

1 **RNA-ligand interaction scoring via data perturbation and augmentation modeling**

2 Hongli Ma^{1,2,3}, Letian Gao^{1,2}, Yunfan Jin^{1,2}, Yilan Bai^{1,2}, Xiaofan Liu^{1,2}, Pengfei Bao^{1,2}, Ke Liu^{1,6}, Zhenjiang Zech
3 Xu^{3,4,5*}, Zhi John Lu^{1,2*}

4 ¹MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua
5 University, Beijing 100084, China.

6 ²Institute for Precision Medicine, Tsinghua University, Beijing 100084, China.

7 ³State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China

8 ⁴Shenzhen Stomatology Hospital (Pingshan), Southern Medical University, Shenzhen 518118, China

9 ⁵Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University,
10 Guangzhou, Guangdong 510280, China

11 ⁶Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University–Tsinghua University–National Institute
12 of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, China

13

14 *To whom correspondence should be addressed: Zhi John Lu, Tel.: +86 10 62789217, E-mail:
15 zhilu@tsinghua.edu.cn Correspondence may also be addressed to Zhenjiang Zech Xu. Tel: 0791-88304447-8323;
16 Email: zhenjiang.xu@gmail.com

17 **Abstract**

18 RNA-targeting drug discovery is undergoing an unprecedented revolution. Despite recent advances in this field,
19 developing data-driven deep learning models remains challenging due to the limited availability of validated RNA-
20 small molecule interactions and the scarcity of known RNA structures. In this context, we introduce RNAsmol, a
21 novel sequence-based deep learning framework that incorporates data perturbation with augmentation, graph-based
22 molecular feature representation and attention-based feature fusion modules to predict RNA-small molecule
23 interactions. RNAsmol employs perturbation strategies to balance the bias between true negative and unknown
24 interaction space thereby elucidating the intrinsic binding patterns between RNA and small molecules. The resulting
25 model demonstrates accurate predictions of the binding between RNA and small molecules, outperforming other
26 methods with average improvements of ~8% (AUROC) in 10-fold cross-validation, ~16% (AUROC) in cold
27 evaluation (on unseen datasets), and ~30% (ranking score) in decoy evaluation. Moreover, we use case studies to
28 validate molecular binding hotspots in the prediction of RNAsmol, proving the model's interpretability. In particular,
29 we demonstrate that RNAsmol, without requiring structural input, can generate reliable predictions and be adapted
30 to many RNA-targeting drug design scenarios.

31 **Introduction**

32 Drug discovery, a time-consuming and costly process, involves identifying disease-relevant targets and selecting
33 optimal molecules from the expansive chemical space of around 10^{60} drug-like molecules[1, 2]. Currently, most
34 clinical drugs target proteins, yet numerous protein targets are considered "undruggable" due to the lack of suitable
35 structural binding pockets, limiting the range of druggable targets[3, 4]. According to the latest statistics from the
36 DrugBank database[5], merely 854 human proteins have been targeted by FDA-approved drugs. Considering that
37 around 70% of the human genome has the potential to transcribe into RNAs, many of these RNAs exhibit close
38 association with human pathologies, targeting RNA may significantly expand the pool of druggable targets.
39 Originating with ribosomes as crucial antibiotic targets[6-8], RNA-targeting has burgeoned in the last decade,
40 various RNA types including mRNA, miRNA, tRNA, rRNA, and long non-coding RNAs (lncRNAs) have been
41 proved to be targets of small molecules [9-15]. Most of the well-known RNA-targeted small molecules are identified
42 using phenotypic screening occasionally, for instance, Evrysdi (risdiplam)[9, 16], approved by the FDA in August
43 2020, targets human mRNA, correcting specific splicing defects in treating spinal muscular atrophy. Moreover,

44 ribocil, a small molecule targeting FMN riboswitches is pivotal in bacterial regulation and antibiotic resistance[10].
45 These experiences suggest the transformative potential of RNA-targeting in the field of drug discovery. Currently,
46 researchers have applied target-based high-throughput screening (HTS) techniques derived from protein-targeting
47 drug discovery[17-19] such as the automated ligand identification system (ALIS) and small-molecule microarrays
48 (SMM) to identify RNA-binding small molecules[20, 21]. For example, using ALIS, the compound X1 was
49 identified to bind to the lncRNA Xist, inhibiting X chromosome inactivation by inducing conformational changes
50 that disrupt its interaction with associated protein factors[11]. Also, a recent work used SMM to screen large libraries
51 of compounds against a set of disease-related RNA targets and collected the largest fully public nucleic acid binding
52 small molecule library named Repository Of Binders to Nucleic acids (ROBIN)[22].

53
54 However, since existing experimental methods are costly and labor-intensive, many computational methods
55 have been proposed as alternative solutions to automate the identification of RNA-targeting small molecules. Firstly,
56 many methods collected existing experimental validated RNA targets and RNA-binders into libraries and predicted
57 RNA-small molecule binding by assessing the similarity between query data and curated data in library, such as
58 Infora [20, 23], RNAligands [24], and RSAPred [25]. Secondly, for RNA targets of interest with known structures,
59 molecular docking remains the most straightforward virtual screening method, several docking and scoring methods
60 have been developed for RNA-targeting ligands, such as rDock[26], RLDOCK[27], AutoDock Vina[28]. Despite
61 the widespread use of molecular docking, its accuracy is limited due to factors such as force field settings,
62 inaccuracies in scoring functions[29, 30], and inadequate sampling of ligand conformations[31]. Thirdly, many
63 studies have begun to utilize advanced deep learning models to study RNA-ligand interactions. These studies
64 roughly fall into three categories: predicting small molecule binding sites on RNA target structures (site model)[32-
65 35], designing potential binding ligands for RNA structural pockets (generative model)[36-38], and predicting
66 RNA-ligand binding interactions (classification model)[39]. Site models were proposed to predict the positions or
67 local regions on the RNA target as binding sites/motifs by the representation and characterization of multiple
68 properties for 3D structures of RNA targets. Generative models began with the RNA pocket, using deep learning
69 models to design the candidate ligand for given RNA pockets. For example, RNAmigos and RNAmigos2 models
70 use the augmented base pairing network (ABPN) representation of 3D RNA pocket structure and use a relational
71 graph convolutional neural network module to generate the fingerprint of potential binding ligand. Classification
72 models were developed to leverage the combination of RNAs and ligand features for predicting RNA-ligand
73 interactions.

74
75 Despite all these efforts, aforementioned library-based methods depend on in-house experimental databases
76 and exhibit poor generalizability on unseen queries. Current computational models heavily rely on RNA 3D
77 structure information, while there are only 7,806 RNA-containing structures in the RCSB Protein Data Bank
78 (PDB)[40] (<http://www.rcsb.org/>), accounting for around 3.5% of the total number of structures (221,371 as of Jun
79 2024). Moreover, many disease-related human mRNAs[12, 41] and lncRNA targets (e.g., XIST [11], MALAT1[42],
80 HOTAIR[43]) lack defined structures or have structures that are difficult to determine[44-46], making them
81 unsuitable for the aforementioned methods as input or for training. Given the widespread application of deep
82 learning technology in predicting protein sequence-ligand binding[47-55] and RNA sequence-protein binding[56,
83 57], it is feasible to leverage state-of-the-art deep learning models to establish a sequence-based RNA-small
84 molecule prediction method for RNAs with unknown structures. Besides, recent structure-based virtual screening
85 (SBVS) methods for protein targets[58, 59] have attempted to improve prediction performance on unseen data.
86 Currently, no RNA-targeting models have systematically proven their ability to generalize on unseen datasets.
87 Although the existing methods demonstrate promising performance in traditional model evaluations, determining
88 the binding pattern of RNA and small molecules while simultaneously accelerating the development process of
89 RNA-targeting small molecule drugs remains beyond our current capabilities. Furthermore, there is ample room for

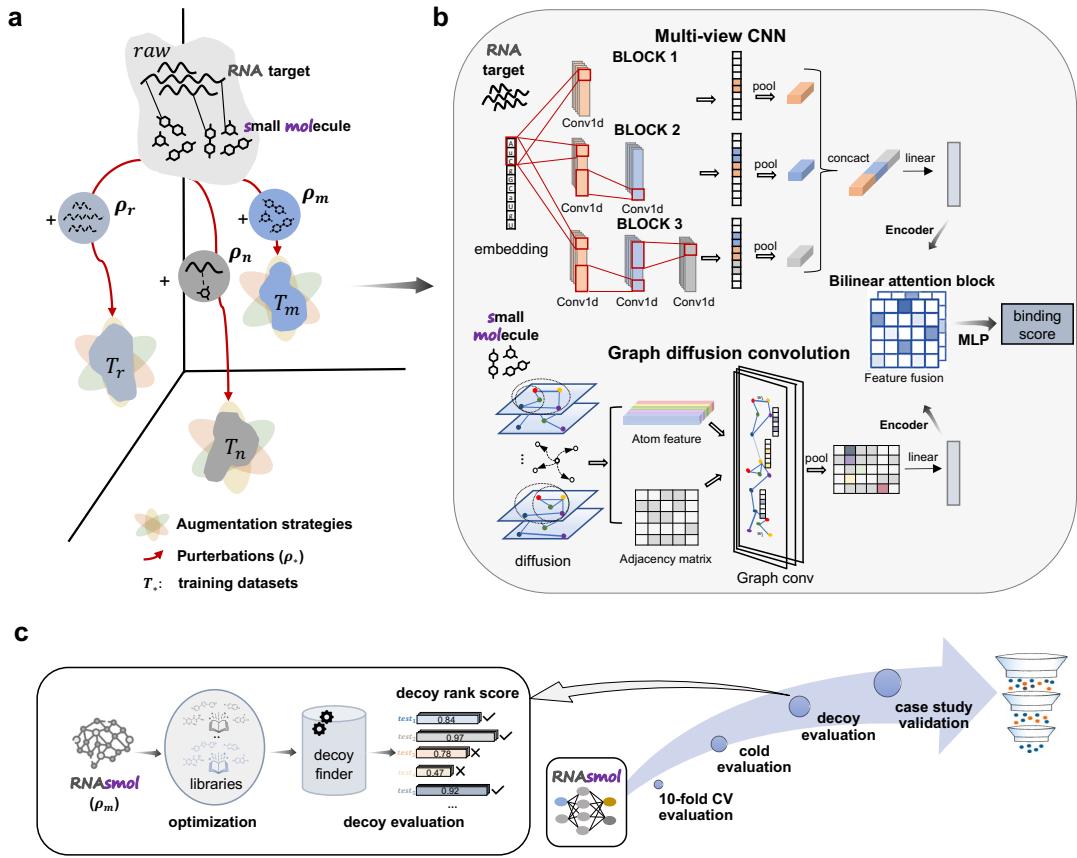
90 improvement in the interpretation and adaptability of existing models.

91
92 To address these challenges, we present RNAsmol, a novel sequence-based RNA-small molecule
93 interaction scoring model for RNAs with unknown structures. We integrated diverse information from
94 heterogeneous data sources including PDB and ROBIN and carefully preprocess these datasets to disclose and
95 interpret the binding between RNA and small molecules. Leveraging data perturbation and augmentation strategies,
96 RNAsmol aims to address bottlenecks such as data scarcity, comprehensively characterize the binding patterns
97 between RNA and small molecules thereby aiding the development process of small molecule drugs targeting RNA.
98 We utilized graph diffusion convolution for molecular feature representation and bilinear attention feature fusion
99 modules to predict RNA-small molecule interactions. Then, we employed four evaluation methods with
100 progressively stricter assessments to benchmark RNAsmol. RNAsmol achieved significant performance compared
101 to other methods, showing an average improvement of approximately 8% in ROCAUC during 10-fold cross-
102 validation, around 16% in ROCAUC for cold evaluations on unseen datasets, and about 30% in ranking score during
103 decoy evaluations. Furthermore, we validate the model's interpretability through case study validations, identifying
104 molecular binding hotspots corresponding to RNAsmol's predictions. For structured molecules like most proteins
105 and certain noncoding RNAs (e.g., Riboswitch and Ribozyme), there are many AI-driven methods available.
106 However, for RNAs without stable tertiary structures (e.g., many mRNAs and lncRNAs), there is still a lack of
107 prediction methods for RNA-ligand interaction scoring. RNAsmol is capable of generating reliable predictions
108 without relying on structural input, can be applicable to various RNA-targeting drug design scenarios.

109 **Results**

110 **Overview of RNAsmol framework**

111
112



113

114 **Figure 1. Overview of RNAsmol framework**

115 a. Three kinds of perturbations with augmentations on RNA-small molecule interaction network. b. Model architecture. RNAsmol
 116 model has two parallel feature extraction modules, multi-view CNN for RNA target and graph diffusion convolution for small
 117 molecule respectively. Then, it employs a bilinear attention block for feature fusion and a multilayer perceptron (MLP) for classification. c.
 118 Evaluations and reliable post-hoc analysis of RNAsmol model. Four kinds of evaluations including 10-fold CV (cross-validation)
 119 evaluation, cold evaluation, decoy evaluation and case study validation are utilized to prove the reliable performance on classification
 120 task and robust potential on drug virtual screening. Additionally, we optimize small molecule perturbation for decoy evaluation.

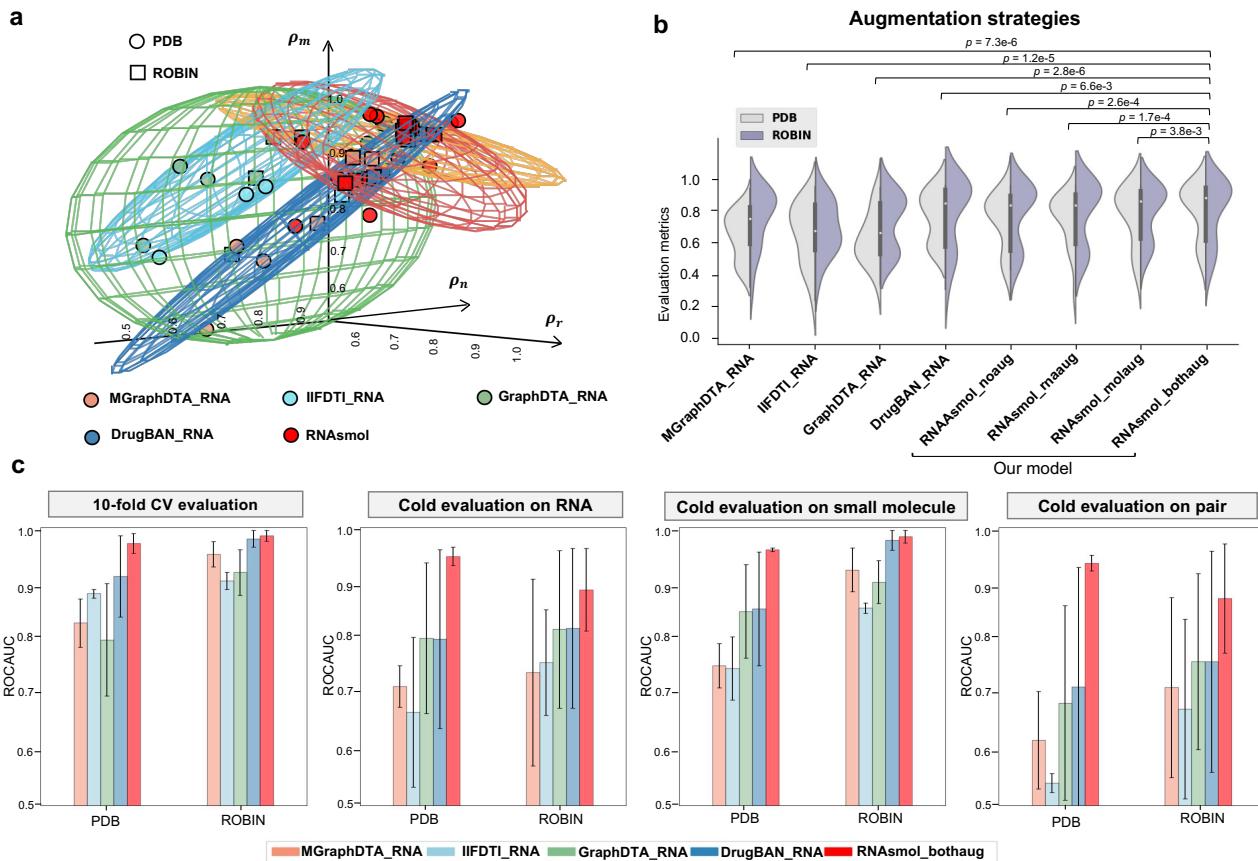
121

122 As illustrated in **Figure 1**, we build a deep learning model termed RNAsmol which takes RNA sequences and small
 123 molecules as inputs and outputs the likelihood of their binding as binding score. To address the issues arising from
 124 data scarcity and learning biases, as shown in **Figure 1a**, we apply three kinds of data perturbations on the raw
 125 RNA-small molecule interaction network in our study, i.e., ρ_r for RNA perturbation, ρ_m for small molecule
 126 perturbation, ρ_n for interaction network perturbation. RNA perturbation adds the shuffled RNA sequences with
 127 same dinucleotide frequency as the RNA targets into the raw network, small molecule perturbation adds drug-like
 128 compounds with high MACCS fingerprint similarity to the small molecule ligands into the raw network, and the
 129 interaction network perturbation introduces negative labels in the unknown interaction space of the raw network.
 130 Along with three kinds of augmentation strategies for each perturbation, we generate three kinds of training datasets,
 131 i.e., T_r , T_m , T_n for the model. **Figure 1b** shows the overall model architecture of RNAsmol, we utilize parallel
 132 processing modules for RNA targets and their corresponding small molecule ligands. Specifically, we employ a
 133 multi-view convolutional neural network for RNAs which strengthens long-range context aggregation for
 134 comprehensive representations, and a graph diffusion convolutional neural network for small molecules which
 135 extracts global topological properties of molecular structures. Then we utilize a bilinear attention block as a feature
 136 fusion module further aiding in annotating key binding sites relevant to their interactions and a multilayer perceptron
 137 (MLP) for classification in the model. To prove the prediction performance and robust model generalization and

138 interpretability, as shown in **Figure 1c**, we sequentially use the 10-fold cross-validation (CV) evaluation, cold
 139 evaluation, decoy evaluation and case study validations to compare the performance of RNAsmol with other models,
 140 with each subsequent evaluation introducing progressively stricter criteria. Besides, we also refine the parameters
 141 in RNAsmol in post-hoc analysis and optimize the model as a tool for drug virtual screening. See **Methods** for more
 142 details about RNAsmol model modules and evaluation methods.

143

144 RNAsmol provides accurate predictions of RNA-small molecule binding in perturbation space



145

146 Figure 2. Performance comparison in predicting RNA-ligand interaction based on 10-fold cross-validation 147 (CV) and cold evaluation

148 **a.** Predictions of five classification models across two RNA-small molecule binding datasets on perturbation space. **b.** Comparisons
 149 between RNAsmol with three kinds of augmentations and other models of evaluation metrics including ROCAUC, PRAUC, ACC,
 150 SEN, SPE, F1 score, p-values are obtained from the Mann-Whitney-Wilcoxon test with Bonferroni correction. **c.** Comparison with
 151 other models on 10-fold CV evaluation and three kinds of cold evaluation strategies (test on unseen data). Error bar represents the
 152 standard deviation (STD) calculated from multiple folds and perturbations.

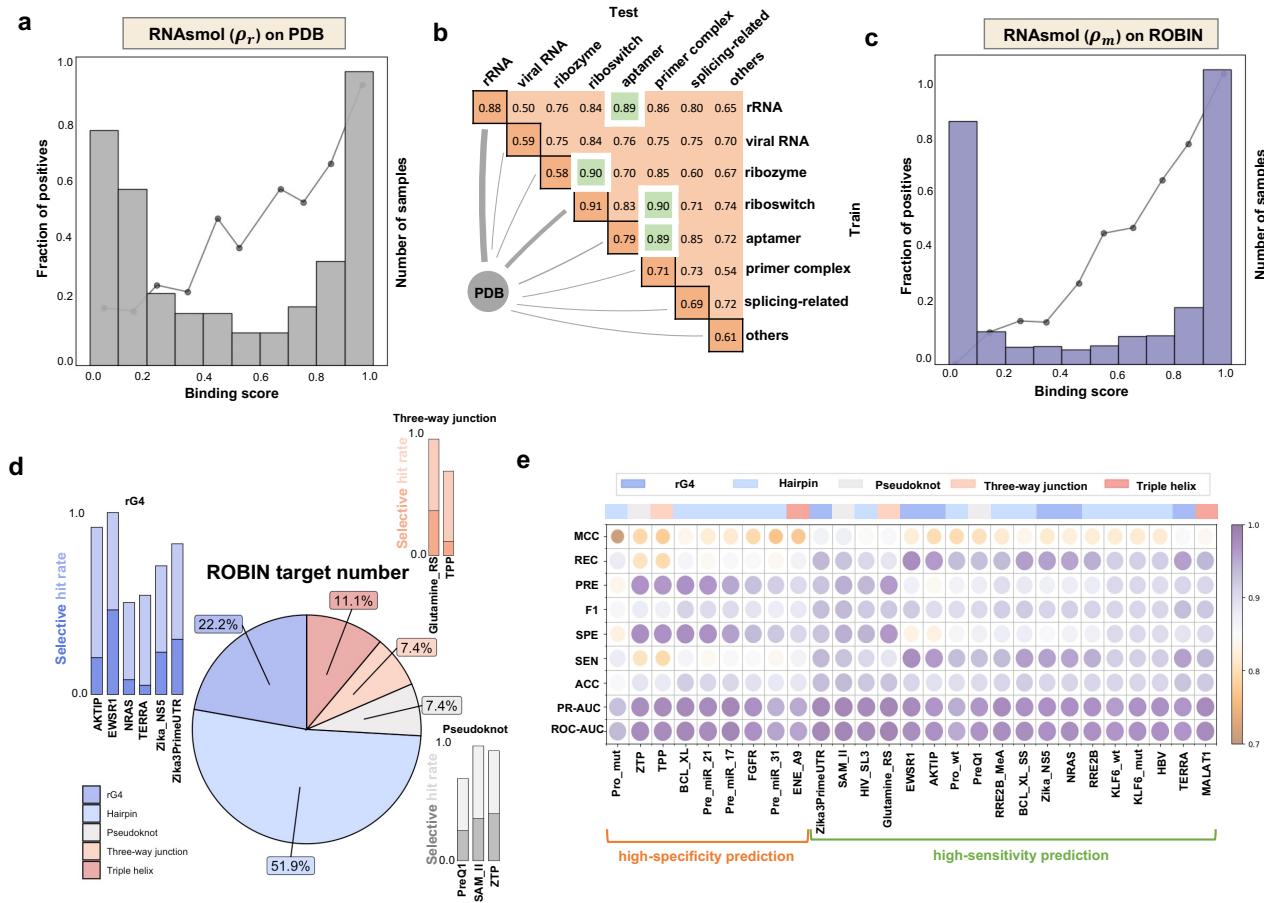
153

154 As a binary classification model for predicting RNA-small molecule interactions, we compared RNAsmol with four
 155 recent sequence-based target-drug interaction prediction models: MGraphDTA_RNA, IIFDTI_RNA,
 156 GraphDTA_RNA and DrugBAN_RNA (see **Methods** for details). Firstly, we evaluated the prediction performance
 157 of RNAsmol with three types of augmentations against these models in perturbation space, as shown in **Figure 2a**.
 158 The x, y, and z axes represent three types of perturbations, and each point's coordinates in this 3D scatter plot
 159 correspond to the average ROCAUC or PRAUC values of a model based on a 10-fold CV under a specific
 160 perturbation. The confidence ellipses for the five models suggest that RNAsmol robustly outperforms the other
 161 models across all perturbation settings on both the PDB and ROBIN datasets. Besides, ρ_m enhance the best
 162 predictions for RNAsmol and MGraphDTA_RNA, while other models fail to achieve a steady prediction state

163 within the perturbation space. Compared to the ROBIN dataset, the performance on PDB dataset has higher
164 variations within the perturbation space. Secondly, to disclose the effectiveness of data augmentation strategies, we
165 compare eight models, including MGraphDTA_RNA, IIFDTI_RNA, GraphDTA_RNA and DrugBAN_RNA, as
166 well as RNAsmol with and without data augmentations (RNAsmol_noaug, RNAsmol_rnaaug, RNAsmol_molaug
167 and RNAsmol_bothaug) (see **Methods** for details) on three kinds of perturbations across all metrics of 10-fold CV
168 evaluation, including ROCAUC, PRAUC, ACC, SEN, SPE, and F1 score, as illustrated in **Figure 2b**. Using the
169 Mann-Whitney-Wilcoxon test with Bonferroni correction, the p-values indicate that all RNAsmol models
170 outperform the other models, and data augmentation strategy significantly improves the predictive performance of
171 our model. Since augmenting both RNAs and small molecules achieves the best prediction across all perturbations,
172 we selected RNAsmol_bothaug for subsequent evaluations and comparisons. Thirdly, to evaluate and compare
173 RNAsmol with other models of ROCAUC with 10-fold CV and cold evaluations in which **we conducted cold**
174 **evaluation** for RNA targets, small molecules, and both interaction molecules (see **Methods** for details). As shown
175 in **Figure 2c** and **Figure S1**, our model consistently outperformed the other models in four kinds of settings,
176 demonstrating superior robustness in the context of unseen evaluations. RNAsmol outperforms other methods with
177 average improvements in ROCAUC of 0.12 on the PDB dataset and 0.05 on the ROBIN dataset in 10-fold cross-
178 validation. In cold evaluation settings, it shows improvements of 0.2 on PDB and 0.11 on ROBIN for cold evaluation
179 on RNA, 0.16 on PDB and 0.07 on ROBIN for cold evaluation on small molecules, and 0.3 on PDB and 0.15 on
180 ROBIN for cold evaluation on RNA-small molecule pairs. The results indicate that when both interacting molecules
181 were unseen during training, the model's predictions were most affected, followed by unseen RNA molecules, with
182 the least impact observed when small molecules were unseen. Although all models show variable predictions on the
183 PDB dataset from **Figure 2a**, our model demonstrates a higher improvement than other models on the PDB dataset
184 than ROBIN dataset in both 10-fold CV and cold evaluations.

185

186 **RNAsmol provides reliable and adaptable predictions with molecular perturbation (ρ_r and ρ_m)**
187 To demonstrate the extensive application and suitable scenarios of RNAsmol with RNA perturbation and small
188 molecule perturbation, we conduct cross-RNA type test on PDB dataset and target-specific predictions on ROBIN
189 dataset. The PDB dataset encompasses various RNA types, including rRNA, riboswitch, viral RNA, ribozyme,
190 aptamer, primer complex, and splicing-related RNAs. We found that the interaction networks of PDB and ROBIN
191 datasets exhibit different properties. Furthermore, as illustrated in **Figure 3a**, the calibration curves indicate that the
192 model's predicted binding scores are consistent with actual outcomes, demonstrating that RNAsmol (ρ_r) is well-
193 calibrated on the PDB dataset. As shown in **Figure S2**, cross-dataset tests (where the training set is PDB and the
194 test set is ROBIN, or *vice versa*) revealed that these two datasets cannot predict each other effectively. This
195 performance decrease from within-dataset tests (where both training and test sets are either PDB or ROBIN) is more
196 pronounced under RNA perturbation (ρ_r) conditions, indicating significant differences in RNA target profiles
197 between the datasets. Interestingly, due to the substantial overlap in the physicochemical properties of small
198 molecules in both PDB and ROBIN datasets (**Figure S17**), small molecule perturbation models are more robust in
199 cross-dataset predictions, resulting in less performance decline. This suggests that small molecule perturbation
200 models maintain their predictive performance across different datasets, whereas RNA perturbation models face
201 greater challenges. However, the pronounced decrease in performance of RNA perturbation models in cross-dataset
202 tests indicates their sensitivity to capturing binding signals within RNA-small molecule interaction networks with
203 different RNA profiles. To leverage this sensitivity, we apply the RNAsmol (ρ_r) to explore predictions across
204 different RNA types and their cross-dataset predictions. Our cross-RNA type test results, shown in **Figure 3b**, reveal
205 that RNAsmol (ρ_r) performs best on riboswitch targets in within dataset prediction and also generalizes well to
206 other RNA types in cross-dataset prediction. Therefore, the RNA-specific features captured by the RNAsmol
207 generalize well on dataset with a shift in distribution of RNAs' properties. Besides, these findings suggest that RNA
208 perturbation models are particularly effective in capturing the nuanced interactions within the PDB dataset, making



211 **Figure 3. Applications of small molecule perturbation (ρ_m) and RNA perturbation (ρ_r) on PDB and ROBIN**
212 **datasets**

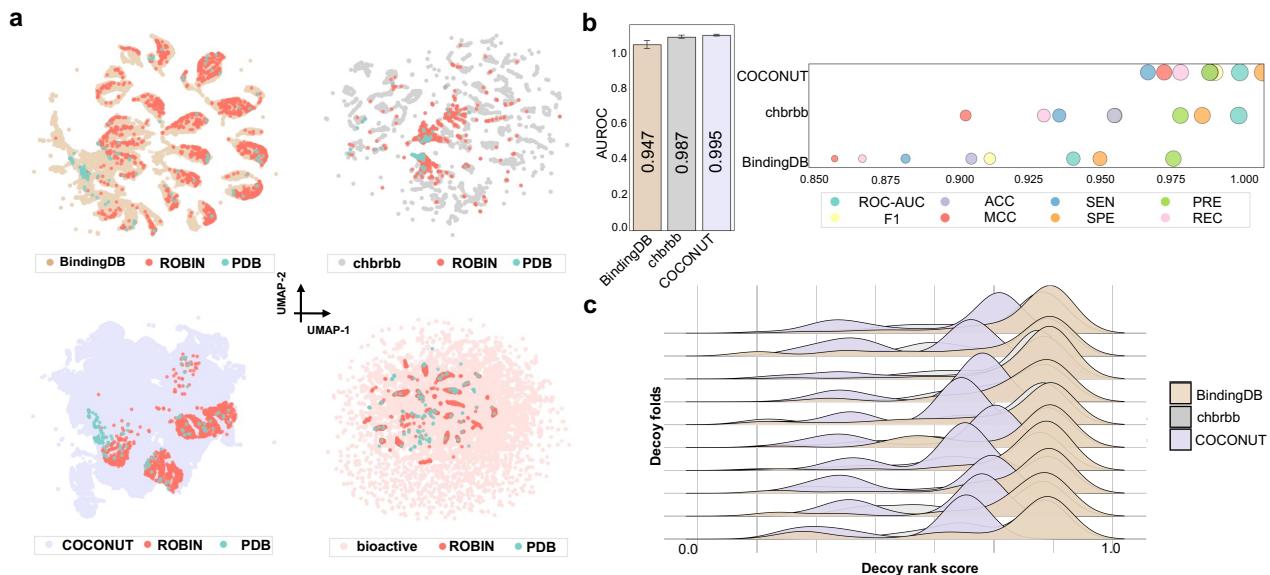
213 a. Calibration curve of RNAsmol (ρ_r) classification on PDB datasets. b. ROCAUC heatmap of the ROCAUC in cross-dataset
214 evaluation within and across RNA types in the PDB dataset. The rows represent the training dataset and the columns represent the test
215 dataset. c. Calibration curve of RNAsmol (ρ_m) classification on ROBIN datasets. d. RNA target numbers categorized by different
216 structures in the ROBIN dataset. Stacked bar charts depict the hit rate and selective hit rate of rG4 (RNA G-quadruplex), pseudoknot,
217 and three-way junction targets in screening experiments. Hit rate refers to the proportion of small molecules hitting each target, while
218 selective hit rate indicates the proportion of small molecules exclusively hitting a particular target without hitting others. e. Average
219 metrics including ROCAUC, PRAUC, ACC, SEN, SPE, F1, PRE, REC, MCC of 10-fold CV for individual target in the ROBIN dataset.
220 High-specificity and high-sensitivity predictions are stratified according to the hierarchical clustering result.

222 There are 27 disease-related RNA targets in ROBIN dataset, according to the screening results, as illustrated
223 in **Figure 3d**, the 27 RNA targets are grouped into five kinds of secondary structure: RNA G-quadruplex (rG4),
224 hairpin, pseudoknot, three-way junction and triple helix. Structures such as rG4s, pseudoknots and three-way
225 junctions exhibit the highest selective hit rates which refers to the proportion of small molecules exclusively hitting
226 a target without hitting others, as indicated by the stacked bars. To investigate RNA-small molecule interactions for
227 individual RNA target with high selective hit rate and different secondary structure in the ROBIN dataset, we trained
228 RNAsmol with small molecule perturbation on single RNA target. As shown in **Figure 3e**, RNAsmol (ρ_m) performs
229 well across all RNA targets, making it suitable for prefiltering compound libraries before screening experiments.
230 The rG4 targets, including EWSR1, AKTIP, demonstrate higher sensitivity and recall among these targets which
231 means the RNA-binders of these targets can be sensitively and well detected. Meanwhile, pseudoknot targets such
232 as ZTP and three-way junction targets such as TPP and Glutamine_RS exhibit higher specificity and precision,

233 indicating that although the RNA-binders for these targets may not be detected as frequently, the detections are very
 234 reliable when they occur. The average dissimilarity among high-specificity predictions is greater than that among
 235 high-sensitivity predictions, suggesting the diverse prediction patterns of RNAsmol (ρ_m) on individual RNA targets.
 236 Additionally, RNAsmol (ρ_m) makes calibrated and accurate predictions for both the full ROBIN dataset and
 237 individual RNA target in ROBIN dataset, as indicated by the calibration curve aligning well with the actual
 238 probabilities (Figure 3c and Figure S5).

239

240 **Optimization of the small molecule perturbation (ρ_m) for decoy evaluation**



241

242 **Figure 4. Optimization of the small molecule perturbation (ρ_m) for decoy evaluation**

243 a. UMAP visualizations of molecular physicochemical properties including molecular weight (MW), partition coefficient (logP),
 244 hydrogen bonds donors (HBD), hydrogen bond acceptors (HBA) and the number of rotatable bonds (RB). The first three plots show
 245 the overlap between RNA-binding small molecules (from both PDB and ROBIN) and drug-like background compound libraries
 246 (BindingDB, chbrbb, and COCONUT), while the fourth plot shows the overlap with bioactive small molecule libraries used in decoy
 247 set generation. b. Classification comparison of RNAsmol (ρ_m) with three drug-like background compound libraries. Error bar in barplot
 248 represents the standard deviation (STD) calculated from 10 folds. c. Comparison of decoy rank score distribution of RNAsmol (ρ_m)
 249 with three drug-like background compound libraries. Higher decoy rank score indicate the better performance in decoy evaluation.

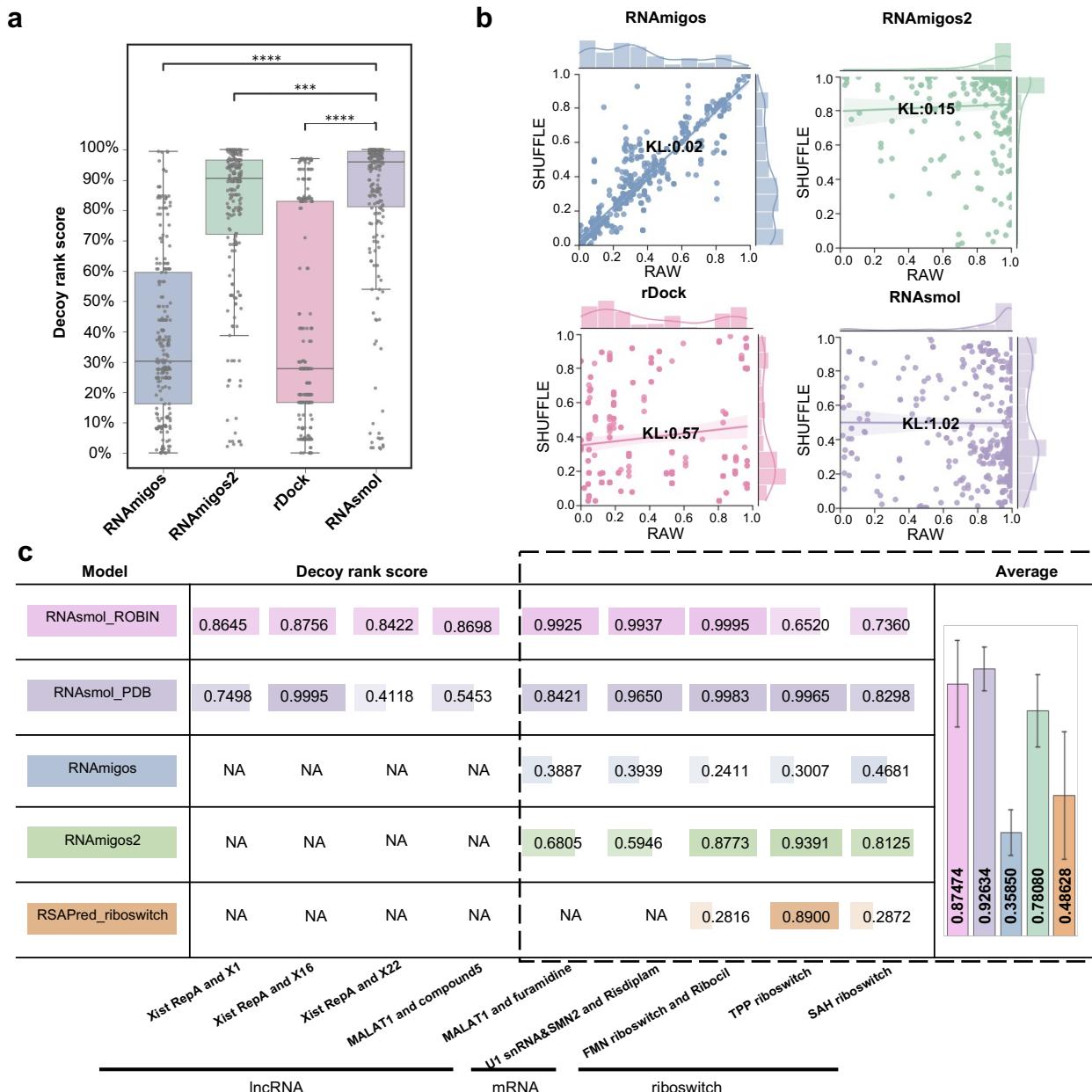
250

251 Given that RNAsmol (ρ_m) provides the most robust prediction in classification tasks (see **Results** Section 2 for
 252 details), we aim to use the binding score predicted by RNAsmol (ρ_m) as a constraint to narrow down the vast drug-
 253 like chemical space. There are several drug-like compound libraries used for high-throughput drug screenings,
 254 including the ZINC bioactive compound library, COCONUT natural product (organic molecules) library,
 255 ChemBridge BuildingBlocks (chbrbb) library and BindingDB protein binder library. **Figure 4a** shows the UMAP
 256 visualization of the molecular physicochemical properties including molecular weight (MW), partition coefficient
 257 (logP), hydrogen bonds donors (HBD), hydrogen bond acceptors (HBA) and the number of rotatable bonds (RB)
 258 across these four drug-like compound libraries, the PDB dataset and the ROBIN dataset. Clustering results reveal
 259 that molecules from the BindingDB database exhibit higher similarity to RNA-binder molecules in the two datasets
 260 in terms of physicochemical properties. Conversely, molecules in the chbrbb library display the most divergent
 261 distribution properties, while those in the COCONUT library demonstrate the most extensive range of molecular
 262 physicochemical properties. We then employed 10-fold CV evaluation and decoy evaluation to investigate and
 263 optimize the small molecule perturbation using three different background compound libraries. **Figure 4b** shows

264 that RNAsmol (ρ_m) get the best classification performance when using the largest COCONUT libray and the worst
 265 performance on BindingDB dataset. However, employing the aforementioned three small molecule datasets as
 266 background drug libraries, and the bioactive small molecules from ZINC as the decoy drug library, as shown in
 267 **Figure 4c**, RNAsmol (ρ_m) achieved optimal decoy evaluation results when utilizing molecules from the BindingDB
 268 database as the background. Furthermore, small molecule ligands binding to RNA targets tend to exhibit selectivity,
 269 and the chemical property space of RNA ligands overlaps to some extent with protein ligands. Therefore, we infer
 270 that using a negative dataset composed of molecules with similar physicochemical properties during model training
 271 enables the acquisition of more precise features for distinguishing drug-like molecules.

272

273 RNAsmol effectively distinguish known RNA-targeting small molecule from decoys



274

275 Figure 5. Performance comparison in virtual screening based on the decoy evaluation

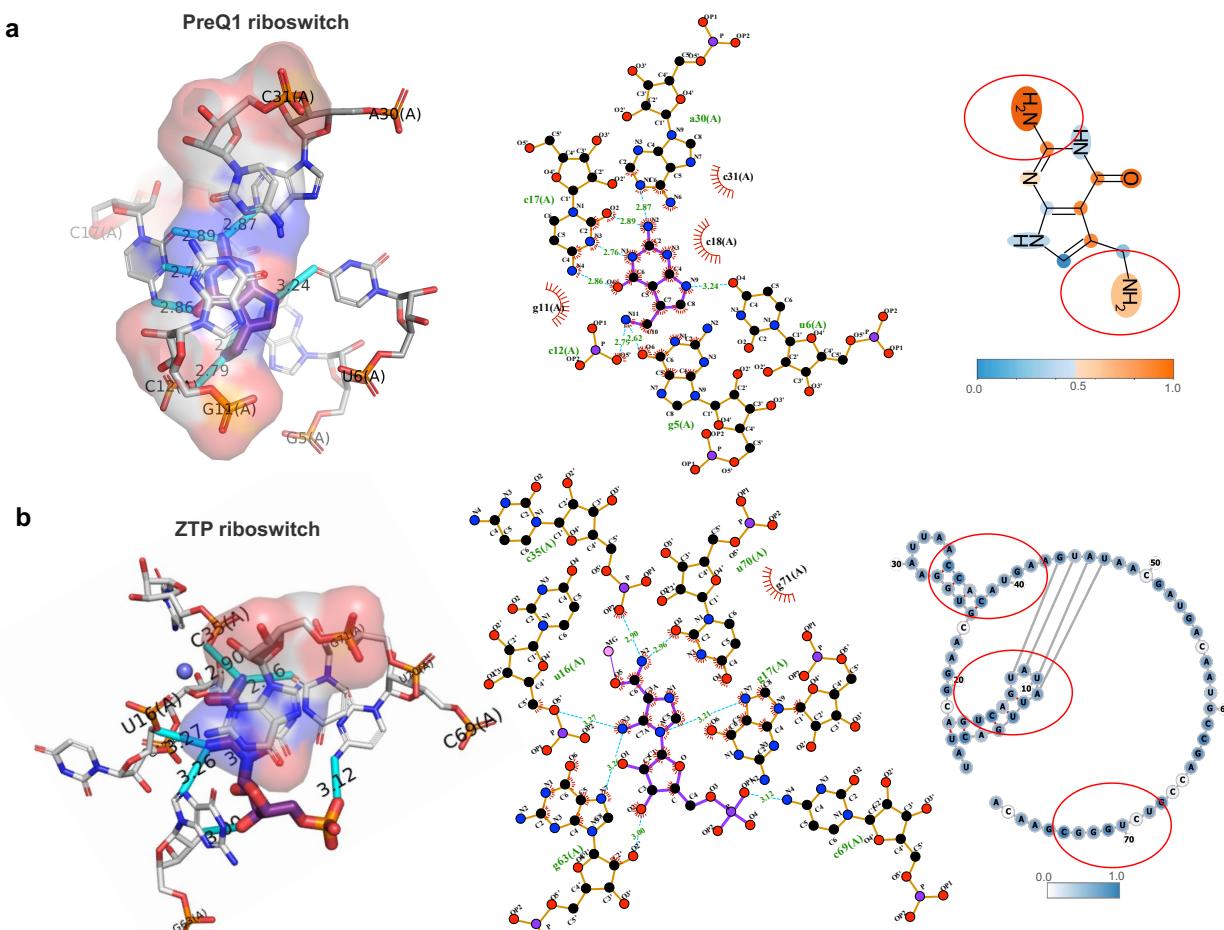
276 a. Decoy rank score performance comparisons with other structure-based methods of decoy evaluation on PDB dataset. * P-value<0.05,
 277 ** P-value<0.01, *** P-value<0.001, **** P-value<0.0001, Wilcoxon rank sum test, one-tailed (RNAsmol has higher decoy rank
 278 score than RNAmigos, RNAmigos2, rDock). b. Decoy rank score distribution of RNAsmol and other methods with and without RNA
 279 target shuffle. Kullback–Leibler (KL) divergence measures the difference between the decoy rank score distribution of RAW and

280 SHUFFLE (higher KL values indicate greater differences) **c.** Decoy rank score comparisons between two trained RNAsmol models
281 (trained on ROBIN dataset and PDB dataset separately) and other models on well-known RNA-targeting drug cases.

282

283 First, we trained the aforementioned model, selecting RNAsmol (ρ_m) with the optimized background library, i.e.,
284 BindingDB. Subsequently, for each RNA target in the test set of PDB dataset, we generated a decoy evaluation set
285 consisting of bioactive small molecules in ZINC bioactive small molecule library using decoyfinder[60] software.
286 We used the trained RNAsmol model to predict binding scores for each small molecule in the decoy set and get the
287 rank of true ligand in the predicted binding scores of decoy set. Similarly, we employed the RNAmigos model to
288 generate a molecular representation vector, calculated the distance between this vector and the fingerprint of both
289 true and decoy small molecules, and then ranked the results. Then we use RNAmigos2 model and rDock software
290 to get a score for each decoy molecule and get the rank of true ligand in the decoy set. Finally, we compared the
291 ranking outcomes of the four models, as depicted in **Figure 5a**, the boxplot illustrates the distribution of rankings
292 for positive small molecules in the 10-fold decoy test. Notably, our model's rankings significantly outperformed
293 those of the other three models, achieving an average decoy rank score of 83%, which was 45% higher than
294 RNAmigos, 6% higher than RNAmigos2, and 40% higher than rDock. As shown in **Figure 5b**, upon randomizing
295 RNA targets, our model exhibited greater variation in ranking distribution measured by Kullback-Leibler (KL)
296 divergence, indicating its superior specificity for RNA targets. We calculated fingerprint similarity using four
297 distance metrics: Euclidean distance, cosine distance, Chebyshev distance and correlation distance, with differences
298 shown in **Figure S8**. For RNAmigos2, we used four modes of this model including dock mode, native mode, fp
299 mode and mixed mode for the evaluation, and the corresponding results are also shown in **Figure S8**. Besides, we
300 also apply two trained RNAsmol models which are trained on PDB and ROBIN datasets respectively on many cases
301 as a drug virtual screening application. As shown in **Figure 5c**, RNAsmol_ROBIN have higher performance on
302 new-revealed RNA-targeting drugs like Ribocil, Risdiplam, etc, while RNAsmol_PDB perform better on riboswitch
303 cases. RNAsmol makes prediction on RNA targets which are with unknown structure and has overall better
304 performance than the other RNA-targeting virtual screening models including RNAmigos, RNAmigos2 and
305 RSAPred_riboswitch.

306



308

Figure 6. Case study validation and visualizations of molecular hotspots of RNAsmol prediction
a. Structural snapshots of class I pre-queuosine1 (PreQ1) riboswitch from *Bacillus subtilis* (PDB ID: 3K1V) structure by PyMOL, profile of contacts within the binding site by ligplot software, and Grad-CAM weight visualization of PreQ1 ligand in RNAsmol prediction. Hydrogen bonds are colored light blue with annotated distance in both the structure and profile. b. Structural snapshots of ZTP riboswitch from *Fusobacterium ulcerans* (PDB ID: 5BTP) structure by PyMOL, profile of contacts within the binding site by ligplot software, and Grad-CAM weight visualization of ZTP target secondary structure in RNAsmol prediction. Hydrogen bonds are colored light blue with annotated distance in both the structure and profile.

To further validate the interpretability of the model, we visualized the hotspots on RNA and small molecules by gradient-weighted class activation mapping (Grad-CAM). **Figure 6** displays the structure of class I pre-queuosine1 (PreQ1) riboswitch from *Bacillus subtilis* (PDB ID: 3K1V) and ZTP riboswitch from *Fusobacterium ulcerans* (PDB ID: 5BTP) respectively. One the left of **Figure 6a** and **Figure 6b**, present the structural snapshots of two riboswitches binding to small molecules, as rendered in PyMOL, the hydrogen bonds between RNA and ligand are colored light blue with the annotated distance, and the middle part shows the profile of contacts generated by Ligplot+ software. Then we employed the Class Activation Map (CAM) module to obtain the weights of the last convolutional layer in the convolutional neural network through backpropagation. Subsequently, these weights were multiplied with the feature map of that layer to obtain a weighted sum, forming a feature map. This enabled the mapping back to atoms in small molecule and RNA target to visualize the importance of each atom or nucleic acid for classification (**Figure S9**). On the right part, we showcased the weights on the small molecule binding to the PreQ1 riboswitch and the pseudoknot motif in ZTP riboswitch. The regions in the model with higher weights often

329 correspond to key atoms or nucleic acid involved in binding in real structure, indicating that our model demonstrates
330 a high consistency in predicting hotspots on small molecules and regions where hydrogen bonds are formed. Results
331 of the visualizations of c-di-GMP-II and S-adenosylhomocysteine (SAH) riboswitches are shown in **Figure S10**
332 and **Figure S11** respectively.

333 Discussion

334 To summary, AI-driven RNA-targeting drug design would provide crucial insights for the development of targeted
335 therapeutics. We proposed a unified framework for RNA-ligand interaction scoring via data perturbation and
336 augmentation modeling. Through comprehensive testing across multiple evaluations, we demonstrate superior
337 performance of our model compared to existing ones. Additionally, we conduct discussions on different applications
338 on various RNA-targeting drug design and drug screen senarios, aiming to elucidate patterns and preferences in the
339 interaction between RNA and small molecules. We proved that the sequence input did not introduce significant
340 noise into our model. Instead, our data perturbation and augmentation strategies successfully enriched the
341 informative content within the sparse data space of RNA-small molecule interactions. This approach significantly
342 enhances our understanding of how RNA interacts with small molecules. Moreover, beyond achieving strong
343 predictive performance in binding prediction, our model excelled particularly in the strictest decoy evaluations.
344 Decoy evaluations challenge the model to distinguish accurately between true and false molecules in unseen but
345 similar datasets using trained RNAsmol model. This success can be attributed to our meticulous approach in
346 selecting and preprocessing the existing RNA sequence containing binding sites from chains and the stringent
347 selection of drug-like small molecules, which closely mirrors real-world drug screening scenarios. By optimizing
348 small molecule perturbations, we gained valuable insights into the nuanced properties of RNA-binders within the
349 drug-like chemical space, thereby contributing to our robust performance in decoy evaluations. In contrast, pocket-
350 guided SBVS models not always exhibit target specificity as evidenced by RNA target shuffle decoy results. Our
351 model has effectively learned the critical binding positions within complex structures where key nucleotides and
352 small molecule atoms form hydrogen bonds. This capability demonstrates our model's ability to capture essential
353 features of genuine binding regions, resulting in accurate predictions of binding events.

354 Unlike drug development targeting proteins, our understanding of RNA structures is limited, whether
355 through experimental or computational methods, obtaining high-resolution tertiary structure of RNAs is challenging.
356 For different drug design scenarios, we might need to employ various computational virtual screening methods to
357 accelerate drug discovery. On the one hand, for structured molecules like most proteins and certain noncoding RNAs
358 (e.g., Riboswitch and Ribozyme), SBVS methods is suitable. Recently, numerous RNA structure prediction models
359 have been proposed[61, 62], we anticipate that computational predictions of RNA structures will become
360 increasingly accurate, thereby advancing research in structure-based RNA-targeting drug discovery. On the other
361 hand, for RNAs without stable tertiary structures (e.g., many mRNAs and lncRNAs), there remains a lack of
362 prediction methods for RNA-ligand interaction scoring. Disney et al. introduced sequence-based concept by a lead
363 identification screening method which was applied to all human microRNA hairpin precursors[20], in alignment
364 with this advancement, we propose RNAsmol model which provides reliable RNA-small molecule interaction
365 binding prediction without requiring structural input. Our model represents a substantial step forward in leveraging
366 sequence-based approaches to advance the understanding and development of therapeutics targeting RNA
367 interactions. We envision that this deep learning model can serve as a predictive tool to accelerate the development
368 of therapeutic drugs targeting RNA. Additionally, many machine learning-based scoring models for protein-ligand
369 binding suffer from a bias where they memorize molecules rather than learn interactions[51, 58, 63]. This is often
370 due to the advanced deep learning modules that extensively extract features from the molecules themselves but
371

372 overlook the interaction networks. We have observed a similar issue in RNA-ligand interaction scoring models
373 (**Figure S1**), where predictions under network perturbation yield suboptimal results across various models. Moving
374 forward, our focus will be on addressing this issue to further improve and refine these models or uncover underlying
375 reasons, aiming to enhance the methodological robustness of this research.

376

377 Methods

378 Data collection and preprocessing

379 We initially collected RNA-ligand complex structures from the PDB database, encompassing both RNA-only and
380 RNA-protein (RNP) complexes, to train RNAsmol. Meanwhile, we obtained RNA-small molecule interaction
381 matrices from the ROBIN database which is the largest fully public dataset derived from small molecule microarray
382 (SMM) screening experiments. From the PDB, we gathered experimental RNP-ligand and RNA-ligand complexes
383 with interactions within 4 angstroms, retaining RNP-ligand structures only if RNA atoms constituted more than
384 fifty percent of the total. After applying these filters, 1,229 RNP-ligand and 836 RNA-ligand structures are kept for
385 further screening. Ligands with “non-drug-like” properties were removed adhering to the criteria specified in the
386 referenced paper [64], and we retained only ligands with a mass between 200 and 700 Da. We further filtered RNP-
387 ligand structures to ensure the RNA fraction of the binding sites exceeded 50%. Ultimately, we retained 383 RNP-
388 ligand and 225 RNA-ligand complex structures for extracting chain sequences and small molecule SMILES. All
389 structures were annotated according to their RNA type by text-mining the corresponding PDB file. To validate the
390 effectiveness of RNAsmol using experimental screening data, as shown in **Figure S18**, we compiled SMM
391 screening data from the ROBIN dataset. In this context, we used the hit and non-hit molecules for each RNA target
392 in the screening hit matrix as positive and negative interactions. Basic statistics of these two datasets are shown in
393 **Figure S13**, **Figure S14**, **Figure S15**.

394

395 Three perturbations on RNA-small molecule interaction network

396 For curated raw RNA-small molecule interaction network, there exist three types of relationships between two
397 interacting entities: binding, non-binding, and unknown. Our current knowledge only allows us to determine the
398 molecules that interact with each other, but it fails to establish clear boundaries between non-binding and unknown
399 relationships. To enhance our understanding of this interaction network, we employed various data perturbation
400 strategies to generate non-binding samples from unknown interacting space, as illustrated in **Figure S16**. Firstly,
401 we generated non-binding cases by perturbation on RNA targets through random dinucleotide shuffling and pairing
402 the shuffled sequence with the original small molecules. We denote this kind of perturbation as ρ_r :

$$403 \quad \rho_r: (R_{raw}, M_{raw}, I_{raw}) \rightarrow (R_{neg}, M_{raw}, I_{neg})$$

404 Secondly, we utilized small molecules from different compound libraries (e.g., experimentally validated protein-
405 binder compound libraries, structurally diverse compound libraries, organic small molecule databases) as negative
406 examples for small molecules, where these molecules interact with the original RNA targets to form negative
407 interaction pairs. We denote this kind of perturbation as ρ_m :

$$408 \quad \rho_m: (R_{raw}, M_{raw}, I_{raw}) \rightarrow (R_{raw}, M_{neg}, I_{neg})$$

409 Thirdly, we established edges between each RNA and each small molecule, removed the known edges, and randomly
410 sampled from the remaining edge set to obtain negative example sets. We denote this kind of perturbation as ρ_n :

$$411 \quad \rho_n: (R_{raw}, M_{raw}, I_{raw}) \rightarrow (R_{raw}, M_{raw}, I_{neg})$$

412 Where R_{raw} represent raw RNA target set, M_{raw} represent raw molecule set, I_{raw} represent the raw RNA-small

413 molecule interaction set, and R_{neg} , M_{neg} represent the negative RNA targets and negative molecules respectively.
414 We obtain I_{neg} , i.e., the final negative samples for the classification from all of the three perturbations. These three
415 methods perturbed data for both types of interacting entities and the interaction network, aiming to infer binding
416 signals and patterns on the sparse network of RNA-small molecule interactions using diverse data perturbation
417 spaces.

418

419 **Three data augmentation strategies on RNA-small molecule interaction network**

420 To address the scarcity of known RNA-ligand binding data, we first augment the RNA by using comparative
421 genomics methods to identify natural binding RNA targets that interact with small molecules and have conserved
422 structures. For RNA sequences with experimental interaction data, we perform large-scale searches across recent
423 metagenomic datasets, clustering homologous sequences based on similarity using the Infernal[65] tool. We
424 hypothesize that although these augmented RNA sequences may differ from those in the PDB database at the
425 sequence level, they can still bind small molecules. Next, we augment the chemical space of small molecules binding
426 to RNA targets, assuming that small molecules with similar chemical properties can also bind to RNA targets. We
427 use computational chemistry methods to map small molecules into continuous numerical molecular fingerprints
428 representing their chemical structure and employ Tanimoto fingerprint similarity metrics for comparison between
429 RNA-binders and drug-like molecules. Based on the assumption that similar RNA targets tend to bind to the same
430 small molecule ligands, and similar small molecules tend to bind to the same RNA targets, we further expand the
431 RNA-ligand binding data using these augmented interaction subsets. We note that there are no augmented
432 interactions between augmented RNAs and augmented small molecules, i.e., edges are only added when one of the
433 interaction partners is a true entity in the raw network. See **Supplementary Methods** and **Figure S16, Figure S17**
434 for details. We only augmented the training dataset to boost model performance, while the validation and test data
435 remained unaugmented. We named these models as RNAsmol_noaug, RNAsmol_rnaaug, RNAsmol_molaug,
436 RNAsmol_bothaug, respectively.

437

438 **The RNAsmol model architecture**

439 RNAsmol is RNA-small molecule interaction prediction model with network perturbation and data augmentation.
440 As shown in **Figure 1b**, RNAsmol has four modules: RNA target encoder (Multi-view CNN), small molecule
441 encoder (Graph diffusion convolution), feature fusion module (Bilinear attention block) and classification module
442 (MLP).

443

444 **Module1: RNA target encoder (Multi-view CNN)**

445 For the augmented RNA target sequences and their interacting small molecule ligands after redundancy removal,
446 molecular representation and feature extraction are performed separately. For RNA, we retained the first 500
447 nucleotides of each RNA target sequence and utilized a string representation to depict the sequences and predicted
448 base pairing information from the RNAfold software, i.e., {A, U, C, G, A, a, u, c, g}. Uppercase letters represent
449 paired bases, while lowercase letters indicate unpaired bases. After structural prediction and information
450 normalization of RNA targets, we employ multi-view convolutional neural networks for RNA target local feature
451 extraction. The multi-view convolutional neural network (CNN) architecture is specifically designed to capture
452 diverse local patterns within RNA sequences through multiple convolutional layers with different kernel sizes. This
453 network consists of several primary components: (1) Embedding Layer: The RNA sequence is first embedded into
454 a dense vector representation and transformed into a continuous vector space, which is then suitable for
455 convolutional operations. (2) Convolutional and ReLU Layers: The core of the multi-view CNN comprises several
456 Conv1dReLU blocks. Each block performs a one-dimensional convolution followed by a ReLU activation function.

457 The convolutional layers have varying kernel sizes (e.g., 3, 5, and 7) to capture different patterns and motifs within
458 the RNA sequences. Formally, given an input sequence $x \in \mathbb{R}^{L \times C_{in}}$, the convolutional operation is defined as:

$$y^{(l)} = \text{ReLU}(W^{(l)} * x + b^{(l)})$$

460 Where $y^{(l)}$ is the output of the l -th convolutional layer, $W^{(l)}$ and $b^{(l)}$ are the weights and bias, and $*$ denotes the
461 convolution operation. (3) Stacked CNN Blocks: Multiple StackCNN blocks are used, each containing a stack of
462 convolutional layers with adaptive max pooling. Each block captures features at different levels of abstraction. The
463 stacking of convolutional layers allows the network to learn complex representations from the RNA sequences. (4)
464 Adaptive Max Pooling: After the convolutional operations, adaptive max pooling is applied to reduce the
465 dimensionality of the feature maps, focusing on the most informative features. (5) Feature Aggregation: The outputs
466 from each StackCNN block are concatenated to form a comprehensive feature vector. This aggregated feature vector
467 incorporates diverse local features captured by the different convolutional layers. (6) Fully Connected and Dropout
468 Layers: The concatenated features are passed through a fully connected layer to further integrate the information,
469 followed by a dropout layer to prevent overfitting. This process generates the final feature representation for the
470 RNA target.

471

472 **Module2: small molecule encoder (Graph diffusion convolution)**

473 To comprehensively elucidate the binding preferences of small molecules with RNA targets, we adopt atom-level
474 graph representation to encode local features of small molecule ligands. As depicted in **Figure S19**, we initiate by
475 structuring small molecule ligands as graphs, where atoms serve as nodes and chemical bonds as edges.
476 Subsequently, we extract structural and physicochemical features using graph diffusion convolutional neural
477 networks. Traditional graph learning models, often employing Message Passing (MP) methods, typically consider
478 only first-order node neighbors, limiting their ability to abstractly characterize overall graph properties. In contrast,
479 our approach employs a nonlinear information diffusion function to extract features from each point within the
480 molecular graph. This method effectively preserves both high-order local and global graph properties, enhancing
481 feature extraction for RNA binding predictions. Specifically, starting from a fixed atomic node in the small molecule,
482 we conduct graph diffusion based on the transition probability matrix. Upon halting the diffusion process, we define
483 edge weights using the probability distribution from the origin node to other nodes. The graph diffusion process is
484 defined as:

$$S = \sum_{k=0}^{\infty} \theta_k T^k$$

485 Here, T denotes the transition probability matrix, where $T = AD^{-1}$. A represents the adjacency matrix of the
486 molecular graph, and D is the degree matrix, with $d_{ii} = \sum_j a_{ij}$. θ_k represents the diffusion coefficient, which
487 commonly includes Personalized PageRank (PPR) diffusion and Heat Kernel (HK) diffusion:

$$\theta_k^{PPR} = \alpha(1 - \alpha)^k$$

$$\theta_k^{HK} = e^{-t} \frac{t^k}{k!}$$

488 Diffusion convolution, a preprocessing step based on graph diffusion, characterizes the flow of information across
489 the graph structure via random walk processes. This project introduces the novel application of graph diffusion
490 convolutional methods to fully extract feature representations from each atom in the molecular graph. Our goal is
491 to capture comprehensive structural features encoded within molecular graphs and enhance discrimination between
492 molecular graphs of similar small molecules.

493

494 **Module3: feature fusion module (Bilinear attention block)**

495 It has been reported that RNA targets and small molecule ligands exhibit diverse binding modes, characterized by

499 specific physicochemical properties and spatial distances. RNA-small molecule binding demonstrates selective
 500 specificity, involving various non-covalent interactions like hydrogen bonds and pi-pi stacking, contingent upon
 501 interaction strength and physicochemical properties. Traditional models often overlook effective feature fusion,
 502 relying solely on simple feature concatenation across layers. In contrast, RNAsmol integrates features from RNA
 503 targets and small molecule ligands using a bilinear attention module used in Visual Question Answering (VQA)
 504 domain (**Figure S19**). The bilinear attention module contains the following components: (1) Feature transformation:
 505 The input RNA features and small molecule features are transformed into the same higher-dimensional space using
 506 a fully connected layer respectively. (2) Attention computation: The transformed features are computed to get
 507 attention maps either using single-view attention which conducts tensor contraction operation to get attention scores
 508 or using multi-view attention which involves creating higher-dimensional tensors and utilize linear transformation
 509 to get attention scores. (3) Softmax activation (4) Pooling and Fusion (5) Output. Leveraging attention maps and
 510 pooling strategies facilitates the extraction and fusion of relevant information from both modalities and enhance
 511 predictive performance and generalization across diverse datasets. As shown in **Figure S4**, ablation studies on
 512 bilinear attention network (BAN) module underscore the pivotal role of this fusion module in effectively classifying
 513 RNA-small molecule interactions.

514

515 **Module4: classification module (MLP)**

516 We used the Multi-Layer Perceptron (MLP) module consisting of three to five fully connected (dense) layers
 517 interspersed with Rectified Linear Unit (ReLU) activation functions as the classification module to transform fused
 518 feature embedding encoded by the bilinear transformer module into the probability for each label. Generally, each
 519 layer L_i in the network applies a linear transformation to its input, followed by a ReLU non-linearity. The linear
 520 transformation for a given layer L_i can be represented as:

$$521 \quad z_i = W_i x_{i-1} + b_i$$

522 Where W_i and b_i are the weight matrix and bias vector for layer L_i respectively, and x_{i-1} is the output of the
 523 previous layer. The ReLU activation function is applied element-wise to the linear transformation output:

$$524 \quad x_i = \text{ReLU}(z_i) = \max(0, z_i)$$

525

526 Besides, we employ the Cross-Entropy Loss function ('nn.CrossEntropyLoss') provided by PyTorch and ensure the
 527 output layer has two neurons corresponding to the two classes. The cross-entropy (CE) loss function is defined as:

$$528 \quad CE(y, \hat{y}) = -\frac{1}{N} \sum_{i=1}^N \sum_{j=1}^C y_{ij} \log(\hat{y}_{ij})$$

529 Where y_{ij} is the true label, \hat{y}_{ij} is the predicted probability for class j for sample i , N is the number of samples, and
 530 C is the number of classes (which is 2 in the case of binary classification in RNAsmol). We utilize Adam optimizer
 531 configured with the given learning rate and an $L2$ regularization term (weight decay). The weight decay term helps
 532 to prevent overfitting by penalizing large weights, thereby improving the generalization capability of the model.
 533 The loss curves of model training are displayed in **Figure S20**.

534

535 **10-fold cross-validation (CV) evaluation**

536 To evaluate the classification performance, we performed 10-fold cross-validation on RNAsmol and other related
 537 models, comparing them across multiple metrics including ROCAUC, PRAUC, accuracy (ACC), sensitivity (SEN),
 538 specificity (SPE) and F1 score. Since there is a lack of binary classification prediction models designed for RNA-

539 small molecule interactions, we modified the molecular encoding part of recently published models for predicting
540 protein-ligand binding interactions to accommodate RNA molecules. These adapted models, which we named
541 GraphDTA_RNA, MGraphDTA_RNA, IIFDTI_RNA and DrugBAN_RNA, are detailed as follows. The GraphDTA
542 model uses a graph neural network to learn small molecule SMILES and a convolutional neural network to learn
543 protein sequences, followed by a fully connected neural network to predict binding probabilities after the simple
544 concatenation of the extracted features. We revised the initial embedding of protein sequences to fit RNA sequences
545 and used the default settings of this model for evaluation. The MGraphDTA model uses a multi-view graph neural
546 network (MGNN) to learn small molecule SMILES and a multi-view convolutional neural network to learn protein
547 sequences, predicting binding probabilities with a fully connected neural network after feature concatenation. We
548 adjusted the initial embedding of protein languages to fit RNA sequences and used the default settings of this model
549 for evaluation. For the IIFDTI model, we modified the embedding module as follows: (1) We replaced the protein
550 text corpus with Rfam[66] and trained a skip-gram model from gensim Word2Vec on it to obtain k-mer embeddings
551 from RNA sequences. (2) We applied the trained rna2vec vector to the RNA target. We then used the default settings
552 in the IIFDTI model for evaluation. For the evaluation of DrugBAN on the RNA-ligand classification task, we used
553 the default parameters provided in DrugBAN.yaml and employed the random split method.

554

555 **Cold evaluation**

556 To evaluate the classification performance on unseen datasets, we conducted cold evaluation on RNAsmol and other
557 models mentioned in the previous section. This involved ensuring that the test set included RNA targets, small
558 molecule ligands, and both interacting molecules that had not appeared in the training set. In the cold evaluation on
559 RNA, there is no overlap between RNA targets in the training and testing sets (R_train and R_test in **Figure S18**),
560 though small molecule ligands may overlap (M_train and M_test). This approach trains a model particularly suited
561 for predicting small molecule ligands for new RNA targets of interest. In the cold evaluation on small molecule,
562 there is no overlap between small molecules in the training and testing sets, while RNA targets may overlap. This
563 setting trains a model suitable for predicting appropriate RNA targets for newly discovered or unvalidated small
564 molecule ligands that bind to RNA. The cold evaluation on pair ensures no overlap between both RNA targets and
565 small molecules in the training and testing sets, which is the strictest setting and usually results the least accurate
566 predictions. It is worth noting that, similar to random splitting used in cross-validation evaluations, there is no
567 overlap between interactions in the training and testing sets (I_train and I_test in **Figure S18**). However, specific
568 requirements are made in cold evaluations for selecting the two interacting molecules. With these methods, we can
569 apply the trained RNA-small molecule binding prediction model to practical prediction scenarios, aiming to
570 discover potential small molecule drug sets for specific RNA targets or predict appropriate RNA targets for small
571 molecule drugs.

572

573 **Decoy evaluation**

574 To reveal the potential of virtual screening in RNA-targeting drug discovery, we did 10-fold decoy evaluation on
575 RNAsmol and other models including RNAmigos, RNAmigos2 and rDock. First, we generated a decoy set for each
576 small molecule in the test sets of PDB dataset using DecoyFinder software on ZINC bioactive library. This software
577 selects molecules with similar physicochemical properties (including molecular weight (MW), partition coefficient
578 (logP), hydrogen bonds donors (HBD), hydrogen bond acceptors (HBA) and number of rotatable bonds (RB)) but
579 not too similar molecular structures from the given library for each query molecule. Then, we used the decoy sets
580 for model evaluation and comparison. For RNAsmol, we ranked the predicted binding score of the true RNA-binder
581 within the predicted scores of all molecules in its decoy set, a higher rank indicates a better decoy rank score. For
582 RNAmigos, we generated a predicted fingerprint using a trained model and ranked all compounds in the decoy set
583 according to their distance from the predicted fingerprint. We calculated fingerprint similarity using four distance
584 metrics: Euclidean distance, cosine distance, Chebyshev distance and correlation distance, with differences shown

585 in **Figure S8**. For RNAmigos2, we used four modes of this model including dock mode, native mode, fp mode and
586 mixed mode for the evaluation, directly ranking the predicted score within the decoy as the decoy rank score. For
587 rDock, we used the docking scores from the default outputs for the ranking and evaluation. Moreover, we performed
588 a target shuffle in the decoy evaluation to disclose the RNA target specificity and robustness of the models. Instead
589 of generating a brand-new decoy set, we shuffled the correspondence between RNA targets and the decoy sets
590 through random sampling and reran the four models.

591

592 To generalize the decoy evaluation to unseen data, we applied trained RNAsmol_PDB and
593 RNAsmol_ROBIN model, incorporating ρ_m perturbation, to identified RNA-targeting drugs such as ribocil and
594 risdiplam. And we used RNAmigos, RNAmigos2 and RSAPred_riboswitch models for decoy evaluation and
595 comparison. First, we generated decoy sets for each small molecule and used the trained models to calculate decoy
596 rank scores for comparison. We converted the compounds to SMILES format using computational tools such as
597 rdkit and mathpix OCR. The 3D structures of ribocil-targeted RNA, risdiplam-targeted RNA, MALAT1 RNA were
598 curated from the PDB database. We used two chains in the FMN riboswitch structure (PDB ID: 5KX9), the 5'-end
599 of U1 snRNA and the 5'-splice sites of the SMN2 exon7 structure (PDB ID: 6HMO), as well as the MALAT1 triple
600 helix structure (PDB ID: 4PLX) as target sequences for the prediction in RNAsmol. For RNAmigos and
601 RNAmigos2, we extracted the pockets from the available structures using the molecule-binding positions in the
602 complexes or positions mentioned in the literature. Finally, we reported the best rank score of the two chains in our
603 results.

604

605 **Case study validation**

606 To better interpret the prediction of the RNAsmol model, we use the gradient-weighted class activation mapping
607 (Grad-CAM) algorithm, which employs gradients backpropagated from the prediction layer to the activations of
608 interest. We focus on the last convolutional layers of multi-view convolutional neural networks in the RNA encoder
609 and the graph diffusion neural networks in the small molecule encoder to illustrate the weights on individual nucleic
610 acids and atoms. These weights are displayed on the RNA secondary structure plot using forna[67] visualization
611 tool and the small molecular graph drawn by rdkit (<https://www.rdkit.org>) (**Figure 6** and **Figure S9**). Besides, we
612 visualize the interaction profile of PreQ1, ZTP, SAH, and c-di-GMP-II riboswitch in 2D and 3D complex structures
613 using Ligplot+[68] and PyMOL[69] (**Figure 6**, **Figure S10**, **Figure S11**). The position of hydrogen bonds is
614 annotated in the structure and profile using the functions in these tools, with default hydrogen-bond calculation
615 parameters in Ligplot+ set to a maximum hydrogen-acceptor distance of 6 and a minimum acceptor-donor distance
616 of 6.

617 **Declarations**

618 **Data availability**

619 All datasets used in this study are publicly available for academic use.

620

621 **Author contributions**

622 H.M., and Z.J.L. conceived and designed the project. H.M., Y.J., K.L. completed the preprocessing of the data.
623 H.M., Y.B. developed the framework of the model and performed the experiments. H.M., L.G. performed the
624 evaluation of the model and analyses. H.M. wrote the manuscript. Z.J.L., Y.J., X.L., P.B. revised the manuscript.

625 **Competing interests**

626 The authors declare that they have no competing interests.

627

628 **References**

629 1. Schneider, P., et al., *Rethinking drug design in the artificial intelligence era*. Nat Rev Drug Discov, 2020. **19**(5):
630 p. 353-364.

631 2. Schneider, G., *Mind and machine in drug design*. Nat Mach Intell, 2019. **1**(3): p. 128-130.

632 3. Warner, K.D., C.E. Hajdin, and K.M. Weeks, *Principles for targeting RNA with drug-like small molecules*. Nat
633 Rev Drug Discov, 2018. **17**(8): p. 547-558.

634 4. Childs-DiNEY, J.L., et al., *Targeting RNA structures with small molecules*. Nat Rev Drug Discov, 2022. **21**(10):
635 p. 736-762.

636 5. Knox, C., et al., *DrugBank 6.0: the DrugBank Knowledgebase for 2024*. Nucleic Acids Res, 2024. **52**(D1): p.
637 D1265-D1275.

638 6. Poehlsgaard, J. and S. Douthwaite, *The bacterial ribosome as a target for antibiotics*. Nat Rev Microbiol, 2005.
639 **3**(11): p. 870-81.

640 7. Davis, B.D., *Mechanism of bactericidal action of aminoglycosides*. Microbiol Rev, 1987. **51**(3): p. 341-50.

641 8. Stokes, J.M., et al., *A Deep Learning Approach to Antibiotic Discovery*. Cell, 2020. **180**(4): p. 688-+.

642 9. Sheridan, C., *First small-molecule drug targeting RNA gains momentum*. Nat Biotechnol, 2021. **39**(1): p. 6-8.

643 10. Howe, J.A., et al., *Selective small-molecule inhibition of an RNA structural element*. Nature, 2015. **526**(7575):
644 p. 672-7.

645 11. Aguilar, R., et al., *Targeting Xist with compounds that disrupt RNA structure and X inactivation*. Nature, 2022.
646 **604**(7904): p. 160-+.

647 12. Zhang, P., et al., *Translation of the intrinsically disordered protein alpha-synuclein is inhibited by a small
648 molecule targeting its structured mRNA*. Proc Natl Acad Sci U S A, 2020. **117**(3): p. 1457-1467.

649 13. Dibrov, S.M., et al., *Hepatitis C virus translation inhibitors targeting the internal ribosomal entry site*. J Med
650 Chem, 2014. **57**(5): p. 1694-707.

651 14. Kaur, J., et al., *RNA-Small-Molecule Interaction: Challenging the "Undruggable" Tag*. J Med Chem, 2024. **67**(6):
652 p. 4259-4297.

653 15. Abulwerdi, F.A., et al., *Selective Small-Molecule Targeting of a Triple Helix Encoded by the Long Noncoding
654 RNA, MALAT1*. ACS Chem Biol, 2019. **14**(2): p. 223-235.

655 16. Ratni, H., et al., *Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 (SMN2) Gene Splicing Modifier
656 for the Treatment of Spinal Muscular Atrophy (SMA)*. J Med Chem, 2018. **61**(15): p. 6501-6517.

657 17. Rube, H.T., et al., *Prediction of protein-ligand binding affinity from sequencing data with interpretable machine
658 learning*. Nat Biotechnol, 2022. **40**(10): p. 1520-+.

659 18. Chen, L., et al., *Sequence-based drug design as a concept in computational drug design*. Nat Commun, 2023.
660 **14**(1): p. 4217.

661 19. Kovachka, S., et al., *Small molecule approaches to targeting RNA*. Nat Rev Chem, 2024. **8**(2): p. 120-135.

662 20. Velagapudi, S.P., S.M. Gallo, and M.D. Disney, *Sequence-based design of bioactive small molecules that target
663 precursor microRNAs*. Nat Chem Biol, 2014. **10**(4): p. 291-7.

664 21. Tong, Y., et al., *Programming inactive RNA-binding small molecules into bioactive degraders*. Nature, 2023.
665 **618**(7963): p. 169-179.

666 22. Yazdani, K., et al., *Machine Learning Informs RNA-Binding Chemical Space*. Angew Chem Int Ed Engl, 2023.
667 **62**(11): p. e202211358.

668 23. Disney, M.D., et al., *Informa 2.0: A Platform for the Sequence-Based Design of Small Molecules Targeting
669 Structured RNAs*. ACS Chem Biol, 2016. **11**(6): p. 1720-1728.

670 24. Sun, S., J. Yang, and Z. Zhang, *RNALigands: a database and web server for RNA-ligand interactions*. RNA,
671 2022. **28**(2): p. 115-122.

672 25. Krishnan, S.R., A. Roy, and M.M. Gromiha, *Reliable method for predicting the binding affinity of RNA-small*

673 molecule interactions using machine learning. *Brief Bioinform*, 2024. **25**(2): p. bbae002.

674 26. Ruiz-Carmona, S., et al., *rDock: A Fast, Versatile and Open Source Program for Docking Ligands to Proteins*
675 and Nucleic Acids

676 27. Sun, L.Z., et al., *RLDOCK: A New Method for Predicting RNA-Ligand Interactions*. *J Chem Theory Comput*,
677 2020. **16**(11): p. 7173-7183.

678 28. Eberhardt, J., et al., *AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings*.
679 *J Chem Inf Model*, 2021. **61**(8): p. 3891-3898.

680 29. Szulc, N.A., et al., *fingeRNAt-A novel tool for high-throughput analysis of nucleic acid-ligand interactions*. *PLoS*
681 *Comput Biol*, 2022. **18**(6): p. e1009783.

682 30. Szulc, N.A., et al., *Structural interaction fingerprints and machine learning for predicting and explaining*
683 *binding of small molecule ligands to RNA*. *Brief Bioinform*, 2023. **24**(4): p. bbad187.

684 31. Bender, B.J., et al., *A practical guide to large-scale docking*. *Nat Protoc*, 2021. **16**(10): p. 4799-4832.

685 32. Su, H., Z. Peng, and J. Yang, *Recognition of small molecule-RNA binding sites using RNA sequence and structure*.
686 *Bioinformatics*, 2021. **37**(1): p. 36-42.

687 33. Wang, K., et al., *RBind: computational network method to predict RNA binding sites*. *Bioinformatics*, 2018.
688 **34**(18): p. 3131-3136.

689 34. Liu, H., et al., *RNet: a network strategy to predict RNA binding preferences*. *Brief Bioinform*, 2023. **25**(1): p.
690 bbad482.

691 35. Wang, Y., et al., *RNAincoder: a deep learning-based encoder for RNA and RNA-associated interaction*. *Nucleic*
692 *Acids Res*, 2023. **51**(W1): p. W509-W519.

693 36. Oliver, C., et al., *Augmented base pairing networks encode RNA-small molecule binding preferences*. *Nucleic*
694 *Acids Res*, 2020. **48**(14): p. 7690-7699.

695 37. Deng, Z., R. Gu, and H. Bi, *Predicting Ligand – RNA Binding Using E3-Equivariant Network and Pretraining*,
696 in *MLSB Workshop, NeurIPS 2022*.

697 38. Carvajal-Patino, J.G., et al., *Semi-supervised learning and large-scale docking data accelerate RNA virtual*
698 *screening*. *bioRxiv*, 2023: p. 2023.11. 23.568394.

699 39. Sun, S. and L. Gao, *Contrastive pre-training and 3D convolution neural network for RNA and small molecule*
700 *binding affinity prediction*. *Bioinformatics*, 2024. **40**(4): p. btae155.

701 40. Berman, H.M., et al., *The Protein Data Bank*. *Nucleic Acids Res*, 2000. **28**(1): p. 235-242.

702 41. Iwasaki, S., S.N. Floor, and N.T. Ingolia, *Rocaglates convert DEAD-box protein eIF4A into a sequence-selective*
703 *translational repressor*. *Nature*, 2016. **534**(7608): p. 558-+.

704 42. Donlic, A., et al., *Discovery of Small Molecule Ligands for MALAT1 by Tuning an RNA-Binding Scaffold*. *Angew*
705 *Chem Int Ed Engl*, 2018. **57**(40): p. 13242-13247.

706 43. Raju, G.S.R., et al., *HOTAIR: a potential metastatic, drug-resistant and prognostic regulator of breast cancer*.
707 *Mol Cancer*, 2023. **22**(1): p. 65.

708 44. Rouskin, S., et al., *Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo*.
709 *Nature*, 2014. **505**(7485): p. 701-5.

710 45. Rivas, E., J. Clements, and S.R. Eddy, *A statistical test for conserved RNA structure shows lack of evidence for*
711 *structure in lncRNAs*. *Nat Methods*, 2017. **14**(1): p. 45-48.

712 46. Mattick, J.S., et al., *Long non-coding RNAs: definitions, functions, challenges and recommendations*. *Nat Rev*
713 *Mol Cell Biol*, 2023. **24**(6): p. 430-447.

714 47. Nguyen, T., et al., *GraphDTA: predicting drug-target binding affinity with graph neural networks*.
715 *Bioinformatics*, 2021. **37**(8): p. 1140-1147.

716 48. Luo, Y., et al., *A network integration approach for drug-target interaction prediction and computational drug*
717 *repositioning from heterogeneous information*. *Nat Commun*, 2017. **8**(1): p. 573.

718 49. Ye, Q., et al., *A unified drug-target interaction prediction framework based on knowledge graph and*

719 recommendation system. *Nat Commun*, 2021. **12**(1): p. 6775.

720 50. Bai, P.Z., et al., *Interpretable bilinear attention network with domain adaptation improves drug-target prediction*.
721 *Nat Mach Intell*, 2023. **5**(2): p. 126-136.

722 51. Mastropietro, A., G. Pascullo, and J. Bajorath, *Learning characteristics of graph neural networks predicting*
723 *protein-ligand affinities*. *Nat Mach Intell*, 2023. **5**(12): p. 1427-1436.

724 52. Fang, K., et al., *ColdDTA: Utilizing data augmentation and attention-based feature fusion for drug-target*
725 *binding affinity prediction*. *Comput Biol Med*, 2023. **164**: p. 107372.

726 53. Chatterjee, A., et al., *Improving the generalizability of protein-ligand binding predictions with AI-Bind*. *Nat*
727 *Commun*, 2023. **14**(1): p. 1989.

728 54. Yang, Z., et al., *MGraphDTA: deep multiscale graph neural network for explainable drug-target binding affinity*
729 *prediction*. *Chem Sci*, 2022. **13**(3): p. 816-833.

730 55. Cheng, Z.J., et al., *IIFDTI: predicting drug-target interactions through interactive and independent features*
731 *based on attention mechanism*. *Bioinformatics*, 2022. **38**(17): p. 4153-4161.

732 56. Alipanahi, B., et al., *Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning*.
733 *Nat Biotechnol*, 2015. **33**(8): p. 831-8.

734 57. Zhu, H., et al., *Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular*
735 *conditions using HDRNet*. *Nat Commun*, 2023. **14**(1): p. 6824.

736 58. Cao, D.H., et al., *Generic protein-ligand interaction scoring by integrating physical prior knowledge and data*
737 *augmentation modelling*. *Nat Mach Intell*, 2024: p. 1-13.

738 59. Luo, Y.A., Y. Liu, and J. Peng, *Calibrated geometric deep learning improves kinase-drug binding predictions*.
739 *Nat Mach Intell*, 2023. **5**(12): p. 1390-1401.

740 60. Cereto-Massague, A., et al., *DecoyFinder: an easy-to-use python GUI application for building target-specific*
741 *decoy sets*. *Bioinformatics*, 2012. **28**(12): p. 1661-2.

742 61. Wang, W.K., et al., *trRosettaRNA: automated prediction of RNA 3D structure with transformer network*. *Nat*
743 *Commun*, 2023. **14**(1): p. 7266.

744 62. Li, Y., et al., *Integrating end-to-end learning with deep geometrical potentials for ab initio RNA structure*
745 *prediction*. *Nat Commun*, 2023. **14**(1): p. 5745.

746 63. Shen, C., et al., *Beware of the generic machine learning-based scoring functions in structure-based virtual*
747 *screening*. *Brief Bioinform*, 2021. **22**(3): p. bbaa070.

748 64. Moller, L., et al., *Translating from Proteins to Ribonucleic Acids for Ligand-binding Site Detection*. *Mol Inform*,
749 2022. **41**(10): p. e2200059.

750 65. Nawrocki, E.P. and S.R. Eddy, *Infernal 1.1: 100-fold faster RNA homology searches*. *Bioinformatics*, 2013.
751 **29**(22): p. 2933-5.

752 66. Kalvari, I., et al., *Rfam 14: expanded coverage of metagenomic, viral and microRNA families*. *Nucleic Acids*
753 *Res*, 2021. **49**(D1): p. D192-D200.

754 67. Kerpedjiev, P., S. Hammer, and I.L. Hofacker, *Forna (force-directed RNA): Simple and effective online RNA*
755 *secondary structure diagrams*. *Bioinformatics*, 2015. **31**(20): p. 3377-9.

756 68. Laskowski, R.A. and M.B. Swindells, *LigPlot+: multiple ligand-protein interaction diagrams for drug discovery*.
757 *J Chem Inf Model*, 2011. **51**(10): p. 2778-86.

758 69. Schrodinger, LLC, *The PyMOL Molecular Graphics System, Version 1.8*. 2015.

759

760