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Abstract

This study presents a novel approach to understanding DNA movement dynamics through the
development of a droplet-based, high-efficient chromatin conformation capture method, known
as DropHiChew, and a new algorithm, loop velocity. DropHiChew, a user-friendly and cost-
effective technique, employs the 10X single-cell systems allowing for easy experimental
implementation. The loop velocity algorithm, on the other hand, enables the estimation of the
speed and direction of cell devel opment, providing a dynamic perspective on chromatin
movement. Even with shallow sequencing, our loop velocity algorithm accurately gauges the
trajectory of DNA motion and cellular states. The combined use of DropHiChew and loop
velocity offers potential for awide array of applicationsin future chromatin capture studies,

including disease modeling, cellular differentiation studies, and devel opmental biology.

| ntroduction

Chromatin conformation refers to the way DNA is arranged in three dimensions within the
nucleus of acell. It plays acrucial role in controlling gene expression and other cellular
processes. Understanding chromatin conformation isimportant because it helps us understand
how the genome is organized and how different regions of DNA interact with each other.
Studying chromatin conformation is significant in the context of both disease and biological
research. Abnormalities in chromatin conformation have been linked to various diseases,
including cancer and genetic disorders'. By unraveling the complexities of chromatin
conformation, researchers can gain a better understanding of the underlying mechanismsdriving

these diseases and potentially discover new treatment targets.
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Scientists have been diligently studying the dynamic folding of the genome within the cell
nucleus over the years. It's been found that DNA is extruded into loop structures with the help of
CTCF and cohesin®. This ongoing loop extrusion forms a more complex structure referred to as a
topological association domain (TAD)®. The genome is then organized based on its proximity to
the nucleus membrane, forming the constitutive lamin-associated domain (cLAD) and
constitutive inter-lamin-associated domain (ciLAD). Notably, these domains have shown a
strong correlation with the AB compartment in HiC experiments’. However, many of these
structures are defined from a static perspective and average phenotype bulk sample. Given that
DNA is highly dynamic within cells, we aim to observe the genome from dynamic viewpoints,
which will greatly broaden our understanding of genomes. To investigate the dynamic actions of

the genome, we require single-cell resolution to estimate movement in each cellular state.

Addressing a key challenge, scientists have created a method named single nucleus HiC (scHiC).
This groundbreaking technique enables the examination of chromatin conformation at the level

of individual nuclel, which helps reconstruct the 3D structure of chromatin. Thefirst version of
scHiC featured biotin enrichment to amplify interactions, using a procedure similar to
conventional HiC®. Thisinvolved genome digestion using a particular enzyme, adding biotin into
the ends, and connecting proximal fragments. Paired-end sequencing was then applied to identify
interactions between these fragments. It was later found, though, that biotin enrichment in single

nucle led to fragment loss, which impacted the resolution of observed chromatin conformations.

In response to this challenge, researchers developed a method known as Dip-C®. This approach
eliminates the requirement for biotin incorporation and purification, enabling whole-genome

sequencing without any DNA loss during the purification process. However, the solution does
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impact sequencing depth, resulting in over 90% of sequencing data being unutilized and only 8%
of data providing valuable contact. In fact, most single-cell 3C techniques in common use today

are based on the Dip-C concept.

Our laboratory recently developed snHiChew, a cutting-edge method using methyltransferase to
label the ligation scar (GATC pattern) after PCR in Dip-C, effectively boosting the efficiency to
45% valid pairs - currently the highest efficiency in single-cell chromatin capture technology.
While impressive, these techniques require labs to design their cellular barcodes and apply the
split-pool method for cell l1abeling. Therefore, we're on aquest for a more straightforward and

cost-effective approach that can yield positive results for the majority of labs.

As we fine-tune our experimental procedures, it's equally important to develop an algorithm that
interprets DNA motion and sets parameters around velocity for a dynamic view of the genome.
Thiswill enhance our grasp of the biological impacts of chromatin movement, such as shiftsin
the AB compartment and TAD transitions. More crucially, understanding genome velocity could
lead to more accurate forecasts of DNA's future position, which can help determine the
upcoming cellular state. In contrast, RNA dynamics have awell-documented history *. Both our
team and othersin the field typically use intron-rich RNA to signify RNA synthesis, and exon-
depleted RNA to denote RNA degradation. This method allows us to gauge the rate of individual

RNA production and degradation, which could be used to predict cellular fate.

Although using introns as indicators of nascent RNA speed isindirect and potentially biased®, it's
a necessary approximation at this point. However, the scientific community is continuously
seeking to refine algorithms and methodologies for a more accurate estimation of nascent RNA

expression”™.
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On the other hand, measuring DNA movement gives us a direct insight into the distance travelled
from one location to another. By using a differential equation over time, we can get a more
precise speed estimate. This could potentially be the first accurate distance-based velocity
estimation in single cell studies, if confirmed. So far, there's no existing research on how to

calculate DNA movement velocity.

Our research isfocused on finding practical and cost-effective ways to extend our knowledge of
the DNA dynamic movement. We've put to use the 10X single-cell systems to develop a user-
friendly, droplet-based chromatin conformation capture technique called DropHiChew. This
efficient process involves digesting single nuclel with enzymes, ligating nearby fragments,
attaching adaptor sequences using Tn5, and packaging single cells with barcode gel beads via the
10X chromium system. After this, we carry out in-droplet reverse crosslinking and label each
nucleus DNA with a barcode through linear amplification. Given that the 10X single cell system
usually yields thousands of cells, a budget of 2M per cell could be beyond the budget for many
labs. To capture the movement of DNA in depth, we've crafted a new algorithm, loop velocity,
based on loop extrusion models. Our research indicates that even with shallow sequencing (50k
contacts per cells), we can accurately gauge the speed and direction of cell devel opment using
our loop velocity algorithm. We're confident that this method has great potential for diverse

applicationsin future chromatin capture studies.

Results

Experimental design of DropHiChew
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Droplet-based platforms like 10X Genomics and MGl C4 are leading the way in the single-cell
field, bringing these experiments within reach for many labs. However, these platforms haven't
been used for single cell chromatin conformation capture (3C) experiments yet, which makes
single cell 3C less accessible for most researchers. Considering the cost of sequencing the whole
genome in Dip-C, we aim to enrich the valid pairs after PCR. Thisway, we can maintain a

bal ance between capture sensitivity and cost-effectiveness. To achieve this, we plan on using
dam methyltransferase to label ligation scars (GATC pattern, digested by Dpnll in previous step),
then enrich the ligation scar by methylation immunoprecipitation (cite). But, there is a significant
constraint when using this approach on commercial systems. The adaptor sequence or barcode
sequence needs to avoid the GATC pattern, otherwise, these sequences will also be captured
during the enrichment step, leading to a considerable barcode bias. Given that 10X Genomics
uses random sequencing, 5% of barcodes have GATC, and MGI C4 has around 7% of barcodes
containing GATC. This high prevalence of GATC-containing barcodes poses a challenge for

implementing HiChew on commercial platforms.

We've developed a solution to this problem with our DropHiChew design(Figurel.A) . After in
situ genome digestion by Dpnll (GATC pattern) and promaxite ligation (ligation scar-GATC
pattern), the cells are transposoned using the Tn5 adaptor in the kits (step 1-3). These cells are

then loaded into the 10X platform with the sSCATAC-seq program (step 4).

GEL beads, which carry barcoded primers, encapsulate the cell within adroplet(Figurel.A). A
linear PCR isthen performed to attach the barcode primer to the adapted DNA fragments. After
the droplet has been emulsified, we amplify the DNA library using PCR to guarantee a sufficient

amount of DNA.
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We use a unigue technique to increase the concentration of the 3C ligation scar (GATC)
(Figurel.A). Thisinvolves employing two universal primersin PCR, one with several
phosphorothioate bonds and another without. These bonds are resistant to exonuclease digestion.
Subsequently, we use the T7 exonuclease to break down the plus strand DNA, leaving the minus
strand DNAs intact. The another primer that avoids the barcoding region is then used to extend
on the single strand DNA and create a double strand DNA with a single strand barcode at the end
(partial extension) (step 5-6). The dam methyltransferase (GAMTC) can only act on the double
strand DNA, alowing the single strand barcode to escape the methyltransferase modification
(step 7). As aresult, only the ligation scar with GATC can be modified. We then carry out
methylation-specific immunoprecipitation to enrich the GATC ligation scar. Finally, we assess

the DropHiChew design to confirm if it successfully enriches the fragment with the ligation scar.

Evaluation of the DropHiChew

In order to assess the effectiveness of DropHiChew on single cell differentiation, we conducted a
mix of HEK293 cells and mouse 3T3 cellsin equal proportions(Figurel.B). Upon final analysis,
we identified 1129 cells as human and 1610 cells as mouse, with 113 cells classified as doublets.

This doublet rate aligns with the 10X parameter of a0.04 collision rate.

We've performed further deep sequencing of individual cellsin HEK293, improving our
validation process. This resulted in a remarkable 6864 cells per reaction, 100K valid contacts per
cdl, and 24K unique valid pairs (dedup) per cdl, with a duplication rate of 74% (Sfigl.A). The
cis-transratio was 1. After debarcoding, we examined the potential for a GATC biasin barcode
detection due to GATC enrichment. But our design is ready for this. Our investigation revealed

the GATC barcode accounted for 5%, which is cons stent with the percentage of the 10xATAC
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published whitelist (Figure.1C). Thisimplies that the capture biasin DropHiChew is not
considerable. For a deeper understanding, we compared GATC barcodes with control AGCT and
CATG barcodes. GATC barcodes only had a 21.4% higher read number than control AGCT,
CATG barcodes, which is a considerable advancement from our control method that was fully
methylation labeled without avoiding barcode (78%) (Sfig.1B). In addition, when comparing the
ratio of valid pairs, which indicates the enrichment efficiency on these different barcodes, the
difference was minimal, suggesting similar enrichment efficiency with or without GATC in
barcode (Sfig.1B). All these observations indicate that DropHiChew doesn't introduce a

significant enrichment bias with GATC or non-GATC barcodes.

When evaluating data usage efficiency of a 3C experiment, it's standard practice to consider the
valid pair ratio (valid pairgqualified reads). Thisis akey measure of the experiment's success.
Here, snHiC delivers an impressive mean valid pair ratio of 63.4% (Figurel.D). Following
closaly, snHiChew presents a respectable 45.7% ratio. DropHiChew also performs well with a
30.3% ratio, while Dip-C shows a 18% valid pair ratio. In contrast, DropHiChew without
ligation scar enrichment, which mirrors Dip-C performance on the 10X platform, yields only an
11.7% ratio. This could imply that the 10X droplet platform may affect chromatin capture
efficiency compared to the plate-based Dip-C. It's also worth noting that the unenrichment

method can result in as much as 88% data usage wastage.

While our valid pair ratio is high, we must consider potential duplicate reads that aren't useful for
our analysis. After removing these duplicates, we mapped the unique valid pairs across different
sequencing depths of individual cells (Figure 1.E). Both DropHiChew and snHiC generated up to

5 times fewer contacts per cell compared to HiChew at 1.6M sequencing reads. The performance
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of DropHiChew aligns closely with snHiC, reaching the plateau of unique valid pairs rapidly
around 50K. This suggests that, like snHiC, DropHiChew might be missing a significant number
of contacts, which could affect capture sensitivity. The majority of steps between HiChew and
DropHiChew are the same, except for DropHiChew using Tn5 for adaptor attachment.
Comparing the impact of Tn5 on crosslinked and non-crosslinked cells indicates that Tn5 might
have difficulties efficiently attacking the crosslinked genome, potentially causing some DNA

loss during the process (Sfigl.C).

We've taken a detailed look at DropHiChew's performance by aggregating cell dataas a
simulated bulk sample and comparing it with HiC. The distance decay curves for both
DropHiChew and HiC were notably similar (Sfigl.D). When we examined various resolutions
on the contact heat map, from AB compartmentsto TAD, DropHiChew exhibited a correlation
of 0.82 and 0.77 in compartment eigen value and TAD insulation score distribution respectively
(Figurel.F, Sfigl.EF). Overall, DropHiChew's results align well with the standards set by regular

HiC experiments.

To sum it up, DropHiChew offers a viable and commercially sustainable solution for handling
large quantities of cells, although it does have a restricted range of valid contacts per cell.
Despite this, we're confident that the limited contact depth won't prevent us from tracking DNA
movements. Consequently, we've developed a velocity algorithm that enables us to comprehend

the dynamic movements of DNA, even with shallow sequencing.

Theloop velocity development and the TAD dynamic model
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Recent studies *° ***” have shown that changes in TAD insulation or other structures during gene
expression can offer valuable insights into chromatin motion during cellular development.
However, even if the DNA does move, the speed cannot be simply determined by dividing the
distance by time due to unknown time factors. Thus, the velocity of DNA movement can only be
estimated using mathematical models. Despite these advancements, our understanding of kinetic

modeling of DNA still has room for growth.

The Hi-C matrix allows us to visualize structures like TADs as beads in a 3D model, showcasing
their high interaction frequencies. TADs are known for these frequencies, particularly their
distinct boundaries created by significant interaction overlap in cells within these regions. These
TAD boundaries often coincide with CTCF binding sites, sparking a lot of academic interest™.
This correlation, backed by experimental findings®*®, led to the development of the loop

extrusion modd!.

In the loop extrusion model, SMC protein complexes like cohesin bind to DNA and start
extrusion (Figure2.A). Here, DNA moves through these cohesin rings, forming aloop. This
extrusion is limited on one side by the DNA's initiation boundary, blocked by CTCF binding.
The initiation boundary (I boundary) remains fixed, while the other stabilizing boundary (S
boundary) moves towards the cohesin, until aloop structure forms. After this, the cohesin
unloads, and the TAD disassembles. For example, in a selected region of 43MB-44MB and the
Human Embryonic Kidney (HEK) cells, we observed interactions starting at the initiation
boundary and gradually shifting to the stabilizing boundary (Sfig.2A). These observations further

support the loop extrusion model.

10
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Based on our observations and existing theories, we propose a hypothesis that variability
suggests that the process of a TAD forming with loop extrusion theory within acell can be

likened to a domain generating, stabilizing, and disassembling within a set range (Figurel.A).

The hypothesis we're examining provides a foundation for developing loop velocity. The
subsequent inquiry is how to create the mathematical model. Previous studies have suggested
that RNA velocity is estimated by athree-state model that includes RNA transcription (nascent
unspliced RNAS), a steady state, and RNA degradation (degrading spliced RNAs). These three
states of RNA velocity constitute what we refer to as the spindle model, with the steady state
playing avital role in this arrangement. Interestingly, these three RNA states align with the

domain generation, stabilization, and disassembly states within TADs that we've discussed.

We've analyzed a sample region (Chr3:4203750~43062500), and looked into the interaction
distribution with both the initiation and stabilizing boundaries within each cell (Figure2.B). The
data suggests that these cellular processes contribute to the formation of a spindle model. The
upper red curve represents an increase in contact with initiation boundary over time, indicative of
domain generation. Conversely, the lower black curve shows a progressive decrease in contact
with the stabilizing boundary, indicating disassembly. The intersection point represents the
stabilization phase, analogous to the steady state seen in the RNA mode. This flawless spindle

model paves the way for the development of aloop velocity algorithm.

We propose that the frequency of contact formation with the initiation boundary per unit time
during loop extrusion isa constant, o (Figure2.A). Asthe loop continues to wind and roll away
from the initiation boundary moving towards the stabilizing boundary on the other side, thereisa

decrease in contacts with the initiation boundary, a speed we've set to .

11
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At theinitiation boundary, the decrease in contacts corresponds to a potential increase in contacts
at the stabilizing boundary. Once the other stabilizing boundary with CTCF meets the cohesin, a
stabilized TAD isformed. After this, the cohesin is unloaded from the DNA, and the DNA

continues to unwind into space - the internal contacts decrease at speed vy.

From this one-sided loop extrusion process, we can derive the following ordinary differential

equations (ODE):

di/dt=a-BI(t), (1)

dS/at=pI(t)-yS(t), (2)

Here, o denotes the constant that generates contact at the initiation boundary, while p signifies
the rate at which active contact is reduced at the initiation boundary during loop formation.
Meanwhile, y represents the rate of passive contact reduction. The term di/dt refersto the
interaction with theinitiation boundary per unit of time, while dS/dt denotes the stabilizing
boundary per unit of time. I(t) indicates the number of contacts with the initiation boundary at
time point t, and S(t) corresponds to the number of contacts with the stabilizing boundary at the

same time point.

To determine the unknown parameters a, , and y, we infer them once astable TAD is
established in a steady state. During this stability, the DNA loop extrusion and winding process
halts, and the extrusion speed relative to the two edges approaches zero (Figure2.B). At this point,
both dI/dt and dS/dt are zero. This parameter estimation processis akin to the one used in RNA
velocity. We set 3 to 1, meaning we measure all rates in terms of the reduction rate. Following

some equation transformation, y turns out to be I(t)/S(t), indicative of the dot plot's slope, which

12


https://doi.org/10.1101/2024.06.26.600744
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.26.600744; this version posted June 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

we can estimate via linear regression. We then solve for a. Having calculated all the parameters,

we can estimate the subsequent cdllular state through velocity calculation.

To sum up, you can find the derivation of the complete equation and parametersin the
supplementary notes of RNA velocity and Region velocity, which make use of the ODE equation
and the steady state resolution method. This velocity model, which we've decided to call Loop

velocity, uniquely uses Hi-C TAD features and integrates the loop extrusion concept.

Perform the loop velocity on the HEK 293 cells from DropHiChew

Initially, we apply loop velocity to HEK 293 cells from DropHiChew, examining the
functionality of alphaand gammafactors for velocity prediction. We've identified xxx TADs
from these cells, aiming to determine a relationship between loop movement and time. The cells
timeis represented by replication scores, which indicate progression from early to late
replication stages. Following this, we compute average interactions within initiation and
stabilization boundaries of selected TADs (Figure2.C, Sfig2.B). We observed a contrasting trend
of both boundaries with replication states from early to late stages, indicating a significant
correlation between interaction movement and development time. This strongly supports the

spindle model previously discussed.

We then looked at the |_S dot plot for spindle models across different regions (Sfig2.C) and saw
that 57% of TAD regions could form the modd (Figure2.D), suggesting a potential link with
time. Thisis asignificant improvement over RNA velocity. The limitations of RNA velocity
come from its dependence on short read sequencing from 10X scRNA, which hampersits ability

to capture intron readsin RNAs. We've previously mentioned that this could lead to a

13
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considerable underestimation of introns and prevent several genes from forming the spindle-like
model, which could distort RNA velocity predictions®. On the other hand, loop velocity aligns
well with the spindle model and enables the analysis of more TADs (57%) (Figure2.E),

enhancing prediction accuracy based on our observation.

We assessed the alpha gamma for each relevant TAD. Our model suggests that a higher alpha
value points to a quicker establishment of contacts, while a heightened gamma value signifies a
faster pace of TAD dissolution. Additionally, we delved into the possibility of aphaand gamma

being associated with genome organi zation aspects.

Our research suggests that TADs in the A compartment typically exhibit a significantly higher
alpha value compared to those in the B compartment (Figure2.F). A global correlation of 0.4
between alpha values and eigenval ues underscores this noteworthy relationship (Figure2.G).
Furthermore, TADs with high chromatin accessibility and other markers of active histone also
present significantly higher alpha values, aligning with the established correlation between
eigenvalue and active transcription (Sfig2.D). This leads usto infer that apha, indicative of TAD

generation speed, may have a close association with eigenvalue and chromatin activity.

Interestingly, we observed that gamma, representing the speed of TAD dissolution, delivered
contrasting results. It was considerably lower in the A compartment and active histone markers,
albeit not as significantly as alpha's correlation (Sfig2.D). The most robust correlation was seen
with boundary strength, a factor that depicts TAD stability (Figure.2F). A correlation of -0.2
suggested that TADs with higher boundary strength dissolve more slowly, which makes sense.

Further exploration of the boundary strength-related factor, CTCF, revealed a negative

14
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association with the gamma factor (Sfig2.D). Thisimplies that the speed of TAD dissolution

(gamma) has a weak negative relationship with both CTCF signal and boundary strength.

Once we've figured out the alpha gamma for each TAD, we'll check if the velocity we've
calculated can forecast the genome organization's next virtual time point. We'll then condense
thisinformation into a 2D UMAP to highlight the upcoming time point for the cell state. Within
this UMAP plot, welll use color gradients to denote replication scores, transitioning from early to
late replication stages (Figure.2H). When we took alook at the loop velocity, 60% DNA
movement directions met our expectations (Sfig.4A). We then estimated the expected velocity
direction and compared that with the actual direction in real cells. Our findings showed a
significant correlation, with 80% of the predicted movement directions lining up with what we
expected. This suggests that the alpha gamma can effectively capture and predict the state of

biological processes.

In conclusion, our studies indicate that our dynamic models, integrating loop velocity, can
efficiently predict cellular development direction in cultured cells. These parameters with

velocity could provide a more dynamic representation for TAD.

Perform DropHiChew for sper miogenesis cell in testis

RNA velocity has gained acceptance due to its trandation activity. The key question for loop
velocity is understanding its role in driving phenotypes. To examine how loop velocity impacts
cell differentiation over time, we selected the mouse testis spermiogenesis model dueto its rapid
phenotype changes. Thismodel also conveniently omits the mitosis process, which allows usto

study loop velocity's influence on spermiogenesis without the complication of cell cycle-related
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genome compaction. An added benefit of utilizing spermiogenesis cellsis their unidirectional
cell differentiation. They transition from diploid cells, like pachytene spermatocytes, into haploid

cells such as round spermatids and elongating spermatids (Figure 3.A).

Following our established protocol, we prepared a single cell suspension from four adult testes
and performed DropHiChew on these spermiogenesis cells. The cell filter was configured

according to the method section.

Our experiment led to the detection of around 5618 cells, each with an average of 74k contacts
and a duplication rate of 67%. With avalid pair ratio of approximately 35.8%, the results were

comparable to our earlier assessment with HEK293T.

We then utilized the UMAP method to map and cluster cells to evaluate the effectiveness of
DropHiChew in cell type classification and velocity prediction (Figure3.B). Without sScRNA-seq,
it becomes a challenge to use structural properties for reliable cell type classification. A key
feature of meiosis isthe significant change in chromosome copy number from diploid to haploid.
By using the diploid scores, we can confidently distinguish between diploid spermatogenic cells
(such as pachytenes and earlier cells) and haploid spermatids (round and elongating spermatids).

However, we could not confidently differentiate the round spermatids and €longating spermatids.

In order to better ascertain the accuracy of the cell types, we merged the haploid spermatids and
compared the contact map with control bulk samples that were FACS sorted. We observed a
striking similarity in eigenvalues and insulation scores, which demonstrates the high quality of
our data (Sfig3.A). Interestingly, we observed an increase in the frequency of long-distance

interactions (greater than 20kb) in round spermatids(Sfig3.B), afinding that aligns with
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previously published results. This could be aresult of genome compaction during

Spermiogenesis.

Once we had a clear idea of the expected cell devel opment direction, we incorporated |oop
velocity into our spermiogenesis data. This allowed usto determineif we could predict the

development direction accurately.

The loop velocity accurately predict the development dir ection of the

Sper miogenesis

We've identified 2986 Topologically Associating Domains (TADs) within the spermiogenesis
cells. Our research indicates that half of these TADs show an |_S plot spindle score above 0.4,
implying a significant number of suitable objects for determining loop velocity. Our analysis
suggests that loop velocity, when examined using spermatogenesis data, is areliable predictor of
the expected meiosis direction, transitioning from diploid spermatogenic cells to haploid
spermatids (Figure3.B). Interestingly, prior research noted an unexpected direction when using
scRNA-seq, potentially due to the short reads from scRNA underestimating the nascent RNA
portion®. Given the strong predictability of spermiogenesis development, we performed a global
guantification to assess our accuracy. The results demonstrated that |oop velocity accurately
predicted the expected DNA movement direction over 70% of the cases (Sfig.4A),

outperforming the velocity of SSRNA-seq®.

The process of spermiogenesis serves as an excellent model for understanding the concept of
loop velocity, given the significant changes it induces in phenotype and gene expression. While

RNA velocity is generally more accepted by the scientific community, thisis largely becauseit's
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understood that RNA influences cell development by trandlating into proteins that affect
phenotype. To truly grasp the biological rationale of loop velocity in cellular prediction, it's
crucial to identify key TADs that drive development and investigate their functionality. It seems
that the speed or direction of prediction arrows is influenced by the weight of each TAD's
predictive functions. Existing research implies that the expression of certain RNAS, especially
those showing spindle-like dynamics (referred to as spindle model likelihood), may carry
significant weight in these predictive functions’. Using similar methods, we've identified these

key TADs as'driver TADS.

We've identified approximately 1000 'driver TADs, with the xxx gene located within them
(likelihood>0.7) (Sfig.3C). Thedriver TADs exhibit a significantly higher eigenvalue than the
control non-driver TADs, which suggests they may be active in transcription (Figure3.C).
Interestingly, most of the driver genes are found in the sex chromosome and play arolein
spermatogenesis (Sfig3.D). Upon closer examination, we found a 64% overlap with previously
identified spermatogenesis driver genes (Sfig3.D). These genes show a distinct transcription
pattern, contributing significantly to spermiogenesis progression. This strengthens the idea of the
transcriptional activity of the driver TADs. Furthermore, it suggests that driver TADs might
influence biological systems through their internal genes. To better understand their biological
implications, we conducted a Gene Ontology (GO) term analysis on the genes located within the
driver TADs (Figure3.D). The majority of these genes are involved in spermatogenesis-rel ated
processes, such as spermatid development and sperm DNA condensation. Interestingly, unlike
housekeeping genesin cells that express steadily, these spermatogenesis-related genes vary in
expression in different cells depending on the process. Overall, these findings suggest that driver

TADs may enhance cellular development by promoting the expression of internal genes.
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Driver TADs, if they correlate strongly with internal driver gene expression, should fluctuate in
sync with gene expression, potentially driving the process of spermatogenesis. Our comparison
of driver and non-driver TADs showed that driver TADs are significantly smaller, with a median
size of 237kb (Figure.3E). Thisisanticipated, as larger TADs tend to maintain stable structures
across different cell types, as indicated by previous research. On the other hand, we propose that
smaller TADs may have a greater capacity for movement, which could facilitate internal gene

expression.

Examining the driver TAD of two spermatogenesis stages revealed that the genome within these
TADs experienced considerable movement around the boundary, which aligns with our
expectations based on spindle movement (I_S plot) (Figure3.F, Sfig3E). In contrast, genomes
within non-driver TADs displayed random, scattered movement. While these movements could
be indirectly inferred from the a pha gamma factors, non-driver TADs couldn't calculate the

alpha gamma.

We conducted a study comparing driver TADs influencing spermiogenesis with those affecting
the HEK293T cycle, to understand the volatility of motion. We found a significant difference
(p_value<2e-16) with a 1.3fold change in the gamma (Figure.3G). It's important to note that the
gamma, which is the slope of the spindle model inthel_Splot, isinversely proportional to the
insulation score. Therefore, an increase in gamma suggests larger and quicker shiftsin genome
movement. Thisindicates that driver TADs involved in spermatogenesis undergo more variable
changes than those associated with the cell cycle. This could potentially explain why the speed

arrows in the HEK's were noticeably shorter than in the spermiogenesis model, due to the smaller
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gamma. Therefore, driver TADs are smaller and have a higher amplitude of DNA motion, which

could possibly facilitate dynamic internal gene promotion during spermiogenesis.

However, we still need direct evidence that dynamic DNA movement directly relates to gene

expression, which is something we could explore in the multiomics 3C data bel ow.

In essence, loop velocity iskey in forecasting spermatogenesi s progression and pinpointing the
leading TADs in chromatin remodeling. It's quite likely that these driver TADs modified internal
genome structures to encourage cell differentiation by changing gene expression within the

TADs.

Theloop velocity accurately predict the development dir ection of the embryonic

stem cdlls

To better understand the link between chromatin movement and gene expression, it's beneficial
to have single cell data that includes both RNA and chromatin conformation. The HIRES
technology, as previously described, offers embryonic data that sequences RNA and HiC in
single cells™. This dataset isideal for examining the relationship between RNA velocity and
loop velocity. Additionally, the embryonic stem cell data, gathered over different embryonic

days, provides an opportunity to verify the precision of velocity prediction by embryonic days.

We have downloaded both RNA and HiC embryonic stem cell data for embryonic days 7.0 (E7.0)
to E11.5. Around 7469 cells passed filters for both data types, yielding 2.8 billion DNA contacts.

The embryonic day can be used as atime indicator to evaluate the accuracy of our predictions™.
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We implemented the loop velocity on the embryonic stem cell UMAP. Some directions align
correctly, transitioning from the early to the later embryonic days (indicated by the black dash
square)(Figure.4A). However, the map's central direction doesn't appear to be accurate. Upon
detailed analysis, we observed that this UM AP region amalgamates both early and late
embryonic cells, which are not distinctly segregated. This factor could potentially account for the

diminished performance.

We've also run the RNA velocity test for comparison (see Figure.4B). The findings suggest that
RNA velocity didn't perform as well as loop velocity, even in areas with clear separation
(indicated by the black dashed square). When we calculated the global direction in loop velocity,
we found that more than half of the DNA movement predictions were heading in the same

direction in the anticipated cells (Sfig.4A).

Our team performed a GO term analysis within the driver TADs to pinpoint the specific TADs
impacting prediction speed (Sfig.4B). We observed a heightened enrichment of genes linked
with the immune system and monocyte differentiation. These findings imply that the dynamic

models are capable of accurately forecasting the cell differentiation process.

Considering that driving TADs may encourage cell state viainternal gene expression, we still
lack direct evidence. Embryonic studies, using s multaneous RNA and 3C data from the same
cdll, have provided clearer insight into the potential relationship between DNA movement in
TADs and gene expression. We've pinpointed loop extrusion from the | boundary to the S
boundary. It seems that gene expression amplifies when interactions mainly occur at the
boundary (upper curve). Conversaly, when chromatin is primarily at the S boundary (lower

curve), gene expression diminishes (Sfig.4C). We notice significant expression changes when the
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chromatin shifts between these two boundaries (Sfig.4D). Further analysis shows that this pattern
is consistent in about 92% of TADSs, suggesting a strong correlation between gene expression

and chromatin movement.

In summary, we've introduced the concept of loop velocity through the simple experimental
system of DropHiChew. This novel approach allows us to introduce the dynamic parameters
alpha gamma to describe the dynamic movement of the TAD and predict the direction of cellular
development. Our loop velocity model has shown high predictive accuracy across various cell
types, including HEK 293 cdlls, spermatogenesis cells, and embryonic stem cells. Intriguingly,
our findings suggest that loop velocity not only predicts cellular development direction, but also
identifies driver TADs that influence this development through changing the gene expression
within TADs. This research provides valuable insights into the dynamics of chromatin
architecture within individual cells, offering a valuable tool for future studiesin cellular

devel opment.

Discussion

In the results section, we present the DropHiChew - the first commercial platform to incorporate
single cell 3C experiments. Our unigue approach to post-PCR enrichment technology
significantly improves data usage, achieving 4x the performance of Dip-C and making it more
accessible to general labs. S multaneously, we introduce the concept of loop velocity, an
innovative method to predict cellular development direction by examining the dynamics of

Topologically Associating Domains (TADs). With its accuracy in predicting cellular
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development direction, loop velocity also helped usidentify key TADs driving development,

providing fresh insights into the dynamics of chromatin architecture within individual cells.

We need to address a critical shortfall in our 3C experiment - the effectiveness of TnSin
crosslinked cells. Our observations showed that Tn5 underperformsin this context, leading to a
loss of many contacts. Furthermore, the natural process of Tn5 may also result in losing half the
contacts due to homologous attachment. In response to this, other researchers have refined the
problem and developed a method for the imputation of HiC contacts, allowing for ample single-

cell contacts for most uses.

Moreover, given the use of Tn5, it's natural to question whether Tn5 might create a bias towards
accessible regions. However, after comparing the HiChew(open/closeratio 0.1), a ligation-based
method , and DropHiChew (open/close ratio 0.02), a Tn5-based method, we didn't observe the
contact bias towards accessible regions. In fact, we found that Tn5 exhibits less preference for
the accessible region in the DropHiChew. Thisislikely due to heated SDS being able to resolve
most compact chromatins. The similarity of the contact maps further supports this point of
absence of bias towards accessible chromatin. However, there are differences that exist. We

believe that the limitations of Tn5 should be given more consideration in future 3C research.

The other shortage in this experiments, we used the Dpnll- Dam methyaltransferase to perform
the DropHiChew. Therefore, the digestion enzyme selection need the corresponding the
mehtylattransferase to labeling the ligation scar in order to perform the post PCR enrichment.
These combination selection is around 20 different enyzmes, which might limited your choice of
enzyme. Moreover, multiple enyzme digestion is not available for this method. therefore the high

resolution mapsis not achievable in the DropHiChew.
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In this project, we recognize that a reduced contact density could limit our ability to observe
detailed chromatin changes. Deep sequencing, while valuable for observing intricate structures,
may hinder many labs from processing numerous samples due to cost. So, the challenge we're
addressing is how to best utilize shallow sequencing of single cell HiC and take full advantage of
this accessible platform. To address this, we created a new algorithm, "loop velocity”, that
remains reliable even with fewer contacts and doesn't necessitate imputation. Furthermore, with
careful application, the alpha and gamma could potentially infer the compartment eigenvalue and
insulation score. Most notably, the movement momentum now carries biological significancein

the development analysis.

In the context of loop velocity applications, we discovered that the key to accurate resultsliesin
UMAP clustering. However, both our research and previous publications have shown that 3C
data doesn't differentiate as well as RNA-seq data at the single-cell level %%, |f 3C data can't
discern subtle changesin UMAP, it could lead to errorsin loop velocity. Consequently, there'sa
pressing need for more sophisticated clustering methods specifically designed for 3C.
Fortunately, recent advancementsin the field have seen the development of simultaneous
methods for detecting RNA expression and 3C in single cells. Alternatively, integrating two
different datasets can also provide better resolution in cell clustering, which forms a solid
foundation for loop velocity analysis. Moreover due to our system is deeply customzied to 10X
system, therefore this method could easily adapt to the 10X Chromium Single Cell Multiome
ATAC + Gene Expression system, which could smoutaniously detect the 3C and RNA

expression in the single cell.
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The interplay between genome folding in cell cycles and cell differentiation can beintricate, yet
it's essential, particularly in embryonic cells where these processes are happening at the same
time. We're primarily exploring whether cell differentiation or the cell cycleis more influential
in our predictions. As per our driver TAD analysis, TADs associated with cell differentiation
appear to hold the most predictive value. This could be attributed to these TADs typically having
higher gamma factors than those linked to the cell cycle. So, in our research, it seemsthat TADs
related to cell differentiation are the key determinants of prediction direction. Additionally, we
predict local speed using local neighboring data points on the UMAP. If the two kinds of driver

TADs don't vary simultaneously, they shouldn't interfere with each other in the analysis.

In the loop velocity theory, we discussed single-sided extrusion models. Y et, some scientists
might suggest that TAD forms from both sides?. To address this, we've also devel oped a two-
sided extrusion model, which you'll find in the supplemental notes for further exploration. We
used statistical teststo examine the contact density on both sides to determineif these TADs
resulted from one or two-sided extrusion. Interestingly, we found that 70% of TADsrely on one-
sided extrusion, with the remainder depending on two-sided extrusion. The one-sided model

could cover most of the TADs in our downstream analysis.

In previous studies involving the RNA veocity field, scientists identified noise issues resulting
from single cell RNA sequencing that impacted the accurate determination of nascent RNA. Asa
result, avariety of machine learning agorithms were developed to counterbalance this noise and
improve prediction accuracy. In our loop velocity, we experimented with the Expectation-
Maximization (EM) algorithm to evaluate potential performance enhancements. Our results,

however, did not indicate improved performance. In earlier RNA velocity research, it was
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identified that preset parameters derived from a perfect spindle mode (nascent/degrading RNAS)
can render the EM algorithm unnecessary. Our previous research utilized long-range sequencing
for precise nascent RNA identification, leading us to discover that sample quantile regression
proved to be robust under various conditions. Our findings from the loop velocity study indicated
that changes in the I-S boundary contact formed an ideal spindle mode. Therefore, simple
quantile regression demonstrated sufficient robustness, eliminating the need for more complex

machine learning algorithms.

In general, the loop velocity and the experimental DropHiChew provide a manageable approach

for most scientists to delve into DNA dynamics.

M ethod

Cell Culture

We cultured both HEK293T, a human embryonic kidney cell line expressing a mutant SV40
large T antigen, and 3T3, aline of mouse embryonic fibroblasts, in DMEM (Gibco, no.
11965092). This was supplemented with 10% FBS (Gibco, no. 10099141) and 1x penicillin-

streptomycin (Gibco no. 15140122), and maintained at 37 °C under 5% CO2.

Fixation protocol

The cells we collected were rinsed twice with cold PBS. We then cross-linked them in PBS
containing 1% FA (Thermo, No. 28908) for 10 minutes at room temperature. Afterwards, we
neutralized the reaction with 250 mM glycine for 5 minutes at room temperature. Finally, we

rinsed the cells twice again with cold PBS.
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Cell membrane penetration and chromatin decondensation

We resuspended the cell pellet in 500 pl of lysis buffer (containing 50 mM HEPES pH 7.4, 1
mM EDTA pH 8.0, 1 mM EGTA pH 8.0, 140 mM NaCl, 0.25% Triton X-100, 0.5% IGEPAL
CA-630, 10% glycerol, and a 1x protease inhibitor cocktail). We then let this sit onice for 10
minutes before centrifuging it at 500g for 3 minutes at 4°C. The sample was then washed once
with wash buffer (10 mM Tris-HCI pH 8, 1.5 mM EDTA, 1.5 mM EGTA, 200mM NaCl, 1x
protease inhibitor cocktail) and centrifuged again at 500g for 3 minutes at 4°C. We removed and

discarded the supernatant, and gave the pellet one more wash with 1x Dpnll buffer.

The supernatant was carefully removed once more, and the pellet was then resuspended in 199 pl
of 1.2xDpnll buffer, inclusive of 0.1% SDS. Following athorough stirring, the pellet was treated
in a65°C metal bath for a duration of 10 minutes, swiftly followed by a 2-minute cooling period

on ice. The process concluded with the addition of 10 ul of 20% Triton X-100, accompanied by a

15-minute incubation at 37°C with consistent agitation.

Enzyme Digestion and ligation

We started by adding 200U Dpnll (NEB, R0543L, final concentration 1U/pl) to the previous

reaction mix, giving it agood stir, and letting it react overnight at 37°C. Then, we added 2 ul of
the digestion reaction mix to 7 ul NF water and 1 ul proteinase K, and let it all react at 65°C for
an hour to break down the crosslinks. We checked the size of the DNA fragments using 1% gel

electrophoresis.

Next, we deactivated Dpnll by heating it at 65°C for 20 minutes. We then got rid of the

supernatant through centrifugation and resuspended the pellet in 195 ul 1xT4 DNA ligase buffer.
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We added 0.5ul of 2000 U/ul T4 DNA ligase (ABclonal, RK21500) to achieve afinal

concentration of 10 U/ul. After athorough mix, we let it react overnight at 16°C.

Finally, we took another 2 ul of this solution, added it to 7 ul NF water and 1 pl proteinase K,
broke down the crosslinks at 65°C for 1 hour, and confirmed the size of the bands using 1% gel

electrophoresis.

ChromiumNext GEM Single Cell ATAC

Nuclel were passed through a 40 um (pluriSelect, no. 43-10040-40) and a 10-pum (pluriSelect, no.
43-10020-60) mesh filter. Afterwards, theinstructions from the 10x Single Cell ATAC

Operation Manual were adhered to.

Methylation labeling and immunopr ecipitation

The outcome of the previous procedure was amplified via PCR using new P5 and P7 primersto
substitute the GTAC site and index at the PS5 end with CATC or others (P55’ - /phos/
AATGATACGGCGACCACCGACATCTACAC - 3 P7 primers with phosphorothioate bond 5°
- CAAGC*AGAAGACGGCATACGAGAT - 3'). Next, we added 1 ug of DNA to the reaction,
including 1 ul Lambda Exonuclease, 5 ul 10x Lambda Exonuclease Reaction Buffer, and water

up to 50 pl. This mixture was then incubated at 37°C for 30 minutes.

Afterwards, we purified the product and turned the remaining single strand into a double-strand
using ashort RN1 primer (RN1 primer 5-TCGTCGGCAGCGTCAG-3'). We then added 500 ng

of this purified, extended DNA to a reaction system composed of 5 pl 10xdam Methyltransferase
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Reaction Buffer, 0.25 ul 32 mM SAM, 1 ul dam methyltransferase, and enough water to make

up 50 ul in total. We incubated this at 37°C for 1 hour to mark the GATC site m6A methylation.

Next, we treated the Protein A/G beads: we rinsed 10 ul Protein A/G beads twice with 1X PBST
buffer containing 0.1% Tween 20, then re-suspended them in 50 pl SuperBlock™ Blocking
Buffer and incubated at room temperature for 15 minutes. We then washed the PA/G beads twice
with 1xIP buffer and re-suspended them in 48 pl 1xIP buffer. We added 2 ul m6A antibody to

thisand allowed it to rotate at 4°C overnight.

Finally, we washed the Protein A/G beads pre-bound with antibody with 1xIP buffer and re-
suspended them in 50 pul 1xIP buffer for later use. We diluted the purified DAM-labeled DNA to
40 pl with EB buffer, denatured it at 95°C for 5 minutes, and immediately placed it on ice for 2
minutes. We then added 10 pl of pre-chilled 5x IP buffer and 50 pl of pre-bound anti-m6A
Protein A/G beads to the deformed DNA and mixed thoroughly. This was incubated at 4°C with

rotation for 2 h.

We started by placing the beads on a magnetic stand and removing the supernatant. Next, we
gave the beads a quick wash with pre-chilled medium stringency RIPA buffer. The beads then
received two washes on ice with pre-chilled high stringency RIPA buffer. After pre-chilling, we
washed the beads once more with stringent RIPA buffer and gave them two final rinses with cold

1x IP buffer.

We then resuspended the magnetic beadsin 20 ul EB and added Qiagen protease to achieve a
final concentration of 0.05 U/ml. The mixture was incubated at 50°C for 30 minutes and then at

70°C for 15 minutes.

29


https://doi.org/10.1101/2024.06.26.600744
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

11

12

13

14

15

16

17

18

19

20

21

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.26.600744; this version posted June 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Following this, we added 30 pl of a PCR mix (25 ul KAPA HiF HotStart ReadyMix, 2 ul PS5
primer, 2 ul P7 primer, 1 ul water) and ran 10 cycles of amplification on a PCR instrument.

Finally, we purified the library with 1x Ampure XP beads.

Library Circulation and Sequencing

The library was prepared using the MGlEasy Cycling Kit (MGI, No. 1000005259), as per the kit
ingtructions. The product was then processed with the M GISEQ-2000RS High-throughput
Sequencing Kit (PE100) (MGI, No. 1000012554), for the creation of DNA nanoballs. These
were sequenced using the PE100+100+10+16 mode on the M GISEQ-2000 platform and T7 MGI

platform.

Preprocessing of DropHiChew datasets

We began by sorting the raw reads for each cell with our in-house script. Then, we aligned
single-cell Hi-C paired-end readsto either the hgl9 or mm10 reference genome using HiC-Pro
(v.3.1.0, default settings). This gave us HiC-Pro filtering and alignment metrics, valid pairs, and
contact matrices. We corrected the matrices with ice_norm. We created contact matrices for each

chromosome at resolutions from 10kb to 1Mb for more detailed analysis.

To estimate the number of valid cellsin the DropHiChew data, we used a barcode rank plot to
pinpoint the steep drop-off pattern that distinguishes valid cells from background noise. We
plotted all detected DropHiChew barcodes in descending order by the number of nonduplicated
valid pairslinked to each barcode. The R package kneedle helped us identify the transition
between valid cells and non-cell barcodes. We then used the data associated with the valid cells

for additional analysis.
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Comparison of pseudo bulk chromatin ar chitecture datasets

We've taken alook at important metrics such asthe cig/trans ratio, valid pair ratio, valid pair dup,
among others from the HiC-Pro statistical outputs. To give you a clearer picture, the valid pair
ratio is calculated by dividing the valid pairs (before duplication removal) by the reported pair
from HiC-Pro. This method effectively illustrates the enrichment efficiency. On the other hand,
the valid pair dup refers to the duplicated portion of valid pairs, as identified by HiC-Pro,

providing an indication of the level of sequencing saturation.

To study the pattern of the contact matrix, we initially compiled the nonduplicated valid pairs
from every cell and transformed them into mcool files with the help of the cooler tool (v0.8.2).
Following this, we utilized the Hi CExperiment (v1.2.0) R package to conduct a comparative
analysisin pairs at various contact map resolutions. This analysis provides a deeper
understanding of Hi-C features at the levels of the entire genome, specific chromosomes,

topological associated domains (TAD), and chromatin loops.

We evaluated the correlation of contact matrices at both chromosomal and TAD levels by
utilizing genome-wide eigenvector scores (compartment score) and TAD insulation score, as
determined by Cooltools (v0.4.1). Following this, the correlation was calculated using our own R
scripts and the Pearson methods. To conclude, the contact distance decay curve was determined

using HiCExplorer (v3.7.2).

DropHiChew collision rate estimation

The data from the snHiChew HEK293T-NIH3T3 mix was processed using a combined genome

of hg19 and mm10. This was done using the standard snHiChew preprocessing methods. We
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utilised nonduplicated valid pairsin the cell rank plot to spot a sharp decline, identifying the
empty cell barcodes. If a minimum of 89% of nonduplicated valid pairs were linked to hgl9, we
tagged the valid cell barcodes as HEK293T. We did the same for NIH3T3, tagging them if 89%

of pairs were linked to mm10. Any remaining valid cell barcodes were considered as doublets.

Clustering of DropHiChew data in HEK293T-NIH3T3 mixture data

We've grouped the corresponding pairs related to the annotated HEK293T and NIH3T3 céll
barcodes. The dimensionality reduction calculations were carried out using Higashi %, with
standard settingsin place. For UMAP clustering, we applied thefirst 15 principal components of
the Higashi embeddings. The parameters were set to “n_neighbors=5, min_dist=0.01,

metric="correlation".

Comparison of single cell chromatin architectur e datasets

We've taken alook at how DropHiChew's chromatin architecture data stacks up against data
from snHiChew, Dip-C and snHi-C. These are all well-respected single-cell chromatin
conformation capture technologies. The datasets we used for this comparison come from the
National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO), under

the codes GSE94489 and GSE146397.

We utilized identical preprocessing and HiC-Pro metrics-based benchmark procedures for Dip-C,
snHi-C, and snHiChew as we previously delineated. In order to evaluate sequencing yield
efficiency, we reduced raw readsto diverse levels: 25k, 50k, 100k, 200k, 400k, 800k, 1.6M,

3.2M, 6.4M, and 12.8M. We strictly included cells whose read numbers surpassed these set

thresholds.
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Afterwards, we figured out the count of unique valid pairs per read for each threshold. We did
this by fitting the data points to a saturation curve, using the model Y =B max * X/(Kd + X). To
wrap things up, we gauged the read number for sequencing saturation for each single-cell

chromatin conformation capture technology.

We examined the false positive rate by observing unexpected interactions between mitochondrial
DNA and nuclear DNA. The false positive rates for each distinctive valid pair identified by HiC-
Proin every valid cdl of the snHiChew and Dip-C datasets were calculated, as per the method

outlined in Trac-looping %,

In silico HEK 293 cell phasing over the cell cycle

We performed cell-cycle analysis using the method outlined in a previous study *. Essentially,
we utilized the HEK 293 2-phase Repli-seq dataset (ADNESSV33VOL, 4ADNESH4XLJCW)
sourced from the 4D Nucleome Data Portal to label the early/late repli-score ratio for each cell.

A higher early/late repli-score ratio signifies a cell closer to the early S-phase of the cell cycle.

In silico testis cell phasing over the sex chromosomeratio

We performed an analysis of testis cell phasing, using the ratio of sex chromosome to autosome.
Essentially, we labelled the sex chromosome ratio for each cell by dividing the number of
fragments on chromosome X by the sum of chromosome X and chromosome 7 fragments. A sex
chromosome ratio closer to zero signifiesthat the cell is morelikely in the round or elongating

spermatid phase of spermatogenesis.

DropHiChew velocity input featur e extraction
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We took the pooled single-cell valid pairs, converted them into mcool files with aresolution of
25kb, and balanced them using cooler (v0.8.2). To identify pseudo bulk (pooled single cell) TAD
boundaries, we utilized hicFindTADs from HiCExplorer (v3.7.2). We set parametersto “--
minDepth 100000 --maxDepth 750000 --step 50000 --thresholdComparisons 0.05 --delta 0.01 --

correctForMultipleTesting fdr -p 20”.

Next, we quantified the 1D count of the inner 50k region for the left and right boundary of each
pseudo bulk TAD using bedtools intersect for each cell. We then normalized the 1D count for

each region in accordance with the sequencing depth.

Statistics

We carried out atwo-sided t-test on the majority of the parametric data, adhering to a normal (or
log-normal) distribution. In addition, we conducted a Pearson correlation analysis on this data.
For non-parametric data or data that didn't follow a normal distribution, we utilized the Wilcoxon

rank test.

L oop velocity

Refer to the supplemental note.

Data availability

Y ou can find the data for this study at the following locations: NCBI and NCBI BioProject
PRINA1127783. We also used other public datasets from NCBI GEO, which you can access

using these identifiers: ChiP-seq (CTCF ENCSR135CRI H3K4me3 ENCSR000DTU; H3K27ac
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ENCSRO00FCH), snHi-C (GSE94489), Dip-C (GSE146397), HEK293T in situ Hi-C

(GSE143465), SCA-seq (PRINA917827). The source data come with this paper.

Code availability

Custom scripts used in this study are available from

https://qithub.com/genometube/ DropHi Chew
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Figure.1 (A) We've outlined the DropHiChew experimental procedure in an
illustration. (B) We conducted a mixture of HEK293 and CHO cells on the
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percentage of the GATC barcode contained in the 10x whitelist, and the
percentage of reads with GATC motif barcodes. (D) The violin plot displays the
valid report ratio of different technologies. You'll note that the non-enriched
DropHiChew refers to the DropHiChew process without motif enrichment steps.
(E) There's also a line plot showing the number of unique valid pairs
(deduplication) across different cells with varying sequencing depths. (F)
We've included a contact heatmap on Chr7, comparing the DropHiChew and
HiC.
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Figure.2 (A) This diagram illustrates our loop extrusion model, incorporating
mathematical representations of these processes. (B) We've developed a
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theoretical model of th& MET4CHSABEWEET IHETEHE $°B6undaries,
referencing a specific region from Chr3:4203750-42062500. (C) This graph
demonstrates the average interaction ratio evolution between two boundaries
along with replication time, from early to late stages. The expressions I/(1+S)
and S/(1+S) represent the contact ratios of the | boundaries and the S boundary,
respectively. (D) Displayed here is a pie chart indicating the percentage of the
qualified spindle distribution of TADs. (E) This cumulative curve depicts the
probable spindle model of TADs. (F) The violin plot showcases the alpha value
in the A B compartment, with the gamma distribution in the plot signifying both
high and low boundary strength. (G) This part represents the correlation of the
alpha and eigen value in all TADs. (H) Lastly, the UMAP of the HEK293 cells is
presented with color-coding based on the repli-score, with an arrow
highlighting the loop velocity.
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Figure.3. (A) Diagram showing the process of spermiogenesis. (B) UMAP of
spermiogenesis cells where color denotes diploid scores. Higher scores
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represent pachytene sF&MRStBEI eSS AR L& W& Sower scores
represent haploid spermatids. Arrows are calculated using loop velocity. (C)
Eigen value of the driving TADs and control non-driving TADs. (D) GO term
analysis of first 1000 genes (highest likelihood) within the driving TADs. (E)
Comparison of TAD size distribution between driving TADs and control hon-
driving TADs. (F) Examples of driving and non-driving TADs in relation to
boundary contact distribution, contact maps in spermatocytes and spermatids,
and gene tracks. (G) Gamma and alpha distribution of the driving TADs in
HEK293 cells and spermiogenesis cells.
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Figure.4. (A) Here's a UMAP of embryonic cells from various stages. The colors
represent embryonic days 7.0, 8.0, 10.0. The arrows, calculated via loop
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velocity, illustrate this. ()PREYE FFEWE WIS HEt8IMIA8Y using RNA velocity.
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Supplemental Figure.1 (A) Depicts the cell rank curve with deduplicated valid
contacts. (B) Compares the read number and valid report ratio (valid pairs/valid
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reads) in the control fulABtHYIS6H Eaiipie' SHE TR BISHRIChew, which avoids
barcode labeling. (C) lllustrates the Tn5 fragmentation test on crosslinked
cellular DNAs, decrosslinked cellular DNAs, and control cellular DNAs. (D)
Presents the contact distance decay curve of the DropHChew. (E) Showcases
the Eigen value correlation between DropHChew and HiC. (F) Compares the
contact maps, insulation score fluctuation and insulation score correlation
between HiC and DropHChew.
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Supplemental Figure.2 (A) This illustrates the normalized contacts plot to the 1D
genome of Chr7:43M-44M. (B) It presents the boundary contact ratio of the |
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boundary and S bound3RPATY i< iR A GERIGHEH P ME Rieraction distribution
between the | boundary and S boundary. (D) Finally, it shows the alpha and
gamma distribution between high and low chromatin accessibility, H3K4me1,
H3K27ac, and CTCF.
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Supplemental Figure.3: (A) Here, we compare the eigenvalue fluctuation and
insulation score fluctuation of HiC and DropHiChew, as shown in the contact
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maps of Chr15:0-100MB'AANE EF 1542480t 18T We &8 nt the distance
decay curve of contact between Haploid spermatid and diploid spermatocytes.
(C) We illustrate the spindle shape likelihood distribution of TADs, with
likelihoods >0.7 defined as driver TADs. (D) We display the Chi-square test
distribution of overlap between driver/non-driver TADs and driver/non-driver
genes. (E) We provide contact maps of example regions of driver and non-
driver TADs. For example, ChrX:163262500-163512500 serves as a driver TAD,
and Chr1117412500-19712500 as a non-driver TAD. Additionally, we depict the
contact frequency distribution between | boundary and S boundary in all cells
as point plots.
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Supplemental Figure.4
(A) We've compiled the TAD frequency data to forecast the correct directions
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of movement for the neX¥ tiRE BS6IRT Tl MERZG S ¢aMBIEE "Spermiogenesis
samples, and embryonic samples. (B) We've conducted a GO term analysis of
the first 1000 genes in Driver TADs. (C) We observed changes in Pvt1
abundance correlating with the DNA movement between | boundary and S
boundary. (D) We have gathered global statistics of gene expression when
moving closer to the | and S boundaries. (E) We've calculated the percentage
of genes that match the pattern of gene expression, exhibiting high expression
around the | boundary and lower expression around the S boundary.
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