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ABSTRACT  The SLC (solute carrier) superfamily mediates the passive transport of small molecules 
across apical and basolateral cell membranes in nearly all �ssues. In this paper we employ bond graph 
approaches to develop models of SLC transporters that conserve mass, charge and energy, 
respec�vely, and which can be parameterised for a specific cell and �ssue type for which the 
experimental kine�c data is available. We show how analy�c expressions that preserve 
thermodynamic consistency can be derived for a representa�ve four- or six-state model, given 
reasonable assump�ons associated with steady-state flux condi�ons. We present details on fi�ng 
parameters for SLC2A2 (a GLUT transporter) and SLC5A1 (an SGLT transporter) to experimental data 
and show how well the steady-state flux expressions match the full kine�c analysis. Since the bond 
graph approach will not be familiar to many readers, we provide a detailed descrip�on of the approach 
and illustrate its applica�on to a number of familiar biophysical processes.   

SIGNIFICANCE  Physiological systems typically involve coupled mechanical, electrical and chemical 
processes, with energy ac�ng as a universal currency across these domains. We propose a new visual 
representa�on for all components of these processes using bond graphs. Bringing all physical 
processes under one consistent framework greatly simplifies the task of understanding mul�scale 
physiological processes. This energy-based framework, which is the 0D version of a more general 3D 
port-Hamiltonian theory, can be used to model all lumped parameter physiological processes. A small 
number of bond graph templates can be used to model all members of the large SLC transporter family, 
and reduced thermodynamically consistent steady-state flux models provide a useful simplifica�on for 
many situa�ons. Glucose transport is chosen here to illustrate the bond graph approach because it 
represents the first step in cell metabolic processes, where energy conserva�on needs to be a 
fundamental characteris�c of quan�ta�ve models. Our future work on cell metabolism will build on 
the founda�on established here.   

INTRODUCTION 

The solute carrier (SLC) superfamily currently consists of proteins encoded by more than 400 
mammalian genes that mediate the transport of small molecules across cell and organelle membranes 
in human �ssues [1]. ATP-dependent pumps, ATP-binding cassete transporters, aquaporins and ion 
channels belong to separate families of transport proteins, which together comprise at least 5% of the 
protein-coding genome. The SLC superfamily is currently categorised into 62 gene families, labelled 
SLC1 to SLC62 (www.bioparadigms.org). Two or more families may deal with transport of the same 
ligand (e.g. glucose) but each family deals with a specific type of transport mechanism. For example, 
transmembrane glucose transport across a number of cell types (endothelial, epithelial, neuronal, etc) 
is enabled by two families of protein from the SLC superfamily: the SLC2 family and the SLC5 family. 
SLC2A2 (protein name GLUT2) and its variants within that family use the extracellular to intracellular 
glucose concentra�on gradient to drive transmembrane transport in a process called ‘facilitated 
diffusion’. No other ligands are involved. On the other hand, SLC5A1 (SGLT1) and its variants use the 
sodium gradient to drive glucose into the cell, typically when the transmembrane glucose gradient is 
insufficient to provide the required flux of glucose.   

Bond graphs provide a useful level of abstraction for modelling protein function for a wide range of 
physiological processes, such as metabolic reactions, membrane transporters, ion channels, 
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myofilament mechanics, receptors and signalling, etc. In this paper we develop a small number of 
generic bond graph templates for the SLC superfamily that conserve mass, charge and energy, 
respec�vely, and which can be parameterised for a specific cell and �ssue type for which the 
experimental kine�c data is available. We show how analy�c expressions can be derived for a 
representa�ve six-state model, given reasonable assump�ons associated with steady-state flux 
condi�ons, while always preserving thermodynamic consistency. We present details on fi�ng 
parameters for SLC2A2 and SLC5A1 to experimental data and show how well the steady-state flux 
expressions match the full kine�c analysis.  

Before developing the SLC family templates, we first discuss some fundamental physical concepts and 
their units, describe why bond graphs provide an appropriate framework for capturing the physical 
conserva�on laws associated with biological processes at the protein level, and present some 
examples that illustrate how bond graphs deal with energy exchange. Bringing all physical processes 
under one consistent framework greatly simplifies the task of understanding physiological processes, 
which almost always involve energy exchange between mechanics, electromagne�cs and chemistry.  

METHODS  

Units, conserva�on laws and bond graphs 
We start by discussing the key units for physiology. Only six fundamental units (Joules, entropy, 
seconds, meters, Coulombs, and moles) are needed for all biophysical mechanisms, with energy 
gradients (with respect to meters, Coulombs and moles) providing the driving ‘force’ or poten�al for 
displacement from equilibrium for each of the three physical processes that underpin physiology: 
mechanical (J.m-1 or J.m-3), electromagnetic (J.C-1), and chemical (J.mol-1). Note that the Coulomb (C) 
effec�vely counts electrons and the mole (mol) counts atoms. Very occasionally it is useful to include 
a seventh unit, the Candela (Cd), which counts photons (for example in models of photoreceptors that 
respond to individual photons) but generally a photon (which has an energy ℎ𝑣𝑣, or Planck’s constant ℎ 
�mes the frequency 𝑣𝑣 of the electromagne�c field) is included via its energy flux. Energy, measured in 
Joules (J), can be transmited, stored, or converted between these three types, and almost every 
physiological process uses all of them. The closely related concept of entropy is a measure of 
displacement from equilibrium and energy dispersion (or equivalently the possible states of a system).  
Enthalpy 𝐻𝐻 is defined as the sum of internal energy 𝑈𝑈 (associated with vibra�onal, rota�onal and 
electronic states of the molecules) and the product 𝑝𝑝𝑝𝑝 of thermodynamic pressure 𝑝𝑝 (an energy 
density) and volume  𝑉𝑉 (𝑝𝑝𝑝𝑝 = 𝑛𝑛𝑛𝑛𝑛𝑛 for an ideal gas), but is also the sum of the Gibbs free energy 𝐺𝐺 
(available to do work) and the 𝑇𝑇𝑇𝑇 term represen�ng the essen�al loss of high entropy energy (heat) to 
the environment: 
  𝐻𝐻 = 𝑈𝑈 + 𝑝𝑝𝑝𝑝 = 𝐺𝐺 + 𝑇𝑇𝑇𝑇.  
Total energy is conserved (but not 𝐺𝐺). For example, a thermally stable planet earth must receive and 
radiate energy at the same rate, but for every 1 high energy (~500nm wavelength) photon that the 
earth receives as highly directed (low entropy) sunlight, it radiates about 20 �mes as many lower 
energy (~10,000nm wavelength) photons as (high entropy) heat. This conversion of conserved energy 
from low to high entropy form defines the direc�on of �me and is of course the basis for life. It is the 
energy gradient with respect to meters, Coulombs or moles that is the ‘potential’ (i.e. the mechanical 
force, electrical poten�al or chemical poten�al) that drives the flow or flux of a mechanical, electrical 
or chemical quan�ty. Note that temperature, measured in degrees Kelvin, is the gradient of energy 
with respect to entropy, and hence is the thermal poten�al driving heat flow (the flow of entropy). It 
is convenient to define the unit of entropy as Joules per degree Kelvin, since it is imprac�cal to count 
the number of possible states in a thermally energe�c system.  

Energy storage is either mechanical (sta�cally in a spring or dynamically in the iner�a of a mass), 
electromagnetic (sta�cally in a capacitor or dynamically with the inductance of a changing magne�c 
field), or chemical (sta�cally as a solute in a solu�on or dynamically as thermal energy). Note that 
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processes at the macroscale of physiology are linked with processes at the atomic level through a small 
number of physical constants such as Faraday’s constant (9.6485x104 C.mol-1; the charge in Coulombs 
of a mole of single charge ions) and the gas constant (the energy in Joules per degree Kelvin of a mole 
of atoms), both of which use Avogadro’s number (6.02214 x1023 mol-1) to bridge the enormous scale 
from atoms to cells and �ssues.  

We let 𝑞𝑞 (in units of m, m3, C, or mol) represent the quan�ty whose flow 𝑣𝑣 (in units m.s-1, m3.s-1, C.s-1, 
or mol.s-1) is driven by a poten�al 𝑢𝑢 (in units J.m-1, J.m-3, J.C-1, or J.mol-1). We use two forms of 
mechanical flux (in m.s-1 and m3.s-1) with poten�als in J.m-1 (Newton) and J.m-3 (Pascal), in order to 
deal with both solid mechanics and fluid mechanics. Note that for the most part there is no need to 
use any derived units (such as the Newton or Pascal). Using only J, K, s, m, C and mol helps reinforce 
the rela�onships between these units that underpin both the conserva�on laws of physics and the 
cons�tu�ve laws that represent material proper�es.   

There are two dis�nct types of equa�on needed for characterising physical systems (note that we 
provide explicit examples of electromechanical and biochemical processes in the next sec�on). The 
first type is a physical conservation law (conserva�on of mass, charge or energy, respec�vely), which 
generates equa�ons that involve only 𝑞𝑞 or 𝑣𝑣 (mass or charge conserva�on), or only 𝑢𝑢 (energy 
conserva�on). The second type is a constitutive equation that expresses experimentally derived 
material proper�es and is an equa�on that links 𝑞𝑞 or 𝑣𝑣 (= 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
) with 𝑢𝑢. These material proper�es relate 

to either (i) energy storage, which is a rela�onship between 𝑢𝑢 and 𝑞𝑞 for sta�c storage, or 𝑢𝑢 and 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 for 
dynamic storage, (ii) energy dissipation (a mechanical damper, an electrical resistance, or a chemical 
reac�on), which is a rela�onship between 𝑢𝑢 and 𝑣𝑣, or (iii) lossless energy conversion between 
mechanical, electromagne�c and chemical energy. Physical conserva�on laws are universally true, 
whereas the cons�tu�ve equa�ons are approxima�ons fited to experimental data (and hide the 
physics behind that material behaviour). The wide variety of ad-hoc descrip�ons of physical processes 
o�en presented in physiology textbooks, such as Fick’s law of diffusion, Fourier’s law of heat 
conduc�on, or osmo�cally driven flow, etc, express a combina�on of these fundamentally different 
types of equa�on in a way that conflates the laws of physics with experimentally derived material 
proper�es.   

The conserva�on laws that govern all physical processes, and the empirical cons�tu�ve equa�ons, can 
both be expressed with the above quan��es 𝑞𝑞, flows 𝑣𝑣 and poten�als 𝑢𝑢 in a very simple, elegant and 
unifying manner by using a technique called bond graphs, pioneered for electromechanics by Henry 
Paynter at MIT [2]. In another fundamental and far-sighted contribu�on, Oster, Perelson and 
Katchalsky [3, 4] brought network thermodynamics within the same framework so that there is now a 
single unifying energy-based framework for all of physics at the spa�al scales relevant to physiological 
mechanisms. The physiological applica�on of bond graphs began with a series of papers by Gawthrop 
and Crampin [5, 6], who demonstrated the importance of energy conserva�on in modelling 
physiological mechanisms.  

The key concept is this: the product of poten�al 𝑢𝑢 and flow 𝑣𝑣 is power 𝑢𝑢. 𝑣𝑣 in units of J.s-1. Paths for 
the transmission of power, called bonds, are shown by the directed arrows in Figure 1a (the arrow 
defines the direc�on of posi�ve power flow). Each bond with subscript 𝑖𝑖 carries a flow 𝑣𝑣𝑖𝑖 at poten�al 
𝑢𝑢𝑖𝑖. At the junc�on of bonds, conserva�on of power requires:        

 ∑𝑢𝑢𝑖𝑖𝜐𝜐𝑖𝑖 = 0, (1) 

where summa�on is carried out over all bonds connected to that junc�on (5 in this example).  Now 
consider the case shown in Figure 1b (called a 0-node) where all bonds have the same poten�al 𝑢𝑢1 =
𝑢𝑢2 = 𝑢𝑢3 = 𝑢𝑢4 = 𝑢𝑢5 = 𝑢𝑢, in which case 𝑢𝑢 comes outside the summa�on and, for non-zero 𝑢𝑢, the 
conserva�on of power becomes conserva�on of flow:  

 𝑢𝑢.∑𝜐𝜐𝑖𝑖 = 0        ⇒  ∑𝜐𝜐𝑖𝑖 = 0  . (2) 
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If 𝜐𝜐𝑖𝑖 represents the flow of a volume of fluid, and if the density of the fluid is constant (which it is for 
water in physiological systems), equa�on 2 represents conserva�on of mass. If 𝜐𝜐𝑖𝑖 represents the flow 
of charge, equa�on 2 represents conserva�on of charge, etc.  

Alterna�vely, consider the case shown in Figure 1c (called a 1-node) where all bonds have the same 
flow 𝑣𝑣1 = 𝑣𝑣2 = 𝑣𝑣3 = 𝑣𝑣4 = 𝑣𝑣5 = 𝑣𝑣, in which case 𝑣𝑣 comes outside the summa�on of equa�on 1 which, 
for non-zero 𝑣𝑣, becomes conserva�on of energy:  

 𝑣𝑣.∑𝑢𝑢𝑖𝑖 = 0         ⇒  ∑𝑢𝑢𝑖𝑖 = 0. (3) 

  
(a)    (b)   (c) 

Figure 1. Bond graphs represen�ng power flow, each defined with values for flow 𝜐𝜐𝑖𝑖 and poten�al 𝑢𝑢𝑖𝑖: (a) a 
junc�on of 5 flow paths such that ∑𝑢𝑢𝑖𝑖𝜐𝜐𝑖𝑖 = 0, (b) a junc�on where the impinging bonds have the same poten�al 
𝑢𝑢 (called a 0-node) and hence ∑𝜐𝜐𝑖𝑖 = 0, and (c) a junc�on where the impinging bonds have the same flow 𝑣𝑣 
(called a 1-node) and hence ∑𝑢𝑢𝑖𝑖 = 0. Therefore 0-nodes are junc�ons on a bond graph where quan��es are 
conserved (mass, charge, etc) and 1-nodes ensure that energy is conserved. 

In summary, power transmission is modelled here via bond graphs that converge on power-conserving 
junc�ons of just two types: 0-node junc�ons with a common poten�al are points at which flows sum 
to zero so that a quan�ty (mass, charge, etc) is conserved, and 1-node junc�ons with a common flow 
are points at which the poten�als sum to zero and energy is therefore conserved. The variables 𝑢𝑢 and 
𝑣𝑣, whose product is power, are called power co-variables or conjugate variables. Note that bond 
graphs describe the topology of the system (i.e., how the components are connected) as well as the 
equa�ons that capture the conserva�on laws of nature. Power is always conserved but the ability to 
solve the bond graph system (and the solu�on itself) is determined by the boundary condi�ons.   
Now consider the sta�c storage of energy. Since power (𝑢𝑢. 𝑣𝑣) is the rate of change of energy,  

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∫𝑢𝑢. 𝑣𝑣 𝑑𝑑𝑑𝑑 = ∫𝑢𝑢. 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 𝑑𝑑𝑑𝑑 = ∫𝑢𝑢 𝑑𝑑𝑑𝑑.  

For linear storage devices, 𝑢𝑢 = 𝐶𝐶−1𝑞𝑞, where compliance 𝐶𝐶 is an empirically determined constant, 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = ∫𝑢𝑢 𝑑𝑑𝑑𝑑 = 1
𝐶𝐶 ∫ 𝑞𝑞 𝑑𝑑𝑑𝑑 = 𝑞𝑞2

2𝐶𝐶
.  

The rela�onship 𝑢𝑢 = 𝑓𝑓(𝑞𝑞) is the constitutive relation for that material. E.g., for a linear mechanical 
spring, the mechanical poten�al 𝑢𝑢 (force) is propor�onal to the displacement 𝑞𝑞 of the spring, and 𝐶𝐶−1 
is the spring s�ffness. Exactly the same linear expression holds for an electrical capacitor: 𝑞𝑞 is charge, 
𝑢𝑢 is the electrosta�c poten�al (voltage) across the capacitor and 𝐶𝐶 is now the capacitance. Biochemical 
storage depends on the solubility of the solute in the solvent. 

Next we consider the mechanisms involving dissipa�on of energy (and hence the produc�on of heat). 
In most cases the rate of energy dissipa�on is just the product of the flow through the dissipator and 
the change in poten�al across it (e.g., a viscous damper in mechanics, a resistor in an electrical circuit, 
or a thermal resistance in heat flow). For most situa�ons the drop in poten�al is assumed to be linearly 
propor�onal to flow (∆𝑢𝑢 = 𝑅𝑅𝑅𝑅), giving   
 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = ∆𝑢𝑢. 𝑣𝑣 = 𝑅𝑅𝑅𝑅. 𝑣𝑣 = 𝑅𝑅𝑣𝑣2,  

where the experimentally determined cons�tu�ve parameter 𝑅𝑅 is termed the mechanical viscosity, 
electrical resistance, or thermal resistance.   

The dissipa�ve mechanism in biochemistry is a chemical reac�on and for this case it has a special form 
which is both nonlinear and depends explicitly on the forward and reverse affini�es (𝐴𝐴𝑓𝑓 and 𝐴𝐴𝑟𝑟), 

𝜐𝜐1 

𝜐𝜐2 

𝜐𝜐3 

𝜐𝜐4 𝜐𝜐5 

(0-node) 

𝟎𝟎:𝒖𝒖 𝑢𝑢1 

𝑢𝑢2 

𝑢𝑢3 

𝑢𝑢4 𝑢𝑢5 

(1-node) 

𝟏𝟏:𝒗𝒗 
𝑢𝑢1, 𝜐𝜐1 

𝑢𝑢2, 𝜐𝜐2 

𝑢𝑢3, 𝜐𝜐3 

𝑢𝑢4, 𝜐𝜐4 𝑢𝑢5, 𝜐𝜐5 
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represen�ng the sum of chemical poten�als for the reactants (𝑢𝑢1) and products (𝑢𝑢2), with the 
Marcelin-de Donder formula [5]: 

  𝜐𝜐 = 𝜅𝜅 �𝑒𝑒𝐴𝐴𝑓𝑓 𝑅𝑅𝑅𝑅⁄ − 𝑒𝑒𝐴𝐴𝑟𝑟 𝑅𝑅𝑅𝑅⁄ �  or  𝜐𝜐 = 𝜅𝜅�𝑒𝑒𝑢𝑢1 𝑅𝑅𝑅𝑅⁄ − 𝑒𝑒𝑢𝑢2 𝑅𝑅𝑅𝑅⁄ �, (4) 

where the specific reac�on rate 𝜅𝜅 has units of mol.s-1. Note that the flow is not determined by just the 
difference in poten�als as in all the other systems but rather uses an explicit dependence on each (and 
hence is called a ‘two-port’ device). Reac�ons will only proceed if 𝑢𝑢1 > 𝑢𝑢2, or equivalently if the Gibbs 
free energy ∆𝐺𝐺 = 𝑢𝑢2 − 𝑢𝑢1 < 0. However, the power that is emited as heat in a biochemical reac�on is 
s�ll the same product 𝑣𝑣.Δ𝑢𝑢 (= −𝑣𝑣.∆𝐺𝐺) as it is in an electrical resistor or mechanical damper. 

A chemical reac�on requires the exchange or sharing of electrons (it is a sub-atomic process) and since 
all members of the chemical species involved in that reac�on are available in a well-mixed 
compartment, the chemical poten�al energy is normalised by the total number of moles in that 
compartment (i.e. is an intensive property). A diffusion process, on the other hand, is entropically 
driven and entropy is an extensive property. Unlike engineering processes, where the heat from an 
electrical resistor or a mechanical damper is generally lost to the environment, the heat output 𝑣𝑣.Δ𝑢𝑢 
from a biochemical reac�on in a physiological system is used for temperature regula�on.  
The process of transforming power without loss from one physical process to another (as in a voice 
coil or ‘loudspeaker’, where electrical power is transformed to mechanical power) is illustrated in 
Figure 2a. The electrical power co-variables associated with the first bond are 𝑢𝑢1𝑒𝑒 and 𝑣𝑣1𝑒𝑒  and the 
mechanical power co-variables associated with the second bond are 𝑢𝑢2𝑚𝑚 and 𝑣𝑣2𝑚𝑚. We define an 
empirical cons�tu�ve rela�on in which the output mechanical poten�al (𝑢𝑢2𝑚𝑚 ) is propor�onal to the 
input electrical current flow (𝑣𝑣1𝑒𝑒): 

  𝑢𝑢2𝑚𝑚 = 𝑘𝑘. 𝑣𝑣1𝑒𝑒 . 

Since power is conserved,  𝑢𝑢1𝑒𝑒. 𝑣𝑣1𝑒𝑒 = 𝑢𝑢2𝑚𝑚. 𝑣𝑣2𝑚𝑚, and a rearrangement gives 

 𝑢𝑢1𝑒𝑒 = 𝑘𝑘. 𝑣𝑣2𝑚𝑚. 

The first of these equa�ons is the Lorenz force on a voice coil and the second is Faraday’s ‘back-EMF’ 
(electromo�ve force) induced by movement of the coil. The empirical parameter 𝑘𝑘 is associated with 
the ‘Gyrator’ term GY defined at the junc�on in Figure 2a. The conversion of electrical energy in J.C-1 
to chemical energy in J.mol-1 is another example of the need for the gyrator term 𝑘𝑘 (see later). 

Another form of transforma�on in which poten�al is traded for flow in a way that conserves power is 
shown in Figure 2b. The ‘transforming factor’ (TF) is associated with a dimensionless parameter 𝑛𝑛 
represen�ng the n-fold increase in output poten�al and corresponding n-fold decrease in output flow. 
Examples are a mechanical gear wheel, an electrical transformer, and a mechanical lever.  

   
 (a)   (b) 
Figure 2. Transforming energy (without loss) (a) from one form to another (electrical to mechanical here), and 
(b) at different ra�os of flow to poten�al (e.g., between two gear wheels or two transformer windings). Note 
that the coil in (a) is atached to the moving cone of the speaker. 

A bond graph diagram contains all the information needed to create the model and is a very convenient 
way to visualise the energy transmission, energy storage, and energy conversion (including dissipation 
to heat) occurring in the system being modelled.  

𝑢𝑢1  𝑢𝑢2  (= 𝑛𝑛.𝑢𝑢1) 

𝑣𝑣1(= 𝑛𝑛. 𝑣𝑣2) 𝑣𝑣2 
𝐓𝐓𝐓𝐓:𝒏𝒏 

𝑢𝑢1𝑒𝑒 (=𝑘𝑘. 𝑣𝑣2𝑚𝑚) 𝑢𝑢2𝑚𝑚 (=𝑘𝑘. 𝑣𝑣1𝑒𝑒) 

𝑣𝑣1𝑒𝑒  𝑣𝑣2𝑚𝑚 
𝐆𝐆𝐆𝐆:𝒌𝒌 
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Simple bond graph examples 
Before addressing the SLC family of transporters, we show how bond graphs are used to create models 
based on physical conserva�on laws for three simple examples, one of a coupled electromechanical 
actuator (a voice coil), one of a voltage-sensi�ve and mechano-sensi�ve gated ion channel, and one 
of an enzyme-catalysed reac�on. These examples are used both to introduce the graphical nature of 
bond graphs, including their par�cular symbols, and to demonstrate how straigh�orward it is to 
generate models that obey the three conserva�on laws of physics, par�cularly where these models 
involve the exchange of energy between the three different physical energy storage mechanisms.   

Example 1: An electromechanical system 
The classic example of a coupled electromechanical system is an electrical circuit driving a voice coil 
(such as a loudspeaker), as shown in Figure 3a. In this case we specify the input voltage (𝑢𝑢𝑖𝑖𝑖𝑖𝑒𝑒 ) which 
produces an electrical current (𝑣𝑣𝑅𝑅𝑒𝑒) flowing through a resistance R1, an inductance L1, and the voice 
coil (length 𝑙𝑙) to produce a �me-varying magne�c field of flux density 𝐵𝐵 (Js.C-1.m-2) which generates a 
(‘Lorentz’) force 𝑢𝑢2𝑚𝑚 = 𝐵𝐵𝐵𝐵𝑣𝑣1𝑒𝑒  and hence displacement 𝑞𝑞2𝑚𝑚 (velocity 𝑣𝑣2𝑚𝑚). The mechanical system also has 
a spring of compliance C2, a viscous damper R2, and an iner�a L2. The bond graph representa�on of 
this system is shown in Figure 3b.  
Note that the coupling between the electrical and mechanical components requires a ‘gyrator’ (GY). 
The voltage (called ‘back-EMF’) induced within the voice coil is 𝑢𝑢1𝑒𝑒 and the expression 𝑢𝑢1𝑒𝑒 = 𝐵𝐵𝐵𝐵𝑣𝑣2𝑚𝑚 is 
required to ensure lossless power transfer since the power from the electrical side 𝑢𝑢1𝑒𝑒𝑣𝑣1𝑒𝑒 = 𝐵𝐵𝐵𝐵𝑣𝑣2𝑚𝑚𝑣𝑣1𝑒𝑒 
must match the power 𝑢𝑢2𝑚𝑚𝑣𝑣2𝑚𝑚 = 𝐵𝐵𝐵𝐵𝑣𝑣1𝑒𝑒𝑣𝑣2𝑚𝑚  on the mechanical side. Faraday’s law of induc�on appears as 
a logical consequence of the Lorentz force. 𝐵𝐵 is the magne�c field strength in units of Js.C-1.m-2. 

  
Figure 3. (a) A coupled electromechanical system, and (b) its bond graph representa�on. 𝑣𝑣1𝑒𝑒  is an electrical 
current and 𝑢𝑢𝑖𝑖𝑖𝑖𝑒𝑒 ,𝑢𝑢𝑅𝑅𝑒𝑒 ,𝑢𝑢𝐿𝐿𝑒𝑒 and 𝑢𝑢1𝑒𝑒 are electrical poten�als (voltages). 𝑣𝑣2𝑚𝑚  is a mechanical velocity (displacement 𝑞𝑞2𝑚𝑚) 
and 𝑢𝑢𝐶𝐶𝑚𝑚,𝑢𝑢𝑅𝑅𝑚𝑚,𝑢𝑢𝐿𝐿𝑚𝑚 and 𝑢𝑢2𝑚𝑚 are mechanical poten�als (forces).  

The balance equa�ons and cons�tu�ve laws for this system are: 

(𝑢𝑢𝐶𝐶𝑚𝑚) 𝑑𝑑𝑞𝑞𝐶𝐶
𝑚𝑚

𝑑𝑑𝑑𝑑
= 𝑣𝑣2𝑚𝑚 

(𝑣𝑣1𝑒𝑒) 𝑢𝑢𝑖𝑖𝑖𝑖𝑒𝑒 = 𝑢𝑢1𝑒𝑒 + 𝑢𝑢𝑅𝑅𝑒𝑒 + 𝑢𝑢𝐿𝐿𝑒𝑒   
(𝑣𝑣2𝑚𝑚) 𝑢𝑢2𝑚𝑚 = 𝑢𝑢𝐶𝐶𝑚𝑚 + 𝑢𝑢𝑅𝑅𝑚𝑚 + 𝑢𝑢𝐿𝐿𝑚𝑚        
(GY) 𝑢𝑢1𝑒𝑒 = 𝐵𝐵𝐵𝐵𝑣𝑣2𝑚𝑚;  𝑢𝑢2𝑚𝑚 = 𝐵𝐵𝐵𝐵𝑣𝑣1𝑒𝑒  

(CRs) 𝑢𝑢𝑅𝑅𝑒𝑒 = R1𝑣𝑣1𝑒𝑒;    𝑢𝑢𝐿𝐿𝑒𝑒 = L1
𝑑𝑑𝑣𝑣1

𝑒𝑒

𝑑𝑑𝑑𝑑
;     𝑢𝑢𝐶𝐶𝑚𝑚 = C2−1𝑞𝑞𝐶𝐶𝑚𝑚;    𝑢𝑢𝑅𝑅𝑚𝑚 = R2𝑣𝑣2𝑚𝑚;   𝑢𝑢𝐿𝐿𝑚𝑚 = L2

𝑑𝑑𝑣𝑣2
𝑚𝑚

𝑑𝑑𝑑𝑑
. 

Note that we iden�fy each type of equa�on using the colours red, green and purple, respec�vely, for  
0:node mass or charge conserva�on, 1:node energy conserva�on, and energy conversion. The final 
equa�ons needed to link the poten�als 𝑢𝑢 with their appropriate kinema�c quan��es 𝑞𝑞,𝑣𝑣 are the 
cons�tu�ve rela�ons (CRs) that capture the material proper�es of the system components.   

R1 and L1 are the resistance and inductance in the electrical circuit. R2, L2 and C2 are the damping 
resistance, iner�a and spring compliance in the mechanical system. In this bond graph formula�on, 
the Lorentz force and the back EMF from Faraday’s law of induc�on are just two ways of viewing the 
same power preserving (GY) mechanism. 

R1 R2 

Electrical Mechanical 

R1 

𝑢𝑢𝑖𝑖𝑖𝑖𝑒𝑒  

L1 

𝑣𝑣1𝑒𝑒 
 

C
2
 

L
2
 

R
2
 

𝑞𝑞2𝑚𝑚 
  𝑣𝑣2𝑚𝑚 
  

Electrical Mechanical 

𝑢𝑢1𝑒𝑒 = 𝐵𝐵𝐵𝐵𝑣𝑣2𝑚𝑚 

𝑣𝑣1𝑒𝑒 

L: 𝑣̇𝑣1𝑒𝑒 

𝑢𝑢𝑖𝑖𝑖𝑖𝑒𝑒  
𝑢𝑢𝐿𝐿𝑒𝑒 

𝑢𝑢𝑅𝑅𝑒𝑒  

𝑢𝑢2𝑚𝑚 = 𝐵𝐵𝐵𝐵𝑣𝑣1𝑒𝑒  

𝑢𝑢𝑅𝑅𝑚𝑚 

𝑣𝑣2𝑚𝑚 

L: 𝑣̇𝑣2𝑚𝑚 

𝑢𝑢𝐿𝐿𝑚𝑚 

𝑞𝑞𝐶𝐶𝑚𝑚 

𝑢𝑢𝐶𝐶𝑚𝑚 GY:𝐵𝐵𝐵𝐵 
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With 𝑢𝑢𝑖𝑖𝑖𝑖𝑒𝑒 (𝑡𝑡) specified as an input condi�on, these 10 equa�ons can be solved for 𝑢𝑢𝑅𝑅𝑒𝑒 ,𝑢𝑢𝐿𝐿𝑒𝑒,𝑢𝑢1𝑒𝑒 , 𝑣𝑣1𝑒𝑒  and 
𝑢𝑢𝑅𝑅𝑚𝑚,𝑢𝑢𝐶𝐶𝑚𝑚,𝑢𝑢𝐿𝐿𝑚𝑚,𝑢𝑢2𝑚𝑚, 𝑞𝑞𝐶𝐶𝑚𝑚, 𝑣𝑣2𝑚𝑚.  

Example 2: A voltage-sensitive and mechano-sensitive gated ion channel 
In this example, we consider various physical influences on the movement of charged sodium ions Na+ 
through a membrane ion channel: (i) the chemical poten�als associated with different numbers of ions 
on each side of the membrane; (ii) the effect on a charged ion moving through the electric field 
associated with the membrane channel; (iii) the effect of membrane stretch (represented by a one-
dimensional strain term) on membrane permeability; and (iv) the ga�ng process that controls ion 
permea�on. In general, this ga�ng process is itself voltage-dependent and o�en subject to ligand 
binding, but we ignore those factors as the goal here is just to demonstrate the way that a bond graph 
approach is used to develop an ion channel model that obeys physical conserva�on laws.    

We define two well-mixed (homogeneous) compartments on either side of a semi-permeable channel 
in the cell membrane, with 𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁

+  and 𝑞𝑞𝑖𝑖𝑁𝑁𝑁𝑁
+ represen�ng the number of moles of Na+ in the extracellular 

space (‘o’=outside) and in the cytosol of the cell (‘i’=inside).  

Since biological systems are usually assumed to be at constant temperature and pressure, Gibbs free 
energy is the relevant chemical poten�al in these systems. For a dilute system the chemical poten�al 
is given (using the extracellular compartment ‘o’ as an example) by the Boltzmann thermodynamic 
rela�on 

 𝑢𝑢𝑜𝑜𝑁𝑁𝑁𝑁
+ = 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑁𝑁𝑁𝑁+ + 𝑅𝑅𝑅𝑅 ln 𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁

+

𝑞𝑞𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡
   (J.mol-1), 

where 𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁
+  is the number of moles of Na+ and 𝑞𝑞𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡 is the total number of moles of all components of 

the mixture in that compartment  [7]. 𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑁𝑁𝑁𝑁+  is the (reference) poten�al when 𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁
+ = 𝑞𝑞𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡.  

More compactly,   

 𝑢𝑢𝑜𝑜𝑁𝑁𝑁𝑁
+ = 𝑅𝑅𝑅𝑅 ln 𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+
 (J.mol-1),    where 𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+ = 𝐾𝐾𝑜𝑜𝑁𝑁𝑁𝑁
+𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁

+
 and  𝐾𝐾𝑜𝑜𝑁𝑁𝑁𝑁

+ = 1
𝑞𝑞𝑜𝑜𝑡𝑡𝑡𝑡𝑡𝑡

𝑒𝑒𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟
𝑁𝑁𝑁𝑁+ 𝑅𝑅𝑅𝑅�    (mol-1).  

This is the cons�tu�ve law for biochemical energy storage, and 𝐾𝐾𝑜𝑜𝑁𝑁𝑁𝑁
+

 (mol-1) is an experimentally 
determined thermodynamic material parameter. Using the non-dimensional term 𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+  simplifies the 
subsequent analysis. 

Similarly, 

 𝑢𝑢𝑖𝑖𝑁𝑁𝑁𝑁
+ = 𝑅𝑅𝑅𝑅 ln 𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+
  (J.mol-1),    where 𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+ = 𝐾𝐾𝑖𝑖𝑁𝑁𝑁𝑁
+𝑞𝑞𝑖𝑖𝑁𝑁𝑁𝑁

+
 and  𝐾𝐾𝑖𝑖𝑁𝑁𝑁𝑁

+ = 1
𝑞𝑞𝑖𝑖
𝑡𝑡𝑡𝑡𝑡𝑡 𝑒𝑒

𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟
𝑁𝑁𝑁𝑁+ 𝑅𝑅𝑅𝑅�    (mol-1).  

Figure 4 shows the bond graph representa�on of the diffusive solute flux through the membrane and 
the flux of electrical charge (𝑞𝑞𝑚𝑚

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) from its capaci�ve storage in the membrane, with the biochemical 
equivalent of the membrane poten�al 𝑢𝑢𝑚𝑚

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  (J.C-1) being 𝑧𝑧𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒  (J.mol-1), where 𝐹𝐹 is the Faraday 
constant and 𝑧𝑧 is the valence (𝑧𝑧 = 1 for Na+).  

Note that Figure 4 introduces a new symbol with a green background and a red border. The green 
background indicates that this represents a storage term (see 𝑞𝑞𝐶𝐶𝑚𝑚 in Figure 3), which determines its 
poten�al 𝑢𝑢𝐶𝐶𝑚𝑚, and the red border indicates that this is also a 0:node where mass or charge is conserved. 
The reason to lump these two together is that mass or charge conserva�on always includes a local 
storage term, so the storage term can be thought of as internal to the 0:node. Combining them in this 
way of course, greatly simplifies the diagram for the bond graph model of a complex system.      

Another conven�on adopted here is to use a superscript to indicate the electrical or mechanical 
quan�ty or chemical species being expressed, and a subscript to indicate the loca�on of that quan�ty 
(e.g. in the extracellular or intracellular fluid, or the cell membrane, etc).    
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Figure 4. The bond graph representa�on of the concentra�on driven flow 𝑣𝑣𝑚𝑚 of electrically charged 𝐾𝐾+ ions 
through a channel in a membrane (inside the yellow block above) across which there is a poten�al difference 
𝑢𝑢𝑚𝑚
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 associated with charge storage 𝑞𝑞𝑚𝑚

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. The membrane is also subject to mechanical strain 𝑞𝑞𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. The 
ion channel is gated by a variable that transi�ons in reac�on 𝑅𝑅𝑅𝑅𝑔𝑔 between a closed state 𝑞𝑞𝑔𝑔𝐶𝐶  and an open state 
𝑞𝑞𝑔𝑔𝑂𝑂. The subscripts are ‘o’ and ‘i’ iden�fy the outside and inside of the cell, respec�vely, while ‘m’ and ‘g’ refer to 
the cell membrane and the ion channel gate.   

The flux balance equa�ons associated with the 0-nodes are:  

(𝑢𝑢𝑜𝑜𝐾𝐾
+

) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁

+ = −𝑣𝑣𝑚𝑚; (𝑢𝑢𝑖𝑖𝐾𝐾
+

) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑞𝑞𝑖𝑖𝑁𝑁𝑁𝑁

+ = 𝑣𝑣𝑚𝑚; (𝑢𝑢𝑚𝑚
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞𝑚𝑚
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = −𝑧𝑧𝑧𝑧𝑣𝑣𝑚𝑚; (𝑢𝑢𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −𝛤𝛤𝑣𝑣𝑚𝑚. 

𝑧𝑧 = 1 for 𝑁𝑁𝑁𝑁+, and 𝐹𝐹 has units C.mol-1 (to convert the molar flux 𝑣𝑣𝑚𝑚 to a charge flux). 𝛤𝛤 has units mol-1 
(to convert the molar flux 𝑣𝑣𝑚𝑚 to a strain rate). 

The energy balance equa�ons associated with the 1-nodes are: 

(𝑣𝑣𝑚𝑚) 𝑢𝑢𝑚𝑚
𝑓𝑓 = 𝑢𝑢𝑜𝑜𝑁𝑁𝑁𝑁

+ + 𝑢𝑢𝑔𝑔𝑂𝑂 + 𝑧𝑧𝑧𝑧𝑢𝑢𝑚𝑚
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝛤𝛤𝑢𝑢𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠;     𝑢𝑢𝑚𝑚𝑟𝑟 = 𝑢𝑢𝑖𝑖𝑁𝑁𝑁𝑁

+ + 𝑢𝑢𝑔𝑔𝑂𝑂; (𝑣𝑣𝑔𝑔) 𝑢𝑢𝑚𝑚
𝑓𝑓 = 𝑢𝑢𝑔𝑔𝐶𝐶 ;  𝑢𝑢𝑚𝑚𝑟𝑟 = 𝑢𝑢𝑔𝑔𝑂𝑂. 

The reac�on fluxes 𝑣𝑣𝑚𝑚 (mol.s-1) and 𝑣𝑣𝑔𝑔 (mol.s-1) are 

(𝑅𝑅𝑅𝑅𝑚𝑚) 𝑣𝑣𝑚𝑚 = 𝜅𝜅𝑚𝑚 �𝑒𝑒𝑢𝑢𝑚𝑚
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑚𝑚𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅𝑚𝑚𝐾𝐾𝑔𝑔𝑂𝑂𝑞𝑞𝑔𝑔𝑂𝑂 �𝐾𝐾𝑜𝑜𝑁𝑁𝑁𝑁

+𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁
+ . 𝑒𝑒

𝑧𝑧𝐹𝐹𝑢𝑢𝑚𝑚
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑅𝑅𝑅𝑅 . 𝑒𝑒
𝛤𝛤𝑢𝑢𝑚𝑚

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅𝑅𝑅 − 𝐾𝐾𝑖𝑖𝑁𝑁𝑁𝑁
+𝑞𝑞𝑖𝑖𝑁𝑁𝑁𝑁

+�, (5) 

(𝑅𝑅𝑅𝑅𝑔𝑔) 𝑣𝑣𝑔𝑔 = 𝜅𝜅𝑔𝑔 �𝑒𝑒𝑢𝑢𝑔𝑔
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑔𝑔𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅𝑔𝑔�𝐾𝐾𝑔𝑔𝐶𝐶𝑞𝑞𝑔𝑔𝐶𝐶 − 𝐾𝐾𝑔𝑔𝑂𝑂𝑞𝑞𝑔𝑔𝑂𝑂�, 

where the second step in both cases uses the expressions for the forward and reverse poten�als 
inserted into the energy balance equa�ons.  

Note that 𝛤𝛤 has units of mol-1, consistent with a power balance (𝑢𝑢𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). (𝛤𝛤𝑣𝑣𝑚𝑚) = (𝛤𝛤𝑢𝑢𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). (𝑣𝑣𝑚𝑚) where 
(since strain is dimensionless) power (J.s-1) on the le� has units (J).(mol-1.mol.s-1) and power on the 
right has units (mol-1.J).(mol.s-1). 

Since the total number of gates (𝑞𝑞𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡) is constant (𝑞𝑞𝑔𝑔𝐶𝐶 + 𝑞𝑞𝑔𝑔𝑂𝑂 = 𝑞𝑞𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡), the probabili�es of the gates being 
open and closed, respec�vely, are 

  
𝑞𝑞𝑔𝑔𝑂𝑂

𝑞𝑞𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡
= 𝑝𝑝   and   

𝑞𝑞𝑔𝑔𝐶𝐶

𝑞𝑞𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡
= 1 − 𝑝𝑝. 

where (0 ≤ 𝑝𝑝 ≤ 1).  

The gate mass balance equa�ons 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑞𝑞𝑔𝑔𝐶𝐶 = −𝑣𝑣𝑔𝑔 and 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞𝑔𝑔𝑂𝑂 = 𝑣𝑣𝑔𝑔 are therefore represented by 

  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑔𝑔
𝑞𝑞𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡

. 

Using the bond graph flux equa�on 𝑣𝑣𝑔𝑔 = 𝜅𝜅𝑔𝑔�𝐾𝐾𝑔𝑔𝐶𝐶𝑞𝑞𝑔𝑔𝐶𝐶 − 𝐾𝐾𝑔𝑔𝑂𝑂𝑞𝑞𝑔𝑔𝑂𝑂�, gives 

 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣𝑔𝑔
𝑞𝑞𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡

= 𝜅𝜅𝑔𝑔
𝑞𝑞𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡

�𝐾𝐾𝑔𝑔𝐶𝐶𝑞𝑞𝑔𝑔𝐶𝐶 − 𝐾𝐾𝑔𝑔𝑂𝑂𝑞𝑞𝑔𝑔𝑂𝑂� = 𝜅𝜅𝑔𝑔 �𝐾𝐾𝑔𝑔𝐶𝐶 . 𝑞𝑞𝑔𝑔𝐶𝐶

𝑞𝑞𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡
− 𝐾𝐾𝑔𝑔𝑂𝑂. 𝑞𝑞𝑔𝑔𝑂𝑂

𝑞𝑞𝑔𝑔𝑡𝑡𝑡𝑡𝑡𝑡
� = 𝛼𝛼𝑔𝑔(1 − 𝑝𝑝) − 𝛽𝛽𝑔𝑔𝑝𝑝  
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where 𝛼𝛼𝑔𝑔 = 𝜅𝜅𝑔𝑔𝐾𝐾𝑔𝑔𝐶𝐶  is the rate at which closed gates open, and 𝛽𝛽𝑔𝑔 = 𝜅𝜅𝑔𝑔𝐾𝐾𝑔𝑔𝑂𝑂 is the rate at which open gates 
close. For voltage gated ion channels, these opening and closing rate constants are defined as func�ons 
of the membrane poten�al 𝑢𝑢𝑚𝑚

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . Equa�on 5 now becomes  

 𝑣𝑣𝑚𝑚 = 𝜅𝜅𝑚𝑚∗ . 𝑝𝑝 �𝐾𝐾𝑜𝑜𝑁𝑁𝑁𝑁
+𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁

+ . 𝑒𝑒
𝑧𝑧𝐹𝐹𝑢𝑢𝑚𝑚

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑅𝑅𝑅𝑅 . 𝑒𝑒
𝛤𝛤𝑢𝑢𝑚𝑚

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑅𝑅𝑅𝑅 − 𝐾𝐾𝑖𝑖𝑁𝑁𝑁𝑁
+𝑞𝑞𝑖𝑖𝑁𝑁𝑁𝑁

+�, (6) 

where 𝜅𝜅𝑚𝑚∗ = 𝜅𝜅𝑚𝑚𝐾𝐾𝑔𝑔𝑂𝑂𝑞𝑞𝑔𝑔
𝑡𝑡𝑡𝑡𝑡𝑡 is the open channel conductance.  

With the molar flux given by 𝑣𝑣𝑚𝑚, the electrical current flow through the membrane is 
 𝑣𝑣𝑚𝑚

𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑧𝑧𝐹𝐹𝑣𝑣𝑚𝑚   (C.s-1).  

The chemical flux 𝑣𝑣𝑚𝑚 (mol.s-1) or electrical current flow 𝑣𝑣𝑚𝑚
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  (C.s-1) is zero at the equilibrium or 

‘Nernst’ poten�al,  

 𝑢𝑢𝑚𝑚
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑅𝑅

𝑧𝑧𝐹𝐹
𝑙𝑙𝑙𝑙 �𝐾𝐾𝑖𝑖

𝑁𝑁𝑁𝑁+𝑞𝑞𝑖𝑖
𝑁𝑁𝑁𝑁+

𝐾𝐾𝑜𝑜𝑁𝑁𝑁𝑁
+𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁

+�.   

The concentra�on of species are given by 𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁
+ = 𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁

+/𝑉𝑉𝑜𝑜 and 𝑐𝑐𝑖𝑖𝑁𝑁𝑁𝑁
+ = 𝑞𝑞𝑖𝑖𝑁𝑁𝑁𝑁

+/𝑉𝑉𝑖𝑖. Therefore, since the 
thermodynamic constants are related by 𝐾𝐾𝑜𝑜𝑁𝑁𝑁𝑁

+𝑉𝑉𝑜𝑜 = 𝐾𝐾𝑖𝑖𝑁𝑁𝑁𝑁
+𝑉𝑉𝑖𝑖, 

 𝑢𝑢𝑚𝑚
𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑅𝑅

𝑧𝑧𝐹𝐹
𝑙𝑙𝑙𝑙 �𝑐𝑐𝑖𝑖

𝑁𝑁𝑁𝑁+

𝑐𝑐𝑜𝑜𝑁𝑁𝑁𝑁
+�. 

This is the form of the Nernst equa�on usually used in electrophysiology. But see [8] for an alterna�ve 
constant-field Goldman-Hodgkin-Katz (GHK) model of ion permea�on that accounts for ion channel 
rec�fica�on. 

Example 3: An enzyme-catalyzed reaction 
Now consider the enzyma�c reac�on shown in Figure 5a, which is o�en associated with Michaelis-
Menten (MM) kine�cs [9]. 𝑞𝑞𝑖𝑖1 is a substrate that binds reversibly to an enzyme 𝑞𝑞𝑖𝑖3 to form the complex 
𝑞𝑞𝑖𝑖4, which breaks down to regenerate the enzyme and yield a product 𝑞𝑞𝑖𝑖2. In conven�onal MM kine�cs 
this last step is treated as irreversible, if 𝐴𝐴2

𝑓𝑓 ≫ 𝐴𝐴2𝑟𝑟 .        

   
  (a)   (b) 
Figure 5. (a) An enzyme (𝑞𝑞𝑖𝑖3)-catalysed reac�on, and (b) its bond graph representa�on. Flux balance is ensured 
for each of the four species at the 0:nodes, and energy balance at the 1:nodes ensures the correct stoichiometry. 
The forward and reverse poten�als, for each of the two reac�ons, are indicated by the doted arrows.   

The flux balance equa�ons for the four species, defined at the four 0:nodes, are  

(𝑢𝑢𝑐𝑐1) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑞𝑞𝑖𝑖1 = −𝑣𝑣𝑖𝑖1; (𝑢𝑢𝑐𝑐2) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞𝑖𝑖2 = 𝑣𝑣𝑖𝑖2; (𝑢𝑢𝑐𝑐3) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞𝑖𝑖3 = −𝑣𝑣𝑖𝑖1 + 𝑣𝑣𝑖𝑖2; (𝑢𝑢𝑐𝑐4) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞𝑖𝑖4 = 𝑣𝑣𝑖𝑖1 − 𝑣𝑣𝑖𝑖2; 

Note that since 𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑞𝑞𝑖𝑖3 + 𝑞𝑞𝑖𝑖4) = 0, the total amount of enzyme (including in its bound form 𝑞𝑞𝑖𝑖4) is 
constant. i.e. 

 𝑞𝑞𝑖𝑖3 + 𝑞𝑞𝑖𝑖4 = 𝐸𝐸0,  

where 𝐸𝐸0 is the ini�al quan�ty of enzyme.  
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The energy balance equa�ons, defined at the two 1:nodes, are 

(𝑣𝑣𝑐𝑐1) 𝑢𝑢𝑅𝑅1
𝑓𝑓 = 𝑢𝑢𝑖𝑖1 + 𝑢𝑢𝑖𝑖3;    𝑢𝑢𝑅𝑅1𝑟𝑟 = 𝑢𝑢𝑖𝑖4; (𝑣𝑣𝑐𝑐2)   𝑢𝑢𝑅𝑅2

𝑓𝑓 = 𝑢𝑢𝑖𝑖4; 𝑢𝑢𝑅𝑅2𝑟𝑟 = 𝑢𝑢𝑖𝑖2 + 𝑢𝑢𝑖𝑖3. 

Using these poten�als, the two reac�ons are  

(𝑅𝑅𝑅𝑅𝑐𝑐1) 𝑣𝑣𝑖𝑖1 = 𝜅𝜅1 �𝑒𝑒𝑢𝑢𝑅𝑅1
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅1

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅1(𝐾𝐾𝑖𝑖1𝑞𝑞𝑖𝑖1𝐾𝐾𝑖𝑖3𝑞𝑞𝑖𝑖3 − 𝐾𝐾𝑖𝑖4𝑞𝑞𝑖𝑖4) =  𝑘𝑘1
𝑓𝑓𝑞𝑞𝑖𝑖1𝑞𝑞𝑖𝑖3 − 𝑘𝑘1𝑟𝑟𝑞𝑞𝑖𝑖4,   

where 𝑘𝑘1
𝑓𝑓 = 𝜅𝜅1𝐾𝐾𝑐𝑐1𝐾𝐾𝑐𝑐3 (mol-1.s-1) and  𝑘𝑘1𝑟𝑟 = 𝜅𝜅1𝐾𝐾𝑐𝑐4 (s-1), and  

(𝑅𝑅𝑅𝑅𝑐𝑐2) 𝑣𝑣𝑖𝑖2  = 𝜅𝜅2 �𝑒𝑒𝑢𝑢𝑅𝑅2
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅2

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅2(𝐾𝐾𝑖𝑖4𝑞𝑞𝑖𝑖4 − 𝐾𝐾𝑖𝑖2𝑞𝑞𝑖𝑖2𝐾𝐾𝑖𝑖3𝑞𝑞𝑖𝑖3) = 𝑘𝑘2
𝑓𝑓𝑞𝑞𝑖𝑖4 − 𝑘𝑘2𝑟𝑟𝑞𝑞𝑖𝑖2𝑞𝑞𝑖𝑖3,   

where 𝑘𝑘2
𝑓𝑓 = 𝜅𝜅2𝐾𝐾𝑖𝑖4 (s-1) and  𝑘𝑘2𝑟𝑟 = 𝜅𝜅2𝐾𝐾𝑖𝑖2𝐾𝐾𝑖𝑖3 (mol-1.s-1). 

The Briggs-Haldane analysis of the reac�on [7] assumes that there is a much higher concentra�on of 
substrate than enzyme (𝑞𝑞𝑐𝑐1 ≫ 𝑞𝑞𝑐𝑐3) and that the complex 𝑞𝑞𝑐𝑐4 therefore quickly reaches a steady-state 
(SS).    

Assuming a steady constant flux with 𝑣𝑣𝑖𝑖1 = 𝑣𝑣𝑖𝑖2 = 𝑣𝑣  and  𝑑𝑑
𝑑𝑑𝑑𝑑
𝑞𝑞𝑖𝑖3 = 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞𝑖𝑖4 = 0,  

 𝑣𝑣 =  𝑘𝑘1
𝑓𝑓𝑞𝑞𝑖𝑖1𝑞𝑞𝑖𝑖3 − 𝑘𝑘1𝑟𝑟𝑞𝑞𝑖𝑖4 = 𝑘𝑘2

𝑓𝑓𝑞𝑞𝑖𝑖4 − 𝑘𝑘2𝑟𝑟𝑞𝑞𝑖𝑖2𝑞𝑞𝑖𝑖3. (7) 

From the second equa�on in (7) we can express 𝑞𝑞𝑖𝑖4 in terms of 𝑞𝑞𝑖𝑖3:  

 𝑞𝑞𝑖𝑖4 =  𝑘𝑘1
𝑓𝑓𝑞𝑞𝑖𝑖

1+𝑘𝑘2
𝑟𝑟𝑞𝑞𝑖𝑖

2

𝑘𝑘2
𝑓𝑓+𝑘𝑘1

𝑟𝑟 . 𝑞𝑞𝑖𝑖3. 

Using conserva�on of total enzyme 𝑞𝑞𝑖𝑖3 + 𝑞𝑞𝑖𝑖4 = 𝐸𝐸0, 

 𝑞𝑞𝑖𝑖3 �1 +  𝑘𝑘1
𝑓𝑓𝑞𝑞𝑖𝑖

1+𝑘𝑘2
𝑟𝑟𝑞𝑞𝑖𝑖

2

𝑘𝑘2
𝑓𝑓+𝑘𝑘1

𝑟𝑟 � = 𝐸𝐸0, 

which, with equa�on 7, gives 

 𝑣𝑣 =  𝑘𝑘1
𝑓𝑓𝑞𝑞𝑖𝑖1𝑞𝑞𝑖𝑖3 − 𝑘𝑘1𝑟𝑟𝑞𝑞𝑖𝑖4 = �𝑘𝑘1

𝑓𝑓𝑞𝑞𝑖𝑖1 − 𝑘𝑘1𝑟𝑟 .  𝑘𝑘1
𝑓𝑓𝑞𝑞𝑖𝑖

1+𝑘𝑘2
𝑟𝑟𝑞𝑞𝑖𝑖

2

𝑘𝑘2
𝑓𝑓+𝑘𝑘1

𝑟𝑟 � 𝑞𝑞𝑖𝑖3 = 𝐸𝐸0
𝑘𝑘1
𝑓𝑓𝑞𝑞𝑖𝑖

1−𝑘𝑘1𝑟𝑟.
 𝑘𝑘1
𝑓𝑓𝑞𝑞𝑖𝑖

1+𝑘𝑘2
𝑟𝑟𝑞𝑞𝑖𝑖

2

𝑘𝑘2
𝑓𝑓+𝑘𝑘1

𝑟𝑟

1+
 𝑘𝑘1
𝑓𝑓𝑞𝑞𝑖𝑖

1+𝑘𝑘2
𝑟𝑟𝑞𝑞𝑖𝑖

2

𝑘𝑘2
𝑓𝑓+𝑘𝑘1

𝑟𝑟

 

or 

 𝑣𝑣 = 𝐸𝐸0.
𝑘𝑘1
𝑓𝑓𝑞𝑞𝑖𝑖

1�𝑘𝑘2
𝑓𝑓+𝑘𝑘1𝑟𝑟�−𝑘𝑘1𝑟𝑟.� 𝑘𝑘1

𝑓𝑓𝑞𝑞𝑖𝑖
1+𝑘𝑘2𝑟𝑟𝑞𝑞𝑖𝑖

2�

𝑘𝑘2
𝑓𝑓+𝑘𝑘1

𝑟𝑟+ 𝑘𝑘1
𝑓𝑓𝑞𝑞𝑖𝑖

1+𝑘𝑘2
𝑟𝑟𝑞𝑞𝑖𝑖

2 = 𝐸𝐸0. 𝑘𝑘1
𝑓𝑓𝑘𝑘2

𝑓𝑓𝑞𝑞𝑖𝑖
1−𝑘𝑘1

𝑟𝑟𝑘𝑘2
𝑟𝑟𝑞𝑞𝑖𝑖

2

𝑘𝑘2
𝑓𝑓+𝑘𝑘1

𝑟𝑟+ 𝑘𝑘1
𝑓𝑓𝑞𝑞𝑖𝑖

1+𝑘𝑘2
𝑟𝑟𝑞𝑞𝑖𝑖

2. 

Subs�tu�ng back 𝑘𝑘1
𝑓𝑓 = 𝜅𝜅1𝐾𝐾𝑖𝑖1𝐾𝐾𝑖𝑖3, 𝑘𝑘1𝑟𝑟 = 𝜅𝜅1𝐾𝐾𝑖𝑖4, 𝑘𝑘2

𝑓𝑓  = 𝜅𝜅2𝐾𝐾𝑖𝑖4 and 𝑘𝑘2𝑟𝑟 = 𝜅𝜅2𝐾𝐾𝑖𝑖2𝐾𝐾𝑖𝑖3, gives  

  𝑣𝑣 = 𝐸𝐸0. 𝜅𝜅1𝜅𝜅2𝐾𝐾𝑖𝑖
3𝐾𝐾𝑖𝑖

4�𝐾𝐾𝑖𝑖
1𝑞𝑞𝑖𝑖

1−𝐾𝐾𝑖𝑖
2𝑞𝑞𝑖𝑖

2�
𝜅𝜅1�𝐾𝐾𝑖𝑖

1𝐾𝐾𝑖𝑖
3𝑞𝑞𝑖𝑖

1+𝐾𝐾𝑖𝑖
4�+𝜅𝜅2�𝐾𝐾𝑖𝑖

2𝐾𝐾𝑖𝑖
3𝑞𝑞𝑖𝑖

2+𝐾𝐾𝑖𝑖
4�

 

or, rearranging the denominator, 

 𝑣𝑣 = 𝐸𝐸0. 𝜅𝜅1𝜅𝜅2𝐾𝐾𝑖𝑖
3𝐾𝐾𝑖𝑖

4�𝐾𝐾𝑖𝑖
1𝑞𝑞𝑖𝑖

1−𝐾𝐾𝑖𝑖
2𝑞𝑞𝑖𝑖

2�
𝐾𝐾𝑖𝑖
4(𝜅𝜅1+𝜅𝜅2)+𝜅𝜅1𝐾𝐾𝑖𝑖

1𝐾𝐾𝑖𝑖
3𝑞𝑞𝑖𝑖

1+𝜅𝜅2𝐾𝐾𝑖𝑖
2𝐾𝐾𝑖𝑖

3𝑞𝑞𝑖𝑖
2  

A useful way of expressing this rela�onship between the SS flux and the solute quan��es is 

  𝑣𝑣 = 𝐴𝐴𝑓𝑓𝑞𝑞𝑖𝑖1−𝐴𝐴
𝑟𝑟𝑞𝑞𝑖𝑖

2

1+
𝑞𝑞𝑖𝑖
1

𝑘𝑘𝑚𝑚
1 +

𝑞𝑞𝑖𝑖
2

𝑘𝑘𝑚𝑚
2

   (mol.s-1) (8) 

where  
 𝐴𝐴𝑓𝑓 = 𝐸𝐸0. 𝜅𝜅1𝜅𝜅2𝐾𝐾𝑖𝑖

1𝐾𝐾𝑖𝑖
3

𝜅𝜅1+𝜅𝜅2
  (s-1),  𝐴𝐴𝑟𝑟 = 𝐸𝐸0. 𝜅𝜅1𝜅𝜅2𝐾𝐾𝑖𝑖

2𝐾𝐾𝑖𝑖
3

𝜅𝜅1+𝜅𝜅2
 (s-1),  𝑘𝑘𝑚𝑚1 = 𝐾𝐾𝑖𝑖4

𝜅𝜅1+𝜅𝜅2
𝜅𝜅1𝐾𝐾𝑖𝑖

1𝐾𝐾𝑖𝑖
3 (mol),  𝑘𝑘𝑚𝑚2 = 𝐾𝐾𝑖𝑖4

𝜅𝜅1+𝜅𝜅2
𝜅𝜅2𝐾𝐾𝑖𝑖

2𝐾𝐾𝑖𝑖
3 (mol), 

since this highlights the rela�onship with the Michaelis-Menten (MM) flux expression below.  

Note that since 𝐾𝐾𝑖𝑖1 (mol-1) and 𝐾𝐾𝑖𝑖2 (mol-1) are the thermodynamic constants associated with the solute 
(not the reac�on), the reac�on flux is defined by three combina�ons of biophysical parameters 
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(𝐸𝐸0𝜅𝜅1𝐾𝐾𝑖𝑖3, 𝜅𝜅2
𝜅𝜅1

, and 𝐾𝐾𝑖𝑖
4

𝐾𝐾𝑖𝑖
3) – one more than the MM flux expression below, and since 𝐾𝐾𝑖𝑖3 and 𝐾𝐾𝑖𝑖4 are usually 

assumed to be the same, this reduces to only two parameters needed for fi�ng experimental data.  

The MM approxima�on goes one step further and assumes that with a sufficiently low concentra�on 
of product 𝑞𝑞𝑖𝑖2 rela�ve to the complex, the 𝑞𝑞𝑖𝑖2 term in equa�on 8 can be ignored, and  
 𝑣𝑣 = 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 . 𝑞𝑞𝑖𝑖

1

𝑘𝑘𝑚𝑚+𝑞𝑞𝑖𝑖
1  (mol.s-1) (9) 

where  

 𝑘𝑘𝑚𝑚 = (𝜅𝜅1+𝜅𝜅2)𝐾𝐾𝑖𝑖
4

𝜅𝜅1𝐾𝐾𝑖𝑖
1𝐾𝐾𝑖𝑖

3 = 𝑘𝑘2
𝑓𝑓+𝑘𝑘1

𝑟𝑟

𝑘𝑘1
𝑓𝑓   is the MM constant and 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐸𝐸0𝜅𝜅2𝐾𝐾𝑖𝑖4 = 𝐸𝐸0𝑘𝑘2

𝑓𝑓  is the maximal (SS) flux. 

Note, however, that the MM approxima�on assumes that the reac�on is irreversible, which violates 
thermodynamic principles. 
With the above background to bond graph modelling of physical (including physiological) processes, 
we can now use this approach to derive the equa�ons governing SLC transporters, using SLC2A2 and 
SLC5A1 as specific examples from which more general lessons can be derived for the en�re family.  

RESULTS 

The SLC superfamily  

The SLC superfamily currently includes 62 families of SLC transporters [1] that deal with the transport 
of the following small molecules: 
Ca�ons:  𝐵𝐵𝐵𝐵2+, 𝐶𝐶𝐶𝐶2+, 𝐶𝐶𝐶𝐶2+, 𝐶𝐶𝐶𝐶2+, 𝐶𝐶𝐶𝐶2+, 𝐹𝐹𝐹𝐹2+, 𝐻𝐻+, 𝐻𝐻𝐻𝐻𝐻𝐻3 

−, 𝐾𝐾+, 𝑀𝑀𝑀𝑀2+, 𝑀𝑀𝑀𝑀2+, 𝑁𝑁𝑁𝑁+, 𝑁𝑁𝑁𝑁2+, 𝑃𝑃𝑃𝑃2+, 𝑆𝑆𝑆𝑆2+, 𝑍𝑍𝑍𝑍2+, 
 ammonium (𝑁𝑁𝑁𝑁4+) 
Anions:  𝐶𝐶𝐶𝐶−, bicarbonate (𝐻𝐻𝐻𝐻𝐻𝐻3−), phosphate (𝐻𝐻𝐻𝐻𝐻𝐻4−), pyruvate (𝐶𝐶3𝐻𝐻3𝑂𝑂3−), 
Amino acids:  Ala, Arg, Asn, Asp, Cys, Gln, Glu, Gly, His, Ise, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val  
Sugars:  glucose (Glc),  
Hormones & neurotransmiters: acetylcholine (ACh), epinephrine, norepinephrine (NE), steroids  
Vitamins:  folate (B9), pyridoxine (B6), thiamine (B1),  
Lipids: cholesterol, sphingosine, 
Others:  bile acids, heme, selenate, sulfate, thiosulfate, riboflavin, molybdate, pyrophosphate (𝐻𝐻4𝑃𝑃2𝑂𝑂7)  

We briefly describe some features of these transporters before looking in detail at members of two 
families that are involved in transpor�ng glucose across cell membranes: SLC2A2 and SLC5A1.   

Table 1 lists the members of the first family (SLC1), together with their familiar protein name, their 
UniProt IDs, the substrate(s) carried by the transporter and a diagram of the chemistry.     

 
Gene Protein UniProt ID Substrate Diagram 

SLC1A1 EAAT3 P43005 

AA = L-Glu, D/L-Asp 

 

SLC1A2 EAAT2 P43004 

SLC1A3 EAAT1 P43003 

SLC1A6 EAAT4 P48664 

SLC1A7 EAAT5 O00341 

SLC1A4 ASCT1 P43007 AA = L-Ala, L-Cys, L-Ser, L-Pro, L-Thr 

 

SLC1A5 ASCT2 Q15758 AA = L-Ser, L-Glu, L-Asp, L-Ala, L-Glu 
BB = L-Glu, L-Thr, L-Asp, L-Glu, L-Glu, D-Ser 

 

Table 1. The first family (SLC1) in the SLC superfamily. Note that the extracellular space is shown above the 
bilipid membrane and the intracellular space below the membrane in the diagrams on the right.  
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Facilitated diffusion with SLC2A2 (GLUT2) 

The review ar�cle [10] provides a comprehensive overview of SLC2 family of transporters. While 
alterna�ve models for SLC2A2 (GLUT2) were proposed to address inconsistent observa�ons in some 
experiments [11],  most kine�c and biophysical data support the alterna�ng conforma�on mechanism 
of SLC2A2 (GLUT2) transporter [12, 13, 14].  There has been debate over whether the alterna�ng 
models violate the energy conserva�on laws [15, 16].  This paper uses the most accepted alterna�ng 
model [12, 13, 14] to demonstrate that the bond graph approach describes the energe�c perspec�ves 
of a system in a more explicit manner. 
In this sec�on we present a modelling pipeline for the SLC2A2 (GLUT2) facilitated diffusion of glucose 
through a bilipid membrane (see Figure 6). The pipeline goes from (a) the statement of the biochemical 
reac�on, to (b) a bond graph diagram of the full kine�cs of the transport process, to (c) the steady-
state flux model. We demonstrate parameter fi�ng for both the full kine�c model using the 
biophysical parameters and the reduced steady-state flux model using both the full set of biophysical 
parameters and a reduced set of empirical parameters.   

 
 (a)   (b) (c) 
Figure 6. The pipeline from (a) the chemical reac�on with its representa�ve icon, (b) the bond graph diagram for 
the reac�on, and (c) the diagram for the reduced model showing the steady-state flux dependencies on the 
molar quan��es 𝑞𝑞𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺  and 𝑞𝑞𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺.  

The reac�ons represented by Figure 6b are as follows: 

1. 𝑅𝑅𝑅𝑅1: the transi�on of the protein from the inward-facing state to an outward-facing state; 
2. 𝑅𝑅𝑅𝑅3: the binding of the ligand (external glucose 𝑞𝑞𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺) to the outward-facing protein;  
3. 𝑅𝑅𝑅𝑅2: the transi�on of the protein from the outward-facing state to an inward-facing state; 
4. 𝑅𝑅𝑅𝑅4: the unbinding of the ligand (external glucose 𝑞𝑞𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺) from the inward-facing protein;  

In the following equa�ons glucose (Glc) is represented by the symbol A as a generic (uncharged) ligand 
since these equa�ons are valid for facilitated diffusion of any electrically neutral molecule across a 
membrane. 

The flux balance equa�ons associated with the 0-nodes are:  

(𝑢𝑢𝑜𝑜𝐴𝐴) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑞𝑞𝑜𝑜𝐴𝐴 = −𝑣𝑣3 (𝑢𝑢𝑖𝑖𝐴𝐴) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞𝑖𝑖𝐴𝐴 = 𝑣𝑣4  

(𝑢𝑢1) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑞𝑞1
𝐸𝐸𝑜𝑜 = 𝑣𝑣1 − 𝑣𝑣3 (𝑢𝑢2) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞2
𝐸𝐸𝑜𝑜𝐴𝐴 = 𝑣𝑣3 − 𝑣𝑣2 (𝑢𝑢3) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞3
𝐸𝐸𝑖𝑖𝐴𝐴 = 𝑣𝑣2 − 𝑣𝑣4 (𝑢𝑢4) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞4
𝐸𝐸𝑖𝑖 = 𝑣𝑣4 − 𝑣𝑣1 

The energy balance equa�ons associated with the 1-nodes are: 
(𝑣𝑣1) 𝑢𝑢𝑅𝑅1

𝑓𝑓 = 𝑢𝑢4;  𝑢𝑢𝑅𝑅1𝑟𝑟 = 𝑢𝑢1; ( 𝑣𝑣2) 𝑢𝑢𝑅𝑅2
𝑓𝑓 = 𝑢𝑢2; 𝑢𝑢𝑅𝑅2𝑟𝑟 = 𝑢𝑢3 

(𝑣𝑣3) 𝑢𝑢𝑅𝑅3
𝑓𝑓 = 𝑢𝑢𝑜𝑜𝐴𝐴 + 𝑢𝑢1;  𝑢𝑢𝑅𝑅3𝑟𝑟 = 𝑢𝑢2; ( 𝑣𝑣4) 𝑢𝑢𝑅𝑅4

𝑓𝑓 = 𝑢𝑢3; 𝑢𝑢𝑅𝑅4𝑟𝑟 = 𝑢𝑢4 + 𝑢𝑢𝑖𝑖𝐴𝐴 

The cons�tu�ve laws for the storage terms are: 
(𝑞𝑞𝑜𝑜𝐴𝐴) 𝑢𝑢𝑜𝑜𝐴𝐴 = 𝑅𝑅𝑅𝑅 ln 𝑞𝑞�𝑜𝑜𝐴𝐴, where  𝑞𝑞�𝑜𝑜𝐴𝐴 = 𝐾𝐾𝑜𝑜𝐴𝐴𝑞𝑞𝑜𝑜𝐴𝐴 (𝑞𝑞𝑖𝑖𝐴𝐴) 𝑢𝑢𝑖𝑖𝐴𝐴 = 𝑅𝑅𝑅𝑅 ln 𝑞𝑞�𝑖𝑖𝐴𝐴, where  𝑞𝑞�𝑖𝑖𝐴𝐴 = 𝐾𝐾𝑖𝑖𝐴𝐴𝑞𝑞𝑖𝑖𝐴𝐴 
(𝑞𝑞𝑖𝑖) 𝑢𝑢𝑖𝑖 = 𝑅𝑅𝑅𝑅 ln𝐾𝐾𝑗𝑗𝑞𝑞𝑗𝑗,   𝑗𝑗=1..4. 

Note that we nondimensionalise the solute quan��es (𝑞𝑞𝑜𝑜𝐴𝐴 and 𝑞𝑞𝑖𝑖𝐴𝐴) by using 𝑞𝑞�𝑜𝑜𝐴𝐴 and 𝑞𝑞�𝑖𝑖𝐴𝐴, but retain the 
thermodynamic constants (𝐾𝐾1,𝐾𝐾2,𝐾𝐾3,𝐾𝐾4,) for the protein state variables as these quan��es (𝑞𝑞𝑗𝑗) must 
sum to a constant total (𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡) – see below. 

Reaction E3: 
D-glucose(out) = D-glucose(in) 
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The reac�ons, with the subs�tuted poten�als, are:  

(𝑅𝑅𝑅𝑅1) 𝑣𝑣1 = 𝜅𝜅1 �𝑒𝑒𝑢𝑢𝑅𝑅1
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅1

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅1�𝐾𝐾4
𝐸𝐸𝑖𝑖𝑞𝑞4

𝐸𝐸𝑖𝑖 − 𝐾𝐾1
𝐸𝐸𝑜𝑜𝑞𝑞1

𝐸𝐸𝑜𝑜�, (10) 

(𝑅𝑅𝑅𝑅2) 𝑣𝑣2 = 𝜅𝜅2 �𝑒𝑒𝑢𝑢𝑅𝑅2
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅2

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅2�𝐾𝐾2
𝐸𝐸𝑜𝑜𝐴𝐴𝑞𝑞2

𝐸𝐸𝑜𝑜𝐴𝐴 − 𝐾𝐾3
𝐸𝐸𝑖𝑖𝐴𝐴𝑞𝑞3

𝐸𝐸𝑖𝑖𝐴𝐴�,  (11) 

(𝑅𝑅𝑅𝑅3) 𝑣𝑣3 = 𝜅𝜅3 �𝑒𝑒𝑢𝑢𝑅𝑅3
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅3

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅3�𝐾𝐾1
𝐸𝐸𝑜𝑜𝑞𝑞1

𝐸𝐸𝑜𝑜 . 𝑞𝑞�𝑜𝑜𝐴𝐴 − 𝐾𝐾2
𝐸𝐸𝑜𝑜𝐴𝐴𝑞𝑞2

𝐸𝐸𝑜𝑜𝐴𝐴�,  (12) 

(𝑅𝑅𝑅𝑅4) 𝑣𝑣4 = 𝜅𝜅4 �𝑒𝑒𝑢𝑢𝑅𝑅4
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅4

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅4�𝐾𝐾3
𝐸𝐸𝑖𝑖𝐴𝐴𝑞𝑞3

𝐸𝐸𝑖𝑖𝐴𝐴 − 𝐾𝐾4
𝐸𝐸𝑖𝑖𝑞𝑞4

𝐸𝐸𝑖𝑖 . 𝑞𝑞�𝑖𝑖𝐴𝐴�. (13) 

Conserva�on of the enzyme requires the constraint that  

 𝑞𝑞1
𝐸𝐸𝑜𝑜 + 𝑞𝑞2

𝐸𝐸𝑜𝑜𝐴𝐴 + 𝑞𝑞3
𝐸𝐸𝑖𝑖𝐴𝐴 + 𝑞𝑞4

𝐸𝐸𝑖𝑖 = 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡. (14) 

The flux balance equa�ons, with the flux terms from equa�ons 10..13 and the enzyme conserva�on 
equa�on 14, can be solved for the 6 molar quan��es (𝑞𝑞𝑜𝑜𝐴𝐴, 𝑞𝑞𝑖𝑖𝐴𝐴 and 𝑞𝑞1

𝐸𝐸𝑜𝑜 , 𝑞𝑞2
𝐸𝐸𝑜𝑜𝐴𝐴, 𝑞𝑞3

𝐸𝐸𝑖𝑖𝐴𝐴, 𝑞𝑞4
𝐸𝐸𝑖𝑖) subject to 

appropriate ini�al condi�ons, as illustrated below for specific experimental condi�ons. 

However, before we use experimental data to fit the 8 protein parameters (4 thermodynamic constants 
and 4 reac�on rates) of this full kine�c bond graph model, we consider the steady-state situa�on, 
which yields an analy�c expression for the flux as a func�on of the solute quan��es.   

Facilitated diffusion with steady-state flux and rapid binding and unbinding  

A high ra�o of substrate to enzyme (the Briggs-Haldane assump�on) implies steady-state condi�ons: 
 𝑣𝑣1 = 𝑣𝑣2 = 𝑣𝑣3 = 𝑣𝑣4 = 𝑣𝑣𝑚𝑚𝐴𝐴 = 𝑣𝑣 
 𝑞̇𝑞1 = 𝑞̇𝑞2 = 𝑞̇𝑞3 = 𝑞̇𝑞4 = 0    and    𝑞̇𝑞𝑜𝑜𝐴𝐴 = −𝑞̇𝑞𝑖𝑖𝐴𝐴 = −𝑣𝑣, 

(dropping the superscripts on the protein states).  

We also assume that the binding and unbinding rates for the solute molecule are much faster than the 
carrier state transi�on rates [13], in which case (𝜅𝜅3, 𝜅𝜅4 → ∞), the bracketed terms on the RHS of (4.1.3) 
and (4.1.4) must be zero, and therefore 

 𝐾𝐾1𝑞𝑞1. 𝑞𝑞�𝑜𝑜𝐴𝐴 = 𝐾𝐾2𝑞𝑞2,  or  𝑞𝑞2 = 𝐾𝐾1
𝐾𝐾2
𝑞𝑞1. 𝑞𝑞�𝑜𝑜𝐴𝐴, (15) 

 𝐾𝐾3𝑞𝑞3 = 𝐾𝐾4𝑞𝑞4. 𝑞𝑞�𝑖𝑖𝐴𝐴,  or  𝑞𝑞3 = 𝐾𝐾4
𝐾𝐾3
𝑞𝑞4. 𝑞𝑞�𝑖𝑖𝐴𝐴. (16) 

Subs�tu�ng 𝑞𝑞2 and 𝑞𝑞3 into the other two reac�ons, assuming steady-state with 𝑣𝑣1 = 𝑣𝑣2 = 𝑣𝑣, gives 

 𝑣𝑣 = 𝜅𝜅1(𝐾𝐾4𝑞𝑞4 − 𝐾𝐾1𝑞𝑞1), or  𝑞𝑞4 = 𝐾𝐾1
𝐾𝐾4
𝑞𝑞1 + 𝑣𝑣

𝜅𝜅1𝐾𝐾4
 (17) 

and   
 𝑣𝑣 = 𝜅𝜅2(𝐾𝐾2𝑞𝑞2 − 𝐾𝐾3𝑞𝑞3) = 𝜅𝜅2(𝐾𝐾1𝑞𝑞1. 𝑞𝑞�𝑜𝑜𝐴𝐴 − 𝐾𝐾4𝑞𝑞4. 𝑞𝑞�𝑖𝑖𝐴𝐴) = 𝜅𝜅2 �𝐾𝐾1𝑞𝑞1. 𝑞𝑞�𝑜𝑜𝐴𝐴 − 𝐾𝐾1𝑞𝑞1.𝑞𝑞�𝑖𝑖𝐴𝐴 −

𝑣𝑣
𝜅𝜅1
𝑞𝑞�𝑖𝑖𝐴𝐴� 

from which 

 𝑞𝑞1 = 𝑣𝑣 � 1
𝜅𝜅2

+ 𝑞𝑞�𝑖𝑖
𝐴𝐴

𝜅𝜅1
� /𝐾𝐾1(𝑞𝑞�𝑜𝑜𝐴𝐴 − 𝑞𝑞�𝑖𝑖𝐴𝐴). (18) 

Subs�tu�ng (15), (16), (17) into (14), gives  

 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑞𝑞1 + 𝑞𝑞2 + 𝑞𝑞3 + 𝑞𝑞4 = 𝑞𝑞1 �1 + 𝐾𝐾1
𝐾𝐾2
𝑞𝑞�𝑜𝑜𝐴𝐴� + 𝑞𝑞4 �1 + 𝐾𝐾4

𝐾𝐾3
𝑞𝑞�𝑖𝑖𝐴𝐴� = 𝑞𝑞1 �1 + 𝐾𝐾1

𝐾𝐾2
𝑞𝑞�𝑜𝑜𝐴𝐴 + 𝐾𝐾1

𝐾𝐾4
�1 + 𝐾𝐾4

𝐾𝐾3
𝑞𝑞�𝑖𝑖𝐴𝐴��+ 𝑣𝑣

𝜅𝜅1𝐾𝐾4
�1 + 𝐾𝐾4

𝐾𝐾3
𝑞𝑞�𝑖𝑖𝐴𝐴� 

with 𝑞𝑞1 given by (18). i.e., 

 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑣𝑣 � 1
𝜅𝜅2

+ 𝑞𝑞�𝑖𝑖
𝐴𝐴

𝜅𝜅1
� �1 + 𝐾𝐾1

𝐾𝐾2
𝑞𝑞�𝑜𝑜𝐴𝐴 + 𝐾𝐾1

𝐾𝐾4
�1 + 𝐾𝐾4

𝐾𝐾3
𝑞𝑞�𝑖𝑖𝐴𝐴�� /𝐾𝐾1(𝑞𝑞�𝑜𝑜𝐴𝐴 − 𝑞𝑞�𝑖𝑖𝐴𝐴) + 𝑣𝑣

𝜅𝜅1𝐾𝐾4
�1 + 𝐾𝐾4

𝐾𝐾3
𝑞𝑞�𝑖𝑖𝐴𝐴� 

or 
 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡�𝑞𝑞�𝑜𝑜

𝐴𝐴 − 𝑞𝑞�𝑖𝑖
𝐴𝐴� = 𝑣𝑣 �� 1

𝜅𝜅2
+ 𝑞𝑞�𝑖𝑖

𝐴𝐴

𝜅𝜅1
� � 1𝐾𝐾1

+ 1
𝐾𝐾2
𝑞𝑞�𝑜𝑜𝐴𝐴 + 1

𝐾𝐾4
�1 + 𝐾𝐾4

𝐾𝐾3
𝑞𝑞�𝑖𝑖𝐴𝐴��+ 1

𝜅𝜅1𝐾𝐾4
�1 + 𝐾𝐾4

𝐾𝐾3
𝑞𝑞�𝑖𝑖𝐴𝐴� �𝑞𝑞�𝑜𝑜

𝐴𝐴 − 𝑞𝑞�𝑖𝑖
𝐴𝐴��. 

Rearranging for 𝑣𝑣, 

 𝑣𝑣 = 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡(𝑞𝑞�𝑜𝑜𝐴𝐴 − 𝑞𝑞�𝑖𝑖𝐴𝐴)/ �� 1
𝜅𝜅2

+ 𝑞𝑞�𝑖𝑖
𝐴𝐴

𝜅𝜅1
� � 1

𝐾𝐾1
+ 1

𝐾𝐾4
+ 1

𝐾𝐾2
𝑞𝑞�𝑜𝑜𝐴𝐴 + 1

𝐾𝐾3
𝑞𝑞�𝑖𝑖𝐴𝐴� + 1

𝜅𝜅1
� 1
𝐾𝐾4

+ 1
𝐾𝐾3
𝑞𝑞�𝑖𝑖𝐴𝐴� (𝑞𝑞�𝑜𝑜𝐴𝐴 − 𝑞𝑞�𝑖𝑖𝐴𝐴)�. 
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Mul�plying numerator and denominator by 𝜅𝜅1𝐾𝐾3 

 𝑣𝑣 = 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝜅𝜅1𝐾𝐾3(𝑞𝑞�𝑜𝑜𝐴𝐴 − 𝑞𝑞�𝑖𝑖𝐴𝐴)/ ��𝜅𝜅1
𝜅𝜅2

+ 𝑞𝑞�𝑖𝑖𝐴𝐴� �
𝐾𝐾3

𝐾𝐾1
+ 𝐾𝐾3

𝐾𝐾4
+ 𝐾𝐾3

𝐾𝐾2
𝑞𝑞�𝑜𝑜
𝐴𝐴 + 𝑞𝑞�𝑖𝑖

𝐴𝐴� + �𝐾𝐾3

𝐾𝐾4
+ 𝑞𝑞�𝑖𝑖

𝐴𝐴� (𝑞𝑞�𝑜𝑜𝐴𝐴 − 𝑞𝑞�𝑖𝑖𝐴𝐴)� 
or, rearranging the denominator, 

 𝑣𝑣 = 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝜅𝜅1𝐾𝐾3(𝑞𝑞�𝑜𝑜𝐴𝐴 − 𝑞𝑞�𝑖𝑖𝐴𝐴)/ �𝜅𝜅1
𝜅𝜅2
�𝐾𝐾3

𝐾𝐾1
+ 𝐾𝐾3

𝐾𝐾4
� + �𝜅𝜅1

𝜅𝜅2

𝐾𝐾3

𝐾𝐾2
+ 𝐾𝐾3

𝐾𝐾4
� 𝑞𝑞�𝑜𝑜

𝐴𝐴 + �𝜅𝜅1
𝜅𝜅2

+ 𝐾𝐾3

𝐾𝐾1
� 𝑞𝑞�𝑖𝑖𝐴𝐴 + �1 + 𝐾𝐾3

𝐾𝐾2
� 𝑞𝑞�𝑜𝑜𝐴𝐴𝑞𝑞�𝑖𝑖𝐴𝐴� 

or 
 𝑣𝑣 = 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝜅𝜅2𝐾𝐾3(𝑞𝑞�𝑜𝑜𝐴𝐴 − 𝑞𝑞�𝑖𝑖𝐴𝐴)/ ��𝐾𝐾3

𝐾𝐾1
+ 𝐾𝐾3

𝐾𝐾4
� + �𝐾𝐾3

𝐾𝐾2
+ Λ𝐾𝐾3

𝐾𝐾4
� 𝑞𝑞�𝑜𝑜𝐴𝐴 + �1 + Λ𝐾𝐾3

𝐾𝐾1
� 𝑞𝑞�𝑖𝑖𝐴𝐴 + Λ �1 + 𝐾𝐾3

𝐾𝐾2
� 𝑞𝑞�𝑜𝑜𝐴𝐴𝑞𝑞�𝑖𝑖𝐴𝐴�, 

where Λ = 𝜅𝜅2

𝜅𝜅1
  is the forward to reverse ra�o of enzyme state transi�ons. 

It is convenient to express this rela�onship as  

  𝑣𝑣 = 𝑣𝑣𝑚𝑚(𝑞𝑞�𝑜𝑜𝐴𝐴 − 𝑞𝑞�𝑖𝑖𝐴𝐴)/ �1 + 𝑞𝑞�𝑜𝑜𝐴𝐴

𝑘𝑘𝑚𝑚1
+ 𝑞𝑞�𝑖𝑖

𝐴𝐴

𝑘𝑘𝑚𝑚2
+ 𝑞𝑞�𝑜𝑜𝐴𝐴𝑞𝑞�𝑖𝑖

𝐴𝐴

𝑘𝑘𝑚𝑚3
� (19) 

where 

 𝑘𝑘𝑚𝑚1 =
𝐾𝐾3
𝐾𝐾1
+𝐾𝐾3𝐾𝐾4

𝐾𝐾3
𝐾𝐾2
+Λ.𝐾𝐾3𝐾𝐾4

;  𝑘𝑘𝑚𝑚2 =
𝐾𝐾3
𝐾𝐾1
+𝐾𝐾3𝐾𝐾4

1+Λ.𝐾𝐾3𝐾𝐾1
; 𝑘𝑘𝑚𝑚3 =

�𝐾𝐾3𝐾𝐾1
+𝐾𝐾3𝐾𝐾4

�

Λ�1+𝐾𝐾3𝐾𝐾2
�
;  𝑣𝑣𝑚𝑚 = 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝜅𝜅2𝐾𝐾3

𝐾𝐾3
𝐾𝐾1
+𝐾𝐾3𝐾𝐾4

. (20) 

Note that 𝑘𝑘𝑚𝑚1 𝑣𝑣𝑚𝑚 is the maximum flux obtained as 𝑞𝑞�𝑜𝑜𝐴𝐴 → ∞ with 𝑞𝑞�𝑖𝑖𝐴𝐴 = 0, and  𝑘𝑘𝑚𝑚2 𝑣𝑣𝑚𝑚 is the maximum flux 
obtained as 𝑞𝑞�𝑖𝑖𝐴𝐴 → ∞ with 𝑞𝑞�𝑜𝑜𝐴𝐴 = 0, as shown in Figure 7. All the 𝑘𝑘𝑚𝑚

𝑗𝑗  (j=1.3) terms are dimensionless. 

     
 (a)   (b) 
Figure 7. (a) Inward flux as a func�on of 𝑞𝑞�𝑜𝑜𝐴𝐴 when 𝑞𝑞�𝑖𝑖𝐴𝐴 = 0; (b) Outward flux as a func�on of 𝑞𝑞�𝑖𝑖𝐴𝐴. when 𝑞𝑞�𝑜𝑜𝐴𝐴 = 0.  
Typical opera�ng ranges for 𝑞𝑞�𝑜𝑜𝐴𝐴 and 𝑞𝑞�𝑖𝑖𝐴𝐴 are shown by the shaded blocks. No�ce that a rela�vely low value for 𝑘𝑘𝑚𝑚1  
(compared with 𝑘𝑘𝑚𝑚2 ) ensures that the inward flux is rela�vely much higher than the outward flux. Removal of 𝑞𝑞�𝑖𝑖𝐴𝐴  
from the intracellular environment, due to its involvement in other reac�ons, also keeps 𝑞𝑞�𝑖𝑖𝐴𝐴 low.  

Fitting the bond graph model of facilitated diffusion to experimental observations  

The full kine�c model for facilitated diffusion is given by the 6 flux balance equa�ons, the 4 flux 
expressions (10 to 13) and the mass constraint equa�on 14. Here we use experimental kine�c data 
from the literature [13] to fit the 9 biophysical parameters (the 4 reac�on rate constants 𝜅𝜅1 to 𝜅𝜅4, the 
4 thermodynamic constants 𝐾𝐾1 to 𝐾𝐾4 and the total amount of enzyme 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡) in those equa�ons.  

The kine�c parameters from [13] for each reac�on in Figure 6(b) are listed in Table 2(a). The kine�c 
parameters of reac�ons 𝑅𝑅𝑅𝑅3 and 𝑅𝑅𝑅𝑅4, which are not given in [13], are set to arbitrarily large numbers 
to align with the fast binding assump�ons while applying the constraints (defined in [13]): 
𝑘𝑘3−

𝑘𝑘3
+ = 9.5 (mM) and 𝑘𝑘4

+

𝑘𝑘4−
= 12.8459 (mM). We applied the method introduced in [17] to convert the 

thermodynamically consistent kine�c parameters in Table 2(a) to the bond graph parameters in Table 
2(b). The detailed fi�ng process and parameters can be found in the accompanying Physiome paper 
[18]. We simulate the full bond graph model using the fited parameters and the steady-state 
predic�ons for the full kine�c model are shown in Figure 8 as black lines. 

Equa�on 19 gives the SS flux under the assump�on that binding and unbinding occur very rapidly in 
comparison with the transi�on rates for the carrier protein and that the enzyme is cycling at a constant 
rate. We also show here how the 4 parameters (𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑘𝑘𝑚𝑚1 , 𝑘𝑘𝑚𝑚2 , 𝑘𝑘𝑚𝑚3 ) in Equa�on 19 can be fited directly 

 𝑞𝑞�𝑜𝑜𝐴𝐴 

 𝑣𝑣 

𝑘𝑘𝑚𝑚1 𝑣𝑣𝑚𝑚 

𝑘𝑘𝑚𝑚1  
 𝑞𝑞�𝑖𝑖𝐴𝐴 

 −𝑣𝑣 
𝑘𝑘𝑚𝑚2 𝑣𝑣𝑚𝑚 

𝑘𝑘𝑚𝑚2  
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with steady-state flux data and that these values match the predic�ons (Equa�on 20) determined by 
the parameters fited to the full kine�c model.   

Steady-state flux experiments 

In their first experiment, Lowe and Walmsley [13] set the intracellular concentra�on to 0 (mM) and 
measured the inward flux of glucose for a varying range of extracellular glucose concentra�on. 

Note that the concentra�on of glucose carrier molecules in human red blood cells was observed to be 
6.67x10-3 mM [13]. 

Pu�ng 𝑞𝑞�𝑖𝑖𝐴𝐴 = 0 in Equa�on 19 with 

  𝑞𝑞�𝑜𝑜𝐴𝐴 = 𝐾𝐾𝑜𝑜𝐴𝐴𝑞𝑞𝑜𝑜𝐴𝐴 = 𝐾𝐾𝑜𝑜𝐴𝐴𝑉𝑉𝑜𝑜[𝐴𝐴]𝑜𝑜,  

where [𝐴𝐴]𝑜𝑜 (mM or mol.m-3) is the concentra�on of glucose, and 𝑉𝑉𝑜𝑜  (m3) is the volume of the 
extracellular compartment, gives the inward flux 𝑣𝑣𝑜𝑜𝑜𝑜  (‘oi’=outside→inside) as  

  𝑣𝑣𝑜𝑜𝑜𝑜 =
𝑣𝑣𝑚𝑚𝑘𝑘𝑚𝑚

1 𝑞𝑞�𝑜𝑜
𝐴𝐴

𝑘𝑘𝑚𝑚
1 +𝑞𝑞�𝑜𝑜

𝐴𝐴 = 𝑣𝑣𝑚𝑚𝑘𝑘𝑚𝑚
1 𝐾𝐾𝑜𝑜

𝐴𝐴𝑉𝑉𝑜𝑜[𝐴𝐴]𝑜𝑜
𝑘𝑘𝑚𝑚

1 +𝐾𝐾𝑜𝑜𝐴𝐴𝑉𝑉𝑜𝑜[𝐴𝐴]𝑜𝑜
= 𝑣𝑣𝑚𝑚𝑘𝑘𝑚𝑚

1 [𝐴𝐴]𝑜𝑜
𝑘𝑘𝑚𝑚

1

𝐾𝐾𝑜𝑜𝐴𝐴𝑉𝑉𝑜𝑜
+[𝐴𝐴]𝑜𝑜

,  

or  

 𝑣𝑣𝑜𝑜𝑜𝑜 = 𝑣𝑣𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 .
[𝐴𝐴]𝑜𝑜

𝑘𝑘𝑜𝑜𝑜𝑜+[𝐴𝐴]𝑜𝑜
  

where 𝑣𝑣𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑣𝑣𝑚𝑚𝑘𝑘𝑚𝑚1  (mM.s-1) is the maximum flux (as [𝐴𝐴]𝑜𝑜 → ∞), and 𝑘𝑘𝑜𝑜𝑜𝑜 = 𝑘𝑘𝑚𝑚1

𝐾𝐾𝑜𝑜𝐴𝐴𝑉𝑉𝑜𝑜
 (mM) is the 

concentra�on at which 𝑣𝑣𝑜𝑜𝑜𝑜 = 1
2
𝑣𝑣𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚. Note that specifying the parameter 𝑣𝑣𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 in units of mM.s-1, 

means that 𝑣𝑣𝑜𝑜𝑜𝑜  also has units of mM.s-1.  

The maximum flux observed experimentally in [13] is 𝑣𝑣𝑜𝑜𝑜𝑜𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0048 (mM.s-1) and the fited Michaelis 
constant is 𝑘𝑘𝑜𝑜𝑜𝑜 = 0.1094 (mM), so 

 𝑘𝑘𝑚𝑚1 = 𝐾𝐾𝑜𝑜𝐴𝐴𝑉𝑉𝑜𝑜 . 𝑘𝑘𝑜𝑜𝑜𝑜 = 1.4735 

using 𝑉𝑉𝑜𝑜 = 0.09 (𝑝𝑝𝑝𝑝)  and 𝐾𝐾𝑜𝑜𝐴𝐴 = 149.65 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1)  , (see [18], for details of fi�ng procedures). 

In their second experiment, Lowe and Walmsley [13] set the extracellular concentra�on to 0 (mM) and 
measured the outward flux of glucose 𝑣𝑣𝑖𝑖𝑖𝑖 at varying intracellular glucose concentra�on [𝐴𝐴]𝑖𝑖. 

Again, by comparing Equa�on 19 with the Michaelis-Menten graph of zero trans influx given by [13], 
𝑣𝑣𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑣𝑣𝑚𝑚𝑘𝑘𝑚𝑚2  (mM.s-1) (the maximum flux (as [𝐴𝐴]𝑖𝑖 → ∞), and 𝑘𝑘𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑚𝑚2

𝐾𝐾𝑖𝑖
𝐴𝐴𝑉𝑉𝑖𝑖

 (mM)  (the concentra�on at 

which 𝑣𝑣𝑖𝑖𝑖𝑖 = 1
2
𝑣𝑣𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ). This gives 𝑉𝑉𝑖𝑖 = 0.09 (𝑝𝑝𝑝𝑝)  , 𝐾𝐾𝑖𝑖𝐴𝐴 = 149.65 (𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−1) and 𝑘𝑘𝑖𝑖𝑖𝑖 = 1.609 (𝑚𝑚𝑚𝑚), and 

hence  

 𝑘𝑘𝑚𝑚2 = 𝐾𝐾𝑖𝑖𝐴𝐴𝑉𝑉𝑖𝑖 . 𝑘𝑘𝑖𝑖𝑖𝑖 = 21.671. 

The red dashed lines in Figure 8 show the predic�ons of the steady-state model (Equa�on 19) using 
these directly fited parameters.  

The parameter values found for the full bond graph model and the reduced steady-state model are 
given in Table 2(b) and (c), respec�vely. No�ce that 𝑘𝑘𝑚𝑚3 , which weights the product term in equa�on 
19, is an order of magnitude higher than the other two 𝑘𝑘𝑚𝑚 parameters and indicates that this term 
contributes very litle to the flux. 

  
Reaction Forward rate constant 𝑘𝑘𝑖𝑖+ Reverse rate constant 𝑘𝑘𝑖𝑖− Ref 
𝑅𝑅𝑅𝑅1 0.726 𝑠𝑠−1 12.1 𝑠𝑠−1 [13]  
𝑅𝑅𝑅𝑅2 1113 𝑠𝑠−1 90.3 𝑠𝑠−1 [13]  
𝑅𝑅𝑅𝑅3 4.5e7 𝑚𝑚𝑚𝑚−1𝑠𝑠−1 4.5e7×9.5 𝑠𝑠−1 Not given in [13]  
𝑅𝑅𝑅𝑅4 2.7e5×12.8459 𝑠𝑠−1 2.7e5 𝑚𝑚𝑚𝑚−1𝑠𝑠−1 Not given in [13]  

(a) 
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Parameters Value Unit 
𝐾𝐾𝑖𝑖𝐴𝐴 149.65 fmol-1 

𝐾𝐾𝑜𝑜𝐴𝐴 149.65 fmol-1 
𝐾𝐾1 33.20 fmol-1 
𝐾𝐾2 4.25e3 fmol-1 
𝐾𝐾3 344.59 fmol-1 
𝐾𝐾4 1.99 fmol-1 
𝜅𝜅1 0.36 fmol.s-1 
𝜅𝜅2 0.26 fmol.s-1 
𝜅𝜅3 1.01e5 fmol.s-1 
𝜅𝜅4 1.01e4 fmol.s-1 

 

 
Parameters Value Unit 

𝑣𝑣𝑚𝑚 0.003284 fmol.s-1 

𝑘𝑘𝑚𝑚1  1.4735 dimensionless 
𝑘𝑘𝑚𝑚2  21.671 dimensionless 
𝑘𝑘𝑚𝑚3  235.07 dimensionless 

 

 
  (b)  (c) 
Table 2 (a) The biophysical parameters for the full bond graph model of SLC2A2, and (b) the empirical parameters 
of the reduced steady-state model given by Equa�on 19 derived from the bond graph model. 

The magenta lines in Figure 8 show the steady-state model predic�ons using the empirical parameters 
defined in Equa�on 20 using the physical parameters that are listed in Table 2(b):  

  Λ = 𝜅𝜅2

𝜅𝜅1
= 0.7222;   𝑣𝑣𝑚𝑚 = 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝜅𝜅2𝐾𝐾3

𝐾𝐾3
𝐾𝐾1
+𝐾𝐾3𝐾𝐾4

= 0.003256  ;   (where 𝐾𝐾3
𝐾𝐾1

+ 𝐾𝐾3
𝐾𝐾4

= 183.54) 

   𝑘𝑘𝑚𝑚1 =
𝐾𝐾3
𝐾𝐾1
+𝐾𝐾3𝐾𝐾4

𝐾𝐾3
𝐾𝐾2
+Λ.𝐾𝐾3𝐾𝐾4

= 1.4667,   𝑘𝑘𝑚𝑚2 =
𝐾𝐾3
𝐾𝐾1
+𝐾𝐾3𝐾𝐾4

1+Λ.𝐾𝐾3𝐾𝐾1
= 21.603;  and 𝑘𝑘𝑚𝑚3 =

�𝐾𝐾3𝐾𝐾1
+𝐾𝐾3𝐾𝐾4

�

Λ�1+𝐾𝐾3𝐾𝐾2
�

=235.08 

Note how closely these match the fited empirical parameters listed in Table 2(c).  

From Figure 8, we can see that both the steady-state predic�on by the full bond graph model and the 
steady-state Equa�on 19 derived from the bond graph model can accurately reproduce the influxes 
and effluxes from the data of [13].  

 
Figure 8. (a) Inward flux as a func�on of [𝐴𝐴]𝑜𝑜 when [𝐴𝐴]𝑖𝑖  = 0, and (b) outward flux as a func�on of [𝐴𝐴]𝑖𝑖  when 
[𝐴𝐴]𝑜𝑜 = 0.  Note that in order to compare with the kine�c data in Low AG & Walmsley AR (1986) [13], the molar 
amount of glucose in the bond graph model was converted to glucose concentra�ons. The inward flux in Low AG 
& Walmsley AR (1986) was computed using 𝑉𝑉𝑜𝑜𝑜𝑜𝑧𝑧𝑧𝑧 = [𝐶𝐶]

( 1
𝑘𝑘2
++

1
𝑘𝑘1
+)

 , while the outward flux was calculated by 𝑉𝑉𝑖𝑖𝑖𝑖𝑧𝑧𝑧𝑧 =

[𝐶𝐶]

( 1
𝑘𝑘2
−+

1
𝑘𝑘1
−)

, [𝑐𝑐] = 6.67(𝜇𝜇𝜇𝜇). The informa�on needed to reproduce these results can be found in [18]. 

Sodium-glucose cotransport with SLC5A1 (SGLT1) 

The six-state energe�c kine�c model of sodium-glucose cotransporter SLC5A1 (SGLT1) was proposed 
by Parent et al. [19] to account for most experimental observa�ons [20, 21, 22]. A simplified 
electroneutral bond graph descrip�on of the SGLT1 model has been presented in [23], while the 
electrogenic version is available in [24] with different parameters and bond graph formula�ons. Here, 
we use this widely adopted example with the original kine�c parameters in [19] to show how the 
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proposed modelling pipeline can handle mul�ple physical domains (electrical and chemical) in a 
unified framework. 

The SGLT1 (SLC5A1) sodium-driven transport of glucose is shown in Figure 9. The equa�ons from the 
bond graph diagram and the calcula�on of the steady-state flux are given below. 

  

Figure 9. The modelling pipeline for SLC5A1. Note the addi�on of the links with the transmembrane poten�al in 
this electrogenic reac�on, and the use of the blue symbol showing the number of moles of 𝑁𝑁𝑁𝑁+ entering or 
exi�ng the reac�on, per mole of reac�on flux 𝑣𝑣𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆1 crossing the membrane.  The reduced (steady-state) form 
of the model is shown on the right. 

The flux balance equa�ons associated with the 0-nodes are:  

(𝑢𝑢𝑜𝑜𝑁𝑁𝑁𝑁
+

) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁

+ = −2𝑣𝑣1; (𝑢𝑢𝑖𝑖𝑁𝑁𝑁𝑁
+

) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑞𝑞𝑖𝑖𝑁𝑁𝑁𝑁

+ = 2𝑣𝑣5; (𝑢𝑢𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑞𝑞𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 = −𝑣𝑣2; (𝑢𝑢𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑣𝑣4; 

(𝑢𝑢1) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑞𝑞1 = 𝑣𝑣6 − 𝑣𝑣1; (𝑢𝑢2) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞2 = 𝑣𝑣1 − 𝑣𝑣2 − 𝑣𝑣7; (𝑢𝑢3) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞3 = 𝑣𝑣2 − 𝑣𝑣3;  

(𝑢𝑢4) 𝑑𝑑
𝑑𝑑𝑑𝑑
𝑞𝑞4 = 𝑣𝑣3 − 𝑣𝑣4; (𝑢𝑢5) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞5 = 𝑣𝑣4 + 𝑣𝑣7 − 𝑣𝑣5; (𝑢𝑢6) 𝑑𝑑

𝑑𝑑𝑑𝑑
𝑞𝑞6 = 𝑣𝑣5 − 𝑣𝑣6. 

These differen�al equa�ons provide the flux balance at the ten 0:nodes indicated in Figure 9 by the 
red-encircled storage quan��es.  

The energy balance equa�ons associated with the 1-nodes are: 
(𝑣𝑣1) 𝑢𝑢𝑅𝑅1

𝑓𝑓 = 𝑢𝑢1 + 2𝑢𝑢𝑜𝑜𝑁𝑁𝑁𝑁
+ − 𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 ;  𝑢𝑢𝑅𝑅1𝑟𝑟 = 𝑢𝑢2 + 𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 ; (𝑣𝑣2) 𝑢𝑢𝑅𝑅2

𝑓𝑓 = 𝑢𝑢2 + 𝑢𝑢𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 ; 𝑢𝑢𝑅𝑅2𝑟𝑟 = 𝑢𝑢3; 

(𝑣𝑣3) 𝑢𝑢𝑅𝑅3
𝑓𝑓 = 𝑢𝑢3;  𝑢𝑢𝑅𝑅3𝑟𝑟 = 𝑢𝑢4; (𝑣𝑣4) 𝑢𝑢𝑅𝑅4

𝑓𝑓 = 𝑢𝑢4; 𝑢𝑢𝑅𝑅4𝑟𝑟 = 𝑢𝑢5 + 𝑢𝑢𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 ; 

(𝑣𝑣5) 𝑢𝑢𝑅𝑅5
𝑓𝑓 = 𝑢𝑢5;  𝑢𝑢𝑅𝑅5𝑟𝑟 = 𝑢𝑢6 + 2𝑢𝑢𝑖𝑖𝑁𝑁𝑁𝑁

+
; (𝑣𝑣6) 𝑢𝑢𝑅𝑅6

𝑓𝑓 = 𝑢𝑢6 − 𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 ; 𝑢𝑢𝑅𝑅6𝑟𝑟 = 𝑢𝑢1 + 𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 ; 

(𝑣𝑣7) 𝑢𝑢𝑅𝑅7
𝑓𝑓 = 𝑢𝑢2;  𝑢𝑢𝑅𝑅7𝑟𝑟 = 𝑢𝑢5. 

These algebraic stoichiometry equa�ons provide energy balance for the seven fluxes shown by the 𝑣𝑣𝑖𝑖  
terms in Figure 9. Note that charge transfer is also modeled.  

The seven reac�ons in Figure 9 give rise to the following fluxes:  

(𝑅𝑅𝑅𝑅1) 𝑣𝑣1 = 𝜅𝜅1 �𝑒𝑒𝑢𝑢𝑅𝑅1
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅1

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅1 �𝐾𝐾1𝑞𝑞1. �𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
. 𝑒𝑒−𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 − 𝐾𝐾2𝑞𝑞2. 𝑒𝑒𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅�, (21) 

(𝑅𝑅𝑅𝑅2) 𝑣𝑣2 = 𝜅𝜅2 �𝑒𝑒𝑢𝑢𝑅𝑅2
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅2

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅2(𝐾𝐾2𝑞𝑞2. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 − 𝐾𝐾3𝑞𝑞3),  (22) 

(𝑅𝑅𝑅𝑅3) 𝑣𝑣3 = 𝜅𝜅3 �𝑒𝑒𝑢𝑢𝑅𝑅3
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅3

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅3(𝐾𝐾3𝑞𝑞3 − 𝐾𝐾4𝑞𝑞4),  (23) 

(𝑅𝑅𝑅𝑅4) 𝑣𝑣4 = 𝜅𝜅4 �𝑒𝑒𝑢𝑢𝑅𝑅4
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅4

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅4�𝐾𝐾4𝑞𝑞4 − 𝐾𝐾5𝑞𝑞5. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺�, (24) 

(𝑅𝑅𝑅𝑅5) 𝑣𝑣5 = 𝜅𝜅5 �𝑒𝑒𝑢𝑢𝑅𝑅5
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅5

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅5 �𝐾𝐾5𝑞𝑞5 − 𝐾𝐾6𝑞𝑞6. �𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁
+�

2
�, (25) 

(𝑅𝑅𝑅𝑅6) 𝑣𝑣6 = 𝜅𝜅6 �𝑒𝑒𝑢𝑢𝑅𝑅6
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅6

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅6�𝐾𝐾6𝑞𝑞6. 𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 − 𝐾𝐾1𝑞𝑞1. 𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅�, (26) 

(𝑅𝑅𝑅𝑅7) 𝑣𝑣7 = 𝜅𝜅7 �𝑒𝑒𝑢𝑢𝑅𝑅7
𝑓𝑓 𝑅𝑅𝑅𝑅� − 𝑒𝑒𝑢𝑢𝑅𝑅7

𝑟𝑟 𝑅𝑅𝑅𝑅⁄ � = 𝜅𝜅7(𝐾𝐾2𝑞𝑞2 − 𝐾𝐾5𝑞𝑞5). (27) 
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These equa�ons are supplemented with the constraint on the total amount of protein (𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡): 

 𝑞𝑞1 + 𝑞𝑞2 + 𝑞𝑞3 + 𝑞𝑞4 + 𝑞𝑞5 + 𝑞𝑞6 = 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡. (28) 

By summing up poten�als, the overall affinity of the transporter cycle is 

 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �𝑢𝑢𝑅𝑅1
𝑓𝑓 − 𝑢𝑢𝑅𝑅1𝑟𝑟 � + �𝑢𝑢𝑅𝑅2

𝑓𝑓 − 𝑢𝑢𝑅𝑅2𝑟𝑟 � + �𝑢𝑢𝑅𝑅3
𝑓𝑓 − 𝑢𝑢𝑅𝑅3𝑟𝑟 � + �𝑢𝑢𝑅𝑅4

𝑓𝑓 − 𝑢𝑢𝑅𝑅4𝑟𝑟 � + �𝑢𝑢𝑅𝑅5
𝑓𝑓 − 𝑢𝑢𝑅𝑅5𝑟𝑟 � + �𝑢𝑢𝑅𝑅6

𝑓𝑓 − 𝑢𝑢𝑅𝑅6𝑟𝑟 � + �𝑢𝑢𝑅𝑅7
𝑓𝑓 − 𝑢𝑢𝑅𝑅7𝑟𝑟 � 

 = 2𝑢𝑢𝑜𝑜𝑁𝑁𝑁𝑁
+ − 2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 + 𝑢𝑢𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑢𝑢𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 − 2𝑢𝑢𝑖𝑖𝑁𝑁𝑁𝑁

+
− 2𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 + 𝑢𝑢2 − 𝑢𝑢5 

   = 2 �𝑢𝑢𝑜𝑜𝑁𝑁𝑁𝑁
+
− 𝑢𝑢𝑖𝑖𝑁𝑁𝑁𝑁

+
������������

sodium transport

+ �𝑢𝑢𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑢𝑢𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺����������
glucose transport

+ (𝑢𝑢2 − 𝑢𝑢5)�������
slippage

− 2(𝑧𝑧1 + 𝑧𝑧2)𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒�����������
charge transport

 

Reac�on 7 represents the possibility for the transporter to transi�on from outward facing to inward 
facing without binding glucose (called ‘slippage’). Since the transporter cycle moves 2 units of charge 
into the cell per cycle, 𝑧𝑧1 + 𝑧𝑧2 = 1, and (ignoring slippage) 

 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2𝑅𝑅𝑅𝑅 ln �𝐾𝐾𝑜𝑜
𝑁𝑁𝑁𝑁+𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁

+

𝐾𝐾𝑖𝑖
𝑁𝑁𝑁𝑁+𝑞𝑞𝑖𝑖

𝑁𝑁𝑁𝑁+� + 𝑅𝑅𝑅𝑅 ln �𝐾𝐾𝑜𝑜
𝐺𝐺𝐺𝐺𝐺𝐺𝑞𝑞𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺

𝐾𝐾𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺𝑞𝑞𝑖𝑖

𝐺𝐺𝐺𝐺𝐺𝐺� − 2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒  

At equilibrium, 𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 0 and the transporter stalls. The reversal poten�al is the membrane poten�al  

 𝑢𝑢𝑚𝑚𝑒𝑒 = 𝑅𝑅𝑅𝑅

2𝐹𝐹
𝑙𝑙𝑙𝑙 ��𝐾𝐾𝑜𝑜

𝑁𝑁𝑁𝑁+
𝑞𝑞𝑜𝑜
𝑁𝑁𝑁𝑁+

𝐾𝐾𝑖𝑖𝑁𝑁𝑁𝑁
+
𝑞𝑞𝑖𝑖
𝑁𝑁𝑁𝑁+�

2

.
𝐾𝐾𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺𝑞𝑞𝑜𝑜

𝐺𝐺𝐺𝐺𝐺𝐺

𝐾𝐾𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺𝑞𝑞𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺�. 

Solving the 10 flux balance equa�ons using the fluxes from the 7 reac�ons (Equa�on 21 to Equa�on 
27), together with the enzyme mass constraint (Equa�on 28) and specified values for 𝑞𝑞𝑜𝑜𝑁𝑁𝑁𝑁

+, 𝑞𝑞𝑖𝑖𝑁𝑁𝑁𝑁
+, 𝑞𝑞𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺, 

and 𝑞𝑞𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺  gives 7 equa�ons in the 7 variables 𝑞𝑞1 to 𝑞𝑞6 and 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡. These equa�ons include 14 biophysical 
parameters (the 6 thermodynamic parameters 𝐾𝐾1 to 𝐾𝐾6, the 7 reac�on rate parameters 𝜅𝜅1 to 𝜅𝜅7, and 
the total amount of enzyme 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡). These parameters are fited to experimental data from Parent et al. 
[19] below.   

Sodium-glucose cotransport with steady-state flux and rapid binding and unbinding 
To derive an analy�c formula for the steady-state behaviour of the transporter, we make the usual two 
assump�ons: (i) that the substrates are present in much higher quan��es than the membrane-bound 
transporter (the Briggs-Haldane assump�on), and that the cycle is therefore transi�oning through the 
6 states at a constant steady-state rate 𝑣𝑣, and (ii) that the binding and unbinding reac�ons (1, 2, 4 and 
5) are much faster than the state transi�ons between inward- and outward-facing states of the protein. 
We make the further assump�on that slippage can be ignored (𝑣𝑣7 = 0).     

From the first of these, 
 𝑣𝑣1 = 𝑣𝑣2 = 𝑣𝑣3 = 𝑣𝑣4 = 𝑣𝑣5 = 𝑣𝑣6 = 𝑣𝑣, (29) 

and from the second,  

 𝐾𝐾1𝑞𝑞1. �𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
= 𝐾𝐾2𝑞𝑞2. 𝑒𝑒2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 (30) 

 𝐾𝐾2𝑞𝑞2. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐾𝐾3𝑞𝑞3 (31) 

 𝐾𝐾4𝑞𝑞4 = 𝐾𝐾5𝑞𝑞5. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺  (32) 

 𝐾𝐾5𝑞𝑞5 = 𝐾𝐾6𝑞𝑞6. �𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁
+�

2
, (33) 

leaving 𝑣𝑣3 = 𝑣𝑣6 = 𝑣𝑣, or 

 𝑣𝑣 = 𝜅𝜅3(𝐾𝐾3𝑞𝑞3 − 𝐾𝐾4𝑞𝑞4) = 𝜅𝜅6�𝐾𝐾6𝑞𝑞6. 𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 − 𝐾𝐾1𝑞𝑞1. 𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅�. (34) 

The 6 protein states 𝑞𝑞1.. 𝑞𝑞6 can be eliminated from equa�ons 30 to 34 and 28, to yield an expression 
for the flux 𝑣𝑣 in terms of the 4 solutes 𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+ , 𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁
+ , 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺  and 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 . 

From 30 and 31, 
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 𝑞𝑞2 = 𝐾𝐾1
𝐾𝐾2
𝑞𝑞1. �𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+�
2

. 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅  

 𝑞𝑞3 = 𝐾𝐾2
𝐾𝐾3
𝑞𝑞2. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐾𝐾1

𝐾𝐾3
𝑞𝑞1. �𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+�
2

. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺. 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅  

From 32 and 33, 

 𝑞𝑞4 = 𝐾𝐾5
𝐾𝐾4
𝑞𝑞5. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺  

 𝑞𝑞6 = 𝐾𝐾5
𝐾𝐾6
𝑞𝑞5. �𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
−2

  

Subs�tu�ng the last 3 equa�ons into the second equa�on of 34, 

 𝐾𝐾1𝑞𝑞1. �𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 − 𝐾𝐾5𝑞𝑞5. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 = 𝜅𝜅6

𝜅𝜅3
𝐾𝐾5𝑞𝑞5. �𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
−2

. 𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 − 𝜅𝜅6
𝜅𝜅3
𝐾𝐾1𝑞𝑞1.𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅  

which gives  

 𝑞𝑞5 = 𝑞𝑞1 �𝐾𝐾1�𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + 𝜅𝜅6

𝜅𝜅3
𝐾𝐾1. 𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� / �𝐾𝐾5𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜅𝜅6

𝜅𝜅3
𝐾𝐾5�𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
−2

. 𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� 

or 
 𝑞𝑞5 = 𝐾𝐾1

𝐾𝐾5
𝑞𝑞1 ��𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+�
2

. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + 𝜅𝜅6
𝜅𝜅3

. 𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� / �𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜅𝜅6
𝜅𝜅3
�𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
−2

. 𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� (35) 

Subs�tu�ng for 𝑞𝑞2.. 𝑞𝑞6 in terms of 𝑞𝑞1in Equation 28, gives  

 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡 = �1 + 𝐾𝐾1
𝐾𝐾2
�𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+�
2

. 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + 𝐾𝐾1
𝐾𝐾3
�𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+�
2

. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� 𝑞𝑞1 + �𝐾𝐾5
𝐾𝐾4

.𝑞𝑞�𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺 + 1 + 𝐾𝐾5

𝐾𝐾6
. �𝑞𝑞�𝑖𝑖

𝑁𝑁𝑁𝑁+
�
−2
� 𝑞𝑞5 

or, using 𝑞𝑞5 given in terms of 𝑞𝑞1 by Equa�on 35:  

 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡
𝑞𝑞1
�𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜅𝜅6

𝜅𝜅3
�𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
−2

. 𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� = �1 + 𝐾𝐾1
𝐾𝐾2
�𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+�
2
. 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + 𝐾𝐾1

𝐾𝐾3
�𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+�
2
.𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� �𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜅𝜅6

𝜅𝜅3
�𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
−2

. 𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� 

 + �𝐾𝐾5
𝐾𝐾4

. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 + 1 + 𝐾𝐾5
𝐾𝐾6

. �𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁
+�

−2
� 𝐾𝐾1
𝐾𝐾5
��𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+�
2

.𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + 𝜅𝜅6
𝜅𝜅3

. 𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� 

or 
 𝑞𝑞1

�𝑞𝑞�𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺+𝜅𝜅6𝜅𝜅3

�𝑞𝑞�𝑖𝑖
𝑁𝑁𝑁𝑁+�

−2
.𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚

𝑒𝑒 /𝑅𝑅𝑅𝑅�
= 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡/𝐴𝐴  (36) 

where 

 𝐴𝐴 = �1 + 𝐾𝐾1
𝐾𝐾2
�𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+�
2

. 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + 𝐾𝐾1
𝐾𝐾3
�𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+�
2

. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� �𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜅𝜅6
𝜅𝜅3
�𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
−2

. 𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� 

 + �𝐾𝐾1
𝐾𝐾4

. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐾𝐾1
𝐾𝐾5

+ 𝐾𝐾1
𝐾𝐾6
�𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
−2
� ��𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+�
2

. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + 𝜅𝜅6
𝜅𝜅3

. 𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅�.  

From the first equa�on in (34),  

 𝑣𝑣 = 𝜅𝜅3(𝐾𝐾3𝑞𝑞3 − 𝐾𝐾4𝑞𝑞4) = �𝜅𝜅3𝐾𝐾1�𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺. 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� 𝑞𝑞1 − �𝜅𝜅3𝐾𝐾5. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺�𝑞𝑞5 

or 

 𝑣𝑣 = ��𝜅𝜅3𝐾𝐾1�𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
.𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� �𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜅𝜅6

𝜅𝜅3
�𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
−2

. 𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� − [𝜅𝜅3𝐾𝐾1.𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺] ��𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
.𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + 𝜅𝜅6

𝜅𝜅3
. 𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅�� 

 x 𝑞𝑞1

�𝑞𝑞�𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺+𝜅𝜅6𝜅𝜅3

�𝑞𝑞�𝑖𝑖
𝑁𝑁𝑁𝑁+�

−2
.𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅�

 

or 

 𝑣𝑣 = 𝜅𝜅3𝐾𝐾1 ���𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 � �𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜅𝜅6

𝜅𝜅3
�𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
−2

. 𝑒𝑒
−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒

𝑅𝑅𝑅𝑅 � − �𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺� ��𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−

2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒

𝑅𝑅𝑅𝑅 + 𝜅𝜅6
𝜅𝜅3

. 𝑒𝑒
𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒

𝑅𝑅𝑅𝑅 �� 

 x 𝑞𝑞1

�𝑞𝑞�𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺+𝜅𝜅6𝜅𝜅3

�𝑞𝑞�𝑖𝑖
𝑁𝑁𝑁𝑁+�

−2
.𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅�

 

or 

 𝑣𝑣 = 𝜅𝜅6𝐾𝐾1 ��𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
.𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 . �𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
−2

. 𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 − 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� 𝑞𝑞1

�𝑞𝑞�𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺+𝜅𝜅6𝜅𝜅3

�𝑞𝑞�𝑖𝑖
𝑁𝑁𝑁𝑁+�

−2
..𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚/𝑅𝑅𝑅𝑅

𝑒𝑒
�
 

or, now subs�tu�ng for 𝑞𝑞1 from Equa�on 36, 
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 𝑣𝑣 = 𝜅𝜅6𝐾𝐾1 ��𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺. 𝑒𝑒−(2𝑧𝑧1+𝑧𝑧2)𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 . �𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
−2
− 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡/𝐴𝐴 

or, mul�plying numerator and denominator by �𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁
+�

2
𝑒𝑒(2𝑧𝑧1+𝑧𝑧2)𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅  

 𝑣𝑣 = 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝜅𝜅6𝐾𝐾1 ��𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 − �𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
2

. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒2(𝑧𝑧1+𝑧𝑧2)𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� /𝐵𝐵 
where 

 𝐵𝐵 = �1 + �𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
�𝐾𝐾1
𝐾𝐾2
𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + 𝐾𝐾1

𝐾𝐾3
. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅�� ��𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
2

. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜅𝜅6
𝜅𝜅3
𝑒𝑒−𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� . 𝑒𝑒(2𝑧𝑧1+𝑧𝑧2)𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅  

 + ��𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁
+�

2
�𝐾𝐾1
𝐾𝐾4

.𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐾𝐾1
𝐾𝐾5
� + 𝐾𝐾1

𝐾𝐾6
� ��𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁

+�
2

. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒−2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + 𝜅𝜅6
𝜅𝜅3
𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� . 𝑒𝑒(2𝑧𝑧1+𝑧𝑧2)𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅  

where 𝑧𝑧1 + 𝑧𝑧2 = 1. 

Hence 

 𝑣𝑣 = 𝑞𝑞𝑡𝑡𝑡𝑡𝑡𝑡𝜅𝜅6𝐾𝐾1 ��𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 − �𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
2

. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅� /𝐵𝐵 (37) 

 𝐵𝐵 = �𝑒𝑒2𝑧𝑧1𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + �𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
�𝐾𝐾1
𝐾𝐾2

+ 𝐾𝐾1
𝐾𝐾3

. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺�� ��𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁
+�

2
. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + 𝜅𝜅6

𝜅𝜅3
�  

  + �𝐾𝐾1
𝐾𝐾6

+ �𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁
+�

2
�𝐾𝐾1
𝐾𝐾5

+ 𝐾𝐾1
𝐾𝐾4

. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺�� ��𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒𝑧𝑧2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅 + 𝜅𝜅6

𝜅𝜅3
𝑒𝑒2𝐹𝐹𝑢𝑢𝑚𝑚𝑒𝑒 /𝑅𝑅𝑅𝑅�. (38) 

Note that the flux is zero when  

 �𝑞𝑞�𝑜𝑜𝑁𝑁𝑁𝑁
+�

2
. 𝑞𝑞�𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺 = �𝑞𝑞�𝑖𝑖𝑁𝑁𝑁𝑁

+�
2

. 𝑞𝑞�𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺 . 𝑒𝑒
2𝐹𝐹𝑢𝑢𝑚𝑚

𝑒𝑒

𝑅𝑅𝑅𝑅 . 

i.e. the equilibrium poten�al is, as above,  

  𝑢𝑢𝑚𝑚𝑒𝑒 = 𝑅𝑅𝑅𝑅
2𝐹𝐹
𝑙𝑙𝑙𝑙 ��𝑞𝑞�𝑜𝑜

𝑁𝑁𝑁𝑁+

𝑞𝑞�𝑖𝑖
𝑁𝑁𝑁𝑁+�

2

. 𝑞𝑞�𝑜𝑜
𝐺𝐺𝐺𝐺𝐺𝐺

𝑞𝑞�𝑖𝑖
𝐺𝐺𝐺𝐺𝐺𝐺�. 

In Figure 10 the current-voltage (I-V) rela�onship for the full kine�c bond graph model (run to steady 
state), and the reduced steady-state flux model given by equa�ons 37 and 38, are compared using 
biophysical parameters fited to experimental data from Parent et al. [19] (see below) but with 𝜅𝜅1, 𝜅𝜅2, 
𝜅𝜅4 and 𝜅𝜅5 set to arbitrarily high values to reflect the fast binding and unbinding assump�on. This result 
confirms that the assump�on of no slippage is valid for the range of poten�als shown (the slight 
discrepancy at the lower voltages is due to this small slippage flux). 

    
Figure 10. The steady-state results predicted by the full bond graph model, compared with the results from the 
reduced steady-state model. Both simula�ons use the assump�on of fast binding and unbinding. The informa�on 
needed to reproduce these results can be found in [18]. 
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Fitting the bond graph model of sodium-glucose cotransport to experimental observations  

The kine�c parameters [19] of each reac�on in Figure 9(b) are listed in Table 3(a). The reverse rate 
constant 𝑘𝑘4− of reac�on 𝑅𝑅𝑅𝑅4 and 𝑘𝑘7− of reac�on 𝑅𝑅𝑅𝑅7 are calculated by the detailed balance equa�ons: 

 𝑘𝑘7− = 𝑘𝑘1+𝑘𝑘5
+𝑘𝑘6+𝑘𝑘7+

𝑘𝑘1−𝑘𝑘5−𝑘𝑘6−
 , 𝑘𝑘4− = 𝑘𝑘2+𝑘𝑘3+𝑘𝑘4+𝑘𝑘7−

𝑘𝑘2−𝑘𝑘3−𝑘𝑘7
+ . 

Similarly, we applied the method introduced in [17] to convert the thermodynamically consistent 
kine�c parameters in Table 3(a) to the bond graph parameters in Table 3(b) and Table 3(c).  

 
Reaction Forward rate constant 𝑘𝑘𝑖𝑖+ Reverse rate constant 𝑘𝑘𝑖𝑖− Ref 
𝑅𝑅𝑅𝑅1 80000 𝑀𝑀−2𝑠𝑠−1 500 𝑠𝑠−1 [19] 
𝑅𝑅𝑅𝑅2 1e5 𝑀𝑀−1𝑠𝑠−1 20 𝑠𝑠−1 [19] 
𝑅𝑅𝑅𝑅3 50 𝑠𝑠−1 50  𝑠𝑠−1 [19] 

𝑅𝑅𝑅𝑅4 800 𝑠𝑠−1 1.8285e7 𝑀𝑀−1𝑠𝑠−1 (1.0971e7 𝑀𝑀−1𝑠𝑠−1) 𝑘𝑘4− is calculated by the 
detailed balance 

𝑅𝑅𝑅𝑅5 10  𝑠𝑠−1 50 𝑀𝑀−2𝑠𝑠−1 [19] 
𝑅𝑅𝑅𝑅6 5 𝑠𝑠−1  ( 3 𝑠𝑠−1) 35 𝑠𝑠−1 [19] 

𝑅𝑅𝑅𝑅7 0.3 𝑠𝑠−1 1.371 𝑠𝑠−1  (0.823 𝑠𝑠−1) 𝑘𝑘7− is calculated by the 
detailed balance 

(a) 

 
Parameters Value Unit 

𝐾𝐾𝑖𝑖𝑁𝑁𝑁𝑁 3.22e-8 fmol-1 

𝐾𝐾𝑜𝑜𝑁𝑁𝑁𝑁 3.22e-8 fmol-1 
𝐾𝐾𝑖𝑖𝐺𝐺𝐺𝐺𝐺𝐺  4.85e-6 fmol-1 
𝐾𝐾𝑜𝑜𝐺𝐺𝐺𝐺𝐺𝐺  4.85e-6 fmol-1 
𝐾𝐾1 2.235 fmol-1 
𝐾𝐾2 10.44 fmol-1 
𝐾𝐾3 8.602 fmol-1 
𝐾𝐾4 8.602 fmol-1 
𝐾𝐾5 47.71 (28.63) fmol-1 
𝐾𝐾6 0.319 (0.192) fmol-1 

 
Parameters Value Unit 

𝜅𝜅1 47.91 fmol.s-1 
𝜅𝜅2 2.325 fmol.s-1 
𝜅𝜅3 5.812 fmol.s-1 
𝜅𝜅4 93 fmol.s-1 
𝜅𝜅5 0.21 (0.349) fmol.s-1 
𝜅𝜅6 15.66 fmol.s-1 
𝜅𝜅7 0.029 fmol.s-1 

 
 (b)  (c) 

Table 3 (a) The thermodynamic parameters and (b) reac�on rate constants for the bond graph model of SLC5A1 
shown in Figure 9. Note the very small rate constant (𝜅𝜅7) for slippage. The kine�c parameter 𝑘𝑘6+ = 3 𝑠𝑠−1 was 
used in the steady-state plot in [19]. This value and the corresponding bond graph parameters are in brackets (). 

Figure 11 shows the results of fi�ng the 14 biophysical parameters of the full bond graph model to 
transient electrical current measurements by Parent et al. [19] at clamped membrane voltages of 
50mV and -150mV. Figure 11(a) shows the experimental results and model predic�ons for the case 
when the external glucose level is set to zero, and Figure 11(b) shows the measured results and model 
predic�ons for the case when the external glucose level is set to 1mM.  
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Figure 11. The �me course of the carrier-mediated currents. (a) The electrical current when [𝐺𝐺𝐺𝐺𝐺𝐺]𝑜𝑜 = 0 mM, and 
(b) the current when  [𝐺𝐺𝐺𝐺𝐺𝐺]𝑜𝑜 = 1 mM; The output of the bond graph model is the current −𝐼𝐼𝑖𝑖 , and the data of 
Parent et al. [19] are reproduced from Figure 10 of that paper using the digi�zing so�ware Engauge. The 
informa�on needed to reproduce these results can be found in [18]. 

We applied a range of test poten�als to the full bond graph model with a slightly reduced 𝑘𝑘6+ = 3 𝑠𝑠−1 
to produce the steady-state glucose-dependent I-V curve (red plot) shown in Figure 12, which is 
compared with the I-V curve (black dot plot) given in Figure 5 in [19]. The simulated glucose-dependent 
current is defined as the difference in the carrier-mediated current at steady state before and a�er the 
addi�on of glucose. As noted in [19], the background current induced by the experimental condi�ons 
can be accounted for by an addi�onal RC circuit. However, this element is not included in the bond 
graph model, which may explain the discrepancy between the simula�on and the measurements. 
Addi�onally, errors may be introduced during the digi�zing process of the published figure. 

Note that details on the numerical implementa�on are given in the accompanying Physiome paper 
[18] and the code, referenced in that publica�on, is available on PMR.  

  
Figure 12.  The full bond graph model compared with Figure 5 in Parent et al. [19]. The informa�on needed to 
reproduce these results can be found in [18]. 
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DISCUSSION 

Bond graph models of molecular pathways have previously been developed for enzyme-catalysed 
reac�ons including glycolysis and the SLC transporter SGLT1 (but without considering the electrogenic 
nature of this transporter) [23], and for membrane ATPase transporters including and the cardiac 
sarcoplasmic/endoplasmic Ca2+ ATPase (SERCA) and the cardiac Na+/K+ ATPase [25]. An electrogenic 
version of a bond graph-based model of SGLT1 is also available [24]. 

In this paper we have focussed on developing a comprehensive framework for bond graph modelling 
of lumped parameter biological processes using the six physical units needed to represent energy 
transmission, storage and exchange between the mechanical, electromagne�c and chemical forms of 
energy (including energy dissipa�on to high entropy heat). We have proposed a new way of pictorially 
showing all components of these processes such that the equa�ons represen�ng conserva�on of 
mass, charge and energy, respec�vely, together with their cons�tu�ve laws, uniquely defined by the 
bond graph diagram, are easily understood by physiologists and biologists generally. We presented 
three examples - a coupled electromechanical actuator, a voltage-sensi�ve and mechano-sensi�ve 
gated ion channel, and an enzyme-catalysed reac�on – to show how the bond graph framework can 
be used to represent all types of energy exchange.  

We then developed new bond graph models for two glucose transport members of the SLC transporter 
family, one for facilitated diffusion (SLC2A2/GLUT2) and one for sodium-glucose cotransport 
(SLC5A1/SGLT1). In each case we derived the full kine�c model from the bond graph diagram and then 
derived a reduced steady-state model under the assump�on that the binding and unbinding reac�ons 
are much faster than the reac�ons represen�ng enzyme transi�on between inward- and outward-
facing states of the transporter protein and that, because the substrates are present in much greater 
amounts than the transporter protein, the enzyme cycling rate can be assumed to be constant. For the 
second transporter, we must also assume that the slippage mechanism (protein state transi�on and 
energy dissipa�on with no useful transport), is not significant. The steady-state analy�c models 
provide thermodynamically consistent generalisa�ons of Michaelis-Menten models.   

The parameters of the kine�c model and the steady-state reduced model were fited to experimental 
data from the literature for each of the two types of SLC glucose transporter.   

The SLC superfamily of transporter-encoding genes currently includes over 400 members with 62 
families, each dealing with one specific type of transported molecule [1]. The SLC2 family, for example, 
deals with facilitated transport of glucose (and in one case urate), while the SLC5 family deals with 
sodium-assisted transport of glucose, myo-inositol, iodide, choline, lactate, or mannose. Figure 13 
shows a range of these SCL transport proteins, grouped by the number of different molecules being 
transported and the direc�on of transport.          
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Figure 13 Members of the SLC transporter superfamily, grouped into four classes based on the number of solute 
ligands being transported. Rows within each of these four classes show examples of inwardly-directed, 
outwardly-directed, and two-way transport.   

The extent to which the equa�ons derived above for SLC2A2 and SLC5A1 can be generalised to cover 
a wider group of family members depends on two key factors: the sequence of binding and unbinding 
and, for the transport of charged molecules, the movement of charge within the membrane.  

The ability to reduce the kine�c model to a steady-state rela�onship between flux and solute amounts 
is dependent on the assump�on of rapid binding and unbinding, the assump�on that the enzyme 
cycles at a constant rate (a consequence of the Briggs-Haldane assump�on of rela�vely low expression 
levels for the membrane proteins compared with the availability of solute ligands), and the assump�on 
that slippage mechanisms are not important. Each of these assump�ons needs to be validated for a 
specific transport protein, as we have done in the examples presented here by comparing the output 
of the reduced model with the output of the full kine�c model (Figures 8 and 10). Note that in the 
approach described here we are assuming that each transporter, belonging to a template appropriate 
to one of the four families illustrated in Figure 13, can be fited to flux measurements under controlled 
perturba�ons of the molar quan��es of ligand on either side of the membrane. Such measurements 
have yet to carried out on many of these transporters. Ideally these reac�on parameters would be 
predicted by the three-dimensional structure of the proteins (and a knowledge of the composi�on of 
the membrane sugars). 

The SLC transporters in a par�cular cell influence one another if they transport a common ligand (such 
as sodium) and for electrogenic proteins there is also crosstalk via changes in the electrical poten�al 
of the membrane. We will examine composite bond graph models involving more than one transporter 
in future publica�ons. See [26, 27] for modular bond graph approaches to systems biology.  

1 

2 

3 

4 
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CONCLUSION 

Physiological processes almost always involve energy exchange between mechanics, electromagne�cs 
and biochemistry. We demonstrate how energy-based bond graphs can capture the processes and 
generate models obeying the three conserva�on laws of physics, par�cularly where these models 
involve the exchange of energy between the three different physical energy storage mechanisms. We 
developed a number of generic bond graph templates for the SLC superfamily, and fited parameters 
for SLC2A2 and SLC5A1 to experimental data. This framework can be extended to encompass any 
lumped parameter physiological processes and to higher dimensional systems via port-Hamiltonians 
[28]. The bond graph representa�on of biological processes will serve as the founda�on upon which 
high-level physiological systems will be built. 
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