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Abstract

The tumor microenvironment (TME) of medulloblastoma (MB) influences progression and therapy response,
presenting a promising target for therapeutic advances. Prior single-cell analyses have characterized the cellular
components of the TME but lack spatial context. To address this, we performed spatial transcriptomic sequencing on
sixteen pediatric MB samples obtained at diagnosis, including two matched diagnosis-relapse pairs. Our analyses
revealed inter- and intra-tumoral heterogeneity within the TME, comprised of tumor-associated astrocytes (TAAs),
macrophages (TAMs), stromal components, and distinct subpopulations of MB cells at different stages of neuronal
differentiation and cell cycle progression. We identified dense regions of quiescent progenitor-like MB cells enriched in
patients with high-risk (HR) features and an increase in TAAs, TAMs, and dysregulated vascular endothelium following
relapse. Our study presents novel insights into the spatial architecture and cellular landscape of the medulloblastoma

TME, highlighting spatial patterns linked to HR features and relapse, which may serve as potential therapeutic targets.
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Introduction

Medulloblastoma (MB), the most prevalent pediatric central nervous system (CNS) malignancy, is a biologically and
clinically heterogeneous group of grade IV embryonal tumors of the posterior fossa, presenting significant clinical
challenges. Advancements in genomic profiling have identified four primary molecular groups of MB: wingless (WNT)
activated, sonic hedgehog (SHH) activated, Group 3, and Group 4, with the WNT subgroup associated with the most
favorable outcomes and Group 3 the least favorable'3. This categorization became the predominant subgrouping
reflected in the most recent World Health Organization (WHQO) 2021 Classification of CNS tumors#, along with a

separate category for traditional histological classification.

Additional features such as Chang’s metastasis staging system, histological classification, and molecular alterations,
such as TP53 mutation, MYC- and MYCN- amplification, and isochromosome 17q further refine prognostication and
segregate tumors to clinically high-risk (HR) and standard-risk (SR) disease with respect to response to therapy.
Therapy includes maximally safe resection, craniospinal irradiation, and DNA-alkylating chemotherapiess¢. Despite
multimodal therapy, 5-year overall survival remains 70-85% in those with SR disease and is lower for patients with HR
defined by subtotal resection (STR), metastatic disease at diagnosis, or by molecular features as defined by the most
current Children’s Oncology Group risk stratification classifications?. Approximately 20% of cases report STR, and 30%
present with metastatic disease at diagnosis, resulting in lower 5-year progression-free survivale. The need for new
therapeutic strategies targeting HR disease is underscored by the increased hazard ratios of 1.67 for STR and 1.45 for
metastatic disease relative to non-metastatic and gross-total resection groupss.

The MB tumor microenvironment (MB-TME) plays a central role in MB disease progression and relapse. Thus,
therapeutic strategies to target the components of the TME have emerged as the focus of multiple studies®. In recent
years, investigations employing single-cell RNA-sequencing (scRNA-seq) have provided unprecedented insight into
genomic and cellular heterogeneity of the MB-TME, uncovering subtypes of malignant, immune, and stromal cells'0.11.
As an immunologically cold tumor, the MB-TME harbors low proportions of tumor-infiltrating lymphocytes (TILs), along
with brain-resident populations, supporting stromal components, and blood and lymphatic vasculature®. Tumor-
associated microglia and macrophages (TAMs) are the most prevalent immune population and most prominent in SHH-
activated disease®. TAMs can exhibit both anti- and pro-tumoral functions in the MB-TME as a result of polarization,
wherein the M2 phenotype has been associated with tumor growth and progression'2. On the other hand, decreased
TAM abundance has been associated with poor survival in human and murine orthotopic models,'® with high
percentages of M1 macrophages linked to favorable outcomes4. Tumor-associated astrocytes (TAAs) are a prominent
cellular component in high-grade CNS tumors, implicated in tumor progression and metastasis's. In medulloblastoma
specifically, TAAs have been recently found to increase tumor cell stemness, survival, and proliferation through the
secretion of intercellular signaling molecules, including SHH, chemokine C-C ligand 2 (CCL2), lipocalin-2 (LNC2), and

tumor necrosis factor alpha (TNF-a)16.17.

Malignant cells within the MB-TME display heterogeneous phenotypes, primarily defined by varying stages of neuronal
differentiation and cell cycle progression. Notably, scRNA-seq studies by Hovestat et al. and Riemondy et al. have
identified three primary transcriptional programs in MB cell states: undifferentiated progenitor, cell cycling, and
neuronally differentiated, elegantly characterizing the inter- and intra-tumoral heterogeneity of MB. Distinct malignant
cell phenotypes are known to drive disease progression, therapeutic responses, and patient outcomes. Platinum-based

chemotherapies rely on the proliferative behavior of cancer cells, with therapy resistance driven by quiescent malignant
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subpopulations arrested in a reversible non-proliferative state (G0) termed dormant cancer cells'®19. These findings
extend to CNS tumors, wherein quiescent states associated with disease progression have been identified in prominin-
1 positive (PROM1+) glioblastoma cells, as well as in SRY-Box transcription factor 9 positive (SOX9+) cells in MYC-

driven MB20,

While single-cell analysis has enabled new insights into the cellular composition of the MB-TME, a critical limitation to
scRNA-seq is that the spatial organization of cell types in relation to one another and within tissue architecture is lost.
While probe-based microscopy techniques can address this limitation, providing spatially resolved gene and protein
expression data, they remain limited by low-throughput and cell-type localization extrapolated from limited markers.
Spatial high-throughput methods are needed to identify TME cell composition, including dormant or sleeping cancer
cells and their spatial positions. To address this gap, we present the first unbiased spatial sequencing of MB samples
from patients across all molecular subgroups with diverse clinical characteristics. Our work provides spatial profiling of
the diverse cellular architecture of MB and its associations with clinical features, identifying potential targets for

therapeutic intervention.

Results

Characteristics of the clinical cohort for spatial profiling

Formalin-fixed paraffin-embedded (FFPE) blocks were obtained for sixteen tumor biopsy samples from fourteen
individual patients with medulloblastoma and profiled by spatial transcriptomic sequencing using the Visium platform
(Figure 1a). For all 14 patients, samples were obtained at initial diagnostic resection, with two additional patient-
matched samples obtained at relapse after chemotherapy and radiation. The cohort includes all four major molecular
subgroups: SHH-activated subtype (n = 6), WNT-activated subtype (n = 1), Group 3 (n = 2), and Group 4 (n=5).

Among these patients, a range of demographics and clinical characteristics are present (Figure 1b, Supplemental
Material S1). Of the cohort patients, 13 were male and 1 female, with racial backgrounds including non-Hispanic Black
(n=7), Hispanic White (n = 3), and Non-Hispanic White (n =4 ) and ages ranging from 1 to 22 years old. Histologically,
the samples included classical (n = 6), large cell/anaplastic (LC/A, n = 5), and desmoplastic/nodular (DN, n = 4) types.
Four patients presented with metastatic disease (M+) at diagnosis, and the remaining had no evidence of clinical
metastasis (M0). Three patients, representing SHH, Group 3, and Group 4 subtypes, displayed MYC- or MYCN-
amplification. Of the two Group 3 tumors, one exhibited MYC amplification and M+ disease, while the second did not.
Patients were treated with either a standard- (n = 5) or high-risk (n = 3) Children’s Oncology Group (COG) protocol or
with a radiation-sparing regimen due to younger age-at-diagnosis (n = 6). Of those receiving radiation-sparing due to
young age at diagnosis, three were classified as high-risk based on the presence of metastasis at diagnosis. The
remaining had no high-risk features and were classified as standard-risk. No patients were high-risk based on subtotal

resection.
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Table 1. Characteristics of study tumor samples (n=16)

Standard-Risk High-Risk At Relapse
at Diagnosis at Diagnosis

n (%) 8 (50) 6 (37.5) 2 (12.5)

Age (mean (SD)) 7.6 (6.6) 9 (5.5) 19.5 (0.7)
Sex (%)

Female 1(12.5) 0 0

Male 7 (87.5) 6 (100) 2(100)
Race/Ethnicity (%)

Non-Hispanic Black 4 (50) 3 (50) 2 (100)

Non-Hispanic White 2 (25) 2(33.3) 0

Hispanic 2 (25) 1(16.7) 0
Stage at Diagnosis (%)

Mo 8 (100) 2(33.3) n/a

M+ 0 4 (66.6) n/a
Molecular Classification (%)

SHH-activated 4 (50) 2(33.3) 1 (50)

WNT-activated 1 (12.5) 0 0

Group 3 1 (12.5) 1(16.7) 0

Group 4 2 (25) 3 (50) 1 (50)
Histological Classification (%)

Classic 4 (50) 2 (33.3) 1 (50)

Desmoplastic/Nodular 3 (37.5) 1(16.7) 0

Large Cell/Anaplastic 1(12.5) 3 (50) 1 (50)
Molecular Features (%)

MYC/MYCN-amplification 0 3 (50) 1 (50)

TP53 Mutation 0 0 0
Outcomes (%)

Survival 6 (75) 3 (50) 0

Spatial profiling characterizes malignant, glial, and stromal components of MB-TME

FFPE slides derived from patient biopsies were reviewed by a neuropathologist to ensure viable and representative
areas of tumor tissue were selected for spatial profiling. The selected tissue sections were transferred to the Visium
slide (10X Genomics Inc.) capture area, followed by H&E staining, permeabilization, ligation, cDNA library construction,
and sequencing (Figure 1a). The spatial profiling captured 1,000-3,000 voxels per sample, with 2,524 median
transcripts per voxel representing 16,238 unique genes in the dataset (Figure S1). Following normalization and
integration, principal component and clustering analyses illustrate shared transcriptional profiles within the TME across
molecular subgroups, with clusters representing voxels expressing predominant malignant or non-malignant cell type

signatures (Figure 2a).

Among non-malignant cell types, clusters enriched for makers of TAAs, TAMs, stroma, and vascular endothelium were
present (Figure 2b). Interestingly, two clusters of vascular endothelium emerged: one enriched for markers associated

with immune infiltration (/GHM, IGHD) and the other for markers of endothelial activation and potential dysregulation
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(VWF, EGRT). Within the TAM-associated cluster, markers of both monocyte-derived macrophages and resident
microglia were present, though further subclustering did not resolve these populations. Notably, these TAMs highly
expressed the cytokine osteopontin (SPP1). SPP1+ TAMs have been implicated in tumor progression across several
cancers, including brain cancers, but their role in medulloblastoma remains unexplored 2122, In our dataset, SPP1
expression was significantly higher in non-metastatic compared to metastatic samples; however, increased SPP1

expression was also observed following relapse in matched samples (Figure S2).

Clusters exhibiting malignant markers revealed distinct MB subpopulations corresponding to those previously reported
in single-cell transcriptomic analyses?o.'! (Figure 2c¢). Specifically, previously described transcriptional programs
representing MB progenitors and differentiating MB cell phenotypes were enriched in these clusters (see Methods),
with progenitor cells further subdividing into cycling and non-cycling based on cell cycle gene enrichment. Additionally,
we identified a unique cluster of malignant cells with elevated expression of heat-shock response (HSR) proteins. HSR
proteins, including the HSP90 and HSP70 family protein genes observed, have a well-documented role in tumor
progression, including brain cancers, through cell survival regulation2?. Their expression in MB has been previously
reported as potentially promising therapeutic targets warranting further investigations2425. Notably, Group 3 disease,
associated with the poorest clinical outcomes, displayed increased density within the cycling MB progenitor cluster
(Figure 2d). In contrast, Group 4 disease exhibited increased density within the non-cycling progenitor cluster,

suggesting that Group 3 samples exhibit a more proliferative phenotype relative to Group 4 samples (Figure 2d).

Quantitatively, the average proportion of each cluster within samples varied across molecular subgroups (Figure 2e).
Group 3 tumors had the largest proportion of non-cycling progenitors and the lowest proportion of differentiating MB
cells compared to other subgroups. The TAA-associated cluster comprised the highest proportion within Group 4
tumors, while the TAM- and HSR-associated clusters comprised the lowest proportion among these tumors relative to
the other subgroups. Among the SHH and WNT subgroups, SHH samples had the largest proportion of voxels

representing stroma, whereas the WNT tumor sample had the largest proportion of HSR-associated voxels.

Collectively, our clustering results suggest that while MB cells from distinct subgroups and cells of origin exhibit
disparate genomic profiles, common biological themes, including states of differentiation, stress, and cell cycle
progression, remain preserved across tumors. Furthermore, similar components of the MB-TME, including TAMs,
TAAs, stroma, and tumor vasculature, are maintained across tumors. Although these samples represent a limited
portion of tumors, comparing the spatial distribution and differential abundance of these MB-TME components

underscores both inter- and intra-tumoral heterogeneity among molecular subgroups.
Neighborhood enrichment analysis reveals dense regions of progenitor cells enriched in HR patients

With the annotated tumor and microenvironment clusters, we next sought to compare the differences in spatial
organization between samples and clinical features using neighborhood enrichment (NE) analysis (Figure S3).
Through the NE analysis, z-scores representing the co-localization between pairs of clusters were calculated within
each sample. Increased z-scores indicate a higher proportion of one cluster within the spatial neighborhood of the index
cluster. Strikingly, when comparing patients with SR versus HR disease, the neighborhood enrichment of non-cycling
MB progenitors with other non-cycling MB progenitors was highly enriched in patients with HR disease. This suggests
the formation of dense non-cycling MB progenitor regions in HR samples. This enrichment was significantly higher (z-

score = 22.98) compared to other enriched neighborhoods within these samples and the SR cohort (Figure 3a). Within
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the SR cohort, several enriched neighborhoods were identified. Of these, TAAs were found to be enriched in the
neighborhoods of differentiating, non-cycling, and HSR MB progenitors, as well as near TAMs and VWF+ vascular

endothelium.

Comparing the overall differential abundance of these clusters in HR versus SR disease samples, TAAs did not appear
significantly enriched in SR samples (Figure 3b). However, their spatial localization near MB cells, TAMs, and VWF+
tumor endothelium suggests potential crosstalk within the MB-TME, providing insights not captured by differential
abundance testing common in scRNA-seq approaches. Specifically, the secretory phenotype of astrocytes is known to
play a role in shaping pathogenic phenotypes in resident brain cell populations, such as the polarization of microglia to
an M2 phonotype and dysregulation of endothelial cells in the blood-brain barrier (BBB)2627. Supporting our
neighborhood enrichment analysis, the proportion of non-cycling MB progenitors was also significantly enriched in HR
patient samples, increasing by 1.4 folds (P < 0.05).

Given these observed differences in the composition and spatial organization within HR patient tumors, we performed
principal component analysis (PCA) based on the neighborhood enrichment and proportion of clusters present in each
sample. The PCA results illustrate that samples from HR and SR patients cluster distinctly based on the variance of
their spatial organization and composition (Figure 3c¢). These findings are further exemplified when examining the
spatial plots of HR patient samples relative to SR patient samples (Figure 3d). Dense regions of non-cycling
progenitors are observed across HR patient tumor samples, while SR patient tumors demonstrate a higher degree of
heterogeneity (Figure 3d). This heterogeneity is also evident in the PCA plot, evidenced by the high variance of SR

patient samples across the first three principal components, in contrast to HR patient samples.

Furthermore, the HR patient samples, A1, A8, and A16 appear to have more infiltration of other populations within their
dense non-cycling progenitors regions, while SR patient samples A14 and A15 (both derived from infant SHH patients
with ND type histology) appear to have developing regions of non-cycling progenitors (Figure S1), illustrating a

continuum of non-cycling progenitor regions and suggesting signs of future disease progression.

The spatial NE analysis depicts the existence of homogenous non-cycling progenitor islands that might be associated

with the progression of disease and should be further evaluated as disease progression biomarkers in a larger cohort.

HR-associated progenitors exhibit a quiescent phenotype associated with therapeutic resistance

Following the identification of non-cycling progenitor regions, we hypothesized that these non-cycling progenitors
correspond to quiescent phenotype implicated in therapy resistance. To test this hypothesis, we evaluated the
expression of canonical GO markers, associated with cell cycle arrest and quiescence, among the MB clusters2s.
Supporting our hypothesis, the non-cycling progenitor cluster demonstrated a significant upregulation of GO markers
relative to the other MB cell clusters (Figure 4a). Furthermore, mapping the pan-cancer GO signature developed by
Wiecek et al. across the MB cell clusters illustrated an enrichment of this signature in the non-cycling MB progenitor
cluster (Figure 4b). Comparing the enrichment of this signature between SR and HR patient samples revealed a non-
significant difference (Figure S4), indicating that the quiescence phenotype is not exclusive to HR tumors. Rather, HR
tumors display an increased proportion of these quiescent progenitors in densely packed regions, as illustrated in
Figure 3.

We next questioned whether another cell type within MB-TME may be driving this quiescent phenotype in MB cells. To

examine this, we performed spatially dependent intercellular communication analysis (see Methods), comparing the
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co-expression of ligand-receptor pairs in close spatial proximity across samples. Consistent with a quiescent
phenotype, these non-cycling progenitors predominantly received weak incoming signals from neighboring cells with
no significant outgoing signaling interactions, including autocrine signaling (Figure 4c). In contrast, VWF+ vascular
endothelium, differentiating MB cells, and cycling MB progenitors exhibited high degrees of intercellular signaling

interactions within the TME (Figure 4d).

While the overall signaling interactions with the non-cycling progenitors were weak, potentially due to the spatial
isolation of these cells, we examined the incoming signals (ligands) interacting with receptors expressed on the non-
cycling progenitors, identifying several interesting interactions (Figure 4e). First, the multifunctional protein nucleolin
(NCL) appears to be stimulated by the growth factor pleiotrophin (PTN) produced by VWF+ vascular endothelium.
Notably, increased nucleolin expression has been implicated in chemotherapy resistance for several cancers, including
resistance to platinum-based therapies29.30. Furthermore, putative roles for pleiotrophin—nucleolin interactions in
angiogenesis and metastasis have been reported3t.32. Additionally, these non-cycling progenitors appear stimulated by
pleiotrophin and contactin 1 (CNTN1) binding to the neuronal cell adhesion molecule (NrCAM) receptor. Contactin 1
exhibits pleiotropic functions across many cancers, facilitating tumor progression, therapy resistance, and
metastasis3334. Lastly, neuronexin 2 (NRXN2) binding to calsyntenin 1 (CLSTN1) also emerged as a significant
signaling interaction in non-cycling progenitors. The cadherin-family transmembrane protein calsyntenin 1 is involved
in axon development and vesicle transport; however, its function in cancer remains unexploredss. Collectively, the
signaling pathways involved in non-cycling progenitors appear to be linked to migration and therapy resistance,

warranting further investigations into their role in MB.

Intercellular communication analysis reveals metastasis-associated signaling patterns in HR disease

To compare the TME of HR tumor samples to that of SR tumor samples, we extended our intercellular communication
analysis to identify significant differentially enriched signaling patterns between HR and SR tumors (Figure 5a). In HR
tumors, increased outgoing (ligand) and incoming (receptor) signaling was observed among VWF+ endothelial cell and
TAA clusters, predominantly mediated by claudin (CLDN), tubby-like protein (TULP), and laminin interactions. In
contrast, SR tumor samples primarily exhibited increased signaling mediated by laminins, neuregulins (NRG), and

contactins (CNTN) in the differentiating MB cell cluster.

Among the differentially enriched signaling patterns, midkine (MK) and reelin (RELN) mediated signaling stood out, as
these signaling pathways were enriched in the non-cycling and cycling MB progenitors of HR tumor samples,
respectively. Closer examination of these signaling patterns in HR tumors revealed that MK was primarily secreted by
differentiating and cycling MB cells and bound to the NCL receptor expressed on non-cycling MB progenitors (Figure
5b). Conversely, RLN was also secreted by differentiating and cycling MB cells but interacted with LDL receptor related

protein 8 (LRP8) receptors expressed on glial and endothelial cells (Figure 5b).

Importantly, midkine is a well-studied growth factor involved across several tumor-promoting pathwaysz3®. Its increased
secretion by cycling and differentiating MB cells, received by the NCL receptor on non-cycling MB progenitors, may
promote the reactivation of these quiescent cells, promoting relapse and metastasis. Reelin also plays a well-
documented role in tumor progression, including a recent report of its function in MB metastasis®”. Its primary role in
cell migration suggests that reelin-mediated signaling amongst glial, endothelial, and MB cells in the TME of HR tumor

samples may promote tumor growth in HR patients by stimulating angiogenesis and tumor proliferation.
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HR-associated progenitors exhibit a quiescent phenotype associated with therapeutic resistance

Given that our dataset uniquely included two patient-matched samples from diagnosis and relapse, we compared these
matched samples to identify differences in the cellular and spatial architecture before and after relapse (Figure 6). The
first matched pair (A1 diagnosis, A3 relapse) derives from a patient (Patient 1) who presented with a Group 4 tumor
with classical histology, isochromosome 17q, and M2 stage metastasis at diagnosis. The second matched pair (A2
diagnosis, A4 relapse) derives from a patient (Patient 2) who presented with an SHH tumor with MYCN, GLI2, PPM1D,
and TERT alterations and LC/A histology. Spatial comparison of diagnosis and relapse tumor samples shows uniform
regions of non-cycling progenitors, consistent with their HR designation in diagnostics samples (Figure 6a). Following
relapse after frontline therapy, tumors appear more heterogeneous, with constituents of the tumor microenvironment

more interspersed with less apparent spatial separation between malignant and stromal cells.

Comparison of the patient-matched samples illustrates increased proportions of TAA and VWF+ vascular endothelial
cell clusters at relapse compared to diagnosis and unpaired samples (P < 0.05), suggesting that these populations may
play a role in relapse (Figure 6b). Considering that a key function of TAAs is the modulation of the BBB, we next
performed niche-dependent differential gene expression analysis (see Methods) to elucidate how the transcriptomic
profiles of VWF+ vascular endothelium and TAAs are altered when these cell types are in close proximity. A total of
2,293 significant differentially expressed genes (P < 0.05) were identified in neighboring TAAs and VWF+ vascular
endothelium relative to their nonadjacent counterparts, pointing to a spatially dependent (niche) phenotype for these
cell types. Further pathway enrichment analysis on these differentially expressed niche genes identified several
significantly enriched pathways (P < 0.05) (Figure 6c). Namely, the upregulation of the AKT serine/threonine kinase 1
(AKTT) and casein kinase 2 (CK2, CSNK2B) in the PTEN pathway promoting cell survival and growth, in addition to
hypoxic response genes hypoxia-inducible factor 1-alpha (HIF1A) and inhibitor (HIF1AN) with egl-9 family hypoxia-
inducible factor 2 (EGLN2). Furthermore, enrichment of the planar cell polarity (PCP) pathway involved in non-canonical
WNT signaling and the MAP kinase 4/6 signaling pathways, both with central functions in cell migration and invasion,
were observed. Additionally, pro-inflammatory and immune response pathways mediated by nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-kB) and myeloid differentiation primary response 88 (MyD88) signaling were
also enriched. Furthermore, the key genes identified in these enriched pathways were among the overall differentially
expressed genes following relapse (Figure 6d-e). Considering that each spatial voxel is non-homogenous and contains
approximately 1-10 cells, voxels within the TAA and VWF+ vascular endothelium clusters also contain other cell types,
including potential pro-metastatic cells that may intravasate through a dysregulated blood-brain barrier (Figure 6e).
Thus, taken together, these results may indicate that pro-metastatic niches are formed in regions of TAAs and VWF+

vascular endothelium, facilitating relapse.

Discussion

The medulloblastoma TME is known to influence tumor progression and relapse, thus targeting components of the
TME has emerged as a novel therapeutic strategy®. Prior studies, including single-cell transcriptomic analyses, have
described the cellular composition of the MB-TME10.11, but in these studies, the spatial association of cell types is lost.
Elucidating the spatial architecture of the TME can provide critical insights into mechanisms of disease progression, by

revealing localized niches, spatially dependent patterns of cellular signaling, and the co-localization of specific cell
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types. Through spatial sequencing of human medulloblastoma tumor tissue, we characterize both the cellular

composition and, importantly, the spatial organization of the medulloblastoma TME.

The cell types identified through our clustering analysis revealed clusters corresponding to TAMs, TAAs, vasculature,
and stromal components in addition to malignant cells, aligning with previous studies of the MB-TME. TAMs in CNS
malignancies represent a diverse population consisting of both resident microglia and monocyte-derived macrophages
with phenotypic plasticity3®. The TAM cluster of our dataset, comprised of both microglia and monocyte-derived
macrophages, highly expressed SPP1, an emerging biomarker of protumoral TAMs and a contributor to
chemoresistance in solid tumors21.22:39, The role of SPP1+ TAMs in MB and the mechanisms by which they may promote
disease progression remain to be described; however, their enrichment in relapsed samples within our dataset

suggests that these cells warrant future investigations.

Among malignant cells in the MB-TME, our identification of progenitor, differentiating, and cycling subpopulations aligns
with MB cell subtypes previously characterized by single-cell analysis'0.1140, Interestingly, in addition to these previously
described subtypes, we also identified a unique subpopulation of malignant cells with elevated expression of HSR
proteins, namely HSP90 and HSP70 family proteins, implicated in tumor progression23.24.25, Moreover, through our
spatial analysis, we provide novel insight into the orientation of these cell types across the TME. Specifically, by
comparing correlations of spatial composition to molecular subgroups and clinical features, we highlight the intertumoral
heterogeneity previously inferred through multiregional surgical biopsy?.641. Notably, we identified the presence of high-
density non-cycling progenitor regions correlating with disease at high risk of relapse. These non-cycling progenitor
cells express markers of quiescence and decreased intercellular signaling, supporting their role as dormant malignant
cells. Dormancy confers tumor cell resistance to anti-neoplastic therapy?8, suggesting the increased presence of non-
cycling progenitors may drive future disease progression and relapse in MB, following which no curative therapy is
available. Collectively, our findings emphasize the heterogeneity of the MB-TME and further suggest the potential

limitations of frontline DNA-alkylating agents that may not target the entire malignant cell population.

To further probe potential intercellular signaling patterns promoting the observed non-cycling progenitor phenotype, we
examined the spatially dependent cellular communication patterns between cells in the MB-TME, identifying signaling
patterns related to precursor neuron function and tumor progression. Incoming signals to these non-cycling progenitors
were primarily characterized by pleiotrophin- and contactin-1-mediated signaling. Pleiotrophin, facilitated intracellularly
by the cell surface receptor nucleolin, is a marker of neural stem cells and involved in neuron maturation42. Pleiotrophin-
nucleolin interactions have also been implicated in chemotherapy resistance, cancer growth, and metastasis29.30.32,
Contactin-1 is a cell adhesion molecule that has emerged as an oncogenic protein promoting cancer progression and
metastasis3334. In aggregate, these findings further support the role of non-cycling progenitor cells as dormant cancer

cells with the capacity to drive future disease recurrence.

Matched samples from diagnosis and relapse for two patients are present within our dataset, providing a unique
opportunity to characterize changes to the MB-TME following treatment and relapse. The two samples obtained at
relapse notably differed from matched samples at diagnosis, with an increase in intracellular tumor heterogeneity, as
well as an increase in the proportion of TAA and vascular endothelium-related clusters, suggesting a potential role in
disease progression43. This increased proportion of vascular endothelium expression may represent chemoradiation-

induced angiogenesis or a response to hypoxia during tumor progression and metastasis. Furthermore, recent studies
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have identified a putative pro-tumoral role for TAAs in the MB-TME, promoting MB metastasis'516.17. Niche differential
gene expression for regions of co-localizing TAAs and VWF+ vascular endothelium revealed genes associated with
protumoral pathways known to be activated in MB, including those related to cell survival and proliferation (AKT,
HIF1A), cell motility (PCP/PE, MAPK®6/4), and inflammation and immune response (MyD88, NF-kB). Given the role of
TAAs and vascular endothelium in maintaining the BBB, these results may suggest that protumoral TAAs dysregulate
the BBB through endothelial and MB cell activation, facilitating relapse. Additional investigation using spatial
sequencing of an expanded cohort of matched MB tumor samples before and after treatment would be necessary to

confirm these findings and further address these questions.

While our work presents a significant milestone in elucidating the MB-TME, it has several limitations. First, while
sequencing-based spatial transcriptomic approaches enable unbiased analysis compared to probe-based methods,
the Visium platform is considered a low-resolution spatial transcriptomic approach, wherein each voxel contains
approximately 1-10 cells. While spatial information is preserved, compared to single-cell transcriptomics, gene
expression is averaged among the cell types comprising a single voxel. Therefore, careful consideration must be taken
when interpreting results, noting that expression profiles correspond to sets of cells. Next, while TAMs, the most
common immune constituent of MB-TME, were identified, rarer immune subtypes, such as TILs, were not well-
represented across samples, likely due to the limited sample area. Future investigations integrating single-cell RNA-
seq datasets may enable deconvolution of the presented spatial dataset, unveiling the spatial localization of rare cell
types and subtypes identified through single-cell analysis. Thus, the spatial dataset presented herein provides a
foundation for future studies of the MB-TME integrating these approaches. Finally, the dataset was obtained from a
patient cohort selected based on the availability of high-quality tissue at the time of initial resection for spatial
sequencing. Within our study, 13 of 14 patients are male, which overrepresents male-specific differences in tumor
microenvironment. Epidemiologically, MB is overall more common in male than female patients, with a 1.8:1 male-to-
female ratioé. Whether there are sex-dependent differences in medulloblastoma TME is not well understood. However,
sex differences are noted in molecular and methylation patterns of disease, with estrogen receptor 8 signaling

hypothesized to have a tumor-suppressive role in medulloblastomas#4-46.

Spatial transcriptomics represents a novel strategy for characterizing the cellular composition and spatial architecture
of the MB-TME. This work underscores the ability of spatial transcriptomics to capture distinct patterns of cellular
organization associated with clinical features, which are lost in traditional single-cell RNA-seq approaches. Most
notably, regions of non-cycling progenitor cells may be predictive of therapy response and may prove a novel biomarker
for HR disease. To address this, drug-induced cell cycle modulation may be explored in the future as a means of
targeted therapy in the MB-TME. Additionally, the identification of co-localizing TAAs and dysregulated vasculature
following relapse may present an opportunity for exploring adjuvant therapies that target TAAs to sensitize tumors to

upfront chemotherapy, decreasing relapse and mortality from disease.

Methods

Study Population
This study was approved by the Emory University Institutional Review Board (IRB), Atlanta, GA. Signed informed
consents were obtained from all participants or legal guardians to permit the use of biological material in accordance

with IRB approval. Study participants were not compensated for their participation. Spatial sequencing was performed
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on tissue from 14 patients treated at Aflac Cancer and Blood Disorder Center of Children’s Healthcare of Atlanta.
Samples were obtained at diagnostic resection from all patients. Additionally, 2 patient-matched samples were obtained
from biopsy at relapse. All sample slides were visually inspected by neuropathology and high-quality viable tumor

regions of interest were circled for spatial transcriptomics.

Methylation profiling

Genome-wide DNA methylation was performed at the New York University (NYU) Langone Health Molecular Pathology
Clinical Laboratory Improvement Amendments (CLIA)-certified laboratory using the lllumina Human Methylation EPIC
array as described previously4” and analyzed using the Heidelberg (DKFZ)-developed and NYU-clinically validated
DNA methylation classifier48. All cases scored with a calibrated score > 0.9, which is considered positive. Copy number

plots were generated using conumee package and reviewed visually to correlate with other molecular analyses.

Risk stratification

First biopsy samples from 14 unique patients within our cohort were stratified into high-risk (n = 6) or standard-risk (n
= 8) following surgical resection according to Children’s Oncology Group risk definitions”. Infants and young children
who received radiation-sparing regimens with high-intensity chemotherapy were assigned high-risk if presenting with
metastatic disease (M+ Chang staging) or standard risk if presenting with MO disease and no other high-risk molecular
features (e.g. MYC-, MYCN-amplification). Large-cell anaplasia as the sole determinant of higher risk is currently of
undetermined clinical significance and did not independently constitute high-risk designation. The detailed patient

characteristics have been included in Supplemental Material 1.

Visium tissue permeabilization optimization, gene expression library construction, and sequencing

The Visium spatial gene expression platform (10x Genomics) enables the analysis of RNA levels in Formalin Fixed
Paraffin Embedded (FFPE) tissue sections by utilizing probes designed to target the entirety of the transcriptome.
Tissue sections were cut by Microtome (cat#23-900-672, Thermo Fisher Scientific) to a thickness of 5 ym, placed in a
warm water bath (42 °C) for 1 minute, then transferred to the capture area (CG000408 Rev E, 10x Genomics).
Deparaffinization, hematoxylin and eosin staining (H&E), and decrosslinking were performed based on the
manufacturer protocol (CG000409, Rev D, 10x Genomics). Brightfield images of the H&E stained tissues were taken
using a 40X objective on NanoZoomer 2.0 HT. Library constriction was performed by following manufacturer protocol
(CG000407 Rev E, 10x Genomics). The gene expression libraries were quantified using a Qubit fluorometer (Thermo
Fisher Scientific) and checked for quality using DNA HS bioanalyzer chips (Agilent). Sequencing depth was calculated
based on the percent capture area covered by the tissue, and the 10x Genomics recommended sequencing parameters
were used to run on the NovaSeq 6000 with S4 PE 100 kits (lllumina).

Spatial data processing and analysis

FASTQ files for each sample were aligned to the human GRCh38 genome using Space Ranger (v2.0.0, 10x Genomics).
Microscopy images of the H&E stained samples were aligned to the spatial voxels through the Space Ranger pipeline.
Noncontiguous portions of the tissue present in the capture area were manually annotated and removed from
downstream analysis. Samples ranged in size from 1,000-3,000 voxels with a median of 2,524 transcripts captured
per sample and 16,238 unique genes represented. Spatial plots of each sample were generated using Seurat. Spatial

plots in the main text illustrate representative samples, while additional spatial plots are provided in Figure S1. The
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metadata corresponding to each sample was visualized using an upset plot from the UpSetR package#°.

The samples were normalized using the SCTransform function and then integrated using integration anchors-based
batch correction via the Seurat R package (v4.4.0)%. Principal component analysis (PCA) was then performed on the
integrated spatial and single-nuclei datasets using all non-ribosomal features, followed by construction of a K-nearest
neighbors graph (using cosine similarity) and Louvain clustering, then non-linear dimensional reduction via uniform
manifold approximation and projection (UMAP). The resolution (n = 0.8) and 30 principal components were used for

clustering selected based on the Clustree R package (v0.5.0)51.

Differential gene expression analysis was performed via Seurat using the FindAllMarkers function, comparing
expression between clusters without spatial consideration with a log fold-change threshold of 0.1. Significant
differentially expressed genes were determined based on the Wilcoxon rank sum test with Bonferroni multiple test
correction (P < 0.05). Gene expression dot and violin plots displaying differentially expressed genes and canonical
markers were generated using Seurat. Volcano plots displaying differentially expressed genes were generated using
EnhancedVolcano (v1.20.0). Differential abundance testing between multiple groups (ANOVA) was performed using
the Speckle R package via the propeller function with arc sine scalar transformation, robust empirical Bayes shrinkage
of the variance, and Benjamini and Hochberg (BH) corrections2. For differential abundance testing between unpaired
samples, a Wilcoxon rank-sum test was performed with BH correction, while a paired t-test was used to compare
samples before and after relapse. Box plots and bar plots of the cluster proportions were generated using ggplot2
(v3.5.1).

GO Cell Identification

To map the enrichment of the pan-cancer GO cell signature reported by Wiecek et al., the module scoring was
performed via Seurat using the AddModuleScore function with default parameters®3. The GO signature contained the
following 27 genes: CFLAR, CALCOCO1, YPEL3, CST3, SERINC1, CLIP4, PCYOX1, TMEM59, RGS2, YPELS5, CD63,
KIAA1109, CDH13, GSN, MR1, CYB5R1, AZGP1, ZFYVE1, DMXL1, EPS8L2, PTTG1IP, MIR22HG, PSAP,
GOLGAS8B, NEATT1, TXNIP, MTRNR2L12.

Neighborhood enrichment analysis

Neighborhood enrichment analysis was performed on samples from diagnosis employing the voxel labels derived from
clustering. Using the gr.spatial_neighbors function via the Squidpy python package (v.1.4.1)%4, a z-score was generated
for each cluster pair based on the enrichment of the respective cluster within the neighborhood (60 total voxels) of
voxels of the index cluster, where a higher score represents closer proximity. To generate the enrichment plot, the
connectivity matrix was calculated using the gr.nhood_enrichment function and plotted using the pl.nhood_enrichment

function.

Principal component analysis

Min-max normalization was applied to the values of the per-sample neighborhood enrichment connectivity matrices
and cluster proportions, generating normalized values between -1 and 1 across samples (at diagnosis only) for each
cluster and paired cluster neighborhood enrichment z-score. Principle component analysis was performed using a

matrix of these values as input to the prcomp function in the base R stats package (v4.3.0) with data centering. A 3D
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plot of the first three principal components was generated using the Plotly R package (v.4.10.4) to visualize the results.

Niche-dependent gene expression

Niche-dependent differential gene expression analysis was performed using the NicheDE R package (v0.0.0.900). The
NicheDE package examines differential expression (DE) across a tissue sample by calculating how the gene
expression of an index cell type changes when in close spatial proximity to another cell type. The composition of cell
types surrounding an index cell is termed its “effective niche” and represents the biological niche which can influence
the expression of cell type through intercellular signaling. For example, the gene expression profile of a vascular
endothelial cell may change when in close proximity to TAAs secreting matrix metalloproteases. For our Visium spatial
dataset, the cell type of a voxel is represented by the cluster annotation label of the voxel. For example, all voxels of
the TAA cluster are labeled as TAA cells; however, TAAs are the predominant cell type of the voxel, and additional

cells may be present within these voxels.

To perform the niche DE analysis, a nicheDE object was created for each tumor sample using the spatial count matrix
generated by Seurat. Sigma values (corresponding varying sizes of the effective niche) of 25, 50, 75, and 100 were
assessed, with a value of 75 selected for downstream analyses. The resulting sample-wise objects were merged, and
the effective niches (composition of cell types in surrounding voxels) were calculated using the CalculateEffectiveNiche
function with a cutoff value of 0.05. The niche-dependent DE for each cell type was then performed using a minimum
total gene expression cutoff (C) of 50 with a minimum of 5 spots containing the index cell type (M) using the niche_DE
function. To determine how the gene expression profiles of TAAs change when in the effective niche of (i.e., close
proximity to) VWF+ vascular endothelium, the niche DE genes were then calculated using voxels from the TAA cluster
within the effective niche of voxels from the VWF+ vascular endothelium cluster. Similarly, the niche DE genes were
calculated for VWF+ vascular endothelium voxels within the effective niche of TAA voxels. These genes were then

filtered to only include significant genes (P > 0.05) with ribosomal genes regressed.

Pathway enrichment analysis

Pathway enrichment analyses were performed using the ClusterProfiler R package (v4.10.1) and the Reactome
database. The differentially enriched gene sets resulting from the niche-dependent gene expression analysis, were
converted to Entrez Gene IDs and used as input for the compareCluster function. Significantly enriched pathways were
calculated using the enrichPathway function, which uses the hypergeometric distribution to calculate P-values with
Bonferroni multiple test correction (P < 0.05). Pathways specific to infectious diseases were manually filtered out. To
eliminate redundancy among significantly enriched pathways, the pathway with the lowest enrichment g-value was
selected from significant pathways containing identical gene sets. Dot plots of enriched pathways were generated via

the dotplot function in ClusterProfiler.

Intercellular communication analysis

Intercellular communication analysis was performed using the CellChat R package (v2.1.2)%5. Communication
probabilities were calculated using the computeCommunProb function with a distance constraint and contact range of
100, a minimum of five interacting cell pairs, and a scale factor of 1. Analysis was performed on all 16 samples first as
a single CellChat object, then samples from diagnosis were subset into the HR and SR groups and analyzed separately.

The HR and SR communication analyses were combined via the mergeCellChat function to compare the differences
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in their intercellular communication networks between groups (HR vs SR) using previously described methods5s. To
identify shared communication pathways between groups, the intersection of significant (P < 0.05) signaling pathways
between the groups was used. The differential heatmap of interaction strength was generated by subtracting the overall
interaction matrix of the HR patient samples relative to SR patient samples, removing significant signaling pathways

with <0.01 change in signaling strength, and visualized using the ComplexHeatmap R package (v.2.18.0).

Data availability
The spatial sequencing data that support the findings of this study are available via the Gene Expression Omnibus

database under accession number GSE000000 (pending).
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Figure 1. Overview of study design for mapping the spatial molecular landscape of Medulloblastoma. (a) Using the 10X
Genomics Visium platform, spatial sequencing was performed on 16 formalin-fixed paraffin-embedded (FFPE) samples taken
at diagnosis or relapse from pediatric patients with medulloblastoma. (b) The clinical cohort consisted of 14 patients
representing a range of clinical characteristics, including metastatic disease, relapsed disease, and risk stratification. The cohort
includes all molecular subgroups: SHH-activated subtype (n = 6), WNT-activated subtype (n = 1), Group 3 (n = 2), and Group
4 (n=>5). The cohort contains standard (n=8) and high (n=6) risk patients obtained at the time of disease diagnosis. The cohort
contains paired samples from two patients collected at the time of disease diagnosis and relapse.
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Figure 2. Spatial profiling characterizes malignant, glial, and stromal components of MB-TME. (a) UMAP visualization of
K-NN clustering of voxels based on their transcriptomes yielded nine clusters, including four clusters with predominant
medulloblastoma tumor markers and five clusters exhibiting predominant stromal signatures. The clusters are colored based
on major cell types. (b) Dot plot displaying the expression markers related to major cell types and states present among
clusters. The blue color intensity represents gene expression, and the size of the dot represents the percentage of voxels
expressing each gene in different cell type clusters. (¢) Feature plots for medulloblastoma clusters illustrating the enrichment
of transcriptional programs relating to neuronal progenitors, cell cycle progression, and neuronal differentiation, aligning with
previous medulloblastoma single-cell studies reported by Hovestadt et al. and Riemondy et al. The signatures for the
transcriptional programs are shown in Table S1. (d) Density plots illustrating the differential enrichment of the cell types and
states between MB molecular subgroups. (e) Bar plot displaying the average composition of clusters between molecular
subgroups.
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Figure 3. Spatial heterogeneity of high versus standard-risk patient samples showing regions of non-cycling MB
progenitor cells. (a) Spatial neighborhood enrichment analysis of standard (n = 8) versus high-risk MB patient samples (n =
6) reveals an increase in non-cycling MB progenitor (MB Prog. Non-cycling) dense regions. Neighborhood enrichment heatmap
matrices illustrate the Z-scores corresponding to the increased (red) or decreased (blue) localization of voxels from another
cluster (x-axis) within the spatial neighborhood of voxels from the index cluster (y-axis). (b) Differential abundance of clusters
between the high-risk (HR) versus stand-risk cohorts further shows a significant difference in cycling, non-cycling, and
differentiating progenitors between the groups. (¢) Principal component analysis on the per-sample spatial neighborhood
enrichment from (a) and composition (b) of the samples illustrates a distinction based on risk category. (d) Representative
spatial plots of samples from the HR and SR cohorts. Voxels are colored based on their cluster annotation labels.
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Figure 4. MB progenitor non-cycling cluster exhibits hallmarks of quiescence. (a) Dot plots of canonical markers of
cellular senescence corresponding to a GO cell state. The shade of each dot corresponds to the average expression of the
gene among voxels of the cluster, while the size of each dot corresponds to the percentage of voxels expressing the gene. (b)
Feature plot showing enrichment of the senescent GO signature across MB cell clusters. (c-e) Intercellular communication
analysis was performed on samples at diagnosis. Colors correspond to the respective clusters. (¢) Chord diagram illustrating
the number of spatially dependent cellular interactions between labeled voxels, highlighting limited cellular signaling by
quiescent MB progenitors (MB Prog. Non-cycling). The width of the chords corresponds to the strength of the interactions. (d)
Scatter plot displaying the strength of outgoing (ligand) and incoming (receptor) signals for each cluster. (€) Chord diagram of
the incoming signaling interactions to the non-cycling progenitor cluster signaling illustrates the ligands expressed by each cell
type in close proximity to the non-cycling MB progenitors (bottom) and their respective receptor expressed on non-cycling MB
progenitors (fop). The width of each chord corresponds to the strength of signaling interaction.
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Figure 5. Spatially dependent intercellular communication analysis reveals metastasis-associated signaling patterns
in HR disease. (a) Heatmap depicting the differential incoming and outgoing signaling patterns between high-risk (HR, red)
and standard-risk (SR, blue) cohorts. Notably, intercellular signaling mediated by TAAs and VWF+ vascular endothelium is
increased in HR relative SR samples. Furthermore, non-cycling MB progenitors receive increased stimulation by the pro-tumoral
midkine (MK) molecule in HR samples, while cycling MB progenitors exhibit increased reelin (RELN) production. (b) Chord

diagrams showing midkine and reelin signaling pathways associated with MB disease progression and metastasis in HR patient
samples.
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Figure 6. Dysregulation in TAAs and vasculature were observed in matched diagnosis-relapse MB samples. (a) Spatial
plots of samples before and after relapse. (b) Box plots illustrating the proportion of TAAs and VWF+ vascular endothelium in
relapsed tumor samples relative to matched samples before relapse (at diagnosis) and samples without documented relapse
(other). (¢) Pathway enrichment (Reactome database) based on genes upregulated between TAAs and VWF+ endothelium in
close proximity within relapsed mem. (d) Volcano plot displaying the differentially expressed genes before and after relapse.
The top genes ranked by adjusted P-value before and after relapse are highlighted in black, while key genes from enriched
pathways in ¢ are highlighted in blue, purple, and green, corresponding to pathways related to cell survival and proliferation,
cell motility, and inflammation and immune response, respectively. (e) Violin plots displaying the average expression of
differentially expressed genes (P < 0.05) involved in key pathways related to cell survival and proliferation (blue), cell motility
(purple), inflammation and immune response (green), among TAA and VWF+ vascular endothelium clusters before and after
relapse.
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