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Abstract 21 

In rodents, anxiety is charactered by heightened vigilance during low-threat and uncertain situations. 22 
Though activity in the frontal cortex and limbic system are fundamental to supporting this internal state, 23 
the underlying network architecture that integrates activity across brain regions to encode anxiety 24 
across animals and paradigms remains unclear. Here, we utilize parallel electrical recordings in freely 25 
behaving mice, translational paradigms known to induce anxiety, and machine learning to discover a 26 
multi-region network that encodes the anxious brain-state. The network is composed of circuits widely 27 
implicated in anxiety behavior, it generalizes across many behavioral contexts that induce anxiety, and it 28 
fails to encode multiple behavioral contexts that do not. Strikingly, the activity of this network is also 29 
principally altered in two mouse models of depression. Thus, we establish a network-level process 30 
whereby the brain encodes anxiety in health and disease. 31 
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Introduction   37 

Anxiety is a mental state marked by heightened pressure, concern, or apprehension related to uncertain 38 
future circumstances [1]. The anxious state can be adaptive to increase the rate of survival, or it can 39 
become overly generalized and persistent in a manner that yields behavioral pathology that can lead to 40 
anxiety disorders. These disorders constitute the largest group of mental disorders in Western and high-41 
income societies, with nearly 34% of U.S. adults directly impacted in their lifetime [1, 2]. Strikingly, the 42 
prevalence of symptoms of anxiety disorders or other mental health disorders had increased during the 43 
height of the COVID-19 pandemic [3]. As such, it is imperative to discover the biological basis of the 44 
anxious brain state and to delineate how the brain encodes anxiety in the disordered state.  45 
 46 
Non-invasive human imaging studies have demonstrated altered activity in multiple cortical and limbic 47 
brain regions, including the amygdala, prefrontal cortex, and hippocampus during heightened anxiety 48 
and synchronized activity between these regions and others at the milliseconds to seconds timescales 49 
[4-7]. Human intracranial recordings have also demonstrated altered coherence in networks with some 50 
of these regions linked to higher trait anxiety [8], pointing towards the involvement of integrated multi-51 
regional circuits in mediating the anxiety state.  52 
 53 
A myriad of rodent studies has implicated homologous regions in mediating anxiety: the amygdala 54 
(Amy), ventral hippocampus (Hip), and subregions of the prefrontal cortex (PFC). Pharmacological 55 
lesions and optogenetic inactivation studies have implicated the necessity of these brain regions for 56 
anxious behaviors [9, 10]. Furthermore, precise circuit-level studies in rodent models have further 57 
delineated the role of these brain regions and their integrated circuits [11]. For example, millisecond-58 
level synchrony is observed in the mPFC, Amy and/or Hip during key aspects of anxiety-related 59 
behaviors [12-17], and optogenetic interrogation of projections involving these regions modulate 60 
anxiety-related behaviors [18-23]. Yet it remains to be clarified how these circuits reliably integrate 61 
across timescales (i.e., network-level stability) to selectively encode anxiety across animals and 62 
behavioral contexts (i.e., generalization) in healthy animals and in disease states.   63 
 64 
Because LFPs capture generalized patterns of neural activity that can be consistently sampled across 65 
subjects [24], we previously developed a machine learning technique called discriminative Cross-66 
Spectral Factor Analysis-Nonnegative Matrix Factorization (dCFSA-NMF) to discover behaviorally 67 
relevant ensembles of LFP activity that synchronize at both the milliseconds and seconds timescale (i.e., 68 
electrical functional connectome -electome - networks). An electome network can be composed by LFP 69 
oscillatory power from each brain area, millisecond-resolution coherence between oscillations from 70 
pairs of brain regions, and/or directional oscillations (an indication of information transfer between 71 
pairs of brain regions assessed using Granger causality testing), ranging from 1-56Hz. Moreover, dCSFA-72 
NMF was designed to discover electome networks that encode behaviorally relevant internal states both 73 
within and across mice [25-27]. Here, we used dCSFA-NMF to discover a distinct electome network that 74 
selectively encodes normal anxiety across multiple contexts, and anxiety dysfunction in mouse models 75 
of psychiatric disorders.  76 
 77 

Results 78 

Distributed electome networks encode a convergent anxious internal state 79 
Forty-one male mice were implanted with multiwire electrodes to concurrently target prefrontal cortex 80 
(cingulate, prelimbic and infralimbic cortex), amygdala, ventral hippocampus, nucleus accumbens, 81 
medial dorsal thalamus, and ventral tegmental area (VTA). Following their recovery, we employed a 82 
two-stage approach to discover how distributed neural activity encodes an internal state for anxiety. 83 
First, we utilized a translational anxiogenic protocol based on treatment with the antidepressant 84 
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fluoxetine, which has been shown to induce anxiety-like behavior in mice [28], versus a control saline 85 
condition (see also Supplemental Figure S1). Second, we tested whether the electome networks learned 86 
for this paradigm also encoded the internal state induced by two other anxiogenic paradigms: the 87 
elevated plus maze (EPM) and the bright open field (BOF). The amount of time a mouse spends within 88 
exposed regions of these assays (open arms in the EPM and center of the BOF) is used to infer anxious 89 
internal states. As mice with the highest anxiety-like behavior may never enter the exposed regions of 90 
these assays, we modeled anxiety as the internal state that was causally induced by the three paradigms 91 
(Fig. 1A). We trained our network model at one-second resolution to enable us to compare network 92 
activity to on-going behaviors widely utilized to assess the anxiety state of mice [12, 29]. The 41 93 
implanted male mice were exposed to 1 of the 3 experimental paradigms (17 mice were subjected to 94 
two paradigms).  95 
  96 
Our dCSFA-NMF model trained on the neural data acquired during the fluoxetine paradigm successfully 97 
distinguished the low and high anxiety states (saline and fluoxetine treatment, respectively) in newly 98 
implanted C57 mice that had not been used to train the model (Mann Whitney AUC = 0.68 ± 0.01; Fig. 99 
1B, see also Supplemental Figure S2); however, the model failed to distinguish low and high anxiety 100 
states when it was tested on data obtained from the other two paradigms (AUC = 0.49 ± 0.01 and 0.44 ± 101 
0.01 for EPM and BOF, respectively). We also found that dCSFA-NMF models trained on the EPM or BOF 102 
assay similarly failed to distinguish the low and high anxiety states of the fluoxetine assay. These 103 
analyses employed four-fold cross-validation with 3-7 hold out mice within assay per fold, and 9-26 hold 104 
out mice between assay per fold. A full discussion of the dCSFA-NMF model training procedure and 105 
hyperparameter selection can be found in the Methods section.  106 
 107 
After failing to discover a generalized internal state for anxiety solely using training data from one 108 
paradigm, we took inspiration from multi-task learning [30] and adapted dCSFA-NMF for training on 109 
multiple assays jointly (Fig. 1C). Specifically, the multi-assay dCSFA-NMF model utilized training data 110 
from all three contexts (FLX, EPM, BOF) to discover an electome network that was shared between 111 
them. Though we successfully discovered such a shared electome network, we also found that small 112 
permutations of the animal assignments between training and validation data groups yielded electome 113 
networks composed of different LFP spectral features (Fig. 1D) while remaining predictive of the anxiety 114 
paradigms. 115 
 116 
To address this lack of stability, we developed and employed a cosine similarity-based metric for 117 
evaluating network stability across multiple training permutations. For this metric, a low cosine distance 118 
reflects electome network consistency. We then systematically increased the number of supervised 119 
networks in our dCFSA-NFM model, utilizing all supervised networks in a joint prediction logistic 120 
regression framework, and quantified the stability of the resultant electome networks. With this 121 
approach, we found that a model trained with three supervised electome networks optimally balanced 122 
simplicity and electome network stability across multiple runs on perturbated and partitioned training 123 
data (Supplemental Figure S3). This multi-network model encoded the anxiety state across all three 124 
assays in the same seventeen new mice used in testing of the single-assay trained models (AUC = 0.59 ± 125 
0.04, 0.76 ± 0.03, and 0.84 ± 0.03 for FLX, EPM, and BOF, respectively; Fig 1E). Critically, no individual 126 
brain region, or pair of regions, independently encoded an anxiety state shared by all three paradigms 127 
(Fig 1F, see also Supplemental Figure S4). Thus, our findings argued that the anxiety brain state was 128 
encoded at the multi-region level. 129 
 130 
Two electome networks independently encode the anxious internal state 131 
 132 
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The three supervised networks that jointly predicted the anxiety state contributed 26%, 73%, and 1% of 133 
the joint logistic regression model prediction probability, averaged across assays (heretofore referred to 134 
as Electome Networks 1, 2 and 3, respectively; see Fig. 2D). Electome Network 1 was comprised by 135 
prominent beta (14-30) and gamma oscillations (30-55Hz) that led from VTA, amygdala, and medial 136 
dorsal thalamus, and converge in infralimbic cortex and nucleus accumbens. Electome Network 2 was 137 
comprised of prominent beta and gamma oscillations that led from prelimbic cortex, relayed through 138 
medial dorsal thalamus, and converged in the amygdala. Electome Network 3 was represented by 139 
synchronized theta oscillations (4-11Hz) across many of the regions we probed (Fig. 2A-C, see also 140 
Supplemental Figure S5-7). Thus, the three electome networks were each represented by distinct 141 
ensembles of LFP activity.  142 
 143 
Importantly, the electome networks included circuits previously implicated in aspects of anxiety-like 144 
behavior in the broader literature. For example, optogenetic stimulation of the amygdalainfralimbic 145 
cortex circuit, a component of Electome Network 1, has been shown to increase anxiety-behavior during 146 
the EPM and BOF in mice [19]. Mouse studies have described increased activity in the ventral 147 
hippocampusprefrontal cortex circuit in the EPM and BOF [12, 13], and causal stimulation of this 148 
circuit increases anxiety behavior [22]. Increased synchrony between amygdala and ventral 149 
hippocampus has been implicated in trait and state anxiety in human intracranial recording experiments 150 
[8] and in mediating EPM anxiety behavior in causal mouse experiments [31]. Such circuits are 151 
prominently featured in Electome Network 2. Finally, increased IL activity, as featured in Electome 152 
Network 2 and 3, drives anxiety behaviors in mice in the EPM [32]. Thus, many circuits proposed 153 
previously shown to encode aspects of anxiety were featured in our discovered electome networks.  154 

 155 
Though our goal was to discover at least one electome network that was shared across the three anxiety 156 
paradigms, our multi-supervised network learning strategy had the potential to discover three electome 157 
networks for which each solely encoded one of the three assays. Thus, to ensure that we had indeed 158 
discovered an electome network that generalized across anxiety paradigms, we tested whether 159 
Electome Network 1, 2 or 3 encoded the anxious state in all three paradigms, again in the seventeen 160 
new mice. Electome Network 1 and 2 both independently generalized to all three paradigms (P<0.05 for 161 
all comparisons against a null distribution using a one-sided Mann-Whitney U test) while Electome 162 
Network 3 only encoded the internal state induced by the BOF assay (P = 1, P=0.66; P <0.05 for FLX, 163 
EPM, and BOF, respectively; Fig 2D). Given that only Electome Network 1 and 2 independently encoded 164 
all three assays, and Electome Network 3 only contributed 1% to multi-network prediction, we limited 165 
our subsequent analysis to Electome Network 1 and 2. Critically, we also verified that Electome 166 
Networks 1 and 2 generalized to female mice when we compared their activity in the home cage to the 167 
EPM (AUC=0.63±0.05,  U=5 ,P=0.039; AUC=0.65±0.06,  U=4 ,P= 0.027 for Electome Networks 1 and 2, 168 
respectively, using a one-sided paired Wilcoxon sign rank test; N=8 female mice) 169 
 170 
Electome Network activity encodes features of anxiety-related paradigms.   171 
We further validated Electome Network 1 and Electome Network 2 of our multi-assay trained model by 172 
examining network activity dynamics during various anxiogenic events both within the training assays 173 
(i.e., FLX, EPM, and BOF) and in new experimental contexts to control for confounding emotional states. 174 
All analyses were performed on new subjects not used in model training.  175 
 176 
Within the FLX training assay, we observed that the acƟvity of Electome Networks 1 and 2 decreased 177 
across the neural recording period in the saline and fluoxeƟne treated mice (F59,295=4.05, P=0.014 and 178 
F59,295=3.85, P=0.015 for Ɵme effect across minutes for Electome Network 1 and 2 acƟvity, respecƟvely, 179 
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using two-way ANOVA with correcƟon). No differences were observed in this effect across the 180 
treatments (F59,295=1.14, P=0.37 and F59,295=1.36, P=0.28 for treatment × time interaction effect,  181 
for Electome Network 1 and 2 acƟvity, respecƟvely, using two-way ANOVA with correcƟon; see Fig. 3A). 182 
Thus, acƟvity in both networks decreased as mice habituated following the experimental injections, 183 
providing addiƟonal evidence that the networks tracked the internal anxiety state of the mice.  184 
 185 
To further explore whether network activity habituated following other anxiogenic stimuli, we also 186 
analyzed network activity in the EPM and BOF, relative to the activity observed in the home cage. We 187 
focused our analysis on periods during which mice were in the closed arms of the EPM or the periphery 188 
of the BOF, since these are considered the safe zones of the assays. This analysis approach also enabled 189 
us to control changes in network activity that may be location specific. Activity in both networks 190 
increased sharply after the mice were first placed in the behavioral area, and then habituated across the 191 
remaining of the 5-minute testing session (Fig. 3B; T=-11.246, P<0.001; T=-11.116, P<0.001, for time 192 
effect for Network 1 and 2, respectively, using an ANCOVA). Thus, network activity in both assays 193 
paralleled the response we observed in the fluoxetine assay. Next, we tested whether activity in the 194 
networks was behaviorally relevant. Specifically, since we found that the BOF induced a higher network 195 
activity than the EPM (Fig. 3B; T=14.036, P<0.001; T=13.248, P<0.001, for assay effect for Network 1 and 196 
2, respectively, using an ANCOVA), we analyzed the behavioral profiles of mice in both assays to 197 
determine whether the BOF induced greater anxiety-related behavioral avoidance. After verifying that 198 
the mice spent substantially more time in the safe zones vs. anxiogenic zones in both assays (T10=19.9; 199 
P<10-8 and T8=29.8; P<10-8, for EPM and BOF, respectively, using a one-tailed paired t-test, Fig. 3C), we 200 
quantified the bout length when animals entered the anxiogenic zones. We found that the length of 201 
each bout in the center zone of the BOF was significantly shorter than the bout length in the open arm 202 
for the EPM (T18= 2.6; P=0.009, using a one-tailed unpaired t-test, Fig. 3C), demonstrating that the mice 203 
exposed to the BOF showed higher anxiety-related avoidance.   204 
 205 
Network 2 activity, but not Network 1, showed much stronger habituation between the initial and latter 206 
segments of the BOF, compared to the EPM (U=33 and P=0.11; U=27 and P=0.047, for Network 1 and 2, 207 
respectively, using a one-sided Mann-Whitney U test; Fig. 3D). Consistent with this observation, we 208 
found that mice avoided the center of the BOF more during the first half of the assay (T8=3.97 and 209 
P=0.004 using a two-tailed paired t-test; see Fig. 3F). In contrast, no such behavioral pattern was 210 
observed in the EPM (Fig. 3E). Here, mice showed large variability in when they occupied the open arms 211 
across the testing session (T10=0.70 and P=0.50 using a two-tailed paired t-test). Taken together, these 212 
results showed that mice were least likely to occupy the anxiogenic zone under the experimental 213 
context which produced the highest Network 2 activity (first half of the BOF). Thus, Network 2 activity 214 
broadly encoded the anxiety-related behavioral differences observed across the assays.  215 
 216 
Next, we tested whether network activity encoded behavior on a moment-to-moment basis within the 217 
assays. Specifically, we reasoned that three distinct patterns of anxiety could intersect with behavior: 1) 218 
Mice might show higher anxiety when they are in the anxiogenic zones of the assay. 2) The anxiogenic 219 
zones of the assay might induce a feeling of anxiety that peaks several seconds later irrespective of the 220 
animal’s future location and 3) high anxiety might preclude mice from entering the anxiogenic zones 221 
[31]. Thus, we set out to determine whether the two networks showed activity consistent with any of 222 
these 3 patterns. Importantly, though all data recorded during the EPM and BOF assays were used to 223 
discover our putative anxiety networks, the moment-by-moment location of the mice in the EPM and 224 
BOF (anxiogenic vs. safe zone) was not.  Thus, our training approach enabled an unbiased assessment of 225 
their activity related to ongoing anxiety behavior. For our analysis, we first isolated all the one-second 226 
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intervals when mice were in the open or closed arm of the EPM. We also isolated neural activity up to 227 
five seconds following these timepoints, and up to five seconds prior to these timepoints [15, 31].  228 
 229 
Both networks failed to encode whether mice were in the open or closed arms of the EPM (U=42 and 230 
P=0.23; U=41 and P=0.26; for Network 1 and 2, respectively, using a one-sided paired Wilcoxon sign rank 231 
test; Fig. 3G). On the other hand, we found that Network 2 activity (U=61 and P=0.0049 using a one-232 
sided paired Wilcoxon sign rank test), but not Network 1 (U=19 and P=0.90 using a one-sided paired 233 
Wilcoxon sign rank test), was higher in the five seconds interval following the open arm location of mice 234 
(regardless of whether they returned to the closed arm during this period). Thus, an increase in Network 235 
2 activity was induced by the anxiogenic zone of the assay, providing support for the second pattern of 236 
anxiety listed above. Neither Network 1 or 2 activity was lower in the 5-second interval preceding the 237 
open arm location (regardless of the location of the mouse during this interval), compared to activity 238 
preceding the closed arm of the EPM (U=46 and P=0.88; U=27 and P=0.32 for Network 1 and 2, 239 
respectively, using a one-sided paired Wilcoxon sign rank test Fig. 3G). This failed to support the third 240 
pattern of anxiety for which high network activity might preclude entrance into anxiogenic zones. 241 
Though Network 1 and 2 also failed to encode whether mice were in the center or periphery of the BOF 242 
(U=22 and P=0.54, U=20 and P=0.63 using a one-sided paired Wilcoxon sign rank test), we found that 243 
both Networks showed lower center activity within the preceding 5 seconds interval compared to the 244 
periphery (U=7 and P=0.037; U=8 and P=0.049, using a one-sided paired Wilcoxon sign rank test, Fig. 245 
3H). Together, these findings showed that high activity in either network predicted that mice would be 246 
in the safe zone of the BOF in the future, thus supporting the third pattern of anxiety. No increases in 247 
Network 1 or 2 activity were observed in the 5-second interval following the center location compared 248 
to either network’s activity when mice were in the periphery in the BOF (U=18 and P=0.71, U=13 and 249 
P=0.88 using a one-sided paired Wilcoxon sign rank test). Overall, these results showed that Network 2 250 
activity was increased by the open arms of the EPM, while high activity in both Networks precluded mice 251 
from entering the center zone in the BOF. This latter pattern of activity was consistent with our 252 
observation that mice occupied the center zone less during the first half of the BOF when activity in both 253 
networks was highest. Thus, Network 1 and 2 activity was behaviorally relevant and supported our three 254 
patterns of anxiety, though the pattern for which anxiety behavior was encoded by these networks 255 
varied between the two assays.  256 
 257 
Electome Network activity does not encode arousal 258 
As anxiety is correlated with arousal, our training approach could plausibly discover networks that 259 
reflect an arousal state rather than anxiety. To explore this possibility, we used data acquired from two 260 
independent assays that are thought to increase arousal but not anxiety. During these assays, data was 261 
collected from the same brain regions used initially for model training, and LFP activity was projected 262 
into the previously learned multi-assay trained model to calculate the activity of Electome Network 1 263 
and 2 for each second. In the first assay, mice were trained to maintain a nose poke for 5 seconds. Tones 264 
of decreasing pitch were played throughout the 5-second trial, and a 5µL sucrose reward was delivered 265 
at the end if mice remain in the port for the entire 5 seconds. When we tested whether reward delivery 266 
increases electome network activity, we failed to identify a significant response in either network (U=30 267 
and P=0.82; and U=41 and P=0.99, for Electome Network 1 and 2 activity, respectively, using a one-sided 268 
paired Wilcoxon sign rank test; Fig 4A). Next, we quantified Electome Network 1 and 2 activity responses 269 
during a classic social preference assay, where mice freely explore an object and a novel social stimulus 270 
mouse housed at the two ends of a chamber. Here, the social stimulus mouse is considered both 271 
arousing and rewarding, as experimental mice generally choose to spend more time with the other 272 
mouse than the object, and social encounters activate reward circuitry [33]. We failed to discover 273 
increases in Electome Network 1 or 2 activity during interactions with the stimulus mouse, compared to 274 
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the inanimate object (U=60 and P=0.95; U=47 and P=0.74, for Electome Network 1 and 2 activity, 275 
respectively, using a one-tailed paired Wilcoxon sign rank test, Fig. 4B). These results demonstrate that 276 
both networks fail to encode arousal as no increase in network activity is observed during either the 277 
trained or innate reward assays.  278 
 279 
Electome Network activity encodes the internal state induced by additional anxiety paradigms   280 
We further probed whether our electome networks encode a robust anxiety-related brain state using 281 
additional paradigms that induce anxiety in a manner that is distinct from our initial assays. Again, all 282 
analyses were performed on new mice that were not used during model training. We first examined 283 
network activity during direct optogenetic stimulation neurons in the ventral hippocampus. This region 284 
has been causally implicated in anxiety-related behaviors in rodents [34], and it was a critical upstream 285 
node in one of our networks. Moreover, we selectively stimulated the subset of neurons that projected 286 
to lateral hypothalamus since the ventral hippocampus lateral hypothalamus circuit had been shown 287 
to drive anxiety-related avoidance in the EPM and BOF [20]. Mice were infected with an 288 
adenoassociated virus (AAV) to express Channelrhodopsin-2 using (ChR2) in the ventral hippocampus 289 
and implanted with microwires to target the same regions utilized to learn our multi-assay trained 290 
electome network. A microwire and optic stimulating fiber was also implanted in lateral hypothalamus, 291 
concurrently (Fig. 5A). Mice were then stimulated with blue light to activate ChR2, or yellow light as a 292 
negative control, while neural activity was recorded in their home cage. As expected, blue light induced 293 
local and remote LFP activity, while yellow light did not (Fig 5B). When we projected neural activity 294 
recorded during these stimulations into our learned multi-assay trained model, we found that ventral 295 
hippocampus  lateral hypothalamus stimulation increased Electome Network 2, but not Electome 296 
Network 1 activity (U=20 and P=0.14; U=0 and P<0.001, for Electome Network 1 and 2 activity, 297 
respectively, using a one-sided paired Wilcoxon sign rank test, Fig. 5C and 5D). Thus, these data further 298 
validated Electome Network 2 as a network-level code for the anxious internal state.  299 
 300 
We subsequently examined whether Electome Network 1 or 2 encode the internal state induced by fear 301 
conditioning. In this classic paradigm, mice are exposed to seven repeated auditory cues, each paired to 302 
a foot shock (conditioned stimulus, CS+). On a subsequent recall session, conditioned mice exposed to 303 
the auditory cue in the absence of the foot shock typically exhibit a freezing response. For our 304 
conditioning paradigm, we substituted the foot shock with a high-pressure air puff during conditioning 305 
(Fig. 5E). This enabled us to minimize electrical noise during LFP recording. Mice exposed to our 306 
modified air puff stimulus treated mice (CS+) exhibited increased freezing behaviors during the recall 307 
period when compared to controls (CS-) (U=21 and P=2.3×10-4 using a one-sided Mann-Whitney U test; 308 
Fig. 5F).  309 
  310 
We compared electome network activity between CS+ and CS- mice at the final stimulus of the aversive 311 
conditioning (i.e., the 7th tone). Though we observed a trend in Electome Network 1 activity, neither 312 
Electome Network 1 or 2 were significantly elevated in CS+ mice during the brief interval immediately 313 
prior to the tone, compared to the CS- mice (U=105 and P=0.051; and U=78 and P=0.45, for Electome 314 
Network 1 and 2, respectively, using a one-sided Mann-Whitney U test, Fig. 5G, 5H). Conversely, 315 
Electome Network 2, but not Electome Network 1, activity was significantly higher in CS+ mice during 316 
the brief interval immediately after the presentation of the tone (U=100 and P=0.09; and U=110 and 317 
P=0.028, for Electome Network 1 and 2 respectively, using a one-sided Mann-Whitney U test, Fig. 5I, 5J). 318 
Importantly, our post-hoc analysis found no difference in Electome Network 1 or 2 activity prior to, or, 319 
immediately following the first tone exposure (see Supplemental Figure S8). As such, Electome Network 320 
2 encodes an acute state generated by the presentation of a threat-paired stimulus. Overall, Electome 321 
Network 2 encodes a behaviorally relevant component of the classic fear conditioning paradigm, while 322 
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Electome Network 1 showed a trend towards encoding a more generalized state that emerged with fear 323 
conditioning.  324 
 325 
Finally, having discovered that Electome 2 encoded anxiety features of our fear conditioning paradigm, 326 
but not arousal or reward, we asked whether either network broadly encoded an acute negative 327 
experience. Specifically, while anxiety is a negative affective state, not all negative experiences produce 328 
anxiety. Thus, we further probed our fear conditioning paradigm data to test whether the activity in our 329 
electome networks increased acutely during an ongoing negative experience. We reasoned that prior to 330 
conditioning, the first air puff should immediately invoke negative affect, but not anxiety. As such, we 331 
quantified electome network activity in the CS+ mice while they experienced the first air puff and 332 
compared that to neural activity from the CS- mice, which did not receive an air-puff. Using this 333 
approach, we found that the air puff acutely increased Electome Network 1, but not Electome Network 334 
2, activity (U=118 and P=0.009; and U=86 and P=0.28, for Electome Network 1 and 2, respectively, using 335 
a one-sided Mann-Whitney U test, Fig. 5K, 5L; see also Supplemental Figure S8). These results indicated 336 
that Electome Network 2 activity was specific for anxiety, while Network 1 was not.  337 
 338 
Electome Network activity is altered in mouse models of mood disorders 339 
Anxiety behavior is altered in mood disorders. Indeed, bipolar mania is characterized by impulsivity and 340 
risk taking[35] (reflective of decreased anxiety processing), while major depressive disorder is highly co-341 
morbid high anxiety[36]. We reasoned that a causal manipulation that induces a manic-like state in mice 342 
should suppress network activity when mice were placed in a context where network activity should 343 
otherwise be high. Similarly, we reasoned that causal manipulations that induce a depression-like state 344 
should increase network activity when mice were placed in a context where network activity should 345 
otherwise be low. Thus, we quantified Electome Network 1 or 2 activity in a mouse model of mania and 346 
two of the most widely utilized mouse models for major depressive disorder. 347 
 348 
The ClockΔ19 mouse line has been proposed as a model of bipolar mania [37]. These mice have a point 349 
mutaƟon in the circadian gene Clock and exhibit altered circadian rhythms, hyperacƟvity, increased 350 
reward drive, and decreased anxiety-related behavior [15, 37, 38]. Moreover, many cellular, 351 
neurophysiological, and behavioral alteraƟons in these mutant mice are normalized by chronic lithium or 352 
valproic acid treatment [37, 39, 40], providing further validaƟon for the ClockΔ19 mouse as a model of 353 
bipolar mania. AŌer confirming that ClockΔ19 mice demonstrate diminished anxiety behavior in the EPM 354 
(T1,32=2.9; P=0.003 using unpaired t-test, Fig. 6A), we implanted male and female ClockΔ19 mice and 355 
their wild-type liƩermate controls with microwires targeƟng the same brain regions used to learn our 356 
electome networks. We then quanƟfied neural acƟvity while mice were in the home cage and on the 357 
EPM. Exposure to the EPM induced Network 1 acƟvity in both genotypes (F1,19 = 15.81 and P =8.08×10-4 358 
for assay effect using mixed-effects model ANOVA; U=2 and P=0.003, U=10 and P=0.02, for wild type and 359 
ClockΔ19 mice, respecƟvely using one-tailed Wilcoxon sign rank test). Similarly, exposure to the EPM 360 
induced Network 2 acƟvity in both genotypes as well (F1,19 = 17.17 and P = 5.51×10-4

 for assay effect 361 
using mixed-effects model ANOVA; U=4 and P=0.068, U=9 and P=0.016, for wild type and ClockΔ19 mice, 362 
respecƟvely, using a one-tailed Wilcoxon sign rank test sign rank test). We further probed neural acƟvity 363 
across genotypes in the otherwise high-anxiety context (i.e., the EPM). For this analysis, we isolated 364 
intervals when mice were in the closed arms, an approach which enabled us to isolate 365 
neurophysiological differences that result by disrupƟon of the CLOCK gene, while controlling for the 366 
altered behavioral profiles displayed by the mutants. When we compared network acƟvity in closed 367 
arms of the EPM across genotypes, we observed lower Network 1 and 2 acƟvity in the ClockΔ19 mice 368 
compared to their liƩermate controls (T=10.97, P<0.001, Network 1; T=-7.42, P<0.001, for genotype 369 
effect for Network 1 and 2, respecƟvely, using an ANCOVA, Fig. 6B). Thus, a geneƟc manipulaƟon used to 370 
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model bipolar mania (and thus decrease anxiety-related behavior) in mice was sufficient to reduce 371 
Electome Network 1 and 2 acƟvity in an otherwise angiogenic context.  372 
  373 
Next, we explored network activity in two depression models that causally induce anxiety-related 374 
behavior. In the chronic social defeat stress paradigm, mice are repeatedly exposed to larger-aggressive 375 
mice. After 10 such exposures, a subset of mice, classically referred to as susceptible, exhibit social 376 
avoidance, disrupted reward behavior, and anxiety-like behavior [41, 42]. Conversely, the other subset 377 
of mice, termed resilient, exhibit normal social and reward behavior [41, 42] (Fig. 6C-D). Interestingly, 378 
despite the well-described differences in appetitive behavior, prior work has reported the emergence of 379 
anxiety-like behavior in both the susceptible and resilient mice [41, 43]. Indeed, we find that exposure to 380 
chronic social defeat stress induces open arm avoidance in the EPM for both susceptible and resilient 381 
mice uniformly (t20=2.27 and P=0.02, for comparison between stress and unstressed mice using a one-382 
tailed Welch’s t-test; t10=0.16 and P=0.87 for post-hoc comparison between susceptible and resilient 383 
mice; see Fig. 6E). Therefore, we quantified whether this stress paradigm also increased Electome 384 
Network 1 or 2 activity in both the susceptible and resilient groups compared to non-stressed controls. 385 
Since we reasoned that stress exposure should induce a persistent anxious internal state, we probed 386 
activity recorded while animals were alone in their home cage. Though chronic social defeat stress 387 
exposure failed to induce Electome Network 1 activity (U=468 and P=0.90 using one-sided Mann-388 
Whitney U test), we found significantly higher Electome Network 2 activity in the stressed mice (U=151 389 
and P<0.01 using one-sided Mann-Whitney U test, Fig. 6F, left). Moreover, no difference in Electome 390 
Network 2 activity was observed between susceptible and resilient mice (U=382 and P=0.62, for post-391 
hoc analysis using a two-sided Mann-Whitney U test, Fig. 6F, right). Thus, chronic social defeat stress 392 
induced anxiety-like behavior and increased Electome Network 2 activity in both groups, despite 393 
differences in how stress impacted their reward function.  394 
  395 
We next quantified network activity in mice exposed to chronic mild unpredictable stress. In this 396 
paradigm, mice are repeatedly exposed to a series of stressors over eight weeks. Specifically, test mice 397 
are subjected to two stressors per day, one occurring during the light phase of their circadian rhythm 398 
cycle and the other during the dark phase. Stressors, including environmental stressors, food/water 399 
restriction, or physical restraint, were chosen according to a pseudo-random schedule. Exposure to this 400 
protocol induces altered reward and social behavior, as well as increased anxiety-related behavior in 401 
mice compared to their non-stress controls [44, 45]. After verifying that chronic mild unpredictable 402 
stress induced open arm avoidance in the EPM (t19=2.37 and P=0.018, for comparison between stress 403 
and unstressed mice using a one-tailed Welch’s t-test; see Fig. 6G), we quantified electome network 404 
activity in stressed mice and non-stressed controls, again in their home cage. Like chronic social defeat 405 
stress, exposure to chronic mild unpredictable stress increased Electome Network 2 activity (U=81 and 406 
P=0.036, using a one-sided Mann-Whitney U test, Fig. 6H, left). Thus, two of the most widely utilized 407 
paradigms for modeling depression in mice converged on a common network-level signature. 408 
Interestingly, chronic mild unpredictable stress also increased Electome Network 1 activity as well (U=82 409 
and P=0.031, using a one-sided Mann-Whitney U test, Fig. 6H, right), demonstrating an even broader 410 
impact of this stress paradigm on anxiety-related neural activity.  411 
  412 
Discussion 413 

Preclinical models have played a role in the development of therapeutics for emotional disorders. These 414 
efforts would be greatly enhanced by the discovery of biological mechanisms that instantiate affective 415 
internal states in health and disease, and any such mechanisms must generalize across both animals and 416 
contexts to achieve their true translational potential. Here, we employed multisite electrical recordings 417 
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in freely behaving mice subjected to a collection of behavioral and experimental paradigms to discover 418 
and validate an electome network that encoded such a generalized anxious internal state. We reasoned 419 
that a putative anxious internal state could be observed at the intersection of many distinct paradigms 420 
used to model and induce anxiety behavior. Moreover, we reasoned that the unique features of these 421 
paradigms would enable us to disambiguate this anxious internal state from other internal states such as 422 
arousal and positive affect (i.e., reward state), or other task relevant variables (Fig. 7A). Machine 423 
learning models trained solely using data from one anxiety paradigm failed to generalize to other 424 
paradigms. On the other hand, a model trained using data from three assays discovered a network 425 
reflecting a shared internal anxious state. Specifically, this electome network generalized to additional 426 
anxiety paradigms, including direct optogenetic interrogation of cells originating from a key network 427 
node and a classic fear conditioning assay, highlighting its sensitivity. Finally, the electome network 428 
failed to encode multiple behavioral assays that induce rewarding and/or arousing (but not anxious) 429 
internal states, demonstrating its specificity (Fig. 7B). Thus, our multi-assay learning approach 430 
discovered a generalized anxious brain state.  431 
 432 
While each of our initial three paradigms could be encoded by at least one implanted region, no single 433 
brain region could independently encode an internal state shared across the three paradigms. 434 
Moreover, we were unable to capture a signature for a shared anxiety state when we trained models 435 
using the predictors from pairs of regions (power across both regions, and the coherence and Granger 436 
coherence measures between them). Strikingly, this approach even failed for pairs of regions that had 437 
been previously shown to synchronize during anxious states in the EPM. This suggests that acƟvity within 438 
a given brain region or circuit captures some behavioral/affecƟve features of each individual assay, while 439 
failing to independently encode a generalized anxiety state.  For example, acƟvity in a region/circuit may 440 
encode non-specific neural responses to the inducƟon paradigms (e.g., sensing a bright light, or non-441 
specific drug effects), or behavioral features that correspond with anxiety in one of the three assays (e.g., 442 
locomoƟon). Because we employed different anxiety inducƟon protocols (bright light vs. drug injecƟon) 443 
and behavioral contexts (open lit area vs. home cage), we encouraged our machine learning strategy to 444 
discover a generalized anxiety state rather than specific features of each assay. Therefore, we assert that 445 
while each individual region contains assay-relevant informaƟon, the anxious brain state is opƟmally 446 
represented at the network-level, where acƟvity across many disƟnct brain regions/circuits is integrated 447 
at the sub-seconds Ɵmescale. Taken together, our findings highlight two important principles to help 448 
discover the neural architecture underlying affecƟve states: 1) employ mulƟple disƟnct paradigms to 449 
discover generalized affecƟve states rather than features of an assay, and 2) uƟlizing neural acƟvity 450 
acquired from mulƟple brain regions [24].  451 
 452 
We do not contend that the learned electome network provides a comprehensive descripƟon of the 453 
anxious internal state. Rather, we believe that this state is also coupled to physiological changes across 454 
brain regions involved in sensory and motor funcƟon, and throughout the body. It is also likely that 455 
several neural circuits outside of Electome Network 2 can converge to impact its acƟvity. Indeed, we 456 
found that sƟmulaƟng ventral hippocampal projecƟons in lateral hypothalamus increased Electome 457 
Network 2 acƟvity. Thus, we assert Electome Network 2 provides a robust and objecƟve measure of the 458 
internal state that mediates anxious behavior, enabling future preclinical studies to dissect and regulate 459 
neural processes that contribute to anxiety in disease states.  460 
 461 
InteresƟngly, when we probed the response of the Electome Networks 1 and 2 to an acute air puff, we 462 
found that only Electome Network 1 responded to this noxious sƟmulus. While this observaƟon 463 
established that Electome Network 2 was specific for encoding an anxious internal state, it raises the 464 
hypothesis that Electome Network 1 may broadly encode a negaƟve affecƟve state.  465 
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 466 
MulƟple paƩerns idenƟfied by our analysis provided support such an interpretaƟon. Specifically, though 467 
our analysis strategy employed one-tailed staƟsƟcal tests, we observed several instances where network 468 
acƟvity tended to respond in the opposite direcƟon (i.e., P>0.95). Indeed, while our appeƟƟve 469 
behavioral paradigms failed to induce acƟvity in Electome Network 1 or 2, we observed that Electome 470 
Network 1 tended to show a graded decrease in acƟvity during behavioral periods consistent with 471 
reward anƟcipaƟon (Fig. 4A, leŌ) and during interacƟon with an appeƟƟve social sƟmulus (Fig. 4B, leŌ). 472 
When we quanƟfied neural acƟvity when mice were in the open arm of the mice, we observed that 473 
Network 1 acƟvity tended to be elevated in the preceding 5 second interval. Moreover, this acƟvity 474 
tended to decrease across during this interval (Fig. 3G). Such a paƩern in network acƟvity was not 475 
observed for Network 2, nor was it observed in the interval preceding when mice were in the closed arm 476 
for either network.  477 
 478 
This putaƟve decrease in Electome Network 1 acƟvity may reflect an internal process whereby animals 479 
briefly suppress a negaƟve affecƟve/avoidance network, enabling them to approach an aversive context 480 
or one that carries perceived risk. This interpretaƟon is supported by our findings in the ClockΔ19 mice 481 
which model a manic-like state. Mania is characterized by increased impulsivity and risk taking, and this 482 
geneƟc strain exhibited decreased anxiety-related behavior. We found decreased Electome Network 1 483 
acƟvity in the ClockΔ19 mouse when they were in a context that should otherwise induce anxiety. Taken 484 
together, these raise the idea that Electome Network 1 and 2 cooperate to shape behavior related to 485 
anxiety. In this putaƟve framework, Electome Network 2 encodes anxiety, while Electome Network 1 486 
shapes behavior outcomes in response to the internal anxiety state and other negaƟve affecƟve states 487 
(Fig. 7B). Future experiments will be necessary to test the validity of this putaƟve framework.  488 
 489 
Though Electome Network 2 failed to show increased acƟvity in response to an acute negaƟve sƟmulus, 490 
as Electome Network 1 had, we observed that Electome Network 2 acƟvity tended to decrease aŌer 491 
sucrose reward delivery (P>0.95 using one-tailed analysis; Fig. 4A, right). These findings raise the 492 
intriguing potenƟal that anxious and negaƟve internal states may counterbalance the appeƟƟve internal 493 
state. Indeed, depression is characterized by disrupted appeƟƟve drive and high anxiety, while bipolar 494 
mania is characterized by high appeƟte drive and disrupted anxiety. SupporƟng the translaƟonal uƟlity of 495 
Electome Network 2, we quanƟfied its acƟvity in a mouse model of mania and two well established 496 
preclinical animal models of depression based on chronic stress exposure. The mouse model of mania 497 
exhibits predicƟve validity as it shows increased reward drive and decreased anxiety-like behavior that 498 
responds to chronic lithium treatment [37]. Similarly, both stress models exhibit predicƟve validity with 499 
depression as they produce a heightened anxiety-like behavior and an anhedonia phenotype that 500 
responds to chronic anƟdepressant administraƟon [42, 46, 47]. We found decreased acƟvity in Electome 501 
Network 2 in the mouse model of mania when mice were in an otherwise high anxiety context (i.e., in 502 
the EPM). Conversely, we found increased acƟvity in Electome Network 2 in the depression models. 503 
Strikingly, this increased acƟvity was observed when mice were in an otherwise low anxiety context (i.e., 504 
in their home cage). 505 
 506 
The two depression models showed disƟnct network changes in Electome Network 1. Exposure to 507 
chronic mild unpredictable stress induced Electome Network 1 acƟvity, while exposure to chronic social 508 
defeat stress did not. These findings raise the intriguing potenƟal that chronic mild unpredictable stress 509 
may more broadly induce a negaƟve affecƟve state, while chronic social defeat stress primarily impacts 510 
the anxiety internal state. Future studies to further validate the role of Electome Network 1 in behavior 511 
may further clarify the behavioral disƟncƟons between the two depression models. Taken together, our 512 
findings establish a brain electome network that encodes anxiety-behavior in health and in disease 513 
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models. Moreover, we establish a putaƟve preclinical biomarker for the development of anxiolyƟc 514 
therapeuƟcs.    515 
 516 
 517 

Figure Legends 518 

 519 

Figure 1: Distributed electome networks encodes anxiety states across multiple anxiety-related 520 
paradigms. A) Local field potential oscillations recorded from 8 brain regions, concurrently, as mice 521 
were subjected to three distinct paradigms used to model anxiety. B) dCSFA-NMF results when the 522 
network model was used to discover an electome network for each anxiety paradigm. Electome 523 
networks learned for the three anxiety paradigms were applied to new mice subjected to the three 524 
paradigms (N= 13, 26, and 19 training mice for FLX, EPM and BOF, respectively, and N= 6, 11, 9 holdout 525 
mice for FLX, EPM and BOF, respectively). Nine generalization tests for each of the three learned 526 
networks were run in new mice subjected to the three different anxiety paradigms. C) Multi-assay 527 
dCSFA-NMF model used to discover a joint set of electome networks shared across the three anxiety 528 
paradigms. D) Network Consistency was evaluated by training the dCSFA-NMF model multiple times, 529 
where the mice used for training and validation were shuffled. A cosine distance metric quantified the 530 
consistency of the supervised networks across runs, where a lower cosine distance reflected greater 531 
network consistency. E) Box and whisker plots show generalization tests for which the networks learned 532 
from the multi-assay dCSFA-NMF model were applied to new mice (same as Fig. 1B) subjected to the 533 
three different anxiety paradigms. Dashed line at AUC = 0.5 corresponds to models with no predictive 534 
utility. F) Predictive utility of multi-region multi-assay dCSFA-NMF network model (same as Fig. 1E) vs. 535 
models solely based on activity from single brain regions. Models that showed significant encoding are 536 
highlighted in pink (data analyzed using a single-sample t-test against a null AUC distribution at α = 0.05, 537 
and shown as mean±s.e.m). Note that only the network model encoded all three assays.  538 
 539 
Figure 2: Individual electome networks within the mul -assay anxiety model independently encode 540 
dis nct anxiety paradigms. A) Power and Synchrony measures that comprise each electome network. 541 
Brain regions and frequency bands ranging from 1-56 Hz are shown around the rim of the plot. Power 542 
features are depicted as bands within the rim of the plot, and cross-spectral (i.e., synchrony) measures 543 
are depicted by the lines connecƟng the brain regions through the center of the circle. The top 15 544 
percent of components for each electome network is shown. B) Granger offset measures were used to 545 
quanƟfy direcƟonality for the synchrony measures shown in A. Prominent direcƟonality features were 546 
found in mulƟple bands coded by color. Histograms quanƟfy the number of lead and lagging circuit 547 
interacƟons for each brain region. C) SchemaƟc of direcƟonality for each of the three electome 548 
networks. Arrows are colored to represent the dominant frequency of direcƟonally (see color scale in 549 
panels A or B). D) Independent predictive performance of each supervised network across each anxiety 550 
assay. Mean contribution towards the joint model logistic regression predictions is also shown. 551 
Independent predictive performance of each supervised network across each anxiety assay. Tests were 552 
performed using the 17 holdout mice, and networks that showed significant encoding are highlighted in 553 
pink (data analyzed using a one-tailed unpaired t-test against a null AUC distribuƟon at α = 0.05). 554 
 555 
Figure 3: Increases in Electome Network 1 and 2 activity encodes features of anxiety related 556 
paradigms. A) Electome Network activity dynamics during fluoxetine assay. Data is plotted across 5-557 
minute windows for Electome Network 1 (left) and 2 (right). Note that activity decreases in both 558 
networks over time following saline and fluoxetine treatment (N = 6 mice). P* <0.05 for time effect using 559 
a within and within two-way ANOVA. B) Comparison of Electome Network activity in safe zones of the 560 
EPM (closed arm) and BOF (periphery) over the duration of the assays. Time (P*), and assay (P#) effects 561 
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were determined using an analysis of covariance. Data was plotted with a 10s sliding window and shown 562 
normalized to network activity observed in the home cage. C) Mice showed avoidance of the anxiogenic 563 
zones of the EPM (left, P<0.05 using one-tailed paired t-test) and BOF (middle, P<0.05 using one-tailed 564 
paired t-test). Bout length of mice in the anxiogenic zones for EPM and BOF (right; P<0.05 using one-565 
tailed unpaired t-test). D) Decrease in Network 1 (left) and 2 (right) activity between the first and last 566 
minute of each assay. Network 2 showed a larger activity decrease in the BOF than in the EPM (P<0.05 567 
using one-sided Mann-Whitney U test). E-F) Average period of occupancy in safe and anxiogenic zones in 568 
E) EPM and F) BOF assays. Note that mice showed greater occupancy of the center in the second half of 569 
the BOF. G) Electome Network activity dynamics relative to arm locations in the EPM assay. Gray 570 
highlights 1 second windows when the animals are in the open or closed arms. Neural activity preceding 571 
and following these timepoints is shown as well, and data is shown normalized to the mean activity 572 
observed across the assay. The purple line highlights temporal intervals with significantly different 573 
Electome Network activity, determined using a one-tailed Wilcoxon sign rank test (N = 11 mice). H) 574 
Same as G, except data shown for the BOF assay (N=9 mice).  575 
 576 
Figure 4: Electome Network 1 and 2 activity does not encode arousal. A) Mice were trained to nose 577 
poke for 5 consecutive seconds. A sucrose reward was delivered at time zero, highlighted by gray. 578 
Electome Network activity was compared prior to and following sucrose delivery using a one-tailed sign-579 
rank test (N=9 mice). Data is shown as data is shown as mean±s.e.m. B) Electome Network activity was 580 
quantified while mice engaged with an object or a social stimulus mouse during a free interaction assay 581 
and compared using a one-tailed sign-rank test (N=12 mice). All analyses were performed in mice that 582 
were not used to learn the multi-assay anxiety model. Data is shown as data is shown as mean±s.e.m.  583 
 584 
Figure 5: Electome Network 1 and Network 2 activity encode distinct anxiety paradigms. A) Mice were 585 
infected with ChR2 in ventral hippocampus (Hip) and implanted with an optrode to target lateral 586 
hypothalamus (LH). Multiwire electrodes were also implanted to target the 8 brain regions utilized to 587 
learn the multi-assay anxiety network (N=11 mice). B) Neural activity recorded during optogenetic 588 
stimulation of Hip terminals in LH with blue (473nm, 20hz, 5mW, 5ms pulses) or yellow light (593.5nm, 589 
20hz, 5mW, 5ms pulses).  Note that blue light stimulation induced activity in LH (and remotely) while 590 
yellow light stimulation did not. C) Electome Network 1 and D)  Network 2 activity during yellow or blue 591 
light stimulation. Network 2 showed an increase in activity with blue vs. yellow light stimulation 592 
(P<0.001 using a one-tailed Wilcoxon sign rank test)) while Network 1 did not (P=0.14). E) Behavioral 593 
paradigm utilized to induce fear conditioning. Conditioned mice (CS+; N=10) received an air puff at the 594 
end of each tone presentation, while non-conditioned mice (CS-; N=15) did not (top). Neural activity was 595 
recorded in both groups throughout tone presentation (bottom). F) Freezing behavior in CS- and CS+ 596 
mice one to two days after exposure to the conditioning paradigm. G-H) Mean Activity of G) Electome 597 
Network 1 and H) Electome Network 2 activity within the 10 second interval prior to the presentation of 598 
the 7th conditioning tone. I-J) Mean activity of I) Electome Network 1 and J) Electome Network 2 within 599 
the 20 second following the presentation of the 7th conditioning tone. H-K) Mean activity of I) Network 1 600 
and J) Network 2 in response to an air puff. Data was analyzed using a one-tailed rank sum test.  601 
 602 
Figure 6: Alternated Electome network activity signals behavioral disruptions in mouse models of 603 
mood disorders. A) EPM open arm exploration in WT and ClockΔ19 mice (N=17 mice/genotype). Data 604 
was compared using a one tailed t-test. B) Neural activity was isolated when mice were in the closed 605 
arm of the EPM and Electome Network 1 (left) and 2 (right) activity was compared across genotype 606 
using an Analysis of Covariance (N=10 and 11 for WT and ClockΔ19 mice, respectively; data shown as 607 
mean±s.e.m.). C) Distinct stress paradigms utilized to model depression in mice. D) Schematic of choice 608 
interaction assay utilized to quantify susceptibility to chronic social defeat stress (left), and resultant 609 
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social interaction profiles of a population of stressed mice (right). Red circles denote mice defined as 610 
susceptible (interaction ratio < 1), while green circles denote resilient mice (interaction ratio >= 1). Black 611 
circles denote non-stressed control mice. E)  EPM open arm exploration in mice subjected to chronic 612 
social defeat stress (N=12 mice) and control mice (N=10 mice). Data was compared between stressed 613 
and non-stressed mice using a one-tailed t-test. Post-hoc testing between susceptible (N=5 mice) and 614 
resilient mice (N=7 mice) was performed using a two-tailed t-test. F) Electome Network 1 (left) and 2 615 
(right) activity was quantified in the home cage and compared between chronic social defeat stressed 616 
(N=34 mice) and non-stressed controls (N=16 mice) a one-tailed rank-sum test. Post-hoc testing was 617 
compared between susceptible (N=21 mice) and resilient mice (N=13 mice) using a two-tailed rank-sum 618 
test. G)  EPM open arm exploration in mice subjected to chronic mild unpredictable stress (N=11 mice) 619 
and control mice (N-11 mice). Data was compared using a one-tailed t-test. H) Electome Network 1 (left) 620 
and 2 (right) activity was quantified in the home cage and compared across groups using a one-tailed 621 
rank-sum test. 622 
 623 
Figure 7: Conceptual framework utilized to discover and validate electome network for anxious 624 
internal state. A) Affective and neurophysiological states (listed on the left) induced by behavioral and 625 
experimental manipulations (listed along the top). Manipulations that were hypothesized to 626 
induce/strengthen the internal state listed to the left are highlighted by green. Manipulations that were 627 
hypothesized to decrease the internal state listed to the left are highlighted by red. Manipulations for 628 
which there is no clear prediction for the impact on the affect state listed to the left are highlighted by 629 
yellow. Mice used for each analysis are shown in the bottom row. New independent mice are 630 
highlighted in green. B) Responses of Electome Networks 1 and 2 to experimental conditions utilized 631 
throughout the study. Green and red boxes highlight conditions where network activity significantly 632 
increased or decreased, respectively. An ‘X’ is used to denote the non-significant trends observed in 633 
network activity response. 634 

Methods 635 

Animal Care & Use 636 

Male C57BL/6J (C57) mice were purchased from Jackson Labs at 6-8 weeks of age. Unless otherwise 637 
specified, mice were housed 3-5 per cage, on a 12-hour light/dark cycle, and maintained in a humidity- 638 
and temperature-controlled room with water available ad libitum. ClockΔ19 mice were created by N-639 
ethyl-N-nitrosourea mutagenesis that produced a dominant-negaƟve CLOCK protein as previously 640 
described [38, 39]. AŌer backcrossing >10 generaƟons on a BALB/cJ background, Clock�19 mice and 641 
their wild type liƩermate controls were bred from heterozygous (ClockΔ19 -/+) breeding pairs. Male and 642 
female mice, 8-16 weeks old, were used for electrophysiological experiments presented in this study. 643 
Anxiety-related manipulaƟons and behavioral tests were conducted with approved protocols from the 644 
Duke University InsƟtuƟon Animal Care and Use CommiƩee. The elevated plus maze (EPM) behavioral 645 
experiments in ClockΔ19 mice and their liƩermate controls were conducted at the University of 646 
PiƩsburgh. These experiments were performed in compliance with approved protocols from the 647 
University of PiƩsburgh’s InsƟtuƟon Animal Care and Use CommiƩee. The EPM behavioral experiments 648 
in mice exposed to chronic social defeat stress were conducted at the University of Iowa. These 649 
experiments were performed in compliance with approved protocols from the University of Iowa’s 650 
InsƟtuƟon Animal Care and Use CommiƩee. All experiments were conducted in 6-20 weeks old mice, 651 
and in accordance with the NIH guidelines for the Care and Use of Laboratory Animals. 652 

Data Extrac on and Processing 653 
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Electrode Implanta on Surgery 654 

The electrode implantaƟon surgery procedure has been described previously[48, 49]. Mice were 655 
anestheƟzed with 1.5% isoflurane, placed in a stereotaxic device and metal ground screws were secured 656 
in above anterior cranium (midline) and cerebellum (midline). A third screw was secured laterally, 657 
roughly half-way between the two other screws. Thirty-two tungsten microwires were arranged in array 658 
bundles designed to target amygdala (Amy), medial dorsal nucleus of thalamus (MD), nucleus 659 
accumbens core and shell (NAc), ventral tegmental area (VTA), medial prefrontal cortex (mPFC), dorsal 660 
hippocampus (dHip), and ventral hippocampus (Hip) and were centered based on stereotaxic 661 
coordinates measured from bregma (Amy: -1.4mm AP, 2.9 mm ML, -3.85 mm DV from dura; MD: -662 
1.58mm AP, 0.3 mm ML, -2.88 mm DV from dura; VTA: -3.5mm AP, ±0.25 mm ML, -4.25 mm DV from 663 
dura; Hip: -3.3mm AP, 3.0mm ML, -3.75mm DV from dura; mPFC: 1.62mm AP, ±0.25mm ML, 2.25mm DV 664 
from dura; NAc: 1.3mm AP, 2.25mm ML, -4.1 mm DV from dura, implanted at an angle of 22.1°). We 665 
targeted cingulate cortex, prelimbic cortex, infralimbic cortex using the mPFC bundle by building a 666 
0.5mm and 1.1mm DV stagger into our electrode bundle microwires. Animals were implanted bilaterally 667 
in mPFC and VTA. All other bundles were implanted in the leŌ hemisphere (supplemental Fig. S9). The 668 
NAc bundle included a 0.6mm DV stagger such that wires were distributed across NAc core and shell. We 669 
targeted basolateral amygdala BLA and central amygdala CeA by building a 0.5mm ML stagger and 670 
0.3mm DV stagger into our AMY electrode bundle [26]. Notably, these implantaƟon sites have been 671 
homogenized across experimental preparaƟons in the lab enabling comparaƟve analysis across prior and 672 
recently collected data sets. A metal ground wire was secured to the anterior and posterior screws, and 673 
the implanted electrodes were anchored to all three screws using dental acrylic. To miƟgate pain and 674 
inflammaƟon related to the procedure, all animals except those subjected to fear condiƟoning, chronic 675 
mild unpredictable stress, and chronic social defeat stress received carprofen (5mg/kg, s.c.). InjecƟons 676 
were given once prior to surgery and then every 24 hours for three days following electrode 677 
implantaƟon. 678 

Neural Electrophysiological Data Acquisi on & Video Recording 679 

Neurophysiological data were acquired using a Cerebus acquisiƟon system (Blackrock Microsystems, Inc., 680 
Salt Lake City, UT). Animals were connected to the system using an M or Mu-32 channel headstage 681 
(Blackrock Microsystems, Inc., Salt Lake City, UT) and a motorized HDMI commutator (Doric Lenses, 682 
Quebec, Canada). Local field potenƟals (LFPs) were bandpass filtered at 0.5-250Hz and sampled/stored 683 
at 1kHz. All neurophysiological data were referenced to a ground wire connecƟng the ground screws 684 
above cerebellum and anterior cranium. Video recordings were acquired in real-Ɵme using NeuroMoƟve 685 
(Blackrock Microsystems, Inc., Salt Lake City, UT) and synchronized with neurophysiological data. 686 

Histological Confirma on 687 

Histological analysis of implantaƟon sites was performed using one of two protocols at the conclusion of 688 

experiments to confirm electrode placement. Animals were perfused with 4% paraformaldehyde (PFA), 689 

and brains were harvested and stored for 24 hours in PFA. Brains were either processed on a cryostat or 690 

vibratome. For cryostat: Brains were then cryoprotected with sucrose and frozen in OCT compound prior 691 

to being stored in -80C. Brains were sliced at 35 µm using a cryostat and stained with either DAPI 692 

(AbCam) or cresyl violet (Sigma) using standard protocols. Slices were imaged at 4x and 10x 693 

magnificaƟon on a Nikon eclipse fluorescent microscope. AlternaƟvely for brains processed via 694 

vibratome, mice were perfused with 4% paraformaldehyde (PFA, Electron Microscopy Sciences) in PBS, 695 

and brains were harvested and post-fixed in 4% PFA and then transferred to PBS with 0.05mM sodium 696 
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azide. Brains were sliced at 40um (Leica VibraƟng Blade Microtome) and stained with Hoechst (Fishersci) 697 

containing mounƟng soluƟon (9.6% Mowiol 4-88 (Sigma) in 24% glycerol, 0.M M Tris-Cl pH 8.5) on 698 

standard microscope slides. Slides were imaged at 4x and 10x with Olympus Slide Scanner (VS200).  699 

LFP Processing to Remove Signal Ar fact 700 

We employed a heurisƟc approach to eliminate recording segments containing non-physiological signals 701 
idenƟcally to previous works [26, 50], and we paraphrase the processing procedure as follows: we first 702 
computed the signal envelope for each channel by uƟlizing the magnitude of the Hilbert transform. For 703 
any 1-second window in which the envelope surpasses a predetermined low threshold, we discard the 704 
enƟre segment if, at any point within that window, the envelope exceeds a second, higher threshold. The 705 
two thresholds were independently determined for each brain region. The high threshold was set at 5 706 
Ɵmes the median absolute deviaƟon of the envelope value specific to that region. The choice of five 707 
median absolute deviaƟons as the high threshold was based on its approximate equivalence to 3 708 
standard deviaƟons from the mean in normally distributed data, while remaining robust to outliers. The 709 
low threshold was empirically established as 3.33% of the high threshold. If more than half of the 710 
window was removed for a given channel, we also removed the remaining porƟon of that window for 711 
that channel. AddiƟonally, any windows where the standard deviaƟon of the channel is less than 0.01 712 
were excluded. 713 

Feature Extrac on 714 

Feature extracƟon was performed idenƟcally to previous works [26, 50], and we paraphrase the 715 
generaƟon procedure as follows: LFPs were averaged across wires within the same region to generate a 716 
composite LFP measure. Signal processing was conducted using Matlab (The MathWorks, Inc., NaƟck, 717 
MA). For LFP Power, a sliding Fourier transform with a Hamming window was applied to the averaged 718 
LFP signal uƟlizing a 1-second window and a 1-second step. Frequencies ranging from 1-56Hz were 719 
analyzed. LFP cross-structural coherence was computed from pairs of averaged LFPs using magnitude-720 
squared coherence, where coherence is a funcƟon of the power spectral densiƟes of brain regions A and 721 
B and their cross-spectral densiƟes. 722 

𝐶஺஻ሺ𝑓ሻ ൌ
|𝑃𝑠𝑑஺஻ሺ𝑓ሻ|ଶ

𝑃𝑠𝑑஺஺ሺ𝑓ሻ𝑃𝑠𝑑஻஻ሺ𝑓ሻ
 723 

Spectral Granger causality features [51] were computed using the multivariate Granger causality 724 
(MVGC) MATLAB toolbox [52]. The data underwent a high-pass Butterworth filter with a stopband at 725 
1Hz and a passband at 4Hz. Granger values for each window were calculated using a 20-order AR model 726 
through the GCCA_tsdata_to_smvgc function of the MVGC toolbox. Granger causality values were 727 
determined for all integer frequency values within the specified range for all directed pairs of brain 728 
regions in the dataset[50]. 729 

Acute Fluoxe ne Administra on (FLX) 730 

For the behavioral fluoxeƟne experiments, mice were randomly assigned to receiving either an injecƟon 731 
of fluoxeƟne or saline 30 minutes prior to being placed on the EPM. FluoxeƟne (Sigma) was made up in 732 
0.9% NaCl to a concentraƟon of 1mg/mL and then injected at 10mL/kg for a final concentraƟon of 10 733 
mg/kg, i.p.[28]. Physiologic saline injecƟon was injected at 10 mL/kg as well as a control for injecƟon 734 
volume. Animals were habituated to i.p. injecƟons daily for 1 week prior to behavioral tesƟng. Though 735 
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fluoxeƟne only has an 8-hr half-life in mice, a lengthy washout period was chosen to ensure no traces of 736 
the drug remained.  737 

For electrophysiologic recordings, animals used for training the final model followed a standard 738 
pharmacological crossover design with a 2-week washout period. Specifically, aŌer habituaƟon to the 739 
experimental room for 1 hour, mice were pseudorandomly assigned to receiving a or saline injecƟon. 740 
Neural recordings were then obtained for an hour. Two weeks later, animals underwent a second one-741 
hour recording session aŌer receiving the other treatment. To test the final model, we uƟlized a protocol 742 
in which mice were two recording were performed at a much closer interval. Specifically, aŌer 743 
habituaƟon to the experimental room for 1 hour, mice were treated with saline and neural data was 744 
recorded for an hour. Several hours later, mice were subjected to a second recording session 745 
immediately following treatment with fluoxeƟne.  746 

Elevated Plus Maze (EPM)  747 

The EPM assay is widely employed to measure anxiety behavior in mice[53]. The EPM is comprised of 748 
four arms arranged in a cross shape, each measuring 30.5cm in length and 30.5cm in width, posiƟoned 749 
at a height of 91.4cm from the floor. AddiƟonally, there is a central region measuring 5cm by 5cm. 750 
Among the arms, two are designated as 'closed,' enclosed by walls that are 16.5cm in height on three 751 
sides, while the other two are 'open' and surrounded by a low piece of tape, approximately 1mm in 752 
height.  753 

Two days prior to tesƟng, mice were gently handled in the experimental room for roughly 1 minute per 754 
animal. Following gentle handling, mice were habituated to the tesƟng room for 1 hour in a tesƟng 755 
‘home cage’.  AŌer this hour, mice were returned to group housing in their original home cage. This 756 
procedure was repeated one day prior to experimental tesƟng. On the tesƟng day, mice were habituated 757 
to the experimental room in their individual tesƟng home cage for one hour. Mice were then connected 758 
to the recording system and habituated for an addiƟonal 10 minutes. Following 5 minutes of neural and 759 
video recordings from an overhead camera, mice were placed in the center of the EPM facing one of the 760 
closed arms. Neural recordings and video data were acquired for an addiƟonal five-ten minutes. TesƟng 761 
was performed at 175lux, during the light cycle.  762 

Bright Open Field (BOF) 763 

The bright open field assay is also widely employed to measure anxiety behavior in mice[53]. This assay 764 
consists of a square arena (46 cm x 46 cm x 30 cm), in which the innermost third (i.e., ‘center zone’) is 765 
considered to be more anxiogenic zone than the outermost two thirds (i.e., ‘periphery zone’). Mice were 766 
habituated to the tesƟng room in an individual experimental home cage using the same procedure 767 
described for the EPM. On the tesƟng day, mice connected to the recording system and five minutes of 768 
neural and video data (from an overhead camera) were acquired while mice were in their individual 769 
tesƟng home cage.  Mice were then placed in the periphery of the BOF, and an addiƟonal five minutes of 770 
data were acquired while mice freely explored the arena. TesƟng was performed at 125lux, during the 771 
light cycle.  772 

Delayed sucrose reward apparatus 773 

The task chamber was constructed from Lego Duplo pieces of varied color, shape, and size. The 774 
apparatus had approximate dimensions of 48cm wide x 35cm deep x 30cm tall, and each wall was 775 
visually disƟnct. A nose poke detector was in the center of each wall, placed 1cm above the floor. There 776 
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was also an LED light directly above each nose poke detector. The chamber was also equipped with four 777 
fluid dispensers, which were calibrated to release 5µL of 10% sucrose directly into each nose poke 778 
detector. The reward for three of the ports was also flavored with pumpkin, almond, or orange oil. The 779 
locaƟon and reward type remained fixed throughout each phase of experimental tesƟng for all animals. 780 
During the task, the chamber was illuminated to 30 lux. The system was also equipped with speakers and 781 
an audiometer, and reward cues were played at 68dB.  Signals from the nose poke detectors, LED lights, 782 
fluid dispensers, and audiometer were digiƟzed and stored in parallel with our neural recordings.  783 

Delayed sucrose reward training and task 784 

Delayed sucrose reward task was modeled aŌer a prior test in which mice had to remain in a spaƟal 785 
locaƟon in order to receive a food reward [54, 55]. AŌer 7-14 days of recovery from surgical 786 
implantaƟon, mice were food-deprived to 90% of their free-feeding body weight. During a training 787 
session, a mouse was connected to a recording cable, and placed in the temporal goal progress task 788 
apparatus. The training procedure is as follows:  789 

 Stage 1: On the first day of training, mice freely accessed the testing chamber for 60 minutes. 790 
Each poke into a nose poke detector triggered a 500ms tone at 4000Hz and 5µL of reward 791 
release directly into the poke detector. This stage was repeated over 2 days.  792 

 Stage 2: On the third and fourth day of training, mice were placed into the recording chamber 793 
together with their cage mates, without a recording cable. Mice were then allowed to freely 794 
explore the recording chamber for 120 minutes. 795 

 Stage 3: On the fifth day, mice resumed individual training, during which they advanced in task 796 
difficulty after meeting specific criteria.  797 

o 3a: Each detected poke activated a 500ms 4000Hz tone and released a 5µL reward at 798 
the beginning of the tone.  799 

o 3b: Each detected poke activated a 500ms 4000Hz tone and released a 5µL reward at 800 
the end of the tone.  801 

o 3c: Each detected poke activated a 500ms 4000Hz tone and released a 5µL reward at 802 
the end of the tone if a mouse remained in the detector.  803 

o 3d: Each detected poke activated a 500ms 4000Hz tone and released a 5µL reward one 804 
second after the start of the tone if a mouse remained in the detector.  805 

o 3e: Each detected poke activated a 500ms 4000+387Hz tone, and a second 500ms 806 
4000Hz tone, one second later. A 5µL reward was released at the end of 1.5 seconds if a 807 
mouse remained in the detector.  808 

o 3f: Each detected poke activated a 500ms 4000+387Hz tone, and a second 500ms 809 
4000Hz tone, one second later. A 5µL reward was released at the end of 2 seconds if a 810 
mouse remained in the detector.  811 

o 3g: Each detected poke activated a 500ms 4000+387+387Hz tone, and a second 500ms 812 
4000+378Hz tone one second later, and a final 500ms 4000Hz tone one second later. A 813 
5µL reward was released at the end of 2.5 seconds if a mouse remained in the detector. 814 
This training pattern continued until mice passed training at the 5-second delay. For 815 
these trials, a tone of diminishing frequency was played at the beginning of each 816 
second, and mice received reward if the poke hole was activated for the entire test 817 
interval.  818 

 A mouse passed a training stage when it completed 120 rewarded pokes in one day, or 120 819 
rewarded pokes in two consecutive days and the second day reward count was greater than or 820 
equal to the reward count of the first day. Mice regressed to a prior training stage if they failed 821 
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to complete a stage after five days, or if they received fewer than twenty rewards during a 822 
session. The data utilized for our electrophysiological analysis was acquired after mice 823 
completed training at the 5-second delay.  824 

Social Preference Assay 825 

A previously published data set was used to assess the impact of social interacƟon on electome network 826 
acƟvity [26]. Briefly, mice implanted with electrodes at the same brain coordinates uƟlized for this study 827 
were allowed to explore a rectangular arena (61cm × 42.5cm × 22cm, L×W×H) for 10 minutes. Two clear 828 
plexiglass walls divided the area into two equal chambers. Each chamber contained a circular holding 829 
cage (8.3cm diameter and 12cm tall) containing either a novel object or a C3H target mouse matched for 830 
sex and age. Data was collected across 6-10 tesƟng session/mouse. Video data was tracked using Bonsai 831 
Visual ReacƟve Programming soŌware, and network acƟvity was analyzed for periods in which mice 832 
were within ~5cm of the novel object or target mouse.   833 

Optogene c S mula on and Electrical Recordings  834 

We modeled previously published methods for targeƟng the ventral hippocampus  lateral 835 
hypothalamus circuit [20]. Specifically, mice were anestheƟzed with 1.5% isoflurane, and placed in a 836 
stereotaxic device. A 33-gauge Hamilton syringe was used to bilaterally infuse 0.5 μl of AAV5-ChR2-EYFP 837 
at a rate of 0.1 μl/min into ventral hippocampus (-3.16mm AP, 3.3mm ML, -3.75mm DV from dura). Two 838 
weeks, later mice were implanted with recording electrodes using the procedure and brain targets 839 
described above (‘Electrode Implantation Surgery’). These electrodes included a bundle that was used to 840 
target lateral hypothalamus (LH: −1.95AP, 0.5ML, −4.75DV). A 100µm diameter fiberopƟc (Doric Lenses) 841 
fiberopƟc cannula was built into the LH bundle with the Ɵp situated 250µm above the Ɵp of the LH 842 
microwires bundle [56, 57]. In vivo recordings were conducted aŌer 2 weeks of recovery. Mice were 843 
habituated to the experimental room/setup for the two days preceding experiments.  844 

Mice were connected to the recording system using a 32-channel M headstage, and a fiberopƟc patch 845 
cable, and placed in a new home cage for 1 hour. On the tesƟng day, mice were connected and placed in 846 
the same experimental home cage. AŌer 40 minutes of addiƟonal habituaƟon, neural data was recorded 847 
for 20 minutes. Mice were then sƟmulated with blue or yellow light for 10 minutes. Light sƟmulaƟon was 848 
delivered at 20hz, 5mW, with 5ms pulses and verified using a power meter (Thorlabs, PM100D). Mice 849 
were pseudorandomized to sƟmulaƟon with either blue (473nm wavelength, CrystaLaser, CL473-025-O) 850 
or yellow light (593.5nm, OEM Laser Systems, Model No. MGL-F-593.5/80mW).  851 

One week later, mice were subjected to a second recording with the other laser, using the same protocol 852 
described above. Thus, each mouse was sƟmulated with blue and yellow in pseudorandomized order 853 
across the two sessions.   854 

Fear Condi oning  855 

Mice were implanted with electrodes as described above (‘Electrode Implantation Surgery’). Following a 856 
two-week recovery period, mice were trained in a classic cued fear condiƟoning paradigm during which 857 
an auditory tone (condiƟoned sƟmulus; CS) was paired with an aversive air puff (uncondiƟoned sƟmulus, 858 
US). The CS consisted of a 30 second, 10 kHz, 80dB, conƟnuous auditory tone that was generated using 859 
MATLAB. The US consisted of a 2-second, 40 PSI, air-puff that was introduced through 4 pumps built into 860 
each of the tesƟng chamber's walls. Mice were randomly assigned to 2 groups: Fear condiƟoned 861 
(CS+/US+) and Control (CS+/US-). Behavioral tesƟng was conducted in two disƟnctly different behavioral 862 
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contexts (context A and B). Context A was a 10”×10”×11” (L×W×H), striped chamber made of alternaƟng 863 
black and white Legos®. Context B was 6”×12×11” chamber, with walls consisƟng of mixed colored Legos. 864 
Context A had a smooth floor, while context B had a textured floor.  865 

Prior to condiƟoning (Day 0), mice were habituated to the behavioral room for 2 hours. On Day 1 of the 866 
task, mice were connected to the recording system, and placed into context A for 2 minutes. The 867 
condiƟoned group was exposed to 7 trials of the CS. The US was presented during the last 2 seconds of 868 
each tone, and there was a pseudorandom interval ranging from 60-120 seconds between each trial. The 869 
control group was exposed to 7 trials of the CS without the US. Each group remained in Context A for 1 870 
minute aŌer the last trial concluded. The neural and video data were collected throughout the 871 
recordings. We also collected a conƟnuous signal corresponding to the onset and offset of the CS.  872 

Mice were then exposed to a cued recall session on Day 3. Here, mice were connected to the recording 873 
system and placed into Context B. AŌer 3 minutes, mice were presented with the CS for 3 minutes. 874 
Neural and video data was recorded throughout this interval, and the freezing behavior was quanƟfied 875 
using Ethovision X12 (Noldus, Wageningen, the Netherlands) to detect the percentage of Ɵme during the 876 
CS presentaƟon that the animal did not move. A subset of the condiƟoned mice (N=5) was also exposed 877 
to an exƟncƟon protocol on Day 2. For these experiments, mice were presented with the CS, but not the 878 
US, in Context A. Since our objecƟve was to quanƟfy neural responses to fear condiƟoning on Day 1, and 879 
exposure to the one-day exƟncƟon protocol had no impact on freezing behavior on Day 3 (t26=0.11 and 880 
P=0.92 using two-tailed unpaired t-test), we pooled all the mice in the CS+/US+ group for the analyses 881 
presented in the text.  882 

Chronic Social Defeat Stress (cSDS)  883 

These methods parallel those described in our prior work [27, 57]. Data for our electrophysiological and 884 
behavioral analyses were obtained from two different cohorts of implanted mice. Behavioral data on the 885 
EPM was assessed from mice implanted in a different set of brain regions than those used for this study. 886 
Neurophysiological recordings in the home cage were obtained from mice implanted in the same brain 887 
regions uƟlized in this study. Data from a subset of these mice were presented in our published work 888 
[26]. 889 

We modeled our chronic social defeat stress protocol aŌer previously published work [42, 46]. Singly 890 
housed male reƟred-breeder CD1 (Charles River) mice were used as resident aggressors for the social 891 
defeat. Experimental animals were pseudorandomly assigned to control or stress groups, such that cage 892 
mates were distributed across groups. Six to seven-week old male mice were implanted with electrodes 893 
as described above (‘Electrode Implantation Surgery’). Stress experiments were iniƟated two weeks aŌer 894 
surgical recovery. All C57Bl6/J (C57) mice were singly housed prior to being subjected to cSDS, and highly 895 
aggressive CD1s were used for the stress protocol. Briefly, C57 experimental mice were exposed to CD1 896 
aggressors for 5 mins and only removed early in the event of serious physical injury (which never 897 
happened for more than two defeated mice animals per defeat). Defeats were run in dim light condiƟons 898 
(~40-50 Lux). AŌer 5 mins, C57 mice and CD1 aggressors were separated with a perforated divider for 24 899 
hours. Control C57 mice were placed on either side of a similar cage setup and cage-mates were rotated 900 
each day. This process was repeated for a total of 10 days. Triage was performed on animals following 901 
each day of defeat to check for and treat any wounds. AŌer this check, the lights were turned off., Mice 902 
that exhibited significant injuries during social defeat stress were removed from post-stress analysis.  903 
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All control and stressed mice were subjected to neural recording in their home cage one day following 904 
compleƟon of the chronic social defeat stress protocol. Mice were then subjected to a forced interacƟon 905 
test during which they were placed in a semi-protected circular sub-chamber. AŌer ten minutes, a novel 906 
CD1 aggressor mouse was placed within the same arena directed outside sub-chamber for 5 minutes 907 
[27, 57, 58]. 908 

A choice social interacƟon test was used to categorize stressed mice as suscepƟble or resilient [41, 42, 909 
57, 58]. This assay was performed 2 days following the last social defeat session, during the dark cycle of 910 
each mouse. TesƟng was conducted in a room with two red lamps facing the ceiling (2-10 lux). Animals 911 
were habituated to the room for approximately two hours prior to the start of tesƟng. Experiments were 912 
randomized and balanced to include alternaƟng control and experimental mice spread throughout the 913 
duraƟon of experiment. For each trial, an animal was placed in the center of an opaque, white, 18” x 18” 914 
box with 18” high walls with a wire-mesh sub-chamber at the center of one wall for 150 seconds. Then a 915 
CD1 mouse (low/non-aggressive) was placed in the enclosed sub-chamber, and the experimental mouse 916 
was placed back in the box for 2 minutes and 30 seconds. Behavior was recorded for the enƟrety of each 917 
trial. Stressed mice that showed higher interacƟon Ɵme with the empty sub-chamber than the sub-918 
chamber containing the CD1 mouse were defined as suscepƟble. Mice that showed higher interacƟon 919 
Ɵme with the sub-chamber containing the CD1 were defined as resilient. Between mice, all chambers 920 
were cleaned with Super Sani-Cloth germicidal disposable wipes (PDI, Orangeburg, NY) or 70% ethanol, 921 
and dried with kimwipes. Data was analyzed using Noldus Ethovision version 15. 922 

Mice subjected to cSDS and their non-stressed controls were tested in the EPM 12 days following the last 923 
social defeat session. Animals were tested during their dark cycle in a dark room with two red light lamps 924 
facing the ceiling (2-10 lux at the surface of the behavioral arena). Animals were acclimated to the room 925 
for >1 hour prior to starƟng experiments during their dark cycle. For each experimental trial, animals 926 
were placed in the center of the apparatus facing the same side each trial and allowed to explore the 927 
maze for 5 minutes. AŌer 5 minutes, the animal was removed from the apparatus and placed back into 928 
its home cage. The trials were randomized and balanced with alternaƟon of control and experimental 929 
animals. AŌer each run, the EPM was thoroughly cleaned with Super Sani-Cloth germicidal disposable 930 
wipes (PDI, Orangeburg, NY) and dried with kimwipes. Data was analyzed using Noldus Ethovision 931 
version 15.  932 

Chronic Mild Unpredictable Stress 933 

We modeled our chronic mild unpredictable stress protocol aŌer previously published work [44, 45]. C57 934 
male mice were implanted with electrodes to target the same brain regions uƟlized to learn the anxiety 935 
related networks, at age 7-9 weeks. Two weeks later, cages of mice were pseudorandomized into a stress 936 
or control group. Control mice were subjected to gentle handling twice a week. The stress group was 937 
exposed to 2 aversive experiences each day – one during the light cycle and one during the dark cycle – 938 
for eight weeks, as previously described [44]. The stressors were as follows:  939 

 physical restraint – mice were placed in a ~50mL plastic cone (with openings for breathing on 940 
both ends) for 1 hr 941 

 shaking – a cage of mice was placed on an orbital shaker for 1hr at 60 rpm 942 

 overnight illumination – mice were exposed to regular room light during the 12 hr dark cycle 943 

 inverted light cycle – mice were exposed to dark-cycle room conditions during the light cycle 944 
and light conditions during the dark cycle 945 

 tilted cage – cages were tilted at a 45 degree angle for 12 hrs  946 
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 strobe – mice were placed in a room with a strobe light during the dark cycle for 12 hrs 947 

 wet bedding – cage bedding was saturated with water for 12 hr 948 

 soiled rat bedding – cage bedding was replaced with used rat cage bedding for 3 hrs 949 

 cold exposure – mice were placed in a cold room (4°C) for 1 hr 950 

 missing bedding –bedding was completely removed from the cage for 12 hr. 951 

 food and water restriction – food and water was removed for 12 hr during the dark cycle 952 

 overcrowding – cage space was reduced by 50% for 12 hr during the dark cycle 953 

Stressors were presented in pseudorandomized order. Body weight was monitored once a week to 954 

ensure mice didn’t lose more than 10% body weight during the stress proposal.  955 

 956 

Model Selec on and Training 957 

Label Assignment for Training Datasets 958 

To make use of supervised machine learning methods, per-sample anxiety state labels must be assigned 959 
for our training assays. For the acute FLX assay, we accounted for drug acƟvaƟon Ɵme and assigned all 960 
Ɵmepoints within the last 30 minutes of the 1-hour recording to either a heightened or lower anxiety 961 
state aŌer mice received FLX or saline, respecƟvely. For the EPM and BOF assays, anxiety states within 962 
the assay can be ambiguous. To prevent mislabeling of anxiety states in assays, we assign all Ɵmepoints 963 
for which mice are in the EPM or BOF as a heightened anxiety state. We then make use of recordings 964 
taken while the mice are in their home cage environment and label those as a lower anxiety state. With 965 
this formulaƟon, all three training assays now have the same labeling nomenclature of heightened 966 
anxiety and lower anxiety states regardless of the anxiogenic assay, allowing for easy combinaƟon and 967 
comparison during model training. 968 

Training, Valida on, and Test Splits 969 

Once features had been extracted for the FLX, EPM, and BOF assays, mice were subsequently split into 970 
three groups: training data, validaƟon data, test data. These splits were performed by mouse such that 971 
all data belonging to a mouse was all contained in the same group. Spliƫng by mouse is criƟcal as it 972 
prevents a machine learning model from simply learning the idenƟty of a mouse in the training data to 973 
achieve inflated performance on holdout data. AddiƟonally, we wished to see how our model performs 974 
on data from completely new subjects, which is a situaƟon analogous to the condiƟons of a clinical 975 
seƫng. Training data and validaƟon data were used for model development where many sets of 976 
hyperparameters and model formulaƟon may be tested. Test data were kept as true hold out data, which 977 
we did not observe or test our model on unƟl the final model architecture was determined. Several mice 978 
were placed in more than one assay; therefore, care was taken to ensure that all such mice were in the 979 
same group across all assay splits. That is, if a mouse was in the training group for the FLX assay, then it 980 
should be in the training group for all other assays. Once final model parameters were determined, 981 
training and validaƟon datasets were combined for a final training run, which was then validated on the 982 
test data. Training, ValidaƟon and Test groups had: 9, 4, and 6 mice respecƟvely for the FLX assay; 21, 5, 983 
and 11 mice respecƟvely for the EPM assay; and 16, 3, and 9 mice respecƟvely for the BOF assay.  There 984 
were 17 mice from the training groups, and 7 from the test groups were shared in 2 assays (only 985 
between EPM and BOF). There was a single mouse in the test group that was exposed to all three assays. 986 
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Discrimina ve Cross-Spectral Factor Analysis (dCSFA-NMF)  987 

DiscriminaƟve Cross-Spectral Factor Analysis - NonnegaƟve Matrix FactorizaƟon (dCSFA-NMF) is a 988 
machine learning framework for discovering key predicƟve factors relevant to a behavioral assay or 989 
emoƟonal state of interest [25]. This method has been used previously to detect brain networks 990 
corresponding to stress and social acƟvity in mice using LFP data[26]. Similar to other factor models that 991 
have been used in neuroscience, such as PCA, ICA and NMF, dCSFA-NMF idenƟfies underlying 992 
components, interpreted to be networks, of connecƟvity. The superposiƟon of these networks then 993 
explains the observed neural acƟvity. While the previously menƟoned unsupervised methods can 994 
idenƟfy networks of acƟvity, discovered networks are learned to explain the maximum amount of the 995 
observed neural acƟvity. As it is unlikely that anxiety and other emoƟonal states make up one of these 996 
dominant networks, dCSFA-NMF makes use of a supervision component to ensure that one or more of 997 
the networks are correlated with a behavior or emoƟonal state of interest. 998 

Rigorously, the model learns 𝐾 fixed components 𝑊 ∈ ℝ௄ൈெ that can reconstruct observed data 𝑋 ∈999 
ℝேൈெ using an array of network acƟvity scores 𝑠 ∈ ℝேൈ௄ such that 𝑋 ൌ 𝑠𝑊. 𝑊 and 𝑠 are also 1000 
constrained to be posiƟve as the features of use – power, coherence, and Granger causality – observed 1001 
in 𝑋 are also non-negaƟve. Network acƟvity scores are inferred from the observed data using an encoder 1002 
funcƟon 𝑠 ൌ 𝑓ఏሺ𝑋ሻ, which can take the form of a neural network or linear model. The acƟvity scores 1003 

𝑠௦ ∈ ℝேൈொ of the 𝐾 ൒ 𝑄 ൒ 1 supervised components are then used in a logisƟc regression model 𝑓థ to 1004 

predict the behavior of interest 𝑦 ൌ 𝑓థሺ𝑠௦ሻ. We constrain our predicƟons to use a sparse combinaƟon of 1005 

all networks, namely only the supervised networks, to narrow the scope of our network discovery and 1006 
reduce the total number of comparisons. The parameters of the model are then opƟmized using the loss 1007 
funcƟon, 1008 

min
ௐ,ఏ,థ

෍ℒ௫൫𝑥௜ ,𝑊𝑓ఏሺ𝑥௜ሻ൯ ൅ 𝜆ℒ௬ ቀ𝑦௜ , 𝑓థ൫𝑓ఏሺ𝑥௜ሻ൯ቁ ൅ 𝛼ℒ௪ೞ
൫𝑥௜ ,𝑊𝑓ఏሺ𝑥௜ሻ൯.

ே

௜ୀଵ

 1009 

Here, ℒ௫ is the reconstrucƟon error between the original power, coherence, and Granger features and 1010 
those generated by the product of our network scores and networks, 𝑠𝑊. In this work we make use of 1011 
the Mean-Squared-Error (MSE) funcƟon. Our predicƟve loss ℒ௬ is a binary cross-entropy loss and 1012 

penalizes our model for incorrectly predicƟng the behavioral state of each window. The impact of the 1013 
predicƟve loss can be tuned using the hyperparameter 𝜆. Lastly, we impose a second reconstrucƟon loss, 1014 
ℒ௪ೞ

, on the supervised network scores. This reconstrucƟon loss prevents our neural network encoder 𝑓ఏ 1015 

from learning an uninterpretable near-zero noise embedding for the supervised scores that predicts well 1016 
with liƩle to no contribuƟon to explaining neural acƟvity. This loss can be formulated as another MSE 1017 
loss between the outer product of the supervised network acƟvaƟons and the supervised electome 1018 
network and the features. AlternaƟvely, this loss can be formulated as a penalty to drive the supervised 1019 
network scores to reconstruct the residual of the unsupervised networks and features. We used the 1020 
laƩer in our analysis. 1021 

Performance Metrics – Predic ve Modeling 1022 

To evaluate the predicƟve performance of our model, we used the receiver operaƟng characterisƟc 1023 
curve area under the curve (ROC-AUC). This metric is common in machine learning literature and can be 1024 
viewed as a class rebalanced accuracy. AUC takes values on the range [0,1] where AUC=0.5 indicates 1025 
chance performance in predicƟon. AUC=1 indicates that the model is perfectly predicƟng class 1026 
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assignment, and an AUC=0 indicates that the model is perfectly predicƟng but with a flipped labeling. 1027 
AUC can also be evaluated using the Mann-Whitney-U staƟsƟcal test. 1028 

For evaluaƟng our models, we obtained an AUC for each mouse and then reported the group mean and 1029 
standard error of the mean for each paradigm. Many of our behavioral contexts have varying recording 1030 
lengths and by reporƟng AUC for each mouse separately, we addressed the possibility of our model 1031 
overfiƫng to the neural acƟvity of mice in paradigms with longer recordings and therefore more 1032 
samples. Furthermore, emoƟonal states such as anxiety are complex and oŌen have heterogenous 1033 
presentaƟons across individuals. By reporƟng AUC by mouse, we opened opportuniƟes for post-hoc 1034 
analyses into mice with heterogenous predicƟons. In short, by evaluaƟng AUC by mouse, we allowed for 1035 
more uniform evaluaƟon across a wide variety of anxiogenic contexts, a cleaner evaluaƟon of model 1036 
generalizability, and post-hoc data analysis. 1037 

Performance Metrics – Genera ve Modeling 1038 

We take interest in how well our models explain neural acƟvity in the brain. We evaluated how well this 1039 
is done by quanƟfying the mean-squared-error of the model’s predicted power, coherence, and Granger 1040 
causality features and the originally observed values. 1041 

𝑀𝑆𝐸ሺ𝑥, 𝑥ොሻ ൌ
1
𝑁
෍ሺ𝑥௡ െ 𝑥ො௡ሻଶ
ே

௡ୀଵ

 1042 

During model training, we weighted the reconstrucƟon of each of our feature types (power, coherence, 1043 
Granger) by their prevalence, such that power holds equal importance to coherence and Granger despite 1044 
represenƟng a smaller number of power features. 1045 

Performance Metrics – Model Consistency 1046 

To evaluate representaƟon consistency in our model, we used the cosine distance formula which 1047 
calculates the angular distance between two vectors on a scale of ሾ0,1ሿ due to the posiƟvity constraint of 1048 
the vectors, where 0 represents perfect alignment and 1 are completely orthogonal vectors. The cosine 1049 
distance between two vectors, 𝐴 and 𝐵 is given by: 1050 

𝒟ሺ𝐴,𝐵ሻ ൌ 1െ
𝐴 ⋅ 𝐵

‖𝐴‖‖𝐵‖
 1051 

We then calculate the cosine distance between each supervised network in each fold and all supervised 1052 
networks in all other folds. Using the Hungarian Matching Algorithm [59], we then pair each supervised 1053 
network in each fold with the best supervised network in each other fold such that each network has a 1054 
unique match in each fold. We then weighted the cosine distance between matched networks by the 1055 
impact that a network score had on the prediction relative to the other networks in the same fold, such 1056 
that predictive networks had a higher weighting than non-predictive networks. We performed this 1057 
weighƟng scheme to reduce penalizaƟon of mismatched networks that were not used to predict 1058 
behavior, and were thus likely irrelevant to the underlying dynamics of anxiety. This metric captured the 1059 
distance between the most similar networks across runs. A consistent representaƟon or network 1060 
discovery will yield a low distance score. 1061 

Hyperparameter Selec on Strategy 1062 
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The dCSFA-NMF model requires selecƟon of several hyperparameters. These factors include the number 1063 
of electome factors 𝐾, number of supervised networks 𝑄, the importance of the supervised task 𝜆, and 1064 
the importance of the supervised factor reconstrucƟon 𝛼. Generally, the number of electome factors 1065 
control how well we can reconstruct the original LFP data. The number of supervised networks does not 1066 
greatly affect the overall predicƟon quality (Supplemental Fig. S3), however, increasing the total number 1067 
of supervised networks can significantly improve the representaƟonal consistency of the behaviorally 1068 
relevant networks discovered. This improved consistency is criƟcal for validaƟon of our networks and for 1069 
using network representaƟons to moƟvate future hypotheses and experiments. IdenƟfying a suitable 1070 
number of supervised networks is especially crucial in the case where mulƟple true underlying networks 1071 
may be driving the emoƟonal or behavioral state. Underspecifying the number of supervised networks 1072 
to learn may result in the model inconsistently swapping across a subset of these suitable underlying 1073 
networks. 1074 

To choose the value of 𝐾, we performed grid-search cross validaƟon using 𝐾 ൌ ሼ2,4, … ,58ሽ. Each model 1075 
was trained on the training mice for all three assays jointly and evaluated on the validaƟon mice for all 1076 
assays, per the mulƟ-assay training procedure. We observed that the predicƟve performance of all three 1077 
assays stabilized at K=18 with liƩle change across all three assays for subsequent values. Subsequently, 1078 
we found that the reconstrucƟon performance plateaued at K=30. Given that the predicƟve performance 1079 
was consistent for K>18, we selected K=30 as the total number of networks that our model would learn. 1080 

To choose a value of 𝑄, we aimed to balance 3 design prioriƟes in our model formaƟon. First, our model 1081 
must be predicƟve of the behavior of interest. Second, our model should find a relaƟvely consistent 1082 
soluƟon (i.e. discovered brain networks should be similar across mulƟple runs). Lastly, our soluƟon 1083 
should be simple. Suppose we were to supervise all the networks in our model. We likely would achieve 1084 
strong predicƟve performance; however, mulƟple-hypothesis tesƟng problems would arise as we begin 1085 
to test the relaƟonships of each network with behavior. Therefore, we wished to find a stable, predicƟve 1086 
soluƟon that makes use of the smallest 𝑄 number of supervised networks possible. To ascertain the 1087 
value of 𝑄 we should use, we tested our model with values 𝑄 ൌ ሼ1,2,3,4,5,10,20ሽ with 𝐾 ൌ 30.  1088 

To evaluate predicƟve performance of our model, we performed 4-fold cross-validaƟon-over-subjects for 1089 
each value 𝑄 ∈ ሼ1,2,3,4,5,10,20ሽ and evaluated predicƟve performance on each fold's validaƟon data. 1090 
We observed that the average AUC across all three assays peaks around 𝑄 ∈ ሼ3,4ሽ and declined slightly 1091 
as the number of supervised networks greatly increased. 1092 

AddiƟonally, we constrained our model to only idenƟfy supervised networks with scores that posiƟvely 1093 
correlated with predicƟng a heightened anxiety state, as we aimed to discover an anxiety network rather 1094 
than an anxiety inhibiƟon network.  1095 

We selected stochasƟc gradient descent as our opƟmizaƟon algorithm as SGD is known to offer beƩer 1096 
generalizaƟon performance despite requiring longer training Ɵmes [60]. We used a learning rate of .001 1097 
and a momentum value of .9.  1098 

We found that pretraining our model factors provided a substanƟal improvement on representaƟonal 1099 
stability and predicƟve accuracy. We performed pretraining on our factors by training a tradiƟonal non-1100 
negaƟve matrix factorizaƟon model on our data, and then sorƟng the components based on their 1101 
correlaƟon with network performance. For our mulƟ-assay training formulaƟon, our datasets were 1102 
imbalanced with the longer-duraƟon FLX recordings making up a much higher percentage of our total 1103 
data, so we bootstraped samples in EPM and BOF such that each experimental context is equally 1104 
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influenƟal on our network pretraining. We then froze the weights of our sorted NMF factors and trained 1105 
the encoder to learn scores corresponding to the fixed factors and the classifier to predict corresponding 1106 
labels based on those scores. We found that training the encoder and classifier for 500 epochs was 1107 
sufficient for the opƟmizaƟon algorithm to converge and stabilize at a minimum of the loss funcƟon. 1108 
AŌer pretraining, we then unfroze all parameters and trained them jointly. We found that an addiƟonal 1109 
500 epochs were sufficient for the model training to converge and stabilize at a minimum of the loss 1110 
funcƟon. 1111 

Single-assay Model Formula on and Training 1112 

For single-assay model training, we isolated one of our three training assays (EPM, BOF, FLX) to use as 1113 
our training dataset for dCSFA-NMF. While we focused on our model training using the FLX assay in the 1114 
results secƟon, we also trained models using the EPM and the BOF as singular training datasets. Each of 1115 
our three single-assay models used the same labeling structure outlined above, where for the EPM data, 1116 
home-cage windows were labeled as a low anxiety state and EPM windows are labeled as high anxiety 1117 
state. For the BOF assay, home cage windows were labeled as a low anxiety state and BOF windows were 1118 
labeled as a high anxiety state. Lastly, FLX assigned saline windows as a low anxiety state and fluoxeƟne 1119 
windows as a high anxiety state.  1120 

Models were trained using 4-fold cross validaƟon, where fold training and validaƟon splits were made by 1121 
parƟƟoning the non-holdout mice into 4 separate permutaƟon groups of training and validaƟon mice. 1122 
PredicƟve performance was evaluated on the concatenated training and validaƟon parƟƟons of the 1123 
other two assays not used for model training. It is worth noƟng that some bias exists in this evaluaƟon, 1124 
as some mice in the other two assays may be present in the training set of the training assay. However, 1125 
even with this bias, these models failed to generalize across assay. The test, or holdout, parƟƟons of all 1126 
three assays are leŌ untouched as each of the single-assay models failed to generalize to the validaƟon 1127 
sets of all three assays jointly. 1128 

We ulƟmately performed our single-assay model analysis twice. First, we trained the models using a 1129 
single supervised network and a comparable procedure to prior similar works[26]. Second, aŌer we 1130 
idenƟfied the value of mulƟ-assay training and tuning for mulƟple consistent predicƟve networks, we 1131 
reperformed our single training analysis with three supervised networks and 27 unsupervised networks 1132 
to allow for one-to-one comparison to the mulƟple-assay model. This second round of training was 1133 
important as we wished to properly aƩribute whether generalizaƟon improvements came from 1134 
increased predicƟve capacity or were due to the mulƟple assay training procedure. While only the 1135 
results using three supervised networks are shown throughout the text, the same trends (i.e., failure to 1136 
generalize) were observed for our models using one supervised network.  1137 

Mul ple Assay Model Formula on and Training 1138 

As menƟoned above, our mulƟple assay model formulaƟon involves concatenaƟng the EPM, FLX, and 1139 
BOF training datasets into a single training dataset. As the labels of each of these assays are disƟlled into 1140 
heightened anxiety and lower anxiety states depending on the assay of interest, simple concatenaƟon is 1141 
possible.  1142 

For mulƟple assay model training, we first perform 4-fold cross validaƟon on the training and validaƟon 1143 
parƟƟons of all three assays for hyperparameter tuning. Like our training parƟƟons discussed in the 1144 
Train, ValidaƟon, Test splits secƟon, we constrain our fold parƟƟons such that if a mouse is in the 1145 
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validaƟon split for one assay, it cannot be in the training split for another assay and vice versa. This is 1146 
necessary to remove bias in our evaluaƟon. 1147 

Finally, training and validaƟon parƟƟons for all three assays are concatenated into a final training 1148 
dataset. We then train our model using the final set of hyperparameters discovered in our 1149 
hyperparameter tuning secƟon and evaluate the model on the holdout test sets for each of the three 1150 
assays. 1151 

Model Valida on 1152 

Networks Decoded Assays Jointly 1153 

Given that our dCSFA-NMF model was trained to learn three separate networks, we wished to validate 1154 
that each of the learned networks are not simply learning to predict for each of the three training assays 1155 
independently. Networks that truly captured anxiety should not be relevant to only one context where 1156 
anxiety may be experienced, but should generalize to mulƟple contexts. Here, we evaluated the per-1157 
mouse AUC of each of the networks separately using the Mann-Whitney-U test for each of the three 1158 
training assays (Fig. 2D). 1159 

Individual Network Contribu on Towards Predic on 1160 

We also consider the possibility that one or more of our networks may not contribute substanƟally to 1161 
the overall predicƟon of the mouse internal state. To evaluate this, we considered the mean predicƟon 1162 
logit of each network given by the mean network score mulƟplied by its corresponding logisƟc 1163 
regression coefficient and normalized it by the sum the mean predicƟon logits of all supervised 1164 
networks. More formally, we define the mean logit of an individual network as 𝑧௝ ൌ 𝑠ఫഥ𝜙௝, where 𝑠̅௝ is the 1165 

mean network acƟvity score from the holdout data for network 𝑗 and 𝜙௝  is the dCSFA logisƟc regression 1166 

coefficient corresponding to that network acƟvity score. Since we constrained our network to have 1167 
posiƟve network acƟvity scores and logisƟc regression coefficients, no absolute value or squaring of the 1168 
logits is necessary for comparison. We then evaluate the contribuƟon of each network 𝑗 as: 1169 

𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛ሺ𝑗ሻ ൌ
𝑧௝

∑ 𝑧௜௄
௜ୀଵ

 1170 

This metric quanƟfies the average predicƟve impact of each network on the holdout data. 1171 

Detailed Methods for valida on analyses  1172 

LocaƟon-based dynamics in network acƟvity 1173 

To compare post-exposure effects for the safe and unsafe zones in the EPM/BOF on Network 1 and 1174 
Network 2 dynamics, we extracted data from each Ɵmepoint in each locaƟon. We also extracted data in 1175 
the five seconds preceding and following these Ɵmepoints. Here, the locaƟons of C57 mice (closed 1176 
arm/open arm/center for EPM and center/periphery for BOF) were encoded using Ethovision on 50 1177 
frame-per-second video recordings of the task, tracked at 25fps based on their center of mass. Frame 1178 
labels were then aligned with our one-second resoluƟon LFP features by assigning the label of each 1179 
window to be the label making up most of the Ethovision frames for that Ɵmepoint. For The ClockΔ19 1180 
mice and their liƩermate controls, the locaƟon was determined based on their head locaƟon. A window 1181 
was labeled as open arm if 20% of the Ethovision frames corresponded with the open arm locaƟon.  1182 
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We then determined the Network 1 and 2 acƟviƟes at all Ɵmepoints where the mouse is in the region of 1183 
interest and the network acƟvity for all observed Ɵmepoints within a +/- 5 second window from the 1184 
central Ɵmepoint. Timepoints for which electrophysiology, and therefore network scores, are not 1185 
observed due to electrophysiological arƟfact, were dropped. For each mouse, network acƟvity was 1186 
averaged within the -5 to -1s window, the 1s to 5s window, and the instantaneous locaƟon window. 1187 
AcƟvity was then compared between locaƟons across mice.    1188 

We then determine the Network 1 and 2 acƟviƟes at all Ɵmepoints where the mouse is in the region of 1189 
interest and the network acƟvity for all observed Ɵmepoints within a +/- 5 second window from the 1190 
central Ɵmepoint. Timepoints for which electrophysiology, and therefore network scores, are not 1191 
observed due to electrophysiological arƟfact, are dropped. For each mouse, network acƟvity was 1192 
averaged within the -5 to -1s window, the 1s to 5s window, and the instantaneous locaƟon window. 1193 
AcƟvity was then compared between locaƟons across mice.    1194 

FluoxeƟne Network Dynamics 1195 

We validated our network’s ability to decode anxiety aƩenuaƟon post-injecƟon with saline or fluoxeƟne 1196 
in the holdout mice from the FLX training task. Mice were injected with saline or fluoxeƟne at t=0 and 1197 
we recorded neural acƟvity for one hour post-injecƟon. We then observed Network 1 and 2 acƟvity 1198 
during the full hour recording for the 6 holdout mice. Network acƟvity scores were binned and averaged 1199 
at a 5-minute resoluƟon with the mean and standard error acƟvity across mouse ploƩed in Fig. 3B. It is 1200 
worth restaƟng that our model was trained only using Ɵmepoints during the second half of the one 1201 
hour-long recorded data. While our model was biased to disƟnguish between fluoxeƟne and saline due 1202 
to our model training task, the model had no prior exposure to Ɵmepoints between t= [0,30] and no 1203 
explicitly supervised trend for those Ɵmepoints. Time effects were analyzed using a two-way repeated 1204 
measured ANOVA. 1205 

Delayed sucrose reward task 1206 

We examined Network 1 and 2 acƟvity during the delayed sucrose reward assay to validate that our 1207 
networks are not encoding reward or arousal. Pump events for delivering sucrose to the mice were much 1208 
shorter than our one-second windows, therefore we used the event-triggered feature extracƟon code. 1209 
We collected LFP features for 4 seconds prior and 4 seconds post the pump event. These features were 1210 
then projected into Networks 1 and 2. Mean network acƟvity at one second prior and one-second post-1211 
pump event were then compared across mice (n=8) using a one-tailed Wilcoxon sign rank test.  1212 

OptogeneƟc SƟmulaƟon of Ventral Hippocampus to Lateral Hypothalamus circuit 1213 

We quanƟfied network acƟvity during optogeneƟc sƟmulaƟon of the ventral hippocampus to lateral 1214 
hypothalamus circuit. We have previously demonstrated that in the absence of ChR2, blue light 1215 
sƟmulaƟon has no direct impact on LFP acƟvity using our recording approach[56]. Moreover, yellow light 1216 
sƟmulaƟon has no direct impact on LFP acƟvity in the presence of ChR2[26, 49]. Thus, we chose to 1217 
compare network acƟvity during yellow light sƟmulaƟon and blue light sƟmulaƟon. This approach 1218 
enabled us to perform within-subject comparisons.  1219 

Fear CondiƟoning 1220 

For Network 1 and Network 2 validaƟons, event-centered features were extracted for 10 seconds prior 1221 
to the tone and 20 seconds aŌer the tone. Mean Network 1 and 2 scores were then calculated for the 1222 
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control and condiƟoned mice for both the 10 seconds pre-segment and the 20 seconds post-segment 1223 
separately. For both intervals, we performed one-tailed Wilcoxon rank sum tests to compare across 1224 
control and condiƟoned mice during the 7th and final tone/air puff event. We isolated the 7th event under 1225 
the assumpƟon that the condiƟoned mice have successfully paired the tone sƟmulus with the air puff 1226 
sƟmulus because of the 6 prior trials.  1227 

Statistical Analysis Philosophy 1228 

We trained a multi-region multi-assay model to putatively encode the anxiety state. We focused our 1229 
subsequent analysis on Electome Network 1 and 2 since these networks independently encoded all 1230 
three of our initial anxiety assays, and they showed the highest contribution to the joint predictive 1231 
model. We then trained models to test whether this putative state was encoded by single regions 1232 
and/or by pairs of brain regions. We assessed each model independently for the three assays. Based on 1233 
our prior observations that other emotional internal states could not be decoded from individual brain 1234 
regions [26, 27, 50], we hypothesized that activity from single regions and/or pairs of regions would fail 1235 
to decode a convergent anxiety state as well. To increase the likelihood of falsifying our hypothesis we 1236 
chose to leave all our statistical analysis using single region/pairs of regions uncorrected. We observed 1237 
that P>0.05 for at least one assay for each single region/pairs of regions test. Since correcting for 1238 
multiple comparisons would have served to further increase the P-values, we concluded that no single 1239 
region/pairs of regions encoded a convergent anxiety state.  1240 

Next, to validate the multi-region multi-assay networks, we recorded LFP data in the same brain regions 1241 
from new mice and/or new paradigms and subsequently projected these data into these two networks. 1242 
We tested each network independently to elucidate their individual dynamics relevant to anxiety and 1243 
their contextual limitations. Validation of Networks 1 and 2 involved various statistical tests and 1244 
procedures. For comparison of anxiogenic vs. non-anxiogenic conditions, we performed non-parametric 1245 
statistical tests on mean network scores for intervals or groups of interest. In cases where parametric 1246 
tests are useful, such as examining network dynamics over time, we performed a Box–Cox 1247 
transformation of the network activity scores prior to statistical testing. In many of the validation tests, 1248 
we expected the activity of Network 1 and/or Network 2 to be higher than the control condition as we 1249 
expected or behaviorally validated that anxiety levels are elevated. For these cases, we performed 1250 
statistical tests with a one-tailed test. A similar approach was implemented for our control experiments 1251 
using sucrose and social reward, as well. We hypothesized that anxiety-related behavior and network 1252 
activity would be lower in a mouse model of mania, thus we performed one-tailed statistical tests when 1253 
appropriate. All such cases are disclosed in our results section. All p-values are reported as uncorrected 1254 
p-values across both networks. 1255 

In some cases, such as examining network dynamics in the safe regions over Ɵme (Fig. 3B), missing 1256 
observaƟons cannot be determined to be missing completely at random. Therefore, in such cases, we 1257 
make use of an ANCOVA analysis strategy, which is flexible with missing data and allows analysis of 1258 
dynamics over Ɵme. A disadvantage of this approach is that samples are treated independently without 1259 
concern of group idenƟty. 1260 

Visualiza on 1261 

Networks were visualized as chord plots using code adapted from hƩps://github.com/carlson-lab/lpne/ 1262 
to allow for recoloring of frequency bands. Significant features were determined by calculaƟng the 1263 
average percent contribuƟon of each network towards the reconstrucƟon of each feature for the training 1264 
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task holdout mice. This strategy results in an even appraisal of low and high frequency features, even 1265 
though low frequency spectral features tend to have higher magnitude. We then ploƩed the 85th 1266 
percenƟle of these contribuƟons, which is a threshold that adequately highlights dominant features 1267 
without cluƩering the plot and is consistent with related works [26]. 1268 

Reproducibility 1269 

Computa onal Environment and Codebase Disclosure 1270 

Preprocessing and feature extracƟon code was performed in MATLAB R2022a using the LFP 1271 

feature extracƟon pipeline found on the main branch at hƩps://github.com/carlson-lab/lpne-1272 

data-analysis. Event-triggered feature extracƟon code can be found on the “framewindows” 1273 

branch of the same repository. A PyTorch implementaƟon of dCSFA-NMF can be found at 1274 

hƩps://github.com/carlson-lab/lpne/. All code for network generaƟon, hyperparameter tuning, 1275 

model implementaƟon, ploƫng, and a singularity definiƟon file for replicaƟng our Python 1276 

environment can be found hƩps://github.com/carlson-lab/Anxiety. Development was 1277 

performed on a computer cluster in a Singularity Container managed Python environment with 1278 

nodes uƟlizing an NVIDIA RTX 2080 Ti.  1279 
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