

1 ***Genetic variation modulates susceptibility to aberrant DNA hypomethylation and imprint***
2 ***deregulation in naïve pluripotent stem cells***

3
4 Parikh C^{1,2#}, Glenn RA^{3,4, 5#}, Shi Y^{6#}, Chatterjee K¹, Swanzey EE⁷, Singer S^{3,4}, Do SC^{3,4}, Zhan
5 Y⁹, Furuta Y⁹, Tahiliani M¹⁰, Apostolou E¹, Polyzos A¹, Koche R⁸, Mezey JG⁶⁺, Vierbuchen T^{3,4+}
6 and Stadtfeld M^{1+*}

7
8 **Affiliations:**

9 ¹ Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill
10 Cornell Medicine, New York, NY 10065, USA.

11 ² Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical
12 School, Worcester, MA 01655, USA

13 ³ Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
14 Center, New York, NY 10065, USA

15 ⁴Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
16 Center, New York, NY 10065, USA

17 ⁵Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical
18 Sciences, Cornell University, New York, NY, USA

19 ⁶ Department of Computational Biology, Cornell University, Ithaca, NY 14853, USA

20 ⁷ The Jackson Laboratory, Bar Harbor, ME 04609, USA

21 ⁸ Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY
22 10065, USA.

23 ⁹ Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer
24 Center, New York, NY, 10065, USA

25 ¹⁰ Department of Biology, New York University, New York, NY 10003, USA

26
27 *#denotes equal contribution*

28 *+ Corresponding authors (mas4011@med.cornell.edu; vierbuct@mskcc.org;*

29 *jgm45@cornell.edu)*

30 ** Lead author (mas4011@med.cornell.edu)*

31

32

33

34

35

36

37

38 **Highlights**

39

40 • *Naïve pluripotent stem cells from distinct inbred mouse strains exhibit variable DNA*
41 *methylation levels at imprinted gene loci.*

42 • *The vulnerability of pluripotent stem cells to loss of genomic imprinting caused by MAP*
43 *kinase inhibition strongly differs between inbred mouse strains.*

44 • *Genetically diverse pluripotent stem cell lines from Diversity Outbred mouse stock allow*
45 *the identification of quantitative trait loci controlling DNA methylation stability.*

46 • *Genetic variants may serve as biomarkers to identify naïve pluripotent stem cell lines*
47 *that are epigenetically stable in specific culture conditions.*

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69 **Summary**

70 Naïve pluripotent stem cells (nPSC) frequently undergo pathological and not readily reversible
71 loss of DNA methylation marks at imprinted gene loci. This abnormality poses a hurdle for using
72 pluripotent cell lines in biomedical applications and underscores the need to identify the causes
73 of imprint instability in these cells. We show that nPSCs from inbred mouse strains exhibit
74 pronounced strain-specific susceptibility to locus-specific deregulation of imprinting marks during
75 reprogramming to pluripotency and upon culture with MAP kinase inhibitors, a common
76 approach to maintain naïve pluripotency. Analysis of genetically highly diverse nPSCs from the
77 Diversity Outbred (DO) stock confirms that genetic variation is a major determinant of epigenome
78 stability in pluripotent cells. We leverage the variable DNA hypomethylation in DO lines to identify
79 several trans-acting quantitative trait loci (QTLs) that determine epigenome stability at either
80 specific target loci or genome-wide. Candidate factors encoded by two multi-target QTLs on
81 chromosomes 4 and 17 suggest specific transcriptional regulators that contribute to DNA
82 methylation maintenance in nPSCs. We propose that genetic variants represent candidate
83 biomarkers to identify pluripotent cell lines with desirable properties and might serve as entry
84 points for the targeted engineering of nPSCs with stable epigenomes.

85

86 **Introduction**

87 Naïve pluripotent stem cells (nPSCs) resembling the pre-implantation embryo are capable of
88 extensive *ex vivo* self-renewal, amenable to genome engineering, and can differentiate into all
89 somatic cell types. This combination of features makes nPSCs, in principle, tailor-made for
90 regenerative medicine applications. However, several molecular abnormalities manifesting in
91 cultured pluripotent cells complicate exploiting this potential (Andrews et al., 2022). For example,
92 the pervasive epigenetic instability of nPSCs upon *ex vivo* culture – which manifests as aberrant
93 changes in DNA methylation and other chromatin marks that compromise physiological
94 transcriptional programs and functional properties (Mani and Mainigi, 2018; Meissner et al.,
95 2008; Rebuzzini et al., 2016) – represents a significant roadblock for many biomedical
96 applications of PSCs.

97 Aberrant DNA methylation changes in cultured nPSCs include hypermethylation and
98 hypomethylation events (Habibi et al., 2013; Lee et al., 2018) and affect gene loci encoding
99 essential developmental regulators. Solidifying naïve pluripotency by chemical inhibition of

100 mitogen-activated protein kinase (MAPK) signaling, an approach often applied for both mouse
101 (Ficz et al., 2013; Leitch et al., 2013) and human cells (Bayerl et al., 2021; Pastor et al., 2016),
102 results in widespread loss of DNA methylation in both species. Epigenetic changes are
103 particularly problematic at imprinted genes since the loss of the parent-of-origin asymmetry in
104 DNA methylation at these loci cannot be readily restored (Bayerl et al., 2021; Pastor et al., 2016)
105 and is associated with specific defects in embryonic development (Ferguson-Smith and
106 Bourc'his, 2018) that complicate disease modeling with affected cells

107 DNA methylation abnormalities in naïve nPSCs are associated with a high degree of line-
108 to-line variability, even among cell lines established under identical conditions (Bock et al., 2011;
109 Humpherys et al., 2001; Johannesson et al., 2014; Lin and Xiao, 2017). This has given rise to
110 the notion that randomly occurring pathological epigenome changes in nPSCs are an
111 unavoidable side-effect of the extraordinary developmental flexibility of these cells. Several
112 recent studies leveraging distinct inbred mouse strains with fully sequenced genomes (Lilue et
113 al., 2018) and high-resolution panels of single nucleotide polymorphisms (SNPs) (Morgan et al.,
114 2015) have shown that core PSC properties such as self-renewal capacity (Skelly et al., 2020)
115 and *in vitro* differentiation bias (Byers et al., 2022; Ortmann et al., 2020) are modulated by
116 genetic variation. In addition, pathological DNA hypermethylation at the *Dlk1-Dio3* locus in
117 nPSCs is controlled by a trans-acting quantitative trait locus (QTL) that distinguishes the
118 commonly used B6J and 129 strains (Swanzey et al., 2020). Whether this observation extends
119 to other imprinted gene loci and, most importantly, to the biomedically highly relevant
120 susceptibility of nPSCs for DNA hypomethylation remains unanswered.

121 Here, we use nPSCs from a combination of distinct inbred strains and a genetically
122 diverse outbred stock (Diversity Outbred; DO mice) to systematically characterize the impact of
123 genetic variation on loss of DNA methylation at ICRs. Our data indicate that susceptibility to DNA
124 hypomethylation in nPSCs is determined by identifiable genetic variants, reveal candidate
125 regulators of DNA methylation levels via QTL mapping, and suggest rational approaches to
126 stabilize the epigenome of naïve pluripotent stem cells.

127

128 **Results**

129 **Strain-specific introduction of imprint abnormalities in iPSCs established from inbred 130 mice**

131 To begin investigating the degree to which genetic background influences the stability of
132 imprinting marks during nPSC derivation and maintenance, we used OKSM reprogramming
133 (Sommer et al., 2009) to establish induced pluripotent stem cells (iPSCs) from mouse embryonic
134 fibroblast (MEFs) derived from seven distinct inbred mouse strains (129S1/SVImJ; 129,
135 C57BL6/J; B6J, C57BL6/NJ; B6N, CBA/J; CBA, DBA/2J; DBA, C3H/HeJ; C3H, and A/J; AJ)
136 (**Fig. S1A**). We cultured cells undergoing reprogramming in media containing ascorbic acid (AA)
137 and modulators of WNT and TGF β signaling (**Fig. 1A**), which dramatically facilitates iPSC
138 formation (Vidal et al., 2014). Since AA has been shown to stimulate TET enzymes (Blaschke
139 et al., 2013; Monfort and Wutz, 2013), we reasoned that transient exposure to this compound
140 might also reveal strain-specific susceptibilities to DNA demethylation. In contrast, subsequent
141 culture in standard serum-containing media (**Fig. 1A**) would reveal susceptibilities to DNA
142 hypermethylation, as we have previously shown for *Dlk1-Dio3* (Swanzey et al., 2020). For these
143 experiments, we focused exclusively on male cells to avoid confounding the effects of genetic
144 variants with the well-documented DNA hypomethylation propensity observed in female nPSCs
145 due to the presence of two active X chromosomes (Zvetkova et al., 2005). We obtained stable
146 iPSC colonies independent of transgenic OKSM expression from each of the seven inbred
147 strains, including the CBA and DBA strains that are not permissive for ESC derivation in standard
148 conditions (Czechanski et al., 2014), albeit at variable efficiencies (**Fig. S1B**). Expanded
149 polyclonal iPSC lines (n=2 biological replicates from each inbred strain; **Table S1**) exhibited the
150 expected pluripotent cell morphology (**Fig. 1B**) and expression of the pluripotency-associated
151 markers SSEA1 and EpCAM (**Fig. S1C**) (Polo et al., 2012).

152 To assess the status of imprinted gene regulation, we subjected genomic DNA (gDNA)
153 isolated from passage 15 (P15) iPSCs from each inbred strain for DNA methylation analysis by
154 targeted bisulfite sequencing. We analyzed established control regions of the three paternally
155 imprinted loci (*Dlk1-Dio3*, *H19/Igf2*, *Rasgrf1*) and twelve maternally imprinted loci (*Gnas*, *Grb10*,
156 *Igf2r*, *Impact*, *Inpp5f*, *Kcnq1ot1*, *Mest*, *Nap1l5*, *Nnat*, *Peg3*, *Plagl1*, *Sgce*, *Snrpn*, *Trappc9*, *Zdbf2*
157 and *Zrsr1*). Unsupervised clustering of these DNA methylation data revealed considerable locus-
158 to-locus and strain-to-strain variability in DNA methylation levels, with biological replicates from
159 each genetic background clustering together (**Fig. 1C**). This suggests a significant contribution
160 of genetic background to imprinted gene stability. For further analyses, we defined
161 hypermethylation as >70% CpG methylation and hypomethylation as <20% CpG methylation at

162 a given locus based on average values from biological replicates. With these criteria,
163 hypermethylation of *Dlk1-Dio3* (controlled by the intergenic differentially methylated region, short
164 *IG-DMR*) was only observed in B6J-iPSCs but not in iPSCs from the other inbred strains,
165 including the closely related B6N strain (**Fig. S1A**). These data suggest that the genetic
166 variant(s) predisposing nPSCs to pathological DNA hypermethylation (Swanzey et al., 2020) are
167 uniquely present or active in B6J mice. Additional evidence that genetic background controls
168 locus-specific DNA hypermethylation comes from analysis of *H19* (affected in DBA-, B6N- and
169 B6J-iPSCs) and *Trappc9* (affected in C3H-, CBA-, AJ-, B6N- and B6J-iPSCs) (**Fig. 1C**). In
170 contrast, *Zdbf2* exhibited hypermethylation in iPSCs from all inbred strains, suggesting that this
171 locus might be particularly susceptible to acquire hypermethylation in iPSCs (**Fig. 1C**). Focusing
172 on DNA hypomethylation, we observed multi-locus loss of imprint methylation in iPSCs from 129
173 (10 loci), DBA (7 loci), CBA (4 loci) and C3H (2 loci) (**Fig. 1C**), indicating either the presence of
174 multiple variants that affect individual genes or the existence of variants that affect DNA
175 methylation at multiple loci.

176 To further investigate strain-specific susceptibilities to DNA methylation change and to
177 determine when, during the iPSC derivation process, they might manifest, we focused on 129
178 and B6J, the two backgrounds exhibiting the most divergent ICR DNA methylation profiles in
179 P15 iPSCs (**Fig. 1C**). While MEFs from 129 and B6J mice both showed indistinguishable,
180 physiological DNA methylation levels at all ICRs (**Fig. S1D**), P3 129 iPSCs (methylation analysis
181 concomitant with AA withdrawal; see **Fig. 1A**) already exhibited pronounced DNA
182 hypomethylation likely introduced during the reprogramming process. In contrast, DNA
183 hypermethylation was not evident at ICRs in B6J iPSCs at this earlier stage of derivation (**Fig.**
184 **S1D**), suggesting DNA hypermethylation is introduced during prolonged culture in the absence
185 of AA. Together, these observations reveal strain-specific differences in the stability of DNA
186 methylation levels at imprinted gene control regions in iPSCs derived under identical conditions
187 specifically selected to reveal both susceptibilities to DNA hypo- and hypermethylation.

188

189 **Susceptibility to DNA hypomethylation upon MAP kinase inhibition is governed by**
190 **genetic background**

191 To determine whether nPSCs derived using other standard approaches also exhibit strain-
192 specific differences to loss-of-imprinting by DNA hypomethylation as observed in iPSCs, we

193 exposed ESCs established from 129 and B6J blastocysts to either AA or the MAPK inhibitor
194 PD0325901 (“iMEK”) for 16 days (**Fig. 1D**), resembling the time required to reprogram MEFs
195 into early-stage iPSCs. 129 ESCs cultured in the presence of AA showed evidence for DNA
196 hypomethylation, albeit significantly less severe than P3 iPSCs (**Fig. 1E** and **Fig.S1E**),
197 suggesting that the reprogramming process can exacerbate the loss of methylation at ICRs. In
198 contrast, 129 ESCs exposed to iMEK showed dramatic loss of ICR methylation at all loci studied,
199 similar to what was observed in P3 iPSCs (**Fig. 1E**) and in agreement with the reported role of
200 MEK inhibition in DNA demethylation (Choi et al., 2017; Yagi et al., 2017). Compared to 129
201 ESCs, B6J ESCs cultured with either AA or iMEK exhibited a modest reduction in ICR
202 methylation, which remained in the physiological range (**Fig. 1F** and **Fig.S1E**). This documents
203 a surprising degree of resistance of B6J ESCs to pathological DNA hypomethylation that extends
204 to all ICRs analyzed (**Fig. 1G**). A somewhat less pronounced resistance to loss of ICR
205 methylation was observed in B6J:129 F1 hybrid ESCs (**Fig. S1F**).

206 We conducted thin-layer chromatography experiments to determine whether loss of ICR
207 methylation in 129 mESCs reflects genome-wide changes in total DNA methylation levels. This
208 approach revealed significantly reduced global levels of DNA methylation at CpG residues in
209 129 mESCs but not in B6J exposed to iMEK. In contrast, mESCs from both strains that were
210 cultured in standard conditions showed similar DNA methylation levels (**Fig. 1H**). These
211 observations suggest that the effects of genetic background on susceptibility to DNA
212 hypomethylation downstream of MAPK inhibition are not restricted to ICRs, which is consistent
213 with prior observations made in mouse and human nPSCs (Choi et al., 2017; Pastor et al., 2016).
214 Of note, the reduction in ERK phosphorylation (**Fig. 1I**) and the levels of DNMT3A (**Fig. S1G**)
215 were similar in 129 and B6J ESCs exposed to iMEK. These results demonstrate that the
216 observed differences in DNA methylation stability between mESCs from these two strains are
217 not due to the different effectiveness of the inhibitor. They also suggest that the responsible
218 variants influence the recruitment or activity of DNA methyltransferases rather than directly
219 altering the expression levels of these enzymes. Together, our findings demonstrate that
220 susceptibility to pathological loss of DNA methylation in commonly used nPSC culture conditions
221 is strongly modulated by genetic variation.

222

223 **Variable DNA hypomethylation in naïve PSCs derived from a genetically diverse outbred
224 mouse stock**

225 Our results so far document that genetic variation between nPSCs from different inbred mouse
226 strains results in markedly different susceptibility to hypomethylation of ICRs driven by MAPK
227 inhibition. We sought to determine whether a similar effect is evident in genetically diverse
228 nPSCs that more closely represent the human population and would potentially allow mapping
229 underlying variants. To this end, we used a pooled *in vitro* fertilization (IVF) approach to establish
230 a panel of ESC lines from Diversity Outbred (DO) mice (Glenn et al., 2024) (**Fig. 2A**), a
231 heterogenous outbred stock derived from eight founder strains (A/J, C57Bl/6J [B6J],
232 129S1/SvImJ [129], NOD/ShiLtJ [NOD], NZO/HILtJ [NZO], CAST/EiJ [CAST], PWK/PhJ [PWK]
233 and WSB/EiJ [WSB]) that harbors more than 40 million SNPs and structural variants and allows
234 high-resolution genetic mapping (Gatti et al., 2014; Melia and Waxman, 2020; Smallwood et al.,
235 2014; Swanzey et al., 2021). For our experiments, we collected genomic DNA from a panel of
236 85 male DO mESC lines that exhibited undifferentiated morphology and were cultured in the
237 presence of iMEK for 2-4 passages to promote hypomethylation (**Fig. 2A**). Kinship analysis after
238 SNP genotyping confirmed a low degree of genetic relatedness among these lines (**Fig.S2A**).

239 To sensitively measure DNA methylation levels at ICRs and at additional selected loci
240 across the genome (**Fig.S2B**) (**Table S2**) in DO ESC lines, we used Enzymatic Methyl (EM)-seq
241 and a custom targeted capture panel. Unbiased clustering of DNA methylation levels at all
242 regions revealed markedly different DNA methylation levels across the panel of DO nPSC lines
243 (**Fig.S2C**). ICRs had the highest average levels of DNA methylation among the different
244 categories of cis-regulatory elements included within the targeted capture panel (**Fig.S2D**).
245 Importantly, differences in CpG methylation levels were not correlated with differences in
246 sequencing coverage (**Fig.S2E**), confirming the reliability of our approach. These data suggest
247 that ICRs in nPSCs might have increased protection from demethylation compared to other gene
248 loci, potentially reflecting their increased resistance to genome-wide epigenetic reprogramming
249 in the pre-implantation embryo (Monk, 2015). Nevertheless, DNA methylation levels at ICRs
250 were also highly variable between DO cell lines, ranging from physiological levels (~50%) of
251 DNA methylation at all ICRs in some cell lines to essentially complete loss of methylation at all
252 ICRs in other lines (**Fig.2B**). These data suggest that genetic variation present within the DO
253 stock can influence DNA hypomethylation phenotypes in naïve PSCs cultured with iMEK.

254 To evaluate whether different ICRs respond similarly to MAPK inhibition, we performed
255 principal component analysis (PCA) on ICR DNA methylation data across the panel of DO nPSC
256 lines. This analysis indicated that most ICRs respond in a strongly correlated manner (**Fig.S2F**),
257 except for 1) regions controlling imprinting at the two major paternally imprinted gene clusters
258 (IG-DMR and *H19*-*Igf2*), 2) a somatic DMR at the maternally imprinted *Zdbf2* locus that acquires
259 DNA methylation on the paternal allele late during embryogenesis (Duffie et al., 2014) and C)
260 *Trappc9*, a locus encoding transcripts known to exhibit variable patterns of parent-of-origin
261 specific imprinting during brain development (Claxton et al., 2022). Consistent with our results
262 with iPSCs from distinct inbred strains, these data provide extensive additional evidence that the
263 majority of ICRs undergo pathological loss of DNA methylation in response to iMEK treatment
264 and that genetic variation modulates the susceptibility of pathological hypomethylation in a
265 similar manner across most ICRs. The observed differences in the relative susceptibility of a
266 subset of ICRs might reflect distinct regulatory mechanisms operational at these sites during
267 development.

268

269 **Identification of QTLs determining susceptibility to locus-specific and widespread DNA**
270 **hypomethylation**

271 We leveraged the observed variation in DNA methylation levels at imprinted gene loci (**Fig.2B**)
272 across DO nPSC lines to attempt to map quantitative trait loci (QTLs) for all ICRs (ICR-me QTLs)
273 across 73 lines that passed additional QC criteria (see Methods). This resulted in the
274 identification of six QTLs that reached statistical significance for at least one ICR (see Methods)
275 (**Fig.2C**). Of note, none of these ICR-me QTLs were located on the same chromosome (Chr) as
276 their putative target ICRs, indicating that each of the identified QTL regions functions in trans.
277 Two ICR-me QTLs – located on Chr4 and Chr17 – are associated with multiple ICRs, with the
278 Chr4 QTL showing the strongest association with ICRs from the *Grb10*, *Mest*, *Plagl1* and *Zsr1*
279 loci and the Chr17 QTL associating strongest with ICRs at the *H19*, *Gtl2* promoter and *Zbdf2*_pat
280 loci (**Fig.2C-E**). Several additional ICRs and non-imprinted genes showed strongly elevated LOD
281 scores at these QTLs, suggesting that these regions harbor variants controlling the degree of
282 DNA hypomethylation across multiple genomic target sites (**Fig.2C**).

283 The Chr4 QTL region (Chr4: 144,920,230-151,337,450) contains a large cluster of genes
284 encoding KRAB zinc finger proteins (KRAB-ZFPs) (**Fig.2F**), which are rapidly evolving genes

285 that play essential roles in silencing foreign DNA elements such as retrotransposons and
286 endogenous retroviruses (Yang et al., 2017). Several prior genetic mapping studies have
287 implicated this same genomic region in the regulation of DNA methylation, including as a
288 modulator of transgene silencing (Engler et al., 1991) and of variably methylated IAP elements
289 that can act as epi-alleles in mice (Bertozzi et al., 2020; Wolf et al., 2020). In addition, gene
290 expression and chromatin accessibility QTL (caQTL) mapping in nPSCs from DO mice identified
291 this region as a trans-eQTL/caQTL hotspot linked to changes in gene expression (115 affected
292 genes) and chromatin accessibility (577 affected peaks) (Skelly et al., 2020). In contrast, to our
293 knowledge, the region of Chr17 QTL (Chr17: 31,353,698-33,102,392) has not yet been
294 implicated in regulating nPSC transcription or biology. Analysis of the Chr 17 QTL suggested
295 several candidate genes that could contribute to the regulation of DNA methylation, including a
296 cluster of genes encoding KRAB-ZFP proteins (*Zfp871*, *Zfp870*, *Zfp799*, *Zfp763*, *Zfp472*), the
297 transcriptional co-activator *Brd4*, and *Wiz*, a known interaction partner of the repressive histone
298 methyltransferases EHMT1 and EHMT2 (also known as GLP and G9a).

299 Of note, allelic effect analysis showed different contributions of specific DO founder strain
300 haplotypes at the Chr4 and the Chr17 QTL (**Fig.2D, E**). In particular, B6J and 129 had opposite
301 effects on DNA methylation changes mediated by the Chr17 QTL (**Fig.2E**), raising the possibility
302 that this region might be involved in establishing the strain-specific DNA methylation stability
303 observed in pure background nPSCs from these two strains. Among the genes encoded by the
304 Chr17 QTL, transcriptomic analysis in B6J and 129 nPSCs revealed that *Wiz* is significantly
305 higher expressed in B6J mESC cultured in both DMSO and iMEK conditions (**Fig.S2G**). *Wiz* was
306 initially identified in an ENU screen for genes that modulate the rate of stochastic epigenetic
307 silencing of an integrated reporter transgene (Daxinger et al., 2013) and the EHMT1/2 complex
308 has been linked to the regulation of DNA methylation at several ICRs (Zhang et al., 2016).
309 Further investigation will be needed to confirm the molecular reasons for the elevated *Wiz*
310 expression levels in B6J mESCs and the potential role of *WIZ* in protecting ICR methylation
311 stability. Our observations are consistent with strain-specific variants that affect the levels or
312 activity of trans-acting epigenome regulators as major drivers of DNA methylation stability in
313 mouse nPSCs.

314

315

316 **Discussion**

317 The susceptibility of imprinted genes for dysregulation in mouse (Humpherys et al., 2001) and
318 human (Kim et al., 2007) pluripotent cells and the associated risks (Greenberg and Bourc'his,
319 2015) have been well-established. More recently, efforts to establish naïve pluripotency in
320 human cells have drawn additional attention to the issue of pathological DNA hypomethylation
321 in these cells (Bar and Benvenisty, 2019). In contrast to the prevalent notion of the stochastic
322 nature of imprint abnormalities (Humpherys et al., 2001), our results with inbred and genetically
323 diverse nPSCs unambiguously demonstrate that genetic background contributes in a major way
324 to variation in susceptibility to aberrant DNA hypomethylation during establishment and
325 maintenance of naïve pluripotency. Based on QTL mapping conducted in DO nPSCs, we
326 propose that genetic variants modulating the activity of specific trans-acting factors – including
327 KRAB-ZFPs and candidate co-factors such as WIZ – represent additional critical variables
328 contributing to epigenetic instability in nPSCs. Of note, while KRAB-ZFPs undergo rapid
329 evolution (Yang et al., 2017), ZFP57 and ZFP445 have been reported to protect ICRs from
330 demethylation in both mice and humans (Takahashi et al., 2019) (Juan and Bartolomei, 2019),
331 raising the possibility that variants in these proteins may affect epigenome stability in nPSCs
332 from both species.

333 The impact of genetic variation on imprint stability in cultured pluripotent cells has several
334 significant ramifications. First, cell line- and locus-specific vulnerabilities complicate the
335 identification of a universal media composition that can stabilize imprints across different cell
336 lines. This is documented by the background-specific requirements of B6J and 129 nPSCs, with
337 B6J nPSCs better tolerating de-methylating agents such as iMEK and AA and 129 essentially
338 preserving imprints in serum-based culture conditions in the absence of additional compounds
339 (Auerbach et al., 2000; Swanzy et al., 2020). Second, it may be possible to predict imprint
340 stability in specific culture conditions based on the genetic variants present in a given nPSC line.
341 Third, the targeted re-engineering of specific variants might enable stabilizing imprints in
342 otherwise epigenetically unstable PSCs. In addition to these more practical considerations, the
343 systematic identification and characterization of variants that impact imprint stability in nPSCs –
344 for example, by analysis of larger panels of DO nPSC lines – might help to unravel the complex
345 regulatory networks governing DNA methylation stability, with implications for a wide range of
346 physiological and pathological processes.

347 **Acknowledgments**

348 Subhashini Madhuranath for help with WB and Laurianne Scourzic for providing reprogramming
349 virus. We are grateful to all Stadtfeld, Vierbuchen, and Apostolou lab members for their input on
350 this project and feedback on this manuscript. M.S. was supported by grants from the NIH
351 (R01GM145864), the Simons Foundation, the Tri-Institutional Stem Cell Initiative (Tri-SCI), and
352 the Bohmfalk Charitable Trust. T.V. was supported by the Sloan Kettering Institute Josie
353 Robertson Investigator Program, the Tri-Institutional Stem Cell Initiative (Tri-SCI), and the Sloan
354 Kettering Institute Cancer Center Support Grant (NIH P30 CA008748). R.G. was supported via
355 an NIH T32 training grant (T32 HD060600). J.G.M receives support from (R01GM145864,
356 R01EB027918, R33HL151355, R01 HL166983).

357

358 **Author contributions**

359 C.P. derived and characterized iPSCs from inbred mouse strains, isolated gDNA, and
360 coordinated DNA methylation analysis by targeted bisulfite sequencing. R.A.G. led the effort to
361 generate and characterize mESCs from DO mice, with assistance from S.S. and S.D. Y.F.
362 performed in vitro fertilization and mESC derivation for Diversity Outbred mESC lines, Y.S.
363 conducted QTL mapping, K.C conducted WB experiments and analyses and prepared samples
364 for RNA-seq, E.E.S. derived inbred mESCs, Y.Z. analyzed DNA methylation data, T.M.
365 conducted TLC, E.A. supervised data analysis and contributed to conceiving the study, A.P.
366 analyzed RNA-seq data, R.K. supervised bioinformatic analysis, J.G.M. supervised QTL
367 mapping, M.S. and T.V. conceived the study, supervised experiments, and wrote the manuscript
368 with input from all authors.

369

370 **Declaration of interests**

371 The authors declare no competing interests

372

373

374

375

376

377

378 **FIGURE LEGENDS**

379 **Figure 1. Genetic variation modulates DNA hypomethylation at ICRs in naive pluripotent**
380 **stem cells from distinct inbred mouse strains**

381 A. Experimental strategy to derive polyclonal iPSCs from MEFs derived from distinct inbred
382 strains.

383 B. Representative colony morphology of iPSCs from each inbred strain at passage 15
384 (p15).

385 C. Unsupervised clustering of CpG methylation levels at selected ICRs in polyclonal iPSCs
386 (n=2 biological replicates/strain).

387 D. Strategy to test the impact of AA or iMEK on imprint methylation in 129 and B6J mESCs.
388 TLC = thin layer chromatography.

389 E. DNA methylation levels at ICRs in indicated cell types derived from the 129 strain

390 F. Same as (E) but for the B6J strain.

391 G. Average changes in DNA methylation levels (iMEK minus DMSO) at germline ICRs in
392 129 and B6J ESCs.

393 H. Quantification of global DNA methylation levels at TCGA sequences by thin layer
394 chromatography in indicated mESCs after 16 days of culture in either the presence of
395 DMSO or of iMEK. * = p<0.05 with one-way ANOVA. N = 2 biological repeats.

396 I. Quantification of phosphorylated-ERK protein levels in 129 and B6J mESCs after culture
397 in iMEK or DMSO. Protein levels are normalized to histone H3 expression. * = p<0.05.
398 and ** = p<0.01 with one-way ANOVA. N = 3 biological replicates.

399

400

401

402

403

404

405

406

407

408 **Figure S1. Genetic variation modulates DNA hypomethylation at ICRs in naive pluripotent**
409 **stem cells from distinct inbred mouse strains**

410

411 A. Phylogenetic tree of inbred mouse strains. Inbred strains used for reprogramming
412 experiments are highlighted. Modified after (Petkov et al., 2004).

413 B. Number of iPSC colonies obtained via reprogramming with nPSC morphology from each
414 inbred mouse strain. Colony quantification was performed at two time points – D7: before
415 withdrawal of doxycycline (viral OKSM expression active), D7+4: after doxycycline
416 withdrawal (viral OKSM expression inactive).

417 C. Quantification of pluripotency-associated surface marker expression (SSEA1, EpCAM)
418 by flow cytometry in iPSCs from different inbred strains.

419 D. DNA methylation levels at indicated ICRs in MEFs and iPSCs (passage 3) from 129 and
420 B6J backgrounds.

421 E. DNA methylation levels at ICRs in 129 and B6J mESCs after culture in indicated
422 conditions.

423 F. ICR methylation levels in B6J, 129, and F1 mESCs cultured in the presence of iMEK for
424 16 days.

425 G. Quantification of DNMT3A protein levels in 129 and B6J mESCs after culture in iMEK or
426 DMSO. Protein levels are normalized to histone H3 expression. * = p<0.05. and ** =
427 p<0.01 with one-way ANOVA. N = 3 biological replicates.

428

429

430

431

432

433

434

435

436

437

438 **Figure 2. Identification of QTLs modulating pathological DNA hypomethylation at ICRs in**
439 **naïve PSCs**

440 A. Overview of experimental strategy. mESCs from DO mice were generated via a pooled
441 in vitro fertilization approach. DO mESC lines ($n = 85$ male lines) were banked at early
442 passage (p3) and then thawed and cultured for an additional two passages in serum/LIF
443 + 2i to promote hypomethylation of ICRs.

444 B. ICR DNA methylation levels across all of the DO mESC lines.

445 C. Genome-wide significant (FWER<0.1) and suggestive (FWER<0.2) QTLs controlling ICR
446 methylation across the mouse genome.

447 D. Allelic effect plot of the Chr4 QTL.

448 E. Allelic effect plot of the Chr17 QTL.

449 F. Genome-wide plot of LOD scores for methylation at the *Grb10* ICR with the Chr4 QTL
450 indicated. Shown are encoded genes with $tpm>10$ in either B6J or 129 mESCs, with
451 known transcriptional or chromatin regulators highlighted in orange.

452 G. Genome-wide plot of LOD scores for methylation at the *Gtl2* promoter with the Chr17 QTL
453 indicated. Show are encoded genes with $tpm>10$ in either B6J or 129 mESCs, , with
454 known known transcriptional or chromatin regulators highlighted in orange.

455
456
457
458
459
460
461
462
463
464
465
466
467

468 **Figure S2. Identification of QTLs modulating pathological DNA hypomethylation at ICRs**
469 **in naïve PSCs**

470 A. Kinship diagram of the DO mESC lines (listed by GigaMUGA ID) used for QTL mapping.
471 B. Gene category representation on capture array
472 C. DNA methylation across all 421 covered regions in all DO mESCs
473 D. DNA methylation levels in D0 mESCs at gene loci (mean and range) representing
474 indicated gene categories.
475 E. CpG methylation levels and coverage at *Impact* locus in four representative DO mESCs.
476 F. PCA analysis of DNA methylation levels at ICRs
477 G. RNA-seq expression levels of all genes encoded by the Chr17 QTL with $\text{tpm} > 10$ in either
478 B6J or 129 mESCs. ** = $q < 0.01$ with multiple t-tests and Benjamini, Krieger, and Yekutieli
479 corrections.

480

481 **Supplementary Tables**

482

483 **Table S1: Table of pluripotent stem cell lines used in this study**

484

485 **Table S2: Table of genomic regions selected for targeted enrichment DNA methylation**
486 **profiling**

487

488

489

490

491

492

493

494

495

496

497

498

499 **Resource availability**

500

501 **Lead Contact**

502 Requests for resources and reagents should be directed to and will be fulfilled by the lead
503 contact, Matthias Stadtfeld (mas4011@med.cornell.edu).

504

505 **Materials availability**

506 Cell lines generated in this study are available upon request from the lead contact. Diversity
507 Outbred mESC lines are described in (Glenn et al., 2024) and can be requested from Thomas
508 Vierbuchen (vierbuct@mskcc.org).

509

510 **Experimental model and subject details**

511

512 **Cell lines**

513 Details of the cell lines used in this study are presented in **Table S1**.

514

515 **Method details**

516

517 **Mouse embryonic fibroblast derivation and culture**

518 Breeding age males and females from inbred strains 129S1/SVImJ (129; JAX_002448),
519 C57BL6/J (B6J; JAX_000664), C57BL6/NJ (B6N; JAX_005304), CBA/J (CBA; JAX_00656),
520 DBA/2J (DBA; JAX_00671), C3H/HeJ (C3H; JAX_000659) and A/J (AJ; JAX_000646) were
521 ordered and set up for mating. Embryos from visibly pregnant females were isolated between
522 E14.5 and E16.5 and dissected from the uterus. After removal of the head and internal organs,
523 the remainder of the embryo was placed into two drops of trypsin-EDTA (0.25%), finely minced
524 using scalpels, and incubated at 37 degrees centigrade for five minutes. Then, embryos were
525 dissociated in MEF media (DMEM with 10% fetal bovine serum, non-essential amino acids,
526 GlutaMAX, pen/strep and 2-Mercaptoethanol) using a 10ml stripette, transferred into T75 flasks
527 (one flask/embryo) and incubated in a 4% O₂ incubator. Once fibroblast outgrowths covered
528 most of the culture surface, cells were harvested by trypsinization, passed through a 40 µM cell
529 strainer to remove remaining undissociated tissue, and frozen down or directly used for

530 reprogramming experiments. A small number of cells was used for genomic DNA prep using a
531 home-made lysis buffer consisting of 100mM Tris-HCl (pH8), 5mM EDTA, 200mM NaCl, 0.2%
532 SDS, and 1 mg/ml Protein K in water. PCR with the primer pair JarifF
533 (CTGAAGCTTTGGCTTGAG) and JaridR (CCACTGCCAAATTCTTG) was used to
534 determine the sex of MEFs.

535

536 **Generation of induced pluripotent stem cells from mouse embryonic fibroblasts**

537 Male MEFs at P1 were seeded in MEF media at 40% confluence onto 48-well plates (n=3 three
538 wells MEFs from different embryos for each strain) and transduced with dox-inducible
539 polycistronic STEMCCA lentivirus encoding OCT4, KLF4, SOX2 and MYC and a constitutive
540 lentivirus expression the reverse tetracycline-dependent transactivator (rtTA) (Sommer et al.,
541 2009). The day of transduction, media was changed to mouse ESC medium (KO-DMEM with
542 15% FBS, L-Glutamine, penicillin-streptomycin, non-essential amino acids, 2-Mercaptoethanol,
543 and 1000 U/ml LIF) supplemented with doxycycline (dox; 1 µg/ml), L-ascorbic acid (AA; 50
544 µg/ml), TGF β RI Kinase Inhibitor II (iALK5; 250nM) and CHIR99021 (CHIR; 3µM). Fresh
545 reprogramming media was added daily until day 7 when colonies with ESC-like morphology were
546 scored, and culture continued in mESC ESC media supplemented with AA but without dox,
547 iALK5, and CHIR. Three to four days later, colonies that maintained ESC-like morphology were
548 counted, and wells were passaged entirely onto 6-well plates. Culture in mESC supplemented
549 with AA was maintained for three passages. At P3, a subset of cells was used for genomic DNA
550 extraction, while the remaining cells were cultured until P15 in base mESC media before being
551 used for DNA extraction.

552

553 **Mouse ESC derivation and culture conditions**

554 ESC lines from inbred mouse strains were derived from individual E3.5 blastocysts as previously
555 described (Czechanski et al., 2014). In brief, blastocysts were isolated and cultured in KnockOut
556 DMEM (GIBCO) supplemented with 15% KnockOut Serum Replacement (GIBCO), 1% FBS, L-
557 Glutamine, sodium pyruvate, penicillin, streptomycin, non-essential amino acids, 2-
558 Mercaptoethanol, 1000 U/ml LIF, 1 µM PD03259010 and 3 µM CHIR99021 on a layer of
559 Mitomycin-C-treated feeders for four days. Media was then changed to mESC medium on
560 Mitomycin-C-treated feeder cells. If applicable, L-Ascorbic acid (50 µg/ml) or PD03259010

561 (1 μ M) was added. ESC lines from DO mice were generated via a pooled in vitro fertilization
562 procedure. The DO ESC lines described here are part of a larger panel of DO ESCs we
563 generated (Glenn et al., 2024). Critical experimental details are reproduced here for the
564 convenience of the reader. Briefly, In-vitro fertilization (IVF) was performed as described
565 previously (Nakagata, 2011). On the day of IVF, sperm from fertility-tested DO male mice was
566 collected from the cauda epididymis and pre-incubated in a drop of sperm medium (TYH-MBCD
567 medium (prepared in-house) or Fertiup (CosmoBio, catalog #KYD-002-05-EX) for one hour.
568 Cumulus masses containing oocytes were collected from the oviducts of superovulated females
569 and placed in a drop of IVF medium (human tubal fluid (HTF) medium (prepared in-house) or
570 Cook IVF medium (Cook Medical, catalog # K-RVFE). One to 4 μ L of sperm was added to each
571 IVF drop. For each batch of IVF, a non-sibling cohort of 10-15 males and 10-15 females was
572 used. Sperm harvested from 5 males was pooled into 4-6 sperm incubation drops in different
573 combinations. Likewise, oocytes from 5 females were collected into 4-to 6 IVF drops and then
574 inseminated with distinct sperm pools. Three to 4 hours after insemination, eggs were rinsed to
575 remove excess sperm and cumulus cells and cultured further. The following day, 2-cell stage
576 embryos were collected and transferred to KSOM embryo culture medium (Embryo Max KSOM,
577 Millipore-Sigma, catalog # MR-121-D) and further cultured for an additional 2-3 days to
578 hatching/hatched blastocysts. Blastocysts were transferred to DO ESC culture medium (Cellartis
579 3i mES/iPSC medium, Takara Bio, catalog # 1181722446) in a cell culture dish covered with
580 mouse embryonic fibroblast (MEF) feeder cells.

581 DO ESC derivation was performed as described by (Kiyonari et al., 2010). Briefly,
582 outgrowths of inner cell mass from seeded blastocysts cultured in 3i medium, typically for 7-10
583 days, were manually picked. Cell clumps were dissociated with trypsin (0.25% Trypsin-EDTA,
584 Gibco, catalog # 25200-056) and replated into MEF feeder-coated cell culture wells (typically, a
585 96-well plate). Cells were gradually expanded into larger cell culture wells, and the initial frozen
586 stock vials were prepared from 6-well cell culture plates (typically, at passages 3 to 4). A few
587 remaining cells were re-plated onto gelatin-coated, feeder-free cell culture wells/dishes for
588 further expansion and genomic DNA preparation.

589 Primary stocks of Diversity Outbred mouse ESC lines (banked at passages 3-4) were
590 thawed and expanded one additional passage on gelatin-coated dishes with irradiated mouse
591 embryonic fibroblast feeder cells using serum/LIF + 2i media composed of DMEM (high glucose,

592 GlutaMAX, HEPES), 1% nonessential amino acids, 1% sodium pyruvate, 1% penicillin-
593 streptomycin, 0.1% 2-mercaptoethanol, 10% fetal bovine serum, 1000 U/ml ESGRO LIF, 3 μ M
594 CHIR99201, and 1 μ M PD0325901. Media was changed daily, and ESCs were passaged upon
595 70% confluence at a 1:6 ratio using Accutase. DO ESC secondary stocks were banked at p4-5,
596 and these stocks were thawed and used for DNA methylation profiling experiments. Mycoplasma
597 testing was performed using the Mycoplasma PCR Detection Kit (Abm, Cat # G238), and all
598 lines tested negative.

599

600 **Genomic DNA isolation for bisulfite sequencing and TLC**

601 Genomic DNA was isolated using proteinase K in lysis buffer, pH 8 (100 mM Tris-HCl, 5 mM
602 EDTA, 0.2% SDS, 200 mM NaCl), followed by isopropanol precipitation, ethanol wash, and
603 reconstitution in TE buffer, pH 7.5 (10 mM Tris-HCl, 1 mM EDTA).

604

605 **Bisulfite sequencing**

606 EpigenDx conducted bisulfite sequencing for the following ICR regions (assay and coordinates
607 in mm10 in parentheses): H19 (ADS445; chr7:142,580,660-142,580,840), IG-DMR (ADS1452S;
608 chr12:109,528,348-109,528,522), Rasgrf1 (ADS936R; chr9:89,879,735-89,879,870), Zdbf2
609 (ASY1814; chr1:63,263,595-63,263,743), Trappc9 (ASY1807; chr15:72,809,239-72,809,353),
610 Peg3 (ASY1691; chr7:6,730,482-6,730,626), Mest (ADS915B; chr6:30,736,975-30,737,097),
611 Snrpn (ASY1694; chr7:60,004,822-60,004,926), Plagl1 (ADS191; chr10:13,091,014-
612 13,091,150), Igf2r (ASY1809R; chr17:12,742,271-12,742,174), Impact (ASY1812;
613 chr18:12,974,427-12,974,544), Gnas (ASY1679; chr2:174,295,026-174,295,059), Grb10
614 (ASY1802; chr11:12,026,650), Kcnq1ot1 (ADS913; chr7:143,295,167-143,295,375) and Sgce
615 (ASY1684; chr6:4,746,936-4,747,087).

616

617 **Analysis of 5mC levels using thin-layer chromatography**

618 Nuclei were prepared by resuspending cells in 1 ml NPB (240 mM sucrose, 7.5 mM Tris, pH
619 7.5, 3.75 mM MgCl₂, 0.75% Triton-X-100, with 100 μ g RNaseA/ml (Qiagen 158922) and
620 placing on ice for 20 minutes. Cells were spun at 1300 g for 15 min, 4 C, then washed once in
621 NPB. Nuclei were lysed in 650 μ l of 1X LB ((10 mM Tris, pH 8.0, 300 mM NaAcetate, pH 7.2,
622 0.5% SDS, 5 mM EDTA, 100 mg RNaseA/ml and 300 μ g/ml Proteinase K (Roche

623 3115801001)) and incubated overnight at 55 C. An extra 300 µg/ml Proteinase K was added in
624 the morning, and the samples were left at 55 C for 5 hours. Samples were extracted with equal
625 volumes of phenol, phenol:chloroform: isoamyl alcohol (25:24:1), and chloroform: isoamyl
626 alcohol (24:1), and then precipitated with two volumes of ethanol. Genomic DNA was washed
627 twice with 1 ml of 70% EtOH, dried, resuspended in 10 mM Tris, 0.1 mM EDTA, pH 8.0, and
628 resuspended overnight at 32 C.

629 2 µg of genomic DNA was digested with 100 units of Taq1-v2 (NEB R0149S) and 100
630 µg of RNaseA overnight. An extra 100 units of restriction enzyme was added in the morning,
631 and incubations continued for 6 hours. Ten units of calf intestinal phosphatase (CIP) (NEB
632 M0290L) were added and incubated for 1 hour at 37 C. DNA was purified using Qiaquick
633 Nucleotide Removal Kit (Qiagen 28306) as per the manufacturer's instructions. 400 ng of
634 eluted DNA fragments were end-labeled with T4 Polynucleotide Kinase (T4 PNK) (NEB
635 M0201L) and 10 µCi of [γ -³²P]-ATP for 1 hour at 37 C. Labeled fragments were precipitated
636 by the addition of 30 µg of linear polyacrylamide, 1/10 volume of 3 M NaAcetate, pH 7.2 and
637 2.5 volumes of ethanol at left at -80 C for 1 hour. Samples were spun at 14,000 rpm for 20
638 minutes at 4 C and washed twice with 70% EtOH at 25 C. Pellets were resuspended in 30 mM
639 Tris, pH 8.9, 15 mM MgCl₂, 2 mM CaCl, with 10 µg of DNasel (Worthington LS006331) and 10
640 µg SVPD (Worthington LS003926) and incubated for 3 hours at 37 C. 3 µl was spotted on
641 cellulose TLC plates (20 cm x 20 cm, Merck) and developed in isobutyric acid: H₂O: NH₃
642 (66:20:1). Plates were analyzed by phosphorimager scanning using Phosphorimager Storm
643 860 scanner software. The low-level labeling of other nucleotides reflects DNA shearing or
644 contaminating endonucleolytic activity.

645

646 **Flow cytometry**

647 For quantification of surface marker expression, trypsinized PSCs were stained with antibodies
648 against EpCAM/CD326 (G8.8, Thermo) and SSEA1/CD15 (MC-480; Thermo), acquired on a
649 FACSCanto (BD Biosciences) and analyzed with FlowJo software (Tree Star Inc.).

650

651 **Sample preparation for RNA-seq and Western blotting**

652 B6J and 129 ES cells at passage 8 were treated in triplicates with either DMSO or at 1 μ M iMEK
653 (PD 0325901; Tocris #4192) from day 0 to day 5 daily. Cells were collected by trypsinization at
654 the end of 5 days, and samples were prepped separately for RNA and protein isolation.

655

656 **Western blotting**

657 Cells were washed with PBS -/- and harvested with Trypsin. Nuclear lysates were prepared
658 using the NE-PER kit (Thermo 78833) according to the manufacturer's instructions. Protein
659 concentration was measured using Bradford Reagent (BioRad #5000006), and samples were
660 boiled in Laemmli Sample Buffer and run using Invitrogen NuPAGE 4-12% Bis-Tris precast gel
661 (NP0322BOX). Western blots were performed using the following antibodies: anti-DNMT3A
662 (Active Motif # 39206, anti-pERK1/2 (CST #9101), and anti-histone H3 (Abcam #ab1791).

663

664 **RNA-seq**

665 Total RNA was extracted using TRIzol (Invitrogen 15596018) and purified with the RNA Clean
666 and Concentrator kit (Zymo Research ZR1014). Following the manufacturer's instructions, one
667 ug of RNA was used to make libraries using the TruSeq Stranded mRNA Library Prep Kit
668 (Illumina# 20020595). Libraries were sequenced on the NovaSeq 6000 using an S4 flow cell at
669 PE 2X100 at the Genomics Core of Weill Cornell Medicine.

670

671 **SNP Genotyping of Diversity Outbred ESC lines**

672 DNA was extracted from ESCs grown on feeders for 1-2 passages (5e5 to 1e6 total
673 cells/sample). DNA was extracted using the Qiagen DNeasy Blood & Tissue Kit (#69504),
674 followed by the Zymo DNA Clean and Concentrator. Double-stranded DNA content was
675 measured using a NanoDrop OneC Spectrophotometer (Thermo Fisher, #13-400-518).
676 Extracted DNA was aliquoted in a 96-well qPCR plate in at least 10 μ L of volume at greater than
677 20 ng/ μ L concentration in groups of at least 24 samples. Samples were shipped to Neogen
678 Genomics (Lincoln, NE) on dry ice overnight for sequencing via the GigaMUGA genotyping array
679 on the Illumina Infinium platform (Morgan et al., 2015).

680

681 **DO cell culture/sample collection for hypomethylation experiments**

682 DO ESCs were thawed at passages 4-5 on gelatin-coated dishes with irradiated feeder cells in
683 Serum/LIF +2i media and cultured for another two to four days. To avoid feeder contamination,
684 ESCs were harvested by detaching colonies using collagenase IV (500 U/mL). Cells were
685 collected and centrifuged at 300xg for 3 minutes at room temperature and stored at -20C before
686 being shipped to SAMPLED (Piscataway, NJ) for processing using Twist NGS Methylation
687 Detection Workflow.

688

689 **Design of targeted capture panel**

690 A Custom Twist Methylome Panel (Twist Bioscience) was designed to perform targeted
691 enrichment for genomic regions chosen based on their known functions as ICRs (Dahlet et al.,
692 2020; Swanzey et al., 2020) or association with germline development (Mochizuki et al., 2021),
693 mouse pre-implantation development (Hu et al., 2020), post-implantation development (Dahlet
694 et al., 2020), aging (Meer et al., 2018; Stubbs et al., 2017), or cancer (Brady et al., 2021).
695 Coordinates of all targeted regions are provided in **Table S2**.

696

697 **DNA methylation profiling and targeted enrichment**

698 DNA methylation profiling was performed using the Twist NGS Methylation Detection Workflow.
699 Briefly, the NEBNext Enzymatic Methyl-Seq Library Preparation protocol
700 (<https://www.twistbioscience.com/resources/protocol/neb-next-enzymatic-methyl-seq-library-preparation-protocol>) was used to prepare genome-wide DNA methylation libraries starting from
701 200 ng gDNA per sample. EM-seq libraries (187.5 ng/sample) were then used for targeted
702 enrichment via the Twist Targeted Methylation Sequencing Protocol
703 (<https://www.twistbioscience.com/resources/protocol/twist-targeted-methylation-sequencing-protocol>). Hybridization was performed at 60 C, eight samples were multiplexed for each
704 hybridization reaction, and 15 cycles of PCR were performed post-capture. Libraries were
705 sequenced using the MiSeq platform (2 X 150 bp reads). The Twist NGS Methylation Detection
706 Workflow was performed by SAMPLED (Piscataway, NJ).

709

710 **DATA ANALYSIS**

711

712 **DNA methylation data processing and quantification**

713 Bismark pipeline (Krueger and Andrews, 2011) was adopted to map DNA methylation
714 sequencing reads and determine cytosine methylation states. Using Trim Galore v0.6.4
715 (<https://github.com/FelixKrueger/TrimGalore>), raw reads with low-quality (less than 20) and
716 adapter sequences were removed (Martin, 2011). The trimmed sequence reads were C(G) to
717 T(A) converted and mapped to similarly converted reference mouse genome (mm10) using
718 default Bowtie 2 (Langmead and Salzberg, 2012) settings implemented by Bismark. Duplicated
719 reads were discarded. The remaining alignments were then used for cytosine methylation calling
720 by Bismark methylation extractor. Furthermore, the CpG sites with read coverage less than 10
721 were removed from the downstream analyses. In this study, we focus on the targeted regions.
722 The full count matrix was mapped to the targeted regions using the function getCoverage() with
723 the regions from R package bsseq (v1.26.0) (Hansen et al., 2012). Average coverage per region
724 was calculated by dividing the total region coverage by the number of captured Cs. The
725 methylation level per region was represented by the average methylation level of all CpGs in the
726 respective region. Average methylation levels were measured for 421 regions, including 19 ICRs
727 or DMRs at imprinted loci. These 19 regions were considered for QTL mapping, along with a
728 20th composite trait calculated as the within-line average of the methylation levels for all 421
729 regions.

730

731 **SNP genotyping data analysis**

732 The sample sequences were processed using the R/qltl2 package to encode the SNP genotypes
733 (Broman et al., 2019b). Subsequently, we performed a kinship analysis to compare the genotype
734 probabilities between all DO lines used in this study and define the degree of relatedness
735 between lines from the same IVF preparation as adapted from (Manichaikul et al., 2009)
736 (<https://smcclatchy.github.io/mapping/>). The following were computed for each diversity outbred
737 mouse (**see above methods**): X chromosome heterozygosity, number of crossovers, proportion
738 missing data, and proportion heterozygous sites (Broman et al., 2019a). The Y chromosome
739 intensity per mouse was calculated by averaging the average Y chromosome microarray signal
740 across all SNPs.

741 For the QTL mapping analyses, mice were included if they satisfied the following Quality
742 Control criteria [0]: Either have X chromosome heterozygosity < 0.1 and Y chromosome intensity
743 > 0.2 (i.e., mice considered to be male), between 600 and 900 crossovers, less than or equal to

744 2% proportion missing genotypes, and proportion heterozygosity between 0.75 and 0.9. In
745 addition, in cases of duplicates, only one was retained. Finally, plots of the B allele frequency
746 and the log R ratio per sample were generated using the karyoplotR package (Gel and Serra,
747 2017) to assess for chromosomal abnormalities; samples with a B allele frequency that deviates
748 from 0.5 at any chromosome were excluded. These total criteria resulted in 73 cell lines. We
749 prepared genotype data using the pipeline (Broman et al., 2019b) with reference genome
750 assembly GRCm38(mm10), obtaining 105,200 SNPs with mappable rsIDs. Genotype quality
751 control measures were applied, including filters for Minor Allele Frequency (MAF) of 0.125,
752 missingness of 0.02, and Hardy-Weinberg Equilibrium (HWE) with a threshold of 1e-6, where
753 following these filters, the final genotype dataset analyzed consisted of 84,403 SNPs.
754

755 **RNA-seq Analysis**

756 Paired-end read alignment to the mouse genome (mm10 version) was performed with STAR
757 aligner (version 2.7.10) with the default setting. Samtools (version 1.13)(Li et al., 2009) were
758 used for filtering and sorting aligned reads before annotation to “mm10.GRCm38.95.gtf” gene
759 version with htseq-count (0.6.1p1 version)(Anders et al., 2015). Only protein-coding and long-
760 non-coding RNA transcripts were used for annotation, and downstream differential expression
761 analysis was performed using the R package DESeq2 (Love et al., 2014). Genes with p-adjusted
762 value <0.01 and fold change difference of 2 were considered differentially expressed.
763

764 **QTL mapping analyses**

765 QTL mapping was performed for the 20 regions, considering the 73 ESC lines that passed the
766 quality control criteria. The 20 traits were found to be approximately normal, where we found
767 repeating mapping analyses after normal transformations did not appreciably change the
768 outcome. Given the complexity of the DO design, we considered two QTL mapping analyses
769 that employed slightly different but complementary modeling approaches: R/qtL2 (Broman et al.,
770 2019b) and GEMMA (Zhou and Stephens, 2012). We implemented both to apply a mixed model
771 with an additive (one-degree of freedom) bi-allelic coding of the focal marker, such that the
772 differences between the two approaches are: R/qtL2 includes imputation of the bi-allelic state
773 considering the eight founder genomes and a relatedness matrix for the random effect is
774 calculated using the “leave-one-chromosome- out” (LOCO) method (Yang et al., 2014), whereas

775 GEMMA analysis is performed on only measured genotypes and the relatedness matrix is
776 calculated as the covariance of the centered genotypes (Zhou and Stephens, 2012). The
777 implementation of the R/qtl2 analysis followed the user guide (Broman et al., 2019b), including
778 write_control_file() with 40, 42, or 46 generations as appropriate per line, to create
779 founder_geno_file, gmap_file, and pmap_file, insert_pseudomarkers() to insert pseudo markers
780 into the genetic map, calc_genoprob() to calculate the QTL genotype probabilities, conversion
781 of the pr to apr using alleleprob(), LOCO method to calculate the relatedness matrix, performing
782 the genome scan with scan1(), and finding LOD peaks with find_peaks(out, map, threshold=5,
783 drop=1.5). For the GEMMA analysis, the option -gk 1 was used for the relatedness matrix, both
784 Wald and likelihood ratio tests were calculated, and Quantile-Quantile (QQ) plots of the p-values
785 were used to assess the appropriateness of the model fit.

786 To assess significance, we applied family-wise error rate (FWER) corrections, where for
787 R/qtl2 analyses, we used both a permutation approach (as implemented in R/qtl2) and
788 Benjamini-Hochberg adjusted p-value (Benjamini et al., 2009) for the p-values obtained by
789 converting the LOD scores at the measured genotypes to Likelihood Ratio Test statistics. For
790 the GEMMA analyses, we applied the Benjamini-Hochberg adjusted p-value procedure. Given
791 the smaller sample size of this study (73) compared to other DO QTL mapping studies that
792 employed considerably larger samples (e.g., ~300-500), (Keller et al., 2019; Linke et al., 2020;
793 Price et al., 2023) we adopted a relatively liberal cutoff of a FWER <0.1 attained in either analysis
794 to indicate a QTL. Similar to other studies, we also consider additional “suggestive” QTL that did
795 not reach this FWER cutoff, (Keller et al., 2019; Linke et al., 2020; Price et al., 2023) whereas
796 implemented in (Linke et al., 2020), we considered a FWER <0.2 attained in either study to
797 indicate suggestive QTL.

798

799 **Quantification and statistical analyses**

800 Statistical analysis of flow cytometry and IF data was done in PRISM 9 (GraphPad), with specific
801 tests and corrections applied as indicated in the respective figure legends.

802

803 **DATA AVAILABILITY**

804 Source data are available in the Gene Expression Omnibus under the accession numbers
805 GSE268906 (EM-seq) and GSE267262 (RNA-seq).

806 **REFERENCES**

807 Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeq--a Python framework to work with high-throughput
808 sequencing data. *Bioinformatics* **31**, 166-169.

809 Andrews, P.W., Barbaric, I., Benvenisty, N., Draper, J.S., Ludwig, T., Merkle, F.T., Sato, Y., Spits, C.,
810 Stacey, G.N., Wang, H., *et al.* (2022). The consequences of recurrent genetic and epigenetic variants in
811 human pluripotent stem cells. *Cell Stem Cell* **29**, 1624-1636.

812 Auerbach, W., Dunmore, J.H., Fairchild-Huntress, V., Fang, Q., Auerbach, A.B., Huszar, D., and Joyner,
813 A.L. (2000). Establishment and chimera analysis of 129/SvEv- and C57BL/6-derived mouse embryonic
814 stem cell lines. *Biotechniques* **29**, 1024-1028, 1030, 1032.

815 Bar, S., and Benvenisty, N. (2019). Epigenetic aberrations in human pluripotent stem cells. *EMBO J* **38**.

816 Bayerl, J., Ayyash, M., Shani, T., Manor, Y.S., Gafni, O., Massarwa, R., Kalma, Y., Aguilera-Castrejon, A.,
817 Zerbib, M., Amir, H., *et al.* (2021). Principles of signaling pathway modulation for enhancing human
818 naive pluripotency induction. *Cell Stem Cell*.

819 Benjamini, Y., Heller, R., and Yekutieli, D. (2009). Selective inference in complex research. *Philos Trans
820 A Math Phys Eng Sci* **367**, 4255-4271.

821 Bertozzi, T.M., Elmer, J.L., Macfarlan, T.S., and Ferguson-Smith, A.C. (2020). KRAB zinc finger protein
822 diversification drives mammalian interindividual methylation variability. *Proc Natl Acad Sci U S A* **117**,
823 31290-31300.

824 Blaschke, K., Ebata, K.T., Karimi, M.M., Zepeda-Martinez, J.A., Goyal, P., Mahapatra, S., Tam, A., Laird,
825 D.J., Hirst, M., Rao, A., *et al.* (2013). Vitamin C induces Tet-dependent DNA demethylation and a
826 blastocyst-like state in ES cells. *Nature* **500**, 222-226.

827 Bock, C., Kiskinis, E., Verstappen, G., Gu, H., Boulting, G., Smith, Z.D., Ziller, M., Croft, G.F., Amoroso,
828 M.W., Oakley, D.H., *et al.* (2011). Reference Maps of human ES and iPS cell variation enable high-
829 throughput characterization of pluripotent cell lines. *Cell* **144**, 439-452.

830 Brady, N.J., Bagadion, A.M., Singh, R., Conteduca, V., Van Emmenis, L., Arceci, E., Pakula, H., Carelli, R.,
831 Khani, F., Bakht, M., *et al.* (2021). Temporal evolution of cellular heterogeneity during the progression
832 to advanced AR-negative prostate cancer. *Nat Commun* **12**, 3372.

833 Broman, K.W., Gatti, D.M., Simecek, P., Furlotte, N.A., Prins, P., Sen, S., Yandell, B.S., and Churchill, G.A.
834 (2019a). R/qltl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and
835 Multiparent Populations. *Genetics* **211**, 495-502.

836 Broman, K.W., Gatti, D.M., Svenson, K.L., Sen, S., and Churchill, G.A. (2019b). Cleaning Genotype Data
837 from Diversity Outbred Mice. *G3 (Bethesda)* **9**, 1571-1579.

838 Byers, C., Spruce, C., Fortin, H.J., Hartig, E.I., Czechanski, A., Munger, S.C., Reinholdt, L.G., Skelly, D.A.,
839 and Baker, C.L. (2022). Genetic control of the pluripotency epigenome determines differentiation bias
840 in mouse embryonic stem cells. *EMBO J* **41**, e109445.

841 Choi, J., Huebner, A.J., Clement, K., Walsh, R.M., Savol, A., Lin, K., Gu, H., Di Stefano, B., Brumbaugh, J.,
842 Kim, S.Y., *et al.* (2017). Prolonged Mek1/2 suppression impairs the developmental potential of
843 embryonic stem cells. *Nature* **548**, 219-223.

844 Claxton, M., Pulix, M., Seah, M.K.Y., Bernardo, R., Zhou, P., Aljuraysi, S., Liloglou, T., Arnaud, P., Kelsey,
845 G., Messerschmidt, D.M., *et al.* (2022). Variable allelic expression of imprinted genes at the Peg13,
846 Trappc9, Ago2 cluster in single neural cells. *Front Cell Dev Biol* **10**, 1022422.

847 Czechanski, A., Byers, C., Greenstein, I., Schröde, N., Donahue, L.R., Hadjantonakis, A.K., and Reinholdt,
848 L.G. (2014). Derivation and characterization of mouse embryonic stem cells from permissive and
849 nonpermissive strains. *Nat Protoc* **9**, 559-574.

850 Dahlet, T., Argueso Lleida, A., Al Adhami, H., Dumas, M., Bender, A., Ngondo, R.P., Tanguy, M., Vallet, J., Auclair, G., Bardet, A.F., *et al.* (2020). Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. *Nat Commun* 11, 3153.

851

852 Daxinger, L., Harten, S.K., Oey, H., Epp, T., Isbel, L., Huang, E., Whitelaw, N., Apedaile, A., Sorolla, A., Yong, J., *et al.* (2013). An ENU mutagenesis screen identifies novel and known genes involved in epigenetic processes in the mouse. *Genome Biol* 14, R96.

853

854 Duffie, R., Ajjan, S., Greenberg, M.V., Zamudio, N., Escamilla del Arenal, M., Iranzo, J., Okamoto, I., Barbaux, S., Fauque, P., and Bourc'his, D. (2014). The Gpr1/Zdbf2 locus provides new paradigms for transient and dynamic genomic imprinting in mammals. *Genes Dev* 28, 463-478.

855

856 Engler, P., Haasch, D., Pinkert, C.A., Doglio, L., Glymour, M., Brinster, R., and Storb, U. (1991). A strain-specific modifier on mouse chromosome 4 controls the methylation of independent transgene loci. *Cell* 65, 939-947.

857

858 Ferguson-Smith, A.C., and Bourc'his, D. (2018). The discovery and importance of genomic imprinting. *Elife* 7.

859

860 Ficz, G., Hore, T.A., Santos, F., Lee, H.J., Dean, W., Arand, J., Krueger, F., Oxley, D., Paul, Y.L., Walter, J., *et al.* (2013). FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. *Cell Stem Cell* 13, 351-359.

861

862 Gatti, D.M., Svenson, K.L., Shabalina, A., Wu, L.Y., Valdar, W., Simecek, P., Goodwin, N., Cheng, R., Pomp, D., Palmer, A., *et al.* (2014). Quantitative trait locus mapping methods for diversity outbred mice. *G3 (Bethesda)* 4, 1623-1633.

863

864 Gel, B., and Serra, E. (2017). karyoplotR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data. *Bioinformatics* 33, 3088-3090.

865

866 Glenn, R.A., Do, S.C., Guruvayurappan, K., Corrigan, E.K., Santini, L., Medina-Cano, D., Singer, S., Cho, H., Liu, J., Broman, K., *et al.* (2024). A Pluripotent Stem Cell Platform for in Vitro Systems Genetics Studies of Mouse Development. *bioRxiv*.

867

868 Greenberg, M.V., and Bourc'his, D. (2015). Cultural relativism: maintenance of genomic imprints in pluripotent stem cell culture systems. *Curr Opin Genet Dev* 31, 42-49.

869

870 Habibi, E., Brinkman, A.B., Arand, J., Kroese, L.I., Kerstens, H.H., Matarese, F., Lepikhov, K., Gut, M., Brun-Heath, I., Hubner, N.C., *et al.* (2013). Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. *Cell Stem Cell* 13, 360-369.

871

872 Hansen, K.D., Langmead, B., and Irizarry, R.A. (2012). BSsmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. *Genome Biol* 13, R83.

873

874 Hu, Z., Tan, D.E.K., Chia, G., Tan, H., Leong, H.F., Chen, B.J., Lau, M.S., Tan, K.Y.S., Bi, X., Yang, D., *et al.* (2020). Maternal factor NELFA drives a 2C-like state in mouse embryonic stem cells. *Nat Cell Biol* 22, 175-186.

875

876 Humpherys, D., Eggan, K., Akutsu, H., Hochedlinger, K., Rideout, W.M., 3rd, Biniszkiewicz, D., Yanagimachi, R., and Jaenisch, R. (2001). Epigenetic instability in ES cells and cloned mice. *Science* 293, 95-97.

877

878 Johannesson, B., Sagi, I., Gore, A., Paull, D., Yamada, M., Golan-Lev, T., Li, Z., LeDuc, C., Shen, Y., Stern, S., *et al.* (2014). Comparable frequencies of coding mutations and loss of imprinting in human pluripotent cells derived by nuclear transfer and defined factors. *Cell Stem Cell* 15, 634-642.

879

880 Juan, A.M., and Bartolomei, M.S. (2019). Evolving imprinting control regions: KRAB zinc fingers hold the key. *Genes Dev* 33, 1-3.

881

882 Keller, M.P., Rabaglia, M.E., Schueler, K.L., Stapleton, D.S., Gatti, D.M., Vincent, M., Mitok, K.A., Wang, Z., Ishimura, T., Simonett, S.P., *et al.* (2019). Gene loci associated with insulin secretion in islets from non-diabetic mice. *J Clin Invest* 129, 4419-4432.

883

884

885

886

887

888

889

890

891

892

893

894

895

896 Kim, K.P., Thurston, A., Mummery, C., Ward-van Oostwaard, D., Priddle, H., Allegrucci, C., Denning, C.,
897 and Young, L. (2007). Gene-specific vulnerability to imprinting variability in human embryonic stem cell
898 lines. *Genome Res* 17, 1731-1742.

899 Kiyonari, H., Kaneko, M., Abe, S., and Aizawa, S. (2010). Three inhibitors of FGF receptor, ERK, and
900 GSK3 establishes germline-competent embryonic stem cells of C57BL/6N mouse strain with high
901 efficiency and stability. *Genesis* 48, 317-327.

902 Krueger, F., and Andrews, S.R. (2011). Bismark: a flexible aligner and methylation caller for Bisulfite-Seq
903 applications. *Bioinformatics* 27, 1571-1572.

904 Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with Bowtie 2. *Nat Methods* 9,
905 357-359.

906 Lee, J., Matsuzawa, A., Shiura, H., Sutani, A., and Ishino, F. (2018). Preferable in vitro condition for
907 maintaining faithful DNA methylation imprinting in mouse embryonic stem cells. *Genes Cells* 23, 146-
908 160.

909 Leitch, H.G., McEwen, K.R., Turp, A., Encheva, V., Carroll, T., Grabole, N., Mansfield, W., Nashun, B.,
910 Knezovich, J.G., Smith, A., *et al.* (2013). Naive pluripotency is associated with global DNA
911 hypomethylation. *Nat Struct Mol Biol* 20, 311-316.

912 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R.,
913 and Genome Project Data Processing, S. (2009). The Sequence Alignment/Map format and SAMtools.
914 *Bioinformatics* 25, 2078-2079.

915 Lilue, J., Doran, A.G., Fiddes, I.T., Abrudan, M., Armstrong, J., Bennett, R., Chow, W., Collins, J., Collins,
916 S., Czechanski, A., *et al.* (2018). Sixteen diverse laboratory mouse reference genomes define strain-
917 specific haplotypes and novel functional loci. *Nat Genet* 50, 1574-1583.

918 Lin, K., and Xiao, A.Z. (2017). Quality control towards the application of induced pluripotent stem cells.
919 *Curr Opin Genet Dev* 46, 164-169.

920 Linke, V., Overmyer, K.A., Miller, I.J., Brademan, D.R., Hutchins, P.D., Trujillo, E.A., Reddy, T.R., Russell,
921 J.D., Cushing, E.M., Schueler, K.L., *et al.* (2020). A large-scale genome-lipid association map guides lipid
922 identification. *Nat Metab* 2, 1149-1162.

923 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and dispersion for
924 RNA-seq data with DESeq2. *Genome Biol* 15, 550.

925 Mani, S., and Mainigi, M. (2018). Embryo Culture Conditions and the Epigenome. *Semin Reprod Med*
926 36, 211-220.

927 Manichaikul, A., Moon, J.Y., Sen, S., Yandell, B.S., and Broman, K.W. (2009). A model selection
928 approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis.
929 *Genetics* 181, 1077-1086.

930 Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads.
931 2011 17, 3.

932 Meer, M.V., Podolskiy, D.I., Tyshkovskiy, A., and Gladyshev, V.N. (2018). A whole lifespan mouse multi-
933 tissue DNA methylation clock. *Elife* 7.

934 Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B.E.,
935 Nusbaum, C., Jaffe, D.B., *et al.* (2008). Genome-scale DNA methylation maps of pluripotent and
936 differentiated cells. *Nature* 454, 766-770.

937 Melia, T., and Waxman, D.J. (2020). Genetic factors contributing to extensive variability of sex-specific
938 hepatic gene expression in Diversity Outbred mice. *PLoS One* 15, e0242665.

939 Mochizuki, K., Sharif, J., Shirane, K., Uranishi, K., Bogutz, A.B., Janssen, S.M., Suzuki, A., Okuda, A.,
940 Koseki, H., and Lorincz, M.C. (2021). Repression of germline genes by PRC1.6 and SETDB1 in the early
941 embryo precedes DNA methylation-mediated silencing. *Nat Commun* 12, 7020.

942 Monfort, A., and Wutz, A. (2013). Breathing-in epigenetic change with vitamin C. *EMBO Rep* 14, 337-
943 346.

944 Monk, D. (2015). Germline-derived DNA methylation and early embryo epigenetic reprogramming: The
945 selected survival of imprints. *Int J Biochem Cell Biol* 67, 128-138.

946 Morgan, A.P., Fu, C.P., Kao, C.Y., Welsh, C.E., Didion, J.P., Yadgary, L., Hyacinth, L., Ferris, M.T., Bell,
947 T.A., Miller, D.R., *et al.* (2015). The Mouse Universal Genotyping Array: From Substrains to Subspecies.
948 *G3 (Bethesda)* 6, 263-279.

949 Nakagata, N. (2011). Cryopreservation of mouse spermatozoa and in vitro fertilization. *Methods Mol
950 Biol* 693, 57-73.

951 Ortmann, D., Brown, S., Czechanski, A., Aydin, S., Muraro, D., Huang, Y., Tomaz, R.A., Osnato, A., Canu,
952 G., Wesley, B.T., *et al.* (2020). Naive Pluripotent Stem Cells Exhibit Phenotypic Variability that Is Driven
953 by Genetic Variation. *Cell Stem Cell* 27, 470-481 e476.

954 Pastor, W.A., Chen, D., Liu, W., Kim, R., Sahakyan, A., Lukianchikov, A., Plath, K., Jacobsen, S.E., and
955 Clark, A.T. (2016). Naive Human Pluripotent Cells Feature a Methylation Landscape Devoid of
956 Blastocyst or Germline Memory. *Cell Stem Cell* 18, 323-329.

957 Petkov, P.M., Ding, Y., Cassell, M.A., Zhang, W., Wagner, G., Sargent, E.E., Asquith, S., Crew, V.,
958 Johnson, K.A., Robinson, P., *et al.* (2004). An efficient SNP system for mouse genome scanning and
959 elucidating strain relationships. *Genome Res* 14, 1806-1811.

960 Polo, J.M., Anderssen, E., Walsh, R.M., Schwarz, B.A., Nefzger, C.M., Lim, S.M., Borkent, M., Apostolou,
961 E., Alaei, S., Cloutier, J., *et al.* (2012). A molecular roadmap of reprogramming somatic cells into iPS
962 cells. *Cell* 151, 1617-1632.

963 Price, T.R., Emfinger, C.H., Schueler, K.L., King, S., Nicholson, R., Beck, T., Yandell, B.S., Summers, S.A.,
964 Holland, W.L., Krauss, R.M., *et al.* (2023). Identification of genetic drivers of plasma lipoprotein size in
965 the Diversity Outbred mouse population. *J Lipid Res* 64, 100471.

966 Rebuzzini, P., Zuccotti, M., Redi, C.A., and Garagna, S. (2016). Achilles' heel of pluripotent stem cells:
967 genetic, genomic and epigenetic variations during prolonged culture. *Cell Mol Life Sci* 73, 2453-2466.

968 Skelly, D.A., Czechanski, A., Byers, C., Aydin, S., Spruce, C., Olivier, C., Choi, K., Gatti, D.M., Raghupathy,
969 N., Keele, G.R., *et al.* (2020). Mapping the Effects of Genetic Variation on Chromatin State and Gene
970 Expression Reveals Loci That Control Ground State Pluripotency. *Cell Stem Cell* 27, 459-469 e458.

971 Smallwood, T.L., Gatti, D.M., Quizon, P., Weinstock, G.M., Jung, K.C., Zhao, L., Hua, K., Pomp, D., and
972 Bennett, B.J. (2014). High-resolution genetic mapping in the diversity outbred mouse population
973 identifies Apobec1 as a candidate gene for atherosclerosis. *G3 (Bethesda)* 4, 2353-2363.

974 Sommer, C.A., Stadtfeld, M., Murphy, G.J., Hochedlinger, K., Kotton, D.N., and Mostoslavsky, G. (2009).
975 Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. *Stem Cells* 27, 543-
976 549.

977 Stubbs, T.M., Bonder, M.J., Stark, A.K., Krueger, F., Team, B.I.A.C., von Meyenn, F., Stegle, O., and Reik,
978 W. (2017). Multi-tissue DNA methylation age predictor in mouse. *Genome Biol* 18, 68.

979 Swanzey, E., McNamara, T.F., Apostolou, E., Tahiliani, M., and Stadtfeld, M. (2020). A Susceptibility
980 Locus on Chromosome 13 Profoundly Impacts the Stability of Genomic Imprinting in Mouse Pluripotent
981 Stem Cells. *Cell Rep* 30, 3597-3604 e3593.

982 Swanzey, E., O'Connor, C., and Reinholdt, L.G. (2021). Mouse Genetic Reference Populations: Cellular
983 Platforms for Integrative Systems Genetics. *Trends Genet* 37, 251-265.

984 Takahashi, N., Coluccio, A., Thorball, C.W., Planet, E., Shi, H., Offner, S., Turelli, P., Imbeault, M.,
985 Ferguson-Smith, A.C., and Trono, D. (2019). ZNF445 is a primary regulator of genomic imprinting.
986 *Genes Dev* 33, 49-54.

987 Vidal, S.E., Amlani, B., Chen, T., Tsirigos, A., and Stadtfeld, M. (2014). Combinatorial modulation of
988 signaling pathways reveals cell-type-specific requirements for highly efficient and synchronous iPSC
989 reprogramming. *Stem Cell Reports* 3, 574-584.

990 Wolf, G., de Iaco, A., Sun, M.A., Bruno, M., Tinkham, M., Hoang, D., Mitra, A., Ralls, S., Trono, D., and
991 Macfarlan, T.S. (2020). KRAB-zinc finger protein gene expansion in response to active retrotransposons
992 in the murine lineage. *Elife* 9.

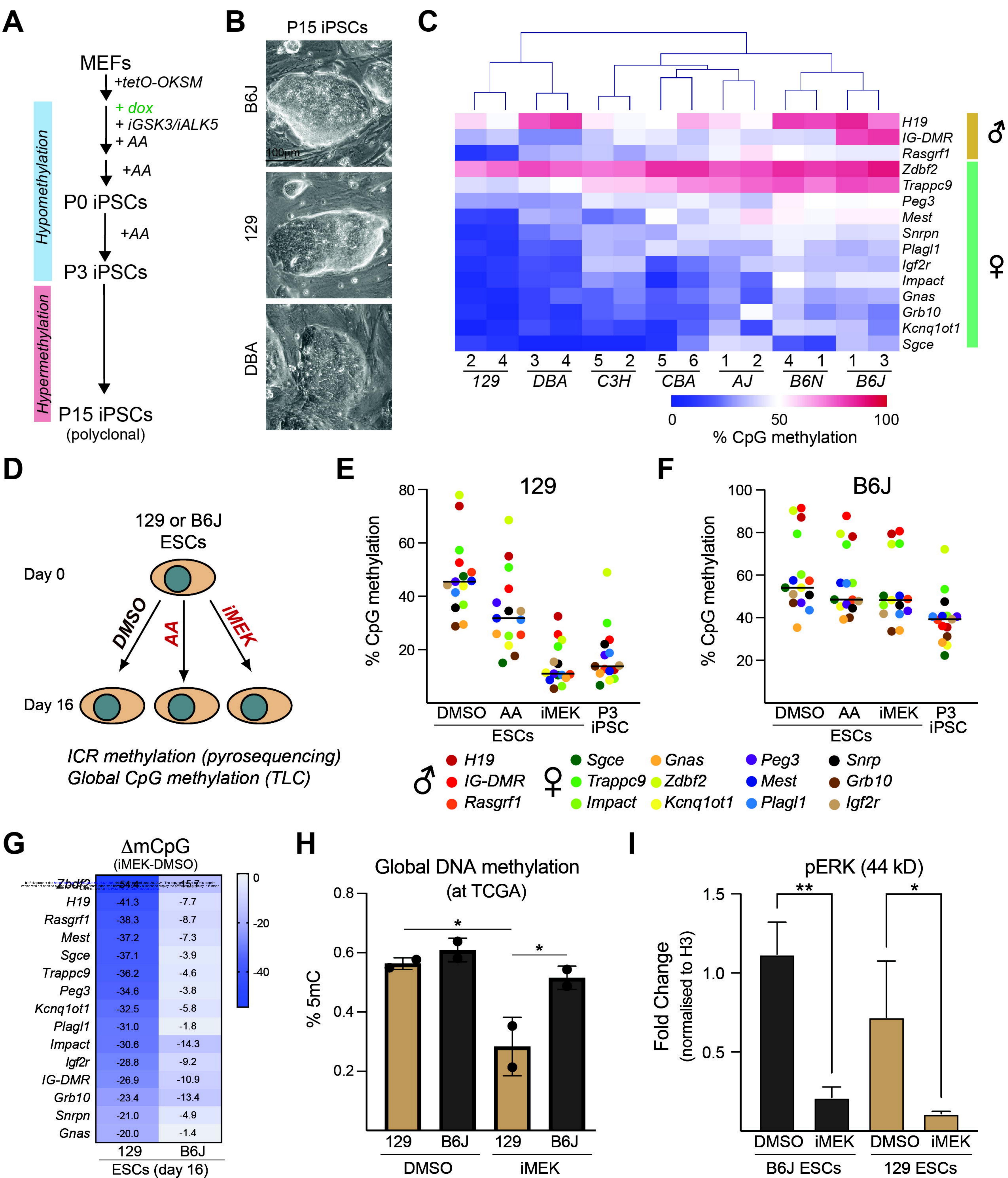
993 Yagi, M., Kishigami, S., Tanaka, A., Semi, K., Mizutani, E., Wakayama, S., Wakayama, T., Yamamoto, T.,
994 and Yamada, Y. (2017). Derivation of ground-state female ES cells maintaining gamete-derived DNA
995 methylation. *Nature* 548, 224-227.

996 Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M., and Price, A.L. (2014). Advantages and pitfalls in
997 the application of mixed-model association methods. *Nat Genet* 46, 100-106.

998 Yang, P., Wang, Y., and Macfarlan, T.S. (2017). The Role of KRAB-ZFPs in Transposable Element
999 Repression and Mammalian Evolution. *Trends Genet* 33, 871-881.

1000 Zhang, T., Termanis, A., Ozkan, B., Bao, X.X., Culley, J., de Lima Alves, F., Rappaport, J., Ramsahoye, B.,
1001 and Stancheva, I. (2016). G9a/GLP Complex Maintains Imprinted DNA Methylation in Embryonic Stem
1002 Cells. *Cell Rep* 15, 77-85.

1003 Zhou, X., and Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association
1004 studies. *Nat Genet* 44, 821-824.


1005 Zvetkova, I., Apedaile, A., Ramsahoye, B., Mermoud, J.E., Crompton, L.A., John, R., Feil, R., and
1006 Brockdorff, N. (2005). Global hypomethylation of the genome in XX embryonic stem cells. *Nat Genet*
1007 37, 1274-1279.

1008

1009

1010

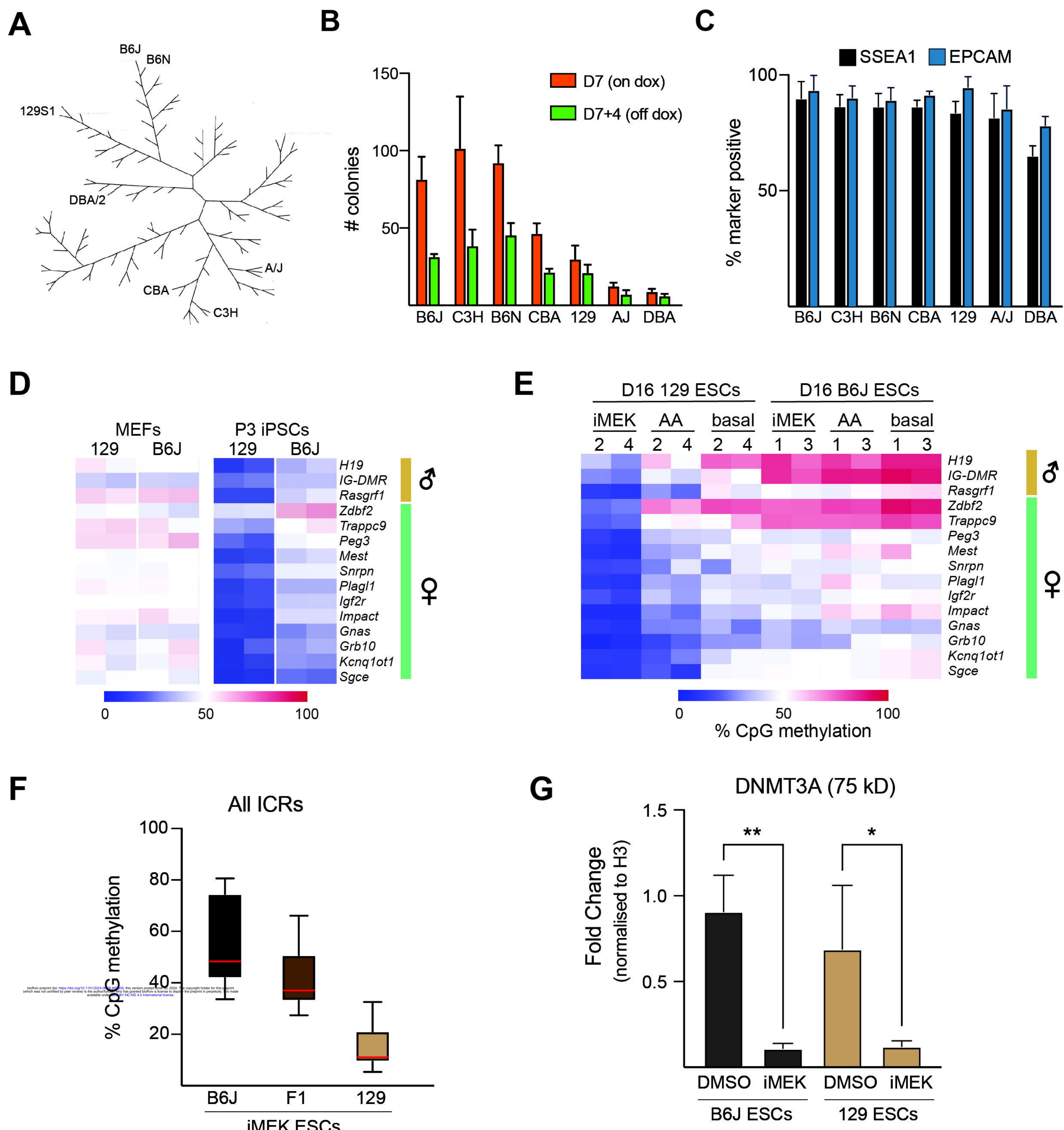
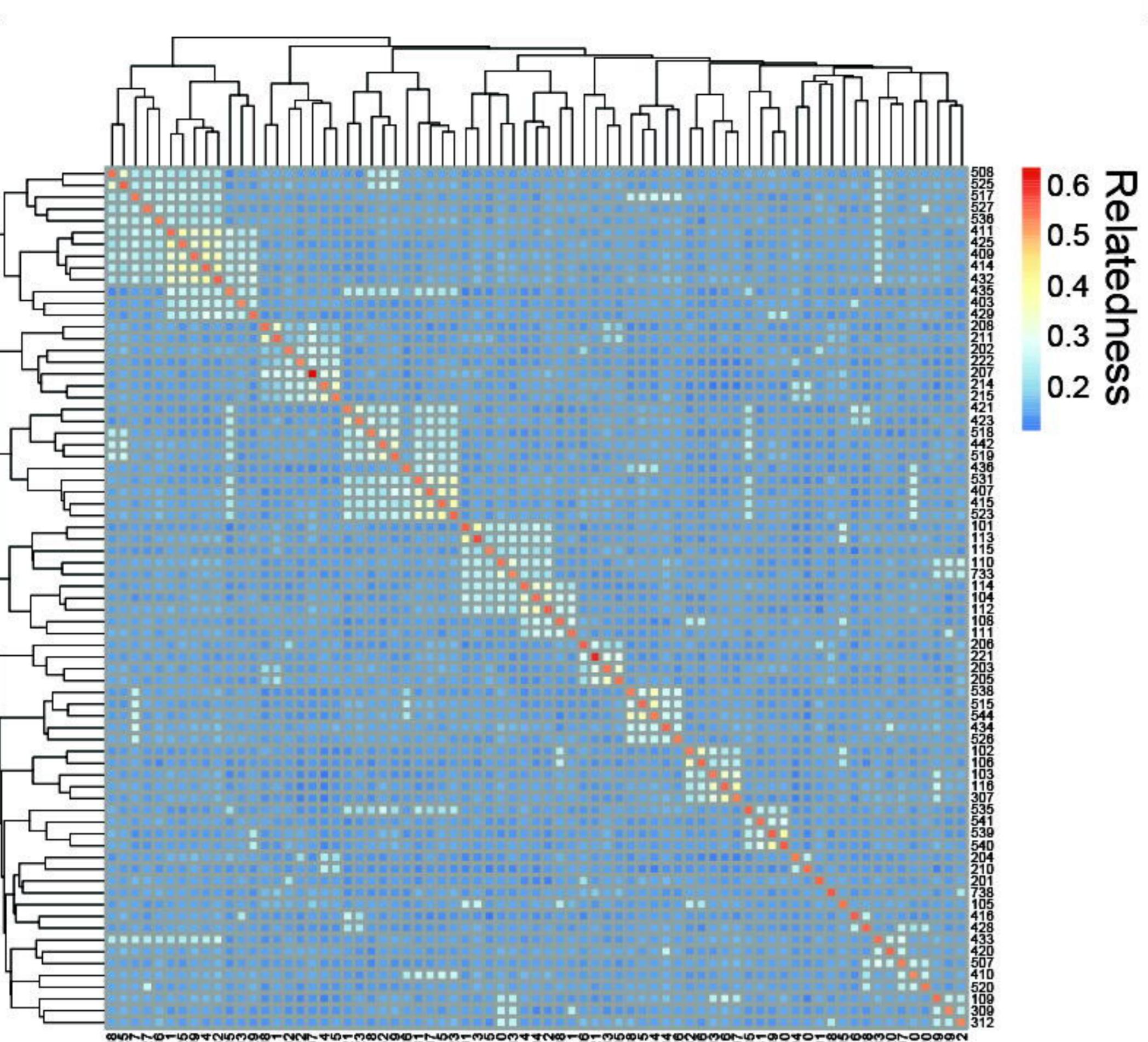

Figure 1

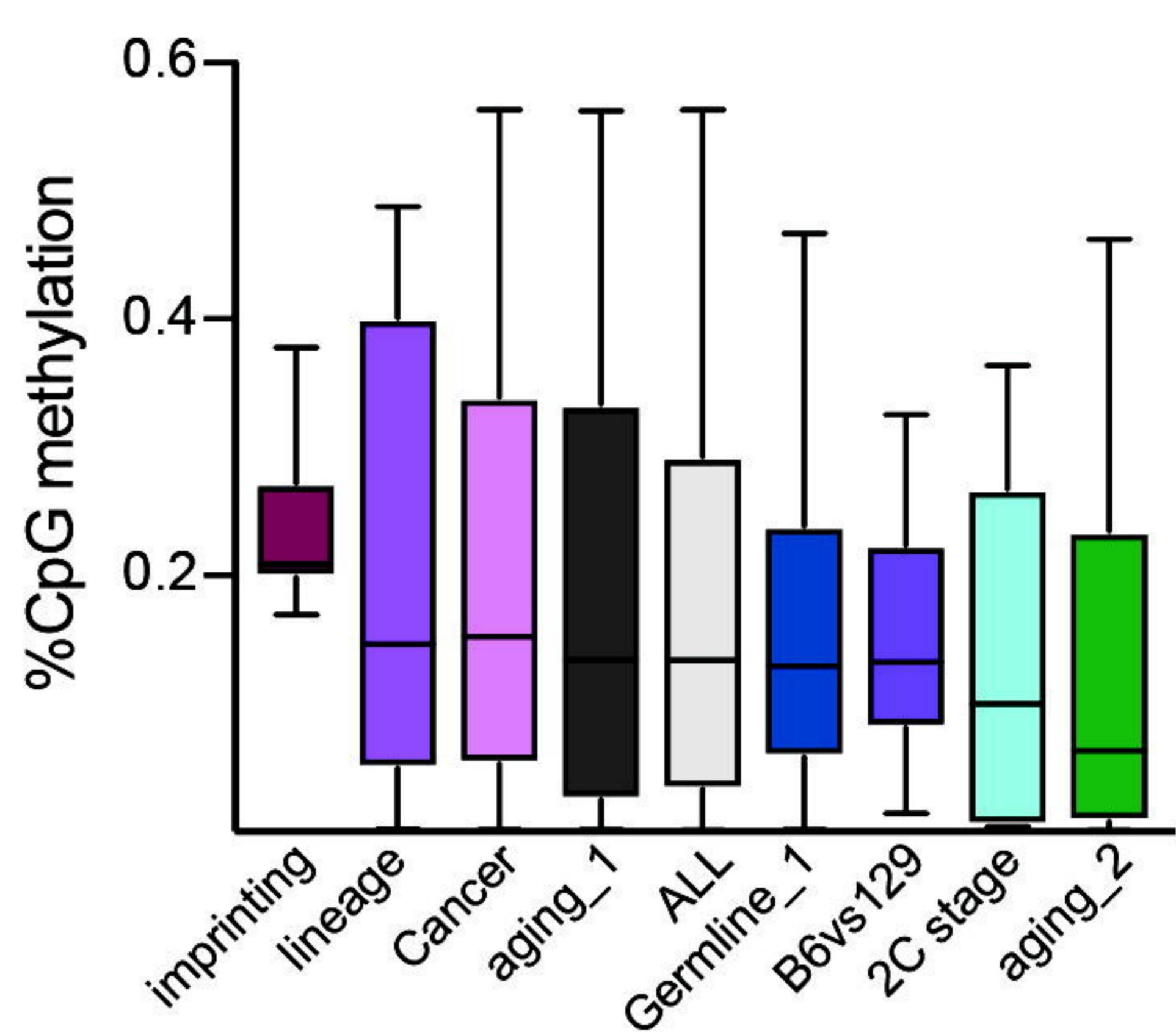
Figure 2

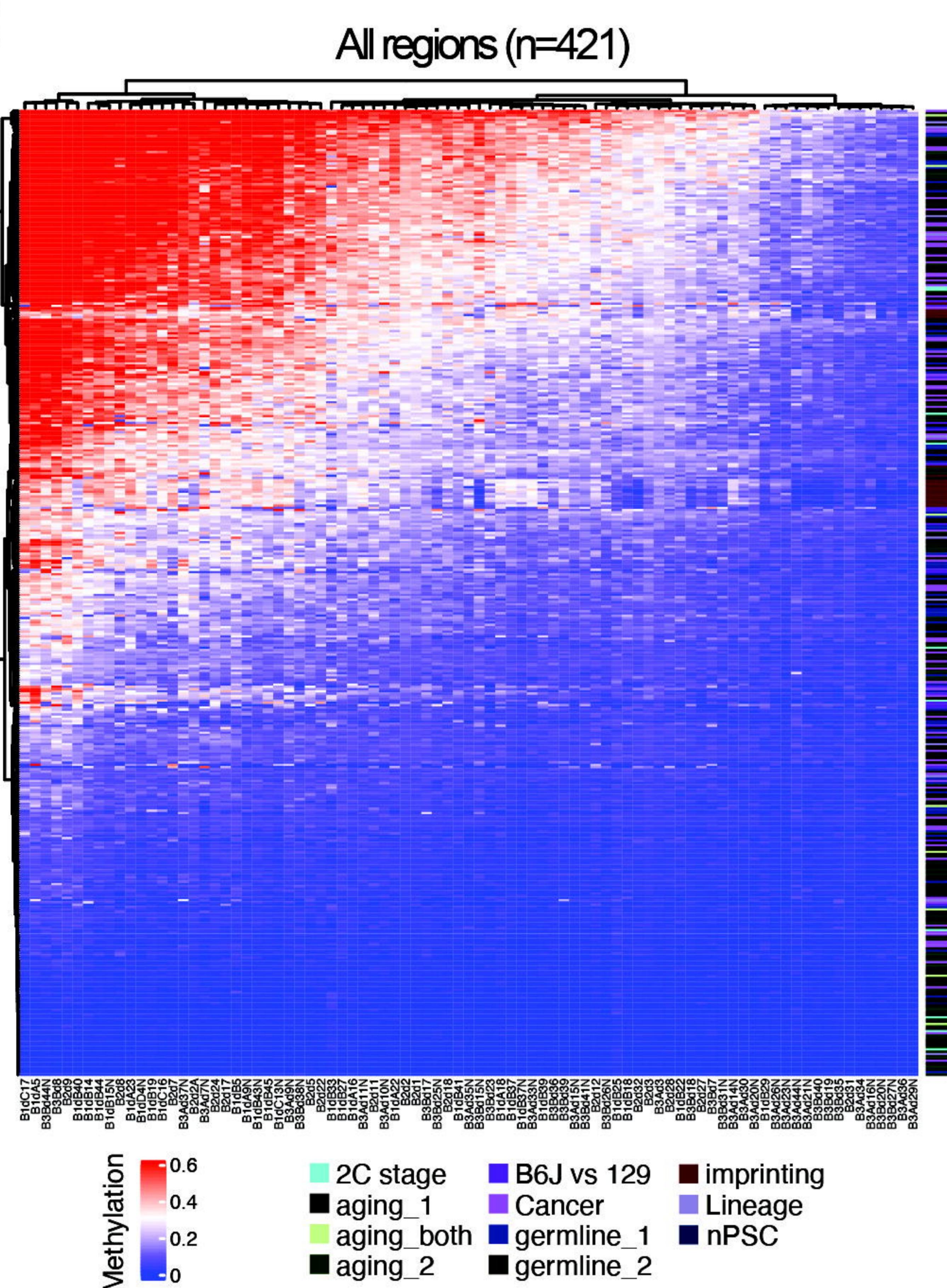


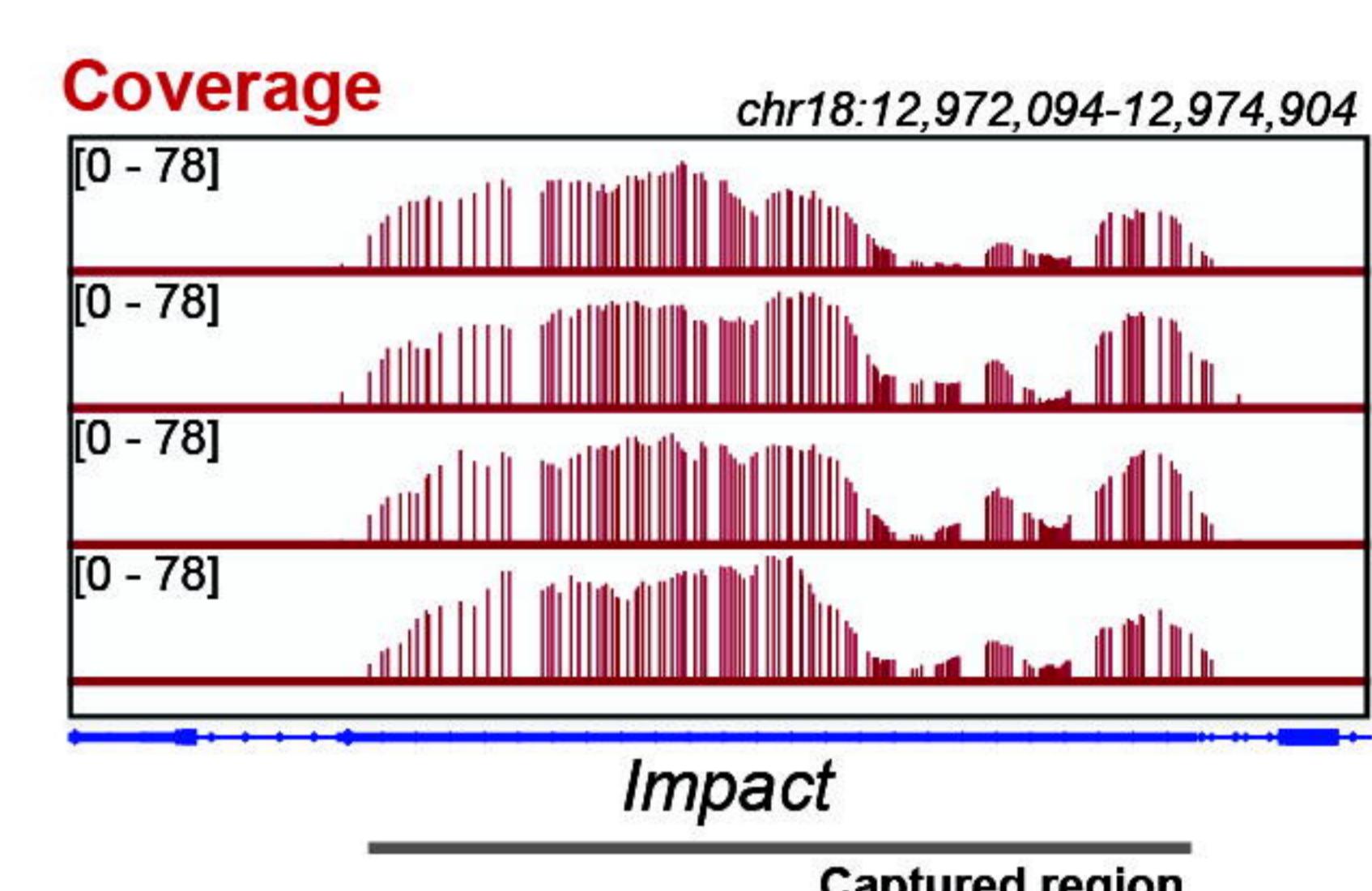
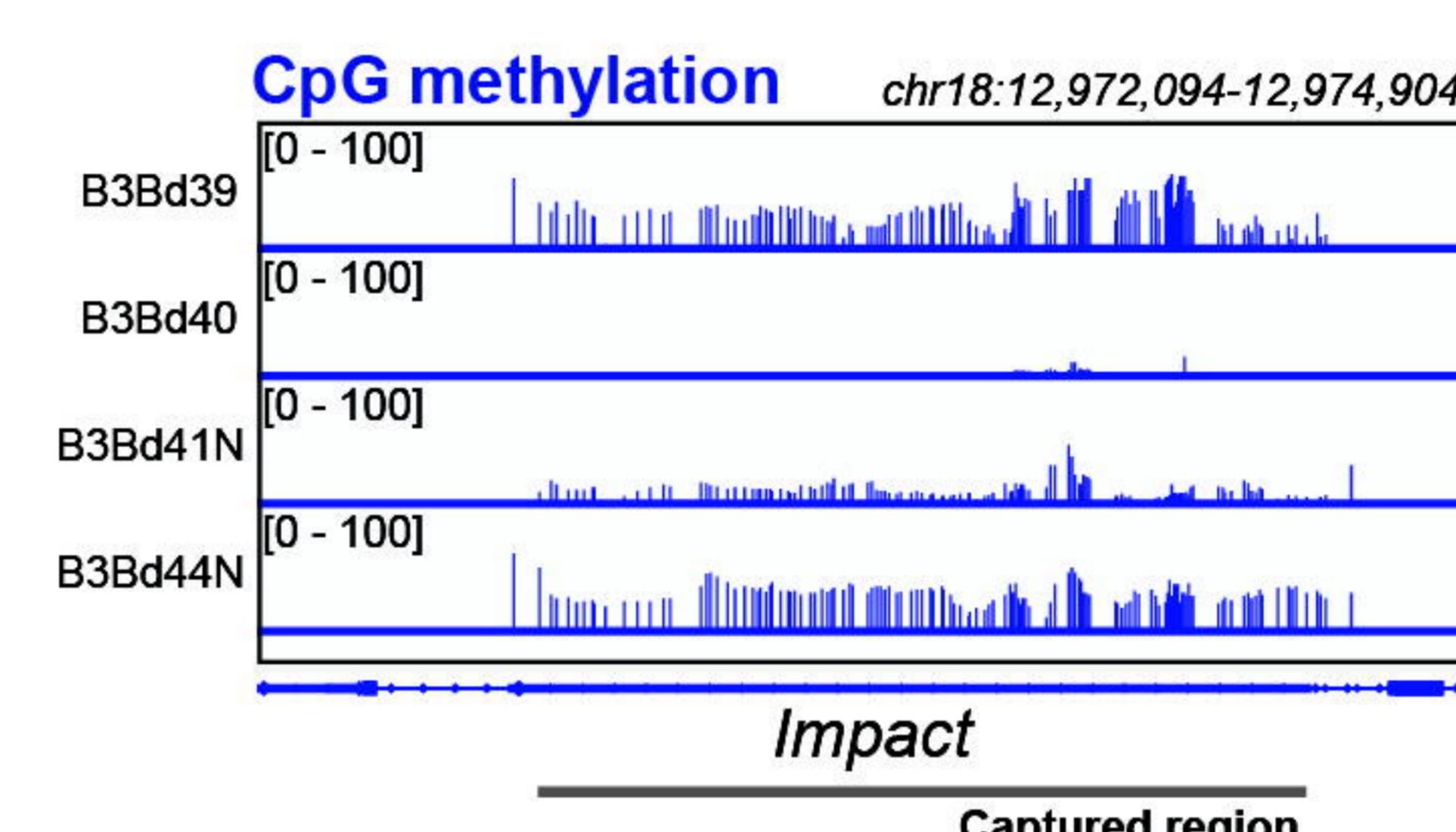
Supplemental Figure 1

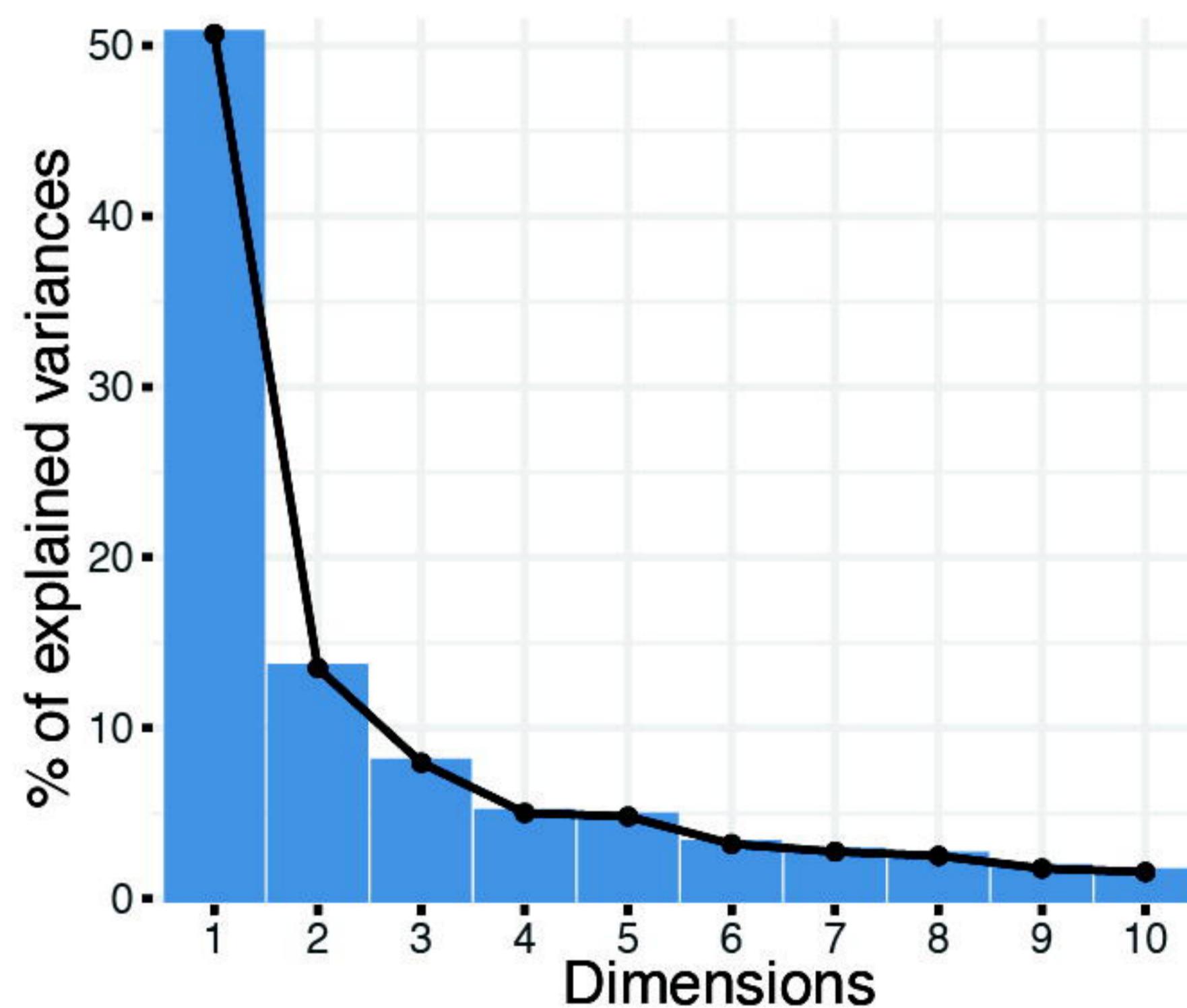
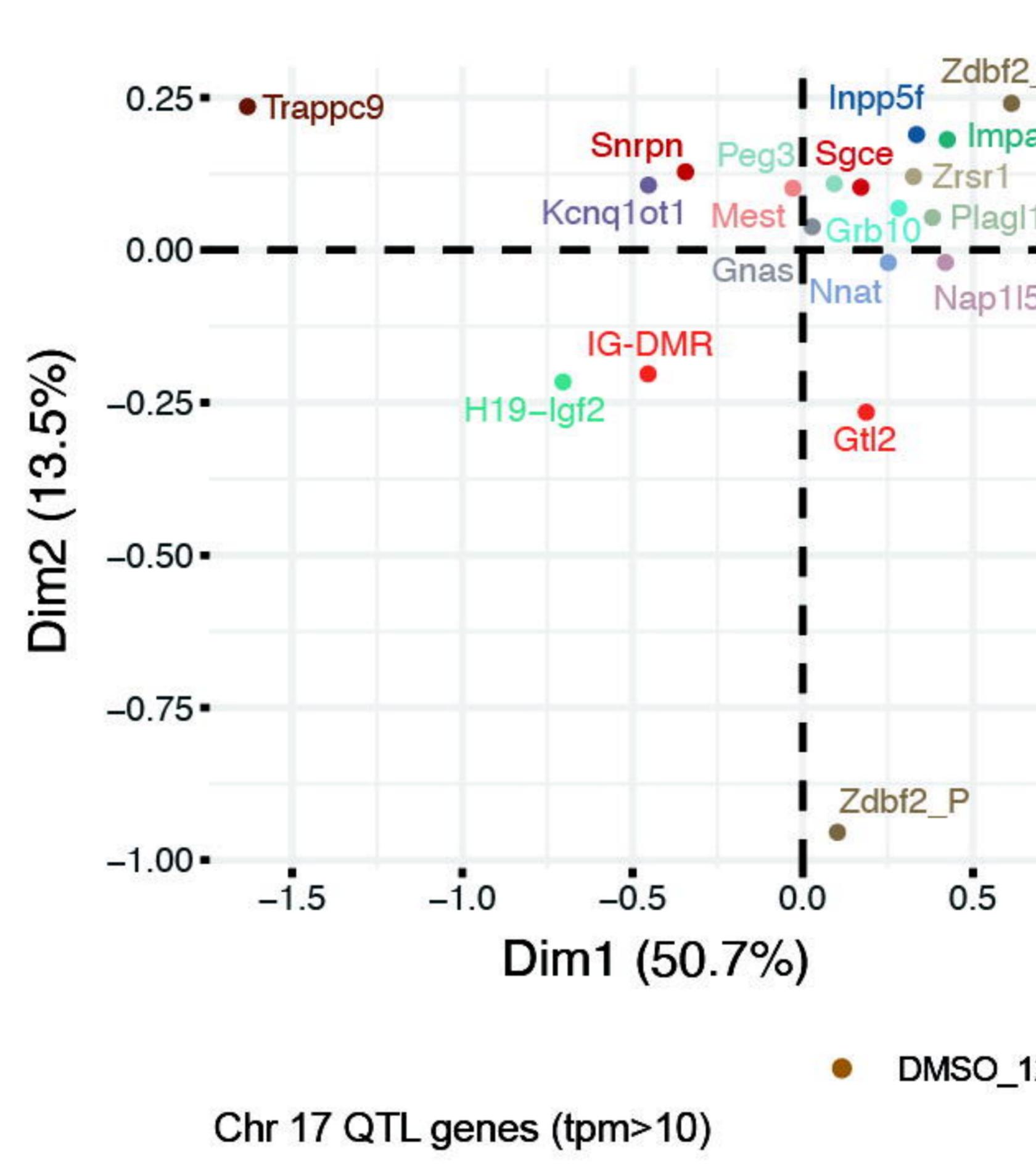


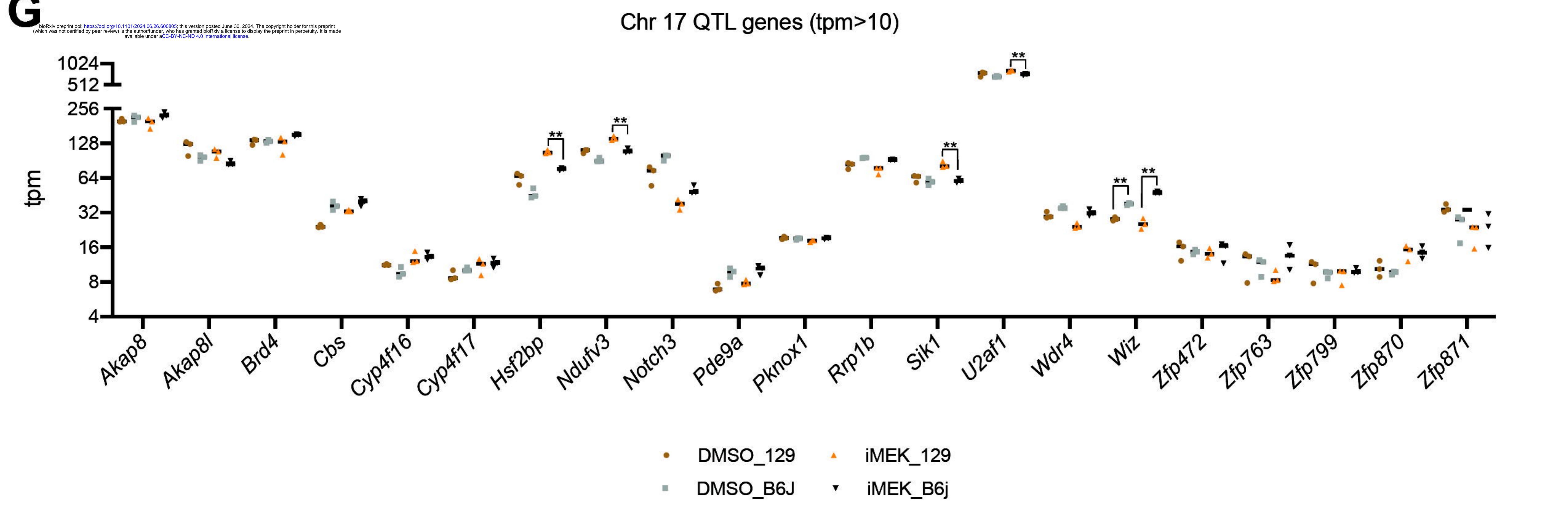
Supplemental Figure 2


A


B



D



C


E

F

G

