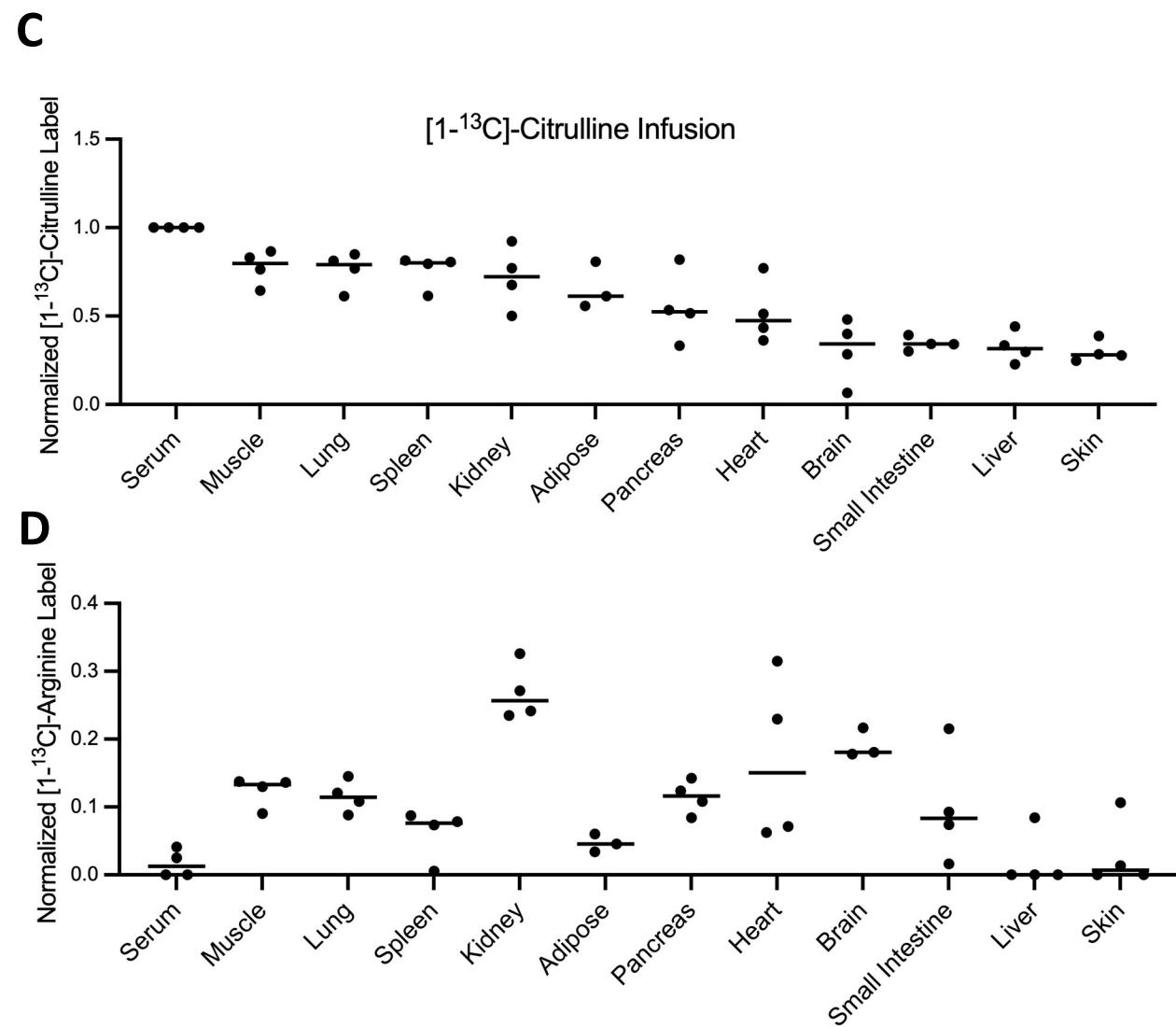
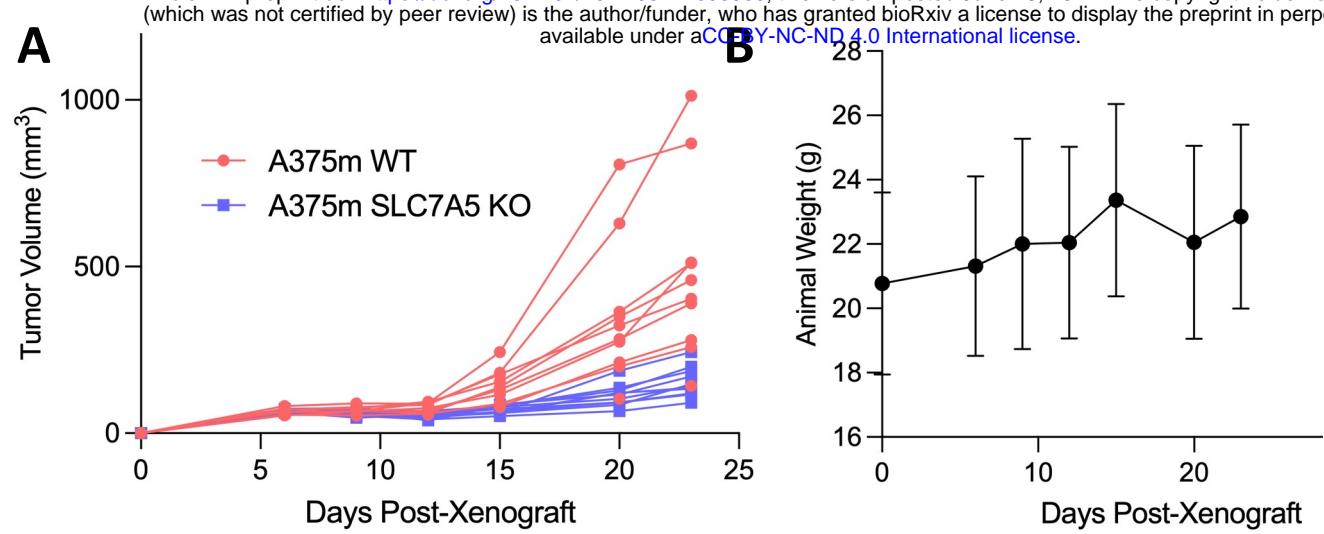

E

F



G





Supplemental Figure 4

A

B

