

1 **Rbm24 maintains survival of cochlear outer hair cells by**
2 **repressing Insm1**

3 Chao Li^{1#}, Luyue Wang^{1#}, Shuting Li^{1,2#}, Jie Li¹, Ying Lu¹, Zhiyong Liu^{1,2,3*}

4 1. Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for
5 Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences,
6 Shanghai, 200031, China

7 2. University of Chinese Academy of Sciences, Beijing, 100049, China

8 3. Shanghai Center for Brain Science and Brain-Inspired Intelligence-Technology, Shanghai,
9 201210, China

10
11 # Those authors contribute equally

12 * Corresponding author:

13 Dr. Zhiyong Liu; E-mail: Zhiyongliu@ion.ac.cn

14 Tel: 0086-21-54921793 (Office)

15
16 **Key words:** Rbm24, Insm1, outer hair cell, inner hair cell, cochlea

17

18

19

20

21

22

23

24

1 **ABSTRACT**

2 The inactivation of Rbm24, an RNA-binding protein, results in the degeneration of
3 cochlear outer hair cells (OHCs) during the postnatal period. However, the specific molecular
4 mechanisms underlying this OHC death remain elusive. To address this, we conducted a
5 comprehensive analysis comparing the gene profiles of wild-type OHCs to those lacking
6 Rbm24 (*Rbm24*^{-/-}) at postnatal day 7 (P7). Our results revealed that the overall differentiation
7 program of OHCs is delayed in the absence of Rbm24. Furthermore, the expression of Insm1,
8 a crucial factor for OHC development that is normally switched off by P2, remains prolonged
9 in *Rbm24*^{-/-} OHCs. Interestingly, when Insm1 is overexpressed, it also leads to OHC death.
10 Significantly, the OHC degeneration is much less severe when both *Rbm24* and *Insm1* are
11 simultaneously inactivated. These findings shed light on the important role of Rbm24 in
12 repressing Insm1 and its impact on OHC differentiation and survival. Our study provides
13 valuable insights into the complex genetic signaling pathways involved in OHC development.

14

15

16

17

18

19

20

21

22

1 INTRODUCTION

2 Two subtypes of sound receptor hair cells (HCs) are housed in the mouse auditory
3 epithelium, also known as the organ of Corti: inner HCs (IHCs) and outer HCs (OHCs) (1).
4 Adjacent to IHCs and OHCs are different subtypes of supporting cells (SCs) (2). Atoh1 is a
5 master transcription factor (TF) in development of both IHCs and OHCs, and no HCs form in
6 the *Atoh1*^{-/-} mice (3). Severing as sound amplifiers, OHCs uniquely express the motor protein
7 Prestin (encoded by *Slc26a5*) (4, 5). In contrast, IHCs act as the primary receptors and form
8 ribbon synapses with the spiral (auditory) ganglion neurons (6-8). IHCs specifically express
9 Fgf8, vGlut3 (encoded by *Slc17a8*), and Otoferlin (9-13). Three key TFs are known to be
10 involved in determining whether cochlear sensory progenitors adopt IHC or OHC fate: Tbx2,
11 Insm1 and Ikzf2 (1). Tbx2 is required in IHC fate specification, differentiation, and fate
12 maintenance at adult ages, and *Tbx2*^{-/-} IHCs would transform into OHC-like cells (14-16).
13 Oppositely, OHCs overexpressing Tbx2 would transdifferentiate into IHC-like cells (15-17).
14 Moreover, Atoh1 and Tbx2 together can reprogram neonatal SCs into IHC-like cells (14, 18).
15 Different from Tbx2, Insm1 and Ikzf2 are expressed in OHCs, but not IHCs (19-22), and the
16 OHC fate cannot be maintained in Insm1 or Ikzf2-deficient OHCs (19, 20, 22), and half of the
17 *Insm1*^{-/-} OHCs tend to become IHC-like cells (19, 20). Note that Insm1 is transiently expressed
18 in nascent differentiating OHCs and become undetectable in OHCs by postnatal day 2 (P2) (20,
19 21).

20 Both HC subtypes, especially the OHCs, are vulnerable to genetic mutations or other
21 ototoxic factors, and degeneration of IHCs or OHCs result in severe hearing impairment. RNA
22 binding motif Protein 24 (Rbm24) is an RNA binding protein and is maintained in both IHCs

1 and OHCs once it is turned on at ~E15 (23). Currently, the mechanisms underlying
2 degeneration of *Rbm24*^{-/-} OHCs remains completely elusive. Starting with the single cell
3 transcriptomic assay between wild type (WT) and *Rbm24*^{-/-} HCs, the differentially expressed
4 genes (DEGs) were uncovered. Our data suggested that the global differentiation program of
5 OHCs was delayed, which was further evidenced by the defective hair bundle development.
6 Intriguingly, expression of *Insm1*, which is the nascent OHC marker, is dramatically prolonged
7 and maintained in the *Rbm24*^{-/-} OHCs by P14. It suggests that *Rbm24* is needed to repress
8 *Insm1* in postnatal OHCs. Moreover, overexpressing of *Insm1* also resulted in a similar OHC
9 degeneration phenotype. Finally, we demonstrated that additional deletion of *Insm1* mitigated
10 the cell death of *Rbm24*^{-/-} OHCs. Collectively, our study provided new insights of how *Insm1*
11 is repressed in postnatal OHCs and revealed that reactivation of *Insm1* expression is one of the
12 key mechanisms underlying cell death of the *Rbm24*^{-/-} OHCs.

13

14 **RESULTS AND DISCUSSION**

15 **Single cell transcriptomic analysis of wild type and *Rbm24*^{-/-} OHCs and IHCs**

16 We aimed to decipher the global gene perturbations in the *Rbm24*^{-/-} HCs, relative to the
17 control (Ctrl) HCs at P7. According to our previous study, *Rbm24*^{-/-} HCs have not started to
18 degenerate at P7 (24). The Ctrl_HCs were manual picked via *Atoh1*^{P2A-Tdtomato/+} mice in which
19 both IHCs and OHCs are Tdtomato+ (25). Similarly, *Rbm24*^{-/-} HCs were obtained by using the
20 *Atoh1*^{P2A-Cre/P2A-Tdtomato}; *Rbm24*^{fl/fl} mice. *Atoh1*^{P2A-Cre/+} is an effective Cre driver and has been
21 used in deleting HC genes in our previous studies (20, 26). Those cells were subject to single-
22 cell isolation and full length smart-seq based single cell RNA-seq (27). Briefly, 30 Ctrl_HCs

1 and 87 *Rbm24*^{-/-} HCs were manually picked (Figure 1A). Four cell clusters were formed when
2 the total 117 cells were mixed (Figure 1B), which matched the 4 different cell types:
3 Ctrl_OHCs (16, cell number), Ctrl_IHCs (14, cell number), *Rbm24*^{-/-} OHCs (52, cell number)
4 and *Rbm24*^{-/-} IHCs (35, cell number), as illustrated in Figure 1C. Note that those HCs were
5 defined as IHCs or OHCs according to IHC specific marker *Tbx2* and *Slc17a8*, and OHC
6 specific gene *Bcl11b* (Figure 1D). We confirmed that *Rbm24* was highly expressed in
7 Ctrl_IHCs and OHCs but was undetectable in all *Rbm24*^{-/-} IHCs and OHCs (Figure 1D). The
8 differentially expressed genes (DEGs) between WT and *Rbm24*^{-/-} OHCs as well as between WT
9 and *Rbm24*^{-/-} IHCs were calculated, respectively (Volcano maps) (Figure 1E). Genes involved
10 in cilium organization were the most enriched in the DEGs that were up-regulated in *Rbm24*^{-/-}
11 IHCs and/or OHCs, including *Rfx1*, *Ifn88* and *Foxj1* (Supplemental Figure 1). It is known that
12 *Rfx* gene family and *Ifn88* are involved in mouse hair bundle development (28, 29), and *Foxj1*
13 is also important in vertebrate cilia biogenesis (30, 31). The list of all DEGs and Gene Ontology
14 (GO) term genes were included in Supplemental table 1.

15 Moreover, cyttrace analysis, which is widely used to assess the differentiation status (32),
16 was applied to determine whether the global HC differentiation program was altered upon
17 *Rbm24* deletion. It showed that both *Rbm24*^{-/-} IHCs and *Rbm24*^{-/-} OHCs seemed less
18 differentiated than the WT counterparts (Figure 1F). In this study, we focused on OHCs because
19 *Rbm24*^{-/-} OHCs, but not *Rbm24*^{-/-} IHCs, are degenerated at P19 (24). The OHC marker *Insm1*
20 become undetectable by P2 (19-21). However, the expression level of *Insm1* appeared much
21 higher in *Rbm24*^{-/-} OHCs (less differentiated) than in the Ctrl_OHCs (more differentiated)
22 (Figure 1G). Furthermore, violin plot demonstrated that expression levels of other late OHC

1 markers *Ikzf2*, *Ocm* and *Slc26a5* were lower in *Rbm24*^{-/-} OHCs than in Ctrl_OHCs (Figure 1H).

2 It was consistent with the notion that the differentiation status of *Rbm24*^{-/-} OHCs was less than

3 WT OHCs, with maintaining early OHC marker *Insm1* and not starting expression of *Ikzf2*,

4 *Ocm* and *Slc26a5* yet at P7.

5 **Stereocilia development and mechanoelectrical transduction (MET) current are defective**
6 **in *Rbm24*^{-/-} OHCs at P3**

7 The morphological change of the stereocilia is a reliable readout to estimate the

8 differentiation status of the hair cells (33). Scanning electron microscope (SEM) assay showed

9 that hair bundle development was defective and the staircase stereocilia was not formed in the

10 *Rbm24*^{-/-} OHCs, relative to control OHCs at P3 (Figure 2A and B). We noticed that the

11 morphology of the *Rbm24*^{-/-} OHCs resembled the wild type OHCs around P0 (33), again

12 indicating that OHC differentiation was postponed. Our observation was consistent with the

13 notion that *Rbm24* is also involved in the hair bundle organization (34, 35). Note that we were

14 puzzled why the cilia development related genes such as *Rfx1*, *Ift88* and *Foxj1* were

15 upregulated in *Rbm24*^{-/-} HCs (Supplemental Figure 1). We expected that the cilia organization

16 genes should be down-regulated because their loss-of-function is known to cause defective

17 cilia development (28, 29). Nevertheless, it is possible that both their loss-and-gain of function

18 would cause hair bundle defect, and their maximal expression levels should be negatively

19 controlled by *Rbm24*.

20 To further assess their differentiation status at the electrophysiological level, we further

21 measured the MET currents in Ctrl and *Rbm24*^{-/-} OHCs (Figure 2C). We predicted that the

22 amplitude of MET currents would be decreased if loss of *Rbm24* delays the OHC

1 differentiation. Large inward current was induced in Ctrl OHCs, however, the amplitude was
2 dramatically diminished in the *Rbm24*^{-/-} OHCs at P3 (Figure 3D-F). Collectively, our
3 comprehensive analysis demonstrated that *Rbm24*^{-/-} OHCs differentiation was delayed,
4 compared to Ctrl OHCs.

5 **Insm1 protein expression is prolonged in the *Rbm24*^{-/-} OHCs**

6 We next determined whether Insm1 protein expression indeed was reactivated in *Rbm24*^{-/-}
7 OHCs at P7. *Atoh1*^{P2A-Cre/+}; *Rbm24*^{fl/fl} (control group) and *Atoh1*^{P2A-Cre/+}; *Rbm24*^{fl/fl}
8 (experimental group) mice were characterized in parallel at P7. *Rbm24* was expressed in
9 control Pou4f3+ OHCs, but completely disappeared in all Pou4f3+ OHCs of the experimental
10 group mice (Supplemental Figure 2A-B’’’). Insm1 protein was detected in 83.7% ± 5.7%, 67.8%
11 ± 6.4% and 16.1% ± 3.4% of the OHCs in the experimental mice (Supplemental Figure 2C).
12 No OHC death happened in experimental mice by P7. Furthermore, we showed that Insm1
13 protein was maintained in the Pou4f3+/Rbm24- OHCs at P14 when OHC degeneration had
14 started (arrows in Supplemental Figure 2D-E’’’). On average, there were 21.0 ± 7.6 Insm1+
15 OHCs per 600 µm in the cochleae of the *Atoh1*^{P2A-Cre/+}; *Rbm24*^{fl/fl} mice (Supplemental Figure
16 2F). It suggested that Insm1 protein expression could be maintained in the *Rbm24*^{-/-} OHCs
17 until they died. Altogether, our Insm1 immunostaining data validated the credit of the single
18 cell RNA-seq of the *Rbm24*^{-/-} OHCs and supported that *Rbm24* is needed in repressing Insm1
19 expression in OHCs after P2.

20 Note that there is a temporal window, between embryonic day 15 (E15) and P2, during
21 which *Rbm24* and Insm1 are co-expressed in wild type IHCs and OHCs (21, 23). It remains
22 completely unclear why Insm1 expression is permitted in OHCs between E15 and P2, but not

1 after P2. Further investigations are warranted to fully understand the molecular mechanisms
2 underlying many temporally expressed genes in OHCs, including *Atoh1*, *Insm1* and *Bcl11b*,
3 which would undoubtedly help us to deeply understand the precisely regulated HC
4 differentiation program.

5 **Insm1 overexpression also results in OHC death**

6 To determine whether the prolonged expression of *Insm1* is one of the main causes that
7 account for cell death of *Rbm24*^{-/-} OHCs, we used the *Atoh1*^{Cre/+} driver to induce ectopic *Insm1*
8 expression in OHCs by using the *Rosa26*-CAG-loxp-stop-loxp-*Insm1*-P2A-Tdtomato/+
9 (*Rosa26*^{*Insm1*+/+} in short) mice strain (20). Here, we chose *Atoh1*^{Cre/+} as the driver because its Cre
10 activity is lower and targets much less SCs than the *Atoh1*^{P2A-Cre/+} (26, 36). It is known that
11 OHCs overexpressing *Insm1* are intact by P7 (20). However, compared to the OHCs in control
12 *Rosa26*^{*Insm1*+/+}; *Ikzf2*^{V5/+} mice (Figure 3A-A''' and Figure 3C-C''''), mild OHC death happened
13 at P15 (Figure 3B-B''' and Figure 3E), but significant OHC death occurred at P30 in *Atoh1*^{Cre/+};
14 *Rosa26*^{*Insm1*+/+}; *Ikzf2*^{V5/+} (Figure 3D-D''''). There were 83.8 ± 1.1 OHCs per 200 μm cochleae of
15 control mice, in contrast, only 47.3 ± 3.2 OHCs existed in *Atoh1*^{Cre/+}; *Rosa26*^{*Insm1*+/+}; *Ikzf2*^{V5/+}
16 mice at P30 (Figure 3F).

17 Collectively, our data demonstrated persistent *Insm1* expression was detrimental to OHCs.
18 Thus, the prolonged *Insm1* protein expression in OHCs in the absence of *Rbm24* should be one
19 of key reasons to explain why *Rbm24*^{-/-} OHCs eventually degenerate. Notably, persistent
20 expression of *Atoh1*, which is also transiently expressed in HCs (26), also cause HC death at
21 adult ages (37). It remains unclear whether persistent *Atoh1* and *Insm1* expression share the
22 same molecular mechanism underlying HC death.

1 **The phenotype of OHC degeneration is alleviated in the absence of both *Rbm24* and**

2 ***Insm1***

3 If *Insm1* reactivation is the key accounting for cell death of *Rbm24*^{-/-} OHCs, OHC death

4 should be markedly mitigated when both *Rbm24* and *Insm1* are inactivated simultaneously.

5 Four different mouse models were characterized at P19 (Supplemental Figure 3A-D''): 1)

6 *Atoh1*^{P2A-Cre/+}; *Rbm24*^{flx/+}; *Insm1*^{flx/+} (control), 2) *Atoh1*^{P2A-Cre/+}; *Insm1*^{flx/LacZ}, 3) *Atoh1*^{P2A-}

7 *Cre/+*; *Rbm24*^{flx/-}, and 4) *Atoh1*^{P2A-Cre/+}; *Rbm24*^{flx/-}; *Insm1*^{flx/LacZ}. *Insm1*^{LacZ/+} is a null allele and

8 LacZ replaces the *Insm1* coding sequences (38). Compared to control mice (Figure 4A-A'') and

9 Supplemental Figure 3A-A''), the phenotype of OHC to IHC fate conversion was observed as

10 expected in the *Atoh1*^{P2A-Cre/+}; *Insm1*^{flx/LacZ} mice at P19 (Supplemental Figure 3B-B'').

11 However, regardless of the cell fates, the total number (79.0 ± 0.4) of OHCs and IHC-like cells

12 in the OHC regions per 200 μ m in *Atoh1*^{P2A-Cre/+}; *Insm1*^{flx/LacZ} mice was similar to that ($81.5 \pm$

13 0.9) in the control mice. Nevertheless, the total cell numbers were 732.7 ± 133.5 in the OHC

14 regions of *Atoh1*^{P2A-Cre/+}; *Rbm24*^{flx/-}; *Insm1*^{flx/LacZ} mice, which was significantly more than

15 52.7 ± 29.8 in *Atoh1*^{P2A-Cre/+}; *Rbm24*^{flx/-} mice at P19 (Figure 4B-D). Thus, our data showed

16 that the OHC death was partially alleviated when *Insm1* was further deleted in the *Rbm24*^{-/-}

17 OHCs. It further supports that *Insm1* reactivation was one of the key contributors to the cell

18 death of *Rbm24*^{-/-} OHCs.

19 Our previous studies show that *Rbm24* is positively regulated by *Pou4f3* (39). *Pou4f3* is

20 another key TF needed for HC survival (40-44). In addition, *Rbm24* is undetectable in the

21 cochleae of *Atoh1*^{-/-} mice (45). Because *Pou4f3* is a known target regulated by *Atoh1* (25, 46),

22 we suspected that the *Rbm24* repression in *Atoh1*^{-/-} cochleae is mediated by absence of *Pou4f3*.

1 This cascaded signaling from Pou4f3→Rbm24→Insm1 assigns Pou4f3 as the most upstream
2 HC survival regulator, and might explain why *Pou4f3*^{-/-} HCs die immediately after HCs are
3 born, but *Rbm24*^{-/-} OHCs or OHCs overexpressing Insm1 die at much later ages (24). In sum,
4 our data provided new insights into how Rbm24 controls OHC survival and would pave the
5 way for future OHC protection to prevent the age-related hearing loss.

6

7 MATERIALS AND METHODS

8 Mouse models

9 The *Atoh1*^{P2A-Cre/+}, *Rbm24*^{flx/+}, *Rbm24*^{+/+} and *Rosa26*^{Insm1/+} strains were described in detail
10 in our previous studies (20, 24, 26). *Atoh1*^{Cre/+} strain was kindly proved by Dr. Lin Gan
11 (Augusta University, USA) (36). *Insm1*^{flx/+} and *Insm1*^{LacZ/+} strains were kindly provided by Dr.
12 Carmen Birchmeier (Max Delbrueck Center for Molecular Medicine, Germany) (38). Both
13 male and female mice were used in this study. All mice were bred and raised in an SPF-level
14 animal room, and all animal procedures were performed according to the guidelines (NA-032-
15 2022) of the IACUC of the Institute of Neuroscience (ION), Center for Excellence in Brain
16 Science and Intelligence Technology, Chinese Academy of Sciences.

17 Histology and immunofluorescence assay

18 After the mice were anesthetized, 1 × phosphate buffer saline (PBS) was used for heart
19 perfusion, followed by fresh 4% paraformaldehyde (PFA). The post-dissected inner ear tissues
20 were post-fixed with fresh 4% PFA overnight at 4°C and washed three times using PBS. The
21 inner ears were decalcified with 120mM EDTA (Cat#: ST066, Beyotime) at 4°C. The cochleae
22 were divided into three pieces, apical, middle, and basal turns before immunostaining

1 procedure. The following primary antibodies were used in this study: anti-Rbm24 (rabbit,
2 1:500, 18178-1-AP, Proteintech), anti-Prestin (goat, 1:1000, sc-22692, Santa Cruz), anti-
3 vGlut3 (rabbit, 1:500, 135203, Synaptic Systems), anti-Insm1 (guinea pig, 1:6000, a kind gift
4 from Dr. Carmen Birchmeier), anti-otoferlin (mouse, 1:500, ab53233, abcam), anti-Pou4f3
5 (mouse, 1:500, sc-81980, Santa Cruz). After removing the primary antibody by washing thrice
6 (10 mins each) in PBST (1 × PBS containing 0.1%Triton X-100), cochlear samples were
7 further incubated with appropriate secondary antibodies for 3-5 hours at room temperature, and
8 then washed three times in PBST, and counterstained with Hoechst 33342 (1:1000, 62249,
9 Thermo Fisher Scientific). The whole mount prepared cochlear samples were mounted with
10 Prolong Gold antifade medium (P36930, Thermo Fisher Scientific) at room temperature for 1-
11 2 min, and then scanned using a Nikon C2 or Nikon NiE-A1 plus confocal microscope. The
12 confocal images were processed using ImageJ software. The detailed immunostaining protocol
13 was described in our previous study (47).

14 **Single-cell manual picking and smart-seq RNA-seq library preparation**

15 Cochlear samples were dissected out from control *Atoh1*^{P2A-Tdtomato/+} and *Atoh1*^{P2A-Cre/P2A-}
16 *Tdtomato*; *Rbm24*^{fl/fl} mice (experimental group) at P7. The sensory epithelium was carefully
17 dissected out and followed by our single-cell suspension preparation protocol (27). The
18 Tdtomato+ HCs from both group mice were manually picked, immediately followed by
19 reverse-transcriptions and cDNA amplification with the smart-seq HT kit (Cat# 634437,
20 Takara). The post-amplified cDNAs (1 ng per sample) were converted to single-cell sequencing
21 library by using the TruePrep DNA Library Prep Kit V2 for Illumina (Cat# TD503-02, Vazyme)
22 and a TruePrep Index Kit V2 for Illumina (Cat# TD202, Vazyme). The final libraries were

1 subject to paired-end sequencing on the Illumina Novaseq platform. On average ~4G of raw
2 data per library was yielded.

3 **Bioinformatic analysis**

4 The raw sequencing data were processed by the zUMIs pipeline (48), and digital gene
5 expression (DGE) matrices were generated. The DGE matrices were analyzed using the R
6 package Seurat (v4) (49). Phase scores were calculated using canonical markers with the
7 "CellCycleScoring" function to mitigate the effects of cell cycle heterogeneity on the
8 "ScaleData" function. Principal component analysis (PCA) was performed using the
9 "RunPCA" function, followed by clustering using the "FindClusters" function. To visualize and
10 investigate the datasets, Uniform Manifold Approximation and Projection (UMAP) was
11 implemented using the "RunUMAP" function. Marker genes for each cluster were identified
12 using the "FindAllMarkers" function, with genes featuring a p-value < 0.05 and the absolute
13 value of \log_2FC (fold change) > 1 as marker genes.

14 The cell differentiation status was calculated by the R package CytoTRACE (32), which can
15 yield a score the differentiation potential of each cell. To visualize gene expression levels, we
16 extracted the "CytoTRACE" term from the CytoTRACE output and combined it with the
17 Seurat object. The code used for this visualization is available at: <https://github.com/mana->
18 W/usual/blob/main/script/cytotraceplot.R. Finally, Metascape platform was used to perform
19 Gene Ontology (GO) analysis (50).

20 **SEM analysis and MET measurement.**

21 Cochlear samples were perfused with 0.9% NaCl (Cat#10019318, Sinopharm Chemical
22 Reagent Co, Ltd.) and fixed overnight with 2.5 % glutaraldehyde (Cat# G5882, Sigma-Aldrich)

1 at 4°C for overnight. The samples were then washed three times with 1 × PBS and decalcified
2 using 10% EDTA (Cat# ST066, Beyotime) for 1 day. Then, cochlear duct was dissected to three
3 turns, followed by fixation for 1h with 1% osmium tetroxide (Cat#18451, TedPella), and further
4 subject to a second fixation with thiocarbohydrazide (Cat#88535, Sigma-Aldrich) for 30 min
5 and for 1h with 1% osmium tetroxide. Next, the samples were dehydrated using a graded
6 ethanol series (30%, 50%, 75%, 80%, 95%, Cat#10009259, Sinopharm Chemical Reagent Co,
7 Ltd) at 4°C. The cochlear samples were dried in a critical point dryer (Model:EM CPD300,
8 Leica), and further treated with a turbomolecular pumped coater (Model:Q150T ES, Quorum).
9 The post-processed cochlear samples were scanned using a field-emmission SEM instrument
10 (Model:Gemini SEM300, Zeiss).

11 For the MET measurement, the basilar membrane was precisely dissected from P3
12 cochleae in the solution containing (in mM): 141.7 NaCl, 5.36 KCl, 0.1 CaCl₂, 1 MgCl₂, 0.5
13 MgSO₄, 3.4 L-glutamine, 10 glucose, and 10 H-HEPES (pH 7.4). Subsequently, the basilar
14 membrane was placed into a new chamber containing the recording solution consisting of (in
15 mM): 144 NaCl, 0.7 NaH₂PO₄, 5.8 KCl, 1.3 CaCl₂, 0.9 MgCl₂, 5.6 glucose, and 10 H-HEPES
16 (pH 7.4). Patch pipettes were made of borosilicate glass capillaries (BF150-117-10, Sutter)
17 with the resistances of 3-5 MΩ. The pipette solution was composed of (in mM): 140 KCl, 1
18 MgCl₂, 0.1 EGTA, 2 MgATP, 0.3 Na₂GTP, and 10 H-HEPES (pH 7.2). MET currents were
19 induced by a fluid jet from a pipette with a tip diameter of 5–10 μm. Whole-cell patch clamp
20 on OHCs were conducted with a holding potential of -70 mV (Axon Axopatch 700B, Molecular
21 Devices Corp.). Sinusoidal fluid jet stimuli at 40 Hz were produced using a 27-mm-diameter
22 piezoelectric disc.

1 **Statistic analysis**

2 All cell numbers are presented as means \pm SEM, and statistical analyses were used
3 GraphPad Prism version 8.0.2 (GraphPad Software) and performed Student's *t*-tests with
4 Bonferroni correction.

5

6 **ACKNOWLEDGEMENTS**

7 We thank Dr. Qian Hu from the Optical Imaging Facility of the ION for support with image
8 analysis, and Dr. Lin Gan (Augusta University, USA) for kindly providing the *Atoh1*^{Cre/+} strain.
9 We thank Dr. Yanqing Zhong, Ms. Qian Yu, Ms. Jingjing Song, Ms. Yingjie An, and Ms. Ruiqi
10 Wang for helping to pick the WT and *Rbm24*^{-/-} HCs.

11

12 **FUNDING**

13 This study is supported by the National Natural Science Foundation of China
14 (32321163648), Shanghai Natural Science Foundation (23ZR1470800), National Key R&D
15 Program of China (2021YFA1101804), Chinese postdoctoral Science foundation
16 (2023T160658 and 2023M743612), Innovative Research Team of High-Level Local
17 Universities in Shanghai (SSMU-ZLCX20180601), and the youth Innovation Promotion
18 Association of Chinese Academy of Sciences.

19

20 **COMPETING INTERESTS**

21 The authors declare no competing or financial interests.

22

23

24

1 REFERENCES

- 2 1. Sun Y & Liu Z (2023) Recent advances in molecular studies on cochlear development and
3 regeneration. *Curr Opin Neurobiol* 81:102745.
- 4 2. Luo Z, Zhang J, Qiao L, Lu F, & Liu Z (2021) Mapping Genome-wide Binding Sites of Prox1 in
5 Mouse Cochlea Using the CUT&RUN Approach. *Neurosci Bull* 37(12):1703-1707.
- 6 3. Bermingham NA, *et al.* (1999) Math1: an essential gene for the generation of inner ear hair cells.
7 *Science* 284(5421):1837-1841.
- 8 4. Zheng J, *et al.* (2000) Prestin is the motor protein of cochlear outer hair cells. *Nature*
9 405(6783):149-155.
- 10 5. Liberman MC, *et al.* (2002) Prestin is required for electromotility of the outer hair cell and for the
11 cochlear amplifier. *Nature* 419(6904):300-304.
- 12 6. Petitpre C, *et al.* (2018) Neuronal heterogeneity and stereotyped connectivity in the auditory
13 afferent system. *Nat Commun* 9(1):3691.
- 14 7. Shrestha BR, *et al.* (2018) Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity. *Cell*
15 174(5):1229-1246 e1217.
- 16 8. Sun S, *et al.* (2018) Hair Cell Mechanotransduction Regulates Spontaneous Activity and Spiral
17 Ganglion Subtype Specification in the Auditory System. *Cell* 174(5):1247-1263 e1215.
- 18 9. Pan Y, *et al.* (2023) Fgf8(P2A-3xGFP/+): A New Genetic Mouse Model for Specifically Labeling
19 and Sorting Cochlear Inner Hair Cells. *Neurosci Bull* 39(12):1762-1774.
- 20 10. Roux I, *et al.* (2006) Otoferlin, defective in a human deafness form, is essential for exocytosis at
21 the auditory ribbon synapse. *Cell* 127(2):277-289.
- 22 11. Jacques BE, Montcouquiol ME, Layman EM, Lewandoski M, & Kelley MW (2007) Fgf8 induces
23 pillar cell fate and regulates cellular patterning in the mammalian cochlea. *Development* 134(16):3021-
24 3029.
- 25 12. Ruel J, *et al.* (2008) Impairment of SLC17A8 encoding vesicular glutamate transporter-3,
26 VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. *Am
27 J Hum Genet* 83(2):278-292.
- 28 13. Seal RP, *et al.* (2008) Sensorineural deafness and seizures in mice lacking vesicular glutamate
29 transporter 3. *Neuron* 57(2):263-275.
- 30 14. Bi Z, *et al.* (2022) Development and transdifferentiation into inner hair cells require Tbx2. *Natl Sci
31 Rev* 9(12):nwac156.
- 32 15. Garcia-Anoveros J, *et al.* (2022) Tbx2 is a master regulator of inner versus outer hair cell
33 differentiation. *Nature* 605(7909):298-303.

1 16. Kaiser M, *et al.* (2022) TBX2 specifies and maintains inner hair and supporting cell fate in the
2 Organ of Corti. *Nat Commun* 13(1):7628.

3 17. Bi Z, *et al.* (2024) Revisiting the Potency of Tbx2 Expression in Transforming Outer Hair Cells
4 into Inner Hair Cells at Multiple Ages In Vivo. *J Neurosci* 44(23).

5 18. Li X, *et al.* (2023) In situ regeneration of inner hair cells in the damaged cochlea by temporally
6 regulated co-expression of Atoh1 and Tbx2. *Development* 150(24).

7 19. Wiwatpanit T, *et al.* (2018) Trans-differentiation of outer hair cells into inner hair cells in the
8 absence of INSM1. *Nature* 563(7733):691-695.

9 20. Li S, He S, Lu Y, Jia S, & Liu Z (2023) Epistatic genetic interactions between Insm1 and Izkf2
10 during cochlear outer hair cell development. *Cell Rep* 42(5):112504.

11 21. Lorenzen SM, Duggan A, Osipovich AB, Magnuson MA, & Garcia-Anoveros J (2015) Insm1
12 promotes neurogenic proliferation in delaminated otic progenitors. *Mech Dev* 138 Pt 3:233-245.

13 22. Chessim L, *et al.* (2018) Helios is a key transcriptional regulator of outer hair cell maturation.
14 *Nature* 563(7733):696-700.

15 23. Grifone R, Saquet A, Xu Z, & Shi DL (2018) Expression patterns of Rbm24 in lens, nasal
16 epithelium, and inner ear during mouse embryonic development. *Dev Dyn* 247(10):1160-1169.

17 24. Wang G, Li C, He S, & Liu Z (2021) Mosaic CRISPR-stop enables rapid phenotyping of nonsense
18 mutations in essential genes. *Development* 148(5).

19 25. Luo Z, *et al.* (2022) Three distinct Atoh1 enhancers cooperate for sound receptor hair cell
20 development. *Proc Natl Acad Sci U S A* 119(32):e2119850119.

21 26. Li S, *et al.* (2022) Fate-mapping analysis of cochlear cells expressing Atoh1 mRNA via a new
22 Atoh1(3*HA-P2A-Cre) knockin mouse strain. *Dev Dyn* 251(7):1156-1174.

23 27. Sun S, *et al.* (2021) Dual expression of Atoh1 and Izkf2 promotes transformation of adult cochlear
24 supporting cells into outer hair cells. *Elife* 10.

25 28. Elkon R, *et al.* (2015) RFX transcription factors are essential for hearing in mice. *Nat Commun*
26 6:8549.

27 29. Moon KH, *et al.* (2020) Dysregulation of sonic hedgehog signaling causes hearing loss in
28 ciliopathy mouse models. *Elife* 9.

29 30. Rayamajhi D, *et al.* (2024) The forkhead transcription factor Foxj1 controls vertebrate olfactory
30 cilia biogenesis and sensory neuron differentiation. *PLoS Biol* 22(1):e3002468.

31 31. Stubbs JL, Oishi I, Izpisua Belmonte JC, & Kintner C (2008) The forkhead protein Foxj1 specifies
32 node-like cilia in Xenopus and zebrafish embryos. *Nat Genet* 40(12):1454-1460.

1 32. Gulati GS, *et al.* (2020) Single-cell transcriptional diversity is a hallmark of developmental
2 potential. *Science* 367(6476):405-411.

3 33. Sekerkova G, Richter CP, & Bartles JR (2011) Roles of the espin actin-bundling proteins in the
4 morphogenesis and stabilization of hair cell stereocilia revealed in CBA/CaJ congenic jerker mice.
5 *PLoS Genet* 7(3):e1002032.

6 34. Wang Y, *et al.* (2023) RBM24 is required for mouse hair cell development through regulating pre-
7 mRNA alternative splicing and mRNA stability. *J Cell Physiol* 238(5):1095-1110.

8 35. Zheng L, *et al.* (2021) Rbm24 regulates inner-ear-specific alternative splicing and is essential for
9 maintaining auditory and motor coordination. *RNA Biol* 18(4):468-480.

10 36. Yang H, Xie X, Deng M, Chen X, & Gan L (2010) Generation and characterization of Atoh1-Cre
11 knock-in mouse line. *Genesis* 48(6):407-413.

12 37. Liu Z, *et al.* (2012) Age-dependent in vivo conversion of mouse cochlear pillar and Deiters' cells
13 to immature hair cells by Atoh1 ectopic expression. *J Neurosci* 32(19):6600-6610.

14 38. Jia SQ, *et al.* (2015) Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic β -
15 cell function. *Embo J* 34(10):1417-1433.

16 39. Wang G, Gu Y, & Liu Z (2024) Deciphering the genetic interactions between Pou4f3, Gfi1, and
17 Rbm24 in maintaining mouse cochlear hair cell survival. *Elife* 12.

18 40. Vahava O, *et al.* (1998) Mutation in transcription factor POU4F3 associated with inherited
19 progressive hearing loss in humans. *Science* 279(5358):1950-1954.

20 41. Masuda M, *et al.* (2011) Regulation of POU4F3 gene expression in hair cells by 5' DNA in mice.
21 *Neuroscience* 197:48-64.

22 42. Xiang M, *et al.* (1997) Essential role of POU-domain factor Brn-3c in auditory and vestibular hair
23 cell development. *Proc Natl Acad Sci U S A* 94(17):9445-9450.

24 43. Zhu GJ, *et al.* (2020) Aldh inhibitor restores auditory function in a mouse model of human deafness.
25 *PLoS Genet* 16(9):e1009040.

26 44. Erkman L, *et al.* (1996) Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual
27 system development. *Nature* 381(6583):603-606.

28 45. Cai T, *et al.* (2015) Characterization of the transcriptome of nascent hair cells and identification of
29 direct targets of the Atoh1 transcription factor. *J Neurosci* 35(14):5870-5883.

30 46. Yu HV, *et al.* (2021) POU4F3 pioneer activity enables ATOH1 to drive diverse mechanoreceptor
31 differentiation through a feed-forward epigenetic mechanism. *Proc Natl Acad Sci U S A*
32 118(29):e2105137118.

33 47. Liu Z, Owen T, Zhang L, & Zuo J (2010) Dynamic expression pattern of Sonic hedgehog in

1 developing cochlear spiral ganglion neurons. *Dev Dyn* 239(6):1674-1683.

2 48. Parekh S, Ziegenhain C, Vieth B, Enard W, & Hellmann I (2018) zUMIs - A fast and flexible
3 pipeline to process RNA sequencing data with UMIs. *Gigascience* 7(6).

4 49. Hao YH, *et al.* (2021) Integrated analysis of multimodal single-cell data. *Cell* 184(13):3573-+.

5 50. Zhou YY, *et al.* (2019) Metascape provides a biologist-oriented resource for the analysis of
6 systems-level datasets. *Nature Communications* 10.

7

8

9

10

11 **FIGURE LEGENDS**

12 **Figure 1. Single-cell transcriptomic analysis of control and *Rbm24*^{-/-} HCs. (A)** An
13 illustration of how we manually pick control IHCs and OHCs, and *Rbm24*^{-/-} IHCs and OHCs
14 at P7, respectively. **(B-C)** All picked HCs are subject to unsupervised UMAP analysis and four
15 cell clusters are formed (B), which exactly match each of the 4 cell types in (C). **(D)** Violin
16 plot of four genes, *Rbm24*, *Tbx2*, *Slc17a8* and *Bcl11b*. *Rbm24* is only detected in WT HCs, and
17 *Tbx2* and *Slc17a8* are only detected in IHCs, whereas *Bcl11b* is only detected in OHCs. **(E)**
18 Volcano plot of differentially expressed genes between Ctrl and *Rbm24*^{-/-} OHCs. *Insm1* is
19 specifically highlighted. **(F-G)** CytoTRACE analysis of the picked HCs. The *Rbm24*^{-/-} HCs in
20 general are in the less differentiated status, compared to the Ctrl HCs (F). The expression level
21 of *Insm1* in the *Rbm24*^{-/-} HCs is higher in the Ctrl HCs (G). **(H)** Violin plot of four OHC genes,
22 *Ocm*, *Ikzf2*, *Slc26a5*, and *Insm1*. Opposed to *Insm1*, *Ocm*, *Ikzf2*, *Slc26a5* are expressed in a
23 lower level in *Rbm24*^{-/-} OHCs than in Ctrl OHCs.

24

25 **Figure 2. SEM analysis and MET current measurements of Ctrl and *Rbm24*^{-/-} OHCs. (A-**
26 **B)** Ultrastructure features of hair bundles of OHCs in control *Atoh1*^{P2A-Cre/+}; *Rbm24*^{flx/+} (A)

1 and experimental *Atoh1*^{P2A-Cre/+}; *Rbm24*^{fl/fl} mice (B) at P3. Staircase hair bundles are present
2 in Ctrl OHCs, but not in *Rbm24*^{-/-} OHCs. (C) A simple illustration of how MET current is
3 measured. (D-F) Exampled MET currents in Ctrl (D) and *Rbm24*^{-/-} OHCs (E). The amplitude
4 of the MET currents in Ctrl OHCs are much larger than in *Rbm24*^{-/-} OHCs. Data are present as
5 Means ± SEM. **** P<0.0001.

6

7 **Figure 3. Insm1 overexpression leads to OHC death by P30. (A-B””)** Triple immunostaining
8 of Prestin, V5 (Ikzf2) and vGlut3 in control *Rosa26*^{Insm1/+}; *Ikzf2*^{V5/+} (A-A””) and experimental
9 *Atoh1*^{Cre/+}; *Rosa26*^{Insm1/+}; *Ikzf2*^{V5/+} mice (B-B””) at P15. (C-D””) Triple labelling of Insm1, V5
10 (Ikzf2) and Rbm24 in control (C-C””) and experimental mice (D-D””) at P30. (E-F)
11 Quantification of OHC numbers in control and experimental cochleae at P15 (E) and P30 (F).
12 Data are present as Means ± SEM. *p<0.05, *** P<0.001. Significant OHC death occurs in
13 experimental mice at P30. Scale bars: 20 µm (B”” and D””).

14

15 **Figure 4. Additional deletion of Insm1 alleviates the cell death of *Rbm24*^{-/-} OHCs. (A-C””)**
16 Triple immunostaining of Rbm24, Prestin and Otoferlin in control *Atoh1*^{P2A-Cre/+}; *Rbm24*^{fl/fl};
17 *Insm1*^{fl/fl} (A-A””), *Atoh1*^{P2A-Cre/+}; *Rbm24*^{fl/fl} (B-B””) and the *Atoh1*^{P2A-Cre/+}; *Rbm24*^{fl/fl};
18 *Insm1*^{fl/fl LacZ} (C-C””). White arrows in (C-C””) label one Prestin+ OHC without Otoferlin
19 expression, and the orange arrows mark one IHC-like cell that expresses Otoferlin but loses
20 Prestin expression. (D) Quantification of the total cell number in the OHC region (either
21 Prestin+ or Otoferlin+) in *Atoh1*^{P2A-Cre/+}; *Rbm24*^{fl/fl} (red) and the *Atoh1*^{P2A-Cre/+}; *Rbm24*^{fl/fl};
22 *Insm1*^{fl/fl LacZ} (green) cochleae. Data are present as Means ± SEM.** p<0.01. (E) A simple

1 cartoon to illustrate how additional loss of *Insm1* mitigates the cell death of *Rbm24*^{-/-} OHCs.

2 Scale bar: 20 μ m (C’’’).

3

4 **SUPPLEMENTAL FIGURE LEGENDS**

5 **Supplemental Figure 1. GO analysis of the DEGs between Ctrl and *Rbm24*^{-/-} OHCs. (A-**

6 **B)** GO terms of the genes that are significantly up-regulated genes in the *Rbm24*^{-/-} OHCs (A)

7 or *Rbm24*^{-/-} IHCs (B), relative to Ctrl IHCs or OHCs. The red arrows point to the cilium

8 organization related genes that are the most enriched. **(C-D)** Violin plots of *Rbm24*, *Rfx2*, *Rfx3*,

9 and *Ift188* between Ctrl and *Rbm24*^{-/-} OHCs (C), as well as *Rbm24*, *Rfx2*, *Rfx3*, and *Foxj1*

10 between Ctrl and *Rbm24*^{-/-} IHCs (D).

11

12 **Supplemental Figure 2. Loss of *Rbm24* results in prolonged *Insm1* expression in OHCs.**

13 **(A-B’’’)** Triple staining of *Insm1*, *Rbm24*, and *Pou4f3* in control *Atoh1*^{P2A-Cre/+}; *Rbm24*^{fl/fl} (A-

14 **A’’’**) and experimental *Atoh1*^{P2A-Cre/+}; *Rbm24*^{fl/fl} (B-B’’’)) at P7. The orange arrows in (B-B’’’)

15 mark one *Insm1*⁺/*Pou4f3*⁺ OHC that loses *Rbm24*. **(C)** Percentages of *Insm1*⁺ OHCs in

16 *Atoh1*^{P2A-Cre/+}; *Rbm24*^{fl/fl} at apical, middle, and basal turns. Data are present as Means \pm SEM.

17 n.s.: not significant; ** P<0.01. **(D-E’’’)** Similar immunostaining assay to (A-B’’’)) in control

18 (D-D’’’)) and experimental (E-E’’’)) mice at P14. **(F)** Cell numbers of the *Insm1*⁺ OHCs per 600

19 μ m at P14. Again, the orange arrows in (E-E’’’)) mark one *Insm1*⁺/*Pou4f3*⁺ OHC without

20 *Rbm24* expression. Data are present as Means \pm SEM. Scale bars: 20 μ m (B’’’ and E’’’).

21

22 **Supplemental Figure 3. The *Rbm24*^{-/-}; *Insm1*^{-/-} OHCs survive longer than the *Rbm24*^{-/-}**

1 **OHCs.** Triple staining of Rbm24, Prestin and Otoferlin in mouse models with four different
2 genotypes at P19: 1) *Atoh1*^{P2A-Cre/+}; *Rbm24*^{flox/+}; *Insm1*^{flox/+}(A-A’’’), 2) *Atoh1*^{P2A-Cre/+};
3 *Insm1*^{flox/LacZ} (B-B’’’), 3) *Atoh1*^{P2A-Cre/+}; *Rbm24*^{flox/-} (C-C’’’’) and 4) *Atoh1*^{P2A-Cre/+}; *Rbm24*^{flox/-};
4 *Insm1*^{flox/LacZ} (D-D’’’). Scale bar: 200 μ m (D’’’).

Figure 1

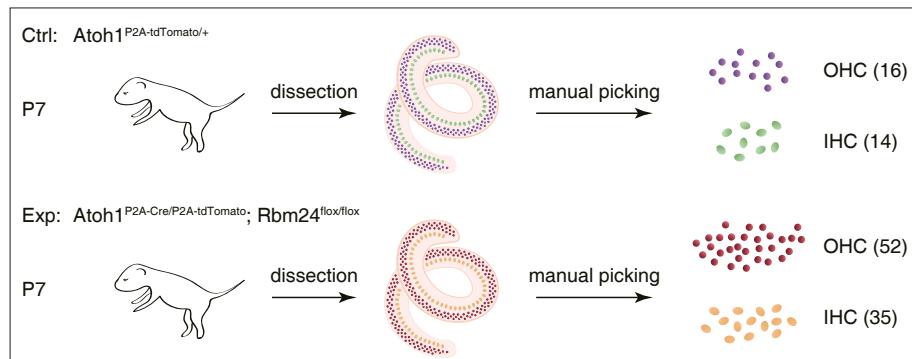
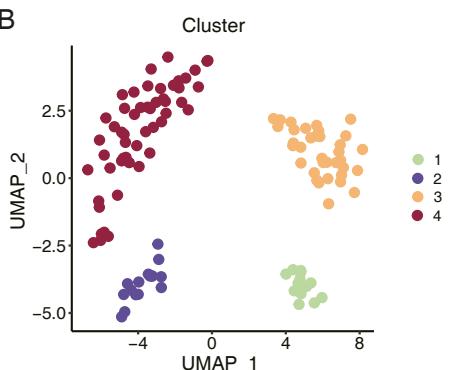
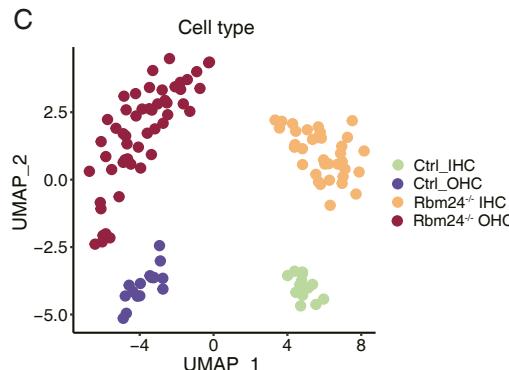
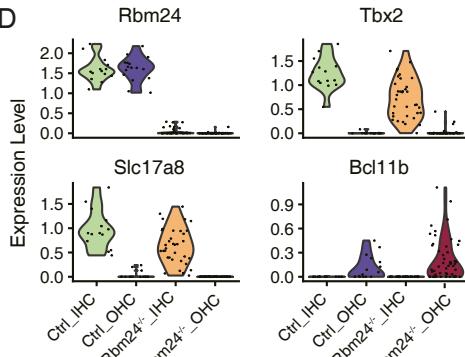
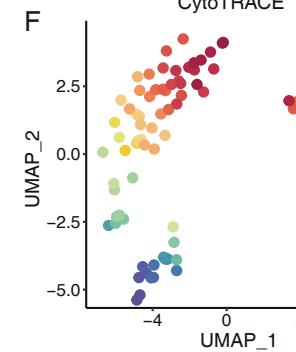
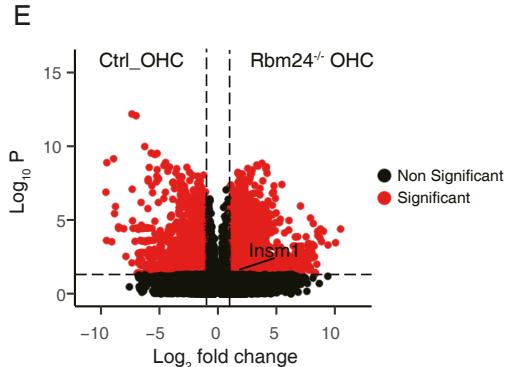
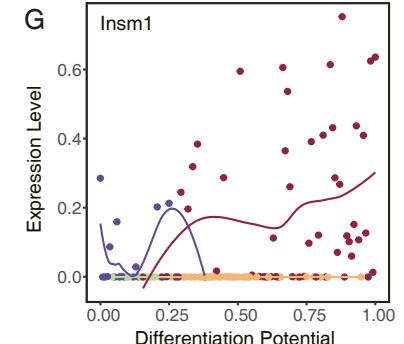
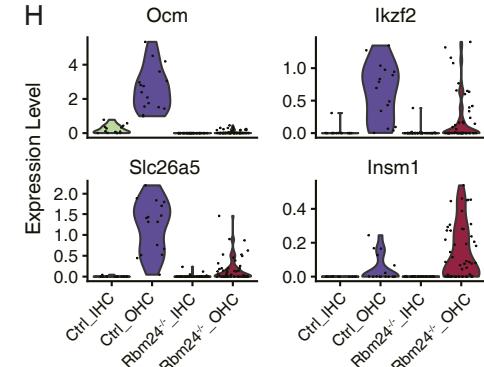








A**B****C****D****E****G****H**

Figure 2

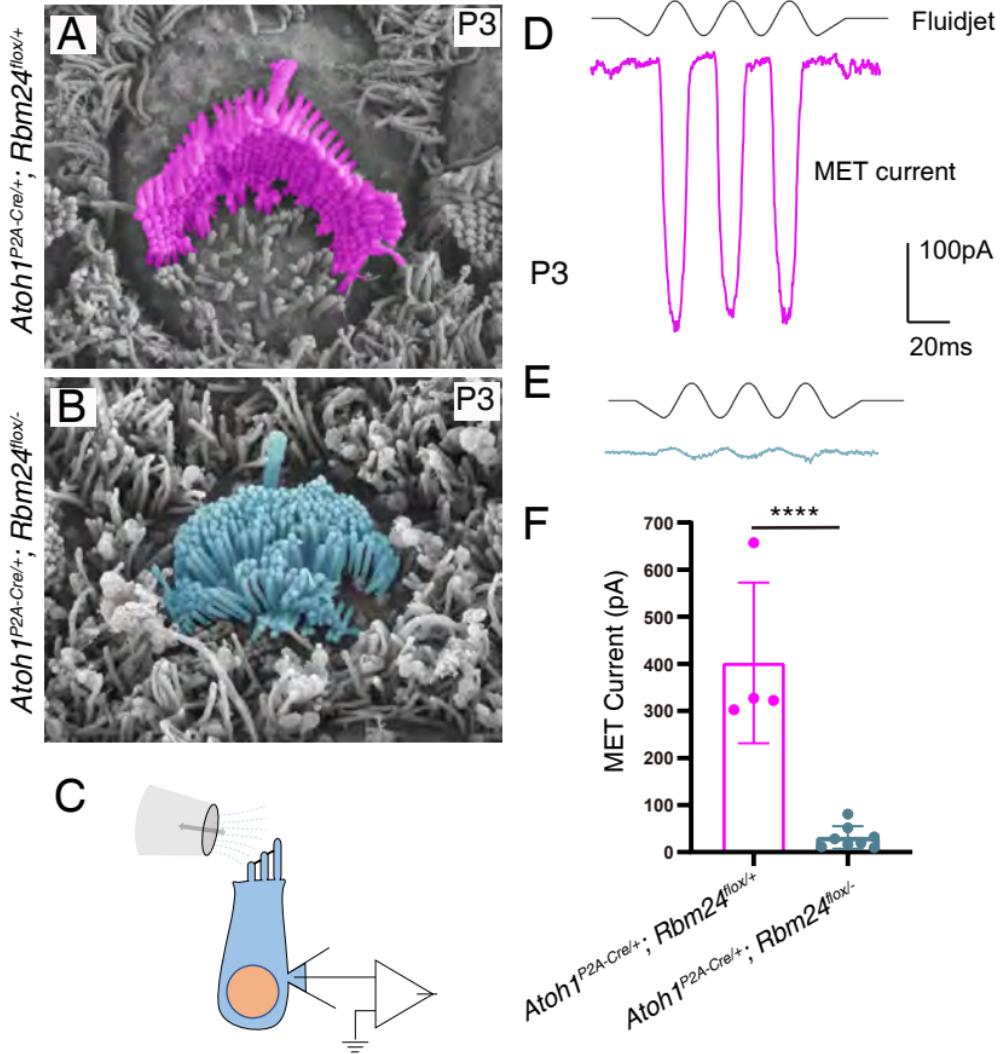


Figure 3

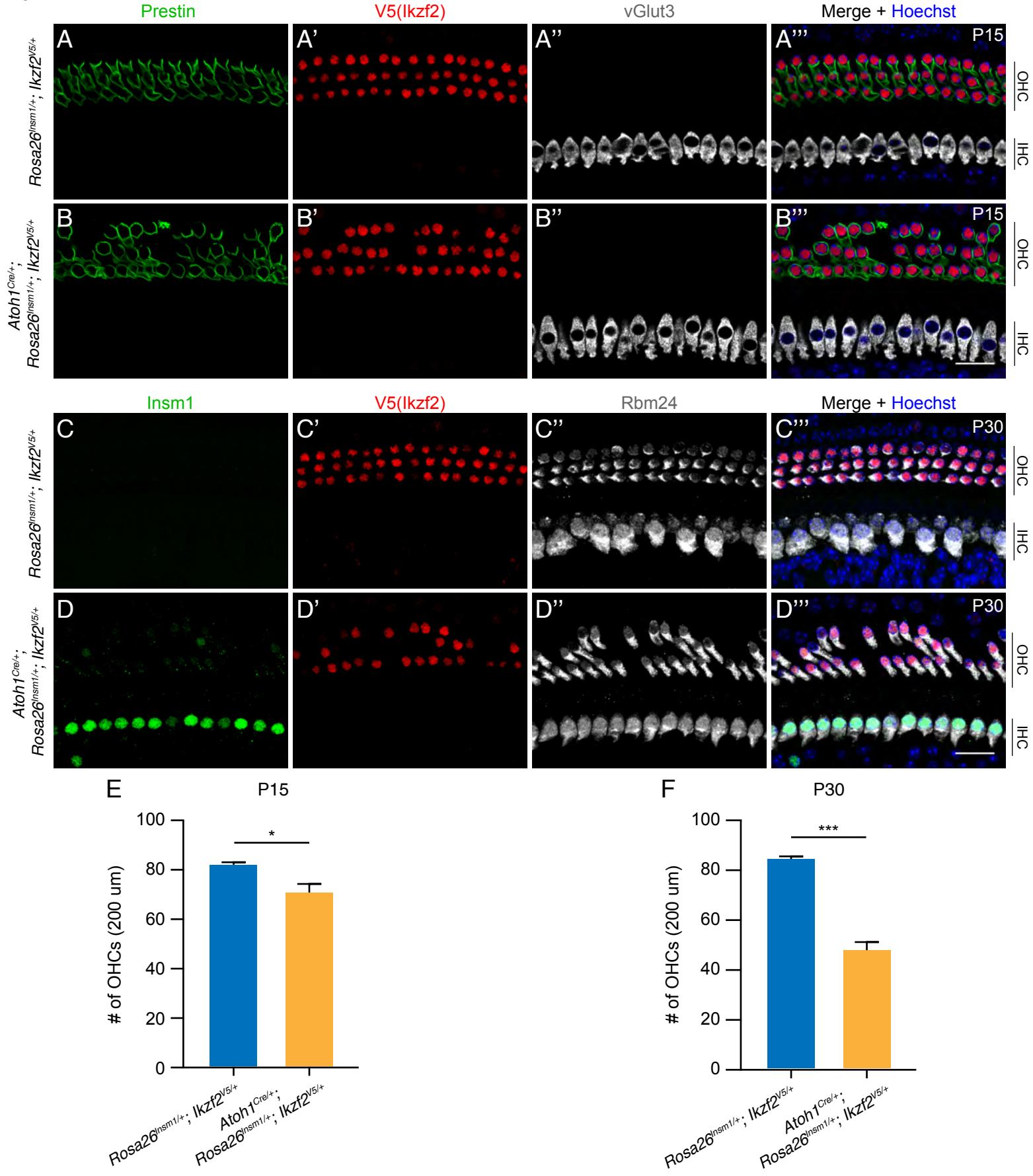
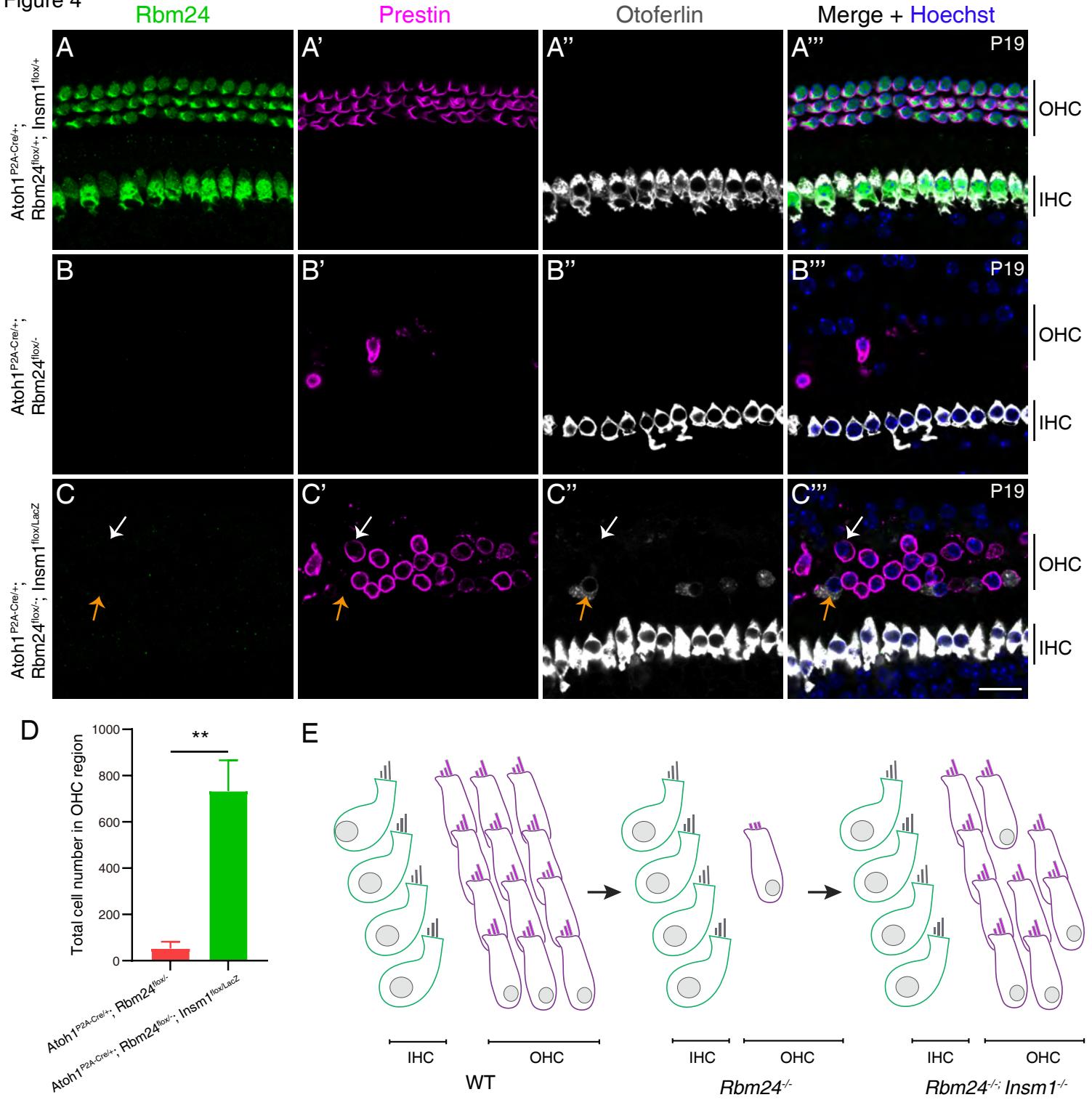
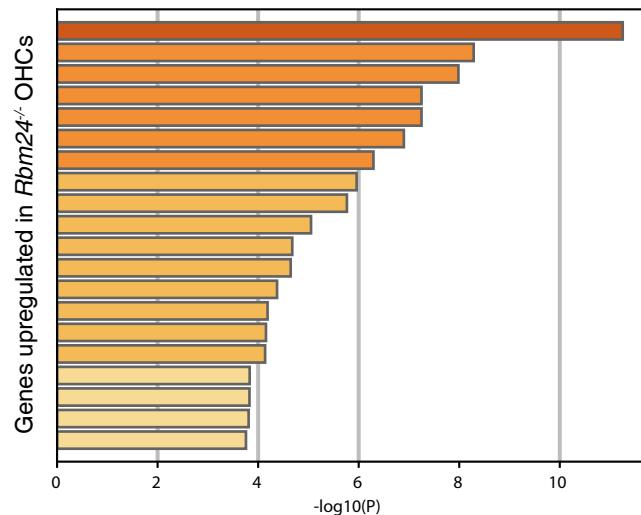
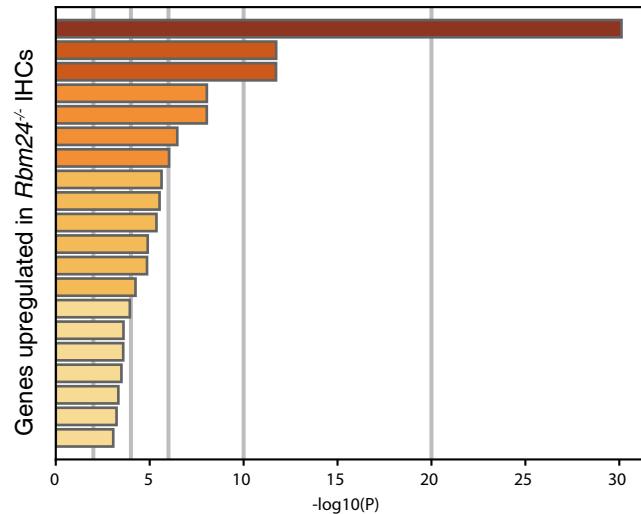
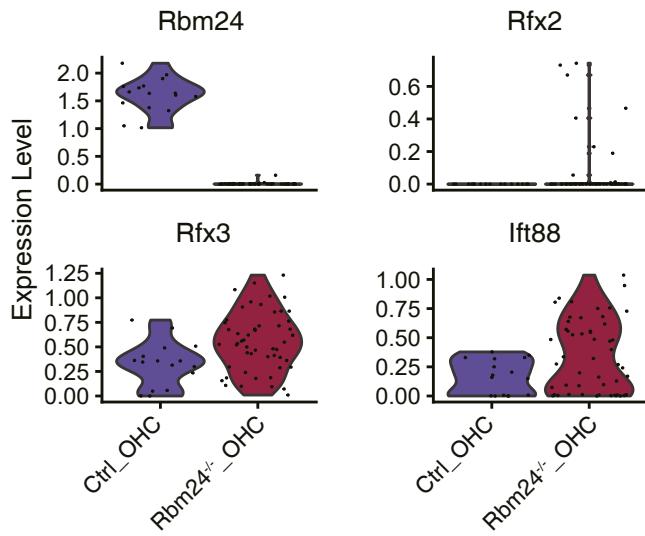




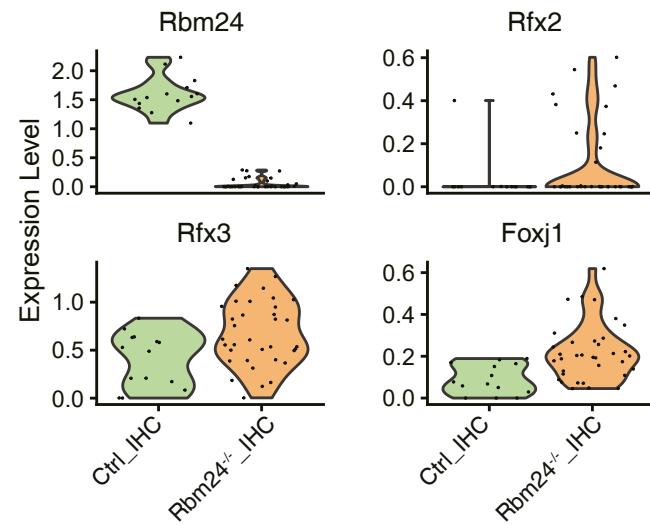
Figure 4


Supplemental Figure 1

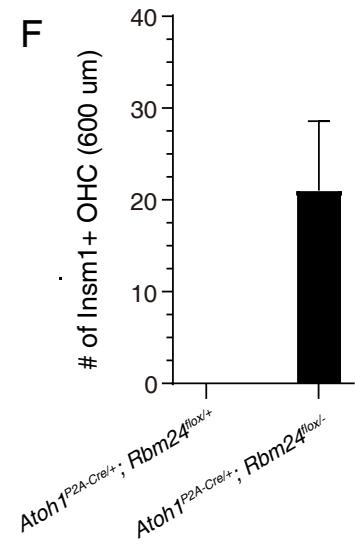
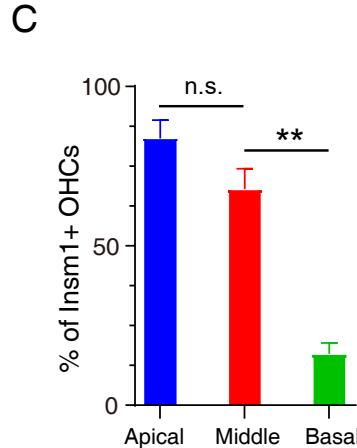
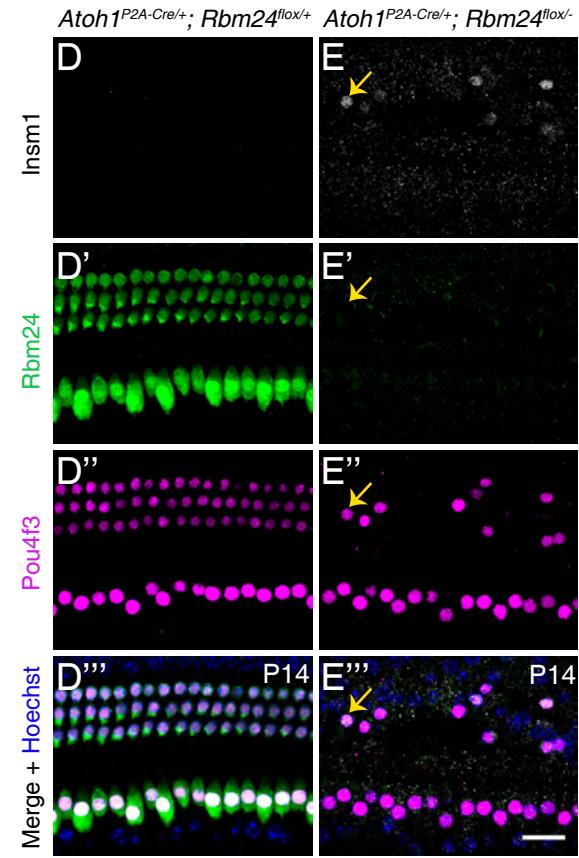
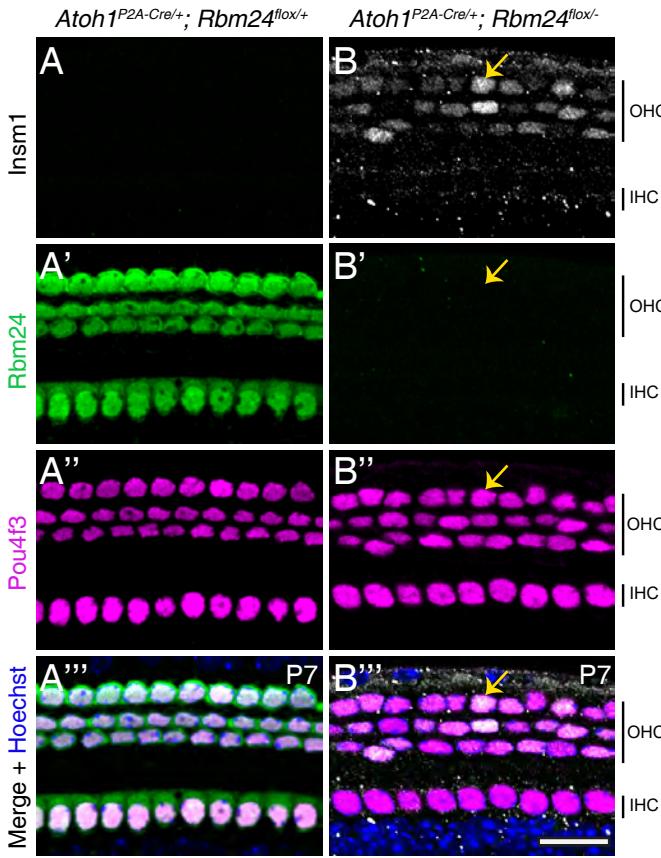
A

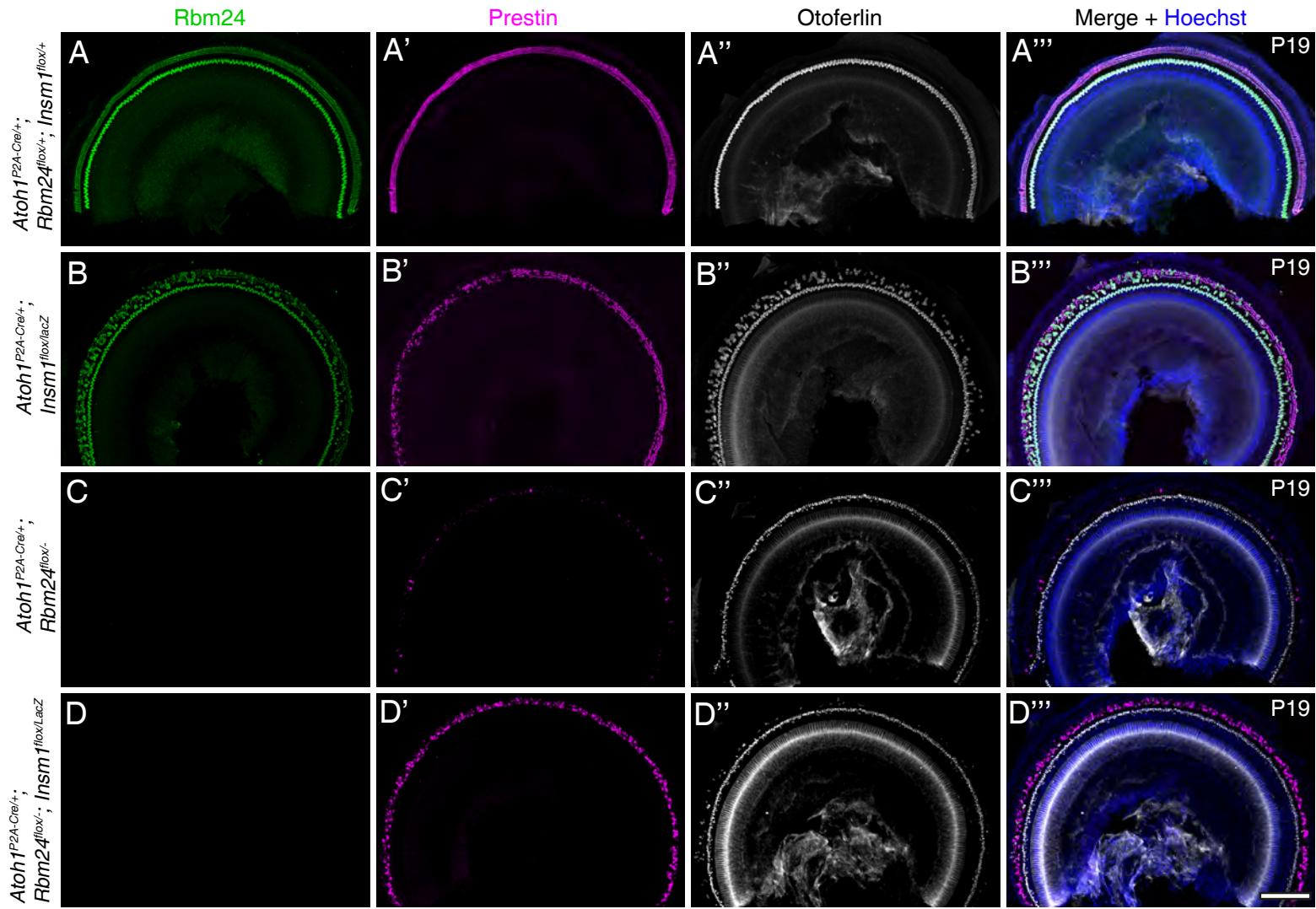

GO:0044782: cilium organization ↗
 GO:0098742: cell-cell adhesion via plasma-membrane adhesion molecules
 GO:0120035: regulation of plasma membrane bounded cell projection organization
 GO:0035759: mesangial cell-matrix adhesion
 GO:0033986: response to methanol
 GO:0050803: regulation of synapse structure or activity
 GO:0000902: cell morphogenesis
 R-MMU-9670095: Inhibition of DNA recombination at telomere
 GO:0003351: epithelial cilium movement involved in extracellular fluid movement
 GO:0060632: regulation of microtubule-based movement
 GO:0045216: cell-cell junction organization
 GO:0061966: establishment of left/right asymmetry
 GO:0003382: epithelial cell morphogenesis
 GO:0019226: transmission of nerve impulse
 GO:0099560: synaptic membrane adhesion
 GO:0099537: trans-synaptic signaling
 GO:0034331: cell junction maintenance
 GO:0022604: regulation of cell morphogenesis
 GO:0071392: cellular response to estradiol stimulus
 GO:0019060: intracellular transport of viral protein in host cell

B



GO:0044782: cilium organization ↗
 GO:0003352: regulation of cilium movement
 R-MMU-9670095: Inhibition of DNA recombination at telomere
 GO:0070286: axonemal dynein complex assembly
 GO:0060972: left/right pattern formation
 GO:0007618: mating
 GO:0090660: cerebrospinal fluid circulation
 GO:0016052: carbohydrate catabolic process
 mmu04814: Motor proteins - *Mus musculus* (house mouse)
 GO:0035759: mesangial cell-matrix adhesion
 GO:1904158: axonemal central apparatus assembly
 GO:0060491: regulation of cell projection assembly
 R-MMU-5620924: intraflagellar transport
 GO:0018200: peptidyl-glutamic acid modification
 GO:0060287: epithelial cilium movement involved in determination of left/right asymmetry
 GO:0050807: regulation of synapse organization
 GO:0099637: neurotransmitter receptor transport
 GO:0007156: homophilic cell adhesion via plasma membrane adhesion molecules
 GO:1905244: regulation of modification of synaptic structure
 GO:0046697: decidualization





C


D

Supplemental Figure 2

Supplemental Figure 3

