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Abstract 
The tuberculin skin test (TST) is a cutaneous delayed hypersensitivity reaction to antigen from 
Mycobacterium tuberculosis (Mtb). We provide the first single cell sequencing characterisation of the 
human TST reaction, based on skin suction blisters induced at the site of the TST on day 2 in 31 
individuals. Integrated single cell RNA and TCR sequencing showed the immune response to be 
dominated by T cells, with smaller populations of NK cells and myeloid cells. T cells comprised CD4, 
CD8, gamma/delta and NK T cells, with 50% of all T cells identified as cytotoxic and 14% as regulatory. 
Interferon gamma gene expression was strongest in CD8 T cells, and distinct CD4 T helper lineages 
could not unambiguously be identified at this time point. Amongst myeloid cells, 63% displayed 
antimicrobial gene expression and 28% were functionally polarised towards antigen presentation with 
higher levels of HLA class 2 expression. We derived and validated transcriptional signatures for cell 
types and cellular functions relevant to the immune landscape of the TST. These data help to improve 
our understanding of the immune response to Mtb and enable further exploration of bulk transcriptomic 
data through context-specific cellular deconvolution. 
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Introduction 
The tuberculin skin test (TST) is a cutaneous delayed hypersensitivity reaction to the recall antigen 
purified protein derivative (PPD) from Mycobacterium tuberculosis (Mtb) and is used clinically as a 
measure of T cell memory for Mtb antigens. Employing the TST as a standardised human in vivo 
challenge model, we have previously shown that genome-wide transcriptional profiling of skin punch 
biopsies from the site of the TST allows highly sensitive and comprehensive assessments of the 
complex immune response to Mtb antigens that recapitulates the transcriptional perturbations occurring 
at the site of human tuberculosis (TB) disease (1–4). 

The current understanding of the TST reaction (5–7) involves infiltration of innate immune cells in 
response to skin injury and the presence of antigen. Antigen is taken up and processed by myeloid cells 
that subsequently migrate to the lymph node for antigen presentation to circulating Mtb-reactive memory 
T cells. T cells then migrate to the TST site and amplify the inflammatory response through cytokine 
production, particularly interferon gamma (IFNG) (1,8–10), resulting in skin erythema and induration, 
which is maximal at days 2-3. The necessity for memory T cells in this amplification process is 
demonstrated by the fact that individuals with no previous exposure to mycobacterial antigen do not 
mount a clinically measurable TST response (1). Furthermore, it is known that CD4 T cells are required 
for a functional TST response, as individuals with HIV and low CD4 T cell counts frequently show 
reduced or negative TST results (3,11).  

To evaluate the cell composition of multicellular tissue transcriptomes, multiparameter gene signatures 
have been proposed to reflect distinct cell types or functional responses (12,13). Applying such gene 
signatures to bulk transcriptional data from TST biopsies taken on day 2 shows selective accumulation 
of T cells, monocyte-derived and natural killer cells (2–4), in accordance with early histological data 
(14). Skin suction blisters are a less invasive alternative to skin punch biopsies, whereby application of 
negative pressure to the surface of the skin results in cell migration into the blister fluid, thus allowing 
sampling of single cells from tissue without the need for complex dissociation steps (15). Flow 
cytometric analyses of skin suction blisters from the site of the TST have yielded valuable insights into 
the kinetics of the T cell dominated immune response, focussing on memory and regulatory CD4 T cells 
(16–18). A full characterisation of the cellular complexity by single cell analysis of the TST has so far 
only been attempted in the guinea pig model (19). 

Here, we apply single cell RNA and TCR sequencing to human TST suction blisters to characterise the 
cellular composition of the day 2 TST and enable annotation of cell types with functional attributes. In 
addition, we derive transcriptional signatures for cell types and cellular functions relevant to the immune 
landscape of the TST. These data help to improve our understanding of the immune response in TB 
and enable further exploration of bulk transcriptomic data through context-specific cellular 
deconvolution. 

Results 

Cell types present in day 2 TST suction blisters  
We undertook single cell RNA, TCR and antibody-derived tag (ADT) sequencing of day 2 TST suction 
blister cells from 31 individuals (Table 1) with immunological memory to Mtb antigens. Following quality 
control filtering and data integration, this resulted in expression data for 18291 genes and 130 surface 
proteins in 63881 cells, with concurrent TCR sequencing data for 37413 cells (Table S1). To identify 
cell types and subsets, we performed sequential clustering of the cells, based on similarity of gene 
expression profiles. We applied Louvain clustering and confirmed statistical validity of the identified 
clusters in each sub-clustering round by post-hoc significance analysis (20). The number of digits in the 
cluster label reflects the number of sub-clustering steps performed to obtain the final cluster, with the 
digits referring to the cluster assignment in each round (Table S2). This approach enabled finer 
separation of distinct cell populations that were initially grouped together, such as melanocytes and 
keratinocytes in cluster 1, CD4 and CD8 T cells present in clusters 2 and 3, natural killer (NK) and NKT 
cells in cluster 4, or gamma/delta (gd) and CD8 T cells in clusters 5 and 8 (Figure S1). In total, we 
resolved 101 clusters, for which we sought ontological labels using independently established canonical 
gene or protein markers of cell types relevant to the TST (Figure 1A, Table S3, Table S4).  

Approximately two thirds of all cells were identified as T cells (expressing CD3E and either a high 
percentage of alpha/beta TCR sequencing data or markers for Vδ1 and Vδ2 gd T cells) (Figure 1A-B). 
These were further separated into CD4 T cells (30% of all cells, 45% of T cells), two populations of CD8 
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T cells (together making up 28% of all cells and 42% of T cells), as well as smaller populations of Vδ1 
gd T cells (4.3% of all cells, 6.4% of T cells), Vδ2 gd T cells (1.6% of all cells, 2.4% of T cells) and NKT 
cells (2.5% of all cells, 3.7% of T cells) (Figure 1A-B, Table 2, Table S4). We annotated the two CD8 
T cell populations as ‘classical’ (19.4% of all cells, 29% of T cells) and ‘atypical’ CD8 T cells (8.9% of all 
cells, 13.4% of T cells). ‘Atypical’ CD8 T cells exhibited lower expression of CD8A and CD8B, and a 
smaller percentage in which we were able to detect alpha/beta TCR sequences. 

Non-T cell clusters were identified as NK cells (expressing NCAM1; 10.8% of all cells), myeloid cells 
(CST3+; 6.3%), neutrophils (FCGRB+; 0.8%), two populations of keratinocytes (together 2.4%), 
melanocytes (MLANA+; 0.4%) and erythrocytes (HBA1+; 0.2%). One cluster remained undefined 
(cluster 9; 12.1%) (Figure 1A-B, Table 2, Table S4). The two keratinocyte populations represented 
basal keratinocytes, expressing KRT14, and suprabasal keratinocytes, additionally expressing the early 
differentiation keratin KRT10 (21,22). The cluster that could not be assigned a distinct cell type based 
on the selected gene and protein markers also did not yield any cluster-specific marker genes when 
interrogated for differential gene expression compared to other cell types by Wilcoxon rank sum test 
(Table S5). Instead, cells belonging to this cluster were characterised by a relatively smaller number of 
detected genes and total counts (Figure S2), and likely represent low-quality cells despite passing 
quality control filtering. We did not find any evidence of B cells in day 2 TST blisters.  

Functional T cell sub-types present in day 2 TST suction blisters 
Next, we sought to discriminate the T cell cluster by gene expression that reflected functional attributes. 
We hypothesised that the day 2 TST T cell response is limited to activated memory T cells, comprising 
CD4 T cells of the Th1, Th17 and Treg lineages as well as cytotoxic CD8 T cells, but only low frequency 
of proliferating cells due to the early time point. We therefore included gene or protein markers for 
proliferation, cytotoxicity, T cell lineage, multifunctional cytokines, regulatory T cells, activation, and 
differentiation (Figure 2A, Table S3). Almost all T cell clusters showed evidence of activation, assessed 
by gene expression of CD40LG, CD69 or LAG3, whilst only a few clusters had enriched expression of 
proliferation markers (MKI67, PCLAF, CDK1) (Figure 2A). The proliferating cells were mainly evident 
among non-CD4 T cell clusters at this time point. These included clusters 5.1.2 (atypical CD8), 5.1.3 
(NKT), 5.1.1 and 3.3 (both ‘classical’ CD8 T cells). A large proportion of T cell clusters expressed 
cytotoxic genes (GZMA, GZMB, GNLY, PRF1). In fact, all clusters annotated as ‘classical’ CD8 T cells, 
NKT cells or Vδ2 gd T cells were found to express marker genes for cytotoxic function. In addition, a 
subset of CD4 and ‘atypical’ CD8 T cell clusters were also associated with cytotoxic function (Figure 
2B). Surprisingly, we found a clear group of T cell clusters with naive phenotype, identified by surface 
protein expression of CD45RA and CD27. These naive T cells mapped exclusively to Vδ1 gd T cells 
and atypical CD8 T cells (Figure 2B). Whilst there was an obvious set of CD4 Treg clusters (expressing 
FOXP3, CTLA4 and IL2RA), delineating other T cell lineages was undermined by low expression of 
lineage-specific cytokines and transcription factors (Figure 2A). IFNG was predominantly expressed 
by non-CD4 T cells, and IL17A and IL17F were absent from the dataset. We therefore defined T cell 
lineage irrespective of CD4/CD8 annotation as T1 (enriched for IFNG/TBX21), T2 (enriched for 
IL4/IL13/GATA3) or T22 (enriched for IL22/RORC) (Figure 2B). 

Quantification of the different functional T cell subsets showed that 50% of all T cells were cytotoxic, 
14% naive, and 14% regulatory (Table 2, Table S4, Figure 2B). These functions were non-overlapping. 
In addition, 31% of T cells were assigned to a T1 lineage, 15% to a T2 lineage, and 14% to a T22 
lineage. Notably, none of the T1 clusters was annotated as CD4 T cells. Instead, the strongest IFNG 
and TBX21 signals were detected in CD8 T cells, and Vδ2 gd T or NKT cells, respectively (Figure 2B). 
The majority of T1 cells were also annotated as cytotoxic, with the rest assigned as naive. About half of 
the T22 clusters were also annotated as cytotoxic, whereas most T2 cells were not annotated with either 
of these functions. 

Naive T cell clusters did not contain any TCR clones present more than once (Figure 2A). Similarly, 
Treg cell clusters were almost exclusively composed of unique TCR clones. In contrast, the highest 
proportions of expanded (>1) T cell clones were found in NKT clusters (4.2.3, 4.2.1, 4.2.2), followed by 
other cytotoxic T cell clusters. Of note, enriched expression of proliferation markers in T cell clusters did 
not correlate with proportion of expanded TCR clones at this time point. 

Myeloid cell subsets present in day 2 TST suction blisters 
To assess the ontological and functional heterogeneity of myeloid cells in the TST, we used gene 
markers for monocyte, macrophage, and dendritic cell (DC) populations, as well as for cytokines 
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associated with canonical pro-inflammatory or regulatory roles, or induction of distinct T cell subsets, 
and genes involved with antimicrobial, and antigen processing or presentation pathways (Figure 3A, 
Table S3).  

We were able to identify macrophages (expressing CD14 and CD68; 63.2% of myeloid cells), ‘classical’ 
DC (CD1C+; 15.6%), mature DCs enriched in immunoregulatory molecules (mregDC) 
(LAMP3+CCR7+CD274+; 6.6%), plasmacytoid DCs (pDCs) (LILRA4+IL3RA+JCHAIN+; 5.5%), and 
Langerhans cells (CD207+; 3%), with a further myeloid sub-population remaining undefined (cluster 
7.3.1; 6%) (Figure 3A, Table 2, Table S4).  

Using the functional markers, myeloid cells separated into subsets with antimicrobial or antigen-
presenting function (Figure 3B), with enriched expression of either genes encoding the phagocyte 
oxidase complex or HLA class 2 proteins, respectively. In accordance with their known roles in a cellular 
immune response, myeloid clusters classified as macrophages displayed enriched antimicrobial 
function, whereas myeloid clusters identified as classical, plasmacytoid and mreg DCs exhibited 
enriched antigen-presenting function. We were unable to assign Langerhans cells and the undefined 
myeloid cluster a function in this dichotomous classification. Overall, 63% of myeloid cells were defined 
as antimicrobial and 28% were defined as antigen-presenting (Table 2, Table S4). Antigen-presenting 
DCs were also enriched for TNF expression, whereas other cytokines showed no differential expression 
and were often expressed by a very small percentage of myeloid cells (Figure 3A). In addition to a 
canonical role for type 2 IFN responses to Mtb, interest in type 1 IFN responses has also emerged (23). 
Expression of type 1 IFN genes were not detected in our dataset. However, we also probed for evidence 
of IFN activity using expression of multi-gene signatures specifically induced by either type 1 or type 2 
IFNs (3). This approach provided evidence for both type 1 and type 2 IFN activity which co-segregated 
with distribution of their receptor expression across cell types (Figure S3). The type 2 IFN inducible 
signature was mainly limited to myeloid cells, whereas the type 1 IFN inducible signature was more 
widely distributed, albeit not ubiquitous across all cell types. 

TST blister gene signatures 
We aimed to derive gene signatures for the cell types and functions identified in the day 2 TST blister, 
with the motivation to obtain context-specific signatures that can be applied in future work to 
deconvolute TST biopsy bulk transcriptomes collected from different disease groups or over time. To 
this end, we created ‘pseudobulk’ data by summing the gene counts of single cells belonging to the 
same sample/cluster label combination, and then assigned them to a binary class (cell type of interest 
versus any other cell type) for each desired signature. Cell type-specific signature genes were identified 
through repeated Wilcoxon tests of equal-sized subsamples for each cell type class, and average 
statistics across all iterations were used to select a maximum of 50 signature genes, based on over-
expression in the cell type of interest. 

We derived signatures for T cells, NK cells and myeloid cells, as well as for T cell subsets (CD4_T, 
CD8_T, atypical_CD8, gd_T_V1, gd_T_V2, NKT, T1, T2, T22, Treg, cytotoxic, and naive), and functional 
myeloid subsets (antimicrobial and antigen-presenting). Table S6 summarises the identified signature 
genes for those cell types and functions. No significant signature genes were found for T2 and atypical 
CD8, suggesting that the corresponding clusters could not efficiently be discerned as separate cell type 
population. In addition, the T22 signature contained only one gene (CD40LG), potentially reducing its 
power to distinguish between distinct T cell subsets. Other signatures ranged from 9 to 50 genes (Table 
2). As expected, based on the overlapping annotation of cytotoxic, T1 and CD8 T cells (Figure 2B), 
their signatures also shared several genes (e.g. CCL5, NKG7). Similarly, the naive and gd_T_V1 
signatures shared several genes (e.g. BACH2, CD7).  

To internally validate the derived signatures, we quantified their expression in each cell of the TST blister 
dataset, and averaged signature Z-scores across individual cluster labels (Figure S4), or across 
identified cell types and functional subsets (Figure 4). In general, each signature achieved highest 
average expression in its target cell type (Figure 4A-D). An exception to this was the CD8_T signature 
which showed similar enrichment in clusters annotated as CD8 T cells, NKT or gd T cells (Figure 4A, 
Figure S4A). Furthermore, the T1 and T22 signatures did not discriminate well between their ‘true’ 
target clusters and other CD8 or CD4 clusters, respectively (Figure 4B, Figure S4B). To summarise 
how well the signatures distinguished the target cell type from other cells, we calculated the area under 
the receiver operating curve (AUROC) for each signature after assigning each cell to a binary class 
according to their cluster annotation (target cell type or any other cell type). Most signatures achieved 
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AUROC values of >90%, whereas the one-gene signature T22 yielded a lower AUROC value of <80% 
(Table 3).  

To validate the signatures in an independent dataset, we made use of our recent single cell analysis of 
bronchoalveolar cells from individuals with post-COVID lung disease (24). Here, clusters were identified 
as macrophages, proliferating cells, dendritic cells, CD4 T cells, CD8 T cells, NK T cells, B cells, and 
two types of lung epithelial cells (club cells and ciliated cells) (24). The TST signatures performed well 
in this external validation dataset, achieving highest average expression in their target cell type where 
available, with AUROC values >90 % (Figure 5, Table 3).  

Taken together, we successfully compiled transcriptional signatures for T cells, myeloid cells and NK 
cells that are relevant to the immune cell composition of the TST and can discriminate functional T and 
myeloid cell subsets. 

Discussion 
The present study provides the first single cell sequencing characterisation of the human TST. The data 
are consistent with the existing model of T cell dependent immunity, but also provide novel insights. It 
is widely accepted that the TST reaction is a Th1 response, amplified by Mtb-specific memory CD4 T 
cells producing IFNg. However, it has been shown that IFNg levels in TST suction blisters (25) and 
biopsies (9) are maximal at day 2, whereas IFNg production by CD4 T cells in the TST increases only 
from day 7 (16,18). We find that the T1 response, detectable on day 2 and manifested by gene 
expression of IFNG and TBX21, is driven by CD8, gd and NK T cells. Whether these IFNg expressing 
cells are Mtb-reactive and whether they represent tissue-resident T cells remains of particular interest. 
We speculate that early IFNg-producing T cells contribute significantly to the subsequent infiltration of 
memory CD4 T cells. Despite an activated memory phenotype, CD4 T cells in the day 2 TST blisters 
could not be easily categorised into distinctly polarised T cell lineage sub-populations, such as Th1, Th2 
and Th17. A previous study demonstrated that non-specific TCR stimulation of CD4 T cells in vitro leads 
to an activated phenotype that can be detected at 16 hr, whereas the effect of additional polarising 
cytokines is only apparent at a later time point (5 days), implying that T cell activation precedes 
polarisation (26). It is therefore conceivable that T helper lineages are more distinguishable later in the 
TST. The same in vitro study also found that T cell phenotypes are more distinct after polarisation of 
naive compared to memory CD4 T cells, emphasising the fluidity of T cell subtypes (26). 

There has also been significant interest in type 1 IFN responses to Mtb (23). Whilst we detected the 
expression of type I IFN- stimulated genes, we were not able to detect any type I IFN gene expression 
directly. Potential reasons for this may include, the timing of sampling (27), tightly regulated expression 
levels  below the limit of detection in single cell RNA sequencing (28), or sessile behaviour of myeloid 
producer cells resulting in retention in skin tissue rather than emigration into blister fluid (29). Of note, 
we found several regulatory cell types in the day 2 TST, including CD4 Treg cells, pDCs and mregDCs. 
While the presence of Tregs (18) and pDCs (30) in the TST has been described previously, mregDCs 
are a recently discovered DC population (31) whose role in the TST has not been considered before.  

Interestingly, there was a striking absence of B cells in our single cell dataset, in accordance with an 
independent flow cytometric analysis of TST skin blisters that found 98 % of lymphocytes to be T cells 
(17). Whilst B cells are not considered to be key players in the TST reaction, they have occasionally 
been observed in early immunohistochemical studies of the TST (14), and a B cell gene signature is 
enriched in day 2 TST skin biopsies compared to saline controls, albeit to a lesser extent than other 
immune cell gene signatures (3,4). The lack of B cells in blister fluid is therefore likely attributable to a 
reduced ability of B cells to migrate into the blister fluid. A similar observation has been made in a 
different context, where B cells were not detected in the blister fluid following intradermal injection of 
antigen-loaded gold nanoparticles, despite being abundant in punch biopsies (32). We also observed 
only very low numbers of neutrophils in day 2 TST blisters, consistent with a previous report that 
neutrophils are present in higher numbers at earlier time points (6 hr) during the TST reaction (14). 
However, neutrophil data are often lacking in tissue single-cell RNAseq analyses, because of their 
propensity to degrade during sample preparation, low transcriptional activity and subsequent exclusion 
as presumed empty droplets in the standard CellRanger pipeline (33). An alternative sample processing 
and analysis strategy might therefore enable better representation of neutrophils in TST blisters. 

Finally, we detected a population of naive-like T cells, mapping to Vδ1 T cells and ‘atypical’ CD8 T cells. 
Whilst the infiltration of antigen-non-specific memory T cells into an inflammatory site has been 
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recognised (34), the migration of naive T cells into non-lymphoid tissue is thought to be restricted (35). 
There is evidence from a murine model that naive T cells may access non-lymphoid tissue, including 
the skin, as part of their normal migratory pathway (36). Interestingly, other single cell studies of skin 
suction blisters have also reported the presence of naive-like CD8 T cells (29,32), though their relevance 
remains elusive. A predominantly naive phenotype of circulating Vδ1 T cells has been described before 
(37), and Vδ1 T cells are the main gd T cell subset found in normal skin (38), suggesting that their 
presence in TST suction blisters might not reflect recruitment from blood. The atypical CD8 and NKT 
populations in our study were characterised by a comparably low proportion of cells for which we 
acquired alpha/beta TCR data. This could potentially be the result of a lower expression of the TCR in 
these cell populations, leading to higher gene drop-out rates. Alternatively, it may be caused by 
contamination of these clusters with gamma-delta T cells or NK cells, and therefore represent 
insufficient sub-clustering.  In line with this latter interpretation is the presence of alpha/beta TCR 
sequences in a proportion of cells annotated as gd T cells. 

Our study has some limitations. Skin suction blisters may not capture the full cellular response of the 
TST as they are restricted to mobile cells that migrate out of the skin into the blister fluid upon application 
of negative pressure. The gene signatures derived here may therefore not fully discriminate against cell 
types that are not present in TST blisters, such as B cells and neutrophils. In addition, we provide only 
limited validation of the derived signatures in the discovery dataset itself, and in an independent dataset 
of bronchoalveolar cells from individuals with post-COVID lung diseases  (24). Reassuringly, the TST 
signatures discriminate successfully between their target cell type and other cell types, including B cells, 
in the latter. Further external validation in an independently established day 2 TST dataset will yield 
additional valuable confirmation of the cross-applicability of these signatures in different tissue or 
disease contexts. Lastly, our study did not include a control group. We can therefore not discriminate 
between skin-infiltrating cells that responded to the TST challenge as opposed to the general wound 
process inflicted by skin suction (39).  

Methods 

Study approval 
This study was approved by NHS research ethics and UK Health Regulatory Authority (Ref: 
18/LO/0680). All study participants provided written informed consent. 

Study cohort and sample collection 
Study participants comprised 31 healthy, HIV seronegative adults. All had immune memory to Mtb-
specific antigens identified by positive peripheral blood IFNg release assays using the QuantiFERON 
Gold Plus Test, but no clinical or radiological evidence of active tuberculosis. Participants received 
intradermal injection of 0.1 ml 2U tuberculin (Serum Statens Institute) in the volar aspect of the forearm 
as previously described (2–4). At 48 hours, clinical induration at the injection site was measured, before 
suction blisters were induced at the site of the TST and blister fluid aspirated 2-4 hours later, as 
described previously (10,16). Erythrocytes were lysed with RBC lysis buffer (Invitrogen). 

Library preparation and sequencing 
Up to 20,000 cells per sample (Table S1) were stained with the TotalSeq-C Human Universal Cocktail 
v1 (BioLegend) as per manufacturer’s instructions, and then loaded on to the Chromium controller (10x 
Genomics) to generate single-cell gel beads in emulsion (GEMs). Single-cell partitioning, reverse 
transcription, cDNA amplification and library construction were performed using the Chromium Single-
cell 5’ Reagent kit v2 (10x Genomics) according to the manufacturer’s instructions to generate gene 
expression, T cell receptor (TCR) VDJ, and surface protein (= feature barcode) libraries. Libraries were 
quality checked and quantified using the High Sensitivity D5000kit and 4200 TapeStation System 
(Agilent) and Qubit 2 Fluorometer (Invitrogen). Sequencing was performed on Illumina’s NovaSeq6000 
system, using paired end 150 bp reads, and targeting 20,000 read pairs per cell for gene expression 
libraries, and 5,000 read pairs per cell for TCR VDJ and feature barcode libraries respectively. 
Sequencing, sequencing quality control, and conversion of raw data to FASTQ format were undertaken 
by Novogene Co., Ltd. 

Data processing and analysis 
CellRanger 
Read alignment, feature counting and cell calling was performed with 10x Genomics CellRanger 
(v7.1.0) against the human genome assembly GRCh38 (gene expression reference version 2020-A and 
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VDJ-T reference version 7.1), using the ‘multi’ pipeline with the ‘expect-cells’ parameter set to 50% of 
input cells (Table S1). 

CellRanger’s filtered feature-barcode output matrices were imported to R (version 4.1.1) and combined 
in a SingleCellExperiment object with the read10xCounts function from the DropletUtils package. 
Surface protein expression data were stored as ‘alternative Experiment’ inside the same 
SingleCellExperiment object, allowing isolation of the two modalities, which were processed and utilized 
independently of each other. Data were processed using several Bioconductor packages, as described 
below (40). 

Quality control filtering 
Genes with zero counts across all droplets were discarded, resulting in 29761 expressed genes. 
Doublets were computationally detected and removed with scDblFinder (41). Low-quality cells for each 
sample, defined as those with comparably low library size, few expressed genes or high number of 
mitochondrial reads, were identified and removed with the quickPerCellQC function from the scuttle 
package, which calculates the thresholds for these quality metrics as three median absolute deviations 
away from the median (42). Lastly, a gene sparsity filter was applied to remove genes that were detected 
in <0.1% of all cells, yielding 18291 genes. Table S1 summarizes the number of cell barcodes retained 
at each step of quality filtering, as well as the quality control thresholds for each sample. 

Normalisation and integration 
Counts were log2 normalised with the deconvolution method implemented in the 
computePooledFactors function of the scran package (43), before rescaling the size factors between 
samples with the multiBatchNorm function from the batchelor package (44). Highly variable genes were 
selected as all those above the mean-variance trendline, using the functions modelGeneVar and 
getTopHVGs from the scran package, with sample as blocking factor. To adjust for potential batch 
effects, data from 31 blister samples were integrated with the mutual nearest neighbours algorithm 
implemented in the fastMNN function of the batchelor package, using the default number of 50 principal 
components after dimensionality reduction using the highly variable genes. 

Clustering 
Cell clustering was performed with the Louvain algorithm on the ‘corrected’ fastMNN output matrix, 
which contains the principal component scores for each cell. Louvain clustering was achieved with 
scran’s clusterCells wrapper function and the SNNGraphParam function from the bluster package. The 
number of shared nearest neighbours for graph construction was set to k=50, while a range of 
resolutions was tested using single-cell significance of hierarchical clustering (scSHC) as a post-hoc 
test to find the resolution that gave the maximum number of statistically confirmed Louvain clusters 
(20). For the first round of clustering, resolutions between 0.2 and 1 were tested in 0.2 increments. 
Clusters with at least 500 cells were then sub-clustered a further two times by repeating the workflow 
of feature selection, data integration and Louvain clustering with scSHC post-hoc test, each time testing 
resolutions in the range of 0.2 to 3 in 0.2 increments. For the second and third round of clustering, the 
optimal resolution not only had to yield the maximum number of statistically confirmed Louvain clusters 
but also be preceded by statistically confirmed clustering at the previous resolution value, unless it was 
the first resolution that resulted in sub-clusters. Chosen resolutions for each clustering step are 
summarised in Table S2. 

Feature barcode data 
Feature barcode data captured antibody-derived tags (ADT) and allowed quantification of the surface 
expression for 130 proteins. The DropletUtils and scuttle R packages were used for quality filtering and 
normalisation of ADT data. The cleanTagCounts function identified and removed cells with low ADT 
quality. ADT counts were log2-normalised using first the ambientProfileBimodal function to estimate the 
baseline abundance, and then the medianSizeFactors and logNormCounts functions to calculate size 
factors and scale ADT counts accordingly. 

VDJ data 
Single cells were identified as TCR-positive if their index barcode was listed in CellRanger’s 
‘filtered_contig_annotations’ output files. TCR clones were defined as cells with identical alpha and beta 
chain CDR3 sequences, as assembled by CellRanger in the ‘cdr3s_aa’ column of the ‘clonotype’ output 
files. TCR clones found more than once were defined as expanded.  
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Cell type annotation 
We compiled a list of hand-curated gene and protein markers based on the a priori expectation of cell 
types and cell states present at the site of the tuberculin skin test (Table S3). For each cluster, the 
percentage of cells in which each marker was detected, as well as the Z-score-scaled average 
expression of each marker was calculated and visualised in a dot plot. Z-scores were calculated for 
each cell, either across the entire dataset or across a subset of cells as indicated in the figure legends, 
and then averaged for each cluster. 

To assign ontological and functional annotations to clusters, we iteratively chose selected markers, and 
visualised their Z-score-scaled expression across a given set of clusters in a heatmap with the 
pheatmap R package. Hierarchical clustering with ward.D2 linkage was used to gather clusters together 
based on the similarity of the selected markers, allowing the dendrogram to be split into a desired 
number of groups. The percentage of TCR-positive cells in a cluster was included as marker, after Z-
score-scaling of log2-transformed percentage values. 

To identify marker genes for different cell types, the scran R package findMarkers function was 
implemented using the following settings: test.type = “wilcox”, direction = “up”, pval.type = “all”, lfc = 0. 
Sample was included as a blocking factor. Genes with an adjusted p-value <0.05 were considered 
significantly differentially expressed. 

Gene signatures 
Signatures for type 1 and type 2 interferon-stimulated gene expression were described previously (3). 

Novel gene signatures were derived from the single-cell data for selected cell types and functions. To 
make the resulting gene signatures broadly applicable to other datasets, only protein-coding, T cell 
receptor (TR) and immunoglobulin (IG) genes detected in the scRNAseq data were included. Raw gene 
counts were summed for each sample-cluster combination, using the aggregateAcrossCells function 
from the scuttle package, thus creating pseudobulk datasets. The summed counts were normalised by 
converting them into counts per million and replacing values <0.001 with 0.001 to enable log2 
transformation. For each desired signature, the pseudobulk datasets were assigned to a binary class, 
either the cell type of interest (class 1) or any other cell type (class 0), before 1,000 two-sided Wilcoxon 
tests were performed for each gene. In each of the 1,000 iterations, a sub-sample of 50 class 1 datasets 
was compared to an equal-sized sub-sample of class 0 datasets, each randomly selected by sampling 
with replacement. The final output of the Wilcoxon bootstrapping was the average p-value and average 
log2 fold difference across all 1,000 iterations. For each signature, significant genes were defined as 
those up-regulated in the cell type of interest with an adjusted p-value of < 0.05, and up to 50 significant 
genes were then chosen as signature genes, ranked by decreasing log2 fold difference. To achieve 
better discrimination, for myeloid function signatures (antimicrobial and Ag-presenting), only genes 
identified as significant during derivation of the myeloid signatures were selected, and Wilcoxon tests 
were done exclusively between myeloid clusters, assigned to class 1 or class 0 datasets based on their 
functional annotation. 

To validate the signatures in an external dataset, we utilised our recent analysis of bronchoalveolar cells 
from  individuals with post-COVID lung disease, calculating signature scores across the clusters 
identified and described before (24). 

The signature score for each cell was calculated as the arithmetic mean expression of the constituent 
signature genes, using log2-normalised counts in the SingleCellExperiment object, and including 
signature genes with zero expression. For each cluster, the percentage of cells with non-zero signature 
scores, as well as the Z-score-scaled average signature score, were then calculated and visualised in 
a dot plot.  

To evaluate signature performance, area under the receiver operating characteristic curve (AUROC) 
values were calculated using the R package pROC. For each signature, cells were assigned to a binary 
class (target cell type of the module or any other cell type) based on their cluster annotation.  

Data availability 
Single cell sequencing data will be available in the ArrayExpress database at the time of peer-reviewed 
publication of the manuscript. 
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Tables 

Table 1 
Demographic data summary. * Participants of ‘other’ ethnicity were born in the Philippines (n=4), 
Romania (n=1), Syria (n=1) or Iraq (n=1). ** Induration measurements were recorded for 30 out of 31 
participants. 

  Number Percentage 

Total  31 100 

Sex Male 

Female 

9 

22 

29 

71 

Median age in years (range)  33 (19-48)   

Ethnicity Black African 

Indian 

White 

Other * 

16 

4 

4 

7 

51.6 

12.9 

12.9 

22.6 

Median injection site 

induration in mm (range) ** 

 14 (7-26)  

 

Table 2 
Summary of cell types and functions identified in suction blisters at the site of the tuberculin skin test 
on day 2. The ‘parent’ cell type is either T_cell for T cell subsets and T cell function, or Myeloid for 
myeloid cell function. TCR = T cell receptor. N/A = no signature derivation attempted. 

  Number 
clusters 

Number 
cells 

% of 
all cells 

% of 
‘parent’ 
cell type 

% 
TCR+ 

Number 
signature 
genes 

Full dataset 101 63881 100  58.57 N/A 

ONTOGENY 

T_cell 80 42746 66.92  86.27 50 

NK 2 6911 10.82  0.33 50 

Myeloid 10 4046 6.33  0.69 50 

Neutrophil 1 513 0.80  27.88 N/A 

Keratinocyte_basal 3 919 1.44  0.00 N/A 

Keratinocyte_suprabasal 2 626 0.98  0.16 N/A 

Melanocyte 1 266 0.42  0.00 N/A 

Erythrocyte 1 116 0.18  0.00 N/A 

Undefined 1 7738 12.11  4.39 N/A 

T CELL SUBSETS 

CD4_T 34 19287 30.19 45.12 97.31 13 

CD8_T 19 12394 19.40 28.99 94.64 9 

atypical_CD8 14 5709 8.94 13.36 75.74 0 

gd_T_V1 7 2739 4.29 6.41 46.04 9 

gd_T_V2 2 1041 1.63 2.44 13.35 21 
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NKT 4 1576 2.47 3.69 41.62 34 

T CELL FUNCTION 

T1 27 13368 20.93 31.27 77.86 9 

T2 13 6399 10.02 14.97 96.58 0 

T22 9 6002 9.40 14.04 97.05 1 

Treg 10 5982 9.36 13.99 98.51 50 

Naive 16 6047 9.47 14.15 62.89 9 

Cytotoxic 34 21291 33.33 49.81 85.04 10 

MYELOID SUBSETS 

Macrophage 4 2557 4.00 63.20 0.31 N/A 

Classical DC 2 632 0.99 15.62 0.79 N/A 

mregDC 1 267 0.42 6.60 2.25 N/A 

pDC 1 222 0.35 5.49 2.70 N/A 

Langerhans cell 1 123 0.19 3.04 0.00 N/A 

MYELOID CELL FUNCTION 

Ag_presenting 4 1121 1.75 27.71 1.52 50 

Antimicrobial 4 2557 4.00 63.20 0.31 50 

 

Table 3 
Evaluation of signature performance. Data are area under the receiver operating characteristic curve 
(AUROC) values in percentage, with 95% confidence intervals in brackets. AUROC values for module 
scores were calculated for each signature after assigning cells to a binary class (target cell type or not). 
Internal validation dataset = day 2 TST blisters; external validation dataset = bronchoalveolar cells from 
individuals with post-COVID lung disease (24). N/A = target cell type not represented in the dataset. 

Module Internal validation 
(full dataset) 

Internal validation 
(T cells only) 

Internal validation 
(myeloid cells only) 

External validation 

T_cell 97.7 (97.6 - 97.8) N/A N/A 99.5 (99.4 - 99.5) 

NK 99.6 (99.6 - 99.7) N/A N/A N/A 

myeloid 99.9 (99.9 - 99.9) N/A N/A 97.2 (96.9 - 97.4) 

CD4_T 95.6 (95.4 - 95.7) N/A N/A 91.1 (90.4 - 91.7) 

CD8_T 89.7 (89.5 - 90) N/A N/A 98.2 (98 - 98.4) 

NKT 97.5 (97.4 - 97.7) N/A N/A 97.8 (97.4 - 98.2) 

gd_T_V1 95.3 (95 - 95.6) N/A N/A N/A 

gd_T_V2 98.4 (98.1 - 98.7) N/A N/A N/A 

naive 93.6 (93.3 - 93.9) 93.2 (92.9 - 93.6) N/A N/A 

cytotoxic 84.5 (84.2 - 84.8) 93.8 (93.6 - 94) N/A N/A 

T1 90.3 (90 - 90.5) 94.2 (94 - 94.4) N/A N/A 

T22 78.1 (77.5 - 78.7) 75.1 (74.5 - 75.8) N/A N/A 

Treg 99.3 (99.2 - 99.4) 99.2 (99.1 - 99.3) N/A N/A 

antimicrobial 99.8 (99.8 - 99.9) N/A 97.5 (97 - 97.9) N/A 

Ag_presenting 99.4 (99.3 - 99.5) N/A 88.5 (87.1 - 89.9) N/A 
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Figures 

Figure 1. Cell types present in suction blisters at the site of the tuberculin skin test on day 2. 
A 

 

B 

  

A. Number of cells, percentage of cells with single cell TCR sequencing data, and expression of 
canonical gene or protein markers for known cell types in each cluster. In the bar graph, bar height 
represents the cluster size as shown on the y-axis, and colour indicates the percentage of TCR positivity 
for each cluster.  In the dot plot, dot size represents the percentage of cells expressing each marker in 
each cluster, and colour shows the Z-score scaled expression of the marker, calculated compared to 
all other cells in the dataset, and averaged for each cluster. The Z-score colour scale is capped at -2 
and 2. Protein markers are prefixed with ‘Hu’. Clusters were ordered along the x-axis by hierarchical 
clustering (ward D2 method) with the set of markers shown on the y-axis. B. Heatmap representations 
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of the Z-score scaled expression of different subsets of markers from A in different subsets of clusters. 
Z-scores were calculated across all cells in the dataset to define T cell vs. non-T cell clusters (top row), 
across all T cells to define different T cell subsets (middle row), or across all non-T cells to define any 
other cell types (bottom row). The Z-score colour scale is the same as in A. The dendrograms for each 
heatmap show hierarchical clustering (ward D2 method) of the selected cell clusters based on the 
chosen canonical gene and protein markers, with the colour legends indicating the resulting annotation 
of the clusters as different cell types. 
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Figure 2. Functional T cell sub-types present in suction blisters at the site of the tuberculin skin 
test on day 2. 
A 

 

B 

 

A. Quantification of alpha/beta TCR pairs (clones) and expression of independently established gene 
or protein markers for known T cell function in each T cell cluster. For each cluster, the bar graphs 
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represent on the y-axes the number of cells with single cell TCR sequencing data and the number of 
unique alpha/beta TCR clones, while the colour scales indicate the percentage of unique and expanded 
clones, respectively. Expanded clones are defined as TCR clones that are found more than once. In 
the dot plot, dot size represents the percentage of cells expressing each marker in each cluster, and 
colour shows the Z-score scaled expression of the marker, calculated compared to all other T cells in 
the dataset, and averaged for each cluster. The Z-score colour scale is capped at -2 and 2. Protein 
markers are prefixed with ‘Hu’. Clusters were ordered along the x-axis by hierarchical clustering (ward 
D2 method) with the set of markers shown on the y-axis. B. Heatmap representations of the Z-score 
scaled expression of three different subsets of markers from A, with the same Z-score colour scale as 
in A. The dendrograms show hierarchical clustering (ward D2 method) of the T cell clusters based on 
the selected markers, to identify different T cell lineages (top), cytotoxic T cells (middle) and naive T 
cells (bottom). The colour legends indicate annotation of T cell clusters according to these clustering 
analyses (T cell lineage, cytotoxic state, and naive state), or as defined in Figure 1B (CellType). 
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Figure 3. Myeloid cell subsets present in suction blisters at the site of the tuberculin skin test 
on day 2.
A 

 

B 

A. Dot plot visualisation of the expression of independently established marker genes for different 
functional and ontological myeloid subsets. Dot size represents the percentage of cells expressing the 
gene in each cluster, and colour shows the Z-score scaled gene expression, calculated compared to all 
other myeloid cells, and averaged for each cluster. The colour scale is capped at -2 and 2. Clusters 
were ordered along the x-axis by hierarchical clustering (ward D2 method) with the set of functional 
markers shown on the y-axis. B. Heatmap representation of a subset of marker genes from A. The 
dendrogram shows hierarchical clustering (ward D2 method) of the myeloid cells into three groups 
based on the Z-score scaled expression of marker genes for different myeloid functions (Z-score colour 
scale as in A.). No functional annotation assigned to myeloid clusters 7.3.1 and 7.3.2. Ag_presenting = 
antigen-presenting.  
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Figure 4. Internal validation of TST blister signatures. 
A 

 
B 

 
C 

 

D

 
Signature Z-scores were calculated for each cell in the single cell RNAseq dataset they were derived 
from and averaged across all cells annotated with the same cell type or function, as indicated on the x-
axis of each dot plot. In the dot plots, signatures are shown on the y-axis, and cell groups are shown 
on the x-axis. Dot size shows the percentage of cells in each group that expresses any of the signature 
genes. The size legend is the same for panels A-D. The colour bar indicates the Z-scores and differs 
for each dot plot. A. Z-scores were calculated compared to all cells in the dataset, to assess differential 
expression of all derived signatures across all ontogeny cell types. B and C. Z-scores were calculated 
compared to all T cells in the dataset, to assess differential expression of T cell functional signatures 
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across all T cells. D. Z-scores were calculated compared to all myeloid cells in the dataset, to assess 
differential expression of myeloid functional signatures across all myeloid cells. 
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Figure 5. External validation of TST blister signatures in a single-cell RNAseq dataset of 
bronchoalveolar cells from individuals with post-COVID lung disease (24). 

 

Signature Z-scores were calculated for each cell and averaged across all cells annotated with the same cell 
type, as identified in the original publication. The dot plot shows signatures on the y-axis, and cell type groups 
on the x-axis. Dot size reflects the percentage of cells in each cell type group that expresses any of the 
signature genes, while colour indicates the Z-score scaled average expression. Prolif = proliferating cells 
enriched for macrophage markers. 
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