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Abstract 17 

RNA-targeting drug discovery is undergoing an unprecedented revolution. Despite recent advances in this field, 18 
developing data-driven deep learning models remains challenging due to the limited availability of validated RNA-19 
small molecule interactions and the scarcity of known RNA structures. In this context, we introduce RNAsmol, a 20 
novel sequence-based deep learning framework that incorporates data perturbation with augmentation, graph-based 21 
molecular feature representation and attention-based feature fusion modules to predict RNA-small molecule 22 
interactions. RNAsmol employs perturbation strategies to balance the bias between true negative and unknown 23 
interaction space thereby elucidating the intrinsic binding patterns between RNA and small molecules. The resulting 24 
model demonstrates accurate predictions of the binding between RNA and small molecules, outperforming other 25 
methods with average improvements of ~8% (AUROC) in 10-fold cross-validation, ~16% (AUROC) in cold 26 
evaluation (on unseen datasets), and ~30% (ranking score) in decoy evaluation. Moreover, we use case studies to 27 
validate molecular binding hotspots in the prediction of RNAsmol, proving the model’s interpretability. In particular, 28 
we demonstrate that RNAsmol, without requiring structural input, can generate reliable predictions and be adapted 29 
to many RNA-targeting drug design scenarios. 30 

Introduction 31 

Drug discovery, a time-consuming and costly process, involves identifying disease-relevant targets and selecting 32 
optimal molecules from the expansive chemical space of around 1060 drug-like molecules[1, 2]. Currently, most 33 
clinical drugs target proteins, yet numerous protein targets are considered "undruggable" due to the lack of suitable 34 
structural binding pockets, limiting the range of druggable targets[3, 4]. According to the latest statistics from the 35 
DrugBank database[5], merely 854 human proteins have been targeted by FDA-approved drugs. Considering that 36 
around 70% of the human genome has the potential to transcribe into RNAs, many of these RNAs exhibit close 37 
association with human pathologies, targeting RNA may significantly expand the pool of druggable targets. 38 
Originating with ribosomes as crucial antibiotic targets[6-8], RNA-targeting has burgeoned in the last decade, 39 
various RNA types including mRNA, miRNA, tRNA, rRNA, and long non-coding RNAs (lncRNAs) have been 40 
proved to be targets of small molecules [9-15]. Most of the well-known RNA-targeted small molecules are identified 41 
using phenotypic screening occasionally, for instance, Evrysdi (risdiplam)[9, 16], approved by the FDA in August 42 
2020, targets human mRNA, correcting specific splicing defects in treating spinal muscular atrophy. Moreover, 43 
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ribocil, a small molecule targeting FMN riboswitches is pivotal in bacterial regulation and antibiotic resistance[10]. 44 
These experiences suggest the transformative potential of RNA-targeting in the field of drug discovery. Currently, 45 
researchers have applied target-based high-throughput screening (HTS) techniques derived from protein-targeting 46 
drug discovery[17-19] such as the automated ligand identification system (ALIS) and small-molecule microarrays 47 
(SMM) to identify RNA-binding small molecules[20, 21]. For example, using ALIS, the compound X1 was 48 
identified to bind to the lncRNA Xist, inhibiting X chromosome inactivation by inducing conformational changes 49 
that disrupt its interaction with associated protein factors[11]. Also, a recent work used SMM to screen large libraries 50 
of compounds against a set of disease-related RNA targets and collected the largest fully public nucleic acid binding 51 
small molecule library named Repository Of Binders to Nucleic acids (ROBIN)[22].  52 
 53 
             However, since existing experimental methods are costly and labor-intensive, many computational methods 54 
have been proposed as alternative solutions to automate the identification of RNA-targeting small molecules. Firstly, 55 
many methods collected existing experimental validated RNA targets and RNA-binders into libraries and predicted 56 
RNA-small molecule binding by assessing the similarity between query data and curated data in library, such as 57 
Inforna [20, 23], RNAligands [24], and RSAPred [25]. Secondly, for RNA targets of interest with known structures, 58 
molecular docking remains the most straightforward virtual screening method, several docking and scoring methods 59 
have been developed for RNA-targeting ligands, such as rDock[26], RLDOCK[27], AutoDock Vina[28]. Despite 60 
the widespread use of molecular docking, its accuracy is limited due to factors such as force field settings, 61 
inaccuracies in scoring functions[29, 30], and inadequate sampling of ligand conformations[31]. Thirdly, many 62 
studies have begun to utilize advanced deep learning models to study RNA-ligand interactions. These studies 63 
roughly fall into three categories: predicting small molecule binding sites on RNA target structures (site model)[32-64 
35], designing potential binding ligands for RNA structural pockets (generative model)[36-38], and predicting 65 
RNA-ligand binding interactions (classification model)[39]. Site models were proposed to predict the positions or 66 
local regions on the RNA target as binding sites/motifs by the representation and characterization of multiple 67 
properties for 3D structures of RNA targets. Generative models began with the RNA pocket, using deep learning 68 
models to design the candidate ligand for given RNA pockets. For example, RNAmigos and RNAmigos2 models 69 
use the augmented base pairing network (ABPN) representation of 3D RNA pocket structure and use a relational 70 
graph convolutional neural network module to generate the fingerprint of potential binding ligand. Classification 71 
models were developed to leverage the combination of RNAs and ligand features for predicting RNA-ligand 72 
interactions.  73 

 74 
Despite all these efforts, aforementioned library-based methods depend on in-house experimental databases 75 

and exhibit poor generalizability on unseen queries. Current computational models heavily rely on RNA 3D 76 
structure information, while there are only 7,806 RNA-containing structures in the RCSB Protein Data Bank 77 
(PDB)[40] (http://www.rcsb.org/), accounting for around 3.5% of the total number of structures (221,371 as of Jun 78 
2024). Moreover, many disease-related human mRNAs[12, 41] and lncRNA targets (e.g., XIST [11], MALAT1[42], 79 
HOTAIR[43]) lack defined structures or have structures that are difficult to determine[44-46], making them 80 
unsuitable for the aforementioned methods as input or for training. Given the widespread application of deep 81 
learning technology in predicting protein sequence-ligand binding[47-55] and RNA sequence-protein binding[56, 82 
57], it is feasible to leverage state-of-the-art deep learning models to establish a sequence-based RNA-small 83 
molecule prediction method for RNAs with unknown structures. Besides, recent structure-based virtual screening 84 
(SBVS) methods for protein targets[58, 59] have attempted to improve prediction performance on unseen data. 85 
Currently, no RNA-targeting models have systematically proven their ability to generalize on unseen datasets. 86 
Although the existing methods demonstrate promising performance in traditional model evaluations, determining 87 
the binding pattern of RNA and small molecules while simultaneously accelerating the development process of 88 
RNA-targeting small molecule drugs remains beyond our current capabilities. Furthermore, there is ample room for 89 
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improvement in the interpretation and adaptability of existing models. 90 
 91 
To address these challenges, we present RNAsmol, a novel sequence-based RNA-small molecule 92 

interaction scoring model for RNAs with unknown structures. We integrated diverse information from 93 
heterogeneous data sources including PDB and ROBIN and carefully preprocess these datasets to disclose and 94 
interpret the binding between RNA and small molecules. Leveraging data perturbation and augmentation strategies, 95 
RNAsmol aims to address bottlenecks such as data scarcity, comprehensively characterize the binding patterns 96 
between RNA and small molecules thereby aiding the development process of small molecule drugs targeting RNA. 97 
We utilized graph diffusion convolution for molecular feature representation and bilinear attention feature fusion 98 
modules to predict RNA-small molecule interactions. Then, we employed four evaluation methods with 99 
progressively stricter assessments to benchmark RNAsmol. RNAsmol achieved significant performance compared 100 
to other methods, showing an average improvement of approximately 8% in ROCAUC during 10-fold cross-101 
validation, around 16% in ROCAUC for cold evaluations on unseen datasets, and about 30% in ranking score during 102 
decoy evaluations. Furthermore, we validate the model’s interpretability through case study validations, identifying 103 
molecular binding hotspots corresponding to RNAsmol's predictions. For structured molecules like most proteins 104 
and certain noncoding RNAs (e.g., Riboswitch and Ribozyme), there are many AI-driven methods available. 105 
However, for RNAs without stable tertiary structures (e.g., many mRNAs and lncRNAs), there is still a lack of 106 
prediction methods for RNA-ligand interaction scoring. RNAsmol is capable of generating reliable predictions 107 
without relying on structural input, can be applicable to various RNA-targeting drug design scenarios.  108 

Results 109 

Overview of RNAsmol framework 110 
 111 
 112 
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 113 
Figure 1. Overview of RNAsmol framework 114 
a. Three kinds of perturbations with augmentations on RNA-small molecule interaction network. b. Model architecture. RNAsmol 115 
model has two parallel feature extraction modules, multi-view CNN for RNA target and graph diffusion convolution for small molecule 116 
respectively. Then, it employs a bilinear attention block for feature fusion and a multilayer perceptron (MLP) for classification. c. 117 
Evaluations and reliable post-hoc analysis of RNAsmol model. Four kinds of evaluations including 10-fold CV (cross-validation) 118 
evaluation, cold evaluation, decoy evaluation and case study validation are utilized to prove the reliable performance on classification 119 
task and robust potential on drug virtual screening. Additionally, we optimize small molecule perturbation for decoy evaluation.    120 
 121 
As illustrated in Figure 1, we build a deep learning model termed RNAsmol which takes RNA sequences and small 122 
molecules as inputs and outputs the likelihood of their binding as binding score. To address the issues arising from 123 
data scarcity and learning biases, as shown in Figure 1a, we apply three kinds of data perturbations on the raw 124 
RNA-small molecule interaction network in our study, i.e., 𝜌!  for RNA perturbation, 𝜌"  for small molecule 125 
perturbation, 𝜌# for interaction network perturbation. RNA perturbation adds the shuffled RNA sequences with 126 
same dinucleotide frequency as the RNA targets into the raw network, small molecule perturbation adds drug-like 127 
compounds with high MACCS fingerprint similarity to the small molecule ligands into the raw network, and the 128 
interaction network perturbation introduces negative labels in the unknown interaction space of the raw network. 129 
Along with three kinds of augmentation strategies for each perturbation, we generate three kinds of training datasets, 130 
i.e., 𝑇!,	 	𝑇", 𝑇# for the model. Figure 1b shows the overall model architecture of RNAsmol, we utilize parallel 131 
processing modules for RNA targets and their corresponding small molecule ligands. Specifically, we employ a 132 
multi-view convolutional neural network for RNAs which strengthens long-range context aggregation for 133 
comprehensive representations, and a graph diffusion convolutional neural network for small molecules which 134 
extracts global topological properties of molecular structures. Then we utilize a bilinear attention block as a feature 135 
fusion module further aiding in annotating key binding sites relevant to their interactions and a multilayer perceptron 136 
(MLP) for classification in the model. To prove the prediction performance and robust model generalization and 137 
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interpretability, as shown in Figure 1c, we sequentially use the 10-fold cross-validation (CV) evaluation, cold 138 
evaluation, decoy evaluation and case study validations to compare the performance of RNAsmol with other models, 139 
with each subsequent evaluation introducing progressively stricter criteria. Besides, we also refine the parameters 140 
in RNAsmol in post-hoc analysis and optimize the model as a tool for drug virtual screening. See Methods for more 141 
details about RNAsmol model modules and evaluation methods. 142 

 143 

RNAsmol provides accurate predictions of RNA-small molecule binding in perturbation space 144 

 145 
Figure 2. Performance comparison in predicting RNA-ligand interaction based on 10-fold cross-validation 146 
(CV) and cold evaluation 147 
a. Predictions of five classification models across two RNA-small molecule binding datasets on perturbation space. b. Comparisons 148 
between RNAsmol with three kinds of augmentations and other models of evaluation metrics including ROCAUC, PRAUC, ACC, 149 
SEN, SPE, F1 score, p-values are obtained from the Mann-Whitney-Wilcoxon test with Bonferroni correction. c. Comparison with 150 
other models on 10-fold CV evaluation and three kinds of cold evaluation strategies (test on unseen data). Error bar represents the 151 
standard deviation (STD) calculated from multiple folds and perturbations. 152 
 153 
As a binary classification model for predicting RNA-small molecule interactions, we compared RNAsmol with four 154 
recent sequence-based target-drug interaction prediction models: MGraphDTA_RNA, IIFDTI_RNA, 155 
GraphDTA_RNA and DrugBAN_RNA (see Methods for details). Firstly, we evaluated the prediction performance 156 
of RNAsmol with three types of augmentations against these models in perturbation space, as shown in Figure 2a. 157 
The x, y, and z axes represent three types of perturbations, and each point's coordinates in this 3D scatter plot 158 
correspond to the average ROCAUC or PRAUC values of a model based on a 10-fold CV under a specific 159 
perturbation. The confidence ellipses for the five models suggest that RNAsmol robustly outperforms the other 160 
models across all perturbation settings on both the PDB and ROBIN datasets. Besides,  𝜌"  enhance the best 161 
predictions for RNAsmol and MGraphDTA_RNA, while other models fail to achieve a steady prediction state 162 
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within the perturbation space. Compared to the ROBIN dataset, the performance on PDB dataset has higher 163 
variations within the perturbation space. Secondly, to disclose the effectiveness of data augmentation strategies, we 164 
compare eight models, including MGraphDTA_RNA, IIFDTI_RNA, GraphDTA_RNA and DrugBAN_RNA, as 165 
well as RNAsmol with and without data augmentations (RNAsmol_noaug, RNAsmol_rnaaug, RNAsmol_molaug 166 
and RNAsmol_bothaug) (see Methods for details) on three kinds of perturbations across all metrics of 10-fold CV 167 
evaluation, including ROCAUC, PRAUC, ACC, SEN, SPE, and F1 score, as illustrated in Figure 2b. Using the 168 
Mann-Whitney-Wilcoxon test with Bonferroni correction, the p-values indicate that all RNAsmol models 169 
outperform the other models, and data augmentation strategy significantly improves the predictive performance of 170 
our model. Since augmenting both RNAs and small molecules achieves the best prediction across all perturbations, 171 
we selected RNAsmol_bothaug for subsequent evaluations and comparisons. Thirdly, to evaluate and compare 172 
RNAsmol with other models of ROCAUC with 10-fold CV and cold evaluations in which we conducted cold 173 
evaluation for RNA targets, small molecules, and both interaction molecules (see Methods for details). As shown 174 
in Figure 2c and Figure S1, our model consistently outperformed the other models in four kinds of settings, 175 
demonstrating superior robustness in the context of unseen evaluations. RNAsmol outperforms other methods with 176 
average improvements in ROCAUC of 0.12 on the PDB dataset and 0.05 on the ROBIN dataset in 10-fold cross-177 
validation. In cold evaluation settings, it shows improvements of 0.2 on PDB and 0.11 on ROBIN for cold evaluation 178 
on RNA, 0.16 on PDB and 0.07 on ROBIN for cold evaluation on small molecules, and 0.3 on PDB and 0.15 on 179 
ROBIN for cold evaluation on RNA-small molecule pairs. The results indicate that when both interacting molecules 180 
were unseen during training, the model's predictions were most affected, followed by unseen RNA molecules, with 181 
the least impact observed when small molecules were unseen. Although all models show variable predictions on the 182 
PDB dataset from Figure 2a, our model demonstrates a higher improvement than other models on the PDB dataset 183 
than ROBIN dataset in both 10-fold CV and cold evaluations.  184 

 185 

RNAsmol provides reliable and adaptable predictions with molecular perturbation (𝝆𝒓 and 𝝆𝒎)  186 
To demonstrate the extensive application and suitable scenarios of RNAsmol with RNA perturbation and small 187 
molecule perturbation, we conduct cross-RNA type test on PDB dataset and target-specific predictions on ROBIN 188 
dataset. The PDB dataset encompasses various RNA types, including rRNA, riboswitch, viral RNA, ribozyme, 189 
aptamer, primer complex, and splicing-related RNAs. We found that the interaction networks of PDB and ROBIN 190 
datasets exhibit different properties. Furthermore, as illustrated in Figure 3a, the calibration curves indicate that the 191 
model's predicted binding scores are consistent with actual outcomes, demonstrating that RNAsmol (𝜌!) is well-192 
calibrated on the PDB dataset. As shown in Figure S2, cross-dataset tests (where the training set is PDB and the 193 
test set is ROBIN, or vice versa) revealed that these two datasets cannot predict each other effectively. This 194 
performance decrease from within-dataset tests (where both training and test sets are either PDB or ROBIN) is more 195 
pronounced under RNA perturbation (𝜌! ) conditions, indicating significant differences in RNA target profiles 196 
between the datasets. Interestingly, due to the substantial overlap in the physicochemical properties of small 197 
molecules in both PDB and ROBIN datasets (Figure S17), small molecule perturbation models are more robust in 198 
cross-dataset predictions, resulting in less performance decline. This suggests that small molecule perturbation 199 
models maintain their predictive performance across different datasets, whereas RNA perturbation models face 200 
greater challenges. However, the pronounced decrease in performance of RNA perturbation models in cross-dataset 201 
tests indicates their sensitivity to capturing binding signals within RNA-small molecule interaction networks with 202 
different RNA profiles. To leverage this sensitivity, we apply the RNAsmol (𝜌!)  to explore predictions across 203 
different RNA types and their cross-dataset predictions. Our cross-RNA type test results, shown in Figure 3b, reveal 204 
that RNAsmol (𝜌!) performs best on riboswitch targets in within dataset prediction and also generalizes well to 205 
other RNA types in cross-dataset prediction. Therefore, the RNA-specific features captured by the RNAsmol 206 
generalize well on dataset with a shift in distribution of RNAs’ properties. Besides, these findings suggest that RNA 207 
perturbation models are particularly effective in capturing the nuanced interactions within the PDB dataset, making 208 



them a valuable tool for RNA type-specific drug virtual screening 209 

 210 

Figure 3. Applications of small molecule perturbation (𝝆𝒎) and RNA perturbation (𝝆𝒓) on PDB and ROBIN 211 
datasets 212 
a. Calibration curve of RNAsmol (𝜌! ) classification on PDB datasets. b. ROCAUC heatmap of the ROCAUC in cross-dataset 213 
evaluation within and across RNA types in the PDB dataset. The rows represent the training dataset and the columns represent the test 214 
dataset. c. Calibration curve of RNAsmol (𝜌") classification on ROBIN datasets. d. RNA target numbers categorized by different 215 
structures in the ROBIN dataset. Stacked bar charts depict the hit rate and selective hit rate of rG4 (RNA G-quadruplex), pseudoknot, 216 
and three-way junction targets in screening experiments. Hit rate refers to the proportion of small molecules hitting each target, while 217 
selective hit rate indicates the proportion of small molecules exclusively hitting a particular target without hitting others. e. Average 218 
metrics including ROCAUC, PRAUC, ACC, SEN, SPE, F1, PRE, REC, MCC of 10-fold CV for individual target in the ROBIN dataset. 219 
High-specificity and high-sensitivity predictions are stratified according to the hierarchical clustering result.   220 
 221 

There are 27 disease-related RNA targets in ROBIN dataset, according to the screening results, as illustrated 222 
in Figure 3d, the 27 RNA targets are grouped into five kinds of secondary structure: RNA G-quadruplex (rG4), 223 
hairpin, pseudoknot, three-way junction and triple helix. Structures such as rG4s, pseudoknots and three-way 224 
junctions exhibit the highest selective hit rates which refers to the proportion of small molecules exclusively hitting 225 
a target without hitting others, as indicated by the stacked bars. To investigate RNA-small molecule interactions for 226 
individual RNA target with high selective hit rate and different secondary structure in the ROBIN dataset, we trained 227 
RNAsmol with small molecule perturbation on single RNA target. As shown in Figure 3e, RNAsmol (𝜌") performs 228 
well across all RNA targets, making it suitable for prefiltering compound libraries before screening experiments. 229 
The rG4 targets, including EWSR1, AKTIP, demonstrate higher sensitivity and recall among these targets which 230 
means the RNA-binders of these targets can be sensitively and well detected. Meanwhile, pseudoknot targets such 231 
as ZTP and three-way junction targets such as TPP and Glutamine_RS exhibit higher specificity and precision, 232 
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indicating that although the RNA-binders for these targets may not be detected as frequently, the detections are very 233 
reliable when they occur. The average dissimilarity among high-specificity predictions is greater than that among 234 
high-sensitivity predictions, suggesting the diverse prediction patterns of RNAsmol (𝜌") on individual RNA targets. 235 
Additionally, RNAsmol (𝜌")  makes calibrated and accurate predictions for both the full ROBIN dataset and 236 
individual RNA target in ROBIN dataset, as indicated by the calibration curve aligning well with the actual 237 
probabilities (Figure 3c and Figure S5).  238 

 239 

Optimization of the small molecule perturbation (𝝆𝒎) for decoy evaluation 240 

 241 

Figure 4. Optimization of the small molecule perturbation (𝜌") for decoy evaluation  242 
a. UMAP visualizations of molecular physicochemical properties including molecular weight (MW), partition coefficient (logP), 243 
hydrogen bonds donors (HBD), hydrogen bond acceptors (HBA) and the number of rotatable bonds (RB). The first three plots show 244 
the overlap between RNA-binding small molecules (from both PDB and ROBIN) and drug-like background compound libraries 245 
(BindingDB, chbrbb, and COCONUT), while the fourth plot shows the overlap with bioactive small molecule libraries used in decoy 246 
set generation. b. Classification comparison of RNAsmol (𝜌") with three drug-like background compound libraries. Error bar in barplot 247 
represents the standard deviation (STD) calculated from 10 folds. c. Comparison of decoy rank score distribution of RNAsmol (𝜌") 248 
with three drug-like background compound libraries. Higher decoy rank score indicate the better performance in decoy evaluation. 249 
 250 

Given that RNAsmol (𝜌") provides the most robust prediction in classification tasks (see Results Section 2 for 251 
details), we aim to use the binding score predicted by RNAsmol (𝜌")  as a constraint to narrow down the vast drug-252 
like chemical space. There are several drug-like compound libraries used for high-throughput drug screenings, 253 
including the ZINC bioactive compound library, COCONUT natural product (organic molecules) library, 254 
ChemBridge BuildingBlocks (chbrbb) library and BindingDB protein binder library. Figure 4a shows the UMAP 255 
visualization of the molecular physicochemical properties including molecular weight (MW), partition coefficient 256 
(logP), hydrogen bonds donors (HBD), hydrogen bond acceptors (HBA) and the number of rotatable bonds (RB) 257 
across these four drug-like compound libraries, the PDB dataset and the ROBIN dataset. Clustering results reveal 258 
that molecules from the BindingDB database exhibit higher similarity to RNA-binder molecules in the two datasets 259 
in terms of physicochemical properties. Conversely, molecules in the chbrbb library display the most divergent 260 
distribution properties, while those in the COCONUT library demonstrate the most extensive range of molecular 261 
physicochemical properties. We then employed 10-fold CV evaluation and decoy evaluation to investigate and 262 
optimize the small molecule perturbation using three different background compound libraries. Figure 4b shows 263 
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that RNAsmol (𝜌") get the best classification performance when using the largest COCONUT libray and the worst 264 
performance on BindingDB dataset. However, employing the aforementioned three small molecule datasets as 265 
background drug libraries, and the bioactive small molecules from ZINC as the decoy drug library, as shown in 266 
Figure 4c, RNAsmol (𝜌") achieved optimal decoy evaluation results when utilizing molecules from the BindingDB 267 
database as the background. Furthermore, small molecule ligands binding to RNA targets tend to exhibit selectivity, 268 
and the chemical property space of RNA ligands overlaps to some extent with protein ligands. Therefore, we infer 269 
that using a negative dataset composed of molecules with similar physicochemical properties during model training 270 
enables the acquisition of more precise features for distinguishing drug-like molecules. 271 

 272 

RNAsmol effectively distinguish known RNA-targeting small molecule from decoys 273 

 274 
Figure 5. Performance comparison in virtual screening based on the decoy evaluation  275 
a. Decoy rank score performance comparisons with other structure-based methods of decoy evaluation on PDB dataset. * P-value<0.05, 276 
** P-value<0.01, *** P-value<0.001, **** P-value<0.0001, Wilcoxon rank sum test, one-tailed (RNAsmol has higher decoy rank 277 
score than RNAmigos, RNAmigos2, rDock). b. Decoy rank score distribution of RNAsmol and other methods with and without RNA 278 
target shuffle. Kullback–Leibler (KL) divergence measures the difference between the decoy rank score distribution of RAW and 279 
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SHUFFLE (higher KL values indicate greater differences) c. Decoy rank score comparisons between two trained RNAsmol models 280 
(trained on ROBIN dataset and PDB dataset separately) and other models on well-known RNA-targeting drug cases.  281 

 282 

First, we trained the aforementioned model, selecting RNAsmol (𝜌")  with the optimized background library, i.e., 283 
BindingDB. Subsequently, for each RNA target in the test set of PDB dataset, we generated a decoy evaluation set 284 
consisting of bioactive small molecules in ZINC bioactive small molecule library using decoyfinder[60] software. 285 
We used the trained RNAsmol model to predict binding scores for each small molecule in the decoy set and get the 286 
rank of true ligand in the predicted binding scores of decoy set. Similarly, we employed the RNAmigos model to 287 
generate a molecular representation vector, calculated the distance between this vector and the fingerprint of both 288 
true and decoy small molecules, and then ranked the results. Then we use RNAmigos2 model and rDock software 289 
to get a score for each decoy molecule and get the rank of true ligand in the decoy set. Finally, we compared the 290 
ranking outcomes of the four models, as depicted in Figure 5a, the boxplot illustrates the distribution of rankings 291 
for positive small molecules in the 10-fold decoy test. Notably, our model's rankings significantly outperformed 292 
those of the other three models, achieving an average decoy rank score of 83%, which was 45% higher than 293 
RNAmigos, 6% higher than RNAmigos2, and 40% higher than rDock. As shown in Figure 5b, upon randomizing 294 
RNA targets, our model exhibited greater variation in ranking distribution measured by Kullback-Leibler (KL) 295 
divergence, indicating its superior specificity for RNA targets. We calculated fingerprint similarity using four 296 
distance metrics: Euclidean distance, cosine distance, Chebyshev distance and correlation distance, with differences 297 
shown in Figure S8. For RNAmigos2, we used four modes of this model including dock mode, native mode, fp 298 
mode and mixed mode for the evaluation, and the corresponding results are also shown in Figure S8. Besides, we 299 
also apply two trained RNAsmol models which are trained on PDB and ROBIN datasets respectively on many cases 300 
as a drug virtual screening application. As shown in Figure 5c, RNAsmol_ROBIN have higher performance on 301 
new-revealed RNA-targeting drugs like Ribocil, Risdiplam, etc, while RNAsmol_PDB perform better on riboswitch 302 
cases. RNAsmol makes prediction on RNA targets which are with unknown structure and has overall better 303 
performance than the other RNA-targeting virtual screening models including RNAmigos, RNAmigos2 and 304 
RSAPred_riboswitch. 305 

 306 



RNAsmol provides interpretable predictions of RNA-small molecule interaction 307 

 308 
Figure 6. Case study validation and visualizations of molecular hotspots of RNAsmol prediction 309 
a. Structural snapshots of class I pre-queuosine1 (PreQ1) riboswitch from Bacillus subtilis (PDB ID: 3K1V) structure by PyMOL, 310 
profile of contacts within the binding site by ligplot software, and Grad-CAM weight visualization of PreQ1 ligand in RNAsmol 311 
prediction. Hydrogen bonds are colored light blue with annotated distance in both the structure and profile. b. Structural snapshots of 312 
ZTP riboswitch from Fusobacterium ulcerans (PDB ID: 5BTP) structure by PyMOL, profile of contacts within the binding site by 313 
ligplot software, and Grad-CAM weight visualization of ZTP target secondary structure in RNAsmol prediction. Hydrogen bonds are 314 
colored light blue with annotated distance in both the structure and profile. 315 
  316 

To further validate the interpretability of the model, we visualized the hotspots on RNA and small molecules by 317 
gradient-weighted class activation mapping (Grad-CAM). Figure 6 displays the structure of class I pre-queuosine1 318 
(PreQ1) riboswitch from Bacillus subtilis (PDB ID: 3K1V) and ZTP riboswitch from Fusobacterium ulcerans (PDB 319 
ID: 5BTP) respectively. One the left of Figure 6a and Figure 6b, present the structural snapshots of two 320 
riboswitches binding to small molecules, as rendered in PyMOL, the hydrogen bonds between RNA and ligand are 321 
colored light blue with the annotated distance, and the middle part shows the profile of contacts generated by 322 
Ligplot+ software. Then we employed the Class Activation Map (CAM) module to obtain the weights of the last 323 
convolutional layer in the convolutional neural network through backpropagation. Subsequently, these weights were 324 
multiplied with the feature map of that layer to obtain a weighted sum, forming a feature map. This enabled the 325 
mapping back to atoms in small molecule and RNA target to visualize the importance of each atom or nucleic acid 326 
for classification (Figure S9). On the right part, we showcased the weights on the small molecule binding to the 327 
PreQ1 riboswitch and the pseudoknot motif in ZTP riboswitch. The regions in the model with higher weights often 328 
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correspond to key atoms or nucleic acid involved in binding in real structure, indicating that our model demonstrates 329 
a high consistency in predicting hotspots on small molecules and regions where hydrogen bonds are formed. Results 330 
of the visualizations of c-di-GMP-II and S-adenosylhomocysteine (SAH) riboswitches are shown in Figure S10 331 
and Figure S11 respectively. 332 

Discussion 333 

To summary, AI-driven RNA-targeting drug design would provide crucial insights for the development of targeted 334 
therapeutics. We proposed a unified framework for RNA-ligand interaction scoring via data perturbation and 335 
augmentation modeling. Through comprehensive testing across multiple evaluations, we demonstrate superior 336 
performance of our model compared to existing ones. Additionally, we conduct discussions on different applications 337 
on various RNA-targeting drug design and drug screen senarios, aiming to elucidate patterns and preferences in the 338 
interaction between RNA and small molecules. We proved that the sequence input did not introduce significant 339 
noise into our model. Instead, our data perturbation and augmentation strategies successfully enriched the 340 
informative content within the sparse data space of RNA-small molecule interactions. This approach significantly 341 
enhances our understanding of how RNA interacts with small molecules. Moreover, beyond achieving strong 342 
predictive performance in binding prediction, our model excelled particularly in the strictest decoy evaluations. 343 
Decoy evaluations challenge the model to distinguish accurately between true and false molecules in unseen but 344 
similar datasets using trained RNAsmol model. This success can be attributed to our meticulous approach in 345 
selecting and preprocessing the existing RNA sequence containing binding sites from chains and the stringent 346 
selection of drug-like small molecules, which closely mirrors real-world drug screening scenarios. By optimizing 347 
small molecule perturbations, we gained valuable insights into the nuanced properties of RNA-binders within the 348 
drug-like chemical space, thereby contributing to our robust performance in decoy evaluations. In contrast, pocket-349 
guided SBVS models not always exhibit target specificity as evidenced by RNA target shuffle decoy results. Our 350 
model has effectively learned the critical binding positions within complex structures where key nucleotides and 351 
small molecule atoms form hydrogen bonds. This capability demonstrates our model's ability to capture essential 352 
features of genuine binding regions, resulting in accurate predictions of binding events.  353 
         354 

Unlike drug development targeting proteins, our understanding of RNA structures is limited, whether 355 
through experimental or computational methods, obtaining high-resolution tertiary structure of RNAs is challenging. 356 
For different drug design scenarios, we might need to employ various computational virtual screening methods to 357 
accelerate drug discovery. On the one hand, for structured molecules like most proteins and certain noncoding RNAs 358 
(e.g., Riboswitch and Ribozyme), SBVS methods is suitable. Recently, numerous RNA structure prediction models 359 
have been proposed[61, 62], we anticipate that computational predictions of RNA structures will become 360 
increasingly accurate, thereby advancing research in  structure-based RNA-targeting drug discovery. On the other 361 
hand, for RNAs without stable tertiary structures (e.g., many mRNAs and lncRNAs), there remains a lack of 362 
prediction methods for RNA-ligand interaction scoring. Disney et al. introduced sequence-based concept by a lead 363 
identification screening method which was applied to all human microRNA hairpin precursors[20], in alignment 364 
with this advancement, we propose RNAsmol model which provides reliable RNA-small molecule interaction 365 
binding prediction without requiring structural input. Our model represents a substantial step forward in leveraging 366 
sequence-based approaches to advance the understanding and development of therapeutics targeting RNA 367 
interactions. We envision that this deep learning model can serve as a predictive tool to accelerate the development 368 
of therapeutic drugs targeting RNA. Additionally, many machine learning-based scoring models for protein-ligand 369 
binding suffer from a bias where they memorize molecules rather than learn interactions[51, 58, 63]. This is often 370 
due to the advanced deep learning modules that extensively extract features from the molecules themselves but 371 



overlook the interaction networks. We have observed a similar issue in RNA-ligand interaction scoring models 372 
(Figure S1), where predictions under network perturbation yield suboptimal results across various models. Moving 373 
forward, our focus will be on addressing this issue to further improve and refine these models or uncover underlying 374 
reasons, aiming to enhance the methodological robustness of this research. 375 
 376 

Methods  377 

Data collection and preprocessing 378 
We initially collected RNA-ligand complex structures from the PDB database, encompassing both RNA-only and 379 
RNA-protein (RNP) complexes, to train RNAsmol. Meanwhile, we obtained RNA-small molecule interaction 380 
matrices from the ROBIN database which is the largest fully public dataset derived from small molecule microarray 381 
(SMM) screening experiments. From the PDB, we gathered experimental RNP-ligand and RNA-ligand complexes 382 
with interactions within 4 angstroms, retaining RNP-ligand structures only if RNA atoms constituted more than 383 
fifty percent of the total. After applying these filters, 1,229 RNP-ligand and 836 RNA-ligand structures are kept for 384 
further screening. Ligands with “non-drug-like” properties were removed adhering to the criteria specified in the 385 
referenced paper [64], and we retained only ligands with a mass between 200 and 700 Da. We further filtered RNP-386 
ligand structures to ensure the RNA fraction of the binding sites exceeded 50%. Ultimately, we retained 383 RNP-387 
ligand and 225 RNA-ligand complex structures for extracting chain sequences and small molecule SMILES. All 388 
structures were annotated according to their RNA type by text-mining the corresponding PDB file. To validate the 389 
effectiveness of RNAsmol using experimental screening data, as shown in Figure S18, we compiled SMM 390 
screening data from the ROBIN dataset. In this context, we used the hit and non-hit molecules for each RNA target 391 
in the screening hit matrix as positive and negative interactions. Basic statistics of these two datasets are shown in 392 
Figure S13, Figure S14, Figure S15. 393 
 394 

Three perturbations on RNA-small molecule interaction network 395 

For curated raw RNA-small molecule interaction network, there exist three types of relationships between two 396 
interacting entities: binding, non-binding, and unknown. Our current knowledge only allows us to determine the 397 
molecules that interact with each other, but it fails to establish clear boundaries between non-binding and unknown 398 
relationships. To enhance our understanding of this interaction network, we employed various data perturbation 399 
strategies to generate non-binding samples from unknown interacting space, as illustrated in Figure S16. Firstly, 400 
we generated non-binding cases by perturbation on RNA targets through random dinucleotide shuffling and pairing 401 
the shuffled sequence with the original small molecules. We denote this kind of perturbation as 𝜌!: 402 

𝜌!: (𝑅!&' , 𝑀!&' , 𝐼!&') → (𝑅#(), 𝑀!&' , 𝐼#()) 403 

Secondly, we utilized small molecules from different compound libraries (e.g., experimentally validated protein-404 
binder compound libraries, structurally diverse compound libraries, organic small molecule databases) as negative 405 
examples for small molecules, where these molecules interact with the original RNA targets to form negative 406 
interaction pairs. We denote this kind of perturbation as 𝜌": 407 

𝜌": (𝑅!&' , 𝑀!&' , 𝐼!&') → (𝑅!&' , 𝑀#(), 𝐼#()) 408 

Thirdly, we established edges between each RNA and each small molecule, removed the known edges, and randomly 409 
sampled from the remaining edge set to obtain negative example sets. We denote this kind of perturbation as 𝜌#: 410 

𝜌#: (𝑅!&' , 𝑀!&' , 𝐼!&') → (𝑅!&' , 𝑀!&' , 𝐼#()) 411 

Where 𝑅!&' represent raw RNA target set, 𝑀!&' represent raw molecule set, 𝐼!&' represent the raw RNA-small 412 



molecule interaction set, and 𝑅#(),	𝑀#()	represent the negative RNA targets and negative molecules respectively. 413 
We obtain 𝐼#(), i.e., the final negative samples for the classification from all of the three perturbations. These three 414 
methods perturbed data for both types of interacting entities and the interaction network, aiming to infer binding 415 
signals and patterns on the sparse network of RNA-small molecule interactions using diverse data perturbation 416 
spaces. 417 

 418 

Three data augmentation strategies on RNA-small molecule interaction network 419 
To address the scarcity of known RNA-ligand binding data, we first augment the RNA by using comparative 420 
genomics methods to identify natural binding RNA targets that interact with small molecules and have conserved 421 
structures. For RNA sequences with experimental interaction data, we perform large-scale searches across recent 422 
metagenomic datasets, clustering homologous sequences based on similarity using the Infernal[65] tool. We 423 
hypothesize that although these augmented RNA sequences may differ from those in the PDB database at the 424 
sequence level, they can still bind small molecules. Next, we augment the chemical space of small molecules binding 425 
to RNA targets, assuming that small molecules with similar chemical properties can also bind to RNA targets. We 426 
use computational chemistry methods to map small molecules into continuous numerical molecular fingerprints 427 
representing their chemical structure and employ Tanimoto fingerprint similarity metrics for comparison between 428 
RNA-binders and drug-like molecules. Based on the assumption that similar RNA targets tend to bind to the same 429 
small molecule ligands, and similar small molecules tend to bind to the same RNA targets, we further expand the 430 
RNA-ligand binding data using these augmented interaction subsets. We note that there are no augmented 431 
interactions between augmented RNAs and augmented small molecules, i.e., edges are only added when one of the 432 
interaction partners is a true entity in the raw network. See Supplementary Methods and Figure S16, Figure S17 433 
for details. We only augmented the training dataset to boost model performance, while the validation and test data 434 
remained unaugmented. We named these models as RNAsmol_noaug, RNAsmol_rnaaug, RNAsmol_molaug, 435 
RNAsmol_bothaug, respectively.   436 
 437 

The RNAsmol model architecture 438 

RNAsmol is RNA-small molecule interaction prediction model with network perturbation and data augmentation. 439 
As shown in Figure 1b, RNAsmol has four modules: RNA target encoder (Multi-view CNN), small molecule 440 
encoder (Graph diffusion convolution), feature fusion module (Bilinear attention block) and classification module 441 
(MLP).  442 

 443 

Module1: RNA target encoder (Multi-view CNN) 444 
For the augmented RNA target sequences and their interacting small molecule ligands after redundancy removal, 445 
molecular representation and feature extraction are performed separately. For RNA, we retained the first 500 446 
nucleotides of each RNA target sequence and utilized a string representation to depict the sequences and predicted 447 
base pairing information from the RNAfold software, i.e., {A, U, C, G, A, a, u, c, g}. Uppercase letters represent 448 
paired bases, while lowercase letters indicate unpaired bases. After structural prediction and information 449 
normalization of RNA targets, we employ multi-view convolutional neural networks for RNA target local feature 450 
extraction. The multi-view convolutional neural network (CNN) architecture is specifically designed to capture 451 
diverse local patterns within RNA sequences through multiple convolutional layers with different kernel sizes. This 452 
network consists of several primary components: (1) Embedding Layer: The RNA sequence is first embedded into 453 
a dense vector representation and transformed into a continuous vector space, which is then suitable for 454 
convolutional operations. (2) Convolutional and ReLU Layers: The core of the multi-view CNN comprises several 455 
Conv1dReLU blocks. Each block performs a one-dimensional convolution followed by a ReLU activation function. 456 



The convolutional layers have varying kernel sizes (e.g., 3, 5, and 7) to capture different patterns and motifs within 457 
the RNA sequences. Formally, given an input sequence 𝑥 ∈ ℝ*×,!" , the convolutional operation is defined as: 458 

𝑦(.) = 𝑅𝑒𝐿𝑈(𝑊(.) ∗ 𝑥 + 𝑏(.)) 459 
Where 𝑦(.) is the output of the 𝑙-th convolutional layer, 𝑊(.) and 𝑏(.) are the weights and bias, and ∗ denotes the 460 
convolution operation. (3) Stacked CNN Blocks: Multiple StackCNN blocks are used, each containing a stack of 461 
convolutional layers with adaptive max pooling. Each block captures features at different levels of abstraction. The 462 
stacking of convolutional layers allows the network to learn complex representations from the RNA sequences. (4) 463 
Adaptive Max Pooling: After the convolutional operations, adaptive max pooling is applied to reduce the 464 
dimensionality of the feature maps, focusing on the most informative features. (5) Feature Aggregation: The outputs 465 
from each StackCNN block are concatenated to form a comprehensive feature vector. This aggregated feature vector 466 
incorporates diverse local features captured by the different convolutional layers. (6) Fully Connected and Dropout 467 
Layers: The concatenated features are passed through a fully connected layer to further integrate the information, 468 
followed by a dropout layer to prevent overfitting. This process generates the final feature representation for the 469 
RNA target. 470 
 471 

Module2: small molecule encoder (Graph diffusion convolution) 472 
To comprehensively elucidate the binding preferences of small molecules with RNA targets, we adopt atom-level 473 
graph representation to encode local features of small molecule ligands. As depicted in Figure S19, we initiate by 474 
structuring small molecule ligands as graphs, where atoms serve as nodes and chemical bonds as edges. 475 
Subsequently, we extract structural and physicochemical features using graph diffusion convolutional neural 476 
networks. Traditional graph learning models, often employing Message Passing (MP) methods, typically consider 477 
only first-order node neighbors, limiting their ability to abstractly characterize overall graph properties. In contrast, 478 
our approach employs a nonlinear information diffusion function to extract features from each point within the 479 
molecular graph. This method effectively preserves both high-order local and global graph properties, enhancing 480 
feature extraction for RNA binding predictions. Specifically, starting from a fixed atomic node in the small molecule, 481 
we conduct graph diffusion based on the transition probability matrix. Upon halting the diffusion process, we define 482 
edge weights using the probability distribution from the origin node to other nodes. The graph diffusion process is 483 
defined as:  484 

S = ;𝜃0𝑇0
1

023

 485 

Here, 𝑇  denotes the transition probability matrix, where 𝑇 = 𝐴𝐷45.	𝐴  represents the adjacency matrix of the 486 
molecular graph, and 𝐷  is the degree matrix, with 𝑑66 = ∑ 𝑎677 . 𝜃0 represents the diffusion coefficient, which 487 
commonly includes Personalized PageRank (PPR) diffusion and Heat Kernel (HK) diffusion:  488 

𝜃0889 = 𝛼(1 − 𝛼)0 489 

𝜃0:; = 𝑒4<
𝑡0

𝑘! 490 

Diffusion convolution, a preprocessing step based on graph diffusion, characterizes the flow of information across 491 
the graph structure via random walk processes. This project introduces the novel application of graph diffusion 492 
convolutional methods to fully extract feature representations from each atom in the molecular graph. Our goal is 493 
to capture comprehensive structural features encoded within molecular graphs and enhance discrimination between 494 
molecular graphs of similar small molecules. 495 

 496 

Module3: feature fusion module (Bilinear attention block) 497 
It has been reported that RNA targets and small molecule ligands exhibit diverse binding modes, characterized by 498 



specific physicochemical properties and spatial distances. RNA-small molecule binding demonstrates selective 499 
specificity, involving various non-covalent interactions like hydrogen bonds and pi-pi stacking, contingent upon 500 
interaction strength and physicochemical properties. Traditional models often overlook effective feature fusion, 501 
relying solely on simple feature concatenation across layers. In contrast, RNAsmol integrates features from RNA 502 
targets and small molecule ligands using a bilinear attention module used in Visual Question Answering (VQA) 503 
domain (Figure S19). The bilinear attention module contains the following components: (1) Feature transformation: 504 
The input RNA features and small molecule features are transformed into the same higher-dimensional space using 505 
a fully connected layer respectively. (2) Attention computation: The transformed features are computed to get 506 
attention maps either using single-view attention which conducts tensor contraction operation to get attention scores 507 
or using multi-view attention which involves creating higher-dimensional tensors and utilize linear transformation 508 
to get attention scores. (3) Softmax activation (4) Pooling and Fusion (5) Output. Leveraging attention maps and 509 
pooling strategies facilitates the extraction and fusion of relevant information from both modalities and enhance 510 
predictive performance and generalization across diverse datasets. As shown in Figure S4, ablation studies on 511 
bilinear attention network (BAN) module underscore the pivotal role of this fusion module in effectively classifying 512 
RNA-small molecule interactions.   513 
 514 

Module4: classification module (MLP) 515 
We used the Multi-Layer Perceptron (MLP) module consisting of three to five fully connected (dense) layers 516 
interspersed with Rectified Linear Unit (ReLU) activation functions as the classification module to transform fused 517 
feature embedding encoded by the bilinear transformer module into the probability for each label. Generally, each 518 
layer 𝐿6 in the network applies a linear transformation to its input, followed by a ReLU non-linearity. The linear 519 
transformation for a given layer 𝐿6 can be represented as: 520 

𝑧6 = 𝑊6𝑥645 + 𝑏6 521 

Where 𝑊6  and 𝑏6  are the weight matrix and bias vector for layer 𝐿6  respectively, and 𝑥645  is the output of the 522 
previous layer. The ReLU activation function is applied element-wise to the linear transformation output: 523 

𝑥6 = 𝑅𝑒𝐿𝑈(𝑧6) = max	(0, 𝑧6) 524 

 525 

Besides, we employ the Cross-Entropy Loss function (‘nn.CrossEntropyLoss’) provided by PyTorch and ensure the 526 
output layer has two neurons corresponding to the two classes. The cross-entropy (CE) loss function is defined as: 527 

𝐶𝐸(𝑦, 𝑦O) = −
1
𝑁; ; 𝑦67log	(𝑦=>T)

,

725

?

625
 528 

Where 𝑦67 is the true label, 𝑦=>T  is the predicted probability for class 𝑗 for sample	𝑖,	𝑁	is the number of samples, and 529 
C is the number of classes (which is 2 in the case of binary classification in RNAsmol). We utilize Adam optimizer 530 
configured with the given learning rate and an 𝐿2 regularization term (weight decay). The weight decay term helps 531 
to prevent overfitting by penalizing large weights, thereby improving the generalization capability of the model.  532 
The loss curves of model training are displayed in Figure S20.  533 

 534 

10-fold cross-validation (CV) evaluation  535 

To evaluate the classification performance, we performed 10-fold cross-validation on RNAsmol and other related 536 
models, comparing them across multiple metrics including ROCAUC, PRAUC, accuracy (ACC), sensitivity (SEN), 537 
specificity (SPE) and F1 score. Since there is a lack of binary classification prediction models designed for RNA-538 



small molecule interactions, we modified the molecular encoding part of recently published models for predicting 539 
protein-ligand binding interactions to accommodate RNA molecules. These adapted models, which we named 540 
GraphDTA_RNA, MGraphDTA_RNA, IIFDTI_RNA and DrugBAN_RNA, are detailed as follows. The GraphDTA 541 
model uses a graph neural network to learn small molecule SMILES and a convolutional neural network to learn 542 
protein sequences, followed by a fully connected neural network to predict binding probabilities after the simple 543 
concatenation of the extracted features. We revised the initial embedding of protein sequences to fit RNA sequences 544 
and used the default settings of this model for evaluation. The MGraphDTA model uses a multi-view graph neural 545 
network (MGNN) to learn small molecule SMILES and a multi-view convolutional neural network to learn protein 546 
sequences, predicting binding probabilities with a fully connected neural network after feature concatenation. We 547 
adjusted the initial embedding of protein languages to fit RNA sequences and used the default settings of this model 548 
for evaluation. For the IIFDTI model, we modified the embedding module as follows: (1) We replaced the protein 549 
text corpus with Rfam[66] and trained a skip-gram model from gensim Word2Vec on it to obtain k-mer embeddings 550 
from RNA sequences.  (2) We applied the trained rna2vec vector to the RNA target. We then used the default settings 551 
in the IIFDTI model for evaluation. For the evaluation of DrugBAN on the RNA-ligand classification task, we used 552 
the default parameters provided in DrugBAN.yaml and employed the random split method.  553 

 554 

Cold evaluation  555 
To evaluate the classification performance on unseen datasets, we conducted cold evaluation on RNAsmol and other 556 
models mentioned in the previous section. This involved ensuring that the test set included RNA targets, small 557 
molecule ligands, and both interacting molecules that had not appeared in the training set. In the cold evaluation on 558 
RNA, there is no overlap between RNA targets in the training and testing sets (R_train and R_test in Figure S18), 559 
though small molecule ligands may overlap (M_train and M_test). This approach trains a model particularly suited 560 
for predicting small molecule ligands for new RNA targets of interest. In the cold evaluation on small molecule, 561 
there is no overlap between small molecules in the training and testing sets, while RNA targets may overlap. This 562 
setting trains a model suitable for predicting appropriate RNA targets for newly discovered or unvalidated small 563 
molecule ligands that bind to RNA. The cold evaluation on pair ensures no overlap between both RNA targets and 564 
small molecules in the training and testing sets, which is the strictest setting and usually results the least accurate 565 
predictions. It is worth noting that, similar to random splitting used in cross-validation evaluations, there is no 566 
overlap between interactions in the training and testing sets (I_train and I_test in Figure S18). However, specific 567 
requirements are made in cold evaluations for selecting the two interacting molecules. With these methods, we can 568 
apply the trained RNA-small molecule binding prediction model to practical prediction scenarios, aiming to 569 
discover potential small molecule drug sets for specific RNA targets or predict appropriate RNA targets for small 570 
molecule drugs. 571 
 572 

Decoy evaluation  573 
To reveal the potential of virtual screening in RNA-targeting drug discovery, we did 10-fold decoy evaluation on 574 
RNAsmol and other models including RNAmigos, RNAmigos2 and rDock. First, we generated a decoy set for each 575 
small molecule in the test sets of PDB dataset using DecoyFinder software on ZINC bioactive library. This software 576 
selects molecules with similar physicochemical properties (including molecular weight (MW), partition coefficient 577 
(logP), hydrogen bonds donors (HBD), hydrogen bond acceptors (HBA) and number of rotatable bonds (RB)) but 578 
not too similar molecular structures from the given library for each query molecule. Then, we used the decoy sets 579 
for model evaluation and comparison. For RNAsmol, we ranked the predicted binding score of the true RNA-binder 580 
within the predicted scores of all molecules in its decoy set, a higher rank indicates a better decoy rank score. For 581 
RNAmigos, we generated a predicted fingerprint using a trained model and ranked all compounds in the decoy set 582 
according to their distance from the predicted fingerprint. We calculated fingerprint similarity using four distance 583 
metrics: Euclidean distance, cosine distance, Chebyshev distance and correlation distance, with differences shown 584 



in Figure S8. For RNAmigos2, we used four modes of this model including dock mode, native mode, fp mode and 585 
mixed mode for the evaluation, directly ranking the predicted score within the decoy as the decoy rank score. For 586 
rDock, we used the docking scores from the default outputs for the ranking and evaluation. Moreover, we performed 587 
a target shuffle in the decoy evaluation to disclose the RNA target specificity and robustness of the models.  Instead 588 
of generating a brand-new decoy set, we shuffled the correspondence between RNA targets and the decoy sets 589 
through random sampling and reran the four models.  590 
 591 

To generalize the decoy evaluation to unseen data, we applied trained RNAsmol_PDB and 592 
RNAsmol_ROBIN model, incorporating  𝜌" perturbation, to identified RNA-targeting drugs such as ribocil and 593 
risdiplam. And we used RNAmigos, RNAmigos2 and RSAPred_riboswitch models for decoy evaluation and 594 
comparison. First, we generated decoy sets for each small molecule and used the trained models to calculate decoy 595 
rank scores for comparison. We converted the compounds to SMILES format using computational tools such as 596 
rdkit and mathpix OCR. The 3D structures of ribocil-targeted RNA, risdiplam-targeted RNA, MALAT1 RNA were 597 
curated from the PDB database. We used two chains in the FMN riboswitch structure (PDB ID: 5KX9), the 5’-end 598 
of U1 snRNA and the 5’-splice sites of the SMN2 exon7 structure (PDB ID: 6HMO), as well as the MALAT1 triple 599 
helix structure (PDB ID: 4PLX) as target sequences for the prediction in RNAsmol. For RNAmigos and 600 
RNAmigos2, we extracted the pockets from the available structures using the molecule-binding positions in the 601 
complexes or positions mentioned in the literature. Finally, we reported the best rank score of the two chains in our 602 
results. 603 
 604 

Case study validation 605 
To better interpret the prediction of the RNAsmol model, we use the gradient-weighted class activation mapping 606 
(Grad-CAM) algorithm, which employs gradients backpropagated from the prediction layer to the activations of 607 
interest. We focus on the last convolutional layers of multi-view convolutional neural networks in the RNA encoder 608 
and the graph diffusion neural networks in the small molecule encoder to illustrate the weights on individual nucleic 609 
acids and atoms. These weights are displayed on the RNA secondary structure plot using forna[67] visualization 610 
tool and the small molecular graph drawn by rdkit (https://www.rdkit.org) (Figure 6 and Figure S9). Besides, we 611 
visualize the interaction profile of PreQ1, ZTP, SAH, and c-di-GMP-II riboswitch in 2D and 3D complex structures 612 
using Ligplot+[68] and PyMOL[69] (Figure 6, Figure S10, Figure S11). The position of hydrogen bonds is 613 
annotated in the structure and profile using the functions in these tools, with default hydrogen-bond calculation 614 
parameters in Ligplot+ set to a maximum hydrogen-acceptor distance of 6 and a minimum acceptor-donor distance 615 
of 6. 616 
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