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Energy-based bond graph models of glucose transport with SLC transporters
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ABSTRACT The SLC (solute carrier) superfamily mediates the passive transport of small molecules
across apical and basolateral cell membranes in nearly all tissues. In this paper we employ bond graph
approaches to develop models of SLC transporters that conserve mass, charge and energy,
respectively, and which can be parameterised for a specific cell and tissue type for which the
experimental kinetic data is available. We show how analytic expressions that preserve
thermodynamic consistency can be derived for a representative four- or six-state model, given
reasonable assumptions associated with steady-state flux conditions. We present details on fitting
parameters for SLC2A2 (a GLUT transporter) and SLC5A1 (an SGLT transporter) to experimental data
and show how well the steady-state flux expressions match the full kinetic analysis. Since the bond
graph approach will not be familiar to many readers, we provide a detailed description of the approach
and illustrate its application to a number of familiar biophysical processes.

SIGNIFICANCE Physiological systems typically involve coupled mechanical, electrical and chemical
processes, with energy acting as a universal currency across these domains. We propose a new visual
representation for all components of these processes using bond graphs. Bringing all physical
processes under one consistent framework greatly simplifies the task of understanding multiscale
physiological processes. This energy-based framework, which is the 0D version of a more general 3D
port-Hamiltonian theory, can be used to model all lumped parameter physiological processes. A small
number of bond graph templates can be used to model all members of the large SLC transporter family,
and reduced thermodynamically consistent steady-state flux models provide a useful simplification for
many situations. Glucose transport is chosen here to illustrate the bond graph approach because it
represents the first step in cell metabolic processes, where energy conservation needs to be a
fundamental characteristic of quantitative models. Our future work on cell metabolism will build on
the foundation established here.

INTRODUCTION

The solute carrier (SLC) superfamily currently consists of proteins encoded by more than 400
mammalian genes that mediate the transport of small molecules across cell and organelle membranes
in human tissues [1]. ATP-dependent pumps, ATP-binding cassette transporters, aquaporins and ion
channels belong to separate families of transport proteins, which together comprise at least 5% of the
protein-coding genome. The SLC superfamily is currently categorised into 62 gene families, labelled
SLC1 to SLC62 (www.bioparadigms.org). Two or more families may deal with transport of the same
ligand (e.g. glucose) but each family deals with a specific type of transport mechanism. For example,
transmembrane glucose transport across a number of cell types (endothelial, epithelial, neuronal, etc)
is enabled by two families of protein from the SLC superfamily: the SLC2 family and the SLC5 family.
SLC2A2 (protein name GLUT2) and its variants within that family use the extracellular to intracellular
glucose concentration gradient to drive transmembrane transport in a process called ‘facilitated
diffusion’. No other ligands are involved. On the other hand, SLC5A1 (SGLT1) and its variants use the
sodium gradient to drive glucose into the cell, typically when the transmembrane glucose gradient is
insufficient to provide the required flux of glucose.

Bond graphs provide a useful level of abstraction for modelling protein function for a wide range of
physiological processes, such as metabolic reactions, membrane transporters, ion channels,
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myofilament mechanics, receptors and signalling, etc. In this paper we develop a small number of
generic bond graph templates for the SLC superfamily that conserve mass, charge and energy,
respectively, and which can be parameterised for a specific cell and tissue type for which the
experimental kinetic data is available. We show how analytic expressions can be derived for a
representative six-state model, given reasonable assumptions associated with steady-state flux
conditions, while always preserving thermodynamic consistency. We present details on fitting
parameters for SLC2A2 and SLC5A1 to experimental data and show how well the steady-state flux
expressions match the full kinetic analysis.

Before developing the SLC family templates, we first discuss some fundamental physical concepts and
their units, describe why bond graphs provide an appropriate framework for capturing the physical
conservation laws associated with biological processes at the protein level, and present some
examples that illustrate how bond graphs deal with energy exchange. Bringing all physical processes
under one consistent framework greatly simplifies the task of understanding physiological processes,
which almost always involve energy exchange between mechanics, electromagnetics and chemistry.

METHODS

Units, conservation laws and bond graphs

We start by discussing the key units for physiology. Only six fundamental units (Joules, entropy,
seconds, meters, Coulombs, and moles) are needed for all biophysical mechanisms, with energy
gradients (with respect to meters, Coulombs and moles) providing the driving ‘force’ or potential for
displacement from equilibrium for each of the three physical processes that underpin physiology:
mechanical (J.m* or J.m™3), electromagnetic (J.C), and chemical (J.mol?). Note that the Coulomb (C)
effectively counts electrons and the mole (mol) counts atoms. Very occasionally it is useful to include
a seventh unit, the Candela (Cd), which counts photons (for example in models of photoreceptors that
respond to individual photons) but generally a photon (which has an energy hv, or Planck’s constant h
times the frequency v of the electromagnetic field) is included via its energy flux. Energy, measured in
Joules (J), can be transmitted, stored, or converted between these three types, and almost every
physiological process uses all of them. The closely related concept of entropy is a measure of
displacement from equilibrium and energy dispersion (or equivalently the possible states of a system).

Enthalpy H is defined as the sum of internal energy U (associated with vibrational, rotational and
electronic states of the molecules) and the product pV of thermodynamic pressure p (an energy
density) and volume V (pV = nRT for an ideal gas), but is also the sum of the Gibbs free energy G
(available to do work) and the TS term representing the essential loss of high entropy energy (heat) to
the environment:
H=U+pV =G +TS.

Total energy is conserved (but not G). For example, a thermally stable planet earth must receive and
radiate energy at the same rate, but for every 1 high energy (~500nm wavelength) photon that the
earth receives as highly directed (low entropy) sunlight, it radiates about 20 times as many lower
energy (~10,000nm wavelength) photons as (high entropy) heat. This conversion of conserved energy
from low to high entropy form defines the direction of time and is of course the basis for life. It is the
energy gradient with respect to meters, Coulombs or moles that is the ‘potential’ (i.e. the mechanical
force, electrical potential or chemical potential) that drives the flow or flux of a mechanical, electrical
or chemical quantity. Note that temperature, measured in degrees Kelvin, is the gradient of energy
with respect to entropy, and hence is the thermal potential driving heat flow (the flow of entropy). It
is convenient to define the unit of entropy as Joules per degree Kelvin, since it is impractical to count
the number of possible states in a thermally energetic system.

Energy storage is either mechanical (statically in a spring or dynamically in the inertia of a mass),
electromagnetic (statically in a capacitor or dynamically with the inductance of a changing magnetic
field), or chemical (statically as a solute in a solution or dynamically as thermal energy). Note that
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processes at the macroscale of physiology are linked with processes at the atomic level through a small
number of physical constants such as Faraday’s constant (9.6485x10* C.mol%; the charge in Coulombs
of a mole of single charge ions) and the gas constant (the energy in Joules per degree Kelvin of a mole
of atoms), both of which use Avogadro’s number (6.02214 x10?* mol?) to bridge the enormous scale
from atoms to cells and tissues.

We let g (in units of m, m3, C, or mol) represent the quantity whose flow v (in units m.s™, m3.s?, C.s™,
or mol.s?) is driven by a potential u (in units J.m?, J.m?3, J.C?, or J.mol?). We use two forms of
mechanical flux (in m.s* and m3.s!) with potentials in J.m™* (Newton) and J.m™ (Pascal), in order to
deal with both solid mechanics and fluid mechanics. Note that for the most part there is no need to
use any derived units (such as the Newton or Pascal). Using only J, K, s, m, C and mol helps reinforce
the relationships between these units that underpin both the conservation laws of physics and the
constitutive laws that represent material properties.

There are two distinct types of equation needed for characterising physical systems (note that we
provide explicit examples of electromechanical and biochemical processes in the next section). The
first type is a physical conservation law (conservation of mass, charge or energy, respectively), which
generates equations that involve only g or v (mass or charge conservation), or only u (energy
conservation). The second type is a constitutive equation that expresses experimentally derived

. . . , . d . . ,
material properties and is an equation that links g or v (= d—Z) with u. These material properties relate

. . _ . . . d
to either (i) energy storage, which is a relationship between u and q for static storage, or u and d—: for

dynamic storage, (ii) energy dissipation (a mechanical damper, an electrical resistance, or a chemical
reaction), which is a relationship between u and v, or (iii) lossless energy conversion between
mechanical, electromagnetic and chemical energy. Physical conservation laws are universally true,
whereas the constitutive equations are approximations fitted to experimental data (and hide the
physics behind that material behaviour). The wide variety of ad-hoc descriptions of physical processes
often presented in physiology textbooks, such as Fick’s law of diffusion, Fourier’s law of heat
conduction, or osmotically driven flow, etc, express a combination of these fundamentally different
types of equation in a way that conflates the laws of physics with experimentally derived material
properties.

The conservation laws that govern all physical processes, and the empirical constitutive equations, can
both be expressed with the above quantities g, flows v and potentials u in a very simple, elegant and
unifying manner by using a technique called bond graphs, pioneered for electromechanics by Henry
Paynter at MIT [2]. In another fundamental and far-sighted contribution, Oster, Perelson and
Katchalsky [3, 4] brought network thermodynamics within the same framework so that there is now a
single unifying energy-based framework for all of physics at the spatial scales relevant to physiological
mechanisms. The physiological application of bond graphs began with a series of papers by Gawthrop
and Crampin [5, 6], who demonstrated the importance of energy conservation in modelling
physiological mechanisms.

The key concept is this: the product of potential u and flow v is power wu. v in units of J.s%. Paths for
the transmission of power, called bonds, are shown by the directed arrows in Figure 1a (the arrow
defines the direction of positive power flow). Each bond with subscript i carries a flow v; at potential
u;. At the junction of bonds, conservation of power requires:

2uv; =0, (1)

where summation is carried out over all bonds connected to that junction (5 in this example). Now
consider the case shown in Figure 1b (called a 0-node) where all bonds have the same potential u; =
U, = Uz = U, = us = u, in which case u comes outside the summation and, for non-zero u, the
conservation of power becomes conservation of flow:

wyv, =0 = Yu;=0. (2)
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If v; represents the flow of a volume of fluid, and if the density of the fluid is constant (which it is for
water in physiological systems), equation 2 represents conservation of mass. If v; represents the flow
of charge, equation 2 represents conservation of charge, etc.

Alternatively, consider the case shown in Figure 1c (called a I-node) where all bonds have the same
flow v, = v, = v; = v, = vs = v, in which case v comes outside the summation of equation 1 which,
for non-zero v, becomes conservation of energy:

v.Yu; =0 = Yu; = 0. (3)
U D (0-node) (1-node)
2, Y2 v, u
v [/u3,v3 j U3 j Uz
1, Y1 — o Ul\o-u/ Uq \1'17/
Us, Usg Uy, Uy Us Uy Us \ Uy

(a) (b) (c)
Figure 1. Bond graphs representing power flow, each defined with values for flow v; and potential u;: (a) a
junction of 5 flow paths such that ), u;v; = 0, (b) a junction where the impinging bonds have the same potential
u (called a 0-node) and hence Y v; = 0, and (c) a junction where the impinging bonds have the same flow v
(called a 1-node) and hence Y u; = 0. Therefore 0-nodes are junctions on a bond graph where quantities are
conserved (mass, charge, etc) and 1-nodes ensure that energy is conserved.

In summary, power transmission is modelled here via bond graphs that converge on power-conserving
junctions of just two types: 0-node junctions with a common potential are points at which flows sum
to zero so that a quantity (mass, charge, etc) is conserved, and 1-node junctions with a common flow
are points at which the potentials sum to zero and energy is therefore conserved. The variables u and
v, whose product is power, are called power co-variables or conjugate variables. Note that bond
graphs describe the topology of the system (i.e., how the components are connected) as well as the
equations that capture the conservation laws of nature. Power is always conserved but the ability to
solve the bond graph system (and the solution itself) is determined by the boundary conditions.

Now consider the static storage of energy. Since power (u.v) is the rate of change of energy,
stored energy = [u.vdt = fu.z—z dt = [udgq.
For linear storage devices, u = C™1q, where compliance C is an empirically determined constant,

stored energy = [udq = %f qgdq = Z—C.

The relationship u = f(q) is the constitutive relation for that material. E.g., for a linear mechanical
spring, the mechanical potential u (force) is proportional to the displacement q of the spring, and ¢!
is the spring stiffness. Exactly the same linear expression holds for an electrical capacitor: g is charge,
u is the electrostatic potential (voltage) across the capacitor and € is now the capacitance. Biochemical
storage depends on the solubility of the solute in the solvent.

Next we consider the mechanisms involving dissipation of energy (and hence the production of heat).
In most cases the rate of energy dissipation is just the product of the flow through the dissipator and
the change in potential across it (e.g., a viscous damper in mechanics, a resistor in an electrical circuit,
or a thermal resistance in heat flow). For most situations the drop in potential is assumed to be linearly
proportional to flow (Au = Rv), giving

Power loss = Au.v = Rv.v = Rv?,

where the experimentally determined constitutive parameter R is termed the mechanical viscosity,
electrical resistance, or thermal resistance.

The dissipative mechanism in biochemistry is a chemical reaction and for this case it has a special form
which is both nonlinear and depends explicitly on the forward and reverse affinities (A7 and A7),
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representing the sum of chemical potentials for the reactants (u,) and products (u,), with the
Marcelin-de Donder formula [5]:

V=K (eAf/RT _ eAT/RT) or v = k(e/RT — gu2/RT), @

where the specific reaction rate k has units of mol.s. Note that the flow is not determined by just the
difference in potentials as in all the other systems but rather uses an explicit dependence on each (and
hence is called a ‘two-port’ device). Reactions will only proceed if u; > u,, or equivalently if the Gibbs
free energy AG = u, — u; < 0. However, the power that is emitted as heat in a biochemical reaction is
still the same product v. Au (= —v.AG) as it is in an electrical resistor or mechanical damper.

A chemical reaction requires the exchange or sharing of electrons (it is a sub-atomic process) and since
all members of the chemical species involved in that reaction are available in a well-mixed
compartment, the chemical potential energy is normalised by the total number of moles in that
compartment (i.e. is an intensive property). A diffusion process, on the other hand, is entropically
driven and entropy is an extensive property. Unlike engineering processes, where the heat from an
electrical resistor or a mechanical damper is generally lost to the environment, the heat output v. Au
from a biochemical reaction in a physiological system is used for temperature regulation.

The process of transforming power without loss from one physical process to another (as in a voice
coil or ‘loudspeaker’, where electrical power is transformed to mechanical power) is illustrated in
Figure 2a. The electrical power co-variables associated with the first bond are u$ and v{ and the
mechanical power co-variables associated with the second bond are ul' and v}*. We define an
empirical constitutive relation in which the output mechanical potential (u3* ) is proportional to the
input electrical current flow (v§):

ul® = k.vy.
Since power is conserved, uf.v{ = uJ". v}, and a rearrangement gives
u$ = k.vl"

The first of these equations is the Lorenz force on a voice coil and the second is Faraday’s ‘back-EMF’
(electromotive force) induced by movement of the coil. The empirical parameter k is associated with
the ‘Gyrator’ term GY defined at the junction in Figure 2a. The conversion of electrical energy in J.C?
to chemical energy in J.mol? is another example of the need for the gyrator term k (see later).

Another form of transformation in which potential is traded for flow in a way that conserves power is
shown in Figure 2b. The ‘transforming factor’ (TF) is associated with a dimensionless parameter n
representing the n-fold increase in output potential and corresponding n-fold decrease in output flow.
Examples are a mechanical gear wheel, an electrical transformer, and a mechanical lever.

)

GY: k

ult (=k.v§)

vy
(@) (b)
Figure 2. Transforming energy (without loss) (a) from one form to another (electrical to mechanical here), and

(b) at different ratios of flow to potential (e.g., between two gear wheels or two transformer windings). Note
that the coil in (a) is attached to the moving cone of the speaker.

A bond graph diagram contains all the information needed to create the model and is a very convenient
way to visualise the energy transmission, energy storage, and energy conversion (including dissipation
to heat) occurring in the system being modelled.
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Simple bond graph examples

Before addressing the SLC family of transporters, we show how bond graphs are used to create models
based on physical conservation laws for three simple examples, one of a coupled electromechanical
actuator (a voice coil), one of a voltage-sensitive and mechano-sensitive gated ion channel, and one
of an enzyme-catalysed reaction. These examples are used both to introduce the graphical nature of
bond graphs, including their particular symbols, and to demonstrate how straightforward it is to
generate models that obey the three conservation laws of physics, particularly where these models
involve the exchange of energy between the three different physical energy storage mechanisms.

Example 1: An electromechanical system

The classic example of a coupled electromechanical system is an electrical circuit driving a voice coil
(such as a loudspeaker), as shown in Figure 3a. In this case we specify the input voltage (uf,) which
produces an electrical current (v§) flowing through a resistance R,, an inductance L,, and the voice
coil (length [) to produce a time-varying magnetic field of flux density B (Js.C1.m2) which generates a
(‘LorentZz’) force ul* = Blv§ and hence displacement g7* (velocity v5). The mechanical system also has
a spring of compliance C,, a viscous damper R,, and an inertia L,. The bond graph representation of
this system is shown in Figure 3b.

Note that the coupling between the electrical and mechanical components requires a ‘gyrator’ (GY).
The voltage (called ‘back-EMF’) induced within the voice coil is u§{ and the expression u§ = Blv}*
required to ensure lossless power transfer since the power from the electrical side ufv{ = Blv]'v{
must match the power uJ'v]* = Blv{v]* on the mechanical side. Faraday’s law of induction appears as
a logical consequence of the Lorentz force. B is the magnetic field strength in units of Js.Ct.m=2,

Electrical Mechanical Electrical Mechanical
R, | qaz'
m
I v;n R1 Rz qc

. c, uioouf=mny g

in /
b ug, ve GY:Bl— v)' — ul

T uy 7 up"

R—— L ul = Blv§ l

| L vf Lo
L1

Figure 3. (a) A coupled electromechanical system, and (b) its bond graph representation. v{ is an electrical
current and ug,, ug, uf and uf are electrical potentials (voltages). v3* is a mechanical velocity (displacement g7*)

and ul", uft, ul* and u* are mechanical potentials (forces).

The balance equations and constitutive laws for this system are:

dqm
m C m
u —==v
wr) Y=y
(v7) uf, = uf +ug +uf
(v3") uz' =ug +ug +uf
(GY) uf = Blv}*; ult = Blvy
e_R e. E_Ldvf. m_C—l m. m_R m _Ldvz
(CRs) ug = Ryvy; wp =L 75 uc =07qc; ugp =Rpvz; 2

Note that we identify each type of equation using the colours red, green and purple, respectively, for
0:node mass or charge conservation, 1:node energy conservation, and energy conversion. The final
equations needed to link the potentials u with their appropriate kinematic quantities g, v are the
constitutive relations (CRs) that capture the material properties of the system components.

R; and L, are the resistance and inductance in the electrical circuit. R,, L, and C, are the damping
resistance, inertia and spring compliance in the mechanical system. In this bond graph formulation,
the Lorentz force and the back EMF from Faraday’s law of induction are just two ways of viewing the
same power preserving (GY) mechanism.
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With uf, (t) specified as an input condition, these 10 equations can be solved for ug, uf,uf,v{ and
ug', ug, ur, ug', ¢, vyt

Example 2: A voltage-sensitive and mechano-sensitive gated ion channel

In this example, we consider various physical influences on the movement of charged sodium ions Na*
through a membrane ion channel: (i) the chemical potentials associated with different numbers of ions
on each side of the membrane; (ii) the effect on a charged ion moving through the electric field
associated with the membrane channel; (iii) the effect of membrane stretch (represented by a one-
dimensional strain term) on membrane permeability; and (iv) the gating process that controls ion
permeation. In general, this gating process is itself voltage-dependent and often subject to ligand
binding, but we ignore those factors as the goal here is just to demonstrate the way that a bond graph
approach is used to develop an ion channel model that obeys physical conservation laws.

We define two well-mixed (homogeneous) compartments on either side of a semi-permeable channel
in the cell membrane, with g¥** and q{"“+ representing the number of moles of Na* in the extracellular

space (‘o’=outside) and in the cytosol of the cell (‘i’=inside).

Since biological systems are usually assumed to be at constant temperature and pressure, Gibbs free
energy is the relevant chemical potential in these systems. For a dilute system the chemical potential
is given (using the extracellular compartment ‘o’ as an example) by the Boltzmann thermodynamic
relation

Nat Nat q{,"“+ 1
Uy? =Uper +RTIn s (J.mol™),

where g¥" is the number of moles of Na* and gt is the total number of moles of all components of

the mixture in that compartment [7]. uﬁ’e‘f is the (reference) potential when g¥*" = gt°t.

More compactly,

Nat
ude" = RTIng*" (J.mol?), where g¥¢" = KNe"gNa" and KN = ﬁe“ﬂfuf /T (mol ).
o
This is the constitutive law for biochemical energy storage, and K" (mol?) is an experimentally
determined thermodynamic material parameter. Using the non-dimensional term g¥*" simplifies the

subsequent analysis.
Similarly,

+ _Nat i _Nat + + + 1 Na* B
uM” = RTIng"*" (J.mol?), where g"'*" = KN qM*" and K} = —e'T /BT (molY).

L

Figure 4 shows the bond graph representation of the diffusive solute flux through the membrane and

the flux of electrical charge (¢5"*"9¢) from its capacitive storage in the membrane, with the biochemical
equivalent of the membrane potential u5'* 9 (J.C) being zFug, (J.mol?), where F is the Faraday

constant and z is the valence (z = 1 for Na*).

Note that Figure 4 introduces a new symbol with a green background and a red border. The green
background indicates that this represents a storage term (see g2 in Figure 3), which determines its
potential ul*, and the red border indicates that this is also a 0:node where mass or charge is conserved.
The reason to lump these two together is that mass or charge conservation always includes a local
storage term, so the storage term can be thought of as internal to the 0:node. Combining them in this
way of course, greatly simplifies the diagram for the bond graph model of a complex system.

Another convention adopted here is to use a superscript to indicate the electrical or mechanical
guantity or chemical species being expressed, and a subscript to indicate the location of that quantity
(e.g. in the extracellular or intracellular fluid, or the cell membrane, etc).
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Figure 4. The bond graph representation of the concentration driven flow v,, of electrically charged K* ions
through a channel in a membrane (inside the yellow block above) across which there is a potential difference
uSt9€ associated with charge storage g 9. The membrane is also subject to mechanical strain gSi™@", The
ion channel is gated by a variable that transitions in reaction Re; between a closed state g5 and an open state
qg. The subscripts are ‘0’ and ‘i’ identify the outside and inside of the cell, respectively, while ‘m’ and ‘g’ refer to

the cell membrane and the ion channel gate.

Rey
closed =’ open

@

The flux balance equations associated with the 0-nodes are:

strain strain -

Qm

K+) i Na*

kty d pNagt charge, d charge _
0 dat 10 ) ) -

= —Um; (W) @i = Vs (U —Im —zFv,; (uy =Ty,

z = 1for Na*, and F has units C.mol™ (to convert the molar flux v,, to a charge flux). I has units mol*
(to convert the molar flux v, to a strain rate).

The energy balance equations associated with the 1-nodes are:
+ ; +
() ul, =ule +ug + ZFuSlT9¢ 4 pystrain, - qr =y Ne +ud;  (v,) u = ug; up =ug.

The reaction fluxes v, (mol.s*) and v, (mol.s™) are

f T + 2Pug @79¢  ruggrain + +
(Rem) Um = Km (eum/RT - eum/RT) = Km qg KNa qNa -€ RT .e RT - KiNa q{va ’ (5)

f
(Reg) vy =Ky (eug/RT - eug/RT) = Kg(Kngg - K7 q3),

where the second step in both cases uses the expressions for the forward and reverse potentials
inserted into the energy balance equations.

Note that I" has units of mol?, consistent with a power balance (uS"*™). (I'v,,) = (Fusre™). (v,,) where
(since strain is dlmen5|onless) power (J.s) on the left has units (J).(molt.mol.s?) and power on the
right has units (mol™.J).(mol.s%).

Since the total number of gates (¢5°*) is constant (g5 + qf = q5°), the probabilities of the gates being
open and closed, respectively, are

0
dg qg _

tot p a nd tot — 1 p
qg qg

where (0 < p < 1).

The gate mass balance equaﬁons%qg = —v, and %qg = v, are therefore represented by

dp _ Vg
dt q‘(t}ot'

Using the bond graph flux equation v, = r,(K{qS5 — K2q3), gives

dp _ Yg _ 0 o — c 9§ 0 qy —
;_ tot tot( =Ky |Ky. éot_K éot —ag(l_p)_ﬁgp
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where a, = k;K{ is the rate at which closed gates open, and B, = k K/ is the rate at which open gates
close. For voltage gated ion channels, these opening and closing rate constants are defined as functions

of the membrane potential uf,f‘"ge. Equation 5 now becomes
charge strain
+ + zFuy, Tuy + +
Vm =K¢n-P<KéV“ q* .e” KT e rT —KMq'" ), (6)

where k;,, = Kngq;"t is the open channel conductance.

With the molar flux given by v,,,, the electrical current flow through the membrane is

vERTIe — zFy, (C.sY).

The chemical flux v,, (mol.s?) or electrical current flow v<"*9¢ (C.s?) is zero at the equilibrium or

‘Nernst’ potential,

Nat Nat
charge RT Ki'™ q;
u g9e = — In <%>

m - Nat _Nat
zF Ko™ Qo

The concentration of species are given by c¥*" = g¥¢" /v and ciN“+ = q{"“+/Vi. Therefore, since the
thermodynamic constants are related by K"V, = K-IV“+I/L~

i
+
ucharge _ Eln C{Va
m Z2F C(I)Va"' .

This is the form of the Nernst equation usually used in electrophysiology. But see [8] for an alternative
constant-field Goldman-Hodgkin-Katz (GHK) model of ion permeation that accounts for ion channel
rectification.

Example 3: An enzyme-catalyzed reaction

Now consider the enzymatic reaction shown in Figure 5a, which is often associated with Michaelis-
Menten (MM) kinetics [9]. qi1 is a substrate that binds reversibly to an enzyme q? to form the complex
q{*, which breaks down to regenerate the enzyme and yield a product qiz. In conventional MM kinetics
this last step is treated as irreversible, if A£ > Al

u£1 Uy u£2 Uga
1, .3 4 2, .3
q; t+4; ﬁ@ q; ﬁ% q;i +4q; vl —Rel = vl = qf > v} —Ref—> v? q?
AY A3
a}

(a) (b)
Figure 5. (a) An enzyme (q?)-catalysed reaction, and (b) its bond graph representation. Flux balance is ensured
for each of the four species at the 0:nodes, and energy balance at the 1:nodes ensures the correct stoichiometry.
The forward and reverse potentials, for each of the two reactions, are indicated by the dotted arrows.

The flux balance equations for the four species, defined at the four 0:nodes, are

d d d d
(we) —ai=-vi; (W) L af=v (W) —a=-vi+vf W) —ai =vi—vi
Note that since %(qi3 + ) = 0, the total amount of enzyme (including in its bound form g}) is
constant. i.e.
q13 + q:} = EOI

where E, is the initial quantity of enzyme.
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The energy balance equations, defined at the two 1:nodes, are

f _ .1 3. 4. f _ .4
(v}) Upy = U +UP; upy =uf; (VF) Upy = Ui

;o Uk, = u?f +ud

Using these potentials, the two reactions are

(Rel) v} = kg (e¥hi/RT — e¥ha/FT) = ey (g} KPqP — Kial) = K] qla? — Kiqt,
where k! = i, K}K3 (molts?) and k] = ;K2 (s?), and

(Red) 07 =y (e¥Re/RT — e ke/RT) = iy (Kiqf — K2qPKPaP) = kL qf — K3aPa?,
where kg = i, K (s1) and k = Kk, KZK? (molt.s?).

The Briggs-Haldane analysis of the reaction [7] assumes that there is a much higher concentration of
substrate than enzyme (g2 > q2) and that the complex g/ therefore quickly reaches a steady-state
(SS).

Assuming a steady constant flux with v} = v? = v and %q? = %qf =0,

v=klqlq} — kiq} = klqf — kiq?q?. (7)

From the second equation in (7) we can express g in terms of g:
k{qi1+k§qi2 3
ke T

qf =

Using conservation of total enzyme g7 + g/ = E,,

f 1,1 2
k) qr+k5q?
q13 (1 1q} 2ql) EOI
key +KT

which, with equation 7, gives

fo1_r Kaleka?
f f qul+qu2 faai—ia 1] 41t
1.3 pr 4 1_ pr k1qitkadi) 3 2+K1
v=k--—k-=(k-—k. )-=E
1 qi4q; 19; 1 qi 1 k£+kI qi 0 k{qi1+k5qlg
14120
Ky +kY
or
f (1S fo1 2
. kfa} (i) -1 (K at+iFa?) kgt -kl q?
v = E,. =F, 21t =21

0- .
K]+ + kL gl vk q? i 417+ k] g4kt q?
Substituting back k! = i, K}K?, k] = i,K#, k] = 1,K* and kj = i, K?K?, gives

3.4 1.1 2 2

Kk KP K (Kitai —Kiaf)
0- 13,1, 4 23,2 4
K (KPKP af +K})+rea(KP KD af +K )

v=E

or, rearranging the denominator,

340l 1_,2 2
—F K1k KK (K ai —K{ af)
0'K{*(;q+K2)+K1Ki1Ki3qi1+K2Ki2Ki3qi2

4

A useful way of expressing this relationship between the SS flux and the solute quantities is
fol_aTq2
v= A—qllA g‘ (mol.st) (8)

14—k
ki K

where

1,3 2,3
K1K2Ki K; K1K2K{ K: K1tk K1tK.
Al = Ep. 220 (s1), AT = Ep. 2Rl (sY), kL = KP—=TE (mol), k% = K!—32 (mol),
K1+Ky K1+Ky K1K; K] KoK K}

since this highlights the relationship with the Michaelis-Menten (MM) flux expression below.

Note that since K} (mol?) and K? (mol?) are the thermodynamic constants associated with the solute
(not the reaction), the reaction flux is defined by three combinations of biophysical parameters

10
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K} . .

(EorclKi3, %, and K—‘3) —one more than the MM flux expression below, and since Ki3 and K{L are usually
1 i

assumed to be the same, this reduces to only two parameters needed for fitting experimental data.

The MM approximation goes one step further and assumes that with a sufficiently low concentration

of product qiz relative to the complex, the qiz term in equation 8 can be ignored, and
1
v= vmax.—krfiq1 (mol.s?) (9)
L

where

_ (kq+KKE _ k£+k'{~

kin = =73 is the MM constant and vy, = Egic,Kj* = Eokg is the maximal (SS) flux.
18 %4

1
Note, however, that the MM approximation assumes that the reaction is irreversible, which violates
thermodynamic principles.

With the above background to bond graph modelling of physical (including physiological) processes,
we can now use this approach to derive the equations governing SLC transporters, using SLC2A2 and
SLC5A1 as specific examples from which more general lessons can be derived for the entire family.

RESULTS

The SLC superfamily

The SLC superfamily currently includes 62 families of SLC transporters [1] that deal with the transport
of the following small molecules:

Cations: Ba?*, Ca?*, Cd**, Co?*, Cu?t, Fe?*, H*, HCO3, K+*, Mg?*, Mn%*, Na*, Ni%?*, Pb2*, Sr2%, Zn?*,
ammonium (NHJ)
Anions: Cl~, bicarbonate (HCO3), phosphate (HPO; ), pyruvate (C3H303),

Amino acids: Ala, Arg, Asn, Asp, Cys, GIn, Glu, Gly, His, Ise, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr, Val
Sugars: glucose (Glc),

Hormones & neurotransmitters: acetylcholine (ACh), epinephrine, norepinephrine (NE), steroids
Vitamins: folate (B9), pyridoxine (B6), thiamine (B1),

Lipids: cholesterol, sphingosine,

Others: bile acids, heme, selenate, sulfate, thiosulfate, riboflavin, molybdate, pyrophosphate (H,P,0;)

We briefly describe some features of these transporters before looking in detail at members of two
families that are involved in transporting glucose across cell membranes: SLC2A2 and SLC5A1.

Table 1 lists the members of the first family (SLC1), together with their familiar protein name, their
UniProt IDs, the substrate(s) carried by the transporter and a diagram of the chemistry.

Gene Protein UniProt ID Substrate Diagram
SLC1A1 EAAT3 P43005
SLCIA2 EAAT2 P43004 o Ji] 4]
SLCIA3 EAAT1 P43003 | AA=L-Glu, D/L-Asp { enar ( Jf
SLC1IA6 EAAT4 P48664 e
SLCIA7 EAATS 000341
SLC1A4 ASCT1 P43007 | AA=L-Ala, L-Cys, L-Ser, L-Pro, L-Thr :[ ascr1 }
AA = L-Ser, L-Glu, L-Asp, L-Ala, L-Glu
SLCIAS ASCT2 Q15758 BB = L-Glu, L-Thr, L-Asp, L-Glu, L-Glu, D-Ser '
BB

Table 1. The first family (SLC1) in the SLC superfamily. Note that the extracellular space is shown above the
bilipid membrane and the intracellular space below the membrane in the diagrams on the right.
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Facilitated diffusion with SLC2A2 (GLUT2)

The review article [10] provides a comprehensive overview of SLC2 family of transporters. While
alternative models for SLC2A2 (GLUT2) were proposed to address inconsistent observations in some
experiments [11], most kinetic and biophysical data support the alternating conformation mechanism
of SLC2A2 (GLUT2) transporter [12, 13, 14]. There has been debate over whether the alternating
models violate the energy conservation laws [15, 16]. This paper uses the most accepted alternating
model [12, 13, 14] to demonstrate that the bond graph approach describes the energetic perspectives
of a system in a more explicit manner.

In this section we present a modelling pipeline for the SLC2A2 (GLUT2) facilitated diffusion of glucose
through a bilipid membrane (see Figure 6). The pipeline goes from (a) the statement of the biochemical
reaction, to (b) a bond graph diagram of the full kinetics of the transport process, to (c) the steady-
state flux model. We demonstrate parameter fitting for both the full kinetic model using the
biophysical parameters and the reduced steady-state flux model using both the full set of biophysical
parameters and a reduced set of empirical parameters.

E, |} E;
Reaction E3: Vi <Re,—M1 q,
D-glucose(out) = D-glucose(in) f T —

qo
o> " “
: A
ng Re, » GLUT2
: : ®
3 4 vGLUT Gle
m q;

v
e
(a) (b) (c)

Figure 6. The pipeline from (a) the chemical reaction with its representative icon, (b) the bond graph diagram for

the reaction, and (c) the diagram for the reduced model showing the steady-state flux dependencies on the

molar quantities g§' and g¢‘.

The reactions represented by Figure 6b are as follows:

1. Re;:the transition of the protein from the inward-facing state to an outward-facing state;
2. Res: the binding of the ligand (external glucose q¢¥) to the outward-facing protein;

3. Re,: the transition of the protein from the outward-facing state to an inward-facing state;
4. Re,: the unbinding of the ligand (external glucose gf‘) from the inward-facing protein;

In the following equations glucose (Glc) is represented by the symbol A as a generic (uncharged) ligand
since these equations are valid for facilitated diffusion of any electrically neutral molecule across a
membrane.

The flux balance equations associated with the 0-nodes are:

Ay 4 A _ 4y 4 A _
(us) ;96 = —v3 i) ;a4 =va
d E d EyA d _EiA d E;
(W) @ =vi—vs () @ =v3—v, () —q3" =va—v (W) —q, =v—v

The energy balance equations associated with the 1-nodes are:

(1) u£1 = Uy; Upy = Uy; (v2) u£2 =Upy  Upy = Us

(v5) u£3 =uf + Uy Ups = Uy (v4) u,’; =Uz;  Upy = Uyt ufq

The constitutive laws for the storage terms are:

(95) u§ =RTIngy, whereqs =Ki'qs (¢f) ui! =RTIng{, wheregf =Kq{

(9;)  u; =RTInK;q;, j=1.4.

Note that we nondimensionalise the solute quantities (g2 and g{) by using g2 and g7, but retain the

thermodynamic constants (Ky, K,, K3, K,,) for the protein state variables as these quantities (g;) must
sum to a constant total (q;,.) — see below.
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The reactions, with the substituted potentials, are:

(Rey) vy =1y (R/RT — e¥ha/RT) = ey (KJiqft — Kfq[), (10)
(Re,) v, = K, ( ul, /RT _ euRz/RT) — (KEoAqfo KE Aq;‘ A)I (11)
(Res) V3 = K3 ( uhy/RT _ euR3/RT) =K (KE" E",c_lg‘ KZE“AqZE"A), (12)
(Res) vy = Ky (e¥ms/RT — e¥ha/RT) = i (KF¥ g — K[qf". qf). (13)

Conservation of the enzyme requires the constraint that

E, E A E;A E;
CI1O + qZO + Q3l + Q4.l = Qtot- (14)
The flux balance equations, with the flux terms from equations 10..13 and the enzyme conservation

equation 14, can be solved for the 6 molar quantities (¢4, ¢/ and q1 ,q2 ,q3 ,q4‘) subject to
appropriate initial conditions, as illustrated below for specific experimental conditions.

However, before we use experimental data to fit the 8 protein parameters (4 thermodynamic constants
and 4 reaction rates) of this full kinetic bond graph model, we consider the steady-state situation,
which yields an analytic expression for the flux as a function of the solute quantities.

Facilitated diffusion with steady-state flux and rapid binding and unbinding

A high ratio of substrate to enzyme (the Briggs-Haldane assumption) implies steady-state conditions:
VSV, = U= U, = VA=V
G1=92=93=q,=0 and C?é:_q{q:_vl

(dropping the superscripts on the protein states).

We also assume that the binding and unbinding rates for the solute molecule are much faster than the
carrier state transition rates [13], in which case (k3, k, —» =), the bracketed terms on the RHS of (4.1.3)
and (4.1.4) must be zero, and therefore

_ K. _

Ki1q:.35 = K,q5, or q; = K_;‘h-%q' (15)
_ K _

K3q5 = K4‘I4-CILAI or gz = K_:CM-CIf- (16)

Substituting g, and g5 into the other two reactions, assuming steady-state with v; = v, = v, gives

v

K
v =k1(Ksqs — K1q1), OF q4 = K_ich + K1Ka (17)
and

v =kK,(Kyq, — K3q3) = Kz(K1CI1-C_134 - K4Q4-f7{4) =K (chh-c_lg1 - Kl‘h-c_h{‘1 _Kilq{q)

from which
_ 1 af —A_ =A
@ =v\+ o) /K@ —ab). (18)

Substituting (15), (16), (17) into (14), gives

Qtot=CI1+CI2+CI3+CI4=CI1(1+%C7§)+Q4(1+§_:57§4)=CI1[1+%% (1+K4 A)]"'K;Q(l"'ﬁ_:qfq)
with g, given by (18). i.e.,

Gor = v (4 L) [+ B+ B (1 + Egp)] /@t - g + 2 (1+20)
or

(@ =70 = o{(G+ D)+ s+ (1 )]+ (4 ) @) -0}
Rearranging for v,

v = 4@ -/ (2 + L) (B L+ Lo+ tar) + 2 (2 2at) @i - ad)
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Multiplying numerator and denominator by x, K,
= g4 — g/ (2 +gA) (B4 B 1 Bspa L Ga) 4 (24 54) (GA — GA
v = q,,K1K3(q5 — G )/{(K2 + 4 ) (K1 Tt T qi) + (,Q +7, ) (G5 — @i )}
or, rearranging the denominator,
— GA _ gAy/lFL (K | Ks KaKs K3\ -4 (K1, Ks) o4 K3\ 5454
v = q,,K1K3(q5 — G )/{ ( + )+( + )qu + (K2+K1)ql +(1+K2)qoql}

Ky \Kj1 Ky Ky Ky Ky
or

— — K K- K K — K- — K — A=
v = Geocko K3 (5 — 1)/ {(K—j + K—j) + (K—z + AK—i) g+ (1+ AK—j) gh+a(1+ K—z) aiat},
where A = 2 is the forward to reverse ratio of enzyme state transitions.
K1

It is convenient to express this relationship as

A_ =4 a8 | @t | asat
— ~ ~ L l
U—Um(qu—%)/<1+k—1+k—z+—k3 ) (19)
m m m
where
K3 K3 K3 K3 K3 K3
KL = K1+K4 . 2 _ K1+K4. 3 _ (K1+K4), v = qtotk2K3 (20)
m ™ K3, K3 m T Ak m = A(1+ﬁ)’ m ™ K3 K3 -
K> ‘Ka K K3 K1 Kg

Note that k},v,, is the maximum flux obtained as g4 — o with g#* = 0, and k2,v,, is the maximum flux
obtained as g#* » o with g4 = 0, as shown in Figure 7. All the k;, (j=1.3) terms are dimensionless.

kv

> 7

=A
» q;

ki

(a) (b)
Figure 7. (a) Inward flux as a function of g4 when g# = 0; (b) Outward flux as a function of g/. when g4 =
Typical operating ranges for @4 and g are shown by the shaded blocks. Notice that a relatively low value for kZ,
(compared with k2 ) ensures that the inward flux is relatively much higher than the outward flux. Removal of g}
from the intracellular environment, due to its involvement in other reactions, also keeps g/ low.

Fitting the bond graph model of facilitated diffusion to experimental observations

The full kinetic model for facilitated diffusion is given by the 6 flux balance equations, the 4 flux
expressions (10 to 13) and the mass constraint equation 14. Here we use experimental kinetic data
from the literature [13] to fit the 9 biophysical parameters (the 4 reaction rate constants k; to k,, the
4 thermodynamic constants K; to K, and the total amount of enzyme q,,.) in those equations.

The kinetic parameters from [13] for each reaction in Figure 6(b) are listed in Table 2(a). The kinetic
parameters of reactions Re; and Re,, which are not given in [13], are set to arbitrarily large numbers
to align with the fast binding assumptions while applying the constraints (defined in [13]):

- +

Z—i = 9.5 (mM) and Z—‘i = 12.8459 (mM). We applied the method introduced in [17] to convert the
3 4

thermodynamically consistent kinetic parameters in Table 2(a) to the bond graph parameters in Table

2(b). The detailed fitting process and parameters can be found in the accompanying Physiome paper

[18]. We simulate the full bond graph model using the fitted parameters and the steady-state

predictions for the full kinetic model are shown in Figure 8 as black lines.

Equation 19 gives the SS flux under the assumption that binding and unbinding occur very rapidly in
comparison with the transition rates for the carrier protein and that the enzyme is cycling at a constant
rate. We also show here how the 4 parameters (v,,.y, ki, k2, k3,) in Equation 19 can be fitted directly
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with steady-state flux data and that these values match the predictions (Equation 20) determined by
the parameters fitted to the full kinetic model.

Steady-state flux experiments

In their first experiment, Lowe and Walmsley [13] set the intracellular concentration to 0 (mM) and
measured the inward flux of glucose for a varying range of extracellular glucose concentration.

Note that the concentration of glucose carrier molecules in human red blood cells was observed to be
6.67x10° mM [13].

Putting g/ = 0 in Equation 19 with
a5 = Ki'q5 = K§V,[Al,,

where [4], (MM or mol.m?3) is the concentration of glucose, and V, (m3) is the volume of the
extracellular compartment, gives the inward flux v,; (‘oi’=outside—inside) as

—A
mGrlnqo _ mGrlnkgvo[A]a _ mGrln[A]a

Voi =

Kty ktKGVolAlo  am
oo
or
b = ymax 14
ot ot koi+[A]a

1
where v1%* =y, kL (mM.s?) is the maximum flux (as [4], » =), and k; =Klf+"; (mM) is the

ol

. . 1 e . .
concentration at which v,; = Evg’ﬁ‘”‘. Note that specifying the parameter v™** in units of mM.s?,
means that v,; also has units of mM.s™.

The maximum flux observed experimentally in [13] is v** = 0.0048 (mM.s!) and the fitted Michaelis
constant is k,; = 0.1094 (mM), so

kL = KAV,.k,; = 1.4735
using V, = 0.09 (pL) and K2 = 149.65 (fmol™') , (see [18], for details of fitting procedures).

In their second experiment, Lowe and Walmsley [13] set the extracellular concentration to 0 (mM) and
measured the outward flux of glucose v;, at varying intracellular glucose concentration [A4];.

Again, by comparing Equation 19 with the Michaelis-Menten graph of zero trans influx given by [13],

max

2
vt =y, k2 (mM.s?) (the maximum flux (as [A]; - ), and k;, = K’f+"v (mM) (the concentration at
iVi

which v;, = %v{ﬁ“’“ ). This gives V; = 0.09 (pL) , K = 149.65 (fmol™?) and k;, = 1.609 (mM), and
hence

k% = KV, k;, = 21.671.
The red dashed lines in Figure 8 show the predictions of the steady-state model (Equation 19) using

these directly fitted parameters.

The parameter values found for the full bond graph model and the reduced steady-state model are
given in Table 2(b) and (c), respectively. Notice that k3,, which weights the product term in equation
19, is an order of magnitude higher than the other two k., parameters and indicates that this term
contributes very little to the flux.

Reaction Forward rate constant k;° Reverse rate constant k; Ref
Rey 0.726 571 121571 [13]
Re, 1113 571 90.3s71 [13]
Res 4.5e7mM~1st 4.5e7x9.5571 Not given in [13]
Re, 2.7e5x12.8459 s 1 2.7e5mM~ts~t Not given in [13]

(a)
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(b)

(c)

Parameters | Value Unit
K 149.65 | fmol?
K4 149.65 | fmol?
K; 33.20 fmol? Parameters Value Unit
K, 4.25e3 | fmol? VU 0.003284 fmol.s?
K 34459 | fmolt kL, 1.4735 | dimensionless
K, 1.99 fmolL k2, 21.671 | dimensionless
Ky 0.36 fmol.s? k3, 235.07 | dimensionless
Ky 0.26 fmol.s?
K3 1.01e5 | fmol.s?
Ky 1.01e4 | fmol.s?

Table 2 (a) The biophysical parameters for the full bond graph model of SLC2A2, and (b) the empirical parameters
of the reduced steady-state model given by Equation 19 derived from the bond graph model.

The magenta lines in Figure 8 show the steady-state model predictions using the empirical parameters
defined in Equation 20 using the physical parameters that are listed in Table 2(b):

A="2=07222 v, = q;";:,i’f =0.003256 ; (where % + % = 183.54)
-t 1 4

K1

K1 Ka
ki, = ﬁlﬂ\é = 14667, ki = 1;AK—§ =21.603; and k3, = A(;K_‘;) =235.08
Kz " Ky K1 K2

Note how closely these match the fitted empirical parameters listed in Table 2(c).

From Figure 8, we can see that both the steady-state prediction by the full bond graph model and the
steady-state Equation 19 derived from the bond graph model can accurately reproduce the influxes
and effluxes from the data of [13].

0.005 4 0.07
0.06 +
0.004
I T 0.05 4
E 0.003 4 E nosd
5 !
= = i
7 0.002 E 0.03
E z 0.02 4
c * Lowe AG & Walmsley AR (1986) S ® Lowe AG & Walmsley AR (1986)
0.001 ~ Bond graph 0.01 4 Bond graph
—— Steady-state Eq 19 ’ —— Steady-state Eq 19
0.000 4 J —- Steady-state Eqgs 19 and 20 0.00 — - Steady-state Eqs 19 and 20
T T T T T T T T T T T T
0 5 10 15 20 25 0 5 10 15 20 25

[A]o (mM) [A]; (mM)

(a) (b)
Figure 8. (a) Inward flux as a function of [A], when [A]; = 0, and (b) outward flux as a function of [A]; when
[A], = 0. Note that in order to compare with the kinetic data in Low AG & Walmsley AR (1986) [13], the molar
amount of glucose in the bond graph model was converted to glucose concentrations. The inward flux in Low AG

& Walmsley AR (1986) was computed using VA = 1[6]1 , While the outward flux was calculated by V7t =
Gz

%, [c] = 6.67(uM). The information needed to reproduce these results can be found in [18].
kg kg

Sodium-glucose cotransport with SLC5A1 (SGLT1)

The six-state energetic kinetic model of sodium-glucose cotransporter SLC5A1 (SGLT1) was proposed
by Parent et al. [19] to account for most experimental observations [20, 21, 22]. A simplified
electroneutral bond graph description of the SGLT1 model has been presented in [23], while the
electrogenic version is available in [24] with different parameters and bond graph formulations. Here,
we use this widely adopted example with the original kinetic parameters in [19] to show how the
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proposed modelling pipeline can handle multiple physical domains (electrical and chemical) in a
unified framework.

The SGLT1 (SLC5A1) sodium-driven transport of glucose is shown in Figure 9. The equations from the
bond graph diagram and the calculation of the steady-state flux are given below.

Eo z
4,
|—> zzFum ‘—I
vl—] o
Re; zFuj,—#nF @ Res
¥ 1

L i B G-

Gl SGLT1 +
@—: v —=(q") () —vir-0-(g=)
! 4

Rez Re,;

E,,zNa*aac 7, Req— 13 E 2Na*Gle

Figure 9. The modelling pipeline for SLC5A1. Note the addition of the links with the transmembrane potential in
this electrogenic reaction, and the use of the blue symbol showing the number of moles of Na* entering or
exiting the reaction, per mole of reaction flux v3¢:T* crossing the membrane. The reduced (steady-state) form
of the model is shown on the right.

The flux balance equations associated with the 0-nodes are:

+ d + +.d + d d
(uNa o qll)\la — —2171; (ug\la o L[Va — 2175; (uolC) ql();lc = —v,; (uGlC) — qulc = v,;
d — . d —_— . d —_— .
(wq) 2N = Ve — Vi (uz) 2= V1~ V2= Vg (us3) B = V27 Vs
d d d
(uy) 294 = V3~ Vg (us) 245 = Vs +v;, —vs; () 2t96 = Vs — Ve.

These differential equations provide the flux balance at the ten 0:nodes indicated in Figure 9 by the
red-encircled storage quantities.

The energy balance equations associated with the 1-nodes are:

f _ Nat e. ro_ e. f _ Glc. ;7 — o, .
(v1)  Upy =ug +2up® —zFugy;, uUpy = up +z.Fup; (V) Ugy, = Uy +Ug™S; Upy = Ug;
fo_ ., . Ty . f _., . ro_ Glc.
(v3)  upz = us; Upz = Uy, (V4) Ugy = Ug; Upy = Us T U
fo_ ., . ro_ Na™*. f _ e. ro_ e.
(vs)  uUps = us; Ups = Ug + 2U; * (V6)  Upg = Ug — ZFum; Upe = Uq + ZoFuyy,;

(v7) u£7 = Uy; Upy = Us.

These algebraic stoichiometry equations provide energy balance for the seven fluxes shown by the v;
terms in Figure 9. Note that charge transfer is also modeled.

The seven reactions in Figure 9 give rise to the following fluxes:

(Re,) — ( by /RT _ euRl/RT) Ky (K1Q1- (q(l)Va+)2.e—leu$n/RT — K, eleu%’n/Rr)l (21)
(Res) Uy = Ky ( wha/RT _ euRZ/RT) = 1, (K2q2-G5'° — K303), (22)
(Res) V3 = K3 ( uR3/RT - euR3/RT) = K3(K3q3 — Kuq4), (23)
(Rey) Uy = Ky (eu +/RT — euR4/RT) 4(K4q4 — Ksqs. quc): (24)
(Res) Vs = Ks (eu’fes/RT - euRS/RT) Ks (KSqS — Keqe- (@ a+)2): (25)
(Rey) Ve = Kq (euRe/RT _ euRé/RT) G(Ke%- e~72FUR/RT _ g o ezzFufn/RT), (26)
(Re;) V7 = Ky ( Uy /T _ euR7/RT) Kk7(K2q; — Ks59s). (27)
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These equations are supplemented with the constraint on the total amount of protein (g;,.):
Q1+ q2 + 43+ qs +qs + 4g = qror- (28)
By summing up potentials, the overall affinity of the transporter cycle is
Acycte = (u£1 — Upy) + (u;;z — Uko) + (u£3 — Uks) + (“1{;4 — Ukq) + (“£5 — Uks) + (“1{;6 — Ue) + (“1{;7 — Uk7)
= 2ula" — 2z, Fug, + uGle — ufl — 20N’ — 27, Fus, + up, — us

+ +
=2 (ulg’“ —ulea ) + (u§l —ufl) + (up —us) — 2(z; + z,)Fus,
So )

sodium transport glucose transport slippage charge transport

Reaction 7 represents the possibility for the transporter to transition from outward facing to inward
facing without binding glucose (called ‘slippage’). Since the transporter cycle moves 2 units of charge
into the cell per cycle, z; + z, = 1, and (ignoring slippage)

+ +
k&' q®

Kglcqglc e
Acycte = 2RTIn (51— + RT In |G-z ) — 2Fus,
K; q; K" q;

At equilibrium, 4., = 0 and the transporter stalls. The reversal potential is the membrane potential
RT K{)Va+qf)\1a+ 2 Kglcqglr

Solving the 10 flux balance equations using the fluxes from the 7 reactions (Equation 21 to Equation
27), together with the enzyme mass constraint (Equation 28) and specified values for gY¥¢", q{va+, q5',
and gf' gives 7 equations in the 7 variables g, to g and q,,. These equations include 14 biophysical
parameters (the 6 thermodynamic parameters K; to K,, the 7 reaction rate parameters k, to k,, and
the total amount of enzyme q,,.). These parameters are fitted to experimental data from Parent et al.
[19] below.

Sodium-glucose cotransport with steady-state flux and rapid binding and unbinding

To derive an analytic formula for the steady-state behaviour of the transporter, we make the usual two
assumptions: (i) that the substrates are present in much higher quantities than the membrane-bound
transporter (the Briggs-Haldane assumption), and that the cycle is therefore transitioning through the
6 states at a constant steady-state rate v, and (ii) that the binding and unbinding reactions (1, 2, 4 and
5) are much faster than the state transitions between inward- and outward-facing states of the protein.
We make the further assumption that slippage can be ignored (v, = 0).

From the first of these,

V1 =V =V3 =V, =Vs =Vg =7, (29)

and from the second,

Kiq;. (C_Ig,a+)2 = K, q,. 21 Ftin/RT (30)
K2q2- 35" = K33 (31)
K4qs = K5q5. G0 (32)
Ks5qs = K. (C_vaa+)2: (33)

leaving v; = vg = v, or
v = K3(K3q3 — K4qy) = K6(K6q6' e~72Fum/RT — Kiq;. ezzFu'e"/RT)- (34)

The 6 protein states q;.. g, can be eliminated from equations 30 to 34 and 28, to yield an expression

for the flux v in terms of the 4 solutes V", g¥%", g5 and g&'.

From 30 and 31,
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_ K —Na*t\? ,—22,FuS,/RT
@2 =000 (3 e72aFum/

2
_ =Glc _ K1 =Na*\“ =Glc ,-2z,Fu$,/RT
q——%% —j%@o)ﬂoﬂ 1%/

From 32 and 33,

s q art

q6 = g_z%- (q{\,a+)

Substituting the last 3 equations into the second equation of 34,

-2

-2
Kiqy. (—Na ) 'qglc.e—ZZlFum — Ksqs. quc — Z_EKSqS' (‘71Na+) .e—zzFufn/RT _ Z_§K1CI1-€ZZF“$"/RT
which gives

ds = 4y [K1(qo“ ) Goic, g=2mFuiu/RT "61( ezzFum/RT]/[K —Glc +%K5(qlgm+)‘2_e—zzFufn/RT]
3
or
s = ﬁql [(q(l)\la*')z.C—Iglc.e—ZZlFum/RT 4+ K6 zzFum/RT] /[ Gle 4 Ko (qlNa ) —zzFufn/RT] (35)
Ks

3

Substituting for g,.. g in terms of g,in Equation 28, gives
+ + +\ 72
Gror = [1 +h (qNa ) e—2z1Fuf, /RT +K1( Na )2 ol e ZZ1Fum/RT]q +[ quc +1 + (qNa ) ]qs
or, using gs given in terms of g, by Equation 35:
Atot [Qz Gle + e Ke (q ) -2 e—zzFum/RT] [1 L (qzva+) _e-221FUG/RT | %(qéva’f)zl gote. e—Zleuf,L/RT] [qimc n %(q{wﬁ)_z'e—zzFufn/RT]

n [::_i 35 +1+ Z_: (q{vw)_Z]I;_: [(qéva'*)zlqglc'e—zhl’ufn/RT oy ezzFuf,L/RT]

K3

or

q1 = Grot/A (36)

[ql(}lc+ (q{\la"') —zzFuffn/RT]

where

A= [1 + %(C_If;va-")Z_ e—Zleufn/RT + ﬁ_:(q{)va+)2. 673[5- e—Zleu,en/RT] [inlC + Z_z(q{vaJr)_z. e—zzFufn/RT]

Ki —Gic o K1, Ki (=Na*\"2] [(sna*\2 =Glc ,—22,Fu/RT | K Fug,/RT
gl A @) ] [(ahe) qge. e AT Ko pmPub/AT

K3

From the first equation in (34),

_Nat\2 _ _ e
v =k3(K3q3 — K4q4) = [K3K1(q(lj\1a ) _quc_ e 221Fum/RT] g, — K3K5 qazc]qs
or

_Nat\2 — _ e _ Ke f—Na+t\ "2 _ e _ _Nat\2 - _
v = {[K3K1(q{,va ) .Go.e Zleum/RT] [qiclc +K_:(qlgVa ) e zzFum/RT] — (5K, 351 [(qga ) .g8.e 221 Fufa/RT | Ko . zzFum/RT]}
q1
X Ic , K +\72 e /RT
[aia c+_6(ql{\1a) e~z2Fufy/ ]

K3

or
-2 22 2z1Fu$, zaFu$,
Na+ =Glc ,—2z,Fug Gle 4 Ke (=Na* Glc] | (zNa™* —Glc - Ke
v = sk {[ (@) g eamren] [gfte + 2 (qe) LT - [a0] (@) a4
q1
[quc+K6 Na+ -z —22Fu$n/RT]
or
2 2
— =Na*t =Glc ,-2z,Fu,/RT (=Na —z,Fu$,/RT _ =Glc ,z,Fuf,/RT ‘11
e .e

or, now substituting for g, from Equation 36,
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v = KK, {(c_[éva+)2. gs'e. o~ (2z1+22)Fufy /RT (F[{V“Jr)_z _ ‘_IiGlC- ezzFu,en/RT} Grot/ A
2
or, multiplying numerator and denominator by (c‘]{"“+) e 221+ 22)Fuin /RT
v = K {( Na+) gor — (g )2 76l 2(21+22)Fum/RT} B
rotKelt1 1\ 4 q; /
where

_ [1 + (qév(ﬁ) (ile—ZZlFum/RT_'_K: géte. —Zleum/RT)] [(qzva ) —Glc +z_:e—zzFufn/RT]_8(221+22)Fu7en/RT

=Na* 2 (K =Glc 4 K1 ﬂ][ =Na*\* =Glc ,-2z;Fu%/RT | Ké ,z Fufn/RT] (2z1+2,)Fug, /RT
+[(ql ) (K.q +K5)+K5 (qo )'qo e A +K3e2 Le(2z1tz;

where z; + z, = 1.

Hence
v = qtotK6K1 {(q ) —Glc _ (q )2 —Glc ZFum/RT} /B (37)
B = [62z1Fu$‘n/RT + (q{)van)z (2 Ky —Glc)] [(q )2 GOl pZaFufn/RT +i_:
+[§_:+((711Va+)2 (g_; K1 —Glc)] [(q(I)\la ) gote _@72Fuf/RT 4 K6 - 2Fum/RT] (38)

Note that the flux is zero when

2Fum

(q )2 =Glc _ (qLNa ) —Glc e RT .

i.e. the equilibrium potential is, as above,

Nat 2 =Glc

U =3 ln [<q”a+> 'ﬁf”c]

In Figure 10 the current-voltage (I-V) relationship for the full kinetic bond graph model (run to steady
state), and the reduced steady-state flux model given by equations 37 and 38, are compared using
biophysical parameters fitted to experimental data from Parent et al. [19] (see below) but with k4, x,,
K, and ks set to arbitrarily high values to reflect the fast binding and unbinding assumption. This result

confirms that the assumption of no slippage is valid for the range of potentials shown (the slight
discrepancy at the lower voltages is due to this small slippage flux).

.Q

0+ —- Bond graph-fast binding ———
—- Steady-state Eqs 37 and 38 ,-"""L
«,“
—100 -
rd
'
—200 + o
/
V4
z —300 7/
= /7
—400 - /
f‘f
=500 4 3
Y4
4
-600 4——4
/
T T T T T
—150 —100 =50 o] 50
V (mv)

Figure 10. The steady-state results predicted by the full bond graph model, compared with the results from the
reduced steady-state model. Both simulations use the assumption of fast binding and unbinding. The information
needed to reproduce these results can be found in [18].
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Fitting the bond graph model of sodium-glucose cotransport to experimental observations

The kinetic parameters [19] of each reaction in Figure 9(b) are listed in Table 3(a). The reverse rate
constant k; of reaction Re, and k5 of reaction Re; are calculated by the detailed balance equations:
ks = kiktrded K = kikikiks
S R N Y
Similarly, we applied the method introduced in [17] to convert the thermodynamically consistent
kinetic parameters in Table 3(a) to the bond graph parameters in Table 3(b) and Table 3(c).

Reaction Forward rate constant k;° Reverse rate constant k- Ref
Re, 80000 M 251 500 s~* [19]
Re, le5 M~ 1s71 20571 [19]
Res 5057t 50 s—1 [19]
Re, 80051 1.8285e7 M~'s~1 (1.0971e7 M~1s~1) ke is calculated by the
detailed balance
Res 10 st 50 M~2s71 [19]
Reg 5571 (3s71) 3551 [19]
Re, 03571 1371571 (0.823571) Jez is calculated by the

detailed balance

(a)

Parameters | Value Unit

KM 3.22e-8 fmol?

K(l)Va 3.22¢-8 fmolL Parameters | Value Unit

KiGlC 4.856-6 fmol Kq 47.91 fmol.s?

Kglc 4.85e-6 fmolL Ky 2.325 fmol.s?
K, 2,235 fmol K3 5.812 fmol.s?
K, 1044 fmol Ky 93 fmol.s™
Ks 2.602 fmol . Ks 0.21(0.349) | fmol.st
K, 2.602 fmolt Kg 15.66 fmol.s?
Ky 47.71(28.63) | fmol® K7 0.029 fmol.s™
Kg 0.319(0.192) | fmol?

(b) (c)

Table 3 (a) The thermodynamic parameters and (b) reaction rate constants for the bond graph model of SLC5A1
shown in Figure 9. Note the very small rate constant (k) for slippage. The kinetic parameter k} =3 571 was
used in the steady-state plot in [19]. This value and the corresponding bond graph parameters are in brackets ().

Figure 11 shows the results of fitting the 14 biophysical parameters of the full bond graph model to
transient electrical current measurements by Parent et al. [19] at clamped membrane voltages of
50mV and -150mV. Figure 11(a) shows the experimental results and model predictions for the case
when the external glucose level is set to zero, and Figure 11(b) shows the measured results and model
predictions for the case when the external glucose level is set to 1mM.
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(a) Before the addition of glucose (b} After the addition of glucose

Figure 11. The time course of the carrier-mediated currents. (a) The electrical current when [Glc], = 0 mM, and
(b) the current when [Glc], = 1 mM; The output of the bond graph model is the current —I;, and the data of
Parent et al. [19] are reproduced from Figure 10 of that paper using the digitizing software Engauge. The
information needed to reproduce these results can be found in [18].

We applied a range of test potentials to the full bond graph model with a slightly reduced k& = 3 st

to produce the steady-state glucose-dependent I-V curve (red plot) shown in Figure 12, which is
compared with the |-V curve (black dot plot) given in Figure 5 in [19]. The simulated glucose-dependent
current is defined as the difference in the carrier-mediated current at steady state before and after the
addition of glucose. As noted in [19], the background current induced by the experimental conditions
can be accounted for by an additional RC circuit. However, this element is not included in the bond
graph model, which may explain the discrepancy between the simulation and the measurements.
Additionally, errors may be introduced during the digitizing process of the published figure.

Note that details on the numerical implementation are given in the accompanying Physiome paper
[18] and the code, referenced in that publication, is available on PMR.

04 e Parentetal (1992} =
=+ Bond graph /4
.-/ .
-20 A +
4
!
. L ]
—40 7
2 4
= /!
—  —60 o f'
7/
s
—80 7
A
L
- -
-100 - =
T T T T T
—150 —100 =50 0 50
vV (mV)

Figure 12. The full bond graph model compared with Figure 5 in Parent et al. [19]. The information needed to
reproduce these results can be found in [18].
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DISCUSSION

Bond graph models of molecular pathways have previously been developed for enzyme-catalysed
reactions including glycolysis and the SLC transporter SGLT1 (but without considering the electrogenic
nature of this transporter) [23], and for membrane ATPase transporters including and the cardiac
sarcoplasmic/endoplasmic Ca** ATPase (SERCA) and the cardiac Na*/K* ATPase [25]. An electrogenic
version of a bond graph-based model of SGLT1 is also available [24].

In this paper we have focussed on developing a comprehensive framework for bond graph modelling
of lumped parameter biological processes using the six physical units needed to represent energy
transmission, storage and exchange between the mechanical, electromagnetic and chemical forms of
energy (including energy dissipation to high entropy heat). We have proposed a new way of pictorially
showing all components of these processes such that the equations representing conservation of
mass, charge and energy, respectively, together with their constitutive laws, uniquely defined by the
bond graph diagram, are easily understood by physiologists and biologists generally. We presented
three examples - a coupled electromechanical actuator, a voltage-sensitive and mechano-sensitive
gated ion channel, and an enzyme-catalysed reaction — to show how the bond graph framework can
be used to represent all types of energy exchange.

We then developed new bond graph models for two glucose transport members of the SLC transporter
family, one for facilitated diffusion (SLC2A2/GLUT2) and one for sodium-glucose cotransport
(SLC5A1/SGLT1). In each case we derived the full kinetic model from the bond graph diagram and then
derived a reduced steady-state model under the assumption that the binding and unbinding reactions
are much faster than the reactions representing enzyme transition between inward- and outward-
facing states of the transporter protein and that, because the substrates are present in much greater
amounts than the transporter protein, the enzyme cycling rate can be assumed to be constant. For the
second transporter, we must also assume that the slippage mechanism (protein state transition and
energy dissipation with no useful transport), is not significant. The steady-state analytic models
provide thermodynamically consistent generalisations of Michaelis-Menten models.

The parameters of the kinetic model and the steady-state reduced model were fitted to experimental
data from the literature for each of the two types of SLC glucose transporter.

The SLC superfamily of transporter-encoding genes currently includes over 400 members with 62
families, each dealing with one specific type of transported molecule [1]. The SLC2 family, for example,
deals with facilitated transport of glucose (and in one case urate), while the SLC5 family deals with
sodium-assisted transport of glucose, myo-inositol, iodide, choline, lactate, or mannose. Figure 13
shows a range of these SCL transport proteins, grouped by the number of different molecules being
transported and the direction of transport.
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Figure 13 Members of the SLC transporter superfamily, grouped into four classes based on the number of solute
ligands being transported. Rows within each of these four classes show examples of inwardly-directed,
outwardly-directed, and two-way transport.
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The extent to which the equations derived above for SLC2A2 and SLC5A1 can be generalised to cover
a wider group of family members depends on two key factors: the sequence of binding and unbinding
and, for the transport of charged molecules, the movement of charge within the membrane.

The ability to reduce the kinetic model to a steady-state relationship between flux and solute amounts
is dependent on the assumption of rapid binding and unbinding, the assumption that the enzyme
cycles at a constant rate (a consequence of the Briggs-Haldane assumption of relatively low expression
levels for the membrane proteins compared with the availability of solute ligands), and the assumption
that slippage mechanisms are not important. Each of these assumptions needs to be validated for a
specific transport protein, as we have done in the examples presented here by comparing the output
of the reduced model with the output of the full kinetic model (Figures 8 and 10). Note that in the
approach described here we are assuming that each transporter, belonging to a template appropriate
to one of the four families illustrated in Figure 13, can be fitted to flux measurements under controlled
perturbations of the molar quantities of ligand on either side of the membrane. Such measurements
have yet to carried out on many of these transporters. Ideally these reaction parameters would be
predicted by the three-dimensional structure of the proteins (and a knowledge of the composition of
the membrane sugars).

The SLC transporters in a particular cell influence one another if they transport a common ligand (such
as sodium) and for electrogenic proteins there is also crosstalk via changes in the electrical potential
of the membrane. We will examine composite bond graph models involving more than one transporter
in future publications. See [26, 27] for modular bond graph approaches to systems biology.
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CONCLUSION

Physiological processes almost always involve energy exchange between mechanics, electromagnetics
and biochemistry. We demonstrate how energy-based bond graphs can capture the processes and
generate models obeying the three conservation laws of physics, particularly where these models
involve the exchange of energy between the three different physical energy storage mechanisms. We
developed a number of generic bond graph templates for the SLC superfamily, and fitted parameters
for SLC2A2 and SLC5A1 to experimental data. This framework can be extended to encompass any
lumped parameter physiological processes and to higher dimensional systems via port-Hamiltonians
[28]. The bond graph representation of biological processes will serve as the foundation upon which
high-level physiological systems will be built.
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