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Memory systems with biologically constrained synapses have been the topic of intense theoretical5

study for over thirty years. Perhaps the most fundamental and far-reaching finding from this6

work is that the storage of new memories implies the partial erasure of already-stored ones. This7

overwriting leads to a decorrelation of sensory-driven activity patterns over time, even if the input8

patterns remain similar. Representational drift (RD) should therefore be an expected and inevitable9

consequence of ongoing memory storage. We tested this hypothesis by fitting a network model10

to data from long-term chronic calcium imaging experiments in mouse hippocampus. Synaptic11

turnover in the model inputs, consistent with the ongoing encoding of new activity patterns,12

accounted for the observed statistics of RD. This mechanism also provides a parsimonious13

explanation for the diverse effects of experience on drift found in experiment. Our results suggest14

that RD should be observed wherever neuronal circuits are involved in a process of ongoing15

learning or memory storage.16

The synaptic hypothesis of learning and memory postulates that memories are stored in the structure of the17

synaptic weight matrix in neuronal circuits1. Theoretical studies have shown that network models built18

on this synaptic principle can store large numbers of patterns as fixed point attractors2–4. However, with19

biologically constrained synapses, new learning implies the overwriting of previously stored memories5,6.20

In the context of stimulus-driven neuronal activity, this overwriting would result in a distinct network21

response at two different points in time, even if the input pattern remained unchanged.22

The advent of technologies allowing for stable, long-term recordings in awake behaving mice has23

indeed revealed that the neuronal activation underlying certain behaviors can change dramatically, even24

when sensory inputs do not. This phenomenon was first described in detail in the context of spatial25

memory in rodents7. It was already known that in area CA1 of the hippocampus a unique pattern of26

place-cell activity quickly emerged upon exploration of a novel space8–12, and was reliably re-evoked27

when the animal was returned to the familiar environment13–15. However, the seeming stability of28

the hippocampal code only held true on relatively short time scales. Indeed, in familiar environments,29

both place-cell- and non place-cell activity slowly changed over days and weeks7,16–23. These long30

time-scale changes in the neuronal code, dubbed representational drift (RD), have also been seen in other31

cortical areas, such as parietal, piriform, visual and auditory cortex24–28. The phenomenology of RD is32

fundamentally similar in all of these cases: the identity of active neurons changes from session to session,33

although the sparseness of representation is stable. Furthermore, there is considerable heterogeneity in the34

stability of cells, or how often they take part in the code. It is not known what the mechanism generating35

the observed drift is, nor what its potential functional role might be.36

Several computational studies have shown that ongoing plasticity can result in changes in neuronal37

dynamics reminiscent of RD at the population level29–32. In these studies the plasticity acted as a source38

of noise, driving changes in the representation of already stored patterns. In fact, it was previously39

hypothesized that such changes might provide the substrate for a time-stamp of a given memory16.40

Alternatively, it has also been hypothesized that RD may occur due to plasticity related to the encoding41

of new memories25. From this perspective RD would be the unavoidable signature of ongoing memory42

storage due to overwriting5,33,34. However, it remains unclear to what extent the mechanism of RD as43

ongoing memory storage is consistent with experimentally observed data. We therefore developed a44

biologically plausible network model which could be fit to data quantitatively, and which specifically45

allowed us to address the role of ongoing learning.46

Through fitting of our network model to experimental data16, we inferred that changes in neuronal47

activity from session-to-session are inherited from changes in the afferent inputs to cells in CA1. These48

changes are consistent with the large degree of synaptic turnover observed through Ca2+ imaging of49

dendritic spines in CA135. Interestingly, the inferred synaptic turnover was random and uncorrelated50

from cell-to-cell, and followed simple Gaussian statistics. Although the types of memories which the51
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hippocampus stores are, in general, highly correlated, an efficient means of data compression is to store52

just the differences between like memories, which are uncorrelated36–40. Indeed, we show in our network53

model that the ongoing storage of such decorrelated patterns can account for the synaptic turnover, which,54

in turn, is responsible for RD.55

This same mechanism provides a parsimonious explanation for a recent finding on RD in CA1 place56

cells. While RD in the spatial tuning of these cells depended on the amount of time spent exploring the57

environment under study, RD in overall rates depended only on the absolute passage of time41. In the58

context of memory storage, when the animal is engaged in the task, plasticity can readily occur between59

the active CA1 place cells and their presynaptic inputs, affecting CA1 place cell tuning. On the other60

hand, episodes unrelated to experimental sessions will not engage the same subset of place cells and61

changes due to plasticity will therefore be largely spatially untuned (in the experimental environment).62

The number of encoded episodes is simply proportional to the total time elapsed. In this way, RD in63

neuronal firing rates occurs as a function of time, while RD in neuronal tuning is biased more strongly64

towards time spent exploring, when the relevant assemblies of tuned cells are active. Overall, we find that65

the statistics and phenomenology of RD are well predicted by theories of ongoing memory storage.66

Results67

Ongoing memory storage in a network model with biologically constrained synapses leads to the partial68

overwriting of previously encoded patterns, Fig.1. When such a network is driven by external input, the69

resulting patterns of activity will therefore change over time, even if the input is stable, Fig.1b-c. Such a70

drop in correlation of network activity over time, or representational drift (RD), has been observed in the71

hippocampus and other cortical areas. However, despite the broad qualitative similarity between plasticity-72

related overwriting and RD, it remains unclear if synaptic plasticity alone can provide a comprehensive73

account of the detailed statistical characteristics associated with RD. To answer this question, we fit a74

network model to experimental data from chronic Ca2+imaging in mouse hippocampus16 and sought to75

reproduce the observed RD via changes in synaptic connectivity consistent with ongoing memory storage.76

We found differential effects of the spatially tuned versus untuned components of RD in the data, see77

Fig.S1, in line with recent findings41. Specifically, the large drop in the correlation of the population78

activity from one session to the next was due largely to rate effects alone, while drift in the spatial tuning79

occurred on a longer time scale.80

A spiking network model with synaptic turnover reproduces drift statistics in CA181

We sought to reproduce the observed RD in a network model in which plasticity occurred at different82

rates at spatially tuned versus non-spatially tuned synapses. Specifically, we modelled a local circuit83

of CA1 pyramidal and interneurons as sparsely-connected leaky integrate-and-fire neurons. Neurons84

in CA1 received input from area CA3 of the hippocampus and the entorhinal cortex (EC), modeled as85

Poisson neurons, Fig.2a (top). For simplicity we chose a fraction of CA3 cells to be place cells, while86

the EC inputs were spatially untuned. Allowing for weak to moderate tuning in the EC inputs did not87

alter the results qualitatively, see Fig.S4. We simulated the movement of a virtual animal along a circular88

track during a given session, Fig.2a (bottom). Large excitatory and inhibitory input currents dynamically89

balanced in the model42, leading to the emergence of heterogeneity in firing rates and spatial tuning90

consistent with experimental findings43, Fig.2b,c and Fig.S3a-g.91

We modelled changes in the inputs to CA1 cells from session to session as a process of random92

synaptic turnover35. Later we will show that this turnover is also consistent with the ongoing storage of93

memories. Specifically, we rewired a random fraction of the inputs for each cell in CA1, independently94

for the EC and CA3 pathways, Fig.2d. The rewiring fraction for CA3 was chosen to be smaller than that95

for EC, resulting in more gradual changes in place-cell tuning, in accordance with the data, Fig.S1. This96

synaptic turnover could lead to significant changes in the mean drive to CA1 cells from session to session,97

which is the mechanism responsible for RD, Fig.2e,f.98
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Fig. 1 |Ongoing memory storage generates representational drift. a. Memories are encoded in an
ongoing fashion in time. Memory identity is indicated by color. We track and observe the neuronal
activity corresponding to one memory in particular (pink square). b. Synaptic weights undergo plasticity
as memories are stored. When pre- and post-synaptic activity is high, synapses may undergo potentiation
(large red circle), while depression takes place if one cell fires strongly and the other only weakly (small
blue circle). Active presynaptic cells are indicated by a train of action potentials. The postsynaptic cell
fires strongly (black) or weakly (grey). Synaptic weights are strong (large circle) or weak (small circle).
Note that due to the plasticity from the two intervening memories, the response of the post-synaptic cell
to the same pre-synaptic pattern of activity, corresponding to the pink memory, has changed: its firing
rate has decreased. c. The change in post-synaptic activity due to ongoing memory storage manifests
itself at the population level as representational drift. Therefore, there is a drop in correlation between
the initial pattern of neuronal activity given inputs corresponding to the pink memory r0 and the first
repetition r1. If we assume that ongoing memory storage occurs between every repetition the correlation
will continue to decrease.

We chose the network parameters in order to closely match the statistics of RD observed in experiment.99

To do this, we first considered a simple statistical model for CA1 pyramidal cells which could be100

quantitatively fit to the data using standard least-square optimization, see Methods and Fig.S2. Inputs in101

this model were Gaussian random variables with zero mean, and with variance and temporal correlation102

optimized to fit RD statistics from the data. Input statistics in the full spiking network model were103

also Gaussian in the balanced regime, and could be calculated analytically, allowing us to map network104

parameters onto the statistical model, and hence fit the network to the data, see Methods and Fig.S3h. As105

a result, we were able to reproduce the drop in the Population Vector (PV) correlation seen in the data106

quantitatively Fig.2g, which takes both rate and tuning effects into account, as well as several measures107

of RD related only to active versus inactive cells, see Fig.S3i. The network model also qualitatively108

reproduced the gradual diffusion of place field location, Fig.2h, although the fraction of place cells was109

always larger in the network than in the data.110

Finally, the mechanism of RD through synaptic turnover predicts that the likelihood of a cell to remain111

active on a subsequent session should be positively correlated with its firing rate. This is because high112

(low) firing rates are due to a large (small) number of excitatory inputs. Therefore, the rewiring of the113

same number of inputs is more likely to cause a low-rate cell to become inactive, than a high-rate one.114

We reanalyzed the data and found such a positive correlation, see Fig.S5. This is furthermore consistent115

with the greater stability observed in high-rate CA1 pyramidal cells across sleep sessions compared to116

low-rate cells44.117
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Fig. 2 |A spiking network model with random synaptic turnover reproduces drift dynamics a.
Network architecture and sample raster plot of CA1 pyramidal cells. b. Heterogeneous response profiles
for sample CA1 cells. The color indicates the value of spatial information from c. c. Histogram of spatial
information for all CA1 cells over one session. d. Synaptic turnover from session to session is modeled
by randomly rewiring a fraction of inputs to each CA1 pyramidal cell, independently for EC versus CA3
pathways. e. Tuning curve (top row) and total input (bottom row) for one example cell over three sessions.
The dashed line in the bottom panel indicates the average total input along the track for each session. f.
Place field maps for 200 randomly selected active cells found on session 1 (top) or session 8 (bottom),
ordered according to their place field positions. g. PV correlation of all cells (left), and only place cells
(cells significantly spatially tuned in both sessions) (right). The insets show the first four points of the
respective curves, where the initial point (within-session correlation) is computed considering odd vs
even trials. h. Distribution of the centroid shift for different number of elapsed sessions (color-coded).
Inset: cumulative distribution of the absolute shift. See Methods for model details and parameter values.

The synaptic turnover responsible for RD is consistent with ongoing memory118

storage119

In the previous section we showed that synaptic turnover, modelled as a process of random rewiring of the120

synaptic inputs to CA1 pyramidal cells, could account for the statistics of RD observed in mice. At such121

a level of description, the mechanism behind the turnover itself remains unclear. We hypothesize that122

this rewiring process may, in fact, reflect the encoding of episodes or memories. In this scenario, much123

of the synaptic turnover, and hence RD observed from session to session, would be due to the storage124
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of memories unrelated to the environment in which the recordings are made, Fig.3a-b. Specifically,125

instead of rewiring synapses randomly, we modified them according to a simple Hebbian plasticity rule.126

We imposed random binary patterns of activity for the CA3 and EC inputs, and the CA1 outputs, with127

sparseness f . We then potentiated synapses between co-active cells with probability p+ and depressed128

synapses between cells with differing activities with probability p−. These probabilities were different129

for the EC and CA3 inputs. We repeated this process many times, until the synaptic weight matrices from130

EC and CA3 to CA1 reached a statistical steady state, see Methods and Supplementary Information for131

more details. We then tracked one of the random patterns in particular, as if it were the experimentally132

observed activity pattern. In between observations of this pattern, we encoded other random patterns,133

the number of which we call the inter-session interval (ISI), Fig.3b. With this simple model we could134

calculate the temporal correlation of the inputs to CA1 cells analytically as a function of the plasticity135

parameters, and match them to the synaptic turnover process from the network, Fig.3c.136

In our model, both synaptic turnover and RD are reflections of the changes in network structure137

due to the storage of memories, most of which are episodes unrelated to the ones observed during an138

experimental session. Nonetheless, given a Hebbian rule, plasticity occurring during a session, namely a139

repetition of the tracked pattern, can have an outsized effect on RD. This is because all of the neurons being140

tracked are co-active by definition, whereas other sparse, random patterns will have a small overlap with141

the tracked pattern. The repetition rate of a pattern therefore affects the degree of RD observed, although142

whether drift is increased or decreased depends on the details of the input statistics. In the following143

sections we show how this phenomenon can account for recent findings from both hippocampus41 and144

piriform cortex25.145

Fig. 3 |Synaptic turnover is consistent with the ongoing storage of random patterns. a. The synaptic
turnover used to fit RD from the data is now generated through the encoding of random patterns with a
Hebbian plasticity rule. b. We assume that in between sessions in which the activity patterns are tracked,
there are a number of random patterns encoded. c. The learning process is fit to the synaptic turnover by
matching the drop in correlation in input to CA1 cells over sessions. The circles indicate the values of
correlation which correspond to the snapshots of activity shown in Fig.2f, see Methods for details and
parameter values.

Ongoing memory storage accounts for the differential roles of time and experi-146

ence on RD in place cells in CA1147

Recent experimental work has shown that the spatially untuned component of RD in CA1 pyramidal cells148

occurs at a rate proportional to the absolute time elapsed between sessions on a linear track, while RD in149

the tuned component depends on the time spent exploring the track itself41. The mechanism we propose150
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here for RD suggests a potential explanation for this dissociation. Namely, we would expect that the151

ongoing storage of memories unrelated to the linear track itself would simply occur at a rate proportional152

to time. Such memories would naturally overwrite some synapses involved in the representation of the153

track, leading to RD. In principle, these synapses could be from spatially tuned or untuned presynatic154

inputs. However, it is reasonable to assume that it is the spatially untuned, contextual inputs which are155

more strongly shared between temporally proximate memories16. On the other hand, it is only when the156

animal is actively exploring the track itself that the entirety of the spatially tuned inputs are active. Given157

an activity-dependent plasticity rule, we should thus expect maximal RD due to changes in the spatially158

tuned inputs to occur precisely during exploration.159

In the framework of our network model, in which a series of patterns with spatial and non-spatial160

component are stored, the dissociation between time and experience is, in general, approximate. It is161

exact only in the limit in which the overlap between spatially tuned presynaptic inputs vanishes between162

patterns, Fig.4a. In this case, if we consider two sets of simulations in which one particular pattern (e.g.163

corresponding to the linear track) is repeated more often in one set than in the other, Fig.4b, then the RD164

in firing rates will depend only on the number of patterns presented, i.e. time, while the RD in tuning will165

depend only on the number of repetitions of the pattern of interest, i.e. experience. We ran simulations in166

which the encoded patterns consisted of a random fraction of spatial and non-spatial inputs, and hence167

the overlap in spatially tuned presynaptic inputs between pattern was not zero, but rather equal to the168

fraction of active spatially tuned cells fs = 0.1. In this case, the RD in firing rates depended much more169

clearly on time that on repetitions, upper row of Fig.4c. The small discrepancy in the overlap was due170

to the fact that, all things being the same, the encoding of a random pattern in B led to a larger drop in171

correlation than a repetition of the tracked pattern in A. On the other hand, the RD in tuning depended172

both on time and experience, bottom row of Fig.4c. However, this result was true only when the patterns173

of presynaptic activity were stable over time. In fact, place cell activity in CA3 itself undergoes RD45,174

suggesting that those presynaptic inputs should themselves vary from one repetition to the next, Fig.4d.175

Including this effect tipped the balance of spatial RD from time to experience through a combination of176

presynaptic RD and plasticity, Fig.4e. Interestingly, it also eliminated the small discrepancy in the rate177

correlation as the encoding of a random pattern or a repetition now led to similar drops in correlation.178

Ongoing memory storage accounts for the effect of repetition rate on RD179

Recent experiments have revealed that the degree of RD in the piriform cortex of mice is reduced by180

increased repetition of familiar odors25. This was shown by familiarizing two groups of animals with a181

particular odor over many sessions, and then repeating that same odor each subsequent session for cohort182

A, while cohort B was exposed to the familiar odor only after a number of sessions without odor, Fig.5a.183

As was the case in the previous section, we again assumed that RD for the familiar odor was largely184

due to the storage of other patterns in piriform cortex, which occur in between sessions, see "random185

pattern" in Fig.5a. This assumption was enough to provide a simple explanation for the experimental186

finding, Fig.5b. Namely, if we consider the synaptic weight matrix for cohorts A and B, they were both187

initially identical due to the familiarization process. The storage of other patterns, which were random188

and uncorrelated with the familiar one, degraded the structure in the matrix which was correlated with the189

familiar pattern. However, in cohort A, the familiar pattern was repeated at the subsequent session, once190

again boosting the structure in the matrix, while in cohort B this was not the case.191

We simulated this process using the same Hebbian plasticity rule as in previous sections, but with192

only a single input layer. We presented a pair of sparse, binary input and output vectors repeatedly until193

the synaptic weight matrix reached a steady state. We then repeatedly encoded the pattern to be tracked194

and considered this to be the familiarized state, see Methods for details. To simulate cohort A, we then195

encoded a number of random patterns in the network equal to the inter-session interval (ISI) after which196

time we again presented the familiar pattern, Fig.5c (black line). For cohort B we presented repetitions of197

the familiar patterns only after every eight repetitions in cohort A, leading to significantly reduced output198

correlations, Fig.5c (green line). The size of the difference in output correlations (RD) was strongly199

affected by the ISI, Figs.5d,e.200
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Fig. 4 |Ongoing memory storage is consistent with differential effects of drift on rate and tuning
a. We consider the storage of many memories, indicated here by color, all with spatial and non-spatial
features, and one of which (pink) is tracked explicitly. Only changes to synapses which are active in that
environment (dashed boxes in cell schematic) will generate observable RD. In the limit of sparse place
cell coding the storage of the blue and orange memories readily causes drift in non-spatial inputs, but not
in the spatial ones. As a result, RD in non-spatial features is proportional to the total number of memories
stored, while RD in spatial tuning is due only to repetitions of the tracked memory. b. Simulation protocol
for which the repetition rate for environment A is twice that of B. In the sparse spatial coding limit the
rate correlation depends on total patterns stored (time) while the tuning correlation depends only on
repetitions of the tracked pattern (session). c. Results of simulations when the sparseness of spatial
coding fs = 0.1. The drop in tuning correlation is affected both the number of repetitions as well as
interference from other memories. d.-e. When spatially tuned inputs already exhibit drift, as has been
observed in CA3 place cells, the combined effect of sparseness and drift results in the tuning correlation
being dominated by the number of repetitions. See Methods for model details and parameter values.
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In the same set of experiments, an unfamiliar odor was presented to both cohorts with the same201

repetition rate and no difference in drift rate was found. We can account for this by running the same202

simulation as before, but now tracking both the familiar pattern, and one pattern uncorrelated with the203

familiar one, Fig.5f. This amounts to considering the structure of the weight matrix, and the output vector,204

with two distinct orderings. As long as the familiar and unfamiliar patterns are uncorrelated, the drift205

rate of the unfamiliar pattern depends only on the repetition rate and ISI, which were the same for both206

cohorts, Fig.5g-h. Finally, the familiar pattern with high repetition rate had a significantly reduced drift207

rate compared to the other three cases, in agreement with experiment, Fig.5i.208

Ongoing memory storage can explain diverse effects of experience209

It may at first seem paradoxical that increased exposure to a spatial environment would lead to more RD210

in CA1 of hippocampus41, while increased exposure to a familiar odor would actually reduce RD in211

piriform cortex25. In the context of ongoing memory storage through Hebbian plasticity, both scenarios212

are possible, Figs.4 and 5, suggesting that this single mechanism provides a potential explanation.213

We first note that the repeated storage of the same pattern tends to increase the correlation of the214

synaptic weight matrix with that pattern, Fig.6a-c. A period of familiarization provides a substrate for215

enhancing the effect of this repetition rate. The degree of this enhancement of correlation, and hence216

reduction in RD, depends strongly on the fraction of synapses which are updated to store each memory217

(learning rate). We quantified this by varying the number of times k a pattern was repeated before time218

t = 0. For k = 1 the pattern was novel. When the learning rate is small, increasing k leads to a build-up219

of correlation which was large compared to a single presentation, Fig.6a, whereas for large learning rates220

this difference was smaller, Fig.6b. Large k implies a weight matrix which is entirely correlated with the221

tracked pattern, and hence has lost all correlation with previously stored patterns, an unreasonable limit222

for an actual physiological memory system. However, the difference in RD for different repetition rates is223

already present for small values of k and even reaches a maximum for intermediate values when learning224

rates are small, black lines Fig.6c. These are the parameter values used to reproduce the findings from225

piriform cortex in Fig.5. The effect of varying the coding sparseness f is shown in Fig.S6.226

When the input pattern is not the same from one repetition to the next then the effect of repetition227

rate is not as straightforward. We modeled this by keeping a fraction s of the active units in the tracked228

pattern the same from repetition to repetition, while choosing the other 1− s randomly, Fig.6d. When229

s = 1 repetitions reduced RD as explained above. For s = 0 the pattern was effectively random and230

uncorrelated from one repetition to the next. For intermediate s the correlation of the rth repetition231

with the original input pattern decreased as sr which could lead to RD increasing for sufficiently high232

repetition rates, see Fig.6e. All other network parameters being the same, if RD was measured after a233

fixed number of repetitions, then there was a critical value of s below which repetition rate increased RD,234

Fig.6f.235

Discussion236

Here we have argued that RD is, in large part, due to the storage of memories unrelated to the experiment237

in which RD is observed. Such a storage process implies changes in the synaptic weights of the network,238

which will necessarily alter its response to stimuli on subsequent sessions, even if upstream neuronal239

activity is unchanged. We have shown that the statistics of RD in CA1 of mice are well captured by a240

process of synaptic turnover in which inputs undergo rewiring from one session to the next. The fact241

that this synaptic turnover is consistent with the ongoing encoding of activity patterns to us strongly242

points to this as the underlying mechanism. After all, episodic memory formation, a major function of243

the hippocampus, involves precisely this kind of ongoing storage of information related to experiences244

during daily life. Ongoing memory storage can furthermore account for the differential effects of time245

versus experience in RD in CA1, as well as the effect of repetition rate, both stabilizing as found in246

piriform cortex and destabilizing, as in CA1, depending on the input statistics. These nontrivial and247
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Fig. 5 |Repeated exposure to same input pattern reduces drift. a. Protocol for testing the effect
of repetition rate on drift. Two cohorts are repeatedly presented a pattern (blue squares) during a
familiarization period. After this time cohort A is presented the familiar pattern every session while B
is presented the familiar pattern every eight sessions. Crucially, we assume that a number of additional
patterns, uncorrelated with the familiar one are encoded between sessions (inter-session interval, ISI)
(grey squares). b. Illustration of the effect of repetition rate on network connectivity. Repetition boosts
network structure correlated with the familiar pattern, thereby reducing drift. c. Output correlation for
familiarized pattern with a total of 16 repetitions for cohort A and ISI = 20, while the repetition rate for
B was 8 times less. Dotted lines are from simulation of the network model with Hebbian plasticity while
solid lines are the solution of the corresponding Markov process. d.-e. Output correlation and drift rate
as a function of the ISI, i.e. the number of random patterns encoded between “sessions". The vertical
line indicates the value of ISI used in c. f. Illustration of encoding of familiar and unfamiliar patterns.
Because the repetition rate is the same for the unfamiliar pattern for both cohorts, the resultant drift is also
the same. g.-h. Drift rates for the unfamiliar patterns. i. Drift rates normalized by the familiar case for
cohort A. Parameters: p+ = p− = 0.02, f = 0.15, N = 1000. For the familiar cases the tracked pattern
was encoded k = 5 times at time zero, whereas for the novel cases k = 1. See Methods for model details.

seemingly paradoxical findings cannot be explained by a process of random synaptic turnover, but are248

reproducible in a network model in which patterns are encoded via a Hebbian plasticity rule. Specifically,249

whether experience led to more or less drift in our computational model depended on the stability of250
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Fig. 6 |How familiarity and input stability modulate RD. a. We model familiarity by presenting a given
pattern to the network k times before time t = 0, i.e. k = 1 is a novel pattern. Here p+ = p− = 0.02,
f = 0.15 and N = 1000. b. Same as in a. but with p+ = p− = 0.1. c. Correlation after a total
of 320 patterns, with either 16 or 2 repetitions, for low and high learning rates. d. The input patterns
driving the observed activity may themselves undergo RD, which we parameterize with s. Here s = 1
indicates completely stable inputs over time while s = 0 indicates that the input vectors are completely
uncorrelated from repetition to repetition. e. When inputs are stable, increased repetition rate decreases
RD (s = 1), while this need not be the case when inputs themselves drift (s = 0.9). f. The repetition rate
can reduce RD (black lines), increase RD (green line) or even leave it largely unchanged (orange line).

the input patterns. This result is consistent with the finding that CA3 input patterns themselves drift45,251

while representations in the olfactory bulb, the primary input to piriform cortex, are extremely stable over252

time46. More generally, the fundamental mechanism here is the interference between stored patterns.253

Precisely how this interference manifests itself at the level of RD will depend on the correlation between254

these patterns. Here, for simplicity, we considered all patterns to be random and uncorrelated.255

Other computational modeling work has also proposed that RD may arise due to plasticity-driven256

perturbations29–31. In29 the authors studied a network with prescribed synaptic weights which allow257

for the storage of a large number of sequential patterns. They showed that randomly perturbing the258

synaptic weight matrix generates RD while maintaining robust sequences. RD can also arise in a259

spiking network with a symmetric spike-timing dependent plasticity rule, coupled with a homeostatic260

mechanism30. Specifically, if the initial network structure (synaptic weight matrix) exhibits clustering,261

ongoing plasticity allows for individual cells to leave their cluster and join a new one, all the while262

maintaining the clustered structure at the network level. RD occurs in a similar fashion in networks which263

minimize the mismatch between the similarity of pairs of input patterns and the corresponding pairs of264

output patterns (Hebbian/antiHebbian networks)31. Namely, ongoing plasticity allows the network to265

explore the degeneracy in the solution space by undertaking a random walk along the manifold of equally266

optimal output patterns. An important conceptual difference between our work and previous studies is the267

nature of the synaptic turnover itself. While those studies showed that already-stored patterns of activity268

undergo RD in the face of ongoing plasticity, we ascribe the plasticity to the encoding of new patterns.269

Namely, we have shown that RD is consistent with the inevitable interference between patterns when270

learning occurs, and hence not necessarily just a consequence of noise once learning is done. The mice in271

the experiments we have studied are not exposed to explicit, task-dependent learning between sessions.272

Rather, the "learning" process may simply be the storage of episodes, unrelated to the exploration. The273

hippocampal circuit plays a central role in this type of memory47,48, while there is evidence that piriform274

cortex participates in olfactory associative memory formation49.275

The stability paradox We have sought here to provide a plausible network mechanism for RD, and276
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have not addressed the fundamental paradox of how to maintain stable behavior in the face of such277

neuronal instability. In fact, drift does not appear to adversely effect the performance of mice in a variety278

of memory-dependent tasks24,25,50. Several previous studies have addressed how this might be possible.279

Firstly, it has been hypothesized that there may be a low-dimensional manifold which represents the280

task-relevant projection of the population response, and which is invariant to RD27,51,52. In this scenario281

many distinct patterns of the high-dimensional population activity can have the same projection on282

the relevant, low-dimensional manifold. If RD does not affect this projection, i.e. it is constrained to283

the "null-space" of the manifold, then task-relevant variables can be stably read out. While neuronal284

representations undergoing RD do appear to be low-dimensional, the direction of drift has not been found285

to be orthogonal to this manifold in general7,25,53. Alternatively, despite ongoing changes, the patterns of286

neuronal activity observed in-vivo retain some significant correlation from session to session7,16,21,24,25.287

Therefore, decoders trained on a given session will perform above chance for subsequent sessions, albeit288

with degraded accuracy. In any case it remains unclear precisely how behavior remains unaffected by the289

observed drift. One potential solution to this is to allow for compensatory plasticity in downstream circuits290

so as to stabilize the readout performance30,51,53–55. Another is to seek some higher-order population291

structure which remains stable in the face of ongoing RD19,21,22,27,51,52.292

Yet despite recent theoretical advances and experimental findings, the stability paradox remains. It293

may be that behavior depends on a neuronal representation which is distributed across several cortical294

areas, and that RD is greatly reduced in some of the them compared to those observed up until now. In295

the case of the hippocampus, it is hypothesized that memories are transferred to higher-order cortical296

areas for long-term storage via a consolidation process which can take weeks, months or years depending297

on the species56–59. Computational models of distributed memory systems in which fast learning (and298

hence fast forgetting) circuits drive plasticity in slower-learning downstream circuits in a multi-layered299

framework, show qualitatively enhanced memory capacity compared to single-area models34. Such300

models leverage a hierarchy of time-scales of synaptic plasticity to allow for both fast encoding as well as301

long lifetimes6,34,60. A hallmark of a model in which the timescale of plasticity is spatially distributed302

across cortical areas, is a concomitant array of timescales for RD. Only future experiments in which303

the activity of neuronal populations across several cortical areas are recorded simultaneously over long304

periods of time will reveal if RD acts on distinct timescales in different brain areas.305

Methods306

Data analysis307

We analyzed previously published data16. In the experiment, mice repeatedly explored two familiar308

environments (one in the morning, the other in the afternoon) over the course of two weeks, with imaging309

sessions every other day (8 total sessions). We separately analyzed leftwards vs rightwards running310

epochs for each environment, and then pooled the data together. In total, we analyzed data from 5 mice.311

Of the five mice, two have only one spatial map for each environment, while three have multiple spatial312

maps for each environment, as previously analyzed20. Unless otherwise specified, all the analysis was313

performed separately for each map, and then results were pooled together.314

Calcium events and place field maps were extracted as in the original paper16. Briefly, the linear tracks315

were divided into 24 bins, each 4cm in length. For each spatial bin, the total number of events in each316

session was extracted, together with the total time-occupancy of each bin. The event rate map is then317

calculated by dividing the total number of events per bin by the bin occupancy. The two bins at each318

extreme of the track were excluded from the analysis to limit reward delivery effects.319

In Fig.S1, the rate maps follow two different types of normalization: in Fig.S1a, the event rate map for320

each cell was normalized by the maximal firing rate over all sessions. In Fig.S1c, the event rate in each321

session/bin as normalized according to the maximal value within each session.322
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Rate and tuning correlation323

To compute rate correlations across sessions, we defined a rate population vector rt ∈ RN . N was the324

total number of neurons, and each entry of the vector was the mean firing rate of each cell in session t.325

We then computed the Pearson correlation coefficient to quantify the rate similarity between two sessions,326

as in Fig.S1d-f.327

To quantify the similarity of spatial tuning across session, we defined a Tuning population vector of328

length N × n, where n is the number of bins of the linear track. The vector then contained the rate of329

each cell in each spatial bin, normalized in such a way that the sum of the rates for each cell over the330

different spatial bins was constant in all sessions. We then computed the Pearson correlation coefficient331

of such vectors for pairs of session to quantify the tuning similarity. The procedure ensured that changes332

in mean firing rates of cells from one session to the next would not affect the tuning correlation.333

Place fields334

To be considered a place cell in a given session, we employed the following procedure. First, for each
cell, we computed the spatial information per spike as :

si =
n∑

k=1

pk
rki
r̄i

log

(
rki
r̄i

)
,

where i was the cell index, and the sum runs over all n spatial bins, rki was the event rate of cell i in335

bin k, r̄i was the mean event rate over all bins, and pk was the occupancy of bin k (the fraction of time336

spent in bin k). si was then the spatial information (measured in bits/event) of cell i. Then, we generated337

surrogate data by shuffling the position of the animal with respect to the time of the calcium events, and338

calculated the spatial information for each cell and each shuffle. We then compared the value of the339

spatial information of each cell to the null distribution generated with the surrogate data. If the value was340

larger than the 95th percentile of the null distribution, than the cell was defined as a place cell in that341

session.342

The place field width of each cell was defined as the number of contiguous bins where the event rate is343

larger than 50% of its maximal value over all the bins.344

The statistical model345

In order to fit the network model to data in Fig.2, we first fit a simple statistical model to the data, and346

then mapped the network parameters onto the resulting fit parameters as a starting working point. For347

the statistical model we took cells in CA1 as binary units which received inputs from two sources, CA3348

and layer III of entorhinal cortex EC. The total input to a cell i at time t (time measured in sessions)349

from CA3 was written xti and from EC yti . Both inputs were Gaussian random variables with zero mean350

and variances σ2CA3 and σ2EC respectively. A neuron i was active at time t if its total input hti = xti + yti351

exceeded a threshold θ, and was otherwise silent. Specifically, the activity was written as ati = H(hti− θ),352

where H(x) = 1 if x > 0 and H(x) = 0 if x ≤ 0 is the Heaviside function.353

To model RD we allowed for the inputs to change over time according to:354

xti = ρCA3x
t−1
i +

√
1− ρ2CA3ψ

t
i , yti = ρECy

t−1
i +

√
1− ρ2ECξ

t
i , (1)

where the autocorrelations ρCA3 and ρEC ∈ [0, 1] and ψt
i and ξti were Gaussian random variables with355

mean zero and standard deviation σCA3 and σEC respectively. The update rules Eqs. (1) ensured that the356

input distributions were stationary. Inhibition is implicitly assumed to have the effect of subtracting the357

mean of both inputs so that they are centered at zero.358

The statistical model had four parameters once we rescaled them by the standard deviation of the inputs359

from EC: the ratio σCA3/σEC, the rescaled threshold θ/σEC and the autocorrelations ρCA3 and ρEC.360

Note that the input dynamics Eqs. (1) could be formulated in continuous time as an Ohrnstein-Uhlenbeck361
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processes, as shown in the Supplementary Material . The continuous formulation allowed us to calculate362

the time constant of the decay in correlation of the inputs analytically, yielding τ = 1−ρ2

2(1−ρ)2
.363

According to the definitions above, the state of the network was defined by a vector at = (at1, . . . , a
t
N )364

where N was the total number of neurons. Fraction of active cells: The fraction of active cells can365

be calculated analytically for the statistical model. The probability that a cell with a given input y is366

active can be written Pr(y > θ − x). Integrating this probability over all possible values of y gives the367

likelihood of any cell to be active, or the fraction of active cells, fa. This fraction is therefore368

fa =

∫ ∞

−∞
dxρCA3(x)

∫ ∞

θ−x
dyρEC(y), (2)

where ρα(x) = e−x2/(2σ2
α)

√
2πσα

369

Fit of the statistical model370

To fit the statistical model, we only considered mice with a single map per environment (two mice in371

total), since with multiple maps the distribution of the number of sessions in which each cell was active372

and the survival fraction are not well defined (with multiple maps not all maps are visited in all sessions).373

We considered data from these two mice (N=1649 total recorded cells). The statistics used to fit the model374

were the distribution of sessions each neuron is active, the survival fraction (probability an initially active375

cell continued to be active on subsequent sessions), the population activity overlap between different376

sessions, and the fraction of active cells in each session, see Extenden Data Fig.2. To fit the data, we377

adjust the four free parameters of the model using least-square optimization. Specifically, to produce378

Fig.S2g-i, we discretize the (ρCA3, ρEC) space on a 20 × 20 grid, and for each position on the grid,379

run the Scipy61 implementation of a Basin-hopping optimization algorithm minimizing the sum of the380

squared residuals between numerical simulations of the statistical model, and the experimental data. For381

the numerical simulations of the model, we consider N = 20000 neurons.382

Network model description383

CA1 was modeled as a network of integrate-and-fire excitatory (E) and inhibitory (I) neurons with I-I,384

E-I and I-E connections, but no recurrent excitation, as prescribed by anatomical constraints. CA3 cells385

are modeled as Poisson neurons a fraction of which were spatially modulated. They projected onto both386

excitatory and inhibitory CA1 neurons. Additionally, CA1 neurons received excitatory inputs from a387

layer of non-spatial Poisson neurons (from layer III of EC). Detailed equations and parameters are given388

in Supplementary Information.389

390

CA3 place fields and non-spatial inputs391

CA3 neurons were modeled as Poisson neurons. In any given environment, a fraction fCA3 of CA3392

neurons were active. Of the active neurons, a fraction fs of the population had a spatially modulated393

firing rate, while the remaining fraction had a constant firing rate. For simplicity, we considered a ring394

topology, so that the spatial position of a virtual animal was parametrized by an angle ϕ ∈ [−π, π]. The395

firing rate of spatially selective neurons was modulated according to a Von Mises distribution:396

ri (ϕ) = R(β)eβ cos(ϕ−ϕi) + r0, (3)

where ϕi was the center of the place field of neuron i, r0 a baseline firing rate, and R(β) = R̄e−β where397

R̄ was a constant that set the maximal firing rate. The parameter β determined the sharpness of the place398

fields.399

The layer of neurons providing non-spatial inputs were modeled as Poisson neurons with constant firing400

rate ν. Also for this layer, only a fraction fEC of the population was active in any given environment.401
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Connectivity matrices402

Connectivity matrices for all subtypes of connections within the CA1 populations were random and sparse.403

Each neuron had a probability of connection to other neurons in the respective subpopulations equal to404

αi,l = Ki,l/Nl, where Nl was the number of neurons of the lth population, l ∈ {E, I}, and i ∈ {E, I}.405

If not specified otherwise, we fixed the in-degree of CA1 pyramidal cells from interneurons to be fixed406

and equal to KI (all pyramidal cell receive the same amount of inhibitory inputs). On average, each407

CA1 cell received projections from Ki,{E,I} neurons. The connectivity between the layer of non-spatial408

Poisson neurons and CA1 is also random and sparse with connection probability αEC . In the main text,409

we consider a uniform connection probability also for the CA3→ CA1 projections; in the Supplementary410

Information we discuss how to consider a phase bias in such connections.411

Throughout, we assume all connection probabilities are the same and equal to α = 0.125.412

Input correlations in the network model413

To implement the session-to-session changes in spatial and non-spatial inputs provided by Eqs. (1) in the414

network model, we needed to calculate the autocorrelation of inputs where changes may occur either due415

to changes in the input firing pattern, or in the connectivity matrices themselves. The general expression416

for such inputs is417

It =
∑
j

ctijν
t
j , (4)

where νtj is the firing rate of the input neuron j at time t, ctij is the connectivity matrix element at time t,418

and we omitted conductances and time constants. In the Supplementary Information we provide detailed419

calculations. The expression one finds for the autocorrelation is420

ρ =
⟨νtjν

t+1
j ⟩j

[
⟨ctijc

t+1
ij ⟩ − α2

]
⟨ν2j ⟩jα (1− α)

, (5)

where α is the connection probability to the input layer. In general then, the level of correlation depends421

on the correlation in the input firing patterns, and on the degree of synaptic plasticity. Note that in order422

to obtain completely uncorrelated inputs from one session to the next, one must have ⟨ctijc
t+1
ij ⟩ = α2,423

which implies ⟨ctijc
t+1
ij ⟩ = ⟨ctij⟩⟨c

t+1
ij ⟩, i.e. complete rewiring from one session to the other. Assuming424

completely uncorrelated input firing patterns from one session to the next results in:425

ρ =
µ2ν

[
⟨ctijc

t+1
ij ⟩ − α2

]
(µ2ν + σ2ν)α (1− α)

. (6)

On the other hand, if we assume that the input firing patterns are the same over sessions, we have:426

ρ =
⟨ctijc

t+1
ij ⟩ − α2

α (1− α)
, (7)

which, as shown in the Supplementary Information, can be written as:427

ρ =
Pr

(
ct+1
ij = 1

∣∣∣ ctij = 1
)
− α

1− α
. (8)

In the following, for both spatial and non-spatial inputs, we assumed that the input firing rates were428

constant from one session to the next. In this case, the fraction of connections rewired from one session429

to the next depending on the autocorrelation ρ is shown in Fig. S 3h.430
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Variance of spatial and non spatial inputs431

The average current from either the spatial or non-spatial inputs layer had the form:432

I =
Gτ√
K

N∑
j=1

cijνj , (9)

where we have scaled the synaptic weights as 1/
√
K. The expected value of the input is therefore433

µI =
Gτ√
K
αNfν, (10)

where α is the connection probability, f is the fraction of active pre-synaptic cells, and ν is their mean434

rate. If we define the normalization factor as the mean number of active inputs K = αfN , we have435

µI = Gτ
√
Kν. The variance of such current, using the results from the Supplemetary Information, was436

given by437

σ2 =
G2τ2

K
α (1− α)Nfν2, (11)

where we neglected the intrinsic variability of the Poisson process (which goes to zero as ∆t−1). Again438

using the definition of the normalization factor K, we have439

σ2 = G2τ2ν2 (1− α) . (12)

Given the variances ratio obtained fitting the statistical model σ̃ = σCA3/σEC, we can then fix the firing440

rates/synaptic weights of CA3 and EC inputs via the relation:441

σ̃ =
GCA3νCA3

GECνEC
, (13)

since both the time constant and the connection probabilities are the same for the two layers. We then fix442

νCA3 = νEC (same average rate of the two layers), and set GCA3 = σ̃GEC .443

Fit of network simulations to data444

In network simulations the virtual animal runs at a constant speed of v = 12 cm/s over a circular track445

of length L = 84 cm. The position of the animal on the track is parametrized with a phase ϕ ∈ [−π, π].446

Analogously to the experiment, we simulate 8 sessions each consisting of 20 laps on the track (i.e. one447

session lasts 140 seconds of simulation time). For place fields analysis, the track was divided into 20 bins448

each of 4.2 cm length.449

Given the analytical formulas derived in the previous section we were able to match both the variances of450

the input distributions as well as their autocorrelations to the values from the fit of the statistical model.451

The means of the input distributions were not zero, as in the statistical model, but the network operated in452

a balanced regime in which currents from inhibitory interneurons cancelled the mean excitatory drive453

to cells in the mean, leaving their membrane potential near threshold to spiking. Therefore, fitting the454

variances and correlations alone set the network at a working point in which the statistics of RD were455

close to the statistical model, and hence the data. We then made slight changes to parameters by hand456

in order to improve the fit. In order to fit the population vector correlation we needed to compare to457

the calcium event rate in the data. We did this by applying an exponential kernel with time constant458

τc = 500ms to the spike train from each cell in the spiking network. A calcium event was detected459

whenever the smoothed signal crossed a threshold θc, and imposed a minimum inter-event interval of460

500ms. The threshold value which minimized the mean squared error of the fit was θc = 0.16837.461

Figure 2: The network model simulated in Fig.2 is that described above, with parameter values given462

in the Supplementary Information. RD is modeled by randomly rewiring a fraction of connections to463

each CA1 cell from the CA3 and EC inputs. Specifically, the probability of a synapse present at time t464
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being removed is defined as Pr(ct+1
ij = 0, ctij = 1) = P (0, 1), while the probability of a new synapse465

appearing is P (1, 0). We then define the rewiring fraction as the total fraction of altered synapses, i.e.466

frw = P (1, 0) + P (0, 1), where there is a different fraction for each input source given by fEC
rw and467

fCA3
rw . Using the definition P (1, 0) = ⟨ct+1

ij (1 − ctij)⟩ = ⟨c
t+1
ij ⟩ − ⟨c

t+1
ij ctij⟩ = α − P (1, 1), and with468

P (1, 0) = P (0, 1) and the definition of the temporal correlation, Eq.8, we find fXrw = 2α(1−α)(1−ρX).469

Parameters: α = 0.125 is the connection probability, and ρCA3 = 0.95, ρEC = 0.35 are the temporal470

correlations of the inputs from the fit of the statistical model.471

Plasticity model472

In the network simulations used to fit the experimental data in Fig.2 changes in inputs from one session473

to the next were modeled as a process of synaptic turnover, without specifying the precise mechanism474

responsible for this. One possibility is that this turnover is due to the storage of patterns in the network.475

Specifically, we assume that between sessions a fixed number of patterns are encoded, which we call476

the inter-session interval (ISI). Each pattern is a binary vector in which only a fraction of cells fs are477

active. Of the active cells, we assume that a fraction f are strongly active, while the remaining 1 − f478

are weakly active. If we are modeling CA1, as in Figs.3 and 4, there would be three such vectors, while479

for Figs.5-6 there is only one input layer and hence only two vectors. To store a pattern we apply the480

following plasticity rule. If the pre- and post-synaptic cells are both strongly active, then the synapse is481

potentiated with probability p+. If one of the cells is strongly active while the other is weakly active then482

we depress the synapse with probability p−. If both are weakly active no change is made at the synapse.483

For the CA1 model, these probabilities can be different for CA3 versus EC inputs. Synapses are binary,484

as before, i.e. cij ∈ {0, 1}. To quantify RD we calculate the correlation in the output pattern at time t485

with that at time t = 0 given the same (tracked) input patterns. If the input patterns are the same, then RD486

can only be due to changes in the network connectivity. If the input patterns change, as is the case with487

CA3 inputs in Fig.4e, then RD is affected both by this as well as changes in network connectivity.488

Figure 3: We mapped the Hebbian plasticity model onto the process of synaptic turnover in the network489

model by matching the decay in the correlation of the inputs a cell receives over time, see Fig.3c. The490

parameter values used to generate the lines in Fig.3c were: fEC = fCA1 = fCA3 = 0.5, fs,EC =491

fs,CA1 = fs,CA3 = 1, pEC
+ = pEC

− = 0.18, pCA3
+ = pCA3

− = 0.01, NEC = NCA1 = NCA3 = 1000,492

rEC = 4.42Hz, rCA3 = 13.27Hz. The circles were generated using the same rewiring process as that493

used to model synaptic turnover in Fig.2f. The only difference is that N = 1000 for all populations494

instead of 4000.495

We also performed network simulations with the plasticity process and observed RD as in Fig.2, see496

Fig.S7. For those simulations we modeled a population of CA1 cells as linear threshold units, i.e. the497

activity of cell i was given by ri = [Ii − θ]+, where Ii was the total input, θ was the threshold, and498

[x]+ = x if x > 0 and is zero otherwise. Active cells in EC had a constant firing rate rEC while active499

cells in CA3 were spatially modulated according to a von Mises distribution as in Eq.3. The threshold500

was θ = 0.3 and for the von Mises rates the parameters were r0 = 5, R̄ = 90, β = 19. rEC is chosen501

such that the ratio σCA3/σEC = 1.16 in order to match the fit from the statistical and network models.502

The initial condition for the connectivity matrix was random with connections probability p = 0.33. We503

tracked the 100th pattern stored and plotted snapshots of the activity in CA1 starting at time t = 140 and504

every 7 time steps for eight "sessions". Plasticity was not applied for additional repeats of the tracked505

pattern here. Neurons were considered inactive if their mean firing rate was less than 0.1.506

Figure 4: We used the same network model of linear-threshold units as described above with the following507

parameter values: fEC = fCA1 = fCA3 = 0.5, fs,EC = fs,CA1 = 1, fs,CA3 = 0.1, pEC
+ = pEC

− = 0.18,508

pCA3
+ = pCA3

− = 0.02, NEC = NCA1 = NCA3 = 1000, θ = 0. All other parameter values were the509

same. Drift in the CA3 inputs was modeled by allowing the position of the ith place cell (center of510

the von-Mises distribution) at time t to shift with respect to the position at time t − 1 according to511

ϕti = ϕt−1
i + σξt, where ξ is uniformly distributed from {−π, π} and σ = 0.0447. Plasticity occurred512

according to the rule described above. To calculate the correlation of the tracked pattern in CA1 with513
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the activity at time t = 0, the neurons in CA1 at time t were driven by the input pattern xEC,tracked,514

xt
CA3,tracked.515

Figures 5: To model the results from pririform cortex we studied a two-layer network. As before, patterns516

were random, binary and sparse with sparseness finput = foutput = f . We stored many such patterns517

until the network reached a statistical steady state. We then tracked one particular pattern, for which the518

input vector can be written x. For simplicity we considered linear neurons, and hence the output pattern519

at time t, yt = Ctx, where Ct was the connectivity matrix. Simulations with linear-threshold neurons520

revealed that the nonlinear threshold did not qualitatively affect the results (not shown). To model the521

effect of familiarization we presented the same (tracked) pattern to the system k times before time t = 0522

where k = 1 indicated a novel pattern. We quantified the RD by calculating the output correlation523

Corr(yt, y0) =
Cov(yt, y0)√
Var(yt)Var(y0)

. (14)

The variance and covariance terms can be expressed in terms of first and second-order statistics of the524

network connectivity, which in turn can be calculated as a Markov process. Specifically, the connectivity525

depends on transition matrices for the presentation of random patterns or repetitions of the tracked pattern.526

These matrices can be applied in any order to model a given protocol, see Supplementary Information for527

detailed calculations.528

Conversely, instead of calculating the correlation over time we can calculate the drift, which we529

defined as530

θdrift =
180

π
cos−1

((yt − ȳt) · (y0 − ȳ0)

|yt − ȳt||y0 − ȳ0|

)
. (15)

Figure 6: For Fig.6a-c this is exactly the same model as for Fig.5. In Fig.6d-f we consider input patterns531

which themselves also undergo drift. To model this, we assumed that the input i for the rth repetition, xri532

was identical to xr−1
i with probability s and was otherwise set active with probability f , and otherwise533

inactive with probability 1 − f . Therefore for s = 1 the input pattern was stable while for s = 0 the534

input pattern was random and uncorrelated from repetition to repetition. At the level of the Markov535

process, this meant that for each presentation of the tracked pattern we applied the transition matrices for536

a repetition with prefactor sr and the transition matrices for a random vector with prefactor 1− sr.537
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