

1 **A widespread electrical brain network encodes anxiety in health and depressive states**

2
3 Dalton N. Hughes^{3,*}, Michael Hunter Klein^{8,*}, Kathryn Katsue Walder-Christensen³, Gwenaëlle E.
4 Thomas³, Yael Grossman², Diana Waters², Anna E. Matthews², William E. Carson¹⁰, Yassine Filali⁷, Mariya
5 Tsyglakova⁶, Alexandra Fink³, Neil M. Gallagher³, Masiel Perez-Balaguer², Colleen A. McClung⁶, Jean Mary
6 Zarate², Rainbo C. Hultman⁷, Stephen D. Mague², David E. Carlson^{5,8,9,10,†}, Kafui Dzirasa^{1,2,3,4,†}.

7
8
9 ¹Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA; ²Dept. of Psychiatry and
10 Behavioral Sciences, ³Dept. of Neurobiology, ⁴ Dept. of Neurosurgery, ⁵Dept. of Biostatistics and
11 Bioinformatics, Duke University Medical Center, Durham, North Carolina 27710, USA; ⁶Department of
12 Psychiatry, University of Pittsburgh Medical School, Pittsburgh, PA 15213; ⁷Department of Molecular
13 Physiology and Biophysics, Department of Psychiatry, University of Iowa, Iowa City, IA, 52242 USA; ⁸Dept.
14 of Electrical and Computer Engineering, ⁹Dept. of Civil and Environmental Engineering, ¹⁰Dept. of
15 Biomedical Engineering, Duke University, Durham North Carolina 27708, USA.

16
17 *These authors contributed equally

18 †Senior authors; Contributed equally

19
20 **Abstract**

21 In rodents, anxiety is characterized by heightened vigilance during low-threat and uncertain situations.
22 Though activity in the frontal cortex and limbic system are fundamental to supporting this internal state,
23 the underlying network architecture that integrates activity across brain regions to encode anxiety
24 across animals and paradigms remains unclear. Here, we utilize parallel electrical recordings in freely
25 behaving mice, translational paradigms known to induce anxiety, and machine learning to discover a
26 multi-region network that encodes the anxious brain-state. The network is composed of circuits widely
27 implicated in anxiety behavior, it generalizes across many behavioral contexts that induce anxiety, and it
28 fails to encode multiple behavioral contexts that do not. Strikingly, the activity of this network is also
29 principally altered in two mouse models of depression. Thus, we establish a network-level process
30 whereby the brain encodes anxiety in health and disease.

31
32 **Keywords**

33 Anxiety, brain networks, dynamics, limbic, depression, and stress.

37 **Introduction**

38 Anxiety is a mental state marked by heightened pressure, concern, or apprehension related to uncertain
39 future circumstances [1]. The anxious state can be adaptive to increase the rate of survival, or it can
40 become overly generalized and persistent in a manner that yields behavioral pathology that can lead to
41 anxiety disorders. These disorders constitute the largest group of mental disorders in Western and high-
42 income societies, with nearly 34% of U.S. adults directly impacted in their lifetime [1, 2]. Strikingly, the
43 prevalence of symptoms of anxiety disorders or other mental health disorders had increased during the
44 height of the COVID-19 pandemic [3]. As such, it is imperative to discover the biological basis of the
45 anxious brain state and to delineate how the brain encodes anxiety in the disordered state.

46
47 Non-invasive human imaging studies have demonstrated altered activity in multiple cortical and limbic
48 brain regions, including the amygdala, prefrontal cortex, and hippocampus during heightened anxiety
49 and synchronized activity between these regions and others at the milliseconds to seconds timescales
50 [4-7]. Human intracranial recordings have also demonstrated altered coherence in networks with some
51 of these regions linked to higher trait anxiety [8], pointing towards the involvement of integrated multi-
52 regional circuits in mediating the anxiety state.

53
54 A myriad of rodent studies has implicated homologous regions in mediating anxiety: the amygdala
55 (Amy), ventral hippocampus (Hip), and subregions of the prefrontal cortex (PFC). Pharmacological
56 lesions and optogenetic inactivation studies have implicated the necessity of these brain regions for
57 anxious behaviors [9, 10]. Furthermore, precise circuit-level studies in rodent models have further
58 delineated the role of these brain regions and their integrated circuits [11]. For example, millisecond-
59 level synchrony is observed in the mPFC, Amy and/or Hip during key aspects of anxiety-related
60 behaviors [12-17], and optogenetic interrogation of projections involving these regions modulate
61 anxiety-related behaviors [18-23]. Yet it remains to be clarified how these circuits reliably integrate
62 across timescales (i.e., network-level stability) to selectively encode anxiety across animals and
63 behavioral contexts (i.e., generalization) in healthy animals and in disease states.

64
65 Because LFPs capture generalized patterns of neural activity that can be consistently sampled across
66 subjects [24], we previously developed a machine learning technique called discriminative Cross-
67 Spectral Factor Analysis-Nonnegative Matrix Factorization (dCSFA-NMF) to discover behaviorally
68 relevant ensembles of LFP activity that synchronize at both the milliseconds and seconds timescale (i.e.,
69 electrical functional connectome -electome - networks). An electome network can be composed by LFP
70 oscillatory power from each brain area, millisecond-resolution coherence between oscillations from
71 pairs of brain regions, and/or directional oscillations (an indication of information transfer between
72 pairs of brain regions assessed using Granger causality testing), ranging from 1-56Hz. Moreover, dCSFA-
73 NMF was designed to discover electome networks that encode behaviorally relevant internal states both
74 within and across mice [25-27]. Here, we used dCSFA-NMF to discover a distinct electome network that
75 selectively encodes normal anxiety across multiple contexts, and anxiety dysfunction in mouse models
76 of psychiatric disorders.

77

78 **Results**

79 ***Distributed electome networks encode a convergent anxious internal state***

80 Forty-one male mice were implanted with multiwire electrodes to concurrently target prefrontal cortex
81 (cingulate, prelimbic and infralimbic cortex), amygdala, ventral hippocampus, nucleus accumbens,
82 medial dorsal thalamus, and ventral tegmental area (VTA). Following their recovery, we employed a
83 two-stage approach to discover how distributed neural activity encodes an internal state for anxiety.
84 First, we utilized a translational anxiogenic protocol based on treatment with the antidepressant

85 fluoxetine, which has been shown to induce anxiety-like behavior in mice [28], versus a control saline
86 condition (see also Supplemental Figure S1). Second, we tested whether the electome networks learned
87 for this paradigm also encoded the internal state induced by two other anxiogenic paradigms: the
88 elevated plus maze (EPM) and the bright open field (BOF). The amount of time a mouse spends within
89 exposed regions of these assays (open arms in the EPM and center of the BOF) is used to infer anxious
90 internal states. As mice with the highest anxiety-like behavior may never enter the exposed regions of
91 these assays, we modeled anxiety as the internal state that was causally induced by the three paradigms
92 (Fig. 1A). We trained our network model at one-second resolution to enable us to compare network
93 activity to on-going behaviors widely utilized to assess the anxiety state of mice [12, 29]. The 41
94 implanted male mice were exposed to 1 of the 3 experimental paradigms (17 mice were subjected to
95 two paradigms).

96
97 Our dCSFA-NMF model trained on the neural data acquired during the fluoxetine paradigm successfully
98 distinguished the low and high anxiety states (saline and fluoxetine treatment, respectively) in newly
99 implanted C57 mice that had not been used to train the model (Mann Whitney AUC = 0.68 ± 0.01; Fig.
100 1B, see also Supplemental Figure S2); however, the model failed to distinguish low and high anxiety
101 states when it was tested on data obtained from the other two paradigms (AUC = 0.49 ± 0.01 and 0.44 ±
102 0.01 for EPM and BOF, respectively). We also found that dCSFA-NMF models trained on the EPM or BOF
103 assay similarly failed to distinguish the low and high anxiety states of the fluoxetine assay. These
104 analyses employed four-fold cross-validation with 3-7 hold out mice within assay per fold, and 9-26 hold
105 out mice between assay per fold. A full discussion of the dCSFA-NMF model training procedure and
106 hyperparameter selection can be found in the Methods section.

107
108 After failing to discover a generalized internal state for anxiety solely using training data from one
109 paradigm, we took inspiration from multi-task learning [30] and adapted dCSFA-NMF for training on
110 multiple assays jointly (Fig. 1C). Specifically, the multi-assay dCSFA-NMF model utilized training data
111 from all three contexts (FLX, EPM, BOF) to discover an electome network that was shared between
112 them. Though we successfully discovered such a shared electome network, we also found that small
113 permutations of the animal assignments between training and validation data groups yielded electome
114 networks composed of different LFP spectral features (Fig. 1D) while remaining predictive of the anxiety
115 paradigms.

116
117 To address this lack of stability, we developed and employed a cosine similarity-based metric for
118 evaluating network stability across multiple training permutations. For this metric, a low cosine distance
119 reflects electome network consistency. We then systematically increased the number of supervised
120 networks in our dCSFA-NFM model, utilizing all supervised networks in a joint prediction logistic
121 regression framework, and quantified the stability of the resultant electome networks. With this
122 approach, we found that a model trained with three supervised electome networks optimally balanced
123 simplicity and electome network stability across multiple runs on perturbated and partitioned training
124 data (Supplemental Figure S3). This multi-network model encoded the anxiety state across all three
125 assays in the same seventeen new mice used in testing of the single-assay trained models (AUC = 0.59 ±
126 0.04, 0.76 ± 0.03, and 0.84 ± 0.03 for FLX, EPM, and BOF, respectively; Fig 1E). Critically, no individual
127 brain region, or pair of regions, independently encoded an anxiety state shared by all three paradigms
128 (Fig 1F, see also Supplemental Figure S4). Thus, our findings argued that the anxiety brain state was
129 encoded at the multi-region level.

130
131 ***Two electome networks independently encode the anxious internal state***
132

133 The three supervised networks that jointly predicted the anxiety state contributed 26%, 73%, and 1% of
134 the joint logistic regression model prediction probability, averaged across assays (heretofore referred to
135 as Electome Networks 1, 2 and 3, respectively; see Fig. 2D). Electome Network 1 was comprised by
136 prominent beta (14-30) and gamma oscillations (30-55Hz) that led from VTA, amygdala, and medial
137 dorsal thalamus, and converge in infralimbic cortex and nucleus accumbens. Electome Network 2 was
138 comprised of prominent beta and gamma oscillations that led from prelimbic cortex, relayed through
139 medial dorsal thalamus, and converged in the amygdala. Electome Network 3 was represented by
140 synchronized theta oscillations (4-11Hz) across many of the regions we probed (Fig. 2A-C, see also
141 Supplemental Figure S5-7). Thus, the three electome networks were each represented by distinct
142 ensembles of LFP activity.

143

144 Importantly, the electome networks included circuits previously implicated in aspects of anxiety-like
145 behavior in the broader literature. For example, optogenetic stimulation of the amygdala→infralimbic
146 cortex circuit, a component of Electome Network 1, has been shown to increase anxiety-behavior during
147 the EPM and BOF in mice [19]. Mouse studies have described increased activity in the ventral
148 hippocampus→prefrontal cortex circuit in the EPM and BOF [12, 13], and causal stimulation of this
149 circuit increases anxiety behavior [22]. Increased synchrony between amygdala and ventral
150 hippocampus has been implicated in trait and state anxiety in human intracranial recording experiments
151 [8] and in mediating EPM anxiety behavior in causal mouse experiments [31]. Such circuits are
152 prominently featured in Electome Network 2. Finally, increased IL activity, as featured in Electome
153 Network 2 and 3, drives anxiety behaviors in mice in the EPM [32]. Thus, many circuits proposed
154 previously shown to encode aspects of anxiety were featured in our discovered electome networks.

155

156 Though our goal was to discover at least one electome network that was shared across the three anxiety
157 paradigms, our multi-supervised network learning strategy had the potential to discover three electome
158 networks for which each solely encoded one of the three assays. Thus, to ensure that we had indeed
159 discovered an electome network that generalized across anxiety paradigms, we tested whether
160 Electome Network 1, 2 or 3 encoded the anxious state in all three paradigms, again in the seventeen
161 new mice. Electome Network 1 and 2 both independently generalized to all three paradigms ($P<0.05$ for
162 all comparisons against a null distribution using a one-sided Mann-Whitney U test) while Electome
163 Network 3 only encoded the internal state induced by the BOF assay ($P = 1$, $P=0.66$; $P < 0.05$ for FLX,
164 EPM, and BOF, respectively; Fig 2D). Given that only Electome Network 1 and 2 independently encoded
165 all three assays, and Electome Network 3 only contributed 1% to multi-network prediction, we limited
166 our subsequent analysis to Electome Network 1 and 2. Critically, we also verified that Electome
167 Networks 1 and 2 generalized to female mice when we compared their activity in the home cage to the
168 EPM ($AUC=0.63\pm0.05$, $U=5$, $P=0.039$; $AUC=0.65\pm0.06$, $U=4$, $P=0.027$ for Electome Networks 1 and 2,
169 respectively, using a one-sided paired Wilcoxon sign rank test; $N=8$ female mice)

170

171 ***Electome Network activity encodes features of anxiety-related paradigms.***

172 We further validated Electome Network 1 and Electome Network 2 of our multi-assay trained model by
173 examining network activity dynamics during various anxiogenic events both within the training assays
174 (i.e., FLX, EPM, and BOF) and in new experimental contexts to control for confounding emotional states.
175 All analyses were performed on new subjects not used in model training.

176

177 Within the FLX training assay, we observed that the activity of Electome Networks 1 and 2 decreased
178 across the neural recording period in the saline and fluoxetine treated mice ($F_{59,295}=4.05$, $P=0.014$ and
179 $F_{59,295}=3.85$, $P=0.015$ for time effect across minutes for Electome Network 1 and 2 activity, respectively,

180 using two-way ANOVA with correction). No differences were observed in this effect across the
181 treatments ($F_{59,295}=1.14$, $P=0.37$ and $F_{59,295}=1.36$, $P=0.28$ for treatment \times time interaction effect,
182 for Electome Network 1 and 2 activity, respectively, using two-way ANOVA with correction; see Fig. 3A).
183 Thus, activity in both networks decreased as mice habituated following the experimental injections,
184 providing additional evidence that the networks tracked the internal anxiety state of the mice.
185

186 To further explore whether network activity habituated following other anxiogenic stimuli, we also
187 analyzed network activity in the EPM and BOF, relative to the activity observed in the home cage. We
188 focused our analysis on periods during which mice were in the closed arms of the EPM or the periphery
189 of the BOF, since these are considered the safe zones of the assays. This analysis approach also enabled
190 us to control changes in network activity that may be location specific. Activity in both networks
191 increased sharply after the mice were first placed in the behavioral area, and then habituated across the
192 remaining of the 5-minute testing session (Fig. 3B; $T=-11.246$, $P<0.001$; $T=-11.116$, $P<0.001$, for time
193 effect for Network 1 and 2, respectively, using an ANCOVA). Thus, network activity in both assays
194 paralleled the response we observed in the fluoxetine assay. Next, we tested whether activity in the
195 networks was behaviorally relevant. Specifically, since we found that the BOF induced a higher network
196 activity than the EPM (Fig. 3B; $T=14.036$, $P<0.001$; $T=13.248$, $P<0.001$, for assay effect for Network 1 and
197 2, respectively, using an ANCOVA), we analyzed the behavioral profiles of mice in both assays to
198 determine whether the BOF induced greater anxiety-related behavioral avoidance. After verifying that
199 the mice spent substantially more time in the safe zones vs. anxiogenic zones in both assays ($T_{10}=19.9$;
200 $P<10^{-8}$ and $T_8=29.8$; $P<10^{-8}$, for EPM and BOF, respectively, using a one-tailed paired t-test, Fig. 3C), we
201 quantified the bout length when animals entered the anxiogenic zones. We found that the length of
202 each bout in the center zone of the BOF was significantly shorter than the bout length in the open arm
203 for the EPM ($T_{18}=2.6$; $P=0.009$, using a one-tailed unpaired t-test, Fig. 3C), demonstrating that the mice
204 exposed to the BOF showed higher anxiety-related avoidance.
205

206 Network 2 activity, but not Network 1, showed much stronger habituation between the initial and latter
207 segments of the BOF, compared to the EPM ($U=33$ and $P=0.11$; $U=27$ and $P=0.047$, for Network 1 and 2,
208 respectively, using a one-sided Mann-Whitney U test; Fig. 3D). Consistent with this observation, we
209 found that mice avoided the center of the BOF more during the first half of the assay ($T_8=3.97$ and
210 $P=0.004$ using a two-tailed paired t-test; see Fig. 3F). In contrast, no such behavioral pattern was
211 observed in the EPM (Fig. 3E). Here, mice showed large variability in when they occupied the open arms
212 across the testing session ($T_{10}=0.70$ and $P=0.50$ using a two-tailed paired t-test). Taken together, these
213 results showed that mice were least likely to occupy the anxiogenic zone under the experimental
214 context which produced the highest Network 2 activity (first half of the BOF). Thus, Network 2 activity
215 broadly encoded the anxiety-related behavioral differences observed across the assays.
216

217 Next, we tested whether network activity encoded behavior on a moment-to-moment basis within the
218 assays. Specifically, we reasoned that three distinct patterns of anxiety could intersect with behavior: 1)
219 Mice might show higher anxiety when they are in the anxiogenic zones of the assay. 2) The anxiogenic
220 zones of the assay might induce a feeling of anxiety that peaks several seconds later irrespective of the
221 animal's future location and 3) high anxiety might preclude mice from entering the anxiogenic zones
222 [31]. Thus, we set out to determine whether the two networks showed activity consistent with any of
223 these 3 patterns. Importantly, though all data recorded during the EPM and BOF assays were used to
224 discover our putative anxiety networks, the moment-by-moment location of the mice in the EPM and
225 BOF (anxiogenic vs. safe zone) was not. Thus, our training approach enabled an unbiased assessment of
226 their activity related to ongoing anxiety behavior. For our analysis, we first isolated all the one-second

227 intervals when mice were in the open or closed arm of the EPM. We also isolated neural activity up to
228 five seconds following these timepoints, and up to five seconds prior to these timepoints [15, 31].
229
230 Both networks failed to encode whether mice were in the open or closed arms of the EPM ($U=42$ and
231 $P=0.23$; $U=41$ and $P=0.26$; for Network 1 and 2, respectively, using a one-sided paired Wilcoxon sign rank
232 test; Fig. 3G). On the other hand, we found that Network 2 activity ($U=61$ and $P=0.0049$ using a one-
233 sided paired Wilcoxon sign rank test), but not Network 1 ($U=19$ and $P=0.90$ using a one-sided paired
234 Wilcoxon sign rank test), was higher in the five seconds interval following the open arm location of mice
235 (regardless of whether they returned to the closed arm during this period). Thus, an increase in Network
236 2 activity was induced by the anxiogenic zone of the assay, providing support for the second pattern of
237 anxiety listed above. Neither Network 1 or 2 activity was lower in the 5-second interval preceding the
238 open arm location (regardless of the location of the mouse during this interval), compared to activity
239 preceding the closed arm of the EPM ($U=46$ and $P=0.88$; $U=27$ and $P=0.32$ for Network 1 and 2,
240 respectively, using a one-sided paired Wilcoxon sign rank test Fig. 3G). This failed to support the third
241 pattern of anxiety for which high network activity might preclude entrance into anxiogenic zones.
242 Though Network 1 and 2 also failed to encode whether mice were in the center or periphery of the BOF
243 ($U=22$ and $P=0.54$, $U=20$ and $P=0.63$ using a one-sided paired Wilcoxon sign rank test), we found that
244 both Networks showed lower center activity within the preceding 5 seconds interval compared to the
245 periphery ($U=7$ and $P=0.037$; $U=8$ and $P=0.049$, using a one-sided paired Wilcoxon sign rank test, Fig.
246 3H). Together, these findings showed that high activity in either network predicted that mice would be
247 in the safe zone of the BOF in the future, thus supporting the third pattern of anxiety. No increases in
248 Network 1 or 2 activity were observed in the 5-second interval following the center location compared
249 to either network's activity when mice were in the periphery in the BOF ($U=18$ and $P=0.71$, $U=13$ and
250 $P=0.88$ using a one-sided paired Wilcoxon sign rank test). Overall, these results showed that Network 2
251 activity was increased by the open arms of the EPM, while high activity in both Networks precluded mice
252 from entering the center zone in the BOF. This latter pattern of activity was consistent with our
253 observation that mice occupied the center zone less during the first half of the BOF when activity in both
254 networks was highest. Thus, Network 1 and 2 activity was behaviorally relevant and supported our three
255 patterns of anxiety, though the pattern for which anxiety behavior was encoded by these networks
256 varied between the two assays.
257

258 ***Electome Network activity does not encode arousal***

259 As anxiety is correlated with arousal, our training approach could plausibly discover networks that
260 reflect an arousal state rather than anxiety. To explore this possibility, we used data acquired from two
261 independent assays that are thought to increase arousal but not anxiety. During these assays, data was
262 collected from the same brain regions used initially for model training, and LFP activity was projected
263 into the previously learned multi-assay trained model to calculate the activity of Electome Network 1
264 and 2 for each second. In the first assay, mice were trained to maintain a nose poke for 5 seconds. Tones
265 of decreasing pitch were played throughout the 5-second trial, and a $5\mu\text{L}$ sucrose reward was delivered
266 at the end if mice remain in the port for the entire 5 seconds. When we tested whether reward delivery
267 increases electome network activity, we failed to identify a significant response in either network ($U=30$
268 and $P=0.82$; and $U=41$ and $P=0.99$, for Electome Network 1 and 2 activity, respectively, using a one-sided
269 paired Wilcoxon sign rank test; Fig 4A). Next, we quantified Electome Network 1 and 2 activity responses
270 during a classic social preference assay, where mice freely explore an object and a novel social stimulus
271 mouse housed at the two ends of a chamber. Here, the social stimulus mouse is considered both
272 arousing and rewarding, as experimental mice generally choose to spend more time with the other
273 mouse than the object, and social encounters activate reward circuitry [33]. We failed to discover
274 increases in Electome Network 1 or 2 activity during interactions with the stimulus mouse, compared to

275 the inanimate object (U=60 and P=0.95; U=47 and P=0.74, for Electome Network 1 and 2 activity,
276 respectively, using a one-tailed paired Wilcoxon sign rank test, Fig. 4B). These results demonstrate that
277 both networks fail to encode arousal as no increase in network activity is observed during either the
278 trained or innate reward assays.

279

280 ***Electome Network activity encodes the internal state induced by additional anxiety paradigms***

281 We further probed whether our electome networks encode a robust anxiety-related brain state using
282 additional paradigms that induce anxiety in a manner that is distinct from our initial assays. Again, all
283 analyses were performed on new mice that were not used during model training. We first examined
284 network activity during direct optogenetic stimulation neurons in the ventral hippocampus. This region
285 has been causally implicated in anxiety-related behaviors in rodents [34], and it was a critical upstream
286 node in one of our networks. Moreover, we selectively stimulated the subset of neurons that projected
287 to lateral hypothalamus since the ventral hippocampus → lateral hypothalamus circuit had been shown
288 to drive anxiety-related avoidance in the EPM and BOF [20]. Mice were infected with an
289 adenoassociated virus (AAV) to express Channelrhodopsin-2 using (ChR2) in the ventral hippocampus
290 and implanted with microwires to target the same regions utilized to learn our multi-assay trained
291 electome network. A microwire and optic stimulating fiber was also implanted in lateral hypothalamus,
292 concurrently (Fig. 5A). Mice were then stimulated with blue light to activate ChR2, or yellow light as a
293 negative control, while neural activity was recorded in their home cage. As expected, blue light induced
294 local and remote LFP activity, while yellow light did not (Fig 5B). When we projected neural activity
295 recorded during these stimulations into our learned multi-assay trained model, we found that ventral
296 hippocampus → lateral hypothalamus stimulation increased Electome Network 2, but not Electome
297 Network 1 activity (U=20 and P=0.14; U=0 and P<0.001, for Electome Network 1 and 2 activity,
298 respectively, using a one-sided paired Wilcoxon sign rank test, Fig. 5C and 5D). Thus, these data further
299 validated Electome Network 2 as a network-level code for the anxious internal state.

300

301 We subsequently examined whether Electome Network 1 or 2 encode the internal state induced by fear
302 conditioning. In this classic paradigm, mice are exposed to seven repeated auditory cues, each paired to
303 a foot shock (conditioned stimulus, CS+). On a subsequent recall session, conditioned mice exposed to
304 the auditory cue in the absence of the foot shock typically exhibit a freezing response. For our
305 conditioning paradigm, we substituted the foot shock with a high-pressure air puff during conditioning
306 (Fig. 5E). This enabled us to minimize electrical noise during LFP recording. Mice exposed to our
307 modified air puff stimulus treated mice (CS+) exhibited increased freezing behaviors during the recall
308 period when compared to controls (CS-) (U=21 and P=2.3×10⁻⁴ using a one-sided Mann-Whitney U test;
309 Fig. 5F).

310

311 We compared electome network activity between CS+ and CS- mice at the final stimulus of the aversive
312 conditioning (i.e., the 7th tone). Though we observed a trend in Electome Network 1 activity, neither
313 Electome Network 1 or 2 were significantly elevated in CS+ mice during the brief interval immediately
314 prior to the tone, compared to the CS- mice (U=105 and P=0.051; and U=78 and P=0.45, for Electome
315 Network 1 and 2, respectively, using a one-sided Mann-Whitney U test, Fig. 5G, 5H). Conversely,
316 Electome Network 2, but not Electome Network 1, activity was significantly higher in CS+ mice during
317 the brief interval immediately after the presentation of the tone (U=100 and P=0.09; and U=110 and
318 P=0.028, for Electome Network 1 and 2 respectively, using a one-sided Mann-Whitney U test, Fig. 5I, 5J).
319 Importantly, our post-hoc analysis found no difference in Electome Network 1 or 2 activity prior to, or,
320 immediately following the first tone exposure (see Supplemental Figure S8). As such, Electome Network
321 2 encodes an acute state generated by the presentation of a threat-paired stimulus. Overall, Electome
322 Network 2 encodes a behaviorally relevant component of the classic fear conditioning paradigm, while

323 Electome Network 1 showed a trend towards encoding a more generalized state that emerged with fear
324 conditioning.

325
326 Finally, having discovered that Electome 2 encoded anxiety features of our fear conditioning paradigm,
327 but not arousal or reward, we asked whether either network broadly encoded an acute negative
328 experience. Specifically, while anxiety is a negative affective state, not all negative experiences produce
329 anxiety. Thus, we further probed our fear conditioning paradigm data to test whether the activity in our
330 electome networks increased acutely during an ongoing negative experience. We reasoned that prior to
331 conditioning, the first air puff should immediately invoke negative affect, but not anxiety. As such, we
332 quantified electome network activity in the CS+ mice while they experienced the first air puff and
333 compared that to neural activity from the CS- mice, which did not receive an air-puff. Using this
334 approach, we found that the air puff acutely increased Electome Network 1, but not Electome Network
335 2, activity (U=118 and P=0.009; and U=86 and P=0.28, for Electome Network 1 and 2, respectively, using
336 a one-sided Mann-Whitney U test, Fig. 5K, 5L; see also Supplemental Figure S8). These results indicated
337 that Electome Network 2 activity was specific for anxiety, while Network 1 was not.

338
339 ***Electome Network activity is altered in mouse models of mood disorders***
340 Anxiety behavior is altered in mood disorders. Indeed, bipolar mania is characterized by impulsivity and
341 risk taking[35] (reflective of decreased anxiety processing), while major depressive disorder is highly co-
342 morbid high anxiety[36]. We reasoned that a causal manipulation that induces a manic-like state in mice
343 should suppress network activity when mice were placed in a context where network activity should
344 otherwise be high. Similarly, we reasoned that causal manipulations that induce a depression-like state
345 should increase network activity when mice were placed in a context where network activity should
346 otherwise be low. Thus, we quantified Electome Network 1 or 2 activity in a mouse model of mania and
347 two of the most widely utilized mouse models for major depressive disorder.

348
349 The *ClockΔ19* mouse line has been proposed as a model of bipolar mania [37]. These mice have a point
350 mutation in the circadian gene *Clock* and exhibit altered circadian rhythms, hyperactivity, increased
351 reward drive, and decreased anxiety-related behavior [15, 37, 38]. Moreover, many cellular,
352 neurophysiological, and behavioral alterations in these mutant mice are normalized by chronic lithium or
353 valproic acid treatment [37, 39, 40], providing further validation for the *ClockΔ19* mouse as a model of
354 bipolar mania. After confirming that *ClockΔ19* mice demonstrate diminished anxiety behavior in the EPM
355 ($T_{1,32}=2.9$; $P=0.003$ using unpaired t-test, Fig. 6A), we implanted male and female *ClockΔ19* mice and
356 their wild-type littermate controls with microwires targeting the same brain regions used to learn our
357 electome networks. We then quantified neural activity while mice were in the home cage and on the
358 EPM. Exposure to the EPM induced Network 1 activity in both genotypes ($F_{1,19} = 15.81$ and $P = 8.08 \times 10^{-4}$
359 for assay effect using mixed-effects model ANOVA; $U=2$ and $P=0.003$, $U=10$ and $P=0.02$, for wild type and
360 *ClockΔ19* mice, respectively using one-tailed Wilcoxon sign rank test). Similarly, exposure to the EPM
361 induced Network 2 activity in both genotypes as well ($F_{1,19} = 17.17$ and $P = 5.51 \times 10^{-4}$ for assay effect
362 using mixed-effects model ANOVA; $U=4$ and $P=0.068$, $U=9$ and $P=0.016$, for wild type and *ClockΔ19* mice,
363 respectively, using a one-tailed Wilcoxon sign rank test sign rank test). We further probed neural activity
364 across genotypes in the otherwise high-anxiety context (i.e., the EPM). For this analysis, we isolated
365 intervals when mice were in the closed arms, an approach which enabled us to isolate
366 neurophysiological differences that result by disruption of the *CLOCK* gene, while controlling for the
367 altered behavioral profiles displayed by the mutants. When we compared network activity in closed
368 arms of the EPM across genotypes, we observed lower Network 1 and 2 activity in the *ClockΔ19* mice
369 compared to their littermate controls ($T=10.97$, $P<0.001$, Network 1; $T=-7.42$, $P<0.001$, for genotype
370 effect for Network 1 and 2, respectively, using an ANCOVA, Fig. 6B). Thus, a genetic manipulation used to

371 model bipolar mania (and thus decrease anxiety-related behavior) in mice was sufficient to reduce
372 Electome Network 1 and 2 activity in an otherwise angiogenic context.
373
374 Next, we explored network activity in two depression models that causally induce anxiety-related
375 behavior. In the chronic social defeat stress paradigm, mice are repeatedly exposed to larger-aggressive
376 mice. After 10 such exposures, a subset of mice, classically referred to as *susceptible*, exhibit social
377 avoidance, disrupted reward behavior, and anxiety-like behavior [41, 42]. Conversely, the other subset
378 of mice, termed *resilient*, exhibit normal social and reward behavior [41, 42] (Fig. 6C-D). Interestingly,
379 despite the well-described differences in appetitive behavior, prior work has reported the emergence of
380 anxiety-like behavior in both the susceptible and resilient mice [41, 43]. Indeed, we find that exposure to
381 chronic social defeat stress induces open arm avoidance in the EPM for both susceptible and resilient
382 mice uniformly ($t_{20}=2.27$ and $P=0.02$, for comparison between stress and unstressed mice using a one-
383 tailed Welch's t-test; $t_{10}=0.16$ and $P=0.87$ for post-hoc comparison between susceptible and resilient
384 mice; see Fig. 6E). Therefore, we quantified whether this stress paradigm also increased Electome
385 Network 1 or 2 activity in both the susceptible and resilient groups compared to non-stressed controls.
386 Since we reasoned that stress exposure should induce a persistent anxious internal state, we probed
387 activity recorded while animals were alone in their home cage. Though chronic social defeat stress
388 exposure failed to induce Electome Network 1 activity ($U=468$ and $P=0.90$ using one-sided Mann-
389 Whitney U test), we found significantly higher Electome Network 2 activity in the stressed mice ($U=151$
390 and $P<0.01$ using one-sided Mann-Whitney U test, Fig. 6F, left). Moreover, no difference in Electome
391 Network 2 activity was observed between susceptible and resilient mice ($U=382$ and $P=0.62$, for post-
392 hoc analysis using a two-sided Mann-Whitney U test, Fig. 6F, right). Thus, chronic social defeat stress
393 induced anxiety-like behavior and increased Electome Network 2 activity in both groups, despite
394 differences in how stress impacted their reward function.
395

396 We next quantified network activity in mice exposed to chronic mild unpredictable stress. In this
397 paradigm, mice are repeatedly exposed to a series of stressors over eight weeks. Specifically, test mice
398 are subjected to two stressors per day, one occurring during the light phase of their circadian rhythm
399 cycle and the other during the dark phase. Stressors, including environmental stressors, food/water
400 restriction, or physical restraint, were chosen according to a pseudo-random schedule. Exposure to this
401 protocol induces altered reward and social behavior, as well as increased anxiety-related behavior in
402 mice compared to their non-stress controls [44, 45]. After verifying that chronic mild unpredictable
403 stress induced open arm avoidance in the EPM ($t_{19}=2.37$ and $P=0.018$, for comparison between stress
404 and unstressed mice using a one-tailed Welch's t-test; see Fig. 6G), we quantified electome network
405 activity in stressed mice and non-stressed controls, again in their home cage. Like chronic social defeat
406 stress, exposure to chronic mild unpredictable stress increased Electome Network 2 activity ($U=81$ and
407 $P=0.036$, using a one-sided Mann-Whitney U test, Fig. 6H, left). Thus, two of the most widely utilized
408 paradigms for modeling depression in mice converged on a common network-level signature.
409 Interestingly, chronic mild unpredictable stress also increased Electome Network 1 activity as well ($U=82$
410 and $P=0.031$, using a one-sided Mann-Whitney U test, Fig. 6H, right), demonstrating an even broader
411 impact of this stress paradigm on anxiety-related neural activity.
412

413 **Discussion**

414 Preclinical models have played a role in the development of therapeutics for emotional disorders. These
415 efforts would be greatly enhanced by the discovery of biological mechanisms that instantiate affective
416 internal states in health and disease, and any such mechanisms must generalize across both animals and
417 contexts to achieve their true translational potential. Here, we employed multisite electrical recordings

418 in freely behaving mice subjected to a collection of behavioral and experimental paradigms to discover
419 and validate an electome network that encoded such a generalized anxious internal state. We reasoned
420 that a putative anxious internal state could be observed at the intersection of many distinct paradigms
421 used to model and induce anxiety behavior. Moreover, we reasoned that the unique features of these
422 paradigms would enable us to disambiguate this anxious internal state from other internal states such as
423 arousal and positive affect (i.e., reward state), or other task relevant variables (Fig. 7A). Machine
424 learning models trained solely using data from one anxiety paradigm failed to generalize to other
425 paradigms. On the other hand, a model trained using data from three assays discovered a network
426 reflecting a shared internal anxious state. Specifically, this electome network generalized to additional
427 anxiety paradigms, including direct optogenetic interrogation of cells originating from a key network
428 node and a classic fear conditioning assay, highlighting its sensitivity. Finally, the electome network
429 failed to encode multiple behavioral assays that induce rewarding and/or arousing (but not anxious)
430 internal states, demonstrating its specificity (Fig. 7B). Thus, our multi-assay learning approach
431 discovered a generalized anxious brain state.
432

433 While each of our initial three paradigms could be encoded by at least one implanted region, no single
434 brain region could independently encode an internal state shared across the three paradigms.
435 Moreover, we were unable to capture a signature for a shared anxiety state when we trained models
436 using the predictors from pairs of regions (power across both regions, and the coherence and Granger
437 coherence measures between them). Strikingly, this approach even failed for pairs of regions that had
438 been previously shown to synchronize during anxious states in the EPM. This suggests that activity within
439 a given brain region or circuit captures some behavioral/affective features of each individual assay, while
440 failing to independently encode a generalized anxiety state. For example, activity in a region/circuit may
441 encode non-specific neural responses to the induction paradigms (e.g., sensing a bright light, or non-
442 specific drug effects), or behavioral features that correspond with anxiety in one of the three assays (e.g.,
443 locomotion). Because we employed different anxiety induction protocols (bright light vs. drug injection)
444 and behavioral contexts (open lit area vs. home cage), we encouraged our machine learning strategy to
445 discover a generalized anxiety state rather than specific features of each assay. Therefore, we assert that
446 while each individual region contains assay-relevant information, the anxious brain state is optimally
447 represented at the network-level, where activity across many distinct brain regions/circuits is integrated
448 at the sub-seconds timescale. Taken together, our findings highlight two important principles to help
449 discover the neural architecture underlying affective states: 1) employ multiple distinct paradigms to
450 discover generalized affective states rather than features of an assay, and 2) utilizing neural activity
451 acquired from multiple brain regions [24].
452

453 We do not contend that the learned electome network provides a comprehensive description of the
454 anxious internal state. Rather, we believe that this state is also coupled to physiological changes across
455 brain regions involved in sensory and motor function, and throughout the body. It is also likely that
456 several neural circuits outside of Electome Network 2 can converge to impact its activity. Indeed, we
457 found that stimulating ventral hippocampal projections in lateral hypothalamus increased Electome
458 Network 2 activity. Thus, we assert Electome Network 2 provides a robust and objective measure of the
459 internal state that mediates anxious behavior, enabling future preclinical studies to dissect and regulate
460 neural processes that contribute to anxiety in disease states.
461

462 Interestingly, when we probed the response of the Electome Networks 1 and 2 to an acute air puff, we
463 found that only Electome Network 1 responded to this noxious stimulus. While this observation
464 established that Electome Network 2 was specific for encoding an anxious internal state, it raises the
465 hypothesis that Electome Network 1 may broadly encode a negative affective state.

466
467 Multiple patterns identified by our analysis provided support such an interpretation. Specifically, though
468 our analysis strategy employed one-tailed statistical tests, we observed several instances where network
469 activity tended to respond in the opposite direction (i.e., $P>0.95$). Indeed, while our appetitive
470 behavioral paradigms failed to induce activity in Electome Network 1 or 2, we observed that Electome
471 Network 1 tended to show a graded decrease in activity during behavioral periods consistent with
472 reward anticipation (Fig. 4A, left) and during interaction with an appetitive social stimulus (Fig. 4B, left).
473 When we quantified neural activity when mice were in the open arm of the mice, we observed that
474 Network 1 activity tended to be elevated in the preceding 5 second interval. Moreover, this activity
475 tended to decrease across during this interval (Fig. 3G). Such a pattern in network activity was not
476 observed for Network 2, nor was it observed in the interval preceding when mice were in the closed arm
477 for either network.
478
479 This putative decrease in Electome Network 1 activity may reflect an internal process whereby animals
480 briefly suppress a negative affective/avoidance network, enabling them to approach an aversive context
481 or one that carries perceived risk. This interpretation is supported by our findings in the *ClockΔ19* mice
482 which model a manic-like state. Mania is characterized by increased impulsivity and risk taking, and this
483 genetic strain exhibited decreased anxiety-related behavior. We found decreased Electome Network 1
484 activity in the *ClockΔ19* mouse when they were in a context that should otherwise induce anxiety. Taken
485 together, these raise the idea that Electome Network 1 and 2 cooperate to shape behavior related to
486 anxiety. In this putative framework, Electome Network 2 encodes anxiety, while Electome Network 1
487 shapes behavior outcomes in response to the internal anxiety state and other negative affective states
488 (Fig. 7B). Future experiments will be necessary to test the validity of this putative framework.
489
490 Though Electome Network 2 failed to show increased activity in response to an acute negative stimulus,
491 as Electome Network 1 had, we observed that Electome Network 2 activity tended to decrease after
492 sucrose reward delivery ($P>0.95$ using one-tailed analysis; Fig. 4A, right). These findings raise the
493 intriguing potential that anxious and negative internal states may counterbalance the appetitive internal
494 state. Indeed, depression is characterized by disrupted appetitive drive and high anxiety, while bipolar
495 mania is characterized by high appetite drive and disrupted anxiety. Supporting the translational utility of
496 Electome Network 2, we quantified its activity in a mouse model of mania and two well established
497 preclinical animal models of depression based on chronic stress exposure. The mouse model of mania
498 exhibits predictive validity as it shows increased reward drive and decreased anxiety-like behavior that
499 responds to chronic lithium treatment [37]. Similarly, both stress models exhibit predictive validity with
500 depression as they produce a heightened anxiety-like behavior and an anhedonia phenotype that
501 responds to chronic antidepressant administration [42, 46, 47]. We found decreased activity in Electome
502 Network 2 in the mouse model of mania when mice were in an otherwise high anxiety context (i.e., in
503 the EPM). Conversely, we found increased activity in Electome Network 2 in the depression models.
504 Strikingly, this increased activity was observed when mice were in an otherwise low anxiety context (i.e.,
505 in their home cage).
506
507 The two depression models showed distinct network changes in Electome Network 1. Exposure to
508 chronic mild unpredictable stress induced Electome Network 1 activity, while exposure to chronic social
509 defeat stress did not. These findings raise the intriguing potential that chronic mild unpredictable stress
510 may more broadly induce a negative affective state, while chronic social defeat stress primarily impacts
511 the anxiety internal state. Future studies to further validate the role of Electome Network 1 in behavior
512 may further clarify the behavioral distinctions between the two depression models. Taken together, our
513 findings establish a brain electome network that encodes anxiety-behavior in health and in disease

514 models. Moreover, we establish a putative preclinical biomarker for the development of anxiolytic
515 therapeutics.

516
517

518 **Figure Legends**

519

520 **Figure 1: Distributed electome networks encodes anxiety states across multiple anxiety-related**
521 **paradigms. A)** Local field potential oscillations recorded from 8 brain regions, concurrently, as mice
522 were subjected to three distinct paradigms used to model anxiety. **B)** dCSFA-NMF results when the
523 network model was used to discover an electome network for each anxiety paradigm. Electome
524 networks learned for the three anxiety paradigms were applied to new mice subjected to the three
525 paradigms (N= 13, 26, and 19 training mice for FLX, EPM and BOF, respectively, and N= 6, 11, 9 holdout
526 mice for FLX, EPM and BOF, respectively). Nine generalization tests for each of the three learned
527 networks were run in new mice subjected to the three different anxiety paradigms. **C)** Multi-assay
528 dCSFA-NMF model used to discover a joint set of electome networks shared across the three anxiety
529 paradigms. **D)** Network Consistency was evaluated by training the dCSFA-NMF model multiple times,
530 where the mice used for training and validation were shuffled. A cosine distance metric quantified the
531 consistency of the supervised networks across runs, where a lower cosine distance reflected greater
532 network consistency. **E)** Box and whisker plots show generalization tests for which the networks learned
533 from the multi-assay dCSFA-NMF model were applied to new mice (same as Fig. 1B) subjected to the
534 three different anxiety paradigms. Dashed line at AUC = 0.5 corresponds to models with no predictive
535 utility. **F)** Predictive utility of multi-region multi-assay dCSFA-NMF network model (same as Fig. 1E) vs.
536 models solely based on activity from single brain regions. Models that showed significant encoding are
537 highlighted in pink (data analyzed using a single-sample t-test against a null AUC distribution at $\alpha = 0.05$,
538 and shown as mean \pm s.e.m). Note that only the network model encoded all three assays.

539

540 **Figure 2: Individual electome networks within the multi-assay anxiety model independently encode**
541 **distinct anxiety paradigms. A)** Power and Synchrony measures that comprise each electome network.
542 Brain regions and frequency bands ranging from 1-56 Hz are shown around the rim of the plot. Power
543 features are depicted as bands within the rim of the plot, and cross-spectral (i.e., synchrony) measures
544 are depicted by the lines connecting the brain regions through the center of the circle. The top 15
545 percent of components for each electome network is shown. **B)** Granger offset measures were used to
546 quantify directionality for the synchrony measures shown in A. Prominent directionality features were
547 found in multiple bands coded by color. Histograms quantify the number of lead and lagging circuit
548 interactions for each brain region. **C)** Schematic of directionality for each of the three electome
549 networks. Arrows are colored to represent the dominant frequency of directionality (see color scale in
550 panels A or B). **D)** Independent predictive performance of each supervised network across each anxiety
551 assay. Mean contribution towards the joint model logistic regression predictions is also shown.
552 Independent predictive performance of each supervised network across each anxiety assay. Tests were
553 performed using the 17 holdout mice, and networks that showed significant encoding are highlighted in
554 pink (data analyzed using a one-tailed unpaired t-test against a null AUC distribution at $\alpha = 0.05$).
555

556

557 **Figure 3: Increases in Electome Network 1 and 2 activity encodes features of anxiety related**
558 **paradigms. A)** Electome Network activity dynamics during fluoxetine assay. Data is plotted across 5-
559 minute windows for Electome Network 1 (left) and 2 (right). Note that activity decreases in both
560 networks over time following saline and fluoxetine treatment (N = 6 mice). $P^* < 0.05$ for time effect using
561 a within and within two-way ANOVA. **B)** Comparison of Electome Network activity in safe zones of the
562 EPM (closed arm) and BOF (periphery) over the duration of the assays. Time (P^*), and assay ($P^{\#}$) effects

562 were determined using an analysis of covariance. Data was plotted with a 10s sliding window and shown
563 normalized to network activity observed in the home cage. **C**) Mice showed avoidance of the anxiogenic
564 zones of the EPM (left, $P<0.05$ using one-tailed paired t-test) and BOF (middle, $P<0.05$ using one-tailed
565 paired t-test). Bout length of mice in the anxiogenic zones for EPM and BOF (right; $P<0.05$ using one-
566 tailed unpaired t-test). **D**) Decrease in Network 1 (left) and 2 (right) activity between the first and last
567 minute of each assay. Network 2 showed a larger activity decrease in the BOF than in the EPM ($P<0.05$
568 using one-sided Mann-Whitney U test). **E-F**) Average period of occupancy in safe and anxiogenic zones in
569 E) EPM and F) BOF assays. Note that mice showed greater occupancy of the center in the second half of
570 the BOF. **G**) Electome Network activity dynamics relative to arm locations in the EPM assay. Gray
571 highlights 1 second windows when the animals are in the open or closed arms. Neural activity preceding
572 and following these timepoints is shown as well, and data is shown normalized to the mean activity
573 observed across the assay. The purple line highlights temporal intervals with significantly different
574 Electome Network activity, determined using a one-tailed Wilcoxon sign rank test ($N = 11$ mice). **H**)
575 Same as G, except data shown for the BOF assay ($N=9$ mice).
576

577 **Figure 4: Electome Network 1 and 2 activity does not encode arousal.** **A**) Mice were trained to nose
578 poke for 5 consecutive seconds. A sucrose reward was delivered at time zero, highlighted by gray.
579 Electome Network activity was compared prior to and following sucrose delivery using a one-tailed sign-
580 rank test ($N=9$ mice). Data is shown as mean \pm s.e.m. **B**) Electome Network activity was
581 quantified while mice engaged with an object or a social stimulus mouse during a free interaction assay
582 and compared using a one-tailed sign-rank test ($N=12$ mice). All analyses were performed in mice that
583 were not used to learn the multi-assay anxiety model. Data is shown as mean \pm s.e.m.
584

585 **Figure 5: Electome Network 1 and Network 2 activity encode distinct anxiety paradigms.** **A**) Mice were
586 infected with ChR2 in ventral hippocampus (Hip) and implanted with an optrode to target lateral
587 hypothalamus (LH). Multiwire electrodes were also implanted to target the 8 brain regions utilized to
588 learn the multi-assay anxiety network ($N=11$ mice). **B**) Neural activity recorded during optogenetic
589 stimulation of Hip terminals in LH with blue (473nm, 20hz, 5mW, 5ms pulses) or yellow light (593.5nm,
590 20hz, 5mW, 5ms pulses). Note that blue light stimulation induced activity in LH (and remotely) while
591 yellow light stimulation did not. **C**) Electome Network 1 and **D**) Network 2 activity during yellow or blue
592 light stimulation. Network 2 showed an increase in activity with blue vs. yellow light stimulation
593 ($P<0.001$ using a one-tailed Wilcoxon sign rank test)) while Network 1 did not ($P=0.14$). **E**) Behavioral
594 paradigm utilized to induce fear conditioning. Conditioned mice (CS+; $N=10$) received an air puff at the
595 end of each tone presentation, while non-conditioned mice (CS-; $N=15$) did not (top). Neural activity was
596 recorded in both groups throughout tone presentation (bottom). **F**) Freezing behavior in CS- and CS+
597 mice one to two days after exposure to the conditioning paradigm. **G-H**) Mean Activity of G) Electome
598 Network 1 and H) Electome Network 2 activity within the 10 second interval prior to the presentation of
599 the 7th conditioning tone. **I-J**) Mean activity of I) Electome Network 1 and J) Electome Network 2 within
600 the 20 second following the presentation of the 7th conditioning tone. **H-K**) Mean activity of I) Network 1
601 and J) Network 2 in response to an air puff. Data was analyzed using a one-tailed rank sum test.
602

603 **Figure 6: Alternated Electome network activity signals behavioral disruptions in mouse models of**
604 **mood disorders.** **A**) EPM open arm exploration in WT and *ClockΔ19* mice ($N=17$ mice/genotype). Data
605 was compared using a one tailed t-test. **B**) Neural activity was isolated when mice were in the closed
606 arm of the EPM and Electome Network 1 (left) and 2 (right) activity was compared across genotype
607 using an Analysis of Covariance ($N=10$ and 11 for WT and *ClockΔ19* mice, respectively; data shown as
608 mean \pm s.e.m.). **C**) Distinct stress paradigms utilized to model depression in mice. **D**) Schematic of choice
609 interaction assay utilized to quantify susceptibility to chronic social defeat stress (left), and resultant

610 social interaction profiles of a population of stressed mice (right). Red circles denote mice defined as
611 susceptible (interaction ratio < 1), while green circles denote resilient mice (interaction ratio >= 1). Black
612 circles denote non-stressed control mice. **E**) EPM open arm exploration in mice subjected to chronic
613 social defeat stress (N=12 mice) and control mice (N=10 mice). Data was compared between stressed
614 and non-stressed mice using a one-tailed t-test. Post-hoc testing between susceptible (N=5 mice) and
615 resilient mice (N=7 mice) was performed using a two-tailed t-test. **F**) Electome Network 1 (left) and 2
616 (right) activity was quantified in the home cage and compared between chronic social defeat stressed
617 (N=34 mice) and non-stressed controls (N=16 mice) a one-tailed rank-sum test. Post-hoc testing was
618 compared between susceptible (N=21 mice) and resilient mice (N=13 mice) using a two-tailed rank-sum
619 test. **G**) EPM open arm exploration in mice subjected to chronic mild unpredictable stress (N=11 mice)
620 and control mice (N=11 mice). Data was compared using a one-tailed t-test. **H**) Electome Network 1 (left)
621 and 2 (right) activity was quantified in the home cage and compared across groups using a one-tailed
622 rank-sum test.
623

624 **Figure 7: Conceptual framework utilized to discover and validate electome network for anxious**
625 **internal state. A)** Affective and neurophysiological states (listed on the left) induced by behavioral and
626 experimental manipulations (listed along the top). Manipulations that were hypothesized to
627 induce/strengthen the internal state listed to the left are highlighted by green. Manipulations that were
628 hypothesized to decrease the internal state listed to the left are highlighted by red. Manipulations for
629 which there is no clear prediction for the impact on the affect state listed to the left are highlighted by
630 yellow. Mice used for each analysis are shown in the bottom row. New independent mice are
631 highlighted in green. **B)** Responses of Electome Networks 1 and 2 to experimental conditions utilized
632 throughout the study. Green and red boxes highlight conditions where network activity significantly
633 increased or decreased, respectively. An 'X' is used to denote the non-significant trends observed in
634 network activity response.

635 Methods

636 **Animal Care & Use**

637 Male C57BL/6J (C57) mice were purchased from Jackson Labs at 6-8 weeks of age. Unless otherwise
638 specified, mice were housed 3-5 per cage, on a 12-hour light/dark cycle, and maintained in a humidity-
639 and temperature-controlled room with water available *ad libitum*. *ClockΔ19* mice were created by N-
640 ethyl-N-nitrosourea mutagenesis that produced a dominant-negative CLOCK protein as previously
641 described [38, 39]. After backcrossing >10 generations on a BALB/cJ background, *ClockΔ19* mice and
642 their wild type littermate controls were bred from heterozygous (*ClockΔ19* -/+) breeding pairs. Male and
643 female mice, 8-16 weeks old, were used for electrophysiological experiments presented in this study.
644 Anxiety-related manipulations and behavioral tests were conducted with approved protocols from the
645 Duke University Institution Animal Care and Use Committee. The elevated plus maze (EPM) behavioral
646 experiments in *ClockΔ19* mice and their littermate controls were conducted at the University of
647 Pittsburgh. These experiments were performed in compliance with approved protocols from the
648 University of Pittsburgh's Institution Animal Care and Use Committee. The EPM behavioral experiments
649 in mice exposed to chronic social defeat stress were conducted at the University of Iowa. These
650 experiments were performed in compliance with approved protocols from the University of Iowa's
651 Institution Animal Care and Use Committee. All experiments were conducted in 6-20 weeks old mice,
652 and in accordance with the NIH guidelines for the Care and Use of Laboratory Animals.

653 Data Extraction and Processing

654 **Electrode Implantation Surgery**

655 The electrode implantation surgery procedure has been described previously[48, 49]. Mice were
656 anesthetized with 1.5% isoflurane, placed in a stereotaxic device and metal ground screws were secured
657 in above anterior cranium (midline) and cerebellum (midline). A third screw was secured laterally,
658 roughly half-way between the two other screws. Thirty-two tungsten microwires were arranged in array
659 bundles designed to target amygdala (Amy), medial dorsal nucleus of thalamus (MD), nucleus
660 accumbens core and shell (NAc), ventral tegmental area (VTA), medial prefrontal cortex (mPFC), dorsal
661 hippocampus (dHip), and ventral hippocampus (Hip) and were centered based on stereotaxic
662 coordinates measured from bregma (Amy: -1.4mm AP, 2.9 mm ML, -3.85 mm DV from dura; MD: -
663 1.58mm AP, 0.3 mm ML, -2.88 mm DV from dura; VTA: -3.5mm AP, ±0.25 mm ML, -4.25 mm DV
664 from dura; Hip: -3.3mm AP, 3.0mm ML, -3.75mm DV from dura; mPFC: 1.62mm AP, ±0.25mm ML, 2.25mm DV
665 from dura; NAc: 1.3mm AP, 2.25mm ML, -4.1 mm DV from dura, implanted at an angle of 22.1°). We
666 targeted cingulate cortex, prelimbic cortex, infralimbic cortex using the mPFC bundle by building a
667 0.5mm and 1.1mm DV stagger into our electrode bundle microwires. Animals were implanted bilaterally
668 in mPFC and VTA. All other bundles were implanted in the left hemisphere (supplemental Fig. S9). The
669 NAc bundle included a 0.6mm DV stagger such that wires were distributed across NAc core and shell. We
670 targeted basolateral amygdala BLA and central amygdala CeA by building a 0.5mm ML stagger and
671 0.3mm DV stagger into our AMY electrode bundle [26]. Notably, these implantation sites have been
672 homogenized across experimental preparations in the lab enabling comparative analysis across prior and
673 recently collected data sets. A metal ground wire was secured to the anterior and posterior screws, and
674 the implanted electrodes were anchored to all three screws using dental acrylic. To mitigate pain and
675 inflammation related to the procedure, all animals except those subjected to fear conditioning, chronic
676 mild unpredictable stress, and chronic social defeat stress received carprofen (5mg/kg, s.c.). Injections
677 were given once prior to surgery and then every 24 hours for three days following electrode
678 implantation.

679 **Neural Electrophysiological Data Acquisition & Video Recording**

680 Neurophysiological data were acquired using a Cerebus acquisition system (Blackrock Microsystems, Inc.,
681 Salt Lake City, UT). Animals were connected to the system using an M or Mu-32 channel headstage
682 (Blackrock Microsystems, Inc., Salt Lake City, UT) and a motorized HDMI commutator (Doric Lenses,
683 Quebec, Canada). Local field potentials (LFPs) were bandpass filtered at 0.5-250Hz and sampled/stored
684 at 1kHz. All neurophysiological data were referenced to a ground wire connecting the ground screws
685 above cerebellum and anterior cranium. Video recordings were acquired in real-time using NeuroMotive
686 (Blackrock Microsystems, Inc., Salt Lake City, UT) and synchronized with neurophysiological data.

687 **Histological Confirmation**

688 Histological analysis of implantation sites was performed using one of two protocols at the conclusion of
689 experiments to confirm electrode placement. Animals were perfused with 4% paraformaldehyde (PFA),
690 and brains were harvested and stored for 24 hours in PFA. Brains were either processed on a cryostat or
691 vibratome. For cryostat: Brains were then cryoprotected with sucrose and frozen in OCT compound prior
692 to being stored in -80C. Brains were sliced at 35 µm using a cryostat and stained with either DAPI
693 (AbCam) or cresyl violet (Sigma) using standard protocols. Slices were imaged at 4x and 10x
694 magnification on a Nikon eclipse fluorescent microscope. Alternatively for brains processed via
695 vibratome, mice were perfused with 4% paraformaldehyde (PFA, Electron Microscopy Sciences) in PBS,
696 and brains were harvested and post-fixed in 4% PFA and then transferred to PBS with 0.05mM sodium

697 azide. Brains were sliced at 40um (Leica Vibrating Blade Microtome) and stained with Hoechst (Fishersci)
698 containing mounting solution (9.6% Mowiol 4-88 (Sigma) in 24% glycerol, 0.1M Tris-Cl pH 8.5) on
699 standard microscope slides. Slides were imaged at 4x and 10x with Olympus Slide Scanner (VS200).

700 **LFP Processing to Remove Signal Artifact**

701 We employed a heuristic approach to eliminate recording segments containing non-physiological signals
702 identically to previous works [26, 50], and we paraphrase the processing procedure as follows: we first
703 computed the signal envelope for each channel by utilizing the magnitude of the Hilbert transform. For
704 any 1-second window in which the envelope surpasses a predetermined low threshold, we discard the
705 entire segment if, at any point within that window, the envelope exceeds a second, higher threshold. The
706 two thresholds were independently determined for each brain region. The high threshold was set at 5
707 times the median absolute deviation of the envelope value specific to that region. The choice of five
708 median absolute deviations as the high threshold was based on its approximate equivalence to 3
709 standard deviations from the mean in normally distributed data, while remaining robust to outliers. The
710 low threshold was empirically established as 3.33% of the high threshold. If more than half of the
711 window was removed for a given channel, we also removed the remaining portion of that window for
712 that channel. Additionally, any windows where the standard deviation of the channel is less than 0.01
713 were excluded.

714 **Feature Extraction**

715 Feature extraction was performed identically to previous works [26, 50], and we paraphrase the
716 generation procedure as follows: LFPs were averaged across wires within the same region to generate a
717 composite LFP measure. Signal processing was conducted using Matlab (The MathWorks, Inc., Natick,
718 MA). For LFP Power, a sliding Fourier transform with a Hamming window was applied to the averaged
719 LFP signal utilizing a 1-second window and a 1-second step. Frequencies ranging from 1-56Hz were
720 analyzed. LFP cross-structural coherence was computed from pairs of averaged LFPs using magnitude-
721 squared coherence, where coherence is a function of the power spectral densities of brain regions A and
722 B and their cross-spectral densities.

$$723 C_{AB}(f) = \frac{|Psd_{AB}(f)|^2}{Psd_{AA}(f)Psd_{BB}(f)}$$

724 Spectral Granger causality features [51] were computed using the multivariate Granger causality
725 (MVGCA) MATLAB toolbox [52]. The data underwent a high-pass Butterworth filter with a stopband at
726 1Hz and a passband at 4Hz. Granger values for each window were calculated using a 20-order AR model
727 through the GCCA_tsdata_to_smvgc function of the MVGCA toolbox. Granger causality values were
728 determined for all integer frequency values within the specified range for all directed pairs of brain
729 regions in the dataset[50].

730 **Acute Fluoxetine Administration (FLX)**

731 For the behavioral fluoxetine experiments, mice were randomly assigned to receiving either an injection
732 of fluoxetine or saline 30 minutes prior to being placed on the EPM. Fluoxetine (Sigma) was made up in
733 0.9% NaCl to a concentration of 1mg/mL and then injected at 10mL/kg for a final concentration of 10
734 mg/kg, i.p.[28]. Physiologic saline injection was injected at 10 mL/kg as well as a control for injection
735 volume. Animals were habituated to i.p. injections daily for 1 week prior to behavioral testing. Though

736 fluoxetine only has an 8-hr half-life in mice, a lengthy washout period was chosen to ensure no traces of
737 the drug remained.

738 For electrophysiologic recordings, animals used for training the final model followed a standard
739 pharmacological crossover design with a 2-week washout period. Specifically, after habituation to the
740 experimental room for 1 hour, mice were pseudorandomly assigned to receiving a or saline injection.
741 Neural recordings were then obtained for an hour. Two weeks later, animals underwent a second one-
742 hour recording session after receiving the other treatment. To test the final model, we utilized a protocol
743 in which mice were two recording were performed at a much closer interval. Specifically, after
744 habituation to the experimental room for 1 hour, mice were treated with saline and neural data was
745 recorded for an hour. Several hours later, mice were subjected to a second recording session
746 immediately following treatment with fluoxetine.

747 **Elevated Plus Maze (EPM)**

748 The EPM assay is widely employed to measure anxiety behavior in mice[53]. The EPM is comprised of
749 four arms arranged in a cross shape, each measuring 30.5cm in length and 30.5cm in width, positioned
750 at a height of 91.4cm from the floor. Additionally, there is a central region measuring 5cm by 5cm.
751 Among the arms, two are designated as 'closed,' enclosed by walls that are 16.5cm in height on three
752 sides, while the other two are 'open' and surrounded by a low piece of tape, approximately 1mm in
753 height.

754 Two days prior to testing, mice were gently handled in the experimental room for roughly 1 minute per
755 animal. Following gentle handling, mice were habituated to the testing room for 1 hour in a testing
756 'home cage'. After this hour, mice were returned to group housing in their original home cage. This
757 procedure was repeated one day prior to experimental testing. On the testing day, mice were habituated
758 to the experimental room in their individual testing home cage for one hour. Mice were then connected
759 to the recording system and habituated for an additional 10 minutes. Following 5 minutes of neural and
760 video recordings from an overhead camera, mice were placed in the center of the EPM facing one of the
761 closed arms. Neural recordings and video data were acquired for an additional five-ten minutes. Testing
762 was performed at 175lux, during the light cycle.

763 **Bright Open Field (BOF)**

764 The bright open field assay is also widely employed to measure anxiety behavior in mice[53]. This assay
765 consists of a square arena (46 cm x 46 cm x 30 cm), in which the innermost third (i.e., 'center zone') is
766 considered to be more anxiogenic zone than the outermost two thirds (i.e., 'periphery zone'). Mice were
767 habituated to the testing room in an individual experimental home cage using the same procedure
768 described for the EPM. On the testing day, mice connected to the recording system and five minutes of
769 neural and video data (from an overhead camera) were acquired while mice were in their individual
770 testing home cage. Mice were then placed in the periphery of the BOF, and an additional five minutes of
771 data were acquired while mice freely explored the arena. Testing was performed at 125lux, during the
772 light cycle.

773 **Delayed sucrose reward apparatus**

774 The task chamber was constructed from Lego Duplo pieces of varied color, shape, and size. The
775 apparatus had approximate dimensions of 48cm wide x 35cm deep x 30cm tall, and each wall was
776 visually distinct. A nose poke detector was in the center of each wall, placed 1cm above the floor. There

777 was also an LED light directly above each nose poke detector. The chamber was also equipped with four
778 fluid dispensers, which were calibrated to release 5 μ L of 10% sucrose directly into each nose poke
779 detector. The reward for three of the ports was also flavored with pumpkin, almond, or orange oil. The
780 location and reward type remained fixed throughout each phase of experimental testing for all animals.
781 During the task, the chamber was illuminated to 30 lux. The system was also equipped with speakers and
782 an audiometer, and reward cues were played at 68dB. Signals from the nose poke detectors, LED lights,
783 fluid dispensers, and audiometer were digitized and stored in parallel with our neural recordings.

784 **Delayed sucrose reward training and task**

785 Delayed sucrose reward task was modeled after a prior test in which mice had to remain in a spatial
786 location in order to receive a food reward [54, 55]. After 7-14 days of recovery from surgical
787 implantation, mice were food-deprived to 90% of their free-feeding body weight. During a training
788 session, a mouse was connected to a recording cable, and placed in the temporal goal progress task
789 apparatus. The training procedure is as follows:

- 790 • Stage 1: On the first day of training, mice freely accessed the testing chamber for 60 minutes.
791 Each poke into a nose poke detector triggered a 500ms tone at 4000Hz and 5 μ L of reward
792 release directly into the poke detector. This stage was repeated over 2 days.
- 793 • Stage 2: On the third and fourth day of training, mice were placed into the recording chamber
794 together with their cage mates, without a recording cable. Mice were then allowed to freely
795 explore the recording chamber for 120 minutes.
- 796 • Stage 3: On the fifth day, mice resumed individual training, during which they advanced in task
797 difficulty after meeting specific criteria.
 - 798 ○ 3a: Each detected poke activated a 500ms 4000Hz tone and released a 5 μ L reward at
799 the beginning of the tone.
 - 800 ○ 3b: Each detected poke activated a 500ms 4000Hz tone and released a 5 μ L reward at
801 the end of the tone.
 - 802 ○ 3c: Each detected poke activated a 500ms 4000Hz tone and released a 5 μ L reward at
803 the end of the tone if a mouse remained in the detector.
 - 804 ○ 3d: Each detected poke activated a 500ms 4000Hz tone and released a 5 μ L reward one
805 second after the start of the tone if a mouse remained in the detector.
 - 806 ○ 3e: Each detected poke activated a 500ms 4000+387Hz tone, and a second 500ms
807 4000Hz tone, one second later. A 5 μ L reward was released at the end of 1.5 seconds if a
808 mouse remained in the detector.
 - 809 ○ 3f: Each detected poke activated a 500ms 4000+387Hz tone, and a second 500ms
810 4000Hz tone, one second later. A 5 μ L reward was released at the end of 2 seconds if a
811 mouse remained in the detector.
 - 812 ○ 3g: Each detected poke activated a 500ms 4000+387+387Hz tone, and a second 500ms
813 4000+387Hz tone one second later, and a final 500ms 4000Hz tone one second later. A
814 5 μ L reward was released at the end of 2.5 seconds if a mouse remained in the detector.
815 This training pattern continued until mice passed training at the 5-second delay. For
816 these trials, a tone of diminishing frequency was played at the beginning of each
817 second, and mice received reward if the poke hole was activated for the entire test
818 interval.
 - 819 • A mouse passed a training stage when it completed 120 rewarded pokes in one day, or 120
820 rewarded pokes in two consecutive days and the second day reward count was greater than or
821 equal to the reward count of the first day. Mice regressed to a prior training stage if they failed

822 to complete a stage after five days, or if they received fewer than twenty rewards during a
823 session. The data utilized for our electrophysiological analysis was acquired after mice
824 completed training at the 5-second delay.

825 **Social Preference Assay**

826 A previously published data set was used to assess the impact of social interaction on electome network
827 activity [26]. Briefly, mice implanted with electrodes at the same brain coordinates utilized for this study
828 were allowed to explore a rectangular arena (61cm x 42.5cm x 22cm, LxWxH) for 10 minutes. Two clear
829 plexiglass walls divided the area into two equal chambers. Each chamber contained a circular holding
830 cage (8.3cm diameter and 12cm tall) containing either a novel object or a C3H target mouse matched for
831 sex and age. Data was collected across 6-10 testing session/mouse. Video data was tracked using Bonsai
832 Visual Reactive Programming software, and network activity was analyzed for periods in which mice
833 were within ~5cm of the novel object or target mouse.

834 **Optogenetic Stimulation and Electrical Recordings**

835 We modeled previously published methods for targeting the ventral hippocampus → lateral
836 hypothalamus circuit [20]. Specifically, mice were anesthetized with 1.5% isoflurane, and placed in a
837 stereotaxic device. A 33-gauge Hamilton syringe was used to bilaterally infuse 0.5 μ l of AAV5-ChR2-EYFP
838 at a rate of 0.1 μ l/min into ventral hippocampus (-3.16mm AP, 3.3mm ML, -3.75mm DV from dura). Two
839 weeks, later mice were implanted with recording electrodes using the procedure and brain targets
840 described above ('Electrode Implantation Surgery'). These electrodes included a bundle that was used to target
841 lateral hypothalamus (LH: -1.95AP, 0.5ML, -4.75DV). A 100 μ m diameter fiberoptic (Doric Lenses)
842 fiberoptic cannula was built into the LH bundle with the tip situated 250 μ m above the tip of the LH
843 microwires bundle [56, 57]. *In vivo* recordings were conducted after 2 weeks of recovery. Mice were
844 habituated to the experimental room/setup for the two days preceding experiments.

845 Mice were connected to the recording system using a 32-channel M headstage, and a fiberoptic patch
846 cable, and placed in a new home cage for 1 hour. On the testing day, mice were connected and placed in
847 the same experimental home cage. After 40 minutes of additional habituation, neural data was recorded
848 for 20 minutes. Mice were then stimulated with blue or yellow light for 10 minutes. Light stimulation was
849 delivered at 20hz, 5mW, with 5ms pulses and verified using a power meter (Thorlabs, PM100D). Mice
850 were pseudorandomized to stimulation with either blue (473nm wavelength, CrystaLaser, CL473-025-O)
851 or yellow light (593.5nm, OEM Laser Systems, Model No. MGL-F-593.5/80mW).

852 One week later, mice were subjected to a second recording with the other laser, using the same protocol
853 described above. Thus, each mouse was stimulated with blue and yellow in pseudorandomized order
854 across the two sessions.

855 **Fear Conditioning**

856 Mice were implanted with electrodes as described above ('Electrode Implantation Surgery'). Following a
857 two-week recovery period, mice were trained in a classic cued fear conditioning paradigm during which
858 an auditory tone (conditioned stimulus; CS) was paired with an aversive air puff (unconditioned stimulus,
859 US). The CS consisted of a 30 second, 10 kHz, 80dB, continuous auditory tone that was generated using
860 MATLAB. The US consisted of a 2-second, 40 PSI, air-puff that was introduced through 4 pumps built into
861 each of the testing chamber's walls. Mice were randomly assigned to 2 groups: Fear conditioned
862 (CS+/US+) and Control (CS+/US-). Behavioral testing was conducted in two distinctly different behavioral

863 contexts (context A and B). Context A was a 10"×10"×11" (L×W×H), striped chamber made of alternating
864 black and white Legos®. Context B was 6"×12×11" chamber, with walls consisting of mixed colored Legos.
865 Context A had a smooth floor, while context B had a textured floor.

866 Prior to conditioning (Day 0), mice were habituated to the behavioral room for 2 hours. On Day 1 of the
867 task, mice were connected to the recording system, and placed into context A for 2 minutes. The
868 conditioned group was exposed to 7 trials of the CS. The US was presented during the last 2 seconds of
869 each tone, and there was a pseudorandom interval ranging from 60-120 seconds between each trial. The
870 control group was exposed to 7 trials of the CS without the US. Each group remained in Context A for 1
871 minute after the last trial concluded. The neural and video data were collected throughout the
872 recordings. We also collected a continuous signal corresponding to the onset and offset of the CS.

873 Mice were then exposed to a cued recall session on Day 3. Here, mice were connected to the recording
874 system and placed into Context B. After 3 minutes, mice were presented with the CS for 3 minutes.
875 Neural and video data was recorded throughout this interval, and the freezing behavior was quantified
876 using Ethovision X12 (Noldus, Wageningen, the Netherlands) to detect the percentage of time during the
877 CS presentation that the animal did not move. A subset of the conditioned mice (N=5) was also exposed
878 to an extinction protocol on Day 2. For these experiments, mice were presented with the CS, but not the
879 US, in Context A. Since our objective was to quantify neural responses to fear conditioning on Day 1, and
880 exposure to the one-day extinction protocol had no impact on freezing behavior on Day 3 ($t_{26}=0.11$ and
881 $P=0.92$ using two-tailed unpaired t-test), we pooled all the mice in the CS+/US+ group for the analyses
882 presented in the text.

883 **Chronic Social Defeat Stress (cSDS)**

884 These methods parallel those described in our prior work [27, 57]. Data for our electrophysiological and
885 behavioral analyses were obtained from two different cohorts of implanted mice. Behavioral data on the
886 EPM was assessed from mice implanted in a different set of brain regions than those used for this study.
887 Neurophysiological recordings in the home cage were obtained from mice implanted in the same brain
888 regions utilized in this study. Data from a subset of these mice were presented in our published work
889 [26].

890 We modeled our chronic social defeat stress protocol after previously published work [42, 46]. Singly
891 housed male retired-breeder CD1 (Charles River) mice were used as resident aggressors for the social
892 defeat. Experimental animals were pseudorandomly assigned to control or stress groups, such that cage
893 mates were distributed across groups. Six to seven-week old male mice were implanted with electrodes
894 as described above ('Electrode Implantation Surgery'). Stress experiments were initiated two weeks after
895 surgical recovery. All C57Bl6/J (C57) mice were singly housed prior to being subjected to cSDS, and highly
896 aggressive CD1s were used for the stress protocol. Briefly, C57 experimental mice were exposed to CD1
897 aggressors for 5 mins and only removed early in the event of serious physical injury (which never
898 happened for more than two defeated mice animals per defeat). Defeats were run in dim light conditions
899 (~40-50 Lux). After 5 mins, C57 mice and CD1 aggressors were separated with a perforated divider for 24
900 hours. Control C57 mice were placed on either side of a similar cage setup and cage-mates were rotated
901 each day. This process was repeated for a total of 10 days. Triage was performed on animals following
902 each day of defeat to check for and treat any wounds. After this check, the lights were turned off. Mice
903 that exhibited significant injuries during social defeat stress were removed from post-stress analysis.

904 All control and stressed mice were subjected to neural recording in their home cage one day following
905 completion of the chronic social defeat stress protocol. Mice were then subjected to a forced interaction
906 test during which they were placed in a semi-protected circular sub-chamber. After ten minutes, a novel
907 CD1 aggressor mouse was placed within the same arena directed outside sub-chamber for 5 minutes
908 [27, 57, 58].

909 A choice social interaction test was used to categorize stressed mice as susceptible or resilient [41, 42,
910 57, 58]. This assay was performed 2 days following the last social defeat session, during the dark cycle of
911 each mouse. Testing was conducted in a room with two red lamps facing the ceiling (2-10 lux). Animals
912 were habituated to the room for approximately two hours prior to the start of testing. Experiments were
913 randomized and balanced to include alternating control and experimental mice spread throughout the
914 duration of experiment. For each trial, an animal was placed in the center of an opaque, white, 18" x 18"
915 box with 18" high walls with a wire-mesh sub-chamber at the center of one wall for 150 seconds. Then a
916 CD1 mouse (low/non-aggressive) was placed in the enclosed sub-chamber, and the experimental mouse
917 was placed back in the box for 2 minutes and 30 seconds. Behavior was recorded for the entirety of each
918 trial. Stressed mice that showed higher interaction time with the empty sub-chamber than the sub-
919 chamber containing the CD1 mouse were defined as susceptible. Mice that showed higher interaction
920 time with the sub-chamber containing the CD1 were defined as resilient. Between mice, all chambers
921 were cleaned with Super Sani-Cloth germicidal disposable wipes (PDI, Orangeburg, NY) or 70% ethanol,
922 and dried with kimwipes. Data was analyzed using Noldus Ethovision version 15.

923 Mice subjected to cSDS and their non-stressed controls were tested in the EPM 12 days following the last
924 social defeat session. Animals were tested during their dark cycle in a dark room with two red light lamps
925 facing the ceiling (2-10 lux at the surface of the behavioral arena). Animals were acclimated to the room
926 for >1 hour prior to starting experiments during their dark cycle. For each experimental trial, animals
927 were placed in the center of the apparatus facing the same side each trial and allowed to explore the
928 maze for 5 minutes. After 5 minutes, the animal was removed from the apparatus and placed back into
929 its home cage. The trials were randomized and balanced with alternation of control and experimental
930 animals. After each run, the EPM was thoroughly cleaned with Super Sani-Cloth germicidal disposable
931 wipes (PDI, Orangeburg, NY) and dried with kimwipes. Data was analyzed using Noldus Ethovision
932 version 15.

933 **Chronic Mild Unpredictable Stress**

934 We modeled our chronic mild unpredictable stress protocol after previously published work [44, 45]. C57
935 male mice were implanted with electrodes to target the same brain regions utilized to learn the anxiety
936 related networks, at age 7-9 weeks. Two weeks later, cages of mice were pseudorandomized into a stress
937 or control group. Control mice were subjected to gentle handling twice a week. The stress group was
938 exposed to 2 aversive experiences each day – one during the light cycle and one during the dark cycle –
939 for eight weeks, as previously described [44]. The stressors were as follows:

- 940 • physical restraint – mice were placed in a ~50mL plastic cone (with openings for breathing on
941 both ends) for 1 hr
- 942 • shaking – a cage of mice was placed on an orbital shaker for 1hr at 60 rpm
- 943 • overnight illumination – mice were exposed to regular room light during the 12 hr dark cycle
- 944 • inverted light cycle – mice were exposed to dark-cycle room conditions during the light cycle
945 and light conditions during the dark cycle
- 946 • tilted cage – cages were tilted at a 45 degree angle for 12 hrs

947 • strobe – mice were placed in a room with a strobe light during the dark cycle for 12 hrs
948 • wet bedding – cage bedding was saturated with water for 12 hr
949 • soiled rat bedding – cage bedding was replaced with used rat cage bedding for 3 hrs
950 • cold exposure – mice were placed in a cold room (4°C) for 1 hr
951 • missing bedding –bedding was completely removed from the cage for 12 hr.
952 • food and water restriction – food and water was removed for 12 hr during the dark cycle
953 • overcrowding – cage space was reduced by 50% for 12 hr during the dark cycle

954 Stressors were presented in pseudorandomized order. Body weight was monitored once a week to
955 ensure mice didn't lose more than 10% body weight during the stress proposal.

956

957 **Model Selection and Training**

958 **Label Assignment for Training Datasets**

959 To make use of supervised machine learning methods, per-sample anxiety state labels must be assigned
960 for our training assays. For the acute FLX assay, we accounted for drug activation time and assigned all
961 timepoints within the last 30 minutes of the 1-hour recording to either a heightened or lower anxiety
962 state after mice received FLX or saline, respectively. For the EPM and BOF assays, anxiety states within
963 the assay can be ambiguous. To prevent mislabeling of anxiety states in assays, we assign all timepoints
964 for which mice are in the EPM or BOF as a heightened anxiety state. We then make use of recordings
965 taken while the mice are in their home cage environment and label those as a lower anxiety state. With
966 this formulation, all three training assays now have the same labeling nomenclature of heightened
967 anxiety and lower anxiety states regardless of the anxiogenic assay, allowing for easy combination and
968 comparison during model training.

969 **Training, Validation, and Test Splits**

970 Once features had been extracted for the FLX, EPM, and BOF assays, mice were subsequently split into
971 three groups: training data, validation data, test data. These splits were performed by mouse such that
972 all data belonging to a mouse was all contained in the same group. Splitting by mouse is critical as it
973 prevents a machine learning model from simply learning the identity of a mouse in the training data to
974 achieve inflated performance on holdout data. Additionally, we wished to see how our model performs
975 on data from completely new subjects, which is a situation analogous to the conditions of a clinical
976 setting. Training data and validation data were used for model development where many sets of
977 hyperparameters and model formulation may be tested. Test data were kept as true hold out data, which
978 we did not observe or test our model on until the final model architecture was determined. Several mice
979 were placed in more than one assay; therefore, care was taken to ensure that all such mice were in the
980 same group across all assay splits. That is, if a mouse was in the training group for the FLX assay, then it
981 should be in the training group for all other assays. Once final model parameters were determined,
982 training and validation datasets were combined for a final training run, which was then validated on the
983 test data. Training, Validation and Test groups had: 9, 4, and 6 mice respectively for the FLX assay; 21, 5,
984 and 11 mice respectively for the EPM assay; and 16, 3, and 9 mice respectively for the BOF assay. There
985 were 17 mice from the training groups, and 7 from the test groups were shared in 2 assays (only
986 between EPM and BOF). There was a single mouse in the test group that was exposed to all three assays.

987 **Discriminative Cross-Spectral Factor Analysis (dCSFA-NMF)**

988 Discriminative Cross-Spectral Factor Analysis - Nonnegative Matrix Factorization (dCSFA-NMF) is a
989 machine learning framework for discovering key predictive factors relevant to a behavioral assay or
990 emotional state of interest [25]. This method has been used previously to detect brain networks
991 corresponding to stress and social activity in mice using LFP data[26]. Similar to other factor models that
992 have been used in neuroscience, such as PCA, ICA and NMF, dCSFA-NMF identifies underlying
993 components, interpreted to be networks, of connectivity. The superposition of these networks then
994 explains the observed neural activity. While the previously mentioned unsupervised methods can
995 identify networks of activity, discovered networks are learned to explain the maximum amount of the
996 observed neural activity. As it is unlikely that anxiety and other emotional states make up one of these
997 dominant networks, dCSFA-NMF makes use of a supervision component to ensure that one or more of
998 the networks are correlated with a behavior or emotional state of interest.

999 Rigorously, the model learns K fixed components $W \in \mathbb{R}^{K \times M}$ that can reconstruct observed data $X \in$
1000 $\mathbb{R}^{N \times M}$ using an array of network activity scores $s \in \mathbb{R}^{N \times K}$ such that $X = sW$. W and s are also
1001 constrained to be positive as the features of use – power, coherence, and Granger causality – observed
1002 in X are also non-negative. Network activity scores are inferred from the observed data using an encoder
1003 function $s = f_\theta(X)$, which can take the form of a neural network or linear model. The activity scores
1004 $s_s \in \mathbb{R}^{N \times Q}$ of the $K \geq Q \geq 1$ supervised components are then used in a logistic regression model f_ϕ to
1005 predict the behavior of interest $y = f_\phi(s_s)$. We constrain our predictions to use a sparse combination of
1006 all networks, namely only the supervised networks, to narrow the scope of our network discovery and
1007 reduce the total number of comparisons. The parameters of the model are then optimized using the loss
1008 function,

$$1009 \min_{W, \theta, \phi} \sum_{i=1}^N \mathcal{L}_x(x_i, W f_\theta(x_i)) + \lambda \mathcal{L}_y(y_i, f_\phi(f_\theta(x_i))) + \alpha \mathcal{L}_{w_s}(x_i, W f_\theta(x_i)).$$

1010 Here, \mathcal{L}_x is the reconstruction error between the original power, coherence, and Granger features and
1011 those generated by the product of our network scores and networks, sW . In this work we make use of
1012 the Mean-Squared-Error (MSE) function. Our predictive loss \mathcal{L}_y is a binary cross-entropy loss and
1013 penalizes our model for incorrectly predicting the behavioral state of each window. The impact of the
1014 predictive loss can be tuned using the hyperparameter λ . Lastly, we impose a second reconstruction loss,
1015 \mathcal{L}_{w_s} , on the supervised network scores. This reconstruction loss prevents our neural network encoder f_θ
1016 from learning an uninterpretable near-zero noise embedding for the supervised scores that predicts well
1017 with little to no contribution to explaining neural activity. This loss can be formulated as another MSE
1018 loss between the outer product of the supervised network activations and the supervised electome
1019 network and the features. Alternatively, this loss can be formulated as a penalty to drive the supervised
1020 network scores to reconstruct the residual of the unsupervised networks and features. We used the
1021 latter in our analysis.

1022 **Performance Metrics – Predictive Modeling**

1023 To evaluate the predictive performance of our model, we used the receiver operating characteristic
1024 curve area under the curve (ROC-AUC). This metric is common in machine learning literature and can be
1025 viewed as a class rebalanced accuracy. AUC takes values on the range [0,1] where AUC=0.5 indicates
1026 chance performance in prediction. AUC=1 indicates that the model is perfectly predicting class

1027 assignment, and an AUC=0 indicates that the model is perfectly predicting but with a flipped labeling.
1028 AUC can also be evaluated using the Mann-Whitney-U statistical test.

1029 For evaluating our models, we obtained an AUC for each mouse and then reported the group mean and
1030 standard error of the mean for each paradigm. Many of our behavioral contexts have varying recording
1031 lengths and by reporting AUC for each mouse separately, we addressed the possibility of our model
1032 overfitting to the neural activity of mice in paradigms with longer recordings and therefore more
1033 samples. Furthermore, emotional states such as anxiety are complex and often have heterogenous
1034 presentations across individuals. By reporting AUC by mouse, we opened opportunities for post-hoc
1035 analyses into mice with heterogenous predictions. In short, by evaluating AUC by mouse, we allowed for
1036 more uniform evaluation across a wide variety of anxiogenic contexts, a cleaner evaluation of model
1037 generalizability, and post-hoc data analysis.

1038 **Performance Metrics – Generative Modeling**

1039 We take interest in how well our models explain neural activity in the brain. We evaluated how well this
1040 is done by quantifying the mean-squared-error of the model's predicted power, coherence, and Granger
1041 causality features and the originally observed values.

1042

$$MSE(x, \hat{x}) = \frac{1}{N} \sum_{n=1}^N (x_n - \hat{x}_n)^2$$

1043 During model training, we weighted the reconstruction of each of our feature types (power, coherence,
1044 Granger) by their prevalence, such that power holds equal importance to coherence and Granger despite
1045 representing a smaller number of power features.

1046 **Performance Metrics – Model Consistency**

1047 To evaluate representation consistency in our model, we used the cosine distance formula which
1048 calculates the angular distance between two vectors on a scale of [0,1] due to the positivity constraint of
1049 the vectors, where 0 represents perfect alignment and 1 are completely orthogonal vectors. The cosine
1050 distance between two vectors, A and B is given by:

1051

$$\mathcal{D}(A, B) = 1 - \frac{A \cdot B}{\|A\| \|B\|}$$

1052 We then calculate the cosine distance between each supervised network in each fold and all supervised
1053 networks in all other folds. Using the Hungarian Matching Algorithm [59], we then pair each supervised
1054 network in each fold with the best supervised network in each other fold such that each network has a
1055 unique match in each fold. We then weighted the cosine distance between matched networks by the
1056 impact that a network score had on the prediction relative to the other networks in the same fold, such
1057 that predictive networks had a higher weighting than non-predictive networks. We performed this
1058 weighting scheme to reduce penalization of mismatched networks that were not used to predict
1059 behavior, and were thus likely irrelevant to the underlying dynamics of anxiety. This metric captured the
1060 distance between the most similar networks across runs. A consistent representation or network
1061 discovery will yield a low distance score.

1062 **Hyperparameter Selection Strategy**

1063 The dCSFA-NMF model requires selection of several hyperparameters. These factors include the number
1064 of electome factors K , number of supervised networks Q , the importance of the supervised task λ , and
1065 the importance of the supervised factor reconstruction α . Generally, the number of electome factors
1066 control how well we can reconstruct the original LFP data. The number of supervised networks does not
1067 greatly affect the overall prediction quality (Supplemental Fig. S3), however, increasing the total number
1068 of supervised networks can significantly improve the representational consistency of the behaviorally
1069 relevant networks discovered. This improved consistency is critical for validation of our networks and for
1070 using network representations to motivate future hypotheses and experiments. Identifying a suitable
1071 number of supervised networks is especially crucial in the case where multiple true underlying networks
1072 may be driving the emotional or behavioral state. Underspecifying the number of supervised networks
1073 to learn may result in the model inconsistently swapping across a subset of these suitable underlying
1074 networks.

1075 To choose the value of K , we performed grid-search cross validation using $K = \{2, 4, \dots, 58\}$. Each model
1076 was trained on the training mice for all three assays jointly and evaluated on the validation mice for all
1077 assays, per the multi-assay training procedure. We observed that the predictive performance of all three
1078 assays stabilized at $K=18$ with little change across all three assays for subsequent values. Subsequently,
1079 we found that the reconstruction performance plateaued at $K=30$. Given that the predictive performance
1080 was consistent for $K>18$, we selected $K=30$ as the total number of networks that our model would learn.

1081 To choose a value of Q , we aimed to balance 3 design priorities in our model formation. First, our model
1082 must be predictive of the behavior of interest. Second, our model should find a relatively consistent
1083 solution (i.e. discovered brain networks should be similar across multiple runs). Lastly, our solution
1084 should be simple. Suppose we were to supervise all the networks in our model. We likely would achieve
1085 strong predictive performance; however, multiple-hypothesis testing problems would arise as we begin
1086 to test the relationships of each network with behavior. Therefore, we wished to find a stable, predictive
1087 solution that makes use of the smallest Q number of supervised networks possible. To ascertain the
1088 value of Q we should use, we tested our model with values $Q = \{1, 2, 3, 4, 5, 10, 20\}$ with $K = 30$.

1089 To evaluate predictive performance of our model, we performed 4-fold cross-validation-over-subjects for
1090 each value $Q \in \{1, 2, 3, 4, 5, 10, 20\}$ and evaluated predictive performance on each fold's validation data.
1091 We observed that the average AUC across all three assays peaks around $Q \in \{3, 4\}$ and declined slightly
1092 as the number of supervised networks greatly increased.

1093 Additionally, we constrained our model to only identify supervised networks with scores that positively
1094 correlated with predicting a heightened anxiety state, as we aimed to discover an anxiety network rather
1095 than an anxiety inhibition network.

1096 We selected stochastic gradient descent as our optimization algorithm as SGD is known to offer better
1097 generalization performance despite requiring longer training times [60]. We used a learning rate of .001
1098 and a momentum value of .9.

1099 We found that pretraining our model factors provided a substantial improvement on representational
1100 stability and predictive accuracy. We performed pretraining on our factors by training a traditional non-
1101 negative matrix factorization model on our data, and then sorting the components based on their
1102 correlation with network performance. For our multi-assay training formulation, our datasets were
1103 imbalanced with the longer-duration FLX recordings making up a much higher percentage of our total
1104 data, so we bootstrapped samples in EPM and BOF such that each experimental context is equally

1105 influential on our network pretraining. We then froze the weights of our sorted NMF factors and trained
1106 the encoder to learn scores corresponding to the fixed factors and the classifier to predict corresponding
1107 labels based on those scores. We found that training the encoder and classifier for 500 epochs was
1108 sufficient for the optimization algorithm to converge and stabilize at a minimum of the loss function.
1109 After pretraining, we then unfroze all parameters and trained them jointly. We found that an additional
1110 500 epochs were sufficient for the model training to converge and stabilize at a minimum of the loss
1111 function.

1112 **Single-assay Model Formulation and Training**

1113 For single-assay model training, we isolated one of our three training assays (EPM, BOF, FLX) to use as
1114 our training dataset for dCSFA-NMF. While we focused on our model training using the FLX assay in the
1115 results section, we also trained models using the EPM and the BOF as singular training datasets. Each of
1116 our three single-assay models used the same labeling structure outlined above, where for the EPM data,
1117 home-cage windows were labeled as a low anxiety state and EPM windows are labeled as high anxiety
1118 state. For the BOF assay, home cage windows were labeled as a low anxiety state and BOF windows were
1119 labeled as a high anxiety state. Lastly, FLX assigned saline windows as a low anxiety state and fluoxetine
1120 windows as a high anxiety state.

1121 Models were trained using 4-fold cross validation, where fold training and validation splits were made by
1122 partitioning the non-holdout mice into 4 separate permutation groups of training and validation mice.
1123 Predictive performance was evaluated on the concatenated training and validation partitions of the
1124 other two assays not used for model training. It is worth noting that some bias exists in this evaluation,
1125 as some mice in the other two assays may be present in the training set of the training assay. However,
1126 even with this bias, these models failed to generalize across assay. The test, or holdout, partitions of all
1127 three assays are left untouched as each of the single-assay models failed to generalize to the validation
1128 sets of all three assays jointly.

1129 We ultimately performed our single-assay model analysis twice. First, we trained the models using a
1130 single supervised network and a comparable procedure to prior similar works[26]. Second, after we
1131 identified the value of multi-assay training and tuning for multiple consistent predictive networks, we
1132 reperformed our single training analysis with three supervised networks and 27 unsupervised networks
1133 to allow for one-to-one comparison to the multiple-assay model. This second round of training was
1134 important as we wished to properly attribute whether generalization improvements came from
1135 increased predictive capacity or were due to the multiple assay training procedure. While only the
1136 results using three supervised networks are shown throughout the text, the same trends (i.e., failure to
1137 generalize) were observed for our models using one supervised network.

1138 **Multiple Assay Model Formulation and Training**

1139 As mentioned above, our multiple assay model formulation involves concatenating the EPM, FLX, and
1140 BOF training datasets into a single training dataset. As the labels of each of these assays are distilled into
1141 heightened anxiety and lower anxiety states depending on the assay of interest, simple concatenation is
1142 possible.

1143 For multiple assay model training, we first perform 4-fold cross validation on the training and validation
1144 partitions of all three assays for hyperparameter tuning. Like our training partitions discussed in the
1145 Train, Validation, Test splits section, we constrain our fold partitions such that if a mouse is in the

1146 validation split for one assay, it cannot be in the training split for another assay and vice versa. This is
1147 necessary to remove bias in our evaluation.

1148 Finally, training and validation partitions for all three assays are concatenated into a final training
1149 dataset. We then train our model using the final set of hyperparameters discovered in our
1150 hyperparameter tuning section and evaluate the model on the holdout test sets for each of the three
1151 assays.

1152 **Model Validation**

1153 **Networks Decoded Assays Jointly**

1154 Given that our dCSFA-NMF model was trained to learn three separate networks, we wished to validate
1155 that each of the learned networks are not simply learning to predict for each of the three training assays
1156 independently. Networks that truly captured anxiety should not be relevant to only one context where
1157 anxiety may be experienced, but should generalize to multiple contexts. Here, we evaluated the per-
1158 mouse AUC of each of the networks separately using the Mann-Whitney-U test for each of the three
1159 training assays (Fig. 2D).

1160 **Individual Network Contribution Towards Prediction**

1161 We also consider the possibility that one or more of our networks may not contribute substantially to
1162 the overall prediction of the mouse internal state. To evaluate this, we considered the mean prediction
1163 logit of each network given by the mean network score multiplied by its corresponding logistic
1164 regression coefficient and normalized it by the sum the mean prediction logits of all supervised
1165 networks. More formally, we define the mean logit of an individual network as $z_j = \bar{s}_j \phi_j$, where \bar{s}_j is the
1166 mean network activity score from the holdout data for network j and ϕ_j is the dCSFA logistic regression
1167 coefficient corresponding to that network activity score. Since we constrained our network to have
1168 positive network activity scores and logistic regression coefficients, no absolute value or squaring of the
1169 logits is necessary for comparison. We then evaluate the contribution of each network j as:

$$1170 \quad Contribution(j) = \frac{z_j}{\sum_{i=1}^K z_i}$$

1171 This metric quantifies the average predictive impact of each network on the holdout data.

1172 **Detailed Methods for validation analyses**

1173 **Location-based dynamics in network activity**

1174 To compare post-exposure effects for the safe and unsafe zones in the EPM/BOF on Network 1 and
1175 Network 2 dynamics, we extracted data from each timepoint in each location. We also extracted data in
1176 the five seconds preceding and following these timepoints. Here, the locations of C57 mice (closed
1177 arm/open arm/center for EPM and center/periphery for BOF) were encoded using Ethovision on 50
1178 frame-per-second video recordings of the task, tracked at 25fps based on their center of mass. Frame
1179 labels were then aligned with our one-second resolution LFP features by assigning the label of each
1180 window to be the label making up most of the Ethovision frames for that timepoint. For The *ClockΔ19*
1181 mice and their littermate controls, the location was determined based on their head location. A window
1182 was labeled as open arm if 20% of the Ethovision frames corresponded with the open arm location.

1183 We then determined the Network 1 and 2 activities at all timepoints where the mouse is in the region of
1184 interest and the network activity for all observed timepoints within a +/- 5 second window from the
1185 central timepoint. Timepoints for which electrophysiology, and therefore network scores, are not
1186 observed due to electrophysiological artifact, were dropped. For each mouse, network activity was
1187 averaged within the -5 to -1s window, the 1s to 5s window, and the instantaneous location window.
1188 Activity was then compared between locations across mice.

1189 We then determine the Network 1 and 2 activities at all timepoints where the mouse is in the region of
1190 interest and the network activity for all observed timepoints within a +/- 5 second window from the
1191 central timepoint. Timepoints for which electrophysiology, and therefore network scores, are not
1192 observed due to electrophysiological artifact, are dropped. For each mouse, network activity was
1193 averaged within the -5 to -1s window, the 1s to 5s window, and the instantaneous location window.
1194 Activity was then compared between locations across mice.

1195 Fluoxetine Network Dynamics

1196 We validated our network's ability to decode anxiety attenuation post-injection with saline or fluoxetine
1197 in the holdout mice from the FLX training task. Mice were injected with saline or fluoxetine at t=0 and
1198 we recorded neural activity for one hour post-injection. We then observed Network 1 and 2 activity
1199 during the full hour recording for the 6 holdout mice. Network activity scores were binned and averaged
1200 at a 5-minute resolution with the mean and standard error activity across mouse plotted in Fig. 3B. It is
1201 worth restating that our model was trained only using timepoints during the second half of the one
1202 hour-long recorded data. While our model was biased to distinguish between fluoxetine and saline due
1203 to our model training task, the model had no prior exposure to timepoints between t= [0,30] and no
1204 explicitly supervised trend for those timepoints. Time effects were analyzed using a two-way repeated
1205 measured ANOVA.

1206 Delayed sucrose reward task

1207 We examined Network 1 and 2 activity during the delayed sucrose reward assay to validate that our
1208 networks are not encoding reward or arousal. Pump events for delivering sucrose to the mice were much
1209 shorter than our one-second windows, therefore we used the event-triggered feature extraction code.
1210 We collected LFP features for 4 seconds prior and 4 seconds post the pump event. These features were
1211 then projected into Networks 1 and 2. Mean network activity at one second prior and one-second post-
1212 pump event were then compared across mice (n=8) using a one-tailed Wilcoxon sign rank test.

1213 Optogenetic Stimulation of Ventral Hippocampus to Lateral Hypothalamus circuit

1214 We quantified network activity during optogenetic stimulation of the ventral hippocampus to lateral
1215 hypothalamus circuit. We have previously demonstrated that in the absence of ChR2, blue light
1216 stimulation has no direct impact on LFP activity using our recording approach[56]. Moreover, yellow light
1217 stimulation has no direct impact on LFP activity in the presence of ChR2[26, 49]. Thus, we chose to
1218 compare network activity during yellow light stimulation and blue light stimulation. This approach
1219 enabled us to perform within-subject comparisons.

1220 Fear Conditioning

1221 For Network 1 and Network 2 validations, event-centered features were extracted for 10 seconds prior
1222 to the tone and 20 seconds after the tone. Mean Network 1 and 2 scores were then calculated for the

1223 control and conditioned mice for both the 10 seconds pre-segment and the 20 seconds post-segment
1224 separately. For both intervals, we performed one-tailed Wilcoxon rank sum tests to compare across
1225 control and conditioned mice during the 7th and final tone/air puff event. We isolated the 7th event under
1226 the assumption that the conditioned mice have successfully paired the tone stimulus with the air puff
1227 stimulus because of the 6 prior trials.

1228 **Statistical Analysis Philosophy**

1229 We trained a multi-region multi-assay model to putatively encode the anxiety state. We focused our
1230 subsequent analysis on Electome Network 1 and 2 since these networks independently encoded all
1231 three of our initial anxiety assays, and they showed the highest contribution to the joint predictive
1232 model. We then trained models to test whether this putative state was encoded by single regions
1233 and/or by pairs of brain regions. We assessed each model independently for the three assays. Based on
1234 our prior observations that other emotional internal states could not be decoded from individual brain
1235 regions [26, 27, 50], we hypothesized that activity from single regions and/or pairs of regions would fail
1236 to decode a convergent anxiety state as well. To increase the likelihood of falsifying our hypothesis we
1237 chose to leave all our statistical analysis using single region/pairs of regions uncorrected. We observed
1238 that P>0.05 for at least one assay for each single region/pairs of regions test. Since correcting for
1239 multiple comparisons would have served to further increase the P-values, we concluded that no single
1240 region/pairs of regions encoded a convergent anxiety state.

1241 Next, to validate the multi-region multi-assay networks, we recorded LFP data in the same brain regions
1242 from new mice and/or new paradigms and subsequently projected these data into these two networks.
1243 We tested each network independently to elucidate their individual dynamics relevant to anxiety and
1244 their contextual limitations. Validation of Networks 1 and 2 involved various statistical tests and
1245 procedures. For comparison of anxiogenic vs. non-anxiogenic conditions, we performed non-parametric
1246 statistical tests on mean network scores for intervals or groups of interest. In cases where parametric
1247 tests are useful, such as examining network dynamics over time, we performed a Box–Cox
1248 transformation of the network activity scores prior to statistical testing. In many of the validation tests,
1249 we expected the activity of Network 1 and/or Network 2 to be higher than the control condition as we
1250 expected or behaviorally validated that anxiety levels are elevated. For these cases, we performed
1251 statistical tests with a one-tailed test. A similar approach was implemented for our control experiments
1252 using sucrose and social reward, as well. We hypothesized that anxiety-related behavior and network
1253 activity would be lower in a mouse model of mania, thus we performed one-tailed statistical tests when
1254 appropriate. All such cases are disclosed in our results section. All p-values are reported as uncorrected
1255 p-values across both networks.

1256 In some cases, such as examining network dynamics in the safe regions over time (Fig. 3B), missing
1257 observations cannot be determined to be missing completely at random. Therefore, in such cases, we
1258 make use of an ANCOVA analysis strategy, which is flexible with missing data and allows analysis of
1259 dynamics over time. A disadvantage of this approach is that samples are treated independently without
1260 concern of group identity.

1261 **Visualization**

1262 Networks were visualized as chord plots using code adapted from <https://github.com/carlson-lab/lpne/>
1263 to allow for recoloring of frequency bands. Significant features were determined by calculating the
1264 average percent contribution of each network towards the reconstruction of each feature for the training

1265 task holdout mice. This strategy results in an even appraisal of low and high frequency features, even
1266 though low frequency spectral features tend to have higher magnitude. We then plotted the 85th
1267 percentile of these contributions, which is a threshold that adequately highlights dominant features
1268 without cluttering the plot and is consistent with related works [26].

1269 **Reproducibility**

1270 **Computational Environment and Codebase Disclosure**

1271 Preprocessing and feature extraction code was performed in MATLAB R2022a using the LFP
1272 feature extraction pipeline found on the main branch at <https://github.com/carlson-lab/lpne-data-analysis>. Event-triggered feature extraction code can be found on the “framewindows”
1273 branch of the same repository. A PyTorch implementation of dCSFA-NMF can be found at
1274 <https://github.com/carlson-lab/lpne/>. All code for network generation, hyperparameter tuning,
1275 model implementation, plotting, and a singularity definition file for replicating our Python
1276 environment can be found <https://github.com/carlson-lab/Anxiety>. Development was
1277 performed on a computer cluster in a Singularity Container managed Python environment with
1278 nodes utilizing an NVIDIA RTX 2080 Ti.

1280 **Author Contributions** – Conceptualization DNH, MHK, RCH, SDM, DEC and KD; Methodology, DNH,
1281 MHK, WEC, DEC, and KD; Formal Analysis, DNH, MHK, KKWC, GET, YG, YF, MT, and KD; Investigation,
1282 DNH, MHK, KKWC, GET, YG, DW, AM, YF, MT, AF, NMG, and KD; Resources, CAM, RCH, DEC and KD;
1283 Writing – Original Draft, DNH, MHK, JMZ, DEC, and KD; Writing – Review & Editing, DNH, MHK, KKWC,
1284 CAM, JMZ, RH, SDM, DEC, and KD; Visualization, DNH, MHK, DEC, and KD; Supervision, CAM, RCH, DEC
1285 and KD; Project Administration, DEC and KD; and Funding Acquisition, DNH, RCH, DEC, and KD; (see
1286 Supplemental Table S1 for experiment specific contributions).

1287 **Declaration of Interests**

1288 The authors have no competing financial interests.

1289 **Acknowledgements**

1290 We would like to thank Elise Adamson, Jake Benton, and Rachel Fisher-Foye for technical assistance, and
1291 Karim Abdelaal for comments. This work was supported by Hope for Depression Research Foundation,
1292 and NIH Grants 1R01MH099192 and R01MH120158 to KD. A special thanks to Freeman Hrabowski,
1293 Robert and Jane Meyerhoff, and the Meyerhoff Scholarship Program.

1294 **References**

1. Szuhany, K.L. and N.M. Simon, *Anxiety Disorders: A Review*. JAMA, 2022. **328**(24): p. 2431-2445.
2. Ruscio, A.M., et al., *Cross-sectional Comparison of the Epidemiology of DSM-5 Generalized Anxiety Disorder Across the Globe*. JAMA Psychiatry, 2017. **74**(5): p. 465-475.
3. Czeisler, M.E., et al., *Mental Health, Substance Use, and Suicidal Ideation During the COVID-19 Pandemic - United States, June 24-30, 2020*. MMWR Morb Mortal Wkly Rep, 2020. **69**(32): p. 1049-1057.

1302 4. Taylor, J.M. and P.J. Whalen, *Neuroimaging and Anxiety: the Neural Substrates of Pathological*
1303 *and Non-pathological Anxiety*. Curr Psychiatry Rep, 2015. **17**(6): p. 49.

1304 5. Robinson, O.J., et al., *The translational neural circuitry of anxiety*. J Neurol Neurosurg Psychiatry, 2019. **90**(12): p. 1353-1360.

1305 6. Takagi, Y., et al., *A common brain network among state, trait, and pathological anxiety from*
1306 *whole-brain functional connectivity*. Neuroimage, 2018. **172**: p. 506-516.

1307 7. Lai, C.H., *Task MRI-Based Functional Brain Network of Anxiety*. Adv Exp Med Biol, 2020. **1191**: p.
1309 3-20.

1310 8. Kirkby, L., et al., *An amygdala-hippocampus subnetwork that encodes variations in human mood*.
1311 *Cell*, 2018. **In press**.

1312 9. Moreira, C.M., et al., *Exploratory behaviour of rats in the elevated plus-maze is differentially*
1313 *sensitive to inactivation of the basolateral and central amygdaloid nuclei*. Brain Res Bull, 2007.
1314 **71**(5): p. 466-74.

1315 10. Ciocchi, S., et al., *Encoding of conditioned fear in central amygdala inhibitory circuits*. Nature, 2010. **468**(7321): p. 277-82.

1316 11. Calhoun, G.G. and K.M. Tye, *Resolving the neural circuits of anxiety*. Nat Neurosci, 2015. **18**(10):
1318 p. 1394-404.

1319 12. Adhikari, A., M.A. Topiwala, and J.A. Gordon, *Synchronized Activity between the Ventral*
1320 *Hippocampus and the Medial Prefrontal Cortex during Anxiety*. Neuron, 2010. **65**(2): p. 257-269.

1321 13. Adhikari, A., M.A. Topiwala, and J.A. Gordon, *Single units in the medial prefrontal cortex with*
1322 *anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity*.
1323 *Neuron*, 2011. **71**(5): p. 898-910.

1324 14. Seidenbecher, T., et al., *Amygdalar and hippocampal theta rhythm synchronization during fear*
1325 *memory retrieval*. Science, 2003. **301**(5634): p. 846-50.

1326 15. Dzirasa, K., et al., *Impaired limbic gamma oscillatory synchrony during anxiety-related behavior*
1327 *in a genetic mouse model of bipolar mania*. J Neurosci, 2011. **31**(17): p. 6449-56.

1328 16. Lee, A.T., et al., *VIP Interneurons Contribute to Avoidance Behavior by Regulating Information*
1329 *Flow across Hippocampal-Prefrontal Networks*. Neuron, 2019. **102**(6): p. 1223-1234 e4.

1330 17. Jacinto, L.R., J.J. Cerqueira, and N. Sousa, *Patterns of Theta Activity in Limbic Anxiety Circuit*
1331 *Preceding Exploratory Behavior in Approach-Avoidance Conflict*. Front Behav Neurosci, 2016. **10**:
1332 p. 171.

1333 18. Felix-Ortiz, A.C., et al., *BLA to vHPC inputs modulate anxiety-related behaviors*. Neuron, 2013.
1334 **79**(4): p. 658-64.

1335 19. Felix-Ortiz, A.C., et al., *Bidirectional modulation of anxiety-related and social behaviors by*
1336 *amygdala projections to the medial prefrontal cortex*. Neuroscience, 2016. **321**: p. 197-209.

1337 20. Jimenez, J.C., et al., *Anxiety Cells in a Hippocampal-Hypothalamic Circuit*. Neuron, 2018. **97**(3): p.
1338 670-683 e6.

1339 21. Kjaerby, C., et al., *Serotonin 1B Receptors Regulate Prefrontal Function by Gating Callosal and*
1340 *Hippocampal Inputs*. Cell Rep, 2016. **17**(11): p. 2882-2890.

1341 22. Padilla-Coreano, N., et al., *Direct Ventral Hippocampal-Prefrontal Input Is Required for Anxiety-*
1342 *Related Neural Activity and Behavior*. Neuron, 2016. **89**(4): p. 857-66.

1343 23. Padilla-Coreano, N., et al., *Hippocampal-Prefrontal Theta Transmission Regulates Avoidance*
1344 *Behavior*. Neuron, 2019. **104**(3): p. 601-610 e4.

1345 24. Walder-Christensen, K., et al., *Electome network factors: Capturing emotional brain networks*
1346 *related to health and disease*. Cell Rep Methods, 2024. **4**(1): p. 100691.

1347 25. Talbot, A., et al., *Estimating a brain network predictive of stress and genotype with supervised*
1348 *autoencoders*. J R Stat Soc Ser C Appl Stat, 2023. **72**(4): p. 912-936.

1349 26. Mague, S.D., et al., *Brain-wide electrical dynamics encode individual appetitive social behavior*.
1350 *Neuron*, 2022. **110**(10): p. 1728-1741 e7.

1351 27. Hultman, R., et al., *Brain-wide Electrical Spatiotemporal Dynamics Encode Depression*
1352 *Vulnerability*. *Cell*, 2018. **173**(1): p. 166-180 e14.

1353 28. Marcinkiewcz, C.A., et al., *Serotonin engages an anxiety and fear-promoting circuit in the*
1354 *extended amygdala*. *Nature*, 2016. **537**(7618): p. 97-101.

1355 29. Cunniff, M.M., et al., *Altered hippocampal-prefrontal communication during anxiety-related*
1356 *avoidance in mice deficient for the autism-associated gene Pogz*. *Elife*, 2020. **9**.

1357 30. Caruana, R., *Multitask Learning*. *Machine Learning*, 1997. **28**: p. 41-75.

1358 31. Jackson, A.D., et al., *Amygdala-hippocampus somatostatin interneuron beta-synchrony underlies*
1359 *a cross-species biomarker of emotional state*. *Neuron*, 2024. **112**(7): p. 1182-1195 e5.

1360 32. Berg, L., J. Eckardt, and O.A. Masseck, *Enhanced activity of pyramidal neurons in the infralimbic*
1361 *cortex drives anxiety behavior*. *PLoS One*, 2019. **14**(1): p. e0210949.

1362 33. Gunaydin, L.A., et al., *Natural neural projection dynamics underlying social behavior*. *Cell*, 2014.
1363 **157**(7): p. 1535-51.

1364 34. Maestas-Olguin, C., J.W. Fennelly, and N.S. Pentkowski, *Chemogenetic inhibition of ventral*
1365 *hippocampal CaMKIIalpha-expressing neurons attenuates anxiety- but not fear-like defensive*
1366 *behaviors in male Long-Evans hooded rats*. *Neurosci Lett*, 2021. **751**: p. 135777.

1367 35. Association, A.P., *Diagnostic and statistical manual of mental disorders*. 5th ed., text rev ed.
1368 2022.

1369 36. Kessler, R.C., et al., *Anxious and non-anxious major depressive disorder in the World Health*
1370 *Organization World Mental Health Surveys*. *Epidemiol Psychiatr Sci*, 2015. **24**(3): p. 210-26.

1371 37. Roybal, K., et al., *Mania-like behavior induced by disruption of CLOCK*. *Proc Natl Acad Sci U S A*,
1372 2007. **104**(15): p. 6406-11.

1373 38. King, D.P., et al., *Positional cloning of the mouse circadian clock gene*. *Cell*, 1997. **89**(4): p. 641-
1374 53.

1375 39. Dzirasa, K., et al., *Lithium ameliorates nucleus accumbens phase signaling dysfunction in a*
1376 *genetic mouse model of mania*. *J Neurosci*, 2010. **30**(48): p. 16314 –16323.

1377 40. Logan, R.W., et al., *Valproate reverses mania-like behaviors in mice via preferential targeting of*
1378 *HDAC2*. *Mol Psychiatry*, 2021. **26**(8): p. 4066-4084.

1379 41. Krishnan, V., et al., *Molecular adaptations underlying susceptibility and resistance to social*
1380 *defeat in brain reward regions*. *Cell*, 2007. **131**(2): p. 391-404.

1381 42. Berton, O., et al., *Essential role of BDNF in the mesolimbic dopamine pathway in social defeat*
1382 *stress*. *Science*, 2006. **311**(5762): p. 864-8.

1383 43. Morel, C., et al., *Midbrain projection to the basolateral amygdala encodes anxiety-like but not*
1384 *depression-like behaviors*. *Nat Commun*, 2022. **13**(1): p. 1532.

1385 44. Zhong, P., et al., *HCN2 channels in the ventral tegmental area regulate behavioral responses to*
1386 *chronic stress*. *Elife*, 2018. **7**.

1387 45. Monteiro, S., et al., *An efficient chronic unpredictable stress protocol to induce stress-related*
1388 *responses in C57BL/6 mice*. *Front Psychiatry*, 2015. **6**: p. 6.

1389 46. Golden, S.A., et al., *A standardized protocol for repeated social defeat stress in mice*. *Nat Protoc*,
1390 2011. **6**(8): p. 1183-91.

1391 47. Tsankova, N.M., et al., *Sustained hippocampal chromatin regulation in a mouse model of*
1392 *depression and antidepressant action*. *Nat Neurosci*, 2006. **9**(4): p. 519-25.

1393 48. Dzirasa, K., et al., *Chronic in vivo multi-circuit neurophysiological recordings in mice*. *J Neurosci*
1394 *Methods*, 2011. **195**(1): p. 36-46.

1395 49. Carlson, D., et al., *Dynamically Timed Stimulation of Corticolimbic Circuitry Activates a Stress-Compensatory Pathway*. *Biol Psychiatry*, 2017. **82**(12): p. 904-913.

1397 50. Grossman, Y., et al., *A widespread oscillatory network encodes an aggressive internal state*.
1398 BioRxiv, 2024.

1399 51. Geweke, J., *Measurement of Linear Dependence and Feedback between Multiple Time Series*. .
1400 Journal of the American Statistical Association, 1982. **77**: p. 304–313.

1401 52. Barnett, L. and A.K. Seth, *The MVGC multivariate Granger causality toolbox: a new approach to*
1402 *Granger-causal inference*. J Neurosci Methods, 2014. **223**: p. 50-68.

1403 53. Crawley, J.N., *What's Wrong With My Mouse?: behavioral phenotyping of transgenic and*
1404 *knockout mice*. Second ed. 2007, Hoboken, New Jersey: John Wiley & Sons, Inc.

1405 54. Sweis, B.M., et al., *Sensitivity to "sunk costs" in mice, rats, and humans*. Science, 2018.
1406 **361**(6398): p. 178-181.

1407 55. Durand-de Cattoli, R., et al., *Distinct forms of regret linked to resilience versus susceptibility to*
1408 *stress are regulated by region-specific CREB function in mice*. Sci Adv, 2022. **8**(42): p. eadd5579.

1409 56. Kumar, S., et al., *Cortical Control of Affective Networks*. J Neurosci, 2013. **33**(3): p. 1116 –1129.

1410 57. Hultman, R., et al., *Dysregulation of Prefrontal Cortex-Mediated Slow-Evolving Limbic Dynamics*
1411 *Drives Stress-Induced Emotional Pathology*. Neuron, 2016. **91**(2): p. 439-52.

1412 58. Kumar, S., et al., *Prefrontal cortex reactivity underlies trait vulnerability to chronic social defeat*
1413 *stress*. Nat Commun, 2014. **5**: p. 4537.

1414 59. Kuhn, H.W., *The Hungarian method for the assignment problem*. Naval Research Logistics
1415 Quarterly, 1955. **2**(1-2): p. 83-97.

1416 60. Zhou, P., et al., *Towards theoretically understanding why SGD generalizes better than ADAM in*
1417 *deep learning*. Proceedings of the 34th International Conference on Neural Information
1418 Processing Systems, 2020. **20**: p. 21285–21296.

1419

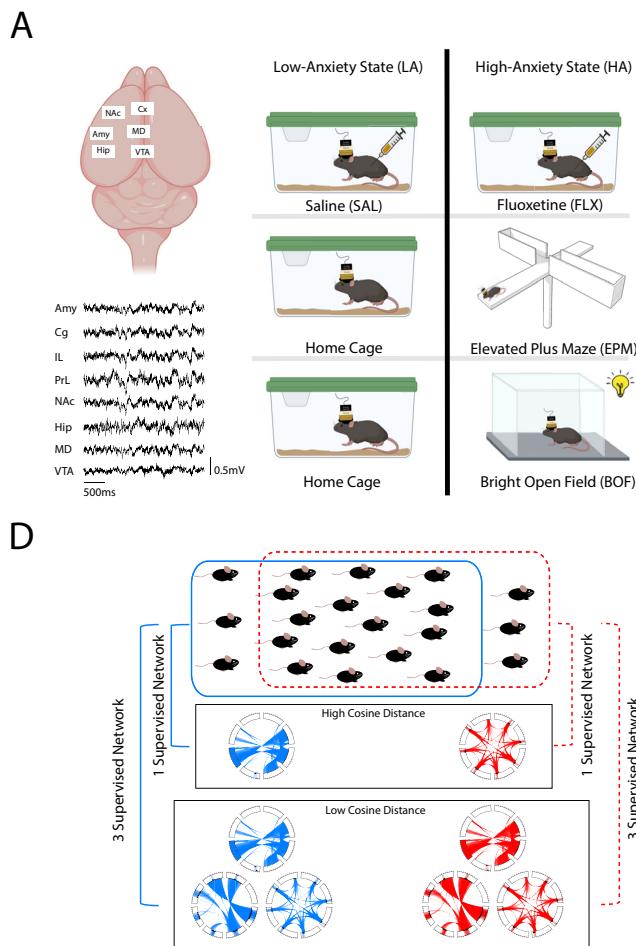
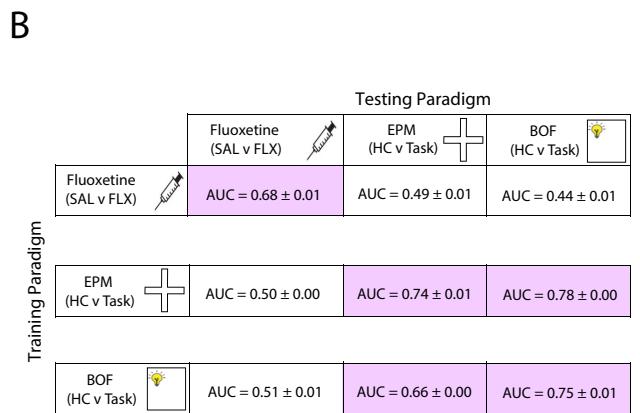
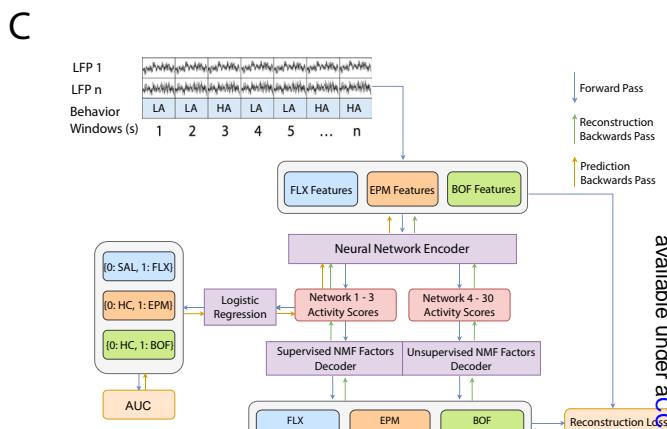
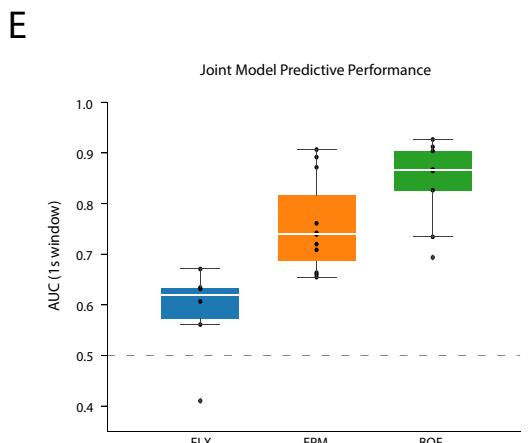
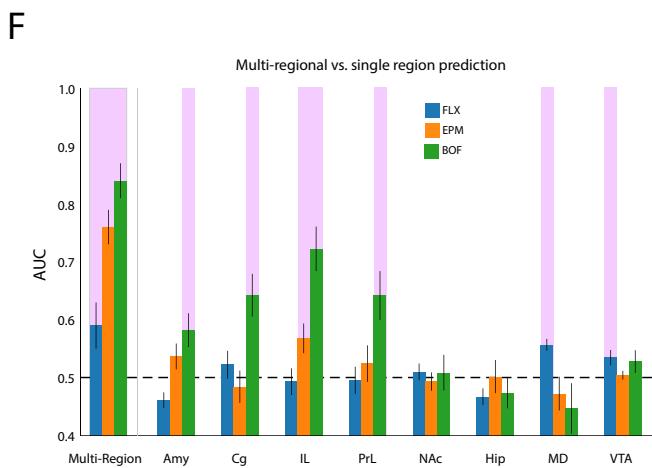
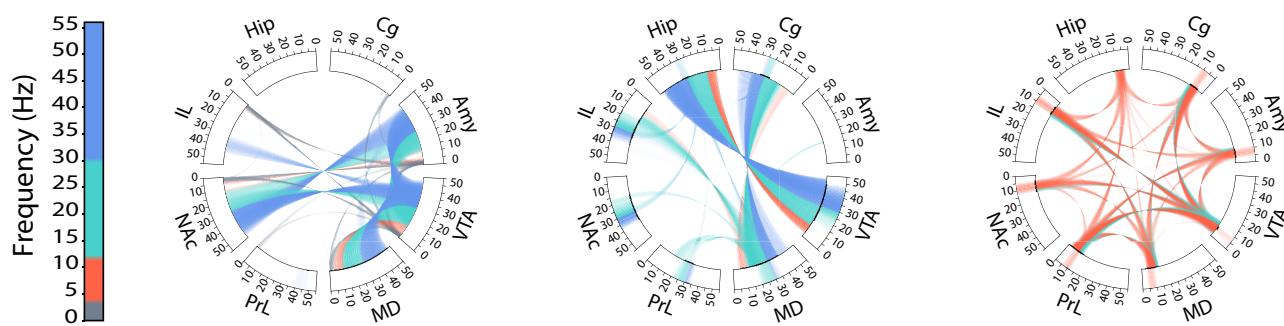
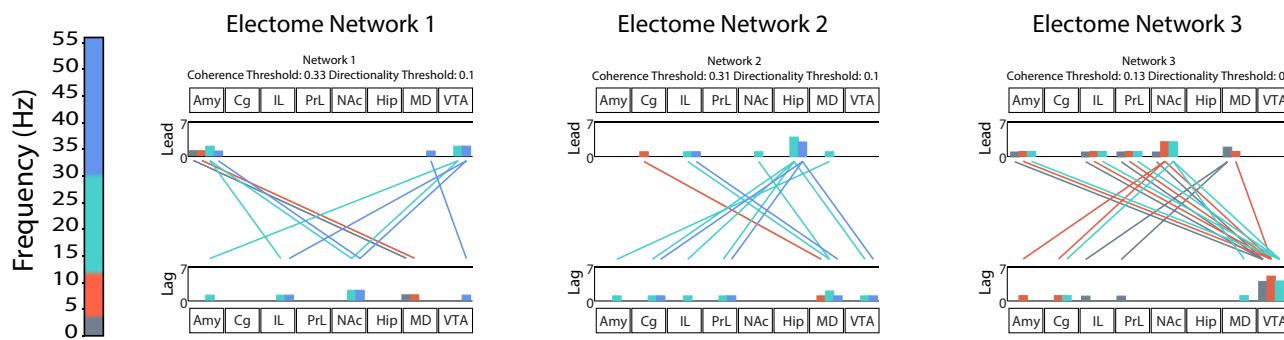


Figure 1

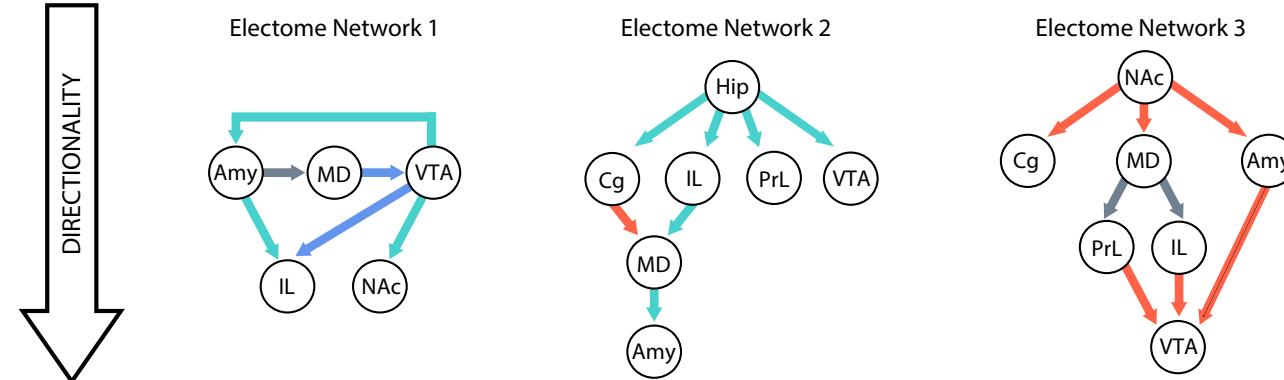
A



B



C



D

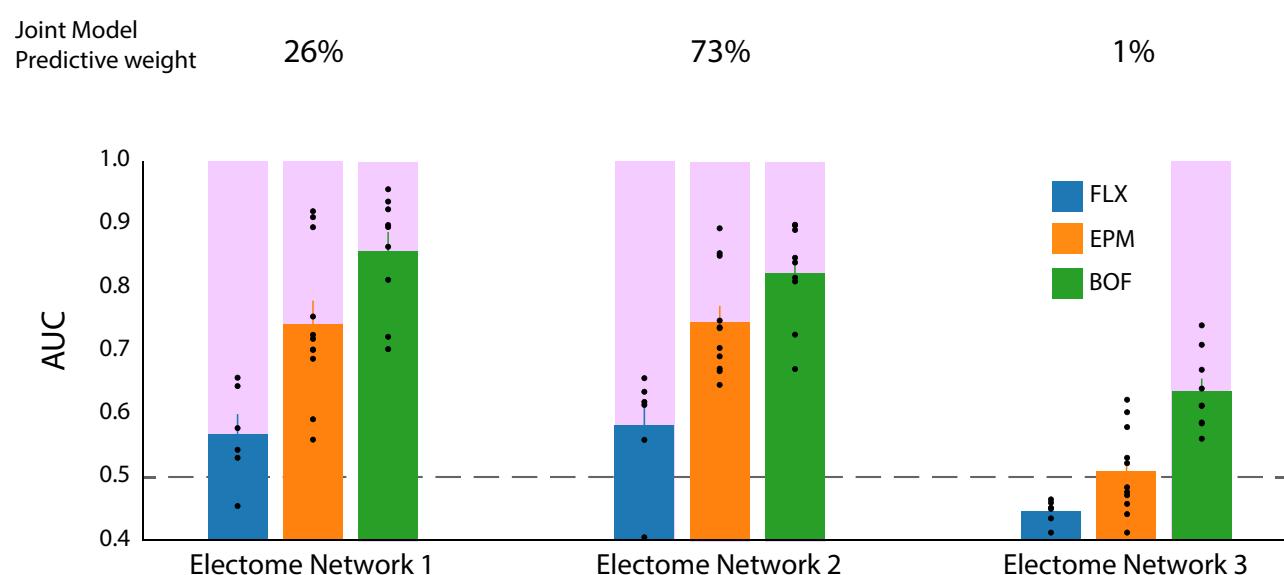


Figure 2

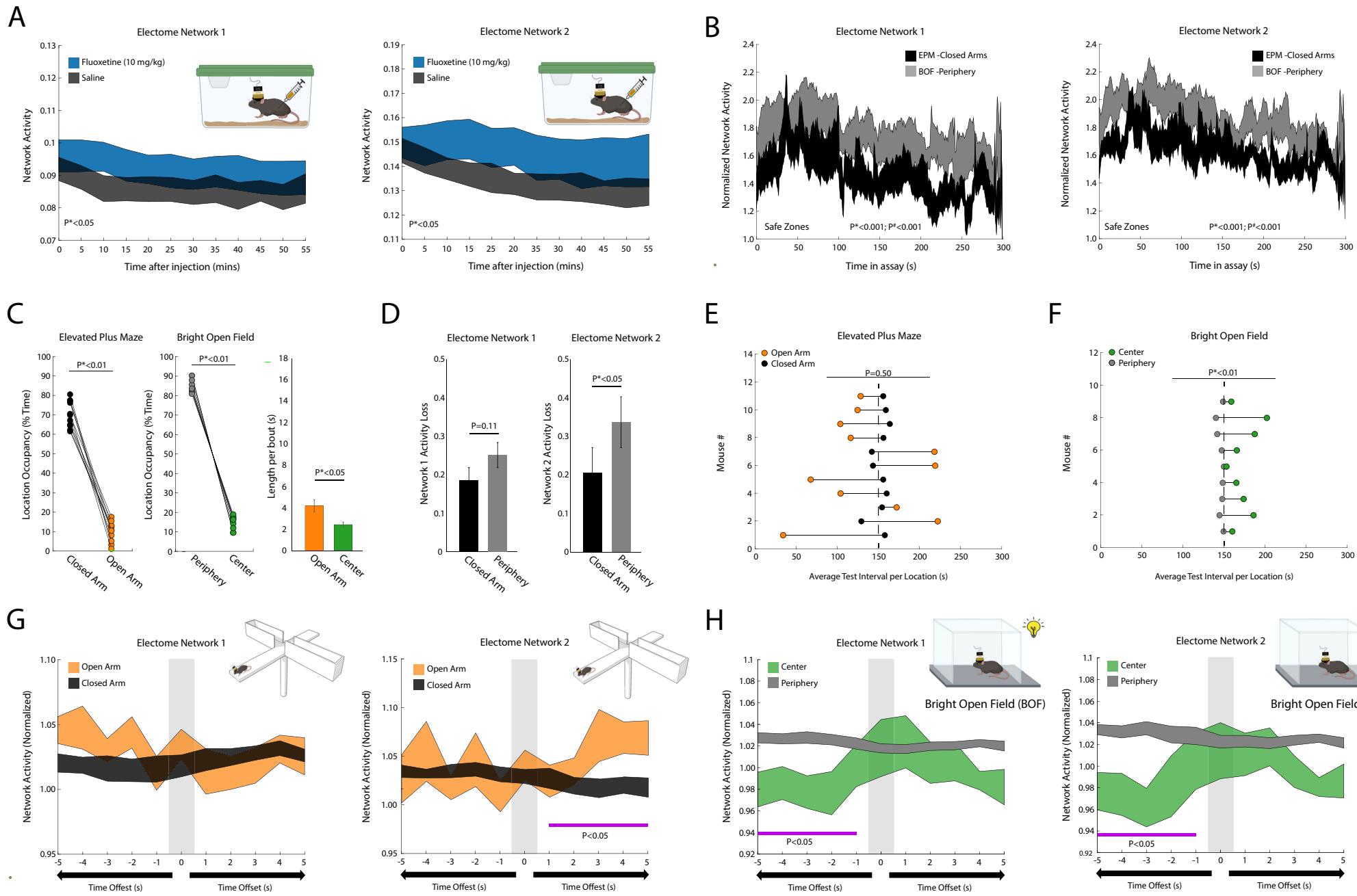
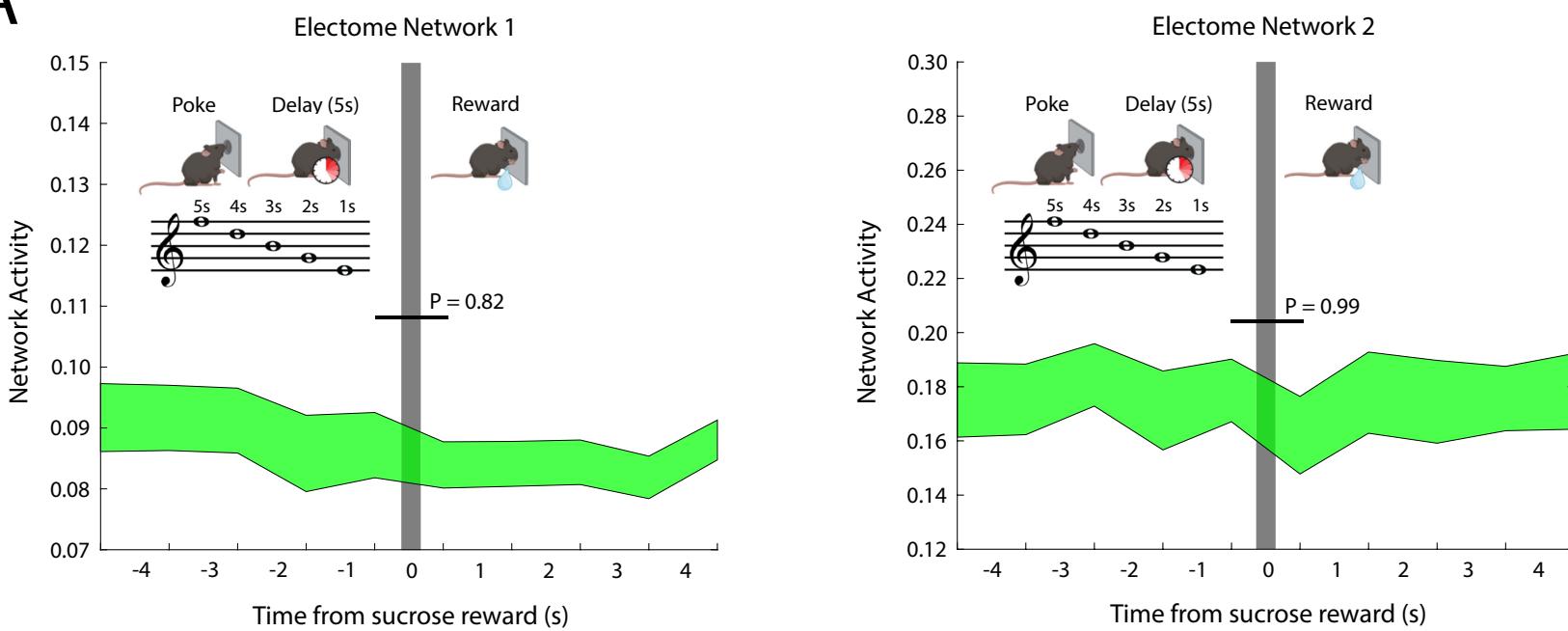


Figure 3

A



B

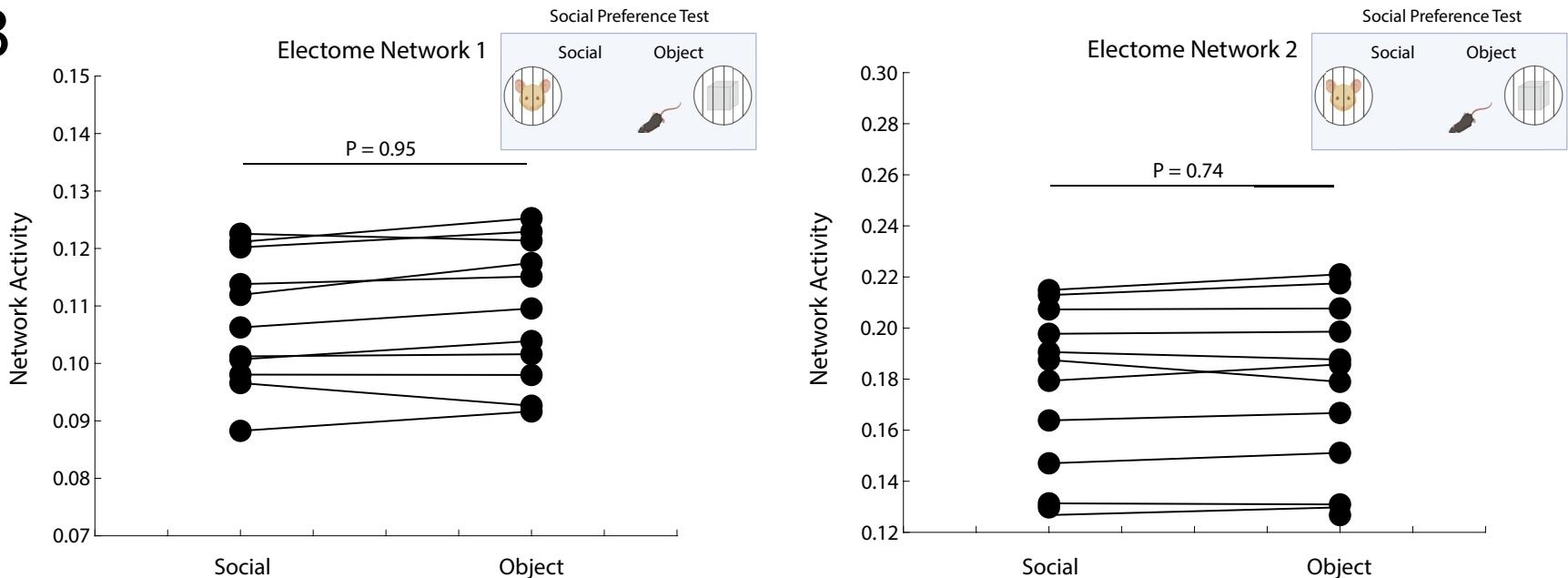


Figure 4

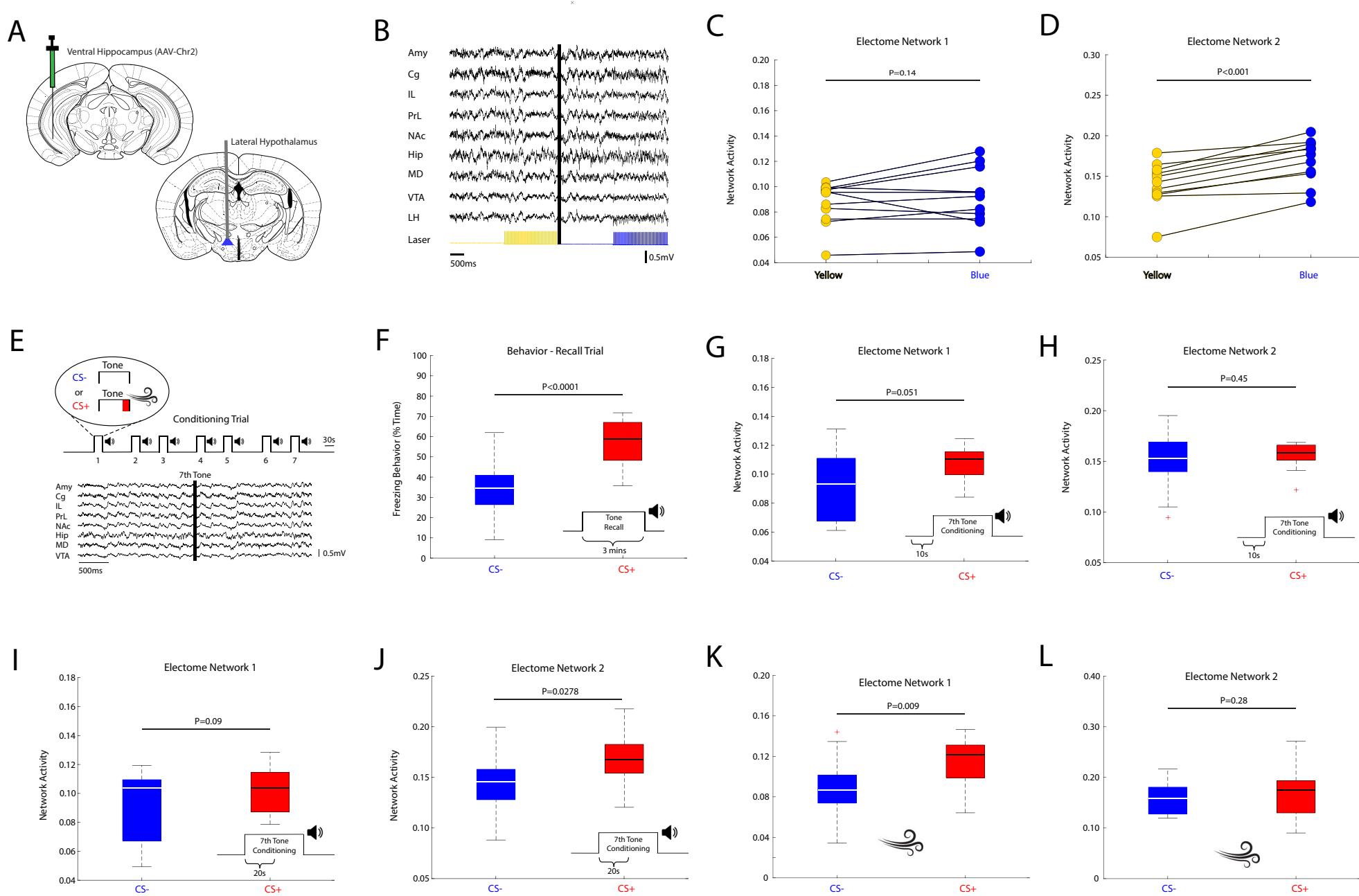
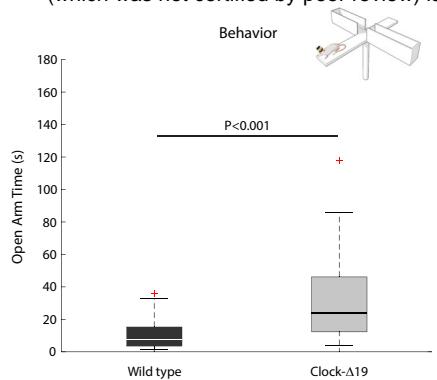
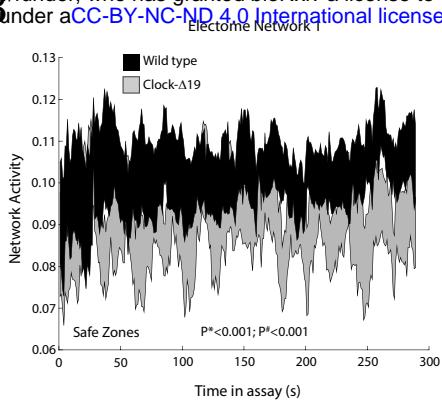
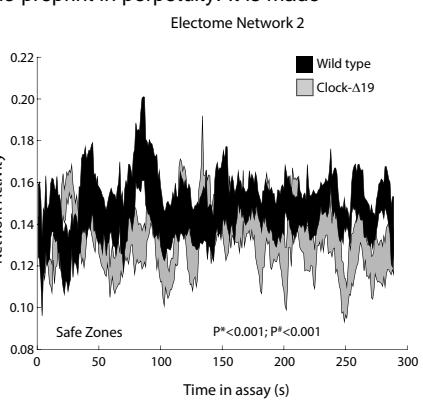


Figure 5

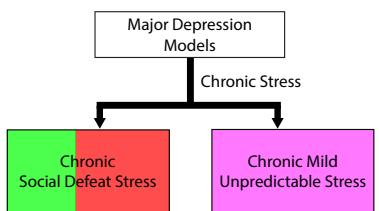
A



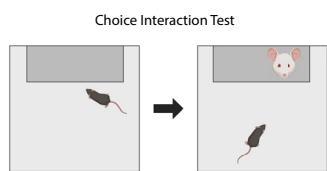
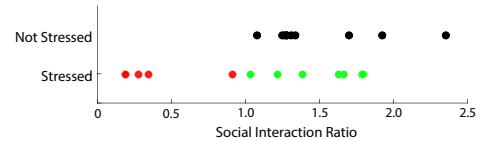
B



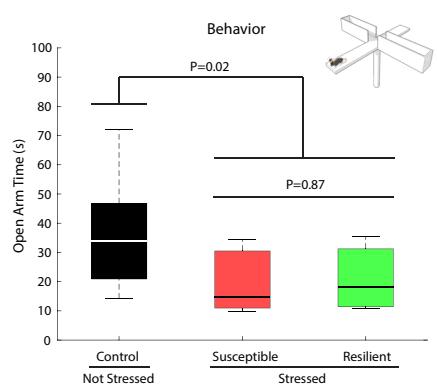
C



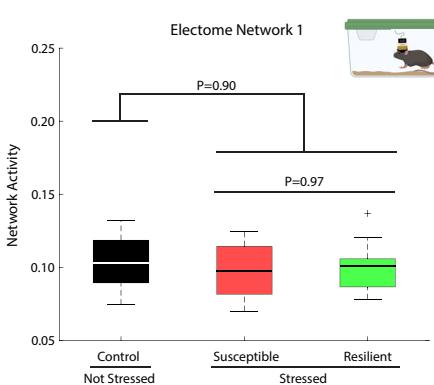
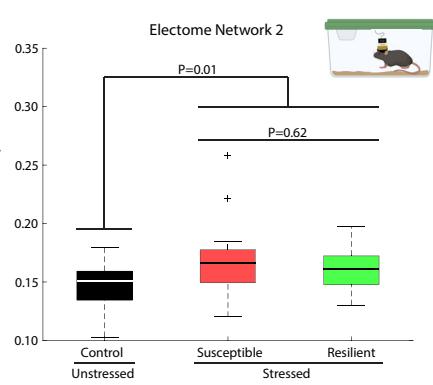
D



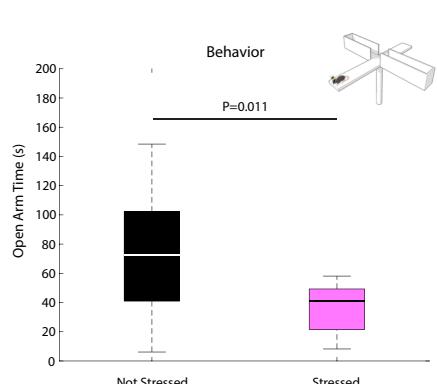
E



F



G



H

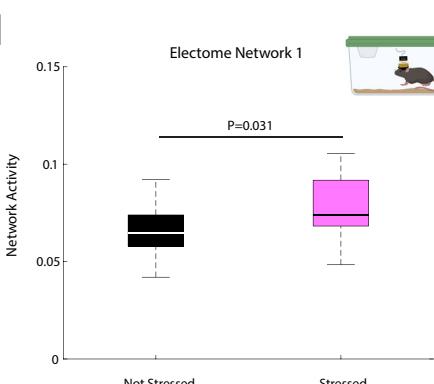
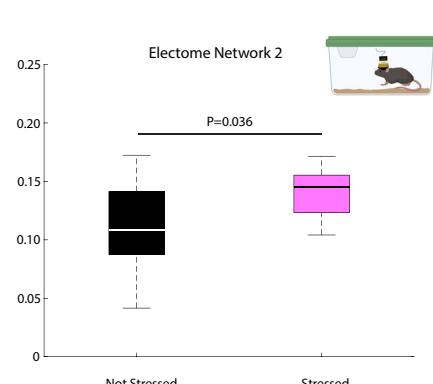
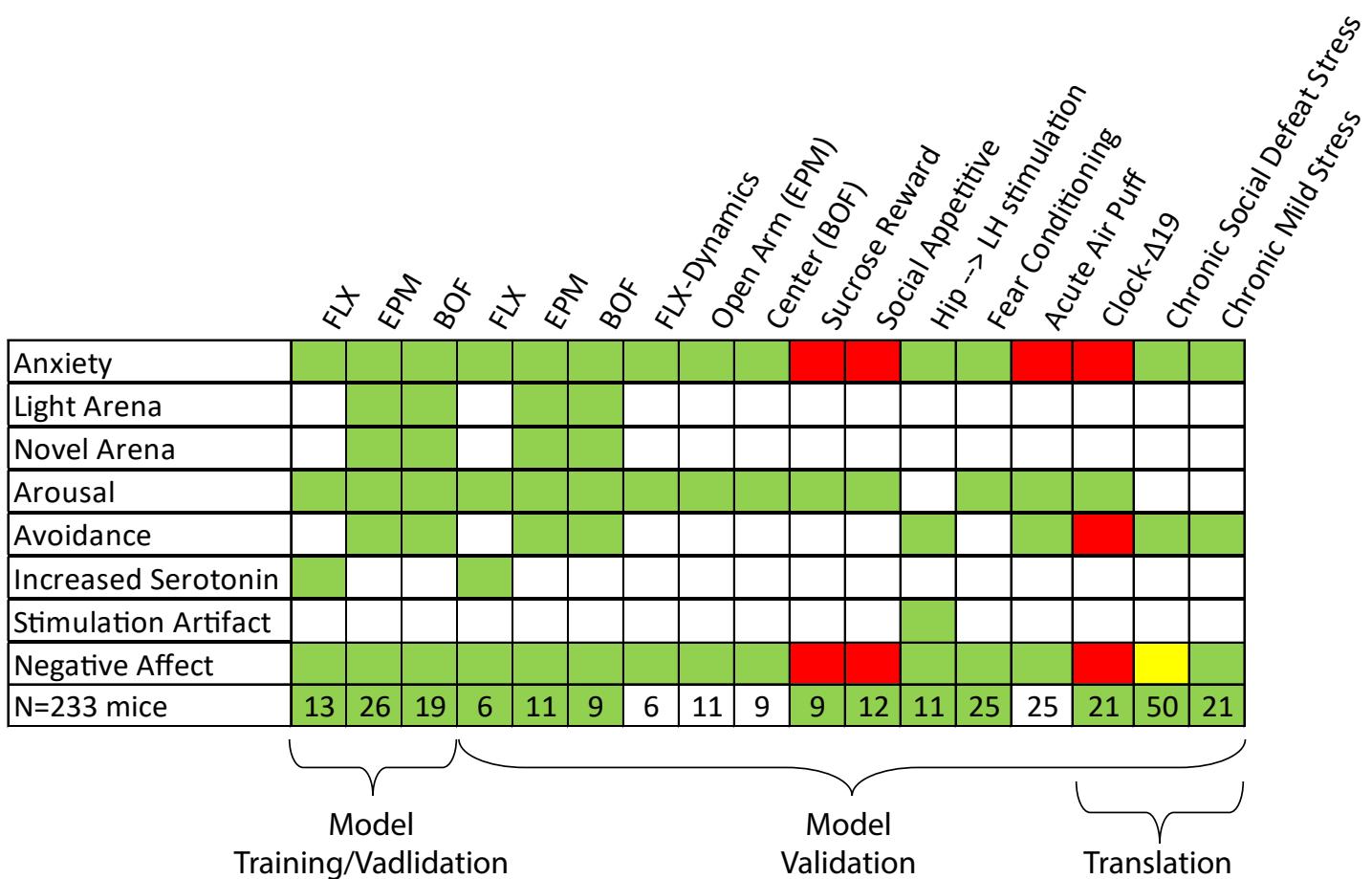


Figure 6

A



B

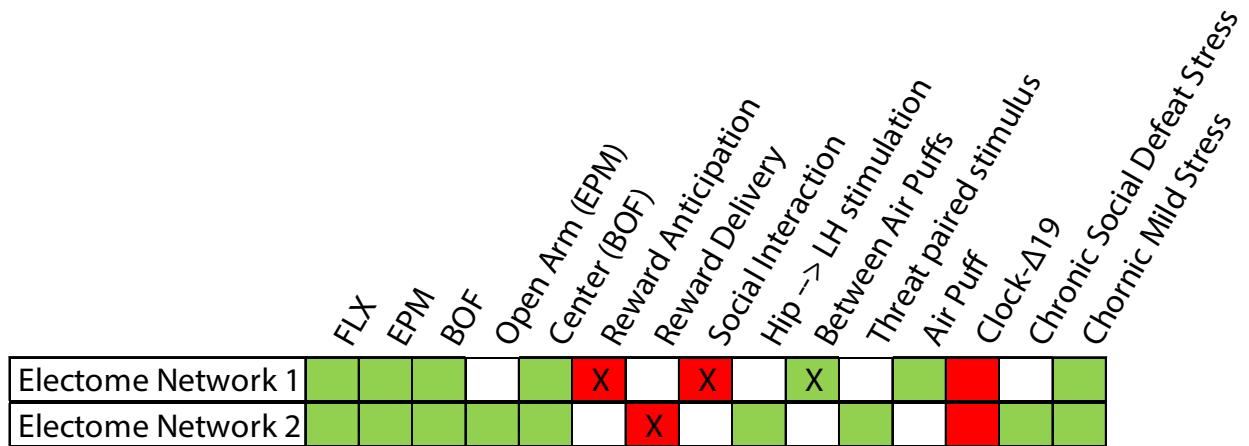


Figure 7