

1 **Lethal Disruption of the Symbiotic Gut**
2 **Community in Eastern Subterranean Termite**
3 **Caused by Boric Acid**

4 **Aaron R. Ashbrook,^{1,2,4,*} Melbert Schwarz,^{1,3,*} Coby Schal,¹ and Aram Mikaelyan^{1,4}**

5

6 ¹Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC, USA,

7 ²Department of Entomology, Louisiana State University, Baton Rouge LA, USA, ³Department of

8 Population Health and Pathobiology, North Carolina State University, Raleigh NC, USA, and

9 ⁴Corresponding authors, e-mail: amikael@ncsu.edu, AAshbrook@agcenter.lsu.edu

10 *These authors contributed equally

11

12 **Abstract**

13 The Eastern subterranean termite, *Reticulitermes flavipes* (Kollar), is a significant pest, causing
14 extensive damage to structures that amount to substantial economic losses. Traditional termite
15 control methods have utilized boric acid, known for its broad-spectrum insecticidal properties, yet
16 its impact on termite gut microbiomes and the implications of such effects remain understudied.
17 Our study evaluates the dose-dependent mortality of *R. flavipes* upon being provided boric acid
18 treated filter papers and investigates the resulting dysbiosis within the termite gut microbiome.
19 Consistent with reports from other insects, mortality increased in a dose-dependent manner, with
20 the highest boric acid concentration (203.7 $\mu\text{g}/\text{cm}^2$ of filter paper) significantly reducing termite
21 survival. 16S rRNA gene sequencing of the gut microbiome revealed notable shifts in
22 composition, indicating boric acid-induced dysbiosis. Aside from an overall decrease in microbial
23 diversity, the relative abundance of some symbionts essential for termite nutrition decreased in
24 response to higher boric acid concentrations, while several putative pathogens increased. Our
25 findings extend the understanding of boric acid's mode of action in termites, emphasizing its effect
26 beyond direct toxicity to include significant microbiome modulation that can have dire effects on
27 termite biology. Considering its potential to induce dysbiosis and potentially augment the
28 effectiveness of entomopathogens, our study supports the continued use of boric acid and related
29 compounds for termite-resistant treatments for wood.

30 **Key words:** Eastern subterranean termite, boric acid, termite control, gut microbiome, dysbiosis,
31 wood protectants

32

33 Introduction

34 The Eastern subterranean termite, *Reticulitermes flavipes* (Kollar) (Blattodea: Rhinotermitidae),
35 is a major wood-destroying pest with a wide distribution in the U.S. and around the world (Dedeine
36 et al. 2016). Subterranean termites display cryptic nesting behaviors, which often allow their
37 colonies to go undetected when causing damage to structural wood (Oi 2022). Globally, termites
38 impose an astonishing economic burden, with damages estimated at approximately USD 40
39 billion annually, with 80% of the damage caused by subterranean species (Rust and Su 2012; Oi
40 2022). The ability of *R. flavipes* and other termite species to inflict significant damage on wooden
41 structures is attributed largely to their intricate symbiotic associations with gut microbiome (Brune
42 2014), which include protozoa (Gile 2023), bacteria (Brune and Dietrich 2015), and archaea
43 (Protasov et al. 2023). This complex digestive symbiosis enables termites to effectively break
44 down lignocellulose (Watanabe and Tokuda 2010), critically weakening the integrity of wood, and
45 ultimately making structures more susceptible to collapse (Scharf 2020).

46 The gut microbiome of termites is a complex and dynamic system that is susceptible to
47 disruption by antibiotics, as has been observed in *Zootermopsis nevadensis* Hagen (Blattodea:
48 Archotermopsidae) and *R. flavipes* (Rosengaus et al. 2011). Force-feeding starch to *R. flavipes*
49 can precipitate a dramatic shift in microbiome composition and functionality, chiefly characterized
50 by the elimination of cellulolytic protozoa and their associated bacteria (Ikeda-Ohtsubo et al. 2010;
51 Mikaelyan et al. 2017). This vulnerability creates the potential for utilizing disruptive agents that
52 could even enhance the efficacy of pesticides, including biological control agents, by targeting
53 and altering the termite gut microbiome.

54 Boric acid is an inexpensive, broad-spectrum insecticide that has been widely used to
55 protect wood from pest damage and can cause mortality in termites (Gentz and Grace 2006;
56 Schubert 2015). While the full scope and mode of its action remain to be fully elucidated, it has
57 been demonstrated to negatively impact digestion and nutrient absorption in a broad range of

58 insects (Cochran 1995; Klotz et al. 2002; Habes et al. 2006; Gwokyalja and Altuntaş 2019).
59 Notably in termites such as *R. flavipes* and *Coptotermes formosanus* Shiraki (Blattodea:
60 Rhinotermitidae), preliminary studies have demonstrated that boric acid eliminates gut protozoa
61 (Kard 2001), impairing termite digestion, and reinforcing its reputation as a “stomach poison”
62 (Ebeling 1978). However, the specific changes in the termite gut microbiome induced by boric
63 acid remain under-explored.

64 Recent research on cockroaches, which share a close phylogenetic relationship with
65 termites and have similarly complex gut microbiomes, highlights the disruptive effects of boric
66 acid on these communities (Jiang et al. 2021; Yang et al. 2021). Inspired by these insights, our
67 study seeks to examine how boric acid alters the gut microbiome composition of *R. flavipes*,
68 particularly in relation to its lethal and sublethal impacts. We aim to bridge this gap by focusing
69 on two objectives: 1) Characterizing the mortality of *R. flavipes* in response to various boric acid
70 concentrations through feeding experiments, and 2) Investigating whether boric acid-induced
71 disruption increases the prevalence of opportunistic pathogens in the gut community of *R.*
72 *flavipes*. By conducting experiments over a span of 14 days, where termite workers are fed filter
73 papers treated with different boric acid concentrations, we recorded their mortality and observed
74 resulting alterations in their microbiomes after 7 days of boric acid treatment.

75 **Materials and Methods**

76 **Insects**

77 A colony of *R. flavipes* was collected from a forested area in Raleigh, NC, for use in experiments.
78 Several hundred termites were maintained in plastic containers and provided with moist soil
79 (Nature’s Care Organic & Natural Potting Mix with Water Conserve, Miracle-Gro, Marysville, OH),
80 and pine shims (0.8 cm x 3.5 cm x 20 cm). The container was humidified by spraying water every

81 3 to 5 days. Termite colonies were maintained in an environmental rearing room at 26 °C, 50%
82 RH, on a 12 :12 LD cycle.

83 **Boric Acid Bioassays**

84 To administer boric acid to termites, filter paper discs (10 mm Whatman No 1, Cytvia,
85 Marlborough, MA, USA) were initially stapled to plastic microscope coverslips (22 x 22 mm).
86 These papers were subsequently treated with either 4 µl of distilled water (control) or 4 µl of boric
87 acid solutions at various concentrations (0.125%, 0.25%, 0.5%, 1%, and 4% boric acid). This
88 range of solutions resulted in the corresponding amounts of 5, 10, 20, 40, and 160 µg of boric
89 acid per paper, or 6.4, 12.7, 25.5, 50.9, and 203.7 µg of boric acid per cm² of filter paper,
90 respectively. Following treatment, the papers were air-dried for 24 h in a convection oven (BOF-
91 102, Being Scientific, Ontario, CA, USA) maintained at 32 °C.

92 Prior to use in experiments, the filter papers were weighed using a precision balance
93 (Explorer EX224, Ohaus, Wood Dale, IL, USA) to enable estimation of the amount of paper
94 consumed by the termites. The average weight of filter papers was 6.8 mg ± 0.065 mg. Post-
95 experiment, the papers were dried for 24 h at 32 °C, then weighed again. Their final weight was
96 subtracted from the initial weight to determine the amount of paper consumed during the
97 bioassay.

98 For experiments, worker termites were removed from the colony using an aspirator.
99 Groups of 10 worker termites were then placed in plastic Petri dishes (100 x 10 mm) containing
100 15 ml of sand moistened with 5 ml of tap water. All termites were starved for 24 h prior to the
101 bioassay. Termites were then offered one filter paper treated with water (control treatment) or with
102 a specific concentration of boric acid (three replicates per treatment). Mortality checks were
103 conducted every 24 h over 14 days. Termites were deemed to be dead if they did not exhibit any
104 movement in response to gentle prodding with feather-tip forceps. Dead termites were removed

105 from the Petri dish to prevent necrophagy, which could potentially confound the results pertaining
106 to direct consumption of boric acid. Bioassays were conducted in incubators at 26°C, 90% RH, in
107 continuous darkness. Termites fed untreated filter papers served as controls, and each treatment
108 was replicated three times.

109 Analysis of Termite Survivorship and Consumption of Boric Acid-Treated 110 Papers

111 Mortality data for termites fed different concentrations of boric acid during the 14-day experimental
112 period were analyzed using Kaplan-Meier survival analysis in SPSS 27 (IBM, Armonk, NY, USA).
113 Different concentrations and controls were compared in a pair-wise manner using a log-rank test.
114 Insects that survived beyond the 14-day period were right censored. To determine the hazard
115 ratios for different treatments, a single proportional hazard regression was conducted. The water
116 controls in each experiment were used as the baseline of comparison of hazard regression and
117 statistical separation of different treatments. When possible, mean survival times (MSTs), median
118 survival times, and relative log hazard ratios were estimated. The weight of treated filter papers
119 was used to test for statistical differences between the amounts consumed in different treatments
120 using Analysis of Variance (ANOVA) and a post-hoc t-tests (JMP 17, Cary, NC, USA).

121 Gut Sampling, DNA Extraction and Sequencing

122 To investigate the impact of boric acid on the gut microbiome of *R. flavipes*, a separate set of
123 termites from the same colony was utilized, following a setup similar to the previously described
124 mortality assay. Termites were isolated using an aspirator and placed in Petri dishes. Twenty
125 worker termites per Petri dish were starved for 24 h, and then provided two filter papers treated
126 with either water or a specific concentration of boric acid, as described earlier. The use of 20
127 termites (compared to 10 in the mortality assays) and two filter papers ensured that sufficient live
128 termites were available for microbiome sequencing. Mortality was monitored every 24 h for 7 days

129 and any dead individuals were promptly removed to prevent necrophagy. Control treatments were
130 filter papers treated with water and termites provided with no paper. Each treatment was
131 replicated three times.

132 On the seventh day of the experiment, 10 worker termites from each replicate were
133 anesthetized on ice packs for dissection. The gut was carefully removed by restraining the head
134 with forceps and gently pulling the terminal segments of the abdomen with another forceps. Each
135 termite gut was then placed in ZR BashingBead lysis tubes (Zymo Research, Irvine, CA, USA),
136 suspended in 1 ml of ZR BashingBead buffer, and homogenized using a Benchmark Scientific
137 D2400 Bead Beater (Sayreville, NJ, USA) for 4 cycles at 6.0 m/s for 11 seconds followed by 30 s
138 of rest between each cycle. The homogenized gut samples were then stored at -80°C until DNA
139 extraction. Each treatment and control group were replicated three times.

140 DNA from the homogenized termite guts was extracted using the Quick-DNA™ Fecal/Soil
141 Microbe Microprep Kit (Zymo Research) following kit instructions. The bacterial community in the
142 dissected guts of *R. flavipes* from control and boric-acid-treated groups was characterized via
143 amplicon sequencing of the 16S rRNA gene. Polymerase Chain Reaction (PCR) Primers S-D-
144 Bact-0341-b-S-17 (5'-CCTACGGNGGCWGCAG-3') and S-D-Bact-0785-a-A-21 (5'-
145 GACTACHVGGGTATCTAATCC-3; Klindworth et al. 2013), each with a unique 8-bp-barcode at
146 the 5' end, were utilized to amplify the V3-V4 region of the 16S rRNA gene. PCR was performed
147 with 50 µl reactions prepared with 10–50 ng of genomic DNA, 0.4 µM forward and reverse primers,
148 25 µl Taq polymerase master mix red (PCR Biosystems, Wayne, PA, USA), and 20 µl molecular-
149 grade water. The following PCR program was used: 30 s of denaturation at 95°C, followed by 25
150 cycles of 20 s at 95°C, 20 s at 58°C, 30 s at 72°C, and a final elongation step at 72°C for 3 min.
151 Amplicons were then cleaned using the DNA Clean and Concentrator-5 Kit (Zymo Research)
152 following the manufacturer's instructions. Purified amplicons were quantified and commercially
153 sequenced at Novogene (Beijing, China) using the Illumina MiSeq platform.

154 **Microbiome Analysis**

155 Processing and analysis of sequence data was conducted in line with the methodologies outlined
156 by Schwarz et al. (2023), utilizing *mothur* (Schloss et al. 2009) for sequence processing and
157 stringent quality control measures, followed by chimera removal and taxonomic classification.
158 Briefly, we excluded contigs displaying ambiguities or homopolymer regions exceeding 10 bases.
159 Additionally, sequences shorter than 200 bases, or those with an average quality score below 25,
160 or a window average of 25 (over a window size of 50), were also eliminated. The remaining
161 sequences were then aligned against the SILVA group's comprehensive 50,000-position small
162 subunit rRNA gene alignment. After the removal of chimeric sequences, the high-quality
163 sequences were classified using the RDP Naïve Bayesian Classifier (Wang et al. 2004)
164 implemented in *mothur*, referencing the SILVA database for taxonomic information (Quast et al.
165 2013). Following classification, sequences identified as originating from chloroplast or
166 mitochondria were excluded from the subsequent ecological analyses.

167 To compare the alpha diversity of the termite microbiome across varying concentrations
168 of boric acid, an ANOVA was conducted using the R (R Core Team 2021) package *vegan* (Dixon
169 2003) on the taxonomic composition of samples at the genus level. Beta diversity among the
170 bacterial communities was assessed at the genus level using the Morisita-Horn metric via the
171 *vegan* package. The resulting distance matrix was analyzed through two-dimensional non-metric
172 multidimensional scaling (NMDS) (using the *metaMDS* function in *vegan*) to visualize microbial
173 community dissimilarities. Additionally, permutational ANOVA (PERMANOVA) was performed on
174 the Morisita-Horn distances to statistically evaluate the differences in termite gut microbiome
175 compositions across varying concentrations of boric acid.

176 The random forest model, using the *randomForest* package (Liaw et al. 2002) in R, was
177 employed to identify the top 30 bacterial genera contributing to the observed differences in the

178 termite gut microbiome under varying boric acid treatments. The model, built using genus-level
179 abundance data, ranked the taxa based on their importance measured by the Mean Decrease in
180 Gini Index, ensuring the identification of the most influential genera. The log-transformed relative
181 abundance of the top 30 taxa were then visualized using a heatmap (*pheatmap* package; Kolde
182 and Kolde 2015), highlighting their distribution across different treatment groups and providing a
183 clear representation of the taxa driving the observed differences in microbial community structure.

184 **Results**

185 **Survival of *R. flavipes* After Feeding Upon Boric Acid-Treated Papers**

186 Boric acid caused mortality in termites when they fed upon filter papers treated with different
187 doses. Survivorship of *R. flavipes* was significantly impacted by the concentration of boric acid in
188 a dose-dependent manner (Fig. 1, Table 1), with different treatments significantly impacting
189 termite survivorship (Overall model, Chi-square = 48.1, d.f. = 5, $P < 0.005$). In comparisons
190 between treatments, we found no significant differences between the control and 5 μg of boric
191 acid per paper, the lowest tested dose (Chi-square = 1.9, d.f. = 1, $P = 0.16$). Termites being fed
192 filter papers treated with 10, 15, or 20 μg of boric acid exhibited similar mortality rates (Chi-square
193 = 0.001–2.2, d.f. = 1, $P > 0.05$), but they were significantly different from the lower dose as well
194 as from the highest dose. The highest mortality was observed in the 160 μg boric acid treatment,
195 which was significantly different from all other treatments (Chi-square = 8.7–29.5, d.f. = 1, $P <$
196 0.003). Some minimal mortality occurred after one day, but survivorship in the 160 μg boric acid
197 treatment began to decline on day 4 and continued to decline until the end of the experiment. The
198 median survival time in the 160 μg boric acid treatment was 7 days, which was therefore selected
199 as the sampling point for the microbiome analysis in subsequent experiments. In the lower dose
200 treatments, mortality began on days 6 or 7.

201 When termites were provided with filter papers treated with boric acid, the amount of paper
202 consumed varied depending on the boric acid concentration present (Fig. 2, ANOVA, d.f.= 5, 17,
203 $F = 3.19$, $P = 0.046$). Post-hoc *t*-tests revealed significant differences between treatments, with
204 the control and the 5 μ g treatment groups being statistically similar ($P > 0.05$), with all the paper
205 being consumed in two replicates of the control and one replicate of the 5 μ g treatment group.
206 The 10 and 20 μ g boric acid treatment groups had similar consumption to all other treatment
207 groups, with an average consumption of 2.5 ± 2.0 and 3.7 ± 1.7 mg, respectively. Termites in the
208 40 and 160 μ g treatment groups consumed the least amount of paper at an average 0.67 ± 0.3
209 and 0.77 ± 0.33 mg per treatment, respectively.

210 Termite Gut Bacterial Community in Relation to Boric Acid Concentration

211 We assessed the ability of boric acid to alter the microbial community of termites by feeding them
212 different concentrations which also significantly impacted their survivorship. Data processing in
213 *mothur* yielded a total of 9.87 million sequences from the 18 samples, with 548,456 sequences
214 on average obtained per sample. 79% of all sequences (from all samples) were classified to the
215 genus level using the Silva (v138) non-redundant database. This high classification success
216 allowed us to conduct all downstream ecological analyses at the bacterial genus level. ANOVA
217 comparing alpha diversity across boric acid concentrations revealed a significant ($P < 0.005$)
218 difference supported by a high *F*-value (23.89). The PERMANOVA results indicate a highly
219 significant effect of boric acid concentration on the termite gut microbiome structure ($F = 46$, $R^2 =$
220 0.7417 , $P = 0.001$), which suggest that around 74% of the observed variation in community
221 structure can be explained by the grouping variable, i.e. boric acid concentration.

222 In the NMDS ordination plot (Fig. 3; Stress = 0.045) based on Morisita-Horn distances, a
223 distinct separation is evident between the control group and the samples subjected to the highest
224 boric acid dose (160 μ g per filter paper). This separation underscores the significant disruption of

225 bacterial community structure at this boric acid level, as further supported by the substantial
226 proportion of explained variance in the PERMANOVA analysis. While there is a visible gradient
227 across the boric acid doses, the absence of a distinct separation between the control group and
228 the 40 µg boric acid treatment group suggests that lower concentrations of boric acid may only
229 minimally affect the gut microbiome structure (as indicated by the overlapping points in the NMDS
230 plot). This observation aligns with the PERMANOVA result, where the high R^2 value indicates that
231 higher concentrations of boric acid are driving the structural changes in the bacterial microbiome.

232 **Exposure to Boric Acid Causes Taxonomic Shifts in Termite Gut
233 Community**

234 To uncover specific taxonomic shifts in the termite microbiome in response to the boric acid
235 treatments, we used a Random Forest machine learning approach. We selected the top 30
236 genera that exhibited marked shifts in relative abundance across the gradient of boric acid
237 treatments (visualized in the heatmap in Fig. 4). The heatmap reveals several patterns in the
238 distribution and abundance of bacterial taxa in relation to boric acid exposure in termites (for a
239 more comprehensive exploration of the changes in the gut microbiome at various taxonomic
240 levels, see Table S1). Notably, genera within the phylum Proteobacteria, including *Pseudomonas*,
241 *Citrobacter*, and *Stenotrophomonas*, showed pronounced variations in relative abundance,
242 particularly at the higher dose of 160 µg. Conversely, some members of the phylum
243 Actinobacteriota, like the “Coriobacteriales *incertae sedis*” and the “uncultured *Raoultibacter*”
244 group, displayed a decrease in relative abundance with increasing concentration of boric acid,
245 with the lowest presence observed in the 160 µg treatment. Phyla such as the Fibrobacteraceae
246 from the Fibrobacterota, which have been associated with cellulose degradation in the guts of
247 higher termites, show a reduction in abundance with increasing boric acid.

248 Linear regression analysis further allowed us to interrogate the impact of increasing boric
249 acid concentrations on the distribution and abundance of various bacterial taxa within the termite
250 gut. It unveiled both significant positive and negative correlations across different bacterial
251 lineages. Broad patterns in gut community structure reflecting boric acid concentrations were
252 observed already at the phylum level. Bacteroidota and Firmicutes showed a strong positive
253 correlation with increasing boric acid concentration, evidenced by their *P*-values (0.0102 and
254 0.0437, respectively) and R^2 values (0.41 and 0.28, respectively). Conversely, Spirochaetota and
255 Elusimicrobiota displayed significant negative trends, with *P*-values of 1.75e-05 and 0.0051,
256 respectively. The high R^2 values for Spirochaetota (0.77) and Elusimicrobiota (0.47) indicate that
257 a significant portion of the variance in abundance for these phyla can be attributed to boric acid
258 concentrations.

259 Diving deeper at the genus level, *Alistipes* (Phylum: Bacteroidota) demonstrated a
260 significant positive correlation with boric acid concentration ($P = 1.47\text{e-}05$), with an R^2 value of
261 0.78. The abundance of *Alistipes* increased from $0.46\% \pm 0.03\%$ in water-treated samples to
262 $2.97\% \pm 1.05\%$ in samples treated with 160 μg of boric acid. *Raoultibacter* (Phylum:
263 Actinomycetota), despite its significant shift ($P = 3.23\text{e-}05$, $R^2 = 0.75$), remained a comparatively
264 rare taxon, with a relative abundance of less than 0.05% across all treatments.

265 Significant positive trends were also identified for several other taxa, including “Rs-
266 E47_termite_group_ge” (Phylum: Bacteroidota), *Lysinibacillus* and *Mycoplasma* (Phylum:
267 Firmicutes), as well as *Pseudomonas*, *Delftia*, *Dechloromonas*, and *Stenotrophomonas* (Phylum:
268 Proteobacteria). These taxa demonstrated substantial increases in mean relative abundance—
269 ranging from 18-fold to 45-fold—between control filter papers and those supplemented with 160
270 μg of boric acid. For instance, *Lysinibacillus* surged from $0.06\% \pm 0.07\%$ in the control to 2.53%
271 $\pm 2.76\%$ in termites exposed to boric acid. Similarly, the abundance of Rs-E47_termite_group_ge
272 escalated from $0.48\% \pm 0.04\%$ to $8.43\% \pm 1.54\%$.

273 Only one of the genera shortlisted by our random forest approach, *Endomicrobium*,
274 presented a significant negative trend ($P = 0.00512$, $R^2 = 0.47$), indicating a drop in abundance
275 with rising boric acid concentrations. Its relative abundance diminished from $26.38\% \pm 6.36\%$ in
276 the control group to $8.32\% \pm 4.39\%$ in the 160 μg boric acid treatment group, highlighting a
277 considerable impact of boric acid on this taxon's presence within the termite gut.

278 Discussion

279 Our study builds upon existing evidence to further validate boric acid's lethal impact on termites,
280 with survivorship in the eastern subterranean termite *R. flavipes* dropping in a dose-dependent
281 manner (Fig. 1, Table 1). This finding supports previous observations of dose-dependence in *R.*
282 *flavipes* (Su et al. 1994), and the termites *C. formosanus* (Su et al. 1994; Gentz et al. 2009; Gentz
283 and Grace 2009) and *Heterotermes indicola* (Wasmann) (Blattodea: Rhinotermitidae) (Farid et al.
284 2015). The highest amount tested in our study was 160 μg of boric acid per 6.8 mg of filter paper,
285 which corresponds to approximately 23,529 ppm (calculated as 160 μg /6800 μg to convert to
286 ppm). This concentration led to significant termite mortality, which parallels the mortality observed
287 at lower concentrations (10,000 ppm) reported by Farid et al. (2015). This dose-dependent effect
288 has been similarly documented for boric acid when ingested by *Blattella germanica* L. (Blattodea:
289 Ectobiidae) (Cochran 1995; Habes et al. 2001; Gore and Schal 2004; Habes et al. 2006; Jiang et
290 al. 2021), *Galleria mellonella* L. (Lepidoptera: Pyralidae) (Gwokyalya and Altuntas 2019), *Apis*
291 *mellifera* L. (Hymenoptera: Apidae) (da Silva Cruz et al. 2010), and *Cimex lectularius* L.
292 (Hemiptera: Cimicidae) (Sierras et al. 2018).

293 We found that termites consumed less paper in a dose-dependent manner, with the least
294 amount consumed from papers treated with the highest concentrations of boric acid (Fig. 2).
295 Although boric acid does not cause an immediate repellent effect, our results and those of Farid
296 et al. (2015) show that it ultimately leads to reduced feeding. Other studies have shown that *R.*

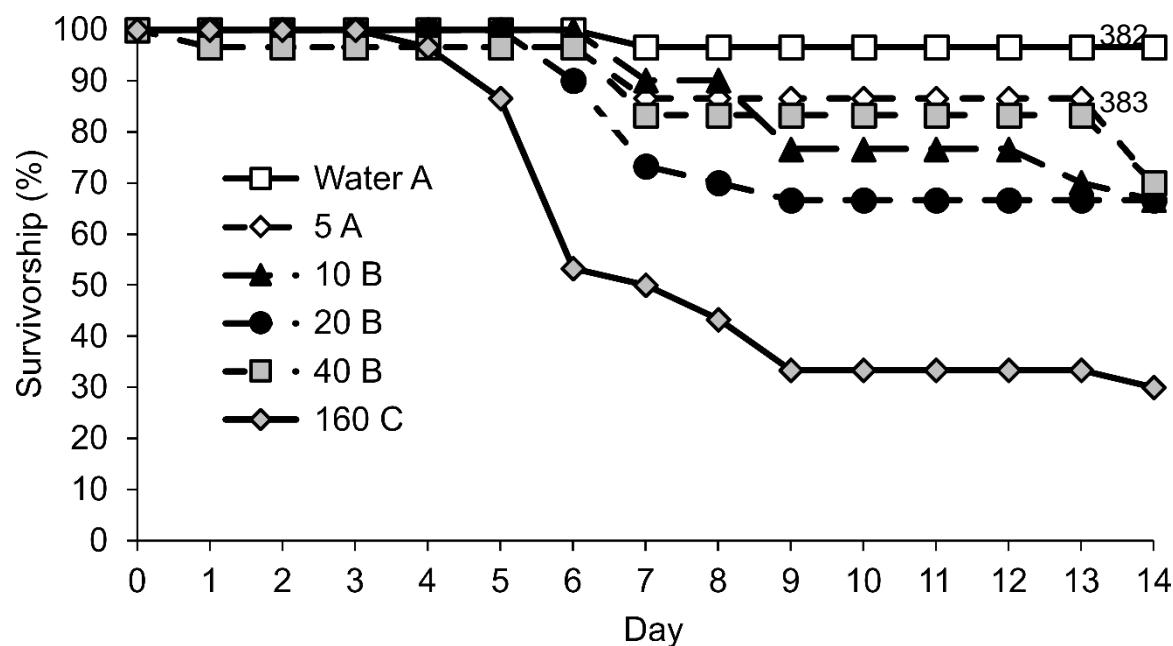
297 *flavipes*, *C. formosanus* and *Coptotermes gestroi* (Wasmann) (Blattodea: Rhinotermitidae),
298 consume less wood when treated with higher concentrations boric acid solutions (Casarin et al.
299 2009, Kard 2001). While one might speculate that reduced feeding was due to termite mortality,
300 this scenario is unlikely as the 40 µg treatment had lower mortality than the 160 µg treatment,
301 despite similar amounts of filter paper consumption.

302 While the specific mode(s) of action of boric acid in termites remains underexplored,
303 evidence from prior studies with termites and several other insect species indicates its significant
304 impact on the digestive system. Studies, including Cochran (1995) and Habes et al. (2005), have
305 demonstrated that boric acid induces structural changes in the midgut of *B. germanica*, potentially
306 impairing nutrient absorption. It was later shown by Yang et al. (2021) that boric acid can create
307 pores in the midgut lining of *B. germanica*, facilitating infections by *Metarhizium anisopliae*
308 (Metchnikoff) (Hypocreales: Clavicipitaceae) spores. Given that cockroaches and termites are
309 close phylogenetic relatives, it is plausible that termites experience similar digestive disruptions.
310 However, the potential impairment of the midgut has also been observed in Argentine ant
311 *Linepithema humile* (Mayr; Hymenoptera: Formicidae) (Klotz et al. 2002) and the honey bee *A.*
312 *mellifera* (da Silva Cruz et al. 2010), underscoring the disruption of digestive physiology as an
313 significant contributor to the insecticidal effects of boric acid.

314 Our results reveal that boric acid induces significant alterations in alpha diversity and
315 structural changes within the termite gut microbiome (Fig. 3). This aligns with observations by
316 Jiang et al. (2021), where boric acid was shown to disrupt the normal gut microbiome composition
317 in *B. germanica*, suggesting a similar mechanism might be at play in termites. The decrease in
318 alpha diversity and significant shifts in microbial community composition, especially at higher boric
319 acid concentrations, are indicative of dysbiosis, defined as an imbalance or shift in a naturally
320 present microbiome of a healthy host (Petersen and Round 2014). Given the reliance of termites

321 on their gut microbiome for the symbiotic digestion of wood, such an imbalance seems to magnify
322 the detrimental effects of boric acid.

323 A loss of diversity in the gut microbiome is typically tied to reduced functionality, and is
324 often accompanied by a loss of beneficial symbionts and an expansion of opportunistic pathogens
325 (Petersen and Round 2014). The clear clustering and separation observed in the NMDS plot for
326 termites exposed to filter paper treated with 160 µg of boric acid compared to the control group
327 illustrates the significant impact of boric acid on gut community structure (Fig. 3). This pattern not
328 only confirms the presence of dysbiosis but also suggests that higher concentrations of boric acid
329 may lead to more pronounced shifts in microbial populations, potentially disrupting critical
330 processes such as digestion, nutrient absorption, and pathogen resistance within the termite gut.
331 However, the noticeable dispersal in clustering among replicates treated with higher
332 concentrations of boric acid (Fig. 3) indicates variability in the response of the termite gut
333 microbiome to the treatment. This variability, coupled with the observed shifts in the relative
334 abundance of certain bacterial genera (Fig. 4), suggests that the dysbiotic effects of boric acid on
335 the termite gut microbiome are not deterministic and may vary depending on a complex range of
336 factors.


337 Our screening for microbial taxa contributing to the overall differences observed in
338 microbiome structure revealed a downward trend (with increasing boric acid exposure) in the
339 abundance of key genera, such as *Endomicrobium* (Fig. 4) that are major endosymbionts of
340 *Trichonympha* flagellates. The drop in the relative abundance of these flagellate endosymbionts
341 reinforces the findings of Kard (2001), who found boric acid at 4% solution (equivalent to our 160
342 µg treatment) to be effective at disrupting the flagellate community of *R. flavipes*. Other forms of
343 defaunation (experimental removal of flagellates) by force-feeding starch or other treatments have
344 also been shown to markedly reduce the abundance of this bacterial endosymbiont (Ikeda-
345 Ohtsubo et al. 2010; Mikaelyan et al. 2017). The observed negative correlation between boric

346 acid concentration and the Spirochaetota phylum, essential for providing vital microbial services
347 (Tokuda 2021), such as lignocellulose degradation (Mikaelyan et al. 2014; Tokuda et al. 2018),
348 nitrogen fixation (Lilburn et al. 2001; Ohkuma et al. 2015), and homoacetogenesis (Leadbetter et
349 al. 1999; Ottesen and Leadbetter 2011) highlights that its depletion poses a significant detriment
350 to termite metabolism.

351 At the same time, the observed increase in certain genera, notably *Lysinibacillus*,
352 *Pseudomonas*, and *Mycoplasma*, suggests a proliferation of opportunistic pathogens.
353 *Lysinibacillus sphaericus* (previously known as *Bacillus sphaericus*) is recognized for its mosquito
354 larvicidal properties (Chalegre et al. 2015; Rezende et al. 2019), and is closely related to several
355 insect-pathogenic species (Nakamura 2000). The genus *Pseudomonas* similarly includes many
356 pathogens of arthropods (Roobakkumar et al. 2011; Carrau et al. 2021; Hamze et al. 2022) with
357 preadaptations to infect insects as specialists or as opportunists. When *Mastotermes darwiniensis*
358 Froggatt (Blattodea: Mastotermitidae) is in a state of dysbiosis due to starch feeding, there is an
359 increase in bacteria in their hindguts, that may be opportunists (Veivers et al. 1983). In *B.*
360 *germanica*, boric acid exposure led to dysbiosis, characterized by a decrease in beneficial
361 bacteria like *Bacteroides* and *Enterococcus*, and an uptick in potentially pathogenic *Weissella*
362 species (Jiang et al. 2021). Similarly, when *Drosophila melanogaster* Meigen (Diptera:
363 Drosophilidae) are in a state of dysbiosis, opportunistic bacteria in their guts, such as
364 *Gluconobacter mortifer*, become pathogens (Lee and Lee 2014).

365 The dysbiosis we observed could potentiate the vulnerability of termites to external
366 entomopathogens as well, as demonstrated by Yang et al. (2021), where boric acid enhanced the
367 virulence of *M. anisopliae* against *B. germanica* by altering the gut microbiome. This suggests
368 that boric acid's mode of action may extend to facilitating the invasion and proliferation of
369 pathogenic microbes within the termite gut, offering a novel perspective on utilizing boric acid in
370 integrated pest management (IPM) strategies that include baiting tactics.

371 The decrease in alpha diversity and significant shifts in microbial community composition,
372 especially at higher concentrations of boric acid, indicate a disruption of the gut microbiome's
373 equilibrium. This dysbiosis could further compromise termite health and resilience, beyond the
374 direct toxicological effects of boric acid. Considering the substantial alterations in the gut
375 microbiome and the increased termite mortality associated with boric acid consumption, our
376 findings support the exploration of synergistic approaches for termite management. Our study
377 contributes to the growing body of evidence on the utility of boric acid in termite management, not
378 only as a direct toxicant but also as a disruptor of gut microbiome homeostasis. Future research
379 should focus on elucidating the specific mechanisms by which boric acid induces dysbiosis and
380 exploring its synergistic potential with microbial control agents, paving the way for innovative and
381 sustainable termite control strategies.

384

385

386 **Fig. 1.** Mean proportional survival over time for *R. flavipes* individuals that were fed filter paper
387 with water and varying amounts of boric acid (in μg). Each treatment represents 30 termites (3
388 replicates, each with 10 workers). Differences in the median survival time determined by a log-
389 rank test are represented by the letters in the figure legend. Treatments that are not connected
390 by the same letter are significantly different ($P < 0.05$).

391

392

393

394

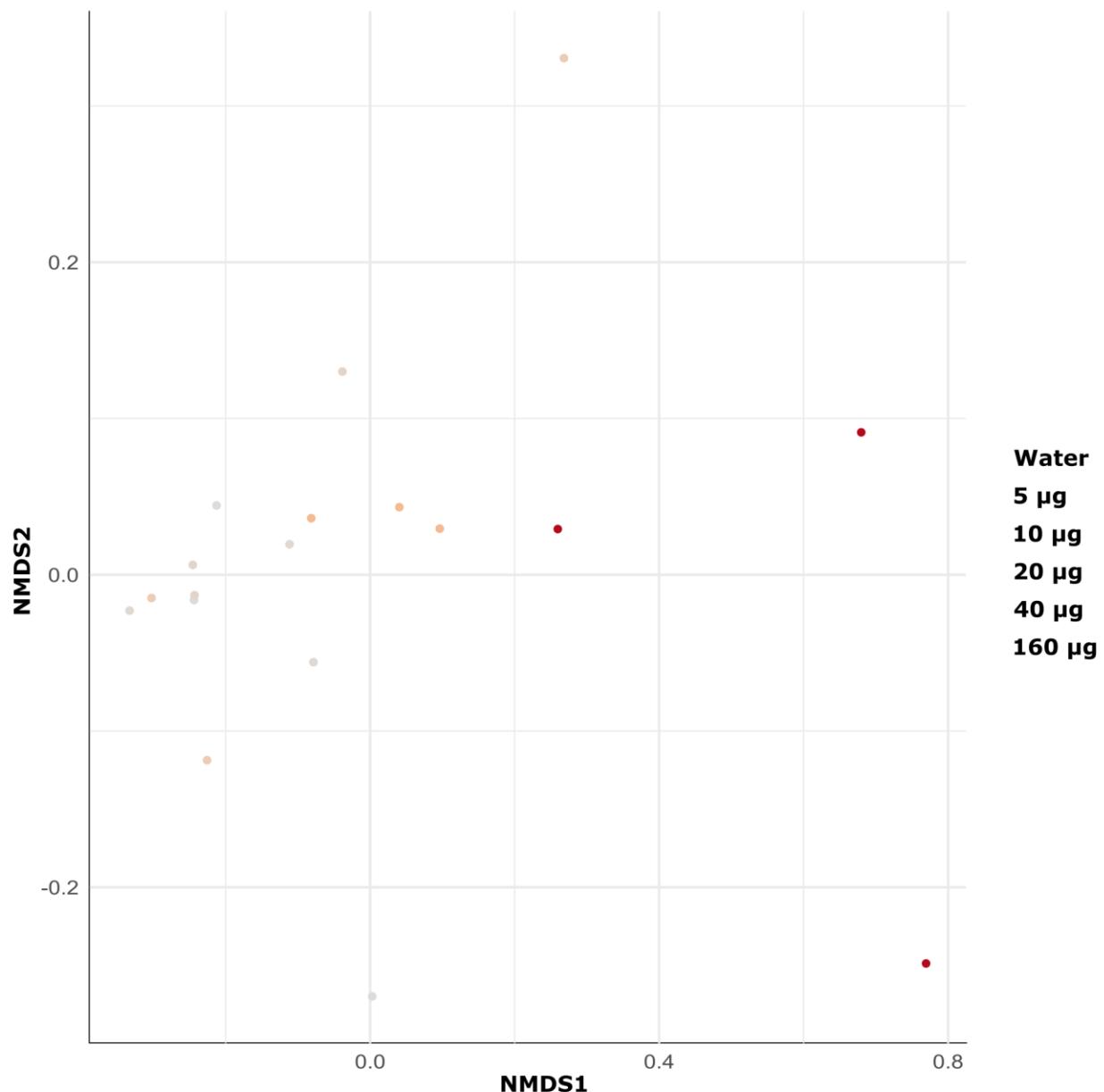
395

396

397

398

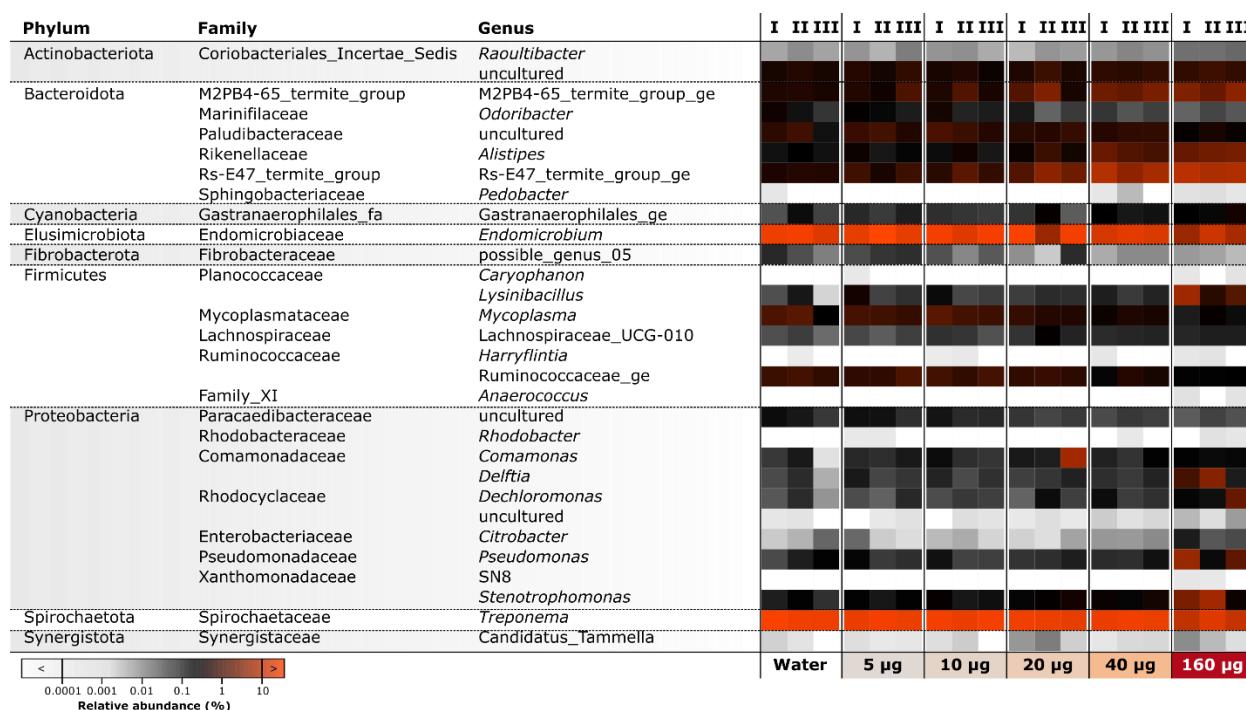
399 **Fig. 2.** Average (\pm SEM) amount of paper consumed by *R. flavipes* based on treatment type.


400 The 0 µg treatment served as the control group that was fed filter paper treated with water.

401 Statistically significant differences in the average amount of paper consumed are indicated by

402 different letters above the bars. Treatments not sharing the same letter are significantly different

403 (ANOVA, *t*-test, $P < 0.05$).


404

405

406 **Fig. 3.** Non-metric multidimensional scaling (NMDS) plot depicting the structural dissimilarities
407 (based on the Morisita-Horn metric) between termite gut bacterial communities in response to
408 feeding upon filter papers treated with varying boric acid amounts. The two-dimensional solution
409 had a low stress value (0.045), indicating a good representation of the data in reduced
410 dimensions. Each point represents the compositional similarity of the termite gut communities,
411 with closer points indicating more similar bacterial community compositions.

412

413

414 **Fig. 4.** Heatmap depicting the distribution and abundance of the top 30 bacterial genera in the
415 gut microbiome of *R. flavipes*, ranked by their contribution to group differentiation as determined
416 by a random forest model. Each column represents a replicate of a treatment group (indicated
417 below the heatmap), and variations in color intensity correspond to the log-transformed relative
418 abundance of each genus, illustrating the impact of different concentrations of boric acid on
419 bacterial community structure. For a more detailed exploration of changes in bacterial
420 community structure, see Table S1.

421 **Table 1.** Kaplan-Meier estimates of mean survival time \pm standard error for *R. flavipes* workers
422 that were fed filter papers treated with different amounts of boric acid.

423

Treatment	Grouping ^a	Mortality (%)	Mean Survival Time \pm SE (Days)	Median Survival Time (Days)	Relative Log Hazard Ratio (95% CI) ^b
Control	A	3.3	13.8 \pm 0.3	\geq 14	-
5 μ g	A	13.3	12.8 \pm 0.6	\geq 14	4.2 (0.5–38.1)
10 μ g	B	30.0	12.4 \pm 0.5	\geq 14	9.7 (1.2–76.5)
20 μ g	B	33.3	11.7 \pm 0.6	\geq 14	11.8 (1.5–92.0)
40 μ g	B	30.0	12.7 \pm 0.6	\geq 14	9.8 (1.2–77.2)
160 μ g	C	70.0	9.1 \pm 0.7	7	34.2 (4.5–255)

424 ^aSignificantly different treatments as determined by a log-rank test are indicated by different
425 letters in the grouping column.

426 ^bRelative log hazard ratios are not reported (denoted by a dash) for treatments used as the
427 baseline for comparisons.

428

429 **Author Contributions**

430 Conceptualization, methodology, software, validation, writing—original draft preparation, and
431 writing—review and editing, A.R.A., M.S., C.S., and A.M.; investigation, formal analysis, and
432 data curation, A.R.A., M.S., and A.M.; resources, supervision, project administration, and funding
433 acquisition A.M. and C.S.; visualization, A.R.A., M.S., and A.M.

434

435

436

437

438 **Funding**

439 This project was funded by Bayer Crop Science, with additional support from the National Institute
440 of Food and Agriculture (under Hatch project accession number 7005592), the Blanton J.
441 Whitmire Endowment, and the Department of Entomology and Plant Pathology at North Carolina
442 State University.

443

444 **Data Accessibility**

445 The 16S rRNA gene sequence reads analyzed as part of this study are available in the NCBI
446 Sequence Read Archive (SRA) repository under Bioproject ID PRJNA1096953.

447 References Cited

448 449 Brune A. Symbiotic digestion of lignocellulose in termite guts. *Nat. Rev. Microbiol.* 2014;12(3):168–180. <https://doi.org/10.1038/nrmicro3182>.

450 451 452 Brune A, Dietrich C. The gut microbiota of termites: digesting the diversity in the light of ecology and evolution. *Annu. Rev. Microbiol.* 2015;69:145–166. <https://doi.org/10.1146/annurev-micro-092412-155715>.

453 454 455 Casarin FE, Costa-Leonardo AM, Bueno OC. Laboratory assessment of two active ingredients for control of *Coptotermes gestroi* (Isoptera: Rhinotermitidae). *Sociobiol.* 2009;54(3), 787–789.

456 457 458 459 Carrau T, Thümecke S, Silva LM, Perez-Bravo D, Gärtner U, Taubert A, Hermosilla C, Vilcinskas A, Lee KZ. The Cellular innate immune response of the invasive pest insect *Drosophila suzukii* against *Pseudomonas entomophila* involves the release of extracellular traps. *Cells.* 2021;10(12):3320. <https://doi.org/10.3390/cells10123320>.

460 461 462 463 de Melo Chalegre KD, Tavares DA, Romão TP, de Menezes HS, Nascimento NA, de Oliveira CM, de-Melo-Neto OP, Silva-Filha MH. Co-selection and replacement of resistance alleles to *Lysinibacillus sphaericus* in a *Culex quinquefasciatus* colony. *FEBS J.* 2015;282(18):3592–3602. <https://doi.org/10.1111/febs.13364>

464 465 Cochran DG. Toxic effects of boric acid on the German cockroach. *Experientia.* 1995;51:561-3. <https://doi.org/10.1007/BF02128743>

466 467 468 R Core Team. R: A language and environment for statistical computing. Vienna: R foundation for statistical computing. R Foundation for Statistical Computing. 2021. Available from <https://cir.nii.ac.jp/crid/1370576118723163397>.

469 470 471 472 Dedeine F, Dupont S, Guyot S, Matsuura K, Wang C, Habibpour B, Bagnères AG, Mantovani B, Luchetti A. Historical biogeography of *Reticulitermes* termites (Isoptera: Rhinotermitidae) inferred from analyses of mitochondrial and nuclear loci. *Molecular Phylogenetics and Evolution.* 2016;94:778-90. <https://doi.org/10.1016/j.ympev.2015.10.020>

473 474 Dixon P. VEGAN, a package of R functions for community ecology. *J. Veg. Sci.* 2003;14(6):927–930.

475 476 Ebeling W. Urban Entomology, Division of Agricultural Sciences. University of California, Berkeley; 1978.

477 478 479 Farid A, Zaman M, Saeed M, Khan M, Shah TB. 2015. Evaluation of boric acid as a slow-acting toxicant against subterranean termites (*Heterotermes* and *Odontotermes*). *Journal of entomology and zoology studies.* 2015;3:213–216.

480 481 Gentz MC, Grace JK. A review of boron toxicity in insects with an emphasis on termites. *J. Agric. Urban Entomol.* 2006;23(4):201–207.

482 483 Gentz MC, Grace JK. The response and recovery of the Formosan subterranean termite (*Coptotermes formosanus* Shiraki) from sublethal boron exposures. *Int. J. Pest Manage.*

484 2009;55(1):63–67. <https://doi.org/10.1080/09670870802460721>.

485 Gentz MC, Grace JK, Mankowski ME. Horizontal transfer of boron by the Formosan
486 subterranean termite (*Coptotermes formosanus* Shiraki) after feeding on treated wood.
487 *Holzforschung*. 2009;63(1):113–117. <https://doi.org/10.1515/HF.2009.025>.

488 Gile GH. Protist symbionts of termites: diversity, distribution, and coevolution. *Biol. Rev. Camb.*
489 *Philos. Soc.* 2024;99(2):622–652. <https://doi.org/10.1111/brv.13038>.

490 Gore JC, Schal C. Laboratory evaluation of boric acid-sugar solutions as baits for management
491 of German cockroach infestations. *J. Econ. Entomol.* 2004;97(2):581–587
492 <https://doi.org/10.1093/jee/97.2.581>.

493 Gwokyalya R, Altuntaş H. Boric acid-induced immunotoxicity and genotoxicity in model insect
494 *Galleria mellonella* L. (Lepidoptera: Pyralidae). *Arch. Insect Biochem. Physiol.*
495 2019;101(4):e21588.

496 Habes D, Kilani-Morakchi S, Aribi N, Farine JP, Soltani N. Toxicity of boric acid to *Blattella*
497 *germanica* (Dictyoptera: Blattellidae) and analysis of residues in several organs. *Meded.*
498 *Rijksuniv. Gent Fak. Landbouwkd. Toegep. Biol. Wet.* 2001;66(2a):525–534.

499 Habes D, Morakchi S, Aribi N, Farine JP, Soltani N. Boric acid toxicity to the German cockroach,
500 *Blattella germanica*: Alterations in midgut structure, and acetylcholinesterase and glutathione
501 S-transferase activity. *Pestic. Biochem. Physiol.* 2006;84(1):17–24.
502 <https://doi.org/10.1016/j.pestbp.2005.05.002>

503 Hamze R, Nuvoli MT, Pirino C, Ruiu L. Compatibility of the bacterial entomopathogen
504 *Pseudomonas protegens* with the natural predator *Chrysoperla carnea* (Neuroptera:
505 Chrysopidae). *J. Invertebr. Pathol.* 2022;194:107828.
506 <https://doi.org/10.1016/j.jip.2022.107828>

507 Ikeda-Ohtsubo W, Faivre N, Brune A. 2010. Putatively free-living “Endomicrobia”- ancestors of
508 the intracellular symbionts of termite gut flagellates? *Environ. Microbiol. Rep.* 2(4):554–559.
509 <https://doi.org/10.1111/j.1758-2229.2009.00124.x>

510 Jiang M, Dong F-Y, Pan X-Y, Zhang Y-N, Zhang F. 2021. Boric acid was orally toxic to different
511 instars of *Blattella germanica* (L.) (Blattodea: Blattellidae) and caused dysbiosis of the, gut
512 microbiota. *Pestic. Biochem. Physiol.* 172:104756.
513 <https://doi.org/10.1016/j.pestbp.2020.104756>

514 Kard BM. 2001. Detrimental Effects of Boric-Acid-Treated Soil Against Foraging Subterranean
515 Termites (Isoptera: Rhinotermitidae). *Sociobiology*. 2001;37(2):363–378.

516 Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. Evaluation of
517 general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-
518 based diversity studies. *Nucleic Acids Res.* 2013;41(1):e1–e1.
519 <https://doi.org/10.1093/nar/gks808>.

520 Klotz JH, Amrhein C, McDaniel S. Assimilation and toxicity of boron in the Argentine ant
521 (Hymenoptera: Formicidae). *J. Entomol. Sci.* 2002;37(2):193–199.
522 <https://doi.org/10.18474/0749-8004-37.2.193>

523 Kolde R, Kolde MR. 2015. Package “pheatmap.” R package. 1(7):790.

524 Leadbetter JR, Schmidt TM, Gruber JR, Breznak JA. Acetogenesis from H₂ plus CO₂ by
525 spirochetes from termite guts. *Science*. 1999;283(5402):686–689.

526 <https://doi.org/10.1126/science.283.5402.686>

527 Lee, K.-A., Lee, W.-J. *Drosophila* as a model for intestinal dysbiosis and chronic inflammatory
528 diseases. *Developmental & Comparative Immunology*. 2014;42: 102–110.
529 <https://doi.org/10.1016/j.dci.2013.05.005>

530 Liaw A, Wiener M, Others. 2002. Classification and regression by randomForest. *R news*.
531 2(3):18–22.

532 Lilburn TG, Kim KS, Ostrom NE, Byzek KR, Leadbetter JR, Breznak JA. Nitrogen fixation by
533 symbiotic and free-living spirochetes. *Science*. 2001;292(5526):2495–2498.
534 <https://doi.org/10.1126/science.1060281>

535 Mikaelyan A, Strassert JFH, Tokuda G, Brune A. The fibre-associated cellulolytic bacterial
536 community in the hindgut of wood-feeding higher termites (*Nasutitermes* spp.). *Environ.*
537 *Microbiol*. 2014;16(9):2711–2722. <https://doi.org/10.1111/1462-2920.12425>

538 Mikaelyan A, Thompson CL, Meuser K, Zheng H, Rani P, Plarre R, Brune A. High-resolution
539 phylogenetic analysis of Endomicrobia reveals multiple acquisitions of endosymbiotic
540 lineages by termite gut flagellates. *Environ. Microbiol. Rep.* 2017;9(5):477–483.
541 <https://doi.org/10.1111/1758-2229.12565>

542 Nakamura LK. Phylogeny of *Bacillus sphaericus*-like organisms. *Int. J. Syst. Evol. Microbiol*.
543 2000;50(5):1715–1722. <https://doi.org/10.1099/00207713-50-5-1715>

544 Ohkuma M, Noda S, Hattori S, Iida T, Yuki M, Starns D, Inoue JI, Darby AC, Hongoh Y.
545 Acetogenesis from H₂ plus CO₂ and nitrogen fixation by an endosymbiotic spirochete of a
546 termite-gut cellulolytic protist. *Proc. Natl. Acad. Sci.* 2015;112(33):10224–10230.
547 <https://doi.org/10.1073/pnas.1423979112>

548 Oi F. 2022. A Review of the Evolution of Termite Control: A Continuum of Alternatives to
549 Termiticides in the United States with Emphasis on Efficacy Testing Requirements for
550 Product Registration. *Insects*. 13(1). <https://doi.org/10.3390/insects13010050>

551 Ottesen EA, Leadbetter JR. Formyltetrahydrofolate synthetase gene diversity in the guts of
552 higher termites with different diets and lifestyles. *Appl. Environ. Microbiol.* 2011;77(10):3461–
553 3467. <https://doi.org/10.1128/AEM.02657-10>

554 Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. *Cell.*
555 *Microbiol*. 2014;16(7):1024–1033. <https://doi.org/10.1111/cmi.12308>

556 Protasov E, Nonoh JO, Kästle Silva JM, Mies US, Hervé V, Dietrich C, Lang K, Mikulski L, Platt
557 K, Poehlein A, Köhler-Ramm T, Miambi E, Boga HI, Feldewert C, Ngugi DK, Plarre R, Sillam-
558 Dussès D, Šobotník J, Daniel R and Brune A. Diversity and taxonomic revision of
559 methanogens and other archaea in the intestinal tract of terrestrial arthropods. *Front.*
560 *Microbiol*. 2023;14:1281628. <https://doi.org/10.3389/fmicb.2023.1281628>

561 Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The

562 SILVA ribosomal RNA gene database project: improved data processing and web-based
563 tools. *Nucleic Acids Res.* 2013;41(D1):D590–596. <https://doi.org/10.1093/nar/gks1219>

564 Rezende TM, Rezende AM, Luz Wallau G, Santos Vasconcelos CR, de-Melo-Neto OP, Silva-
565 Filha MH, Romão TP. 2019. A differential transcriptional profile by *Culex quinquefasciatus*
566 larvae resistant to *Lysinibacillus sphaericus* IAB59 highlights genes and pathways associated
567 with the resistance phenotype. *Parasit. Vectors.* 2019;12(1):1–17.
568 <https://doi.org/10.1186/s13071-019-3661-y>

569 Roobakkumar A, Babu A, Kumar DV, Sarkar S. 2011. *Pseudomonas fluorescens* as an efficient
570 entomopathogen against *Oligonychus coffeae* Nietner (Acari: Tetranychidae) infesting tea. *J*
571 *Entomol Nematol.* 2011;3(5):73–77

572 Rosengaus RB, Zecher CN, Schultheis KF, Brucker RM, Bordenstein SR. Disruption of the
573 termite gut microbiota and its prolonged consequences for fitness. *Appl. Environ. Microbiol.*
574 2011;77(13):4303–4312. <https://doi.org/10.1128/AEM.01886-10>

575 Rust MK, Su N-Y. Managing social insects of urban importance. *Annu. Rev. Entomol.*
576 2012;57:355–375. <https://doi.org/10.1146/annurev-ento-120710-100634>

577 Scharf ME. Challenges and physiological implications of wood feeding in termites. *Curr Opin*
578 *Insect Sci.* 2020;41:79–85. <https://doi.org/10.1016/j.cois.2020.07.007>

579 Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley
580 BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF.
581 Introducing mothur: open-source, platform-independent, community-supported software for
582 describing and comparing microbial communities. *Appl. Environ. Microbiol.*
583 2009;75(23):7537–7541. <https://doi.org/10.1128/AEM.01541-09>

584 Schubert DM. Boric Oxide, Boric Acid, and Borates. In: Ullmann's Encyclopedia of Industrial
585 Chemistry. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. 2000:1–32.
586 https://doi.org/10.1002/14356007.a04_263.pub2

587 Schwarz M, Beza-Beza CF, Mikaelyan A. Wood fibers are a crucial microhabitat for cellulose-
588 and xylan-degrading bacteria in the hindgut of the wood-feeding beetle *Odontotaenius*
589 *disjunctus*. *Front. Microbiol.* 2023;14. <https://doi.org/10.3389/fmicb.2023.1173696>

590 Sierras A, Wada-Katsumata A, Schal C. Effectiveness of boric acid by ingestion, but not by
591 contact, against the common bed bug (Hemiptera: Cimicidae). *J. Econ. Entomol.*
592 2018;111(6):2772–2781. <https://doi.org/10.1093/jee/toy260>

593 da Silva Cruz A, da Silva-Zacarin EC, Bueno OC, Malaspina O. Morphological alterations
594 induced by boric acid and fipronil in the midgut of worker honeybee (*Apis mellifera* L.) larvae:
595 morphological alterations in the midgut of *A. mellifera*. *Cell Biol. Toxicol.* 2010;26:165–176.
596 <https://doi.org/10.1007/s10565-009-9126-x>

597 Su N-Y, Tokoro M, Scheffrahn RH. Estimating Oral Toxicity of Slow-Acting Toxicants Against
598 Subterranean Termites (Isoptera: Rhinotermitidae). *J. Econ. Entomol.* 1994;87(2):398–401.

599 Tokuda G. 2021. Origin of symbiotic gut spirochetes as key players in the nutrition of termites.
600 *Environmental microbiology.* 23(8):4092–4097. <https://doi.org/10.1111/1462-2920.15625>

601 Tokuda G, Mikaelyan A, Fukui C, Matsuura Y, Watanabe H, Fujishima M, Brune A. Fiber-
602 associated spirochetes are major agents of hemicellulose degradation in the hindgut of
603 wood-feeding higher termites. *Proc. Natl. Acad. Sci.* 2018;115(51):E11996–E12004.
604 <https://doi.org/10.1073/pnas.1810550115>

605 Veivers, P.C., O'Brien, R.W., Slaytor, M. Selective defaunation of *Mastotermes darwiniensis* and
606 its effect on cellulose and starch metabolism. *Insect Biochemistry*. 1983;13:95–101.

607 Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of
608 rRNA sequences into the new bacterial taxonomy. *Applied and environmental microbiology*.
609 2007;73(16):5261-5267. <https://doi.org/10.1128/aem.00062-07>

610 Watanabe H, Tokuda G. Cellulolytic systems in insects. *Annu. Rev. Entomol.* 2010;55:609–632.
611 <https://doi.org/10.1146/annurev-ento-112408-085319>

612 Yang R, Zhang M, Schal C, Jiang M, Cai T, Zhang F. Boric acid enhances *Metarhizium*
613 *anisopliae* virulence in *Blattella germanica* (L.) by disrupting the gut and altering its microbial
614 community. *Biol. Control*. 2021;152:104430. <https://doi.org/10.1016/j.biocontrol.2020.104430>

615

616

617 **Supplementary data**

618 **Table S1.** An expandable Excel spreadsheet for an in-depth analysis of the distribution and
619 relative abundance of bacterial taxa in the gut microbiome of *Reticulitermes flavipes*, in response
620 to boric acid ingestion.

621

622