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Representational drift as the consequence of ongoing memory storage
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Memory systems with biologically constrained synapses have been the topic of intense theoretical
study for over thirty years. Perhaps the most fundamental and far-reaching finding from this
work is that the storage of new memories implies the partial erasure of already-stored ones. This
overwriting leads to a decorrelation of sensory-driven activity patterns over time, even if the input
patterns remain similar. Representational drift (RD) should therefore be an expected and inevitable
consequence of ongoing memory storage. We tested this hypothesis by fitting a network model
to data from long-term chronic calcium imaging experiments in mouse hippocampus. Synaptic
turnover in the model inputs, consistent with the ongoing encoding of new activity patterns,
accounted for the observed statistics of RD. This mechanism also provides a parsimonious
explanation for the diverse effects of experience on drift found in experiment. Our results suggest
that RD should be observed wherever neuronal circuits are involved in a process of ongoing
learning or memory storage.

The synaptic hypothesis of learning and memory postulates that memories are stored in the structure of the
synaptic weight matrix in neuronal circuits'. Theoretical studies have shown that network models built
on this synaptic principle can store large numbers of patterns as fixed point attractors>*. However, with
biologically constrained synapses, new learning implies the overwriting of previously stored memories>.
In the context of stimulus-driven neuronal activity, this overwriting would result in a distinct network
response at two different points in time, even if the input pattern remained unchanged.

The advent of technologies allowing for stable, long-term recordings in awake behaving mice has
indeed revealed that the neuronal activation underlying certain behaviors can change dramatically, even
when sensory inputs do not. This phenomenon was first described in detail in the context of spatial
memory in rodents’. It was already known that in area CA1 of the hippocampus a unique pattern of
place-cell activity quickly emerged upon exploration of a novel space®!2, and was reliably re-evoked
when the animal was returned to the familiar environment '3!3, However, the seeming stability of
the hippocampal code only held true on relatively short time scales. Indeed, in familiar environments,
both place-cell- and non place-cell activity slowly changed over days and weeks”!¢23. These long
time-scale changes in the neuronal code, dubbed representational drift (RD), have also been seen in other
cortical areas, such as parietal, piriform, visual and auditory cortex 4?8, The phenomenology of RD is
fundamentally similar in all of these cases: the identity of active neurons changes from session to session,
although the sparseness of representation is stable. Furthermore, there is considerable heterogeneity in the
stability of cells, or how often they take part in the code. It is not known what the mechanism generating
the observed drift is, nor what its potential functional role might be.

Several computational studies have shown that ongoing plasticity can result in changes in neuronal
dynamics reminiscent of RD at the population level>>2. In these studies the plasticity acted as a source
of noise, driving changes in the representation of already stored patterns. In fact, it was previously
hypothesized that such changes might provide the substrate for a time-stamp of a given memory '°.
Alternatively, it has also been hypothesized that RD may occur due to plasticity related to the encoding
of new memories>>. From this perspective RD would be the unavoidable signature of ongoing memory
storage due to overwriting>3334. However, it remains unclear to what extent the mechanism of RD as
ongoing memory storage is consistent with experimentally observed data. We therefore developed a
biologically plausible network model which could be fit to data quantitatively, and which specifically
allowed us to address the role of ongoing learning.

Through fitting of our network model to experimental data ', we inferred that changes in neuronal
activity from session-to-session are inherited from changes in the afferent inputs to cells in CA1. These
changes are consistent with the large degree of synaptic turnover observed through Ca2+ imaging of
dendritic spines in CA1%. Interestingly, the inferred synaptic turnover was random and uncorrelated
from cell-to-cell, and followed simple Gaussian statistics. Although the types of memories which the
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hippocampus stores are, in general, highly correlated, an efficient means of data compression is to store
just the differences between like memories, which are uncorrelated*-*°. Indeed, we show in our network
model that the ongoing storage of such decorrelated patterns can account for the synaptic turnover, which,
in turn, is responsible for RD.

This same mechanism provides a parsimonious explanation for a recent finding on RD in CA1 place
cells. While RD in the spatial tuning of these cells depended on the amount of time spent exploring the
environment under study, RD in overall rates depended only on the absolute passage of time*!. In the
context of memory storage, when the animal is engaged in the task, plasticity can readily occur between
the active CA1 place cells and their presynaptic inputs, affecting CA1 place cell tuning. On the other
hand, episodes unrelated to experimental sessions will not engage the same subset of place cells and
changes due to plasticity will therefore be largely spatially untuned (in the experimental environment).
The number of encoded episodes is simply proportional to the total time elapsed. In this way, RD in
neuronal firing rates occurs as a function of time, while RD in neuronal tuning is biased more strongly
towards time spent exploring, when the relevant assemblies of tuned cells are active. Overall, we find that
the statistics and phenomenology of RD are well predicted by theories of ongoing memory storage.

Results

Ongoing memory storage in a network model with biologically constrained synapses leads to the partial
overwriting of previously encoded patterns, Fig.1. When such a network is driven by external input, the
resulting patterns of activity will therefore change over time, even if the input is stable, Fig.1b-c. Such a
drop in correlation of network activity over time, or representational drift (RD), has been observed in the
hippocampus and other cortical areas. However, despite the broad qualitative similarity between plasticity-
related overwriting and RD, it remains unclear if synaptic plasticity alone can provide a comprehensive
account of the detailed statistical characteristics associated with RD. To answer this question, we fit a
network model to experimental data from chronic Ca2+imaging in mouse hippocampus ¢ and sought to
reproduce the observed RD via changes in synaptic connectivity consistent with ongoing memory storage.
We found differential effects of the spatially tuned versus untuned components of RD in the data, see
Fig.S1, in line with recent findings*!. Specifically, the large drop in the correlation of the population
activity from one session to the next was due largely to rate effects alone, while drift in the spatial tuning
occurred on a longer time scale.

A spiking network model with synaptic turnover reproduces drift statistics in CA1

We sought to reproduce the observed RD in a network model in which plasticity occurred at different
rates at spatially tuned versus non-spatially tuned synapses. Specifically, we modelled a local circuit
of CA1l pyramidal and interneurons as sparsely-connected leaky integrate-and-fire neurons. Neurons
in CA1 received input from area CA3 of the hippocampus and the entorhinal cortex (EC), modeled as
Poisson neurons, Fig.2a (top). For simplicity we chose a fraction of CA3 cells to be place cells, while
the EC inputs were spatially untuned. Allowing for weak to moderate tuning in the EC inputs did not
alter the results qualitatively, see Fig.S4. We simulated the movement of a virtual animal along a circular
track during a given session, Fig.2a (bottom). Large excitatory and inhibitory input currents dynamically
balanced in the model*?, leading to the emergence of heterogeneity in firing rates and spatial tuning
consistent with experimental findings*’, Fig.2b,c and Fig.S3a-g.

We modelled changes in the inputs to CA1 cells from session to session as a process of random
synaptic turnover® . Later we will show that this turnover is also consistent with the ongoing storage of
memories. Specifically, we rewired a random fraction of the inputs for each cell in CA1, independently
for the EC and CA3 pathways, Fig.2d. The rewiring fraction for CA3 was chosen to be smaller than that
for EC, resulting in more gradual changes in place-cell tuning, in accordance with the data, Fig.S1. This
synaptic turnover could lead to significant changes in the mean drive to CA1 cells from session to session,
which is the mechanism responsible for RD, Fig.2e.f.
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Fig. 1 IOngoing memory storage generates representational drift. a. Memories are encoded in an
ongoing fashion in time. Memory identity is indicated by color. We track and observe the neuronal
activity corresponding to one memory in particular (pink square). b. Synaptic weights undergo plasticity
as memories are stored. When pre- and post-synaptic activity is high, synapses may undergo potentiation
(large red circle), while depression takes place if one cell fires strongly and the other only weakly (small
blue circle). Active presynaptic cells are indicated by a train of action potentials. The postsynaptic cell
fires strongly (black) or weakly (grey). Synaptic weights are strong (large circle) or weak (small circle).
Note that due to the plasticity from the two intervening memories, the response of the post-synaptic cell
to the same pre-synaptic pattern of activity, corresponding to the pink memory, has changed: its firing
rate has decreased. ¢. The change in post-synaptic activity due to ongoing memory storage manifests
itself at the population level as representational drift. Therefore, there is a drop in correlation between
the initial pattern of neuronal activity given inputs corresponding to the pink memory r° and the first
repetition 7. If we assume that ongoing memory storage occurs between every repetition the correlation
will continue to decrease.

99 We chose the network parameters in order to closely match the statistics of RD observed in experiment.

100 To do this, we first considered a simple statistical model for CA1 pyramidal cells which could be
101 quantitatively fit to the data using standard least-square optimization, see Methods and Fig.S2. Inputs in
102 this model were Gaussian random variables with zero mean, and with variance and temporal correlation
103 optimized to fit RD statistics from the data. Input statistics in the full spiking network model were
104 also Gaussian in the balanced regime, and could be calculated analytically, allowing us to map network
105 parameters onto the statistical model, and hence fit the network to the data, see Methods and Fig.S3h. As
106 aresult, we were able to reproduce the drop in the Population Vector (PV) correlation seen in the data
107 quantitatively Fig.2g, which takes both rate and tuning effects into account, as well as several measures
108 of RD related only to active versus inactive cells, see Fig.S3i. The network model also qualitatively
109 reproduced the gradual diffusion of place field location, Fig.2h, although the fraction of place cells was
110 always larger in the network than in the data.
111 Finally, the mechanism of RD through synaptic turnover predicts that the likelihood of a cell to remain
112 active on a subsequent session should be positively correlated with its firing rate. This is because high
13 (low) firing rates are due to a large (small) number of excitatory inputs. Therefore, the rewiring of the
114 same number of inputs is more likely to cause a low-rate cell to become inactive, than a high-rate one.
115 We reanalyzed the data and found such a positive correlation, see Fig.S5. This is furthermore consistent
1e with the greater stability observed in high-rate CA1 pyramidal cells across sleep sessions compared to
117 low-rate cells**.
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Fig. 2 |A spiking network model with random synaptic turnover reproduces drift dynamics a.
Network architecture and sample raster plot of CA1 pyramidal cells. b. Heterogeneous response profiles
for sample CA1 cells. The color indicates the value of spatial information from c. ¢. Histogram of spatial
information for all CA1 cells over one session. d. Synaptic turnover from session to session is modeled
by randomly rewiring a fraction of inputs to each CA1 pyramidal cell, independently for EC versus CA3
pathways. e. Tuning curve (top row) and total input (bottom row) for one example cell over three sessions.
The dashed line in the bottom panel indicates the average total input along the track for each session. f.
Place field maps for 200 randomly selected active cells found on session 1 (top) or session 8 (bottom),
ordered according to their place field positions. g. PV correlation of all cells (left), and only place cells
(cells significantly spatially tuned in both sessions) (right). The insets show the first four points of the
respective curves, where the initial point (within-session correlation) is computed considering odd vs
even trials. h. Distribution of the centroid shift for different number of elapsed sessions (color-coded).
Inset: cumulative distribution of the absolute shift. See Methods for model details and parameter values.

1 The synaptic turnover responsible for RD is consistent with ongoing memory
19 Storage

120 In the previous section we showed that synaptic turnover, modelled as a process of random rewiring of the
121 synaptic inputs to CA1 pyramidal cells, could account for the statistics of RD observed in mice. At such
122 a level of description, the mechanism behind the turnover itself remains unclear. We hypothesize that
123 this rewiring process may, in fact, reflect the encoding of episodes or memories. In this scenario, much
12+ of the synaptic turnover, and hence RD observed from session to session, would be due to the storage
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125 of memories unrelated to the environment in which the recordings are made, Fig.3a-b. Specifically,
126 instead of rewiring synapses randomly, we modified them according to a simple Hebbian plasticity rule.
127 We imposed random binary patterns of activity for the CA3 and EC inputs, and the CA1 outputs, with
128 sparseness f. We then potentiated synapses between co-active cells with probability p and depressed
129 synapses between cells with differing activities with probability p_. These probabilities were different
130 for the EC and CA3 inputs. We repeated this process many times, until the synaptic weight matrices from
131 EC and CA3 to CAl reached a statistical steady state, see Methods and Supplementary Information for
132 more details. We then tracked one of the random patterns in particular, as if it were the experimentally
133 observed activity pattern. In between observations of this pattern, we encoded other random patterns,
134 the number of which we call the inter-session interval (ISI), Fig.3b. With this simple model we could
135 calculate the temporal correlation of the inputs to CA1 cells analytically as a function of the plasticity
136 parameters, and match them to the synaptic turnover process from the network, Fig.3c.

187 In our model, both synaptic turnover and RD are reflections of the changes in network structure
138 due to the storage of memories, most of which are episodes unrelated to the ones observed during an
139 experimental session. Nonetheless, given a Hebbian rule, plasticity occurring during a session, namely a
140 repetition of the tracked pattern, can have an outsized effect on RD. This is because all of the neurons being
141 tracked are co-active by definition, whereas other sparse, random patterns will have a small overlap with
142 the tracked pattern. The repetition rate of a pattern therefore affects the degree of RD observed, although
143 whether drift is increased or decreased depends on the details of the input statistics. In the following
144 sections we show how this phenomenon can account for recent findings from both hippocampus*! and
s piriform cortex?.
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Fig. 3 ISynaptic turnover is consistent with the ongoing storage of random patterns. a. The synaptic
turnover used to fit RD from the data is now generated through the encoding of random patterns with a
Hebbian plasticity rule. b. We assume that in between sessions in which the activity patterns are tracked,
there are a number of random patterns encoded. ¢. The learning process is fit to the synaptic turnover by
matching the drop in correlation in input to CA1 cells over sessions. The circles indicate the values of
correlation which correspond to the snapshots of activity shown in Fig.2f, see Methods for details and
parameter values.

s Ongoing memory storage accounts for the differential roles of time and experi-
17 ence on RD in place cells in CA1

148 Recent experimental work has shown that the spatially untuned component of RD in CA1 pyramidal cells
149 occurs at a rate proportional to the absolute time elapsed between sessions on a linear track, while RD in
150 the tuned component depends on the time spent exploring the track itself*'. The mechanism we propose
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151 here for RD suggests a potential explanation for this dissociation. Namely, we would expect that the
152 ongoing storage of memories unrelated to the linear track itself would simply occur at a rate proportional
153 to time. Such memories would naturally overwrite some synapses involved in the representation of the
154 track, leading to RD. In principle, these synapses could be from spatially tuned or untuned presynatic
155 inputs. However, it is reasonable to assume that it is the spatially untuned, contextual inputs which are
156 more strongly shared between temporally proximate memories '°. On the other hand, it is only when the
157 animal is actively exploring the track itself that the entirety of the spatially tuned inputs are active. Given
158 an activity-dependent plasticity rule, we should thus expect maximal RD due to changes in the spatially
159 tuned inputs to occur precisely during exploration.

160 In the framework of our network model, in which a series of patterns with spatial and non-spatial
161 component are stored, the dissociation between time and experience is, in general, approximate. It is
162 exact only in the limit in which the overlap between spatially tuned presynaptic inputs vanishes between
163 patterns, Fig.4a. In this case, if we consider two sets of simulations in which one particular pattern (e.g.
164 corresponding to the linear track) is repeated more often in one set than in the other, Fig.4b, then the RD
165 in firing rates will depend only on the number of patterns presented, i.e. time, while the RD in tuning will
166 depend only on the number of repetitions of the pattern of interest, i.e. experience. We ran simulations in
167 which the encoded patterns consisted of a random fraction of spatial and non-spatial inputs, and hence
168 the overlap in spatially tuned presynaptic inputs between pattern was not zero, but rather equal to the
1es  fraction of active spatially tuned cells fs = 0.1. In this case, the RD in firing rates depended much more
170 clearly on time that on repetitions, upper row of Fig.4c. The small discrepancy in the overlap was due
171 to the fact that, all things being the same, the encoding of a random pattern in B led to a larger drop in
172 correlation than a repetition of the tracked pattern in A. On the other hand, the RD in tuning depended
173 both on time and experience, bottom row of Fig.4c. However, this result was true only when the patterns
174 of presynaptic activity were stable over time. In fact, place cell activity in CA3 itself undergoes RD*,
175 suggesting that those presynaptic inputs should themselves vary from one repetition to the next, Fig.4d.
176 Including this effect tipped the balance of spatial RD from time to experience through a combination of
177 presynaptic RD and plasticity, Fig.4e. Interestingly, it also eliminated the small discrepancy in the rate
178 correlation as the encoding of a random pattern or a repetition now led to similar drops in correlation.

179 Ongoing memory storage accounts for the effect of repetition rate on RD

180 Recent experiments have revealed that the degree of RD in the piriform cortex of mice is reduced by
181 increased repetition of familiar odors?>. This was shown by familiarizing two groups of animals with a
182 particular odor over many sessions, and then repeating that same odor each subsequent session for cohort
183 A, while cohort B was exposed to the familiar odor only after a number of sessions without odor, Fig.5a.
184 As was the case in the previous section, we again assumed that RD for the familiar odor was largely
185 due to the storage of other patterns in piriform cortex, which occur in between sessions, see "random
186 pattern” in Fig.5a. This assumption was enough to provide a simple explanation for the experimental
187 finding, Fig.5b. Namely, if we consider the synaptic weight matrix for cohorts A and B, they were both
18 initially identical due to the familiarization process. The storage of other patterns, which were random
189 and uncorrelated with the familiar one, degraded the structure in the matrix which was correlated with the
190 familiar pattern. However, in cohort A, the familiar pattern was repeated at the subsequent session, once
191 again boosting the structure in the matrix, while in cohort B this was not the case.

192 We simulated this process using the same Hebbian plasticity rule as in previous sections, but with
193 only a single input layer. We presented a pair of sparse, binary input and output vectors repeatedly until
194 the synaptic weight matrix reached a steady state. We then repeatedly encoded the pattern to be tracked
195 and considered this to be the familiarized state, see Methods for details. To simulate cohort A, we then
196 encoded a number of random patterns in the network equal to the inter-session interval (ISI) after which
197 time we again presented the familiar pattern, Fig.5c (black line). For cohort B we presented repetitions of
198 the familiar patterns only after every eight repetitions in cohort A, leading to significantly reduced output
199 correlations, Fig.5c (green line). The size of the difference in output correlations (RD) was strongly
200 affected by the ISI, Figs.5d,e.
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Fig. 4 IOngoing memory storage is consistent with differential effects of drift on rate and tuning
a. We consider the storage of many memories, indicated here by color, all with spatial and non-spatial
features, and one of which (pink) is tracked explicitly. Only changes to synapses which are active in that
environment (dashed boxes in cell schematic) will generate observable RD. In the limit of sparse place
cell coding the storage of the blue and orange memories readily causes drift in non-spatial inputs, but not
in the spatial ones. As a result, RD in non-spatial features is proportional to the total number of memories
stored, while RD in spatial tuning is due only to repetitions of the tracked memory. b. Simulation protocol
for which the repetition rate for environment A is twice that of B. In the sparse spatial coding limit the
rate correlation depends on total patterns stored (time) while the tuning correlation depends only on
repetitions of the tracked pattern (session). c¢. Results of simulations when the sparseness of spatial
coding f; = 0.1. The drop in tuning correlation is affected both the number of repetitions as well as
interference from other memories. d.-e. When spatially tuned inputs already exhibit drift, as has been
observed in CA3 place cells, the combined effect of sparseness and drift results in the tuning correlation
being dominated by the number of repetitions. See Methods for model details and parameter values.
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201 In the same set of experiments, an unfamiliar odor was presented to both cohorts with the same
202 repetition rate and no difference in drift rate was found. We can account for this by running the same
203 simulation as before, but now tracking both the familiar pattern, and one pattern uncorrelated with the
204 familiar one, Fig.5f. This amounts to considering the structure of the weight matrix, and the output vector,
205 with two distinct orderings. As long as the familiar and unfamiliar patterns are uncorrelated, the drift
206 rate of the unfamiliar pattern depends only on the repetition rate and ISI, which were the same for both
207 cohorts, Fig.5g-h. Finally, the familiar pattern with high repetition rate had a significantly reduced drift
208 rate compared to the other three cases, in agreement with experiment, Fig.5i.

200 Ongoing memory storage can explain diverse effects of experience

210 It may at first seem paradoxical that increased exposure to a spatial environment would lead to more RD
211 in CAl of hippocampus*!, while increased exposure to a familiar odor would actually reduce RD in
212 piriform cortex>. In the context of ongoing memory storage through Hebbian plasticity, both scenarios
213 are possible, Figs.4 and 5, suggesting that this single mechanism provides a potential explanation.

214 We first note that the repeated storage of the same pattern tends to increase the correlation of the
215 synaptic weight matrix with that pattern, Fig.6a-c. A period of familiarization provides a substrate for
216 enhancing the effect of this repetition rate. The degree of this enhancement of correlation, and hence
217 reduction in RD, depends strongly on the fraction of synapses which are updated to store each memory
218 (learning rate). We quantified this by varying the number of times k a pattern was repeated before time
219t = 0. For k = 1 the pattern was novel. When the learning rate is small, increasing k leads to a build-up
220 of correlation which was large compared to a single presentation, Fig.6a, whereas for large learning rates
221 this difference was smaller, Fig.6b. Large k implies a weight matrix which is entirely correlated with the
222 tracked pattern, and hence has lost all correlation with previously stored patterns, an unreasonable limit
223 for an actual physiological memory system. However, the difference in RD for different repetition rates is
224 already present for small values of k£ and even reaches a maximum for intermediate values when learning
225 rates are small, black lines Fig.6c. These are the parameter values used to reproduce the findings from
226 piriform cortex in Fig.5. The effect of varying the coding sparseness f is shown in Fig.S6.

227 When the input pattern is not the same from one repetition to the next then the effect of repetition
228 rate is not as straightforward. We modeled this by keeping a fraction s of the active units in the tracked
229 pattern the same from repetition to repetition, while choosing the other 1 — s randomly, Fig.6d. When
230 s = 1 repetitions reduced RD as explained above. For s = 0 the pattern was effectively random and
231 uncorrelated from one repetition to the next. For intermediate s the correlation of the r* repetition
232 with the original input pattern decreased as s” which could lead to RD increasing for sufficiently high
233 repetition rates, see Fig.6e. All other network parameters being the same, if RD was measured after a
23+ fixed number of repetitions, then there was a critical value of s below which repetition rate increased RD,
235 Fig.6f.

=6 Discussion

237 Here we have argued that RD is, in large part, due to the storage of memories unrelated to the experiment
238 in which RD is observed. Such a storage process implies changes in the synaptic weights of the network,
239 which will necessarily alter its response to stimuli on subsequent sessions, even if upstream neuronal
240 activity is unchanged. We have shown that the statistics of RD in CA1 of mice are well captured by a
241 process of synaptic turnover in which inputs undergo rewiring from one session to the next. The fact
242 that this synaptic turnover is consistent with the ongoing encoding of activity patterns to us strongly
243 points to this as the underlying mechanism. After all, episodic memory formation, a major function of
244 the hippocampus, involves precisely this kind of ongoing storage of information related to experiences
245 during daily life. Ongoing memory storage can furthermore account for the differential effects of time
246 versus experience in RD in CA1l, as well as the effect of repetition rate, both stabilizing as found in
247 piriform cortex and destabilizing, as in CA1l, depending on the input statistics. These nontrivial and
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Fig. 5 IRepeated exposure to same input pattern reduces drift. a. Protocol for testing the effect
of repetition rate on drift. Two cohorts are repeatedly presented a pattern (blue squares) during a
familiarization period. After this time cohort A is presented the familiar pattern every session while B
is presented the familiar pattern every eight sessions. Crucially, we assume that a number of additional
patterns, uncorrelated with the familiar one are encoded between sessions (inter-session interval, ISI)
(grey squares). b. Illustration of the effect of repetition rate on network connectivity. Repetition boosts
network structure correlated with the familiar pattern, thereby reducing drift. ¢. Output correlation for
familiarized pattern with a total of 16 repetitions for cohort A and /ST = 20, while the repetition rate for
B was 8 times less. Dotted lines are from simulation of the network model with Hebbian plasticity while
solid lines are the solution of the corresponding Markov process. d.-e. Output correlation and drift rate
as a function of the ISI, i.e. the number of random patterns encoded between “sessions". The vertical
line indicates the value of ISI used in c. f. Illustration of encoding of familiar and unfamiliar patterns.
Because the repetition rate is the same for the unfamiliar pattern for both cohorts, the resultant drift is also
the same. g.-h. Drift rates for the unfamiliar patterns. i. Drift rates normalized by the familiar case for
cohort A. Parameters: p; = p_ = 0.02, f = 0.15, N = 1000. For the familiar cases the tracked pattern
was encoded k£ = 5 times at time zero, whereas for the novel cases k = 1. See Methods for model details.

248 seemingly paradoxical findings cannot be explained by a process of random synaptic turnover, but are
249 reproducible in a network model in which patterns are encoded via a Hebbian plasticity rule. Specifically,
250 whether experience led to more or less drift in our computational model depended on the stability of
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Fig. 6 [How familiarity and input stability modulate RD. a. We model familiarity by presenting a given
pattern to the network & times before time ¢ = 0, i.e. k¥ = 1 is a novel pattern. Here p; = p_ = 0.02,
f = 0.15and N = 1000. b. Same as in a. but with p; = p_ = 0.1. ¢. Correlation after a total
of 320 patterns, with either 16 or 2 repetitions, for low and high learning rates. d. The input patterns
driving the observed activity may themselves undergo RD, which we parameterize with s. Here s = 1
indicates completely stable inputs over time while s = 0 indicates that the input vectors are completely
uncorrelated from repetition to repetition. e. When inputs are stable, increased repetition rate decreases
RD (s = 1), while this need not be the case when inputs themselves drift (s = 0.9). f. The repetition rate
can reduce RD (black lines), increase RD (green line) or even leave it largely unchanged (orange line).

251 the input patterns. This result is consistent with the finding that CA3 input patterns themselves drift*,
252 while representations in the olfactory bulb, the primary input to piriform cortex, are extremely stable over
253 time*S. More generally, the fundamental mechanism here is the interference between stored patterns.
254 Precisely how this interference manifests itself at the level of RD will depend on the correlation between
255 these patterns. Here, for simplicity, we considered all patterns to be random and uncorrelated.

256 Other computational modeling work has also proposed that RD may arise due to plasticity-driven
257 perturbations?*3!. In?° the authors studied a network with prescribed synaptic weights which allow
258 for the storage of a large number of sequential patterns. They showed that randomly perturbing the
259 synaptic weight matrix generates RD while maintaining robust sequences. RD can also arise in a
260 spiking network with a symmetric spike-timing dependent plasticity rule, coupled with a homeostatic
261 mechanism>?. Specifically, if the initial network structure (synaptic weight matrix) exhibits clustering,
262 ongoing plasticity allows for individual cells to leave their cluster and join a new one, all the while
263 maintaining the clustered structure at the network level. RD occurs in a similar fashion in networks which
264 minimize the mismatch between the similarity of pairs of input patterns and the corresponding pairs of
265 output patterns (Hebbian/antiHebbian networks)3'. Namely, ongoing plasticity allows the network to
266 explore the degeneracy in the solution space by undertaking a random walk along the manifold of equally
267 optimal output patterns. An important conceptual difference between our work and previous studies is the
268 nature of the synaptic turnover itself. While those studies showed that already-stored patterns of activity
269 undergo RD in the face of ongoing plasticity, we ascribe the plasticity to the encoding of new patterns.
270 Namely, we have shown that RD is consistent with the inevitable interference between patterns when
271 learning occurs, and hence not necessarily just a consequence of noise once learning is done. The mice in
272 the experiments we have studied are not exposed to explicit, task-dependent learning between sessions.
273 Rather, the "learning” process may simply be the storage of episodes, unrelated to the exploration. The
274 hippocampal circuit plays a central role in this type of memory+’*8, while there is evidence that piriform
275 cortex participates in olfactory associative memory formation*,

276 The stability paradox We have sought here to provide a plausible network mechanism for RD, and
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277 have not addressed the fundamental paradox of how to maintain stable behavior in the face of such
278 neuronal instability. In fact, drift does not appear to adversely effect the performance of mice in a variety
279 of memory-dependent tasks?+2>30, Several previous studies have addressed how this might be possible.
280 Firstly, it has been hypothesized that there may be a low-dimensional manifold which represents the
281 task-relevant projection of the population response, and which is invariant to RD?7>132_ In this scenario
282 many distinct patterns of the high-dimensional population activity can have the same projection on
283 the relevant, low-dimensional manifold. If RD does not affect this projection, i.e. it is constrained to
28+ the "null-space" of the manifold, then task-relevant variables can be stably read out. While neuronal
285 representations undergoing RD do appear to be low-dimensional, the direction of drift has not been found
286 to be orthogonal to this manifold in general7->>3. Alternatively, despite ongoing changes, the patterns of
287 neuronal activity observed in-vivo retain some significant correlation from session to session’-16-21:24.25,
288 Therefore, decoders trained on a given session will perform above chance for subsequent sessions, albeit
289 with degraded accuracy. In any case it remains unclear precisely how behavior remains unaffected by the
200 observed drift. One potential solution to this is to allow for compensatory plasticity in downstream circuits
291 S0 as to stabilize the readout performance3%>1335 Another is to seek some higher-order population
202 structure which remains stable in the face of ongoing RD 1%:21:22:27:51,52,

293 Yet despite recent theoretical advances and experimental findings, the stability paradox remains. It
204 may be that behavior depends on a neuronal representation which is distributed across several cortical
205 areas, and that RD is greatly reduced in some of the them compared to those observed up until now. In
206 the case of the hippocampus, it is hypothesized that memories are transferred to higher-order cortical
297 areas for long-term storage via a consolidation process which can take weeks, months or years depending
208 on the species ®>°. Computational models of distributed memory systems in which fast learning (and
209 hence fast forgetting) circuits drive plasticity in slower-learning downstream circuits in a multi-layered
s00  framework, show qualitatively enhanced memory capacity compared to single-area models3*. Such
sor  models leverage a hierarchy of time-scales of synaptic plasticity to allow for both fast encoding as well as
sz long lifetimes®34%0. A hallmark of a model in which the timescale of plasticity is spatially distributed
303 across cortical areas, is a concomitant array of timescales for RD. Only future experiments in which
so4 the activity of neuronal populations across several cortical areas are recorded simultaneously over long
so5 periods of time will reveal if RD acts on distinct timescales in different brain areas.

w6 Methods

w7 Data analysis

s0s We analyzed previously published data'®. In the experiment, mice repeatedly explored two familiar
300 environments (one in the morning, the other in the afternoon) over the course of two weeks, with imaging
a0 sessions every other day (8 total sessions). We separately analyzed leftwards vs rightwards running
s11  epochs for each environment, and then pooled the data together. In total, we analyzed data from 5 mice.
a1z Of the five mice, two have only one spatial map for each environment, while three have multiple spatial
s13 maps for each environment, as previously analyzed?’. Unless otherwise specified, all the analysis was
s14 performed separately for each map, and then results were pooled together.

s1s  Calcium events and place field maps were extracted as in the original paper . Briefly, the linear tracks
sts  were divided into 24 bins, each 4cm in length. For each spatial bin, the total number of events in each
317 session was extracted, together with the total time-occupancy of each bin. The event rate map is then
s1s  calculated by dividing the total number of events per bin by the bin occupancy. The two bins at each
a9 extreme of the track were excluded from the analysis to limit reward delivery effects.

s20 In Fig.S1, the rate maps follow two different types of normalization: in Fig.S1a, the event rate map for
s21 each cell was normalized by the maximal firing rate over all sessions. In Fig.S1c, the event rate in each
s22  session/bin as normalized according to the maximal value within each session.
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323 Rate and tuning correlation

s« To compute rate correlations across sessions, we defined a rate population vector ry € RY. N was the
s2s total number of neurons, and each entry of the vector was the mean firing rate of each cell in session .
326 We then computed the Pearson correlation coefficient to quantify the rate similarity between two sessions,
s27  as in Fig.S1d-f.

s2s To quantify the similarity of spatial tuning across session, we defined a Tuning population vector of
s20 length N x n, where n is the number of bins of the linear track. The vector then contained the rate of
ss0 each cell in each spatial bin, normalized in such a way that the sum of the rates for each cell over the
sa1  different spatial bins was constant in all sessions. We then computed the Pearson correlation coefficient
ss2  of such vectors for pairs of session to quantify the tuning similarity. The procedure ensured that changes
s33  in mean firing rates of cells from one session to the next would not affect the tuning correlation.

s34 Place fields

To be considered a place cell in a given session, we employed the following procedure. First, for each
cell, we computed the spatial information per spike as :

S
sz-:g pr—log | =],
1 i i
k

s3s  where ¢ was the cell index, and the sum runs over all n spatial bins, r;° was the event rate of cell 7 in
a3 bin k, 7; was the mean event rate over all bins, and pj, was the occupancy of bin & (the fraction of time
s37  spent in bin k). s; was then the spatial information (measured in bits/event) of cell . Then, we generated
sss  surrogate data by shuffling the position of the animal with respect to the time of the calcium events, and
s3e calculated the spatial information for each cell and each shuffle. We then compared the value of the
s40 spatial information of each cell to the null distribution generated with the surrogate data. If the value was
sa1 larger than the 95th percentile of the null distribution, than the cell was defined as a place cell in that
342 session.

s4s  The place field width of each cell was defined as the number of contiguous bins where the event rate is
aa4  larger than 50% of its maximal value over all the bins.

a5 The statistical model

a6 In order to fit the network model to data in Fig.2, we first fit a simple statistical model to the data, and
a7 then mapped the network parameters onto the resulting fit parameters as a starting working point. For
s4s  the statistical model we took cells in CA1 as binary units which received inputs from two sources, CA3
s49 and layer III of entorhinal cortex EC. The total input to a cell 7 at time ¢ (time measured in sessions)
ss0  from CA3 was written z! and from EC y!. Both inputs were Gaussian random variables with zero mean
st and variances O'% A3 and O'%C respectively. A neuron i was active at time ¢ if its total input h! = z! + y!
52 exceeded a threshold 6, and was otherwise silent. Specifically, the activity was written as a’! = H (h! —6),
sss where H(z) = 1ifx > 0and H(xz) = 0if < 0 is the Heaviside function.

354 To model RD we allowed for the inputs to change over time according to:

zt = peaset ™t /1= pEastl, Yl = pecyl Tt + /1 — pRegl (1)

355 where the autocorrelations pcas and pgc € [0, 1] and wf and ff were Gaussian random variables with
ss6 mean zero and standard deviation ocaz and ogc respectively. The update rules Egs. (1) ensured that the
357 input distributions were stationary. Inhibition is implicitly assumed to have the effect of subtracting the
sss  mean of both inputs so that they are centered at zero.

sso  The statistical model had four parameters once we rescaled them by the standard deviation of the inputs
s0 from EC: the ratio oca3z/ogc, the rescaled threshold 6/ogc and the autocorrelations pcasz and pgc.

ss1  Note that the input dynamics Eqgs. (1) could be formulated in continuous time as an Ohrnstein-Uhlenbeck
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s2 processes, as shown in the Supplementary Material . The continuous formulation allowed us to calculate

_ 2
ses the time constant of the decay in correlation of the inputs analytically, yielding 7 = 5 (11 _pp)2 .
64 According to the definitions above, the state of the network was defined by a vector a® = (al, ..., aly)

sss where N was the total number of neurons. Fraction of active cells: The fraction of active cells can
ses  be calculated analytically for the statistical model. The probability that a cell with a given input y is
367 active can be written Pr(y > 6 — x). Integrating this probability over all possible values of y gives the
ses likelihood of any cell to be active, or the fraction of active cells, f,. This fraction is therefore

o0 o
fo= / d:UpCAg(x)/ dypec(y), (2)
—50 00—z

s where po(7) = %

a7o  Fit of the statistical model

s71 To fit the statistical model, we only considered mice with a single map per environment (two mice in
a2 total), since with multiple maps the distribution of the number of sessions in which each cell was active
s7s  and the survival fraction are not well defined (with multiple maps not all maps are visited in all sessions).
374 We considered data from these two mice (N=1649 total recorded cells). The statistics used to fit the model
a5 were the distribution of sessions each neuron is active, the survival fraction (probability an initially active
aze  cell continued to be active on subsequent sessions), the population activity overlap between different
a77  sessions, and the fraction of active cells in each session, see Extenden Data Fig.2. To fit the data, we
azs  adjust the four free parameters of the model using least-square optimization. Specifically, to produce
s Fig.S2g-i, we discretize the (pcas, prc) space on a 20 x 20 grid, and for each position on the grid,
ss0 run the Scipy®' implementation of a Basin-hopping optimization algorithm minimizing the sum of the
ss1  squared residuals between numerical simulations of the statistical model, and the experimental data. For
sz the numerical simulations of the model, we consider N = 20000 neurons.

s Network model description

sss CA1 was modeled as a network of integrate-and-fire excitatory (E) and inhibitory (I) neurons with I-I,
sss E-I and I-E connections, but no recurrent excitation, as prescribed by anatomical constraints. CA3 cells
sss are modeled as Poisson neurons a fraction of which were spatially modulated. They projected onto both
ss7 excitatory and inhibitory CA1 neurons. Additionally, CA1 neurons received excitatory inputs from a
sss layer of non-spatial Poisson neurons (from layer III of EC). Detailed equations and parameters are given
ss9 in Supplementary Information.

390

a9t CAS3 place fields and non-spatial inputs

se2 CA3 neurons were modeled as Poisson neurons. In any given environment, a fraction fo 43 of CA3
a3 neurons were active. Of the active neurons, a fraction f; of the population had a spatially modulated
s+ firing rate, while the remaining fraction had a constant firing rate. For simplicity, we considered a ring
a5 topology, so that the spatial position of a virtual animal was parametrized by an angle ¢ € [—m, 7|. The
ses firing rate of spatially selective neurons was modulated according to a Von Mises distribution:

ri (¢) = R(B)e” (079 4 1y, 3)

se7  where ¢; was the center of the place field of neuron i, r( a baseline firing rate, and R(3) = Re™? where
ses R was a constant that set the maximal firing rate. The parameter 3 determined the sharpness of the place
se9 fields.

a0 The layer of neurons providing non-spatial inputs were modeled as Poisson neurons with constant firing
s01 rate v. Also for this layer, only a fraction frc of the population was active in any given environment.
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w02 Connectivity matrices

a3 Connectivity matrices for all subtypes of connections within the CA1 populations were random and sparse.
a0+ Each neuron had a probability of connection to other neurons in the respective subpopulations equal to
aws ;] = K; /N, where N; was the number of neurons of the [th population, | € {E, I}, andi € {E,}.
a6 If not specified otherwise, we fixed the in-degree of CA1 pyramidal cells from interneurons to be fixed
a7 and equal to Ky (all pyramidal cell receive the same amount of inhibitory inputs). On average, each
a8 CAL cell received projections from K ¢ 1y neurons. The connectivity between the layer of non-spatial
s0o  Poisson neurons and CA1 is also random and sparse with connection probability apc. In the main text,
s10  we consider a uniform connection probability also for the CA3 — CA1 projections; in the Supplementary
411 Information we discuss how to consider a phase bias in such connections.

s12 Throughout, we assume all connection probabilities are the same and equal to o = 0.125.

s13 Input correlations in the network model

412 To implement the session-to-session changes in spatial and non-spatial inputs provided by Egs. (1) in the
s15 network model, we needed to calculate the autocorrelation of inputs where changes may occur either due
416 to changes in the input firing pattern, or in the connectivity matrices themselves. The general expression

s17 for such inputs is
t_ t ot
I' = Z CijVjs 4)
J

418 where 1/5 is the firing rate of the input neuron j at time ¢, cgj is the connectivity matrix element at time ¢,
419 and we omitted conductances and time constants. In the Supplementary Information we provide detailed

s20 calculations. The expression one finds for the autocorrelation is

) [(elyels) — o2

ST Wai—a)

(&)

421 where « is the connection probability to the input layer. In general then, the level of correlation depends
422 on the correlation in the input firing patterns, and on the degree of synaptic plasticity. Note that in order

423 to obtain completely uncorrelated inputs from one session to the next, one must have (c! jc:fj“> = o?,
s24  which implies <c§jc§j1> = (c};) (CZH), i.e. complete rewiring from one session to the other. Assuming
a2s completely uncorrelated input firing patterns from one session to the next results in:
2 |/t b1 2
Hy [<Cijcij ) —« ©
pP= .
(1 +op)a(l—a)
426 On the other hand, if we assume that the input firing patterns are the same over sessions, we have:
t 1 2
P (cijci; ) — o 7
a(l-—a) ’
427 which, as shown in the Supplementary Information, can be written as:
t+1 _q| 4
Pr (cij = l‘cij = 1) -«
p= . ®)

l—«

428 In the following, for both spatial and non-spatial inputs, we assumed that the input firing rates were
420 constant from one session to the next. In this case, the fraction of connections rewired from one session
s30 to the next depending on the autocorrelation p is shown in Fig. S 3h.
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w31 Variance of spatial and non spatial inputs

432 The average current from either the spatial or non-spatial inputs layer had the form:

_GT il
I= \/?j;cijuj, 9)
s33 where we have scaled the synaptic weights as 1/ V'K . The expected value of the input is therefore
=T aNgy, (10)

VK

s34 where « is the connection probability, f is the fraction of active pre-synaptic cells, and v is their mean
435 rate. If we define the normalization factor as the mean number of active inputs K = «f N, we have
w6y = GTv/Kv. The variance of such current, using the results from the Supplemetary Information, was
437 given by

2 G2T2

K

s where we neglected the intrinsic variability of the Poisson process (which goes to zero as At~1). Again
a39  using the definition of the normalization factor K, we have

o a(l—a)Nf? (11)

o? =G*% (1 - ). (12)

a0 Given the variances ratio obtained fitting the statistical model & = oca3/0ogc, we can then fix the firing
441 rates/synaptic weights of CA3 and EC inputs via the relation:

5 GCASVC’A37 (13)

Grcvec
a4z since both the time constant and the connection probabilities are the same for the two layers. We then fix
43 Vo a3 = Vg (same average rate of the two layers), and set Goas = 6Ggc.

w4 Fit of network simulations to data

a5 In network simulations the virtual animal runs at a constant speed of v = 12 cm/s over a circular track
ss  of length L = 84 cm. The position of the animal on the track is parametrized with a phase ¢ € [—m, 7.
a7 Analogously to the experiment, we simulate 8 sessions each consisting of 20 laps on the track (i.e. one
a8 session lasts 140 seconds of simulation time). For place fields analysis, the track was divided into 20 bins
s49 each of 4.2 cm length.

a0 Given the analytical formulas derived in the previous section we were able to match both the variances of
51 the input distributions as well as their autocorrelations to the values from the fit of the statistical model.
42 The means of the input distributions were not zero, as in the statistical model, but the network operated in
453 a balanced regime in which currents from inhibitory interneurons cancelled the mean excitatory drive
454 to cells in the mean, leaving their membrane potential near threshold to spiking. Therefore, fitting the
455 variances and correlations alone set the network at a working point in which the statistics of RD were
456 close to the statistical model, and hence the data. We then made slight changes to parameters by hand
457 in order to improve the fit. In order to fit the population vector correlation we needed to compare to
458 the calcium event rate in the data. We did this by applying an exponential kernel with time constant
459 T, = 500ms to the spike train from each cell in the spiking network. A calcium event was detected
a0 whenever the smoothed signal crossed a threshold ., and imposed a minimum inter-event interval of
461 500ms. The threshold value which minimized the mean squared error of the fit was 6, = 0.16837.

sz Figure 2: The network model simulated in Fig.2 is that described above, with parameter values given
463 in the Supplementary Information. RD is modeled by randomly rewiring a fraction of connections to
se4 each CA1 cell from the CA3 and EC inputs. Specifically, the probability of a synapse present at time ¢
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s65 being removed is defined as Pr(c?-r1 =0, cfj = 1) = P(0, 1), while the probability of a new synapse
a6 appearing is P(1,0). We then define the rewiring fraction as the total fraction of altered synapses, i.e.
w7 frw = P(1,0) + P(0,1), where there is a different fraction for each input source given by fZ¢ and
s f5:3. Using the definition P(1,0) = (' (1 —c};)) = (') — (c'el;) = a — P(1,1), and with
w9 P(1,0) = P(0, 1) and the definition of the temporal correlation, Eq.8, we find fX = 2a(1 —a)(1—px).
aro  Parameters: a = 0.125 is the connection probability, and pc a3 = 0.95, ppc = 0.35 are the temporal

a1 correlations of the inputs from the fit of the statistical model.

« Plasticity model

473 In the network simulations used to fit the experimental data in Fig.2 changes in inputs from one session
474 to the next were modeled as a process of synaptic turnover, without specifying the precise mechanism
475 responsible for this. One possibility is that this turnover is due to the storage of patterns in the network.
476 Specifically, we assume that between sessions a fixed number of patterns are encoded, which we call
477 the inter-session interval (ISI). Each pattern is a binary vector in which only a fraction of cells fs are
a7s active. Of the active cells, we assume that a fraction f are strongly active, while the remaining 1 — f
479 are weakly active. If we are modeling CAl, as in Figs.3 and 4, there would be three such vectors, while
as0 for Figs.5-6 there is only one input layer and hence only two vectors. To store a pattern we apply the
ss1  following plasticity rule. If the pre- and post-synaptic cells are both strongly active, then the synapse is
ss2  potentiated with probability p . If one of the cells is strongly active while the other is weakly active then
a3 we depress the synapse with probability p_. If both are weakly active no change is made at the synapse.
ss« For the CA1 model, these probabilities can be different for CA3 versus EC inputs. Synapses are binary,
sss  as before, i.e. ¢;; € {0,1}. To quantify RD we calculate the correlation in the output pattern at time ¢
ass  with that at time ¢ = 0 given the same (tracked) input patterns. If the input patterns are the same, then RD
457 can only be due to changes in the network connectivity. If the input patterns change, as is the case with
sss  CA3 inputs in Fig.4e, then RD is affected both by this as well as changes in network connectivity.

as9  Figure 3: We mapped the Hebbian plasticity model onto the process of synaptic turnover in the network
a0 model by matching the decay in the correlation of the inputs a cell receives over time, see Fig.3c. The
a9t parameter values used to generate the lines in Fig.3c were: fpc = fca1 = fcaz = 0.5, fopc =
2 fooar = fscaz = 1, pFC = pPC = 0.18, p{4® = p&3 = 0.01, Ngc = Near = Neas = 1000,
a3 rpc = 4.42Hz, rc a3 = 13.27Hz. The circles were generated using the same rewiring process as that
aes used to model synaptic turnover in Fig.2f. The only difference is that N = 1000 for all populations
ae5 instead of 4000.

496 We also performed network simulations with the plasticity process and observed RD as in Fig.2, see
a7 Fig.S7. For those simulations we modeled a population of CA1 cells as linear threshold units, i.e. the
a8 activity of cell ¢ was given by r; = [I; — 0], where I; was the total input, § was the threshold, and
a0 [x]4 = x if x > 0 and is zero otherwise. Active cells in EC had a constant firing rate r pc while active
so0 cells in CA3 were spatially modulated according to a von Mises distribution as in Eq.3. The threshold
sot  was 6 = 0.3 and for the von Mises rates the parameters were ry = 5, R =90, B = 19. rpc is chosen
s02  such that the ratio cc 43/0pc = 1.16 in order to match the fit from the statistical and network models.
so3  The initial condition for the connectivity matrix was random with connections probability p = 0.33. We
s+ tracked the 100th pattern stored and plotted snapshots of the activity in CA1 starting at time ¢ = 140 and
s05 every 7 time steps for eight "sessions". Plasticity was not applied for additional repeats of the tracked
so6  pattern here. Neurons were considered inactive if their mean firing rate was less than 0.1.

so7  Figure 4: We used the same network model of linear-threshold units as described above with the following
sos parameter values: fpc = foar = foas = 0.5, fopc = fsca1 = 1, fs,ca3 = 0.1, p¥¢ = p£C¢ = 0.18,
509 pﬁA?’ = p§A3 = 0.02, Ngc = Noa1 = Noas = 1000, 6 = 0. All other parameter values were the
s1o same. Drift in the CA3 inputs was modeled by allowing the position of the i*! place cell (center of
511 the von-Mises distribution) at time ¢ to shift with respect to the position at time ¢ — 1 according to
si2 @l = qbf_l + o&t, where € is uniformly distributed from {—7, 7} and o = 0.0447. Plasticity occurred
513 according to the rule described above. To calculate the correlation of the tracked pattern in CA1 with
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514 the activity at time ¢ = 0, the neurons in CA1 at time ¢ were driven by the input pattern Xgc trackeds
515 XtC’A?),tracked'

si6  Figures 5: To model the results from pririform cortex we studied a two-layer network. As before, patterns
517 were random, binary and sparse with sparseness finput = foutput = f. We stored many such patterns
s18  until the network reached a statistical steady state. We then tracked one particular pattern, for which the
519 input vector can be written x. For simplicity we considered linear neurons, and hence the output pattern
s20 attime ¢, y! = C'x, where C! was the connectivity matrix. Simulations with linear-threshold neurons
st revealed that the nonlinear threshold did not qualitatively affect the results (not shown). To model the
s22  effect of familiarization we presented the same (tracked) pattern to the system k times before time ¢ = 0
523 where k = 1 indicated a novel pattern. We quantified the RD by calculating the output correlation

Cov(y',y’)
/Var(yt) Var(y?)

s« The variance and covariance terms can be expressed in terms of first and second-order statistics of the
525 network connectivity, which in turn can be calculated as a Markov process. Specifically, the connectivity
s26 depends on transition matrices for the presentation of random patterns or repetitions of the tracked pattern.
527 These matrices can be applied in any order to model a given protocol, see Supplementary Information for
s2s  detailed calculations.

529 Conversely, instead of calculating the correlation over time we can calculate the drift, which we
s30 defined as

Corr(y',y°) = (14)

180 _1((yt -5 -(° - S’O))_ (15)

R N e
ss1  Figure 6: For Fig.6a-c this is exactly the same model as for Fig.5. In Fig.6d-f we consider input patterns
ss2 which themselves also undergo drift. To model this, we assumed that the input 7 for the 7" repetition, xy
s3s  was identical to :1:;"*1 with probability s and was otherwise set active with probability f, and otherwise
s34 inactive with probability 1 — f. Therefore for s = 1 the input pattern was stable while for s = 0 the
s35  input pattern was random and uncorrelated from repetition to repetition. At the level of the Markov
536 process, this meant that for each presentation of the tracked pattern we applied the transition matrices for
537 arepetition with prefactor s™ and the transition matrices for a random vector with prefactor 1 — s".
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