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Abstract

In rodents, anxiety is charactered by heightened vigilance during low-threat and uncertain situations.
Though activity in the frontal cortex and limbic system are fundamental to supporting this internal state,
the underlying network architecture that integrates activity across brain regions to encode anxiety
across animals and paradigms remains unclear. Here, we utilize parallel electrical recordings in freely
behaving mice, translational paradigms known to induce anxiety, and machine learning to discover a
multi-region network that encodes the anxious brain-state. The network is composed of circuits widely
implicated in anxiety behavior, it generalizes across many behavioral contexts that induce anxiety, and it
fails to encode multiple behavioral contexts that do not. Strikingly, the activity of this network is also
principally altered in two mouse models of depression. Thus, we establish a network-level process
whereby the brain encodes anxiety in health and disease.
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Introduction

Anxiety is a mental state marked by heightened pressure, concern, or apprehension related to uncertain
future circumstances [1]. The anxious state can be adaptive to increase the rate of survival, or it can
become overly generalized and persistent in a manner that yields behavioral pathology that can lead to
anxiety disorders. These disorders constitute the largest group of mental disorders in Western and high-
income societies, with nearly 34% of U.S. adults directly impacted in their lifetime [1, 2]. Strikingly, the
prevalence of symptoms of anxiety disorders or other mental health disorders had increased during the
height of the COVID-19 pandemic [3]. As such, it is imperative to discover the biological basis of the
anxious brain state and to delineate how the brain encodes anxiety in the disordered state.

Non-invasive human imaging studies have demonstrated altered activity in multiple cortical and limbic
brain regions, including the amygdala, prefrontal cortex, and hippocampus during heightened anxiety
and synchronized activity between these regions and others at the milliseconds to seconds timescales
[4-7]. Human intracranial recordings have also demonstrated altered coherence in networks with some
of these regions linked to higher trait anxiety [8], pointing towards the involvement of integrated multi-
regional circuits in mediating the anxiety state.

A myriad of rodent studies has implicated homologous regions in mediating anxiety: the amygdala
(Amy), ventral hippocampus (Hip), and subregions of the prefrontal cortex (PFC). Pharmacological
lesions and optogenetic inactivation studies have implicated the necessity of these brain regions for
anxious behaviors [9, 10]. Furthermore, precise circuit-level studies in rodent models have further
delineated the role of these brain regions and their integrated circuits [11]. For example, millisecond-
level synchrony is observed in the mPFC, Amy and/or Hip during key aspects of anxiety-related
behaviors [12-17], and optogenetic interrogation of projections involving these regions modulate
anxiety-related behaviors [18-23]. Yet it remains to be clarified how these circuits reliably integrate
across timescales (i.e., network-level stability) to selectively encode anxiety across animals and
behavioral contexts (i.e., generalization) in healthy animals and in disease states.

Because LFPs capture generalized patterns of neural activity that can be consistently sampled across
subjects [24], we previously developed a machine learning technique called discriminative Cross-
Spectral Factor Analysis-Nonnegative Matrix Factorization (dACFSA-NMF) to discover behaviorally
relevant ensembles of LFP activity that synchronize at both the milliseconds and seconds timescale (i.e.,
electrical functional connectome -electome - networks). An electome network can be composed by LFP
oscillatory power from each brain area, millisecond-resolution coherence between oscillations from
pairs of brain regions, and/or directional oscillations (an indication of information transfer between
pairs of brain regions assessed using Granger causality testing), ranging from 1-56Hz. Moreover, dCSFA-
NMF was designed to discover electome networks that encode behaviorally relevant internal states both
within and across mice [25-27]. Here, we used dCSFA-NMF to discover a distinct electome network that
selectively encodes normal anxiety across multiple contexts, and anxiety dysfunction in mouse models
of psychiatric disorders.

Results

Distributed electome networks encode a convergent anxious internal state

Forty-one male mice were implanted with multiwire electrodes to concurrently target prefrontal cortex
(cingulate, prelimbic and infralimbic cortex), amygdala, ventral hippocampus, nucleus accumbens,
medial dorsal thalamus, and ventral tegmental area (VTA). Following their recovery, we employed a
two-stage approach to discover how distributed neural activity encodes an internal state for anxiety.
First, we utilized a translational anxiogenic protocol based on treatment with the antidepressant
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85 fluoxetine, which has been shown to induce anxiety-like behavior in mice [28], versus a control saline
86 condition (see also Supplemental Figure S1). Second, we tested whether the electome networks learned
87  for this paradigm also encoded the internal state induced by two other anxiogenic paradigms: the
88  elevated plus maze (EPM) and the bright open field (BOF). The amount of time a mouse spends within
89  exposed regions of these assays (open arms in the EPM and center of the BOF) is used to infer anxious
90 internal states. As mice with the highest anxiety-like behavior may never enter the exposed regions of
91 these assays, we modeled anxiety as the internal state that was causally induced by the three paradigms
92 (Fig. 1A). We trained our network model at one-second resolution to enable us to compare network
93 activity to on-going behaviors widely utilized to assess the anxiety state of mice [12, 29]. The 41
94 implanted male mice were exposed to 1 of the 3 experimental paradigms (17 mice were subjected to
95  two paradigms).
96
97 Our dCSFA-NMF model trained on the neural data acquired during the fluoxetine paradigm successfully
98 distinguished the low and high anxiety states (saline and fluoxetine treatment, respectively) in newly
99 implanted C57 mice that had not been used to train the model (Mann Whitney AUC = 0.68 + 0.01; Fig.
100 1B, see also Supplemental Figure S2); however, the model failed to distinguish low and high anxiety
101 states when it was tested on data obtained from the other two paradigms (AUC=0.49 + 0.01 and 0.44 *
102  0.01 for EPM and BOF, respectively). We also found that dCSFA-NMF models trained on the EPM or BOF
103 assay similarly failed to distinguish the low and high anxiety states of the fluoxetine assay. These
104  analyses employed four-fold cross-validation with 3-7 hold out mice within assay per fold, and 9-26 hold
105 out mice between assay per fold. A full discussion of the dCSFA-NMF model training procedure and
106 hyperparameter selection can be found in the Methods section.
107
108  After failing to discover a generalized internal state for anxiety solely using training data from one
109  paradigm, we took inspiration from multi-task learning [30] and adapted dCSFA-NMF for training on
110  multiple assays jointly (Fig. 1C). Specifically, the multi-assay dCSFA-NMF model utilized training data
111 from all three contexts (FLX, EPM, BOF) to discover an electome network that was shared between
112 them. Though we successfully discovered such a shared electome network, we also found that small
113 permutations of the animal assignments between training and validation data groups yielded electome
114 networks composed of different LFP spectral features (Fig. 1D) while remaining predictive of the anxiety
115 paradigms.
116
117  To address this lack of stability, we developed and employed a cosine similarity-based metric for
118 evaluating network stability across multiple training permutations. For this metric, a low cosine distance
119 reflects electome network consistency. We then systematically increased the number of supervised
120 networks in our dCFSA-NFM model, utilizing all supervised networks in a joint prediction logistic
121 regression framework, and quantified the stability of the resultant electome networks. With this
122 approach, we found that a model trained with three supervised electome networks optimally balanced
123 simplicity and electome network stability across multiple runs on perturbated and partitioned training
124  data (Supplemental Figure S3). This multi-network model encoded the anxiety state across all three
125 assays in the same seventeen new mice used in testing of the single-assay trained models (AUC = 0.59
126 0.04,0.76 £ 0.03, and 0.84 + 0.03 for FLX, EPM, and BOF, respectively; Fig 1E). Critically, no individual
127  brain region, or pair of regions, independently encoded an anxiety state shared by all three paradigms
128  (Fig 1F, see also Supplemental Figure S4). Thus, our findings argued that the anxiety brain state was
129  encoded at the multi-region level.
130
131 Two electome networks independently encode the anxious internal state
132
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133  The three supervised networks that jointly predicted the anxiety state contributed 26%, 73%, and 1% of
134  the joint logistic regression model prediction probability, averaged across assays (heretofore referred to
135  as Electome Networks 1, 2 and 3, respectively; see Fig. 2D). Electome Network 1 was comprised by

136  prominent beta (14-30) and gamma oscillations (30-55Hz) that led from VTA, amygdala, and medial

137 dorsal thalamus, and converge in infralimbic cortex and nucleus accumbens. Electome Network 2 was
138  comprised of prominent beta and gamma oscillations that led from prelimbic cortex, relayed through
139  medial dorsal thalamus, and converged in the amygdala. Electome Network 3 was represented by

140 synchronized theta oscillations (4-11Hz) across many of the regions we probed (Fig. 2A-C, see also

141  Supplemental Figure S5-7). Thus, the three electome networks were each represented by distinct

142 ensembles of LFP activity.

143

144 Importantly, the electome networks included circuits previously implicated in aspects of anxiety-like
145 behavior in the broader literature. For example, optogenetic stimulation of the amygdala—>infralimbic
146 cortex circuit, a component of Electome Network 1, has been shown to increase anxiety-behavior during
147 the EPM and BOF in mice [19]. Mouse studies have described increased activity in the ventral

148 hippocampus—>prefrontal cortex circuit in the EPM and BOF [12, 13], and causal stimulation of this

149 circuit increases anxiety behavior [22]. Increased synchrony between amygdala and ventral

150 hippocampus has been implicated in trait and state anxiety in human intracranial recording experiments
151 [8] and in mediating EPM anxiety behavior in causal mouse experiments [31]. Such circuits are

152 prominently featured in Electome Network 2. Finally, increased IL activity, as featured in Electome

153 Network 2 and 3, drives anxiety behaviors in mice in the EPM [32]. Thus, many circuits proposed

154 previously shown to encode aspects of anxiety were featured in our discovered electome networks.

155

156  Though our goal was to discover at least one electome network that was shared across the three anxiety
157 paradigms, our multi-supervised network learning strategy had the potential to discover three electome
158 networks for which each solely encoded one of the three assays. Thus, to ensure that we had indeed
159 discovered an electome network that generalized across anxiety paradigms, we tested whether

160 Electome Network 1, 2 or 3 encoded the anxious state in all three paradigms, again in the seventeen
161 new mice. Electome Network 1 and 2 both independently generalized to all three paradigms (P<0.05 for
162 all comparisons against a null distribution using a one-sided Mann-Whitney U test) while Electome

163 Network 3 only encoded the internal state induced by the BOF assay (P = 1, P=0.66; P <0.05 for FLX,

164 EPM, and BOF, respectively; Fig 2D). Given that only Electome Network 1 and 2 independently encoded
165  all three assays, and Electome Network 3 only contributed 1% to multi-network prediction, we limited
166  our subsequent analysis to Electome Network 1 and 2. Critically, we also verified that Electome

167 Networks 1 and 2 generalized to female mice when we compared their activity in the home cage to the
168 EPM (AUC=0.63+0.05, U=5,P=0.039; AUC=0.65+0.06, U=4 ,P=0.027 for Electome Networks 1 and 2,
169  respectively, using a one-sided paired Wilcoxon sign rank test; N=8 female mice)

170

171 Electome Network activity encodes features of anxiety-related paradigms.

172 We further validated Electome Network 1 and Electome Network 2 of our multi-assay trained model by
173  examining network activity dynamics during various anxiogenic events both within the training assays
174 (i.e., FLX, EPM, and BOF) and in new experimental contexts to control for confounding emotional states.
175 All analyses were performed on new subjects not used in model training.

176

177  Within the FLX training assay, we observed that the activity of Electome Networks 1 and 2 decreased
178 across the neural recording period in the saline and fluoxetine treated mice (Fsg295=4.05, P=0.014 and
179 Fs9.295=3.85, P=0.015 for time effect across minutes for Electome Network 1 and 2 activity, respectively,
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180 using two-way ANOVA with correction). No differences were observed in this effect across the

181 treatments (Fsg295=1.14, P=0.37 and Fsq295=1.36, P=0.28 for treatment x time interaction effect,

182  for Electome Network 1 and 2 activity, respectively, using two-way ANOVA with correction; see Fig. 3A).
183  Thus, activity in both networks decreased as mice habituated following the experimental injections,

184  providing additional evidence that the networks tracked the internal anxiety state of the mice.

185

186  To further explore whether network activity habituated following other anxiogenic stimuli, we also

187  analyzed network activity in the EPM and BOF, relative to the activity observed in the home cage. We
188  focused our analysis on periods during which mice were in the closed arms of the EPM or the periphery
189 of the BOF, since these are considered the safe zones of the assays. This analysis approach also enabled
190 us to control changes in network activity that may be location specific. Activity in both networks

191 increased sharply after the mice were first placed in the behavioral area, and then habituated across the
192 remaining of the 5-minute testing session (Fig. 3B; T=-11.246, P<0.001; T=-11.116, P<0.001, for time
193 effect for Network 1 and 2, respectively, using an ANCOVA). Thus, network activity in both assays

194 paralleled the response we observed in the fluoxetine assay. Next, we tested whether activity in the
195 networks was behaviorally relevant. Specifically, since we found that the BOF induced a higher network
196 activity than the EPM (Fig. 3B; T=14.036, P<0.001; T=13.248, P<0.001, for assay effect for Network 1 and
197 2, respectively, using an ANCOVA), we analyzed the behavioral profiles of mice in both assays to

198 determine whether the BOF induced greater anxiety-related behavioral avoidance. After verifying that
199  the mice spent substantially more time in the safe zones vs. anxiogenic zones in both assays (T10=19.9;
200 P<10® and T=29.8; P<10?%, for EPM and BOF, respectively, using a one-tailed paired t-test, Fig. 3C), we
201 quantified the bout length when animals entered the anxiogenic zones. We found that the length of
202  each bout in the center zone of the BOF was significantly shorter than the bout length in the open arm
203 for the EPM (T1s= 2.6; P=0.009, using a one-tailed unpaired t-test, Fig. 3C), demonstrating that the mice
204  exposed to the BOF showed higher anxiety-related avoidance.

205

206 Network 2 activity, but not Network 1, showed much stronger habituation between the initial and latter
207 segments of the BOF, compared to the EPM (U=33 and P=0.11; U=27 and P=0.047, for Network 1 and 2,
208 respectively, using a one-sided Mann-Whitney U test; Fig. 3D). Consistent with this observation, we

209  found that mice avoided the center of the BOF more during the first half of the assay (Ts=3.97 and

210 P=0.004 using a two-tailed paired t-test; see Fig. 3F). In contrast, no such behavioral pattern was

211 observed in the EPM (Fig. 3E). Here, mice showed large variability in when they occupied the open arms
212 across the testing session (T1p=0.70 and P=0.50 using a two-tailed paired t-test). Taken together, these
213 results showed that mice were least likely to occupy the anxiogenic zone under the experimental

214  context which produced the highest Network 2 activity (first half of the BOF). Thus, Network 2 activity
215 broadly encoded the anxiety-related behavioral differences observed across the assays.

216

217 Next, we tested whether network activity encoded behavior on a moment-to-moment basis within the
218 assays. Specifically, we reasoned that three distinct patterns of anxiety could intersect with behavior: 1)
219 Mice might show higher anxiety when they are in the anxiogenic zones of the assay. 2) The anxiogenic
220 zones of the assay might induce a feeling of anxiety that peaks several seconds later irrespective of the
221  animal’s future location and 3) high anxiety might preclude mice from entering the anxiogenic zones
222 [31]. Thus, we set out to determine whether the two networks showed activity consistent with any of
223  these 3 patterns. Importantly, though all data recorded during the EPM and BOF assays were used to
224  discover our putative anxiety networks, the moment-by-moment location of the mice in the EPM and
225 BOF (anxiogenic vs. safe zone) was not. Thus, our training approach enabled an unbiased assessment of
226  their activity related to ongoing anxiety behavior. For our analysis, we first isolated all the one-second
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227 intervals when mice were in the open or closed arm of the EPM. We also isolated neural activity up to
228  five seconds following these timepoints, and up to five seconds prior to these timepoints [15, 31].

229

230 Both networks failed to encode whether mice were in the open or closed arms of the EPM (U=42 and
231 P=0.23; U=41 and P=0.26; for Network 1 and 2, respectively, using a one-sided paired Wilcoxon sign rank
232 test; Fig. 3G). On the other hand, we found that Network 2 activity (U=61 and P=0.0049 using a one-

233 sided paired Wilcoxon sign rank test), but not Network 1 (U=19 and P=0.90 using a one-sided paired

234  Wilcoxon sign rank test), was higher in the five seconds interval following the open arm location of mice
235 (regardless of whether they returned to the closed arm during this period). Thus, an increase in Network
236 2 activity was induced by the anxiogenic zone of the assay, providing support for the second pattern of
237 anxiety listed above. Neither Network 1 or 2 activity was lower in the 5-second interval preceding the
238 open arm location (regardless of the location of the mouse during this interval), compared to activity
239 preceding the closed arm of the EPM (U=46 and P=0.88; U=27 and P=0.32 for Network 1 and 2,

240 respectively, using a one-sided paired Wilcoxon sign rank test Fig. 3G). This failed to support the third
241 pattern of anxiety for which high network activity might preclude entrance into anxiogenic zones.

242  Though Network 1 and 2 also failed to encode whether mice were in the center or periphery of the BOF
243 (U=22 and P=0.54, U=20 and P=0.63 using a one-sided paired Wilcoxon sign rank test), we found that
244 both Networks showed lower center activity within the preceding 5 seconds interval compared to the
245 periphery (U=7 and P=0.037; U=8 and P=0.049, using a one-sided paired Wilcoxon sign rank test, Fig.
246 3H). Together, these findings showed that high activity in either network predicted that mice would be
247  inthe safe zone of the BOF in the future, thus supporting the third pattern of anxiety. No increases in
248 Network 1 or 2 activity were observed in the 5-second interval following the center location compared
249  to either network’s activity when mice were in the periphery in the BOF (U=18 and P=0.71, U=13 and
250 P=0.88 using a one-sided paired Wilcoxon sign rank test). Overall, these results showed that Network 2
251  activity was increased by the open arms of the EPM, while high activity in both Networks precluded mice
252  from entering the center zone in the BOF. This latter pattern of activity was consistent with our

253 observation that mice occupied the center zone less during the first half of the BOF when activity in both
254 networks was highest. Thus, Network 1 and 2 activity was behaviorally relevant and supported our three
255 patterns of anxiety, though the pattern for which anxiety behavior was encoded by these networks

256  varied between the two assays.

257

258  Electome Network activity does not encode arousal

259  Asanxiety is correlated with arousal, our training approach could plausibly discover networks that

260 reflect an arousal state rather than anxiety. To explore this possibility, we used data acquired from two
261 independent assays that are thought to increase arousal but not anxiety. During these assays, data was
262 collected from the same brain regions used initially for model training, and LFP activity was projected
263 into the previously learned multi-assay trained model to calculate the activity of Electome Network 1
264  and 2 for each second. In the first assay, mice were trained to maintain a nose poke for 5 seconds. Tones
265 of decreasing pitch were played throughout the 5-second trial, and a 5L sucrose reward was delivered
266 at the end if mice remain in the port for the entire 5 seconds. When we tested whether reward delivery
267 increases electome network activity, we failed to identify a significant response in either network (U=30
268 and P=0.82; and U=41 and P=0.99, for Electome Network 1 and 2 activity, respectively, using a one-sided
269  paired Wilcoxon sign rank test; Fig 4A). Next, we quantified Electome Network 1 and 2 activity responses
270  during a classic social preference assay, where mice freely explore an object and a novel social stimulus
271 mouse housed at the two ends of a chamber. Here, the social stimulus mouse is considered both

272  arousing and rewarding, as experimental mice generally choose to spend more time with the other

273 mouse than the object, and social encounters activate reward circuitry [33]. We failed to discover

274 increases in Electome Network 1 or 2 activity during interactions with the stimulus mouse, compared to

6
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275 the inanimate object (U=60 and P=0.95; U=47 and P=0.74, for Electome Network 1 and 2 activity,

276 respectively, using a one-tailed paired Wilcoxon sign rank test, Fig. 4B). These results demonstrate that
277  both networks fail to encode arousal as no increase in network activity is observed during either the
278  trained or innate reward assays.

279

280  Electome Network activity encodes the internal state induced by additional anxiety paradigms

281  We further probed whether our electome networks encode a robust anxiety-related brain state using
282 additional paradigms that induce anxiety in a manner that is distinct from our initial assays. Again, all
283  analyses were performed on new mice that were not used during model training. We first examined
284  network activity during direct optogenetic stimulation neurons in the ventral hippocampus. This region
285 has been causally implicated in anxiety-related behaviors in rodents [34], and it was a critical upstream
286 node in one of our networks. Moreover, we selectively stimulated the subset of neurons that projected
287  to lateral hypothalamus since the ventral hippocampus—> lateral hypothalamus circuit had been shown
288 to drive anxiety-related avoidance in the EPM and BOF [20]. Mice were infected with an

289  adenoassociated virus (AAV) to express Channelrhodopsin-2 using (ChR2) in the ventral hippocampus
290 and implanted with microwires to target the same regions utilized to learn our multi-assay trained

291 electome network. A microwire and optic stimulating fiber was also implanted in lateral hypothalamus,
292 concurrently (Fig. 5A). Mice were then stimulated with blue light to activate ChR2, or yellow light as a
293 negative control, while neural activity was recorded in their home cage. As expected, blue light induced
294 local and remote LFP activity, while yellow light did not (Fig 5B). When we projected neural activity

295 recorded during these stimulations into our learned multi-assay trained model, we found that ventral
296 hippocampus - lateral hypothalamus stimulation increased Electome Network 2, but not Electome
297 Network 1 activity (U=20 and P=0.14; U=0 and P<0.001, for Electome Network 1 and 2 activity,

298  respectively, using a one-sided paired Wilcoxon sign rank test, Fig. 5C and 5D). Thus, these data further
299  validated Electome Network 2 as a network-level code for the anxious internal state.

300

301  We subsequently examined whether Electome Network 1 or 2 encode the internal state induced by fear
302 conditioning. In this classic paradigm, mice are exposed to seven repeated auditory cues, each paired to
303 a foot shock (conditioned stimulus, CS+). On a subsequent recall session, conditioned mice exposed to
304 the auditory cue in the absence of the foot shock typically exhibit a freezing response. For our

305 conditioning paradigm, we substituted the foot shock with a high-pressure air puff during conditioning
306 (Fig. 5E). This enabled us to minimize electrical noise during LFP recording. Mice exposed to our

307 modified air puff stimulus treated mice (CS+) exhibited increased freezing behaviors during the recall
308 period when compared to controls (CS-) (U=21 and P=2.3x10* using a one-sided Mann-Whitney U test;
309  Fig. 5F).

310

311 We compared electome network activity between CS+ and CS- mice at the final stimulus of the aversive
312 conditioning (i.e., the 7t tone). Though we observed a trend in Electome Network 1 activity, neither
313 Electome Network 1 or 2 were significantly elevated in CS+ mice during the brief interval immediately
314 prior to the tone, compared to the CS- mice (U=105 and P=0.051; and U=78 and P=0.45, for Electome
315 Network 1 and 2, respectively, using a one-sided Mann-Whitney U test, Fig. 5G, 5H). Conversely,

316 Electome Network 2, but not Electome Network 1, activity was significantly higher in CS+ mice during
317  the brief interval immediately after the presentation of the tone (U=100 and P=0.09; and U=110 and
318 P=0.028, for Electome Network 1 and 2 respectively, using a one-sided Mann-Whitney U test, Fig. 51, 5J).
319 Importantly, our post-hoc analysis found no difference in Electome Network 1 or 2 activity prior to, or,
320 immediately following the first tone exposure (see Supplemental Figure S8). As such, Electome Network
321 2 encodes an acute state generated by the presentation of a threat-paired stimulus. Overall, Electome
322 Network 2 encodes a behaviorally relevant component of the classic fear conditioning paradigm, while
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323 Electome Network 1 showed a trend towards encoding a more generalized state that emerged with fear
324  conditioning.

325

326 Finally, having discovered that Electome 2 encoded anxiety features of our fear conditioning paradigm,
327  but not arousal or reward, we asked whether either network broadly encoded an acute negative

328  experience. Specifically, while anxiety is a negative affective state, not all negative experiences produce
329  anxiety. Thus, we further probed our fear conditioning paradigm data to test whether the activity in our
330 electome networks increased acutely during an ongoing negative experience. We reasoned that prior to
331 conditioning, the first air puff should immediately invoke negative affect, but not anxiety. As such, we
332 guantified electome network activity in the CS+ mice while they experienced the first air puff and

333  compared that to neural activity from the CS- mice, which did not receive an air-puff. Using this

334  approach, we found that the air puff acutely increased Electome Network 1, but not Electome Network
335 2, activity (U=118 and P=0.009; and U=86 and P=0.28, for Electome Network 1 and 2, respectively, using
336 a one-sided Mann-Whitney U test, Fig. 5K, 5L; see also Supplemental Figure S8). These results indicated
337  that Electome Network 2 activity was specific for anxiety, while Network 1 was not.

338

339  Electome Network activity is altered in mouse models of mood disorders

340  Anxiety behavior is altered in mood disorders. Indeed, bipolar mania is characterized by impulsivity and
341 risk taking[35] (reflective of decreased anxiety processing), while major depressive disorder is highly co-
342 morbid high anxiety[36]. We reasoned that a causal manipulation that induces a manic-like state in mice
343 should suppress network activity when mice were placed in a context where network activity should
344  otherwise be high. Similarly, we reasoned that causal manipulations that induce a depression-like state
345  should increase network activity when mice were placed in a context where network activity should

346  otherwise be low. Thus, we quantified Electome Network 1 or 2 activity in a mouse model of mania and
347  two of the most widely utilized mouse models for major depressive disorder.

348

349  The ClockA19 mouse line has been proposed as a model of bipolar mania [37]. These mice have a point
350 mutation in the circadian gene Clock and exhibit altered circadian rhythms, hyperactivity, increased

351 reward drive, and decreased anxiety-related behavior [15, 37, 38]. Moreover, many cellular,

352 neurophysiological, and behavioral alterations in these mutant mice are normalized by chronic lithium or
353 valproic acid treatment [37, 39, 40], providing further validation for the ClockA19 mouse as a model of
354 bipolar mania. After confirming that ClockA19 mice demonstrate diminished anxiety behavior in the EPM
355 (T132=2.9; P=0.003 using unpaired t-test, Fig. 6A), we implanted male and female ClockA19 mice and

356  their wild-type littermate controls with microwires targeting the same brain regions used to learn our
357 electome networks. We then quantified neural activity while mice were in the home cage and on the
358 EPM. Exposure to the EPM induced Network 1 activity in both genotypes (F119 = 15.81 and P =8.08x10™*
359  for assay effect using mixed-effects model ANOVA; U=2 and P=0.003, U=10 and P=0.02, for wild type and
360 ClockA19 mice, respectively using one-tailed Wilcoxon sign rank test). Similarly, exposure to the EPM

361 induced Network 2 activity in both genotypes as well (F1,10 = 17.17 and P = 5.51x10 for assay effect

362 using mixed-effects model ANOVA; U=4 and P=0.068, U=9 and P=0.016, for wild type and ClockA19 mice,
363 respectively, using a one-tailed Wilcoxon sign rank test sign rank test). We further probed neural activity
364  across genotypes in the otherwise high-anxiety context (i.e., the EPM). For this analysis, we isolated

365 intervals when mice were in the closed arms, an approach which enabled us to isolate

366  neurophysiological differences that result by disruption of the CLOCK gene, while controlling for the

367  altered behavioral profiles displayed by the mutants. When we compared network activity in closed

368  arms of the EPM across genotypes, we observed lower Network 1 and 2 activity in the ClockA19 mice
369 compared to their littermate controls (T=10.97, P<0.001, Network 1; T=-7.42, P<0.001, for genotype

370 effect for Network 1 and 2, respectively, using an ANCOVA, Fig. 6B). Thus, a genetic manipulation used to
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371 model bipolar mania (and thus decrease anxiety-related behavior) in mice was sufficient to reduce

372 Electome Network 1 and 2 activity in an otherwise angiogenic context.

373

374  Next, we explored network activity in two depression models that causally induce anxiety-related

375 behavior. In the chronic social defeat stress paradigm, mice are repeatedly exposed to larger-aggressive
376 mice. After 10 such exposures, a subset of mice, classically referred to as susceptible, exhibit social

377 avoidance, disrupted reward behavior, and anxiety-like behavior [41, 42]. Conversely, the other subset
378  of mice, termed resilient, exhibit normal social and reward behavior [41, 42] (Fig. 6C-D). Interestingly,
379 despite the well-described differences in appetitive behavior, prior work has reported the emergence of
380 anxiety-like behavior in both the susceptible and resilient mice [41, 43]. Indeed, we find that exposure to
381 chronic social defeat stress induces open arm avoidance in the EPM for both susceptible and resilient
382 mice uniformly (t20=2.27 and P=0.02, for comparison between stress and unstressed mice using a one-
383 tailed Welch’s t-test; t10=0.16 and P=0.87 for post-hoc comparison between susceptible and resilient
384 mice; see Fig. 6E). Therefore, we quantified whether this stress paradigm also increased Electome

385 Network 1 or 2 activity in both the susceptible and resilient groups compared to non-stressed controls.
386 Since we reasoned that stress exposure should induce a persistent anxious internal state, we probed
387 activity recorded while animals were alone in their home cage. Though chronic social defeat stress

388 exposure failed to induce Electome Network 1 activity (U=468 and P=0.90 using one-sided Mann-

389  Whitney U test), we found significantly higher Electome Network 2 activity in the stressed mice (U=151
390 and P<0.01 using one-sided Mann-Whitney U test, Fig. 6F, left). Moreover, no difference in Electome
391 Network 2 activity was observed between susceptible and resilient mice (U=382 and P=0.62, for post-
392 hoc analysis using a two-sided Mann-Whitney U test, Fig. 6F, right). Thus, chronic social defeat stress
393 induced anxiety-like behavior and increased Electome Network 2 activity in both groups, despite

394  differences in how stress impacted their reward function.

395

396  We next quantified network activity in mice exposed to chronic mild unpredictable stress. In this

397 paradigm, mice are repeatedly exposed to a series of stressors over eight weeks. Specifically, test mice
398 are subjected to two stressors per day, one occurring during the light phase of their circadian rhythm
399 cycle and the other during the dark phase. Stressors, including environmental stressors, food/water
400 restriction, or physical restraint, were chosen according to a pseudo-random schedule. Exposure to this
401 protocol induces altered reward and social behavior, as well as increased anxiety-related behavior in
402 mice compared to their non-stress controls [44, 45]. After verifying that chronic mild unpredictable

403 stress induced open arm avoidance in the EPM (t19=2.37 and P=0.018, for comparison between stress
404  and unstressed mice using a one-tailed Welch'’s t-test; see Fig. 6G), we quantified electome network
405 activity in stressed mice and non-stressed controls, again in their home cage. Like chronic social defeat
406 stress, exposure to chronic mild unpredictable stress increased Electome Network 2 activity (U=81 and
407 P=0.036, using a one-sided Mann-Whitney U test, Fig. 6H, left). Thus, two of the most widely utilized
408 paradigms for modeling depression in mice converged on a common network-level signature.

409 Interestingly, chronic mild unpredictable stress also increased Electome Network 1 activity as well (U=82
410 and P=0.031, using a one-sided Mann-Whitney U test, Fig. 6H, right), demonstrating an even broader
411 impact of this stress paradigm on anxiety-related neural activity.

412

413 Discussion

414  Preclinical models have played a role in the development of therapeutics for emotional disorders. These
415 efforts would be greatly enhanced by the discovery of biological mechanisms that instantiate affective
416 internal states in health and disease, and any such mechanisms must generalize across both animals and
417 contexts to achieve their true translational potential. Here, we employed multisite electrical recordings
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418 in freely behaving mice subjected to a collection of behavioral and experimental paradigms to discover
419 and validate an electome network that encoded such a generalized anxious internal state. We reasoned
420 that a putative anxious internal state could be observed at the intersection of many distinct paradigms
421 used to model and induce anxiety behavior. Moreover, we reasoned that the unique features of these
422 paradigms would enable us to disambiguate this anxious internal state from other internal states such as
423 arousal and positive affect (i.e., reward state), or other task relevant variables (Fig. 7A). Machine

424  learning models trained solely using data from one anxiety paradigm failed to generalize to other

425 paradigms. On the other hand, a model trained using data from three assays discovered a network

426 reflecting a shared internal anxious state. Specifically, this electome network generalized to additional
427 anxiety paradigms, including direct optogenetic interrogation of cells originating from a key network
428 node and a classic fear conditioning assay, highlighting its sensitivity. Finally, the electome network

429 failed to encode multiple behavioral assays that induce rewarding and/or arousing (but not anxious)
430 internal states, demonstrating its specificity (Fig. 7B). Thus, our multi-assay learning approach

431 discovered a generalized anxious brain state.

432

433 While each of our initial three paradigms could be encoded by at least one implanted region, no single
434 brain region could independently encode an internal state shared across the three paradigms.

435 Moreover, we were unable to capture a signature for a shared anxiety state when we trained models
436 using the predictors from pairs of regions (power across both regions, and the coherence and Granger
437 coherence measures between them). Strikingly, this approach even failed for pairs of regions that had
438 been previously shown to synchronize during anxious states in the EPM. This suggests that activity within
439 a given brain region or circuit captures some behavioral/affective features of each individual assay, while
440  failing to independently encode a generalized anxiety state. For example, activity in a region/circuit may
441  encode non-specific neural responses to the induction paradigms (e.g., sensing a bright light, or non-
442  specific drug effects), or behavioral features that correspond with anxiety in one of the three assays (e.g.,
443 locomotion). Because we employed different anxiety induction protocols (bright light vs. drug injection)
444  and behavioral contexts (open lit area vs. home cage), we encouraged our machine learning strategy to
445 discover a generalized anxiety state rather than specific features of each assay. Therefore, we assert that
446  while each individual region contains assay-relevant information, the anxious brain state is optimally
447 represented at the network-level, where activity across many distinct brain regions/circuits is integrated
448  atthe sub-seconds timescale. Taken together, our findings highlight two important principles to help
449 discover the neural architecture underlying affective states: 1) employ multiple distinct paradigms to
450 discover generalized affective states rather than features of an assay, and 2) utilizing neural activity

451 acquired from multiple brain regions [24].

452

453 We do not contend that the learned electome network provides a comprehensive description of the
454  anxious internal state. Rather, we believe that this state is also coupled to physiological changes across
455 brain regions involved in sensory and motor function, and throughout the body. It is also likely that

456 several neural circuits outside of Electome Network 2 can converge to impact its activity. Indeed, we
457  found that stimulating ventral hippocampal projections in lateral hypothalamus increased Electome

458 Network 2 activity. Thus, we assert Electome Network 2 provides a robust and objective measure of the
459  internal state that mediates anxious behavior, enabling future preclinical studies to dissect and regulate
460  neural processes that contribute to anxiety in disease states.

461

462 Interestingly, when we probed the response of the Electome Networks 1 and 2 to an acute air puff, we
463  found that only Electome Network 1 responded to this noxious stimulus. While this observation

464  established that Electome Network 2 was specific for encoding an anxious internal state, it raises the
465 hypothesis that Electome Network 1 may broadly encode a negative affective state.
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466

467 Multiple patterns identified by our analysis provided support such an interpretation. Specifically, though
468  our analysis strategy employed one-tailed statistical tests, we observed several instances where network
469  activity tended to respond in the opposite direction (i.e., P>0.95). Indeed, while our appetitive

470  behavioral paradigms failed to induce activity in Electome Network 1 or 2, we observed that Electome
471 Network 1 tended to show a graded decrease in activity during behavioral periods consistent with

472 reward anticipation (Fig. 4A, left) and during interaction with an appetitive social stimulus (Fig. 4B, left).
473  When we quantified neural activity when mice were in the open arm of the mice, we observed that

474 Network 1 activity tended to be elevated in the preceding 5 second interval. Moreover, this activity

475 tended to decrease across during this interval (Fig. 3G). Such a pattern in network activity was not

476 observed for Network 2, nor was it observed in the interval preceding when mice were in the closed arm
477 for either network.

478

479  This putative decrease in Electome Network 1 activity may reflect an internal process whereby animals
480 briefly suppress a negative affective/avoidance network, enabling them to approach an aversive context
481 or one that carries perceived risk. This interpretation is supported by our findings in the ClockA19 mice
482 which model a manic-like state. Mania is characterized by increased impulsivity and risk taking, and this
483 genetic strain exhibited decreased anxiety-related behavior. We found decreased Electome Network 1
484  activity in the ClockA19 mouse when they were in a context that should otherwise induce anxiety. Taken
485 together, these raise the idea that Electome Network 1 and 2 cooperate to shape behavior related to
486 anxiety. In this putative framework, Electome Network 2 encodes anxiety, while Electome Network 1
487 shapes behavior outcomes in response to the internal anxiety state and other negative affective states
488  (Fig. 7B). Future experiments will be necessary to test the validity of this putative framework.

489

490 Though Electome Network 2 failed to show increased activity in response to an acute negative stimulus,
491 as Electome Network 1 had, we observed that Electome Network 2 activity tended to decrease after
492 sucrose reward delivery (P>0.95 using one-tailed analysis; Fig. 4A, right). These findings raise the

493 intriguing potential that anxious and negative internal states may counterbalance the appetitive internal
494  state. Indeed, depression is characterized by disrupted appetitive drive and high anxiety, while bipolar
495 mania is characterized by high appetite drive and disrupted anxiety. Supporting the translational utility of
496 Electome Network 2, we quantified its activity in a mouse model of mania and two well established

497 preclinical animal models of depression based on chronic stress exposure. The mouse model of mania
498 exhibits predictive validity as it shows increased reward drive and decreased anxiety-like behavior that
499 responds to chronic lithium treatment [37]. Similarly, both stress models exhibit predictive validity with
500 depression as they produce a heightened anxiety-like behavior and an anhedonia phenotype that

501 responds to chronic antidepressant administration [42, 46, 47]. We found decreased activity in Electome
502 Network 2 in the mouse model of mania when mice were in an otherwise high anxiety context (i.e., in
503 the EPM). Conversely, we found increased activity in Electome Network 2 in the depression models.

504  Strikingly, this increased activity was observed when mice were in an otherwise low anxiety context (i.e.,
505 in their home cage).

506

507  The two depression models showed distinct network changes in Electome Network 1. Exposure to

508 chronic mild unpredictable stress induced Electome Network 1 activity, while exposure to chronic social
509  defeat stress did not. These findings raise the intriguing potential that chronic mild unpredictable stress
510 may more broadly induce a negative affective state, while chronic social defeat stress primarily impacts
511 the anxiety internal state. Future studies to further validate the role of Electome Network 1 in behavior
512 may further clarify the behavioral distinctions between the two depression models. Taken together, our
513  findings establish a brain electome network that encodes anxiety-behavior in health and in disease
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514 models. Moreover, we establish a putative preclinical biomarker for the development of anxiolytic

515 therapeutics.

516

517

518  Figure Legends

519

520  Figure 1: Distributed electome networks encodes anxiety states across multiple anxiety-related

521 paradigms. A) Local field potential oscillations recorded from 8 brain regions, concurrently, as mice
522  were subjected to three distinct paradigms used to model anxiety. B) dCSFA-NMF results when the
523 network model was used to discover an electome network for each anxiety paradigm. Electome

524 networks learned for the three anxiety paradigms were applied to new mice subjected to the three
525 paradigms (N= 13, 26, and 19 training mice for FLX, EPM and BOF, respectively, and N=6, 11, 9 holdout
526 mice for FLX, EPM and BOF, respectively). Nine generalization tests for each of the three learned

527 networks were run in new mice subjected to the three different anxiety paradigms. C) Multi-assay

528 dCSFA-NMF model used to discover a joint set of electome networks shared across the three anxiety
529 paradigms. D) Network Consistency was evaluated by training the dCSFA-NMF model multiple times,
530 where the mice used for training and validation were shuffled. A cosine distance metric quantified the
531 consistency of the supervised networks across runs, where a lower cosine distance reflected greater
532 network consistency. E) Box and whisker plots show generalization tests for which the networks learned
533 from the multi-assay dCSFA-NMF model were applied to new mice (same as Fig. 1B) subjected to the
534  three different anxiety paradigms. Dashed line at AUC = 0.5 corresponds to models with no predictive
535 utility. F) Predictive utility of multi-region multi-assay dCSFA-NMF network model (same as Fig. 1E) vs.
536 models solely based on activity from single brain regions. Models that showed significant encoding are
537 highlighted in pink (data analyzed using a single-sample t-test against a null AUC distribution at a = 0.05,
538 and shown as meanzs.e.m). Note that only the network model encoded all three assays.

539

540  Figure 2: Individual electome networks within the multi-assay anxiety model independently encode
541  distinct anxiety paradigms. A) Power and Synchrony measures that comprise each electome network.
542 Brain regions and frequency bands ranging from 1-56 Hz are shown around the rim of the plot. Power
543  features are depicted as bands within the rim of the plot, and cross-spectral (i.e., synchrony) measures
544  are depicted by the lines connecting the brain regions through the center of the circle. The top 15

545 percent of components for each electome network is shown. B) Granger offset measures were used to
546 guantify directionality for the synchrony measures shown in A. Prominent directionality features were
547  found in multiple bands coded by color. Histograms quantify the number of lead and lagging circuit

548 interactions for each brain region. C) Schematic of directionality for each of the three electome

549 networks. Arrows are colored to represent the dominant frequency of directionally (see color scale in
550 panels A or B). D) Independent predictive performance of each supervised network across each anxiety
551 assay. Mean contribution towards the joint model logistic regression predictions is also shown.

552 Independent predictive performance of each supervised network across each anxiety assay. Tests were
553 performed using the 17 holdout mice, and networks that showed significant encoding are highlighted in
554 pink (data analyzed using a one-tailed unpaired t-test against a null AUC distribution at a = 0.05).

555

556 Figure 3: Increases in Electome Network 1 and 2 activity encodes features of anxiety related

557 paradigms. A) Electome Network activity dynamics during fluoxetine assay. Data is plotted across 5-
558 minute windows for Electome Network 1 (left) and 2 (right). Note that activity decreases in both

559  networks over time following saline and fluoxetine treatment (N = 6 mice). P* <0.05 for time effect using
560  a within and within two-way ANOVA. B) Comparison of Electome Network activity in safe zones of the
561 EPM (closed arm) and BOF (periphery) over the duration of the assays. Time (P"), and assay (P*) effects
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562 were determined using an analysis of covariance. Data was plotted with a 10s sliding window and shown
563 normalized to network activity observed in the home cage. C) Mice showed avoidance of the anxiogenic
564  zones of the EPM (left, P<0.05 using one-tailed paired t-test) and BOF (middle, P<0.05 using one-tailed
565 paired t-test). Bout length of mice in the anxiogenic zones for EPM and BOF (right; P<0.05 using one-
566 tailed unpaired t-test). D) Decrease in Network 1 (left) and 2 (right) activity between the first and last
567  minute of each assay. Network 2 showed a larger activity decrease in the BOF than in the EPM (P<0.05
568  using one-sided Mann-Whitney U test). E-F) Average period of occupancy in safe and anxiogenic zones in
569 E) EPM and F) BOF assays. Note that mice showed greater occupancy of the center in the second half of
570  the BOF. G) Electome Network activity dynamics relative to arm locations in the EPM assay. Gray

571 highlights 1 second windows when the animals are in the open or closed arms. Neural activity preceding
572  and following these timepoints is shown as well, and data is shown normalized to the mean activity

573 observed across the assay. The purple line highlights temporal intervals with significantly different

574 Electome Network activity, determined using a one-tailed Wilcoxon sign rank test (N = 11 mice). H)

575  Same as G, except data shown for the BOF assay (N=9 mice).

576

577 Figure 4: Electome Network 1 and 2 activity does not encode arousal. A) Mice were trained to nose
578 poke for 5 consecutive seconds. A sucrose reward was delivered at time zero, highlighted by gray.

579 Electome Network activity was compared prior to and following sucrose delivery using a one-tailed sign-
580 rank test (N=9 mice). Data is shown as data is shown as meants.e.m. B) Electome Network activity was
581 quantified while mice engaged with an object or a social stimulus mouse during a free interaction assay
582 and compared using a one-tailed sign-rank test (N=12 mice). All analyses were performed in mice that
583 were not used to learn the multi-assay anxiety model. Data is shown as data is shown as meanzs.e.m.
584

585 Figure 5: Electome Network 1 and Network 2 activity encode distinct anxiety paradigms. A) Mice were
586 infected with ChR2 in ventral hippocampus (Hip) and implanted with an optrode to target lateral

587  hypothalamus (LH). Multiwire electrodes were also implanted to target the 8 brain regions utilized to
588 learn the multi-assay anxiety network (N=11 mice). B) Neural activity recorded during optogenetic

589 stimulation of Hip terminals in LH with blue (473nm, 20hz, 5mW, 5ms pulses) or yellow light (593.5nm,
590 20hz, 5mW, 5ms pulses). Note that blue light stimulation induced activity in LH (and remotely) while
591 yellow light stimulation did not. C) Electome Network 1 and D) Network 2 activity during yellow or blue
592 light stimulation. Network 2 showed an increase in activity with blue vs. yellow light stimulation

593 (P<0.001 using a one-tailed Wilcoxon sign rank test)) while Network 1 did not (P=0.14). E) Behavioral
594 paradigm utilized to induce fear conditioning. Conditioned mice (CS+; N=10) received an air puff at the
595  end of each tone presentation, while non-conditioned mice (CS-; N=15) did not (top). Neural activity was
596 recorded in both groups throughout tone presentation (bottom). F) Freezing behavior in CS- and CS+
597 mice one to two days after exposure to the conditioning paradigm. G-H) Mean Activity of G) Electome
598 Network 1 and H) Electome Network 2 activity within the 10 second interval prior to the presentation of
599  the 7" conditioning tone. I-J) Mean activity of I) Electome Network 1 and J) Electome Network 2 within
600 the 20 second following the presentation of the 7t" conditioning tone. H-K) Mean activity of 1) Network 1
601 and J) Network 2 in response to an air puff. Data was analyzed using a one-tailed rank sum test.

602

603 Figure 6: Alternated Electome network activity signals behavioral disruptions in mouse models of

604  mood disorders. A) EPM open arm exploration in WT and ClockA19 mice (N=17 mice/genotype). Data
605  was compared using a one tailed t-test. B) Neural activity was isolated when mice were in the closed
606  arm of the EPM and Electome Network 1 (left) and 2 (right) activity was compared across genotype

607  using an Analysis of Covariance (N=10 and 11 for WT and ClockA19 mice, respectively; data shown as
608 meants.e.m.). C) Distinct stress paradigms utilized to model depression in mice. D) Schematic of choice
609 interaction assay utilized to quantify susceptibility to chronic social defeat stress (left), and resultant
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610  social interaction profiles of a population of stressed mice (right). Red circles denote mice defined as
611 susceptible (interaction ratio < 1), while green circles denote resilient mice (interaction ratio >= 1). Black
612  circles denote non-stressed control mice. E) EPM open arm exploration in mice subjected to chronic
613 social defeat stress (N=12 mice) and control mice (N=10 mice). Data was compared between stressed
614  and non-stressed mice using a one-tailed t-test. Post-hoc testing between susceptible (N=5 mice) and
615 resilient mice (N=7 mice) was performed using a two-tailed t-test. F) Electome Network 1 (left) and 2
616  (right) activity was quantified in the home cage and compared between chronic social defeat stressed
617 (N=34 mice) and non-stressed controls (N=16 mice) a one-tailed rank-sum test. Post-hoc testing was
618 compared between susceptible (N=21 mice) and resilient mice (N=13 mice) using a two-tailed rank-sum
619  test. G) EPM open arm exploration in mice subjected to chronic mild unpredictable stress (N=11 mice)
620 and control mice (N-11 mice). Data was compared using a one-tailed t-test. H) Electome Network 1 (left)
621  and 2 (right) activity was quantified in the home cage and compared across groups using a one-tailed
622 rank-sum test.

623

624 Figure 7: Conceptual framework utilized to discover and validate electome network for anxious

625 internal state. A) Affective and neurophysiological states (listed on the left) induced by behavioral and
626 experimental manipulations (listed along the top). Manipulations that were hypothesized to

627 induce/strengthen the internal state listed to the left are highlighted by green. Manipulations that were
628 hypothesized to decrease the internal state listed to the left are highlighted by red. Manipulations for
629  which there is no clear prediction for the impact on the affect state listed to the left are highlighted by
630  yellow. Mice used for each analysis are shown in the bottom row. New independent mice are

631 highlighted in green. B) Responses of Electome Networks 1 and 2 to experimental conditions utilized
632  throughout the study. Green and red boxes highlight conditions where network activity significantly
633 increased or decreased, respectively. An ‘X’ is used to denote the non-significant trends observed in
634 network activity response.

635 Methods

636 Animal Care & Use

637 Male C57BL/6J (C57) mice were purchased from Jackson Labs at 6-8 weeks of age. Unless otherwise
638 specified, mice were housed 3-5 per cage, on a 12-hour light/dark cycle, and maintained in a humidity-
639 and temperature-controlled room with water available ad libitum. ClockA19 mice were created by N-
640 ethyl-N-nitrosourea mutagenesis that produced a dominant-negative CLOCK protein as previously

641 described [38, 39]. After backcrossing >10 generations on a BALB/cJ background, Clock?19 mice and
642 their wild type littermate controls were bred from heterozygous (ClockA19 -/+) breeding pairs. Male and
643 female mice, 8-16 weeks old, were used for electrophysiological experiments presented in this study.
644  Anxiety-related manipulations and behavioral tests were conducted with approved protocols from the
645 Duke University Institution Animal Care and Use Committee. The elevated plus maze (EPM) behavioral
646  experiments in ClockA19 mice and their littermate controls were conducted at the University of

647 Pittsburgh. These experiments were performed in compliance with approved protocols from the

648 University of Pittsburgh’s Institution Animal Care and Use Committee. The EPM behavioral experiments
649  in mice exposed to chronic social defeat stress were conducted at the University of lowa. These

650 experiments were performed in compliance with approved protocols from the University of lowa’s

651 Institution Animal Care and Use Committee. All experiments were conducted in 6-20 weeks old mice,
652  and in accordance with the NIH guidelines for the Care and Use of Laboratory Animals.

653 Data Extraction and Processing
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654 Electrode Implantation Surgery

655  The electrode implantation surgery procedure has been described previously[48, 49]. Mice were

656  anesthetized with 1.5% isoflurane, placed in a stereotaxic device and metal ground screws were secured
657 in above anterior cranium (midline) and cerebellum (midline). A third screw was secured laterally,

658  roughly half-way between the two other screws. Thirty-two tungsten microwires were arranged in array
659  bundles designed to target amygdala (Amy), medial dorsal nucleus of thalamus (MD), nucleus

660 accumbens core and shell (NAc), ventral tegmental area (VTA), medial prefrontal cortex (mPFC), dorsal
661 hippocampus (dHip), and ventral hippocampus (Hip) and were centered based on stereotaxic

662 coordinates measured from bregma (Amy: -1.4mm AP, 2.9 mm ML, -3.85 mm DV from dura; MD: -

663 1.58mm AP, 0.3 mm ML, -2.88 mm DV from dura; VTA: -3.5mm AP, £0.25 mm ML, -4.25 mm DV from
664 dura; Hip: -3.3mm AP, 3.0mm ML, -3.75mm DV from dura; mPFC: 1.62mm AP, £0.25mm ML, 2.25mm DV
665 from dura; NAc: 1.3mm AP, 2.25mm ML, -4.1 mm DV from dura, implanted at an angle of 22.1°). We

666  targeted cingulate cortex, prelimbic cortex, infralimbic cortex using the mPFC bundle by building a

667 0.5mm and 1.1mm DV stagger into our electrode bundle microwires. Animals were implanted bilaterally
668 in mPFC and VTA. All other bundles were implanted in the left hemisphere (supplemental Fig. S9). The
669 NAc bundle included a 0.6mm DV stagger such that wires were distributed across NAc core and shell. We
670  targeted basolateral amygdala BLA and central amygdala CeA by building a 0.5mm ML stagger and

671 0.3mm DV stagger into our AMY electrode bundle [26]. Notably, these implantation sites have been

672 homogenized across experimental preparations in the lab enabling comparative analysis across prior and
673 recently collected data sets. A metal ground wire was secured to the anterior and posterior screws, and
674  the implanted electrodes were anchored to all three screws using dental acrylic. To mitigate pain and
675 inflammation related to the procedure, all animals except those subjected to fear conditioning, chronic
676  mild unpredictable stress, and chronic social defeat stress received carprofen (5mg/kg, s.c.). Injections
677  were given once prior to surgery and then every 24 hours for three days following electrode

678  implantation.

679  Neural Electrophysiological Data Acquisition & Video Recording

680 Neurophysiological data were acquired using a Cerebus acquisition system (Blackrock Microsystems, Inc.,
681 Salt Lake City, UT). Animals were connected to the system using an M or Mu-32 channel headstage

682 (Blackrock Microsystems, Inc., Salt Lake City, UT) and a motorized HDMI commutator (Doric Lenses,

683 Quebec, Canada). Local field potentials (LFPs) were bandpass filtered at 0.5-250Hz and sampled/stored
684  at 1kHz. All neurophysiological data were referenced to a ground wire connecting the ground screws

685 above cerebellum and anterior cranium. Video recordings were acquired in real-time using NeuroMotive
686 (Blackrock Microsystems, Inc., Salt Lake City, UT) and synchronized with neurophysiological data.

687 Histological Confirmation

688 Histological analysis of implantation sites was performed using one of two protocols at the conclusion of
689  experiments to confirm electrode placement. Animals were perfused with 4% paraformaldehyde (PFA),
690 and brains were harvested and stored for 24 hours in PFA. Brains were either processed on a cryostat or
691 vibratome. For cryostat: Brains were then cryoprotected with sucrose and frozen in OCT compound prior
692  to being stored in -80C. Brains were sliced at 35 um using a cryostat and stained with either DAPI

693 (AbCam) or cresyl violet (Sigma) using standard protocols. Slices were imaged at 4x and 10x

694 magnification on a Nikon eclipse fluorescent microscope. Alternatively for brains processed via

695 vibratome, mice were perfused with 4% paraformaldehyde (PFA, Electron Microscopy Sciences) in PBS,
696 and brains were harvested and post-fixed in 4% PFA and then transferred to PBS with 0.05mM sodium
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697  azide. Brains were sliced at 40um (Leica Vibrating Blade Microtome) and stained with Hoechst (Fishersci)
698 containing mounting solution (9.6% Mowiol 4-88 (Sigma) in 24% glycerol, 0.M M Tris-Cl pH 8.5) on
699  standard microscope slides. Slides were imaged at 4x and 10x with Olympus Slide Scanner (VS200).

700 LFP Processing to Remove Signal Artifact

701 We employed a heuristic approach to eliminate recording segments containing non-physiological signals
702 identically to previous works [26, 50], and we paraphrase the processing procedure as follows: we first
703 computed the signal envelope for each channel by utilizing the magnitude of the Hilbert transform. For
704  any 1-second window in which the envelope surpasses a predetermined low threshold, we discard the
705  entire segment if, at any point within that window, the envelope exceeds a second, higher threshold. The
706  two thresholds were independently determined for each brain region. The high threshold was set at 5
707  times the median absolute deviation of the envelope value specific to that region. The choice of five
708  median absolute deviations as the high threshold was based on its approximate equivalence to 3

709 standard deviations from the mean in normally distributed data, while remaining robust to outliers. The
710  low threshold was empirically established as 3.33% of the high threshold. If more than half of the

711 window was removed for a given channel, we also removed the remaining portion of that window for
712 that channel. Additionally, any windows where the standard deviation of the channel is less than 0.01
713  were excluded.

714 Feature Extraction

715 Feature extraction was performed identically to previous works [26, 50], and we paraphrase the

716  generation procedure as follows: LFPs were averaged across wires within the same region to generate a
717 composite LFP measure. Signal processing was conducted using Matlab (The MathWorks, Inc., Natick,
718 MA). For LFP Power, a sliding Fourier transform with a Hamming window was applied to the averaged
719 LFP signal utilizing a 1-second window and a 1-second step. Frequencies ranging from 1-56Hz were

720 analyzed. LFP cross-structural coherence was computed from pairs of averaged LFPs using magnitude-
721 squared coherence, where coherence is a function of the power spectral densities of brain regions A and
722 B and their cross-spectral densities.

|PSdAB(f)|2
Psdys(f)Psdggp(f)

723 Cap(f) =

724  Spectral Granger causality features [51] were computed using the multivariate Granger causality

725 (MVGC) MATLAB toolbox [52]. The data underwent a high-pass Butterworth filter with a stopband at
726 1Hz and a passband at 4Hz. Granger values for each window were calculated using a 20-order AR model
727  through the GCCA_tsdata_to_smvgc function of the MVGC toolbox. Granger causality values were

728  determined for all integer frequency values within the specified range for all directed pairs of brain

729 regions in the dataset[50].

730  Acute Fluoxetine Administration (FLX)

731 For the behavioral fluoxetine experiments, mice were randomly assigned to receiving either an injection
732 of fluoxetine or saline 30 minutes prior to being placed on the EPM. Fluoxetine (Sigma) was made up in
733 0.9% NaCl to a concentration of Img/mL and then injected at 10mL/kg for a final concentration of 10
734 mg/kg, i.p.[28]. Physiologic saline injection was injected at 10 mL/kg as well as a control for injection
735 volume. Animals were habituated to i.p. injections daily for 1 week prior to behavioral testing. Though
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736  fluoxetine only has an 8-hr half-life in mice, a lengthy washout period was chosen to ensure no traces of
737  the drug remained.

738 For electrophysiologic recordings, animals used for training the final model followed a standard

739  pharmacological crossover design with a 2-week washout period. Specifically, after habituation to the
740  experimental room for 1 hour, mice were pseudorandomly assigned to receiving a or saline injection.
741 Neural recordings were then obtained for an hour. Two weeks later, animals underwent a second one-
742 hour recording session after receiving the other treatment. To test the final model, we utilized a protocol
743 in which mice were two recording were performed at a much closer interval. Specifically, after

744 habituation to the experimental room for 1 hour, mice were treated with saline and neural data was

745 recorded for an hour. Several hours later, mice were subjected to a second recording session

746  immediately following treatment with fluoxetine.

747  Elevated Plus Maze (EPM)

748  The EPM assay is widely employed to measure anxiety behavior in mice[53]. The EPM is comprised of
749  four arms arranged in a cross shape, each measuring 30.5cm in length and 30.5cm in width, positioned
750 at a height of 91.4cm from the floor. Additionally, there is a central region measuring 5cm by 5cm.

751 Among the arms, two are designated as 'closed,' enclosed by walls that are 16.5cm in height on three
752 sides, while the other two are 'open' and surrounded by a low piece of tape, approximately Imm in
753 height.

754  Two days prior to testing, mice were gently handled in the experimental room for roughly 1 minute per
755 animal. Following gentle handling, mice were habituated to the testing room for 1 hour in a testing

756 ‘home cage’. After this hour, mice were returned to group housing in their original home cage. This

757 procedure was repeated one day prior to experimental testing. On the testing day, mice were habituated
758  to the experimental room in their individual testing home cage for one hour. Mice were then connected
759  to the recording system and habituated for an additional 10 minutes. Following 5 minutes of neural and
760  video recordings from an overhead camera, mice were placed in the center of the EPM facing one of the
761  closed arms. Neural recordings and video data were acquired for an additional five-ten minutes. Testing
762  was performed at 175lux, during the light cycle.

763 Bright Open Field (BOF)

764  The bright open field assay is also widely employed to measure anxiety behavior in mice[53]. This assay
765 consists of a square arena (46 cm x 46 cm x 30 cm), in which the innermost third (i.e., ‘center zone’) is
766 considered to be more anxiogenic zone than the outermost two thirds (i.e., ‘periphery zone’). Mice were
767 habituated to the testing room in an individual experimental home cage using the same procedure

768 described for the EPM. On the testing day, mice connected to the recording system and five minutes of
769 neural and video data (from an overhead camera) were acquired while mice were in their individual

770  testing home cage. Mice were then placed in the periphery of the BOF, and an additional five minutes of
771 data were acquired while mice freely explored the arena. Testing was performed at 125lux, during the
772 light cycle.

773 Delayed sucrose reward apparatus

774  The task chamber was constructed from Lego Duplo pieces of varied color, shape, and size. The
775 apparatus had approximate dimensions of 48cm wide x 35cm deep x 30cm tall, and each wall was
776  visually distinct. A nose poke detector was in the center of each wall, placed 1cm above the floor. There
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was also an LED light directly above each nose poke detector. The chamber was also equipped with four
fluid dispensers, which were calibrated to release 5ulL of 10% sucrose directly into each nose poke
detector. The reward for three of the ports was also flavored with pumpkin, almond, or orange oil. The
location and reward type remained fixed throughout each phase of experimental testing for all animals.
During the task, the chamber was illuminated to 30 lux. The system was also equipped with speakers and
an audiometer, and reward cues were played at 68dB. Signals from the nose poke detectors, LED lights,
fluid dispensers, and audiometer were digitized and stored in parallel with our neural recordings.

Delayed sucrose reward training and task

Delayed sucrose reward task was modeled after a prior test in which mice had to remain in a spatial
location in order to receive a food reward [54, 55]. After 7-14 days of recovery from surgical
implantation, mice were food-deprived to 90% of their free-feeding body weight. During a training
session, a mouse was connected to a recording cable, and placed in the temporal goal progress task
apparatus. The training procedure is as follows:

e Stage 1: On the first day of training, mice freely accessed the testing chamber for 60 minutes.
Each poke into a nose poke detector triggered a 500ms tone at 4000Hz and 5uL of reward
release directly into the poke detector. This stage was repeated over 2 days.

e Stage 2: On the third and fourth day of training, mice were placed into the recording chamber
together with their cage mates, without a recording cable. Mice were then allowed to freely
explore the recording chamber for 120 minutes.

e Stage 3: On the fifth day, mice resumed individual training, during which they advanced in task
difficulty after meeting specific criteria.

o 3a: Each detected poke activated a 500ms 4000Hz tone and released a 5uL reward at
the beginning of the tone.

o 3b: Each detected poke activated a 500ms 4000Hz tone and released a 5pl reward at
the end of the tone.

o 3c: Each detected poke activated a 500ms 4000Hz tone and released a 5uL reward at
the end of the tone if a mouse remained in the detector.

o 3d: Each detected poke activated a 500ms 4000Hz tone and released a 5uL reward one
second after the start of the tone if a mouse remained in the detector.

o 3e: Each detected poke activated a 500ms 4000+387Hz tone, and a second 500ms
4000Hz tone, one second later. A 5uL reward was released at the end of 1.5 seconds if a
mouse remained in the detector.

o 3f: Each detected poke activated a 500ms 4000+387Hz tone, and a second 500ms
4000Hz tone, one second later. A 5ulL reward was released at the end of 2 seconds if a
mouse remained in the detector.

o 3g: Each detected poke activated a 500ms 4000+387+387Hz tone, and a second 500ms
4000+378Hz tone one second later, and a final 500ms 4000Hz tone one second later. A
5ul reward was released at the end of 2.5 seconds if a mouse remained in the detector.
This training pattern continued until mice passed training at the 5-second delay. For
these trials, a tone of diminishing frequency was played at the beginning of each
second, and mice received reward if the poke hole was activated for the entire test
interval.

e A mouse passed a training stage when it completed 120 rewarded pokes in one day, or 120
rewarded pokes in two consecutive days and the second day reward count was greater than or
equal to the reward count of the first day. Mice regressed to a prior training stage if they failed
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822 to complete a stage after five days, or if they received fewer than twenty rewards during a
823 session. The data utilized for our electrophysiological analysis was acquired after mice
824 completed training at the 5-second delay.

825  Social Preference Assay

826 A previously published data set was used to assess the impact of social interaction on electome network
827  activity [26]. Briefly, mice implanted with electrodes at the same brain coordinates utilized for this study
828  were allowed to explore a rectangular arena (61cm x 42.5cm x 22cm, LxWxH) for 10 minutes. Two clear
829 plexiglass walls divided the area into two equal chambers. Each chamber contained a circular holding
830 cage (8.3cm diameter and 12cm tall) containing either a novel object or a C3H target mouse matched for
831 sex and age. Data was collected across 6-10 testing session/mouse. Video data was tracked using Bonsai
832 Visual Reactive Programming software, and network activity was analyzed for periods in which mice

833 were within ~5cm of the novel object or target mouse.

834  Optogenetic Stimulation and Electrical Recordings

835 We modeled previously published methods for targeting the ventral hippocampus - lateral

836 hypothalamus circuit [20]. Specifically, mice were anesthetized with 1.5% isoflurane, and placed in a

837 stereotaxic device. A 33-gauge Hamilton syringe was used to bilaterally infuse 0.5 pl of AAV5-ChR2-EYFP
838 at a rate of 0.1 pl/min into ventral hippocampus (-3.16mm AP, 3.3mm ML, -3.75mm DV from dura). Two
839  weeks, later mice were implanted with recording electrodes using the procedure and brain targets

840 described above (‘Electrode Implantation Surgery’). These electrodes included a bundle that was used to
841  target lateral hypothalamus (LH: -1.95AP, 0.5ML, -4.75DV). A 100um diameter fiberoptic (Doric Lenses)
842 fiberoptic cannula was built into the LH bundle with the tip situated 250um above the tip of the LH

843 microwires bundle [56, 57]. In vivo recordings were conducted after 2 weeks of recovery. Mice were

844 habituated to the experimental room/setup for the two days preceding experiments.

845 Mice were connected to the recording system using a 32-channel M headstage, and a fiberoptic patch
846  cable, and placed in a new home cage for 1 hour. On the testing day, mice were connected and placed in
847  the same experimental home cage. After 40 minutes of additional habituation, neural data was recorded
848  for 20 minutes. Mice were then stimulated with blue or yellow light for 10 minutes. Light stimulation was
849 delivered at 20hz, 5mW, with 5ms pulses and verified using a power meter (Thorlabs, PM100D). Mice
850  were pseudorandomized to stimulation with either blue (473nm wavelength, Crystalaser, CL473-025-0)
851 or yellow light (593.5nm, OEM Laser Systems, Model No. MGL-F-593.5/80mW).

852 One week later, mice were subjected to a second recording with the other laser, using the same protocol
853 described above. Thus, each mouse was stimulated with blue and yellow in pseudorandomized order
854 across the two sessions.

855 Fear Conditioning

856 Mice were implanted with electrodes as described above (‘Electrode Implantation Surgery’). Following a
857  two-week recovery period, mice were trained in a classic cued fear conditioning paradigm during which
858 an auditory tone (conditioned stimulus; CS) was paired with an aversive air puff (unconditioned stimulus,
859 US). The CSconsisted of a 30 second, 10 kHz, 80dB, continuous auditory tone that was generated using
860 MATLAB. The US consisted of a 2-second, 40 PSI, air-puff that was introduced through 4 pumps built into
861 each of the testing chamber's walls. Mice were randomly assigned to 2 groups: Fear conditioned

862 (CS+/US+) and Control (CS+/US-). Behavioral testing was conducted in two distinctly different behavioral
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863  contexts (context A and B). Context A was a 10”x10”x11"” (LxWxH), striped chamber made of alternating
864  black and white Legos®. Context B was 6”x12x11” chamber, with walls consisting of mixed colored Legos.
865 Context A had a smooth floor, while context B had a textured floor.

866 Prior to conditioning (Day 0), mice were habituated to the behavioral room for 2 hours. On Day 1 of the
867  task, mice were connected to the recording system, and placed into context A for 2 minutes. The

868  conditioned group was exposed to 7 trials of the CS. The US was presented during the last 2 seconds of
869  each tone, and there was a pseudorandom interval ranging from 60-120 seconds between each trial. The
870 control group was exposed to 7 trials of the CS without the US. Each group remained in Context A for 1
871 minute after the last trial concluded. The neural and video data were collected throughout the

872 recordings. We also collected a continuous signal corresponding to the onset and offset of the CS.

873 Mice were then exposed to a cued recall session on Day 3. Here, mice were connected to the recording
874  system and placed into Context B. After 3 minutes, mice were presented with the CS for 3 minutes.

875 Neural and video data was recorded throughout this interval, and the freezing behavior was quantified
876 using Ethovision X12 (Noldus, Wageningen, the Netherlands) to detect the percentage of time during the
877 CS presentation that the animal did not move. A subset of the conditioned mice (N=5) was also exposed
878  to an extinction protocol on Day 2. For these experiments, mice were presented with the CS, but not the
879 US, in Context A. Since our objective was to quantify neural responses to fear conditioning on Day 1, and
880 exposure to the one-day extinction protocol had no impact on freezing behavior on Day 3 (t26=0.11 and
881 P=0.92 using two-tailed unpaired t-test), we pooled all the mice in the CS+/US+ group for the analyses
882 presented in the text.

883  Chronic Social Defeat Stress (cSDS)

884  These methods parallel those described in our prior work [27, 57]. Data for our electrophysiological and
885 behavioral analyses were obtained from two different cohorts of implanted mice. Behavioral data on the
886 EPM was assessed from mice implanted in a different set of brain regions than those used for this study.
887 Neurophysiological recordings in the home cage were obtained from mice implanted in the same brain
888  regions utilized in this study. Data from a subset of these mice were presented in our published work
889  [26].

890 We modeled our chronic social defeat stress protocol after previously published work [42, 46]. Singly

891 housed male retired-breeder CD1 (Charles River) mice were used as resident aggressors for the social
892 defeat. Experimental animals were pseudorandomly assigned to control or stress groups, such that cage
893 mates were distributed across groups. Six to seven-week old male mice were implanted with electrodes
894  asdescribed above (‘Electrode Implantation Surgery’). Stress experiments were initiated two weeks after
895 surgical recovery. All C57BI6/] (C57) mice were singly housed prior to being subjected to c¢SDS, and highly
896 aggressive CD1s were used for the stress protocol. Briefly, C57 experimental mice were exposed to CD1
897 aggressors for 5 mins and only removed early in the event of serious physical injury (which never

898 happened for more than two defeated mice animals per defeat). Defeats were run in dim light conditions
899  (~40-50 Lux). After 5 mins, C57 mice and CD1 aggressors were separated with a perforated divider for 24
900 hours. Control C57 mice were placed on either side of a similar cage setup and cage-mates were rotated
901 each day. This process was repeated for a total of 10 days. Triage was performed on animals following
902  each day of defeat to check for and treat any wounds. After this check, the lights were turned off., Mice
903 that exhibited significant injuries during social defeat stress were removed from post-stress analysis.
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904  All control and stressed mice were subjected to neural recording in their home cage one day following
905 completion of the chronic social defeat stress protocol. Mice were then subjected to a forced interaction
906  test during which they were placed in a semi-protected circular sub-chamber. After ten minutes, a novel
907  CD1 aggressor mouse was placed within the same arena directed outside sub-chamber for 5 minutes
908 [27,57,58].

909 A choice social interaction test was used to categorize stressed mice as susceptible or resilient [41, 42,
910 57, 58]. This assay was performed 2 days following the last social defeat session, during the dark cycle of
911  each mouse. Testing was conducted in a room with two red lamps facing the ceiling (2-10 lux). Animals
912 were habituated to the room for approximately two hours prior to the start of testing. Experiments were
913 randomized and balanced to include alternating control and experimental mice spread throughout the
914  duration of experiment. For each trial, an animal was placed in the center of an opaque, white, 18” x 18”
915 box with 18” high walls with a wire-mesh sub-chamber at the center of one wall for 150 seconds. Then a
916 CD1 mouse (low/non-aggressive) was placed in the enclosed sub-chamber, and the experimental mouse
917  was placed back in the box for 2 minutes and 30 seconds. Behavior was recorded for the entirety of each
918  trial. Stressed mice that showed higher interaction time with the empty sub-chamber than the sub-

919 chamber containing the CD1 mouse were defined as susceptible. Mice that showed higher interaction
920 time with the sub-chamber containing the CD1 were defined as resilient. Between mice, all chambers
921 were cleaned with Super Sani-Cloth germicidal disposable wipes (PDI, Orangeburg, NY) or 70% ethanol,
922 and dried with kimwipes. Data was analyzed using Noldus Ethovision version 15.

923 Mice subjected to cSDS and their non-stressed controls were tested in the EPM 12 days following the last
924  social defeat session. Animals were tested during their dark cycle in a dark room with two red light lamps
925 facing the ceiling (2-10 lux at the surface of the behavioral arena). Animals were acclimated to the room
926  for >1 hour prior to starting experiments during their dark cycle. For each experimental trial, animals

927  were placed in the center of the apparatus facing the same side each trial and allowed to explore the
928  maze for 5 minutes. After 5 minutes, the animal was removed from the apparatus and placed back into
929  its home cage. The trials were randomized and balanced with alternation of control and experimental
930 animals. After each run, the EPM was thoroughly cleaned with Super Sani-Cloth germicidal disposable
931 wipes (PDI, Orangeburg, NY) and dried with kimwipes. Data was analyzed using Noldus Ethovision

932 version 15.

933 Chronic Mild Unpredictable Stress

934  We modeled our chronic mild unpredictable stress protocol after previously published work [44, 45]. C57
935 male mice were implanted with electrodes to target the same brain regions utilized to learn the anxiety
936 related networks, at age 7-9 weeks. Two weeks later, cages of mice were pseudorandomized into a stress
937 or control group. Control mice were subjected to gentle handling twice a week. The stress group was
938 exposed to 2 aversive experiences each day — one during the light cycle and one during the dark cycle —
939  for eight weeks, as previously described [44]. The stressors were as follows:

940 e physical restraint — mice were placed in a ~50mL plastic cone (with openings for breathing on
941 both ends) for 1 hr

942 e shaking — a cage of mice was placed on an orbital shaker for 1hr at 60 rpm

943 e overnight illumination — mice were exposed to regular room light during the 12 hr dark cycle
944 e inverted light cycle — mice were exposed to dark-cycle room conditions during the light cycle
945 and light conditions during the dark cycle

946 e tilted cage — cages were tilted at a 45 degree angle for 12 hrs
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947 e strobe —mice were placed in a room with a strobe light during the dark cycle for 12 hrs

948 e wet bedding — cage bedding was saturated with water for 12 hr

949 e soiled rat bedding — cage bedding was replaced with used rat cage bedding for 3 hrs

950 e cold exposure — mice were placed in a cold room (4°C) for 1 hr

951 ® missing bedding —bedding was completely removed from the cage for 12 hr.

952 e food and water restriction — food and water was removed for 12 hr during the dark cycle

953 e overcrowding — cage space was reduced by 50% for 12 hr during the dark cycle

954 Stressors were presented in pseudorandomized order. Body weight was monitored once a week to
955 ensure mice didn’t lose more than 10% body weight during the stress proposal.

956

957 Model Selection and Training

958 Label Assignment for Training Datasets

959  To make use of supervised machine learning methods, per-sample anxiety state labels must be assigned
960  for our training assays. For the acute FLX assay, we accounted for drug activation time and assigned all
961  timepoints within the last 30 minutes of the 1-hour recording to either a heightened or lower anxiety
962  state after mice received FLX or saline, respectively. For the EPM and BOF assays, anxiety states within
963 the assay can be ambiguous. To prevent mislabeling of anxiety states in assays, we assign all timepoints
964  for which mice are in the EPM or BOF as a heightened anxiety state. We then make use of recordings
965  taken while the mice are in their home cage environment and label those as a lower anxiety state. With
966  this formulation, all three training assays now have the same labeling nomenclature of heightened

967 anxiety and lower anxiety states regardless of the anxiogenic assay, allowing for easy combination and
968 comparison during model training.

969  Training, Validation, and Test Splits

970 Once features had been extracted for the FLX, EPM, and BOF assays, mice were subsequently split into
971 three groups: training data, validation data, test data. These splits were performed by mouse such that
972 all data belonging to a mouse was all contained in the same group. Splitting by mouse is critical as it

973 prevents a machine learning model from simply learning the identity of a mouse in the training data to
974  achieve inflated performance on holdout data. Additionally, we wished to see how our model performs
975 on data from completely new subjects, which is a situation analogous to the conditions of a clinical

976 setting. Training data and validation data were used for model development where many sets of

977  hyperparameters and model formulation may be tested. Test data were kept as true hold out data, which
978  we did not observe or test our model on until the final model architecture was determined. Several mice
979 were placed in more than one assay; therefore, care was taken to ensure that all such mice were in the
980  same group across all assay splits. That is, if a mouse was in the training group for the FLX assay, then it
981  should be in the training group for all other assays. Once final model parameters were determined,

982 training and validation datasets were combined for a final training run, which was then validated on the
983 test data. Training, Validation and Test groups had: 9, 4, and 6 mice respectively for the FLX assay; 21, 5,
984  and 11 mice respectively for the EPM assay; and 16, 3, and 9 mice respectively for the BOF assay. There
985 were 17 mice from the training groups, and 7 from the test groups were shared in 2 assays (only

986 between EPM and BOF). There was a single mouse in the test group that was exposed to all three assays.
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987 Discriminative Cross-Spectral Factor Analysis (dCSFA-NMF)

988 Discriminative Cross-Spectral Factor Analysis - Nonnegative Matrix Factorization (dACSFA-NMF) is a

989  machine learning framework for discovering key predictive factors relevant to a behavioral assay or
990 emotional state of interest [25]. This method has been used previously to detect brain networks

991  corresponding to stress and social activity in mice using LFP data[26]. Similar to other factor models that
992 have been used in neuroscience, such as PCA, ICA and NMF, dCSFA-NMF identifies underlying

993  components, interpreted to be networks, of connectivity. The superposition of these networks then
994  explains the observed neural activity. While the previously mentioned unsupervised methods can

995 identify networks of activity, discovered networks are learned to explain the maximum amount of the
996 observed neural activity. As it is unlikely that anxiety and other emotional states make up one of these
997 dominant networks, dCSFA-NMF makes use of a supervision component to ensure that one or more of
998  the networks are correlated with a behavior or emotional state of interest.

999 Rigorously, the model learns K fixed components W € RX*M that can reconstruct observed data X €
1000  RM*M ysing an array of network activity scores s € R¥*X such that X = sW. W and s are also
1001 constrained to be positive as the features of use — power, coherence, and Granger causality — observed
1002 in X are also non-negative. Network activity scores are inferred from the observed data using an encoder
1003  function s = fy(X), which can take the form of a neural network or linear model. The activity scores
1004 s, € RMN*Q of the K > Q > 1 supervised components are then used in a logistic regression model f¢ to
1005 predict the behavior of interest y = f¢ (s). We constrain our predictions to use a sparse combination of
1006 all networks, namely only the supervised networks, to narrow the scope of our network discovery and
1007 reduce the total number of comparisons. The parameters of the model are then optimized using the loss
1008 function,

N
1009 min, Z L (0 Wy () + ALy (i o (fo () ) + Ly, (30, W £ ().
i=1
1010 Here, L, is the reconstruction error between the original power, coherence, and Granger features and
1011 those generated by the product of our network scores and networks, sW. In this work we make use of
1012 the Mean-Squared-Error (MSE) function. Our predictive loss L,, is a binary cross-entropy loss and
1013 penalizes our model for incorrectly predicting the behavioral state of each window. The impact of the
1014 predictive loss can be tuned using the hyperparameter A. Lastly, we impose a second reconstruction loss,
1015 £, on the supervised network scores. This reconstruction loss prevents our neural network encoder fjy
1016  from learning an uninterpretable near-zero noise embedding for the supervised scores that predicts well
1017  with little to no contribution to explaining neural activity. This loss can be formulated as another MSE
1018  loss between the outer product of the supervised network activations and the supervised electome
1019  network and the features. Alternatively, this loss can be formulated as a penalty to drive the supervised
1020 network scores to reconstruct the residual of the unsupervised networks and features. We used the
1021 latter in our analysis.

1022 Performance Metrics — Predictive Modeling

1023  To evaluate the predictive performance of our model, we used the receiver operating characteristic
1024  curve area under the curve (ROC-AUC). This metric is common in machine learning literature and can be
1025 viewed as a class rebalanced accuracy. AUC takes values on the range [0,1] where AUC=0.5 indicates
1026 chance performance in prediction. AUC=1 indicates that the model is perfectly predicting class
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1027 assignment, and an AUC=0 indicates that the model is perfectly predicting but with a flipped labeling.
1028  AUC can also be evaluated using the Mann-Whitney-U statistical test.

1029 For evaluating our models, we obtained an AUC for each mouse and then reported the group mean and
1030 standard error of the mean for each paradigm. Many of our behavioral contexts have varying recording
1031 lengths and by reporting AUC for each mouse separately, we addressed the possibility of our model
1032  overfitting to the neural activity of mice in paradigms with longer recordings and therefore more

1033  samples. Furthermore, emotional states such as anxiety are complex and often have heterogenous
1034 presentations across individuals. By reporting AUC by mouse, we opened opportunities for post-hoc
1035 analyses into mice with heterogenous predictions. In short, by evaluating AUC by mouse, we allowed for
1036 more uniform evaluation across a wide variety of anxiogenic contexts, a cleaner evaluation of model
1037  generalizability, and post-hoc data analysis.

1038  Performance Metrics — Generative Modeling

1039  We take interest in how well our models explain neural activity in the brain. We evaluated how well this
1040 is done by quantifying the mean-squared-error of the model’s predicted power, coherence, and Granger
1041 causality features and the originally observed values.

N
1
1042 MSE (x,%) = NZ (x, — £,)?
n=1

1043 During model training, we weighted the reconstruction of each of our feature types (power, coherence,
1044  Granger) by their prevalence, such that power holds equal importance to coherence and Granger despite
1045 representing a smaller number of power features.

1046  Performance Metrics — Model Consistency

1047  To evaluate representation consistency in our model, we used the cosine distance formula which

1048  calculates the angular distance between two vectors on a scale of [0,1] due to the positivity constraint of
1049  the vectors, where 0 represents perfect alignment and 1 are completely orthogonal vectors. The cosine
1050  distance between two vectors, A and B is given by:

A-B

1051 D(AB)=1——r
IAllBII

1052 We then calculate the cosine distance between each supervised network in each fold and all supervised
1053 networks in all other folds. Using the Hungarian Matching Algorithm [59], we then pair each supervised
1054 network in each fold with the best supervised network in each other fold such that each network has a
1055 unique match in each fold. We then weighted the cosine distance between matched networks by the
1056  impact that a network score had on the prediction relative to the other networks in the same fold, such
1057  that predictive networks had a higher weighting than non-predictive networks. We performed this
1058  weighting scheme to reduce penalization of mismatched networks that were not used to predict

1059  behavior, and were thus likely irrelevant to the underlying dynamics of anxiety. This metric captured the
1060  distance between the most similar networks across runs. A consistent representation or network

1061  discovery will yield a low distance score.

1062 Hyperparameter Selection Strategy
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1063  The dCSFA-NMF model requires selection of several hyperparameters. These factors include the number
1064  of electome factors K, number of supervised networks Q, the importance of the supervised task A, and
1065 the importance of the supervised factor reconstruction a. Generally, the number of electome factors
1066  control how well we can reconstruct the original LFP data. The number of supervised networks does not
1067  greatly affect the overall prediction quality (Supplemental Fig. S3), however, increasing the total number
1068  of supervised networks can significantly improve the representational consistency of the behaviorally
1069  relevant networks discovered. This improved consistency is critical for validation of our networks and for
1070 using network representations to motivate future hypotheses and experiments. Identifying a suitable
1071 number of supervised networks is especially crucial in the case where multiple true underlying networks
1072 may be driving the emotional or behavioral state. Underspecifying the number of supervised networks
1073 to learn may result in the model inconsistently swapping across a subset of these suitable underlying
1074 networks.

1075 To choose the value of K, we performed grid-search cross validation using K = {2,4, ...,58}. Each model
1076  was trained on the training mice for all three assays jointly and evaluated on the validation mice for all
1077 assays, per the multi-assay training procedure. We observed that the predictive performance of all three
1078 assays stabilized at K=18 with little change across all three assays for subsequent values. Subsequently,
1079  we found that the reconstruction performance plateaued at K=30. Given that the predictive performance
1080 was consistent for K>18, we selected K=30 as the total number of networks that our model would learn.

1081  To choose a value of Q, we aimed to balance 3 design priorities in our model formation. First, our model
1082 must be predictive of the behavior of interest. Second, our model should find a relatively consistent
1083 solution (i.e. discovered brain networks should be similar across multiple runs). Lastly, our solution

1084  should be simple. Suppose we were to supervise all the networks in our model. We likely would achieve
1085  strong predictive performance; however, multiple-hypothesis testing problems would arise as we begin
1086 to test the relationships of each network with behavior. Therefore, we wished to find a stable, predictive
1087  solution that makes use of the smallest Q number of supervised networks possible. To ascertain the
1088  value of Q we should use, we tested our model with values Q = {1,2,3,4,5,10,20} with K = 30.

1089  To evaluate predictive performance of our model, we performed 4-fold cross-validation-over-subjects for
1090 each value Q € {1,2,3,4,5,10,20} and evaluated predictive performance on each fold's validation data.
1091  We observed that the average AUC across all three assays peaks around Q € {3,4} and declined slightly
1092 as the number of supervised networks greatly increased.

1093 Additionally, we constrained our model to only identify supervised networks with scores that positively
1094  correlated with predicting a heightened anxiety state, as we aimed to discover an anxiety network rather
1095 than an anxiety inhibition network.

1096  We selected stochastic gradient descent as our optimization algorithm as SGD is known to offer better
1097  generalization performance despite requiring longer training times [60]. We used a learning rate of .001
1098 and a momentum value of .9.

1099  We found that pretraining our model factors provided a substantial improvement on representational
1100 stability and predictive accuracy. We performed pretraining on our factors by training a traditional non-
1101 negative matrix factorization model on our data, and then sorting the components based on their
1102 correlation with network performance. For our multi-assay training formulation, our datasets were
1103 imbalanced with the longer-duration FLX recordings making up a much higher percentage of our total
1104  data, so we bootstraped samples in EPM and BOF such that each experimental context is equally
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1105 influential on our network pretraining. We then froze the weights of our sorted NMF factors and trained
1106  the encoder to learn scores corresponding to the fixed factors and the classifier to predict corresponding
1107  labels based on those scores. We found that training the encoder and classifier for 500 epochs was

1108  sufficient for the optimization algorithm to converge and stabilize at a minimum of the loss function.
1109  After pretraining, we then unfroze all parameters and trained them jointly. We found that an additional
1110 500 epochs were sufficient for the model training to converge and stabilize at a minimum of the loss
1111  function.

1112  Single-assay Model Formulation and Training

1113 For single-assay model training, we isolated one of our three training assays (EPM, BOF, FLX) to use as
1114  our training dataset for dCSFA-NMF. While we focused on our model training using the FLX assay in the
1115 results section, we also trained models using the EPM and the BOF as singular training datasets. Each of
1116 our three single-assay models used the same labeling structure outlined above, where for the EPM data,
1117 home-cage windows were labeled as a low anxiety state and EPM windows are labeled as high anxiety
1118 state. For the BOF assay, home cage windows were labeled as a low anxiety state and BOF windows were
1119 labeled as a high anxiety state. Lastly, FLX assigned saline windows as a low anxiety state and fluoxetine
1120  windows as a high anxiety state.

1121 Models were trained using 4-fold cross validation, where fold training and validation splits were made by
1122 partitioning the non-holdout mice into 4 separate permutation groups of training and validation mice.
1123 Predictive performance was evaluated on the concatenated training and validation partitions of the
1124  other two assays not used for model training. It is worth noting that some bias exists in this evaluation,
1125 as some mice in the other two assays may be present in the training set of the training assay. However,
1126 even with this bias, these models failed to generalize across assay. The test, or holdout, partitions of all
1127  three assays are left untouched as each of the single-assay models failed to generalize to the validation
1128  sets of all three assays jointly.

1129  We ultimately performed our single-assay model analysis twice. First, we trained the models using a
1130  single supervised network and a comparable procedure to prior similar works[26]. Second, after we
1131 identified the value of multi-assay training and tuning for multiple consistent predictive networks, we
1132 reperformed our single training analysis with three supervised networks and 27 unsupervised networks
1133 to allow for one-to-one comparison to the multiple-assay model. This second round of training was
1134  important as we wished to properly attribute whether generalization improvements came from

1135 increased predictive capacity or were due to the multiple assay training procedure. While only the
1136 results using three supervised networks are shown throughout the text, the same trends (i.e., failure to
1137  generalize) were observed for our models using one supervised network.

1138 Multiple Assay Model Formulation and Training

1139  As mentioned above, our multiple assay model formulation involves concatenating the EPM, FLX, and
1140 BOF training datasets into a single training dataset. As the labels of each of these assays are distilled into
1141 heightened anxiety and lower anxiety states depending on the assay of interest, simple concatenation is
1142 possible.

1143 For multiple assay model training, we first perform 4-fold cross validation on the training and validation

1144 partitions of all three assays for hyperparameter tuning. Like our training partitions discussed in the
1145 Train, Validation, Test splits section, we constrain our fold partitions such that if a mouse is in the
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1146  validation split for one assay, it cannot be in the training split for another assay and vice versa. This is
1147 necessary to remove bias in our evaluation.

1148 Finally, training and validation partitions for all three assays are concatenated into a final training
1149  dataset. We then train our model using the final set of hyperparameters discovered in our

1150  hyperparameter tuning section and evaluate the model on the holdout test sets for each of the three
1151 assays.

1152 Model Validation

1153 Networks Decoded Assays Jointly

1154 Given that our dCSFA-NMF model was trained to learn three separate networks, we wished to validate
1155  that each of the learned networks are not simply learning to predict for each of the three training assays
1156  independently. Networks that truly captured anxiety should not be relevant to only one context where
1157  anxiety may be experienced, but should generalize to multiple contexts. Here, we evaluated the per-
1158 mouse AUC of each of the networks separately using the Mann-Whitney-U test for each of the three
1159  training assays (Fig. 2D).

1160 Individual Network Contribution Towards Prediction

1161 We also consider the possibility that one or more of our networks may not contribute substantially to
1162 the overall prediction of the mouse internal state. To evaluate this, we considered the mean prediction
1163 logit of each network given by the mean network score multiplied by its corresponding logistic
1164 regression coefficient and normalized it by the sum the mean prediction logits of all supervised
1165 networks. More formally, we define the mean logit of an individual network as z; = 5,¢;, where §; is the
1166  mean network activity score from the holdout data for network j and ¢; is the dCSFA logistic regression
1167 coefficient corresponding to that network activity score. Since we constrained our network to have
1168 positive network activity scores and logistic regression coefficients, no absolute value or squaring of the
1169 logits is necessary for comparison. We then evaluate the contribution of each network j as:

7.

1170 Contribution(j) = K—J

i=1%i
1171  This metric quantifies the average predictive impact of each network on the holdout data.
1172 Detailed Methods for validation analyses

1173 Location-based dynamics in network activity

1174  To compare post-exposure effects for the safe and unsafe zones in the EPM/BOF on Network 1 and
1175 Network 2 dynamics, we extracted data from each timepoint in each location. We also extracted data in
1176  the five seconds preceding and following these timepoints. Here, the locations of C57 mice (closed
1177  arm/open arm/center for EPM and center/periphery for BOF) were encoded using Ethovision on 50
1178  frame-per-second video recordings of the task, tracked at 25fps based on their center of mass. Frame
1179 labels were then aligned with our one-second resolution LFP features by assigning the label of each
1180  window to be the label making up most of the Ethovision frames for that timepoint. For The ClockA19
1181 mice and their littermate controls, the location was determined based on their head location. A window
1182 was labeled as open arm if 20% of the Ethovision frames corresponded with the open arm location.
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1183 We then determined the Network 1 and 2 activities at all timepoints where the mouse is in the region of
1184 interest and the network activity for all observed timepoints within a +/- 5 second window from the
1185  central timepoint. Timepoints for which electrophysiology, and therefore network scores, are not

1186  observed due to electrophysiological artifact, were dropped. For each mouse, network activity was

1187 averaged within the -5 to -1s window, the 1s to 5s window, and the instantaneous location window.
1188  Activity was then compared between locations across mice.

1189  We then determine the Network 1 and 2 activities at all timepoints where the mouse is in the region of
1190 interest and the network activity for all observed timepoints within a +/- 5 second window from the
1191 central timepoint. Timepoints for which electrophysiology, and therefore network scores, are not

1192 observed due to electrophysiological artifact, are dropped. For each mouse, network activity was

1193 averaged within the -5 to -1s window, the 1s to 5s window, and the instantaneous location window.
1194  Activity was then compared between locations across mice.

1195 Fluoxetine Network Dynamics

1196  We validated our network’s ability to decode anxiety attenuation post-injection with saline or fluoxetine
1197 in the holdout mice from the FLX training task. Mice were injected with saline or fluoxetine at t=0 and
1198  we recorded neural activity for one hour post-injection. We then observed Network 1 and 2 activity
1199 during the full hour recording for the 6 holdout mice. Network activity scores were binned and averaged
1200 at a 5-minute resolution with the mean and standard error activity across mouse plotted in Fig. 3B. It is
1201  worth restating that our model was trained only using timepoints during the second half of the one
1202 hour-long recorded data. While our model was biased to distinguish between fluoxetine and saline due
1203 to our model training task, the model had no prior exposure to timepoints between t= [0,30] and no
1204  explicitly supervised trend for those timepoints. Time effects were analyzed using a two-way repeated
1205 measured ANOVA.

1206 Delayed sucrose reward task

1207  We examined Network 1 and 2 activity during the delayed sucrose reward assay to validate that our
1208  networks are not encoding reward or arousal. Pump events for delivering sucrose to the mice were much
1209 shorter than our one-second windows, therefore we used the event-triggered feature extraction code.
1210  We collected LFP features for 4 seconds prior and 4 seconds post the pump event. These features were
1211 then projected into Networks 1 and 2. Mean network activity at one second prior and one-second post-
1212 pump event were then compared across mice (n=8) using a one-tailed Wilcoxon sign rank test.

1213 Optogenetic Stimulation of Ventral Hippocampus to Lateral Hypothalamus circuit

1214  We quantified network activity during optogenetic stimulation of the ventral hippocampus to lateral
1215 hypothalamus circuit. We have previously demonstrated that in the absence of ChR2, blue light

1216 stimulation has no direct impact on LFP activity using our recording approach[56]. Moreover, yellow light
1217 stimulation has no direct impact on LFP activity in the presence of ChR2[26, 49]. Thus, we chose to

1218 compare network activity during yellow light stimulation and blue light stimulation. This approach

1219 enabled us to perform within-subject comparisons.

1220 Fear Conditioning

1221 For Network 1 and Network 2 validations, event-centered features were extracted for 10 seconds prior
1222 to the tone and 20 seconds after the tone. Mean Network 1 and 2 scores were then calculated for the

28


https://doi.org/10.1101/2024.06.26.600900
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.26.600900; this version posted June 30, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1223 control and conditioned mice for both the 10 seconds pre-segment and the 20 seconds post-segment
1224  separately. For both intervals, we performed one-tailed Wilcoxon rank sum tests to compare across

1225  control and conditioned mice during the 7™ and final tone/air puff event. We isolated the 7™ event under
1226  the assumption that the conditioned mice have successfully paired the tone stimulus with the air puff
1227  stimulus because of the 6 prior trials.

1228  Statistical Analysis Philosophy

1229  We trained a multi-region multi-assay model to putatively encode the anxiety state. We focused our
1230  subsequent analysis on Electome Network 1 and 2 since these networks independently encoded all
1231  three of our initial anxiety assays, and they showed the highest contribution to the joint predictive
1232 model. We then trained models to test whether this putative state was encoded by single regions

1233 and/or by pairs of brain regions. We assessed each model independently for the three assays. Based on
1234  our prior observations that other emotional internal states could not be decoded from individual brain
1235 regions [26, 27, 50], we hypothesized that activity from single regions and/or pairs of regions would fail
1236  to decode a convergent anxiety state as well. To increase the likelihood of falsifying our hypothesis we
1237 chose to leave all our statistical analysis using single region/pairs of regions uncorrected. We observed
1238  that P>0.05 for at least one assay for each single region/pairs of regions test. Since correcting for

1239 multiple comparisons would have served to further increase the P-values, we concluded that no single
1240 region/pairs of regions encoded a convergent anxiety state.

1241 Next, to validate the multi-region multi-assay networks, we recorded LFP data in the same brain regions
1242 from new mice and/or new paradigms and subsequently projected these data into these two networks.
1243 We tested each network independently to elucidate their individual dynamics relevant to anxiety and
1244  their contextual limitations. Validation of Networks 1 and 2 involved various statistical tests and

1245 procedures. For comparison of anxiogenic vs. non-anxiogenic conditions, we performed non-parametric
1246  statistical tests on mean network scores for intervals or groups of interest. In cases where parametric
1247  tests are useful, such as examining network dynamics over time, we performed a Box—Cox

1248  transformation of the network activity scores prior to statistical testing. In many of the validation tests,
1249  we expected the activity of Network 1 and/or Network 2 to be higher than the control condition as we
1250 expected or behaviorally validated that anxiety levels are elevated. For these cases, we performed

1251 statistical tests with a one-tailed test. A similar approach was implemented for our control experiments
1252 using sucrose and social reward, as well. We hypothesized that anxiety-related behavior and network
1253 activity would be lower in a mouse model of mania, thus we performed one-tailed statistical tests when
1254  appropriate. All such cases are disclosed in our results section. All p-values are reported as uncorrected
1255 p-values across both networks.

1256 In some cases, such as examining network dynamics in the safe regions over time (Fig. 3B), missing
1257 observations cannot be determined to be missing completely at random. Therefore, in such cases, we
1258 make use of an ANCOVA analysis strategy, which is flexible with missing data and allows analysis of
1259 dynamics over time. A disadvantage of this approach is that samples are treated independently without
1260 concern of group identity.

1261 Visualization

1262  Networks were visualized as chord plots using code adapted from https://github.com/carlson-lab/lpne/
1263  to allow for recoloring of frequency bands. Significant features were determined by calculating the
1264  average percent contribution of each network towards the reconstruction of each feature for the training
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1265 task holdout mice. This strategy results in an even appraisal of low and high frequency features, even
1266  though low frequency spectral features tend to have higher magnitude. We then plotted the 85
1267  percentile of these contributions, which is a threshold that adequately highlights dominant features
1268  without cluttering the plot and is consistent with related works [26].

1269  Reproducibility

1270  Computational Environment and Codebase Disclosure

1271  Preprocessing and feature extraction code was performed in MATLAB R2022a using the LFP
1272  feature extraction pipeline found on the main branch at https://github.com/carlson-lab/Ipne-
1273  data-analysis. Event-triggered feature extraction code can be found on the “framewindows”
1274  branch of the same repository. A PyTorch implementation of dCSFA-NMF can be found at
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