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Abstract

RNA-targeting drug discovery is undergoing an unprecedented revolution. Despite recent advances in this field,
developing data-driven deep learning models remains challenging due to the limited availability of validated RNA-
small molecule interactions and the scarcity of known RNA structures. In this context, we introduce RNAsmol, a
novel sequence-based deep learning framework that incorporates data perturbation with augmentation, graph-based
molecular feature representation and attention-based feature fusion modules to predict RNA-small molecule
interactions. RNAsmol employs perturbation strategies to balance the bias between true negative and unknown
interaction space thereby elucidating the intrinsic binding patterns between RNA and small molecules. The resulting
model demonstrates accurate predictions of the binding between RNA and small molecules, outperforming other
methods with average improvements of ~8% (AUROC) in 10-fold cross-validation, ~16% (AUROC) in cold
evaluation (on unseen datasets), and ~30% (ranking score) in decoy evaluation. Moreover, we use case studies to
validate molecular binding hotspots in the prediction of RNAsmol, proving the model’s interpretability. In particular,
we demonstrate that RNAsmol, without requiring structural input, can generate reliable predictions and be adapted
to many RNA-targeting drug design scenarios.

Introduction

Drug discovery, a time-consuming and costly process, involves identifying disease-relevant targets and selecting
optimal molecules from the expansive chemical space of around 10°° drug-like molecules[1, 2]. Currently, most
clinical drugs target proteins, yet numerous protein targets are considered "undruggable" due to the lack of suitable
structural binding pockets, limiting the range of druggable targets[3, 4]. According to the latest statistics from the
DrugBank database[5], merely 854 human proteins have been targeted by FDA-approved drugs. Considering that
around 70% of the human genome has the potential to transcribe into RNAs, many of these RNAs exhibit close
association with human pathologies, targeting RNA may significantly expand the pool of druggable targets.
Originating with ribosomes as crucial antibiotic targets[6-8], RNA-targeting has burgeoned in the last decade,
various RNA types including mRNA, miRNA, tRNA, rRNA, and long non-coding RNAs (IncRNAs) have been
proved to be targets of small molecules [9-15]. Most of the well-known RNA-targeted small molecules are identified
using phenotypic screening occasionally, for instance, Evrysdi (risdiplam)[9, 16], approved by the FDA in August
2020, targets human mRNA, correcting specific splicing defects in treating spinal muscular atrophy. Moreover,
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ribocil, a small molecule targeting FMN riboswitches is pivotal in bacterial regulation and antibiotic resistance[10].
These experiences suggest the transformative potential of RNA-targeting in the field of drug discovery. Currently,
researchers have applied target-based high-throughput screening (HTS) techniques derived from protein-targeting
drug discovery[17-19] such as the automated ligand identification system (ALIS) and small-molecule microarrays
(SMM) to identify RNA-binding small molecules[20, 21]. For example, using ALIS, the compound X1 was
identified to bind to the IncRNA Xist, inhibiting X chromosome inactivation by inducing conformational changes
that disrupt its interaction with associated protein factors[11]. Also, a recent work used SMM to screen large libraries
of compounds against a set of disease-related RNA targets and collected the largest fully public nucleic acid binding
small molecule library named Repository Of Binders to Nucleic acids (ROBIN)[22].

However, since existing experimental methods are costly and labor-intensive, many computational methods
have been proposed as alternative solutions to automate the identification of RN A-targeting small molecules. Firstly,
many methods collected existing experimental validated RNA targets and RNA-binders into libraries and predicted
RNA-small molecule binding by assessing the similarity between query data and curated data in library, such as
Inforna [20, 23], RNAligands [24], and RSAPred [25]. Secondly, for RNA targets of interest with known structures,
molecular docking remains the most straightforward virtual screening method, several docking and scoring methods
have been developed for RNA-targeting ligands, such as rDock[26], RLDOCK][27], AutoDock Vina[28]. Despite
the widespread use of molecular docking, its accuracy is limited due to factors such as force field settings,
inaccuracies in scoring functions[29, 30], and inadequate sampling of ligand conformations[31]. Thirdly, many
studies have begun to utilize advanced deep learning models to study RNA-ligand interactions. These studies
roughly fall into three categories: predicting small molecule binding sites on RNA target structures (site model)[32-
35], designing potential binding ligands for RNA structural pockets (generative model)[36-38], and predicting
RNA-ligand binding interactions (classification model)[39]. Site models were proposed to predict the positions or
local regions on the RNA target as binding sites/motifs by the representation and characterization of multiple
properties for 3D structures of RNA targets. Generative models began with the RNA pocket, using deep learning
models to design the candidate ligand for given RNA pockets. For example, RNAmigos and RNAmigos2 models
use the augmented base pairing network (ABPN) representation of 3D RNA pocket structure and use a relational
graph convolutional neural network module to generate the fingerprint of potential binding ligand. Classification
models were developed to leverage the combination of RNAs and ligand features for predicting RNA-ligand

interactions.

Despite all these efforts, aforementioned library-based methods depend on in-house experimental databases
and exhibit poor generalizability on unseen queries. Current computational models heavily rely on RNA 3D
structure information, while there are only 7,806 RNA-containing structures in the RCSB Protein Data Bank
(PDB)[40] (http://www.rcsb.org/), accounting for around 3.5% of the total number of structures (221,371 as of Jun
2024). Moreover, many disease-related human mRNAs[12, 41] and IncRNA targets (e.g., XIST [11], MALAT1[42],
HOTAIR[43]) lack defined structures or have structures that are difficult to determine[44-46], making them
unsuitable for the aforementioned methods as input or for training. Given the widespread application of deep
learning technology in predicting protein sequence-ligand binding[47-55] and RNA sequence-protein binding[56,
57], it is feasible to leverage state-of-the-art deep learning models to establish a sequence-based RNA-small
molecule prediction method for RNAs with unknown structures. Besides, recent structure-based virtual screening
(SBVS) methods for protein targets[58, 59] have attempted to improve prediction performance on unseen data.
Currently, no RNA-targeting models have systematically proven their ability to generalize on unseen datasets.
Although the existing methods demonstrate promising performance in traditional model evaluations, determining
the binding pattern of RNA and small molecules while simultaneously accelerating the development process of

RNA-targeting small molecule drugs remains beyond our current capabilities. Furthermore, there is ample room for
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improvement in the interpretation and adaptability of existing models.

To address these challenges, we present RNAsmol, a novel sequence-based RNA-small molecule
interaction scoring model for RNAs with unknown structures. We integrated diverse information from
heterogeneous data sources including PDB and ROBIN and carefully preprocess these datasets to disclose and
interpret the binding between RNA and small molecules. Leveraging data perturbation and augmentation strategies,
RNAsmol aims to address bottlenecks such as data scarcity, comprehensively characterize the binding patterns
between RNA and small molecules thereby aiding the development process of small molecule drugs targeting RNA.
We utilized graph diffusion convolution for molecular feature representation and bilinear attention feature fusion
modules to predict RNA-small molecule interactions. Then, we employed four evaluation methods with
progressively stricter assessments to benchmark RNAsmol. RNAsmol achieved significant performance compared
to other methods, showing an average improvement of approximately 8% in ROCAUC during 10-fold cross-
validation, around 16% in ROCAUC for cold evaluations on unseen datasets, and about 30% in ranking score during
decoy evaluations. Furthermore, we validate the model’s interpretability through case study validations, identifying
molecular binding hotspots corresponding to RNAsmol's predictions. For structured molecules like most proteins
and certain noncoding RNAs (e.g., Riboswitch and Ribozyme), there are many Al-driven methods available.
However, for RNAs without stable tertiary structures (e.g., many mRNAs and IncRNAs), there is still a lack of
prediction methods for RNA-ligand interaction scoring. RNAsmol is capable of generating reliable predictions
without relying on structural input, can be applicable to various RNA-targeting drug design scenarios.

Results

Overview of RNAsmol framework


https://doi.org/10.1101/2024.06.26.600802
http://creativecommons.org/licenses/by-nc-nd/4.0/

113
114

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

A Multi-view CNN AN
raw BLOCK 1
Y\ A RNA target target —
/ /\l&ﬂ: pool
= =
small molecule
pool concact linear
~ = = ’ - J —
Pm
,
A Py Ty, Convi1d
+ 0 + D}J‘f" ‘ BLOCK 3 Encoder
Pn v embedding I C = = 4
+ A.g\' - I L] " Bilinear attention block
Tm Convid  Convid Convild
molecule MLP L_score
T $b. Graph diffusion convolution
r l ‘o‘i' Feature fusion
A, \ Encoder
T ay Atom feature -
n Ve :H:*** linear
: "‘“’?\o = » = —»H
Augmentation strategies ! T
= Purterbations (p.) N dgiffusion Adjacency matrix H /
T.: training datasets S~ Graph conv i
Cc
decoy rank score -
case s
i & o T decoy  aiidation
@ = o — PN evaluation
- <+ decoy < [Toza IX cold
- i oarIx evaluation
RNAsmol libraries (el v RNAsmol ®
®u) % 10-fold CV
optimization decoy evaluation evaluation

Figure 1. Overview of RNAsmol framework

a. Three kinds of perturbations with augmentations on RNA-small molecule interaction network. b. Model architecture. RNAsmol
model has two parallel feature extraction modules, multi-view CNN for RNA target and graph diffusion convolution for small molecule
respectively. Then, it employs a bilinear attention block for feature fusion and a multilayer perceptron (MLP) for classification. c.
Evaluations and reliable post-hoc analysis of RNAsmol model. Four kinds of evaluations including 10-fold CV (cross-validation)
evaluation, cold evaluation, decoy evaluation and case study validation are utilized to prove the reliable performance on classification

task and robust potential on drug virtual screening. Additionally, we optimize small molecule perturbation for decoy evaluation.

As illustrated in Figure 1, we build a deep learning model termed RNAsmol which takes RNA sequences and small
molecules as inputs and outputs the likelihood of their binding as binding score. To address the issues arising from
data scarcity and learning biases, as shown in Figure 1a, we apply three kinds of data perturbations on the raw
RNA-small molecule interaction network in our study, i.e., p, for RNA perturbation, p,, for small molecule
perturbation, p,, for interaction network perturbation. RNA perturbation adds the shuffled RNA sequences with
same dinucleotide frequency as the RNA targets into the raw network, small molecule perturbation adds drug-like
compounds with high MACCS fingerprint similarity to the small molecule ligands into the raw network, and the
interaction network perturbation introduces negative labels in the unknown interaction space of the raw network.
Along with three kinds of augmentation strategies for each perturbation, we generate three kinds of training datasets,
ie., T, Ty, T, for the model. Figure 1b shows the overall model architecture of RNAsmol, we utilize parallel
processing modules for RNA targets and their corresponding small molecule ligands. Specifically, we employ a
multi-view convolutional neural network for RNAs which strengthens long-range context aggregation for
comprehensive representations, and a graph diffusion convolutional neural network for small molecules which
extracts global topological properties of molecular structures. Then we utilize a bilinear attention block as a feature
fusion module further aiding in annotating key binding sites relevant to their interactions and a multilayer perceptron
(MLP) for classification in the model. To prove the prediction performance and robust model generalization and
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interpretability, as shown in Figure 1c, we sequentially use the 10-fold cross-validation (CV) evaluation, cold
evaluation, decoy evaluation and case study validations to compare the performance of RNAsmol with other models,
with each subsequent evaluation introducing progressively stricter criteria. Besides, we also refine the parameters
in RNAsmol in post-hoc analysis and optimize the model as a tool for drug virtual screening. See Methods for more

details about RNAsmol model modules and evaluation methods.

RNAsmol provides accurate predictions of RNA-small molecule binding in perturbation space
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Figure 2. Performance comparison in predicting RNA-ligand interaction based on 10-fold cross-validation
(CV) and cold evaluation

a. Predictions of five classification models across two RNA-small molecule binding datasets on perturbation space. b. Comparisons
between RNAsmol with three kinds of augmentations and other models of evaluation metrics including ROCAUC, PRAUC, ACC,
SEN, SPE, F1 score, p-values are obtained from the Mann-Whitney-Wilcoxon test with Bonferroni correction. ¢. Comparison with
other models on 10-fold CV evaluation and three kinds of cold evaluation strategies (test on unseen data). Error bar represents the

standard deviation (STD) calculated from multiple folds and perturbations.

As a binary classification model for predicting RNA-small molecule interactions, we compared RNAsmol with four
recent sequence-based target-drug interaction prediction models: MGraphDTA RNA, IIFDTI RNA,
GraphDTA_ RNA and DrugBAN RNA (see Methods for details). Firstly, we evaluated the prediction performance
of RNAsmol with three types of augmentations against these models in perturbation space, as shown in Figure 2a.
The x, y, and z axes represent three types of perturbations, and each point's coordinates in this 3D scatter plot
correspond to the average ROCAUC or PRAUC values of a model based on a 10-fold CV under a specific
perturbation. The confidence ellipses for the five models suggest that RNAsmol robustly outperforms the other
models across all perturbation settings on both the PDB and ROBIN datasets. Besides, p,, enhance the best
predictions for RNAsmol and MGraphDTA RNA, while other models fail to achieve a steady prediction state
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within the perturbation space. Compared to the ROBIN dataset, the performance on PDB dataset has higher
variations within the perturbation space. Secondly, to disclose the effectiveness of data augmentation strategies, we
compare eight models, including MGraphDTA RNA, IIFDTI RNA, GraphDTA RNA and DrugBAN_RNA, as
well as RNAsmol with and without data augmentations (RNAsmol _noaug, RNAsmol rnaaug, RNAsmol molaug
and RNAsmol_bothaug) (see Methods for details) on three kinds of perturbations across all metrics of 10-fold CV
evaluation, including ROCAUC, PRAUC, ACC, SEN, SPE, and F1 score, as illustrated in Figure 2b. Using the
Mann-Whitney-Wilcoxon test with Bonferroni correction, the p-values indicate that all RNAsmol models
outperform the other models, and data augmentation strategy significantly improves the predictive performance of
our model. Since augmenting both RNAs and small molecules achieves the best prediction across all perturbations,
we selected RNAsmol bothaug for subsequent evaluations and comparisons. Thirdly, to evaluate and compare
RNAsmol with other models of ROCAUC with 10-fold CV and cold evaluations in which we conducted cold
evaluation for RNA targets, small molecules, and both interaction molecules (see Methods for details). As shown
in Figure 2c¢ and Figure S1, our model consistently outperformed the other models in four kinds of settings,
demonstrating superior robustness in the context of unseen evaluations. RNAsmol outperforms other methods with
average improvements in ROCAUC of 0.12 on the PDB dataset and 0.05 on the ROBIN dataset in 10-fold cross-
validation. In cold evaluation settings, it shows improvements of 0.2 on PDB and 0.11 on ROBIN for cold evaluation
on RNA, 0.16 on PDB and 0.07 on ROBIN for cold evaluation on small molecules, and 0.3 on PDB and 0.15 on
ROBIN for cold evaluation on RNA-small molecule pairs. The results indicate that when both interacting molecules
were unseen during training, the model's predictions were most affected, followed by unseen RNA molecules, with
the least impact observed when small molecules were unseen. Although all models show variable predictions on the
PDB dataset from Figure 2a, our model demonstrates a higher improvement than other models on the PDB dataset
than ROBIN dataset in both 10-fold CV and cold evaluations.

RNAsmol provides reliable and adaptable predictions with molecular perturbation (p, and p,,,)
To demonstrate the extensive application and suitable scenarios of RNAsmol with RNA perturbation and small
molecule perturbation, we conduct cross-RNA type test on PDB dataset and target-specific predictions on ROBIN
dataset. The PDB dataset encompasses various RNA types, including rRNA, riboswitch, viral RNA, ribozyme,
aptamer, primer complex, and splicing-related RNAs. We found that the interaction networks of PDB and ROBIN
datasets exhibit different properties. Furthermore, as illustrated in Figure 3a, the calibration curves indicate that the
model's predicted binding scores are consistent with actual outcomes, demonstrating that RNAsmol (p,.) is well-
calibrated on the PDB dataset. As shown in Figure S2, cross-dataset tests (where the training set is PDB and the
test set is ROBIN, or vice versa) revealed that these two datasets cannot predict each other effectively. This
performance decrease from within-dataset tests (where both training and test sets are either PDB or ROBIN) is more
pronounced under RNA perturbation (p,) conditions, indicating significant differences in RNA target profiles
between the datasets. Interestingly, due to the substantial overlap in the physicochemical properties of small
molecules in both PDB and ROBIN datasets (Figure S17), small molecule perturbation models are more robust in
cross-dataset predictions, resulting in less performance decline. This suggests that small molecule perturbation
models maintain their predictive performance across different datasets, whereas RNA perturbation models face
greater challenges. However, the pronounced decrease in performance of RNA perturbation models in cross-dataset
tests indicates their sensitivity to capturing binding signals within RNA-small molecule interaction networks with
different RNA profiles. To leverage this sensitivity, we apply the RNAsmol (p,.) to explore predictions across
different RNA types and their cross-dataset predictions. Our cross-RNA type test results, shown in Figure 3b, reveal
that RNAsmol (p,) performs best on riboswitch targets in within dataset prediction and also generalizes well to
other RNA types in cross-dataset prediction. Therefore, the RNA-specific features captured by the RNAsmol
generalize well on dataset with a shift in distribution of RNAs’ properties. Besides, these findings suggest that RNA
perturbation models are particularly effective in capturing the nuanced interactions within the PDB dataset, making
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Figure 3. Applications of small molecule perturbation (p,,) and RNA perturbation (p,.) on PDB and ROBIN
datasets

a. Calibration curve of RNAsmol (p, ) classification on PDB datasets. b. ROCAUC heatmap of the ROCAUC in cross-dataset
evaluation within and across RNA types in the PDB dataset. The rows represent the training dataset and the columns represent the test
dataset. c. Calibration curve of RNAsmol (p,,) classification on ROBIN datasets. d. RNA target numbers categorized by different
structures in the ROBIN dataset. Stacked bar charts depict the hit rate and selective hit rate of rG4 (RNA G-quadruplex), pseudoknot,
and three-way junction targets in screening experiments. Hit rate refers to the proportion of small molecules hitting each target, while
selective hit rate indicates the proportion of small molecules exclusively hitting a particular target without hitting others. e. Average
metrics including ROCAUC, PRAUC, ACC, SEN, SPE, F1, PRE, REC, MCC of 10-fold CV for individual target in the ROBIN dataset.

High-specificity and high-sensitivity predictions are stratified according to the hierarchical clustering result.

There are 27 disease-related RNA targets in ROBIN dataset, according to the screening results, as illustrated
in Figure 3d, the 27 RNA targets are grouped into five kinds of secondary structure: RNA G-quadruplex (rG4),
hairpin, pseudoknot, three-way junction and triple helix. Structures such as rG4s, pseudoknots and three-way
junctions exhibit the highest selective hit rates which refers to the proportion of small molecules exclusively hitting
a target without hitting others, as indicated by the stacked bars. To investigate RNA-small molecule interactions for
individual RNA target with high selective hit rate and different secondary structure in the ROBIN dataset, we trained
RNAsmol with small molecule perturbation on single RNA target. As shown in Figure 3e, RNAsmol (p,,,) performs
well across all RNA targets, making it suitable for prefiltering compound libraries before screening experiments.
The rG4 targets, including EWSR1, AKTIP, demonstrate higher sensitivity and recall among these targets which
means the RNA-binders of these targets can be sensitively and well detected. Meanwhile, pseudoknot targets such
as ZTP and three-way junction targets such as TPP and Glutamine RS exhibit higher specificity and precision,
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indicating that although the RNA-binders for these targets may not be detected as frequently, the detections are very
reliable when they occur. The average dissimilarity among high-specificity predictions is greater than that among
high-sensitivity predictions, suggesting the diverse prediction patterns of RNAsmol (p,,,) on individual RNA targets.
Additionally, RNAsmol (p,,) makes calibrated and accurate predictions for both the full ROBIN dataset and
individual RNA target in ROBIN dataset, as indicated by the calibration curve aligning well with the actual
probabilities (Figure 3¢ and Figure S5).

Optimization of the small molecule perturbation (p,,,) for decoy evaluation
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Figure 4. Optimization of the small molecule perturbation (p,,) for decoy evaluation
a. UMAP visualizations of molecular physicochemical properties including molecular weight (MW), partition coefficient (logP),
hydrogen bonds donors (HBD), hydrogen bond acceptors (HBA) and the number of rotatable bonds (RB). The first three plots show
the overlap between RNA-binding small molecules (from both PDB and ROBIN) and drug-like background compound libraries
(BindingDB, chbrbb, and COCONUT), while the fourth plot shows the overlap with bioactive small molecule libraries used in decoy
set generation. b. Classification comparison of RNAsmol (p,, ) with three drug-like background compound libraries. Error bar in barplot
represents the standard deviation (STD) calculated from 10 folds. ¢. Comparison of decoy rank score distribution of RNAsmol (p;,)

with three drug-like background compound libraries. Higher decoy rank score indicate the better performance in decoy evaluation.

Given that RNAsmol (p,,) provides the most robust prediction in classification tasks (see Results Section 2 for
details), we aim to use the binding score predicted by RNAsmol (p,,,) as a constraint to narrow down the vast drug-
like chemical space. There are several drug-like compound libraries used for high-throughput drug screenings,
including the ZINC bioactive compound library, COCONUT natural product (organic molecules) library,
ChemBridge BuildingBlocks (chbrbb) library and BindingDB protein binder library. Figure 4a shows the UMAP
visualization of the molecular physicochemical properties including molecular weight (MW), partition coefficient
(logP), hydrogen bonds donors (HBD), hydrogen bond acceptors (HBA) and the number of rotatable bonds (RB)
across these four drug-like compound libraries, the PDB dataset and the ROBIN dataset. Clustering results reveal
that molecules from the BindingDB database exhibit higher similarity to RNA-binder molecules in the two datasets
in terms of physicochemical properties. Conversely, molecules in the chbrbb library display the most divergent
distribution properties, while those in the COCONUT library demonstrate the most extensive range of molecular
physicochemical properties. We then employed 10-fold CV evaluation and decoy evaluation to investigate and
optimize the small molecule perturbation using three different background compound libraries. Figure 4b shows
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that RNAsmol (p,,,) get the best classification performance when using the largest COCONUT libray and the worst
performance on BindingDB dataset. However, employing the aforementioned three small molecule datasets as
background drug libraries, and the bioactive small molecules from ZINC as the decoy drug library, as shown in
Figure 4c, RNAsmol (p,,) achieved optimal decoy evaluation results when utilizing molecules from the BindingDB
database as the background. Furthermore, small molecule ligands binding to RNA targets tend to exhibit selectivity,
and the chemical property space of RNA ligands overlaps to some extent with protein ligands. Therefore, we infer
that using a negative dataset composed of molecules with similar physicochemical properties during model training
enables the acquisition of more precise features for distinguishing drug-like molecules.

RNAsmol effectively distinguish known RNA-targeting small molecule from decoys
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Figure 5. Performance comparison in virtual screening based on the decoy evaluation

a. Decoy rank score performance comparisons with other structure-based methods of decoy evaluation on PDB dataset. * P-value<0.05,
** P-value<0.01, *** P-value<0.001, **** P-value<0.0001, Wilcoxon rank sum test, one-tailed (RNAsmol has higher decoy rank
score than RNAmigos, RNAmigos2, rDock). b. Decoy rank score distribution of RNAsmol and other methods with and without RNA
target shuffle. Kullback—Leibler (KL) divergence measures the difference between the decoy rank score distribution of RAW and
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SHUFFLE (higher KL values indicate greater differences) ¢. Decoy rank score comparisons between two trained RNAsmol models

(trained on ROBIN dataset and PDB dataset separately) and other models on well-known RNA-targeting drug cases.

First, we trained the aforementioned model, selecting RNAsmol (p,,) with the optimized background library, i.e.,
BindingDB. Subsequently, for each RNA target in the test set of PDB dataset, we generated a decoy evaluation set
consisting of bioactive small molecules in ZINC bioactive small molecule library using decoyfinder[60] software.
We used the trained RNAsmol model to predict binding scores for each small molecule in the decoy set and get the
rank of true ligand in the predicted binding scores of decoy set. Similarly, we employed the RNAmigos model to
generate a molecular representation vector, calculated the distance between this vector and the fingerprint of both
true and decoy small molecules, and then ranked the results. Then we use RNAmigos2 model and rDock software
to get a score for each decoy molecule and get the rank of true ligand in the decoy set. Finally, we compared the
ranking outcomes of the four models, as depicted in Figure Sa, the boxplot illustrates the distribution of rankings
for positive small molecules in the 10-fold decoy test. Notably, our model's rankings significantly outperformed
those of the other three models, achieving an average decoy rank score of 83%, which was 45% higher than
RNAmigos, 6% higher than RNAmigos2, and 40% higher than rDock. As shown in Figure 5b, upon randomizing
RNA targets, our model exhibited greater variation in ranking distribution measured by Kullback-Leibler (KL)
divergence, indicating its superior specificity for RNA targets. We calculated fingerprint similarity using four
distance metrics: Euclidean distance, cosine distance, Chebyshev distance and correlation distance, with differences
shown in Figure S8. For RNAmigos2, we used four modes of this model including dock mode, native mode, fp
mode and mixed mode for the evaluation, and the corresponding results are also shown in Figure S8. Besides, we
also apply two trained RNAsmol models which are trained on PDB and ROBIN datasets respectively on many cases
as a drug virtual screening application. As shown in Figure Sc, RNAsmol ROBIN have higher performance on
new-revealed RNA-targeting drugs like Ribocil, Risdiplam, etc, while RNAsmol PDB perform better on riboswitch
cases. RNAsmol makes prediction on RNA targets which are with unknown structure and has overall better
performance than the other RNA-targeting virtual screening models including RNAmigos, RNAmigos2 and
RSAPred riboswitch.
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RNAsmol provides interpretable predictions of RNA-small molecule interaction

a PreQ1 riboswitch
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Figure 6. Case study validation and visualizations of molecular hotspots of RNAsmol prediction

a. Structural snapshots of class I pre-queuosinel (PreQ1) riboswitch from Bacillus subtilis (PDB ID: 3K1V) structure by PyMOL,
profile of contacts within the binding site by ligplot software, and Grad-CAM weight visualization of PreQ1 ligand in RNAsmol
prediction. Hydrogen bonds are colored light blue with annotated distance in both the structure and profile. b. Structural snapshots of
ZTP riboswitch from Fusobacterium ulcerans (PDB ID: 5BTP) structure by PyMOL, profile of contacts within the binding site by
ligplot software, and Grad-CAM weight visualization of ZTP target secondary structure in RNAsmol prediction. Hydrogen bonds are

colored light blue with annotated distance in both the structure and profile.

To further validate the interpretability of the model, we visualized the hotspots on RNA and small molecules by
gradient-weighted class activation mapping (Grad-CAM). Figure 6 displays the structure of class I pre-queuosinel
(PreQ1) riboswitch from Bacillus subtilis (PDB ID: 3K1V) and ZTP riboswitch from Fusobacterium ulcerans (PDB
ID: 5BTP) respectively. One the left of Figure 6a and Figure 6b, present the structural snapshots of two
riboswitches binding to small molecules, as rendered in PyMOL, the hydrogen bonds between RNA and ligand are
colored light blue with the annotated distance, and the middle part shows the profile of contacts generated by
Ligplot+ software. Then we employed the Class Activation Map (CAM) module to obtain the weights of the last
convolutional layer in the convolutional neural network through backpropagation. Subsequently, these weights were
multiplied with the feature map of that layer to obtain a weighted sum, forming a feature map. This enabled the
mapping back to atoms in small molecule and RNA target to visualize the importance of each atom or nucleic acid
for classification (Figure S9). On the right part, we showcased the weights on the small molecule binding to the
PreQ1 riboswitch and the pseudoknot motif in ZTP riboswitch. The regions in the model with higher weights often
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correspond to key atoms or nucleic acid involved in binding in real structure, indicating that our model demonstrates
a high consistency in predicting hotspots on small molecules and regions where hydrogen bonds are formed. Results
of the visualizations of ¢-di-GMP-II and S-adenosylhomocysteine (SAH) riboswitches are shown in Figure S10
and Figure S11 respectively.

Discussion

To summary, Al-driven RNA-targeting drug design would provide crucial insights for the development of targeted
therapeutics. We proposed a unified framework for RNA-ligand interaction scoring via data perturbation and
augmentation modeling. Through comprehensive testing across multiple evaluations, we demonstrate superior
performance of our model compared to existing ones. Additionally, we conduct discussions on different applications
on various RNA-targeting drug design and drug screen senarios, aiming to elucidate patterns and preferences in the
interaction between RNA and small molecules. We proved that the sequence input did not introduce significant
noise into our model. Instead, our data perturbation and augmentation strategies successfully enriched the
informative content within the sparse data space of RNA-small molecule interactions. This approach significantly
enhances our understanding of how RNA interacts with small molecules. Moreover, beyond achieving strong
predictive performance in binding prediction, our model excelled particularly in the strictest decoy evaluations.
Decoy evaluations challenge the model to distinguish accurately between true and false molecules in unseen but
similar datasets using trained RNAsmol model. This success can be attributed to our meticulous approach in
selecting and preprocessing the existing RNA sequence containing binding sites from chains and the stringent
selection of drug-like small molecules, which closely mirrors real-world drug screening scenarios. By optimizing
small molecule perturbations, we gained valuable insights into the nuanced properties of RNA-binders within the
drug-like chemical space, thereby contributing to our robust performance in decoy evaluations. In contrast, pocket-
guided SBVS models not always exhibit target specificity as evidenced by RNA target shuffle decoy results. Our
model has effectively learned the critical binding positions within complex structures where key nucleotides and
small molecule atoms form hydrogen bonds. This capability demonstrates our model's ability to capture essential
features of genuine binding regions, resulting in accurate predictions of binding events.

Unlike drug development targeting proteins, our understanding of RNA structures is limited, whether
through experimental or computational methods, obtaining high-resolution tertiary structure of RNAs is challenging.
For different drug design scenarios, we might need to employ various computational virtual screening methods to
accelerate drug discovery. On the one hand, for structured molecules like most proteins and certain noncoding RNAs
(e.g., Riboswitch and Ribozyme), SBVS methods is suitable. Recently, numerous RNA structure prediction models
have been proposed[61, 62], we anticipate that computational predictions of RNA structures will become
increasingly accurate, thereby advancing research in structure-based RNA-targeting drug discovery. On the other
hand, for RNAs without stable tertiary structures (e.g., many mRNAs and IncRNAs), there remains a lack of
prediction methods for RNA-ligand interaction scoring. Disney et al. introduced sequence-based concept by a lead
identification screening method which was applied to all human microRNA hairpin precursors[20], in alignment
with this advancement, we propose RNAsmol model which provides reliable RNA-small molecule interaction
binding prediction without requiring structural input. Our model represents a substantial step forward in leveraging
sequence-based approaches to advance the understanding and development of therapeutics targeting RNA
interactions. We envision that this deep learning model can serve as a predictive tool to accelerate the development
of therapeutic drugs targeting RNA. Additionally, many machine learning-based scoring models for protein-ligand
binding suffer from a bias where they memorize molecules rather than learn interactions[51, 58, 63]. This is often
due to the advanced deep learning modules that extensively extract features from the molecules themselves but
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overlook the interaction networks. We have observed a similar issue in RNA-ligand interaction scoring models
(Figure S1), where predictions under network perturbation yield suboptimal results across various models. Moving
forward, our focus will be on addressing this issue to further improve and refine these models or uncover underlying
reasons, aiming to enhance the methodological robustness of this research.

Methods

Data collection and preprocessing

We initially collected RNA-ligand complex structures from the PDB database, encompassing both RNA-only and
RNA-protein (RNP) complexes, to train RNAsmol. Meanwhile, we obtained RNA-small molecule interaction
matrices from the ROBIN database which is the largest fully public dataset derived from small molecule microarray
(SMM) screening experiments. From the PDB, we gathered experimental RNP-ligand and RNA-ligand complexes
with interactions within 4 angstroms, retaining RNP-ligand structures only if RNA atoms constituted more than
fifty percent of the total. After applying these filters, 1,229 RNP-ligand and 836 RNA-ligand structures are kept for
further screening. Ligands with “non-drug-like” properties were removed adhering to the criteria specified in the
referenced paper [64], and we retained only ligands with a mass between 200 and 700 Da. We further filtered RNP-
ligand structures to ensure the RNA fraction of the binding sites exceeded 50%. Ultimately, we retained 383 RNP-
ligand and 225 RNA-ligand complex structures for extracting chain sequences and small molecule SMILES. All
structures were annotated according to their RNA type by text-mining the corresponding PDB file. To validate the
effectiveness of RNAsmol using experimental screening data, as shown in Figure S18, we compiled SMM
screening data from the ROBIN dataset. In this context, we used the hit and non-hit molecules for each RNA target
in the screening hit matrix as positive and negative interactions. Basic statistics of these two datasets are shown in
Figure S13, Figure S14, Figure S15.

Three perturbations on RNA-small molecule interaction network

For curated raw RNA-small molecule interaction network, there exist three types of relationships between two
interacting entities: binding, non-binding, and unknown. Our current knowledge only allows us to determine the
molecules that interact with each other, but it fails to establish clear boundaries between non-binding and unknown
relationships. To enhance our understanding of this interaction network, we employed various data perturbation
strategies to generate non-binding samples from unknown interacting space, as illustrated in Figure S16. Firstly,
we generated non-binding cases by perturbation on RNA targets through random dinucleotide shuffling and pairing
the shuffled sequence with the original small molecules. We denote this kind of perturbation as p,.:

pT: (Rraw: Mraw' Iraw) - (Rneg' Mraw' Ineg)

Secondly, we utilized small molecules from different compound libraries (e.g., experimentally validated protein-
binder compound libraries, structurally diverse compound libraries, organic small molecule databases) as negative
examples for small molecules, where these molecules interact with the original RNA targets to form negative
interaction pairs. We denote this kind of perturbation as p,;,:

pm: (Rraw' MTaW' Iraw) - (RTan Mnegr Ineg)

Thirdly, we established edges between each RNA and each small molecule, removed the known edges, and randomly
sampled from the remaining edge set to obtain negative example sets. We denote this kind of perturbation as p,,:

pn: (RTth’ Mraw’ Iraw) - (RTG.W' Mraw' Ineg)

Where R,,,, represent raw RNA target set, M,.,,, represent raw molecule set, I,.4,, represent the raw RNA-small
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molecule interaction set, and Ry,¢q, My,4 represent the negative RNA targets and negative molecules respectively.
We obtain ., i.€., the final negative samples for the classification from all of the three perturbations. These three
methods perturbed data for both types of interacting entities and the interaction network, aiming to infer binding
signals and patterns on the sparse network of RNA-small molecule interactions using diverse data perturbation
spaces.

Three data augmentation strategies on RNA-small molecule interaction network

To address the scarcity of known RNA-ligand binding data, we first augment the RNA by using comparative
genomics methods to identify natural binding RNA targets that interact with small molecules and have conserved
structures. For RNA sequences with experimental interaction data, we perform large-scale searches across recent
metagenomic datasets, clustering homologous sequences based on similarity using the Infernal[65] tool. We
hypothesize that although these augmented RNA sequences may differ from those in the PDB database at the
sequence level, they can still bind small molecules. Next, we augment the chemical space of small molecules binding
to RNA targets, assuming that small molecules with similar chemical properties can also bind to RNA targets. We
use computational chemistry methods to map small molecules into continuous numerical molecular fingerprints
representing their chemical structure and employ Tanimoto fingerprint similarity metrics for comparison between
RNA-binders and drug-like molecules. Based on the assumption that similar RNA targets tend to bind to the same
small molecule ligands, and similar small molecules tend to bind to the same RNA targets, we further expand the
RNA-ligand binding data using these augmented interaction subsets. We note that there are no augmented
interactions between augmented RNAs and augmented small molecules, i.e., edges are only added when one of the
interaction partners is a true entity in the raw network. See Supplementary Methods and Figure S16, Figure S17
for details. We only augmented the training dataset to boost model performance, while the validation and test data
remained unaugmented. We named these models as RNAsmol noaug, RNAsmol rnaaug, RNAsmol molaug,
RNAsmol_bothaug, respectively.

The RNAsmol model architecture

RNAsmol is RNA-small molecule interaction prediction model with network perturbation and data augmentation.
As shown in Figure 1b, RNAsmol has four modules: RNA target encoder (Multi-view CNN), small molecule
encoder (Graph diffusion convolution), feature fusion module (Bilinear attention block) and classification module
(MLP).

Modulel: RNA target encoder (Multi-view CNN)

For the augmented RNA target sequences and their interacting small molecule ligands after redundancy removal,
molecular representation and feature extraction are performed separately. For RNA, we retained the first 500
nucleotides of each RNA target sequence and utilized a string representation to depict the sequences and predicted
base pairing information from the RNAfold software, i.e., {A, U, C, G, A, a, u, ¢, g}. Uppercase letters represent
paired bases, while lowercase letters indicate unpaired bases. After structural prediction and information
normalization of RNA targets, we employ multi-view convolutional neural networks for RNA target local feature
extraction. The multi-view convolutional neural network (CNN) architecture is specifically designed to capture
diverse local patterns within RNA sequences through multiple convolutional layers with different kernel sizes. This
network consists of several primary components: (1) Embedding Layer: The RNA sequence is first embedded into
a dense vector representation and transformed into a continuous vector space, which is then suitable for
convolutional operations. (2) Convolutional and ReLU Layers: The core of the multi-view CNN comprises several
ConvldReLU blocks. Each block performs a one-dimensional convolution followed by a ReLU activation function.
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The convolutional layers have varying kernel sizes (e.g., 3, 5, and 7) to capture different patterns and motifs within
the RNA sequences. Formally, given an input sequence x € R-*Cin | the convolutional operation is defined as:
y® = ReLUW® x x + D)

Where y® is the output of the I-th convolutional layer, W® and b® are the weights and bias, and * denotes the
convolution operation. (3) Stacked CNN Blocks: Multiple StackCNN blocks are used, each containing a stack of
convolutional layers with adaptive max pooling. Each block captures features at different levels of abstraction. The
stacking of convolutional layers allows the network to learn complex representations from the RNA sequences. (4)
Adaptive Max Pooling: After the convolutional operations, adaptive max pooling is applied to reduce the
dimensionality of the feature maps, focusing on the most informative features. (5) Feature Aggregation: The outputs
from each StackCNN block are concatenated to form a comprehensive feature vector. This aggregated feature vector
incorporates diverse local features captured by the different convolutional layers. (6) Fully Connected and Dropout
Layers: The concatenated features are passed through a fully connected layer to further integrate the information,
followed by a dropout layer to prevent overfitting. This process generates the final feature representation for the
RNA target.

Module2: small molecule encoder (Graph diffusion convolution)

To comprehensively elucidate the binding preferences of small molecules with RNA targets, we adopt atom-level
graph representation to encode local features of small molecule ligands. As depicted in Figure S19, we initiate by
structuring small molecule ligands as graphs, where atoms serve as nodes and chemical bonds as edges.
Subsequently, we extract structural and physicochemical features using graph diffusion convolutional neural
networks. Traditional graph learning models, often employing Message Passing (MP) methods, typically consider
only first-order node neighbors, limiting their ability to abstractly characterize overall graph properties. In contrast,
our approach employs a nonlinear information diffusion function to extract features from each point within the
molecular graph. This method effectively preserves both high-order local and global graph properties, enhancing
feature extraction for RNA binding predictions. Specifically, starting from a fixed atomic node in the small molecule,
we conduct graph diffusion based on the transition probability matrix. Upon halting the diffusion process, we define
edge weights using the probability distribution from the origin node to other nodes. The graph diffusion process is

S = Z 0, T*
k=0

Here, T denotes the transition probability matrix, where T = AD~1. A represents the adjacency matrix of the

defined as:

molecular graph, and D is the degree matrix, with d;; = },; a;;. Oy represents the diffusion coefficient, which
commonly includes Personalized PageRank (PPR) diffusion and Heat Kernel (HK) diffusion:

OFFR = a(1 — a)¥
k

HK _ -t~
0, e T

Diffusion convolution, a preprocessing step based on graph diffusion, characterizes the flow of information across
the graph structure via random walk processes. This project introduces the novel application of graph diffusion
convolutional methods to fully extract feature representations from each atom in the molecular graph. Our goal is
to capture comprehensive structural features encoded within molecular graphs and enhance discrimination between

molecular graphs of similar small molecules.

Module3: feature fusion module (Bilinear attention block)
It has been reported that RNA targets and small molecule ligands exhibit diverse binding modes, characterized by
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specific physicochemical properties and spatial distances. RNA-small molecule binding demonstrates selective
specificity, involving various non-covalent interactions like hydrogen bonds and pi-pi stacking, contingent upon
interaction strength and physicochemical properties. Traditional models often overlook effective feature fusion,
relying solely on simple feature concatenation across layers. In contrast, RNAsmol integrates features from RNA
targets and small molecule ligands using a bilinear attention module used in Visual Question Answering (VQA)
domain (Figure S19). The bilinear attention module contains the following components: (1) Feature transformation:
The input RNA features and small molecule features are transformed into the same higher-dimensional space using
a fully connected layer respectively. (2) Attention computation: The transformed features are computed to get
attention maps either using single-view attention which conducts tensor contraction operation to get attention scores
or using multi-view attention which involves creating higher-dimensional tensors and utilize linear transformation
to get attention scores. (3) Softmax activation (4) Pooling and Fusion (5) Output. Leveraging attention maps and
pooling strategies facilitates the extraction and fusion of relevant information from both modalities and enhance
predictive performance and generalization across diverse datasets. As shown in Figure S4, ablation studies on
bilinear attention network (BAN) module underscore the pivotal role of this fusion module in effectively classifying
RNA-small molecule interactions.

Module4: classification module (MLP)

We used the Multi-Layer Perceptron (MLP) module consisting of three to five fully connected (dense) layers
interspersed with Rectified Linear Unit (ReLU) activation functions as the classification module to transform fused
feature embedding encoded by the bilinear transformer module into the probability for each label. Generally, each
layer L; in the network applies a linear transformation to its input, followed by a ReLU non-linearity. The linear

transformation for a given layer L; can be represented as:
2 =Wixi-1 +b;

Where W; and b; are the weight matrix and bias vector for layer L; respectively, and x;_; is the output of the
previous layer. The ReL U activation function is applied element-wise to the linear transformation output:

x; = ReLU(z;) = max (0, z;)

Besides, we employ the Cross-Entropy Loss function (‘nn.CrossEntropyLoss’) provided by PyTorch and ensure the
output layer has two neurons corresponding to the two classes. The cross-entropy (CE) loss function is defined as:

1 N c
CEG.9) == ). D, Yilog (D)
1= ]j=

Where y;; is the true label, y,; is the predicted probability for class j for sample i, N is the number of samples, and
C is the number of classes (which is 2 in the case of binary classification in RNAsmol). We utilize Adam optimizer
configured with the given learning rate and an L2 regularization term (weight decay). The weight decay term helps
to prevent overfitting by penalizing large weights, thereby improving the generalization capability of the model.
The loss curves of model training are displayed in Figure S20.

10-fold cross-validation (CV) evaluation

To evaluate the classification performance, we performed 10-fold cross-validation on RNAsmol and other related
models, comparing them across multiple metrics including ROCAUC, PRAUC, accuracy (ACC), sensitivity (SEN),
specificity (SPE) and F1 score. Since there is a lack of binary classification prediction models designed for RNA-
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small molecule interactions, we modified the molecular encoding part of recently published models for predicting
protein-ligand binding interactions to accommodate RNA molecules. These adapted models, which we named
GraphDTA RNA, MGraphDTA_RNA, IIFDTI_RNA and DrugBAN RNA, are detailed as follows. The GraphDTA
model uses a graph neural network to learn small molecule SMILES and a convolutional neural network to learn
protein sequences, followed by a fully connected neural network to predict binding probabilities after the simple
concatenation of the extracted features. We revised the initial embedding of protein sequences to fit RNA sequences
and used the default settings of this model for evaluation. The MGraphDTA model uses a multi-view graph neural
network (MGNN) to learn small molecule SMILES and a multi-view convolutional neural network to learn protein
sequences, predicting binding probabilities with a fully connected neural network after feature concatenation. We
adjusted the initial embedding of protein languages to fit RNA sequences and used the default settings of this model
for evaluation. For the IIFDTI model, we modified the embedding module as follows: (1) We replaced the protein
text corpus with Rfam[66] and trained a skip-gram model from gensim Word2 Vec on it to obtain k-mer embeddings
from RNA sequences. (2) We applied the trained rna2vec vector to the RNA target. We then used the default settings
in the IIFDTI model for evaluation. For the evaluation of DrugBAN on the RNA-ligand classification task, we used
the default parameters provided in DrugBAN.yaml and employed the random split method.

Cold evaluation

To evaluate the classification performance on unseen datasets, we conducted cold evaluation on RNAsmol and other
models mentioned in the previous section. This involved ensuring that the test set included RNA targets, small
molecule ligands, and both interacting molecules that had not appeared in the training set. In the cold evaluation on
RNA, there is no overlap between RNA targets in the training and testing sets (R _train and R_test in Figure S18),
though small molecule ligands may overlap (M_train and M_test). This approach trains a model particularly suited
for predicting small molecule ligands for new RNA targets of interest. In the cold evaluation on small molecule,
there is no overlap between small molecules in the training and testing sets, while RNA targets may overlap. This
setting trains a model suitable for predicting appropriate RNA targets for newly discovered or unvalidated small
molecule ligands that bind to RNA. The cold evaluation on pair ensures no overlap between both RNA targets and
small molecules in the training and testing sets, which is the strictest setting and usually results the least accurate
predictions. It is worth noting that, similar to random splitting used in cross-validation evaluations, there is no
overlap between interactions in the training and testing sets (I_train and I_test in Figure S18). However, specific
requirements are made in cold evaluations for selecting the two interacting molecules. With these methods, we can
apply the trained RNA-small molecule binding prediction model to practical prediction scenarios, aiming to
discover potential small molecule drug sets for specific RNA targets or predict appropriate RNA targets for small
molecule drugs.

Decoy evaluation

To reveal the potential of virtual screening in RNA-targeting drug discovery, we did 10-fold decoy evaluation on
RNAsmol and other models including RNAmigos, RNAmigos2 and rDock. First, we generated a decoy set for each
small molecule in the test sets of PDB dataset using DecoyFinder software on ZINC bioactive library. This software
selects molecules with similar physicochemical properties (including molecular weight (MW), partition coefficient
(logP), hydrogen bonds donors (HBD), hydrogen bond acceptors (HBA) and number of rotatable bonds (RB)) but
not too similar molecular structures from the given library for each query molecule. Then, we used the decoy sets
for model evaluation and comparison. For RNAsmol, we ranked the predicted binding score of the true RNA-binder
within the predicted scores of all molecules in its decoy set, a higher rank indicates a better decoy rank score. For
RNAmigos, we generated a predicted fingerprint using a trained model and ranked all compounds in the decoy set
according to their distance from the predicted fingerprint. We calculated fingerprint similarity using four distance
metrics: Euclidean distance, cosine distance, Chebyshev distance and correlation distance, with differences shown
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in Figure S8. For RNAmigos2, we used four modes of this model including dock mode, native mode, fp mode and
mixed mode for the evaluation, directly ranking the predicted score within the decoy as the decoy rank score. For
rDock, we used the docking scores from the default outputs for the ranking and evaluation. Moreover, we performed
a target shuffle in the decoy evaluation to disclose the RNA target specificity and robustness of the models. Instead
of generating a brand-new decoy set, we shuffled the correspondence between RNA targets and the decoy sets
through random sampling and reran the four models.

To generalize the decoy evaluation to unseen data, we applied trained RNAsmol PDB and
RNAsmol ROBIN model, incorporating p,, perturbation, to identified RNA-targeting drugs such as ribocil and
risdiplam. And we used RNAmigos, RNAmigos2 and RSAPred_riboswitch models for decoy evaluation and
comparison. First, we generated decoy sets for each small molecule and used the trained models to calculate decoy
rank scores for comparison. We converted the compounds to SMILES format using computational tools such as
rdkit and mathpix OCR. The 3D structures of ribocil-targeted RNA, risdiplam-targeted RNA, MALAT1 RNA were
curated from the PDB database. We used two chains in the FMN riboswitch structure (PDB ID: 5KX9), the 5’-end
of Ul snRNA and the 5’-splice sites of the SMN2 exon7 structure (PDB ID: 6HMO), as well as the MALAT1 triple
helix structure (PDB ID: 4PLX) as target sequences for the prediction in RNAsmol. For RNAmigos and
RNAmigos2, we extracted the pockets from the available structures using the molecule-binding positions in the
complexes or positions mentioned in the literature. Finally, we reported the best rank score of the two chains in our
results.

Case study validation

To better interpret the prediction of the RNAsmol model, we use the gradient-weighted class activation mapping
(Grad-CAM) algorithm, which employs gradients backpropagated from the prediction layer to the activations of
interest. We focus on the last convolutional layers of multi-view convolutional neural networks in the RNA encoder
and the graph diffusion neural networks in the small molecule encoder to illustrate the weights on individual nucleic
acids and atoms. These weights are displayed on the RNA secondary structure plot using forna[67] visualization
tool and the small molecular graph drawn by rdkit (https://www.rdkit.org) (Figure 6 and Figure S9). Besides, we
visualize the interaction profile of PreQ1, ZTP, SAH, and c-di-GMP-II riboswitch in 2D and 3D complex structures
using Ligplot+[68] and PyMOL[69] (Figure 6, Figure S10, Figure S11). The position of hydrogen bonds is
annotated in the structure and profile using the functions in these tools, with default hydrogen-bond calculation
parameters in Ligplot+ set to a maximum hydrogen-acceptor distance of 6 and a minimum acceptor-donor distance
of 6.
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