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Abstract 
Single-cell RNA sequencing is revolutionizing our 
understanding of cell state dynamics, allowing researchers 
to observe the progression of individual cells' 
transcriptomic profiles over time. Among the 
computational techniques used to predict future cellular 
states, RNA velocity has emerged as a predominant tool 
for modeling transcriptional dynamics. RNA velocity 
leverages the mRNA maturation process to generate 
velocity vectors that predict the likely future state of a cell, 
offering insights into cellular differentiation, aging, and 
disease progression. Although this technique has shown 
promise across biological fields, the performance accuracy 
varies depending on the RNA velocity method and dataset. 
We established a comparative pipeline and analyzed the 
performance of five RNA velocity methods on three 
datasets based on local consistency, method agreement, 
identification of driver genes, and robustness to 
sequencing depth. This benchmark provides a resource for 
scientists to understand the strengths and limitations of 
different RNA velocity methods. 
 
Introduction 
Single-cell RNA sequencing (scRNA-seq) has enabled the 
characterization of thousands of transcriptomic states, and 
many computational methods have been developed to 
infer the lineages between states. While some cell 
populations exist in equilibrium, others constantly change 
due to cell differentiation, environmental changes, cell 
cycle, or disease perturbations1 . During cellular transitions, 
scRNA-seq data provides a unique opportunity to 
investigate how cells transition between states and which 
regulatory programs are responsible for orchestrating such 
trajectories2–4.  

Many computational methods exist to infer cellular 
trajectories from single-cell data, and their performance 
often varies depending on the type of data, the biological 
context, and the performance metrics used5. One widely 
used technique, RNA velocity, predicts the future state of a 
cell based on its mRNA splicing dynamics (Fig. 1a). RNA 
velocity has been applied to address fundamental 
questions of cell state transitions in developmental 
biology1 and during perturbation6–10. Although RNA 
velocity has been widely adopted by the community, there 
are a variety of methods dependent on many parameters 
and they are known to yield inconsistent or incorrect 
directionalities11,12. Given these limitations, this paper aims 
to guide researchers in evaluating and choosing the best 
RNA velocity method for their data. 
RNA velocity applies dynamic modeling to scRNA-seq data 
to predict state transitions between individual cells13,14. As 
the mRNA matures in a cell, a fraction of recently 
synthesized mRNA molecules exist in their unspliced state, 
while the rest are processed into their spliced, mature state 
(Fig. 1a, upper panel)15. By considering the ratio of spliced 
and unspliced mRNA measurements, the RNA velocity 
technique fits a dynamic model to predict the rate of 
change in the number of mRNA molecules for a specific 
gene13. The rate of change of all genes defines a gradient 
in the high-dimensional transcriptomic space and predicts 
the directionality of the molecular states (Fig. 1a, lower 
panel)14,15. The method yields a set of RNA velocity vectors 
representing the landscape of predicted transitions in the 
transcriptomic space. 
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Figure 1 – Different RNA velocity methods vary in directionality predictions. 
a. Overview of the RNA velocity workflow, with the original Velocyto13 model as an example. The rates of transcription, splicing 
and degradation are notated as 𝛼, 𝛽, and 𝛾 respectively. All RNA velocity models use spliced (s) and unspliced (u) mRNA counts 
as model inputs and predict the directionality of a cell in transcriptomic space. 
b. Summary of the five RNA velocity models studied in this work and the methodologies implemented in each model.  
c. UMAP embeddings with RNA velocity predictions of mouse pancreas (n=3696 cells) across the five different methods, 
highlighting different directionality predictions in the ‘Ductal’ cell type (bottom panel). 
d. A schematic describing examples of inconsistency and disagreement in the velocity predictions between different methods: 
(1) the consistency within the single cells in a neighborhood (the colored dots represent single cells), and (2) the agreement in 
directionality between methods (black arrows between boxes).  
See also Figure S1. 
 
The original RNA velocity model, Velocyto13, assumed a 
constant rate of transcription for each gene and solved a 
system of linear differential equations with a constant slope 
for the steady-state solution (Fig. 1b). The model assigns 
an RNA velocity estimate to each cell based on its deviance 
from the equilibrium defined by the fit to the linear model. 
Finally, the directionality in the cell–cell graph, as seen in 
the UMAP embedding (Fig. 1c), is determined by the 
similarity of a cell’s future transcriptomic state to other cells 
in gene space13 (Supp. Fig. 1a-c). While Velocyto provided 
a proof-of-principle and initial approximation to 
understanding the gene expression landscape, its key 
assumptions do not always hold11,12,16. Not all genes follow 
the expected behavior of a steady-state model16, and the 
results depend heavily on the chosen hyperparameters and 
pre-processing decisions11.  
Recent models have introduced improvements to address 
these limitations. For example, scVelo introduced a 

stochastic version (scv-Sto) of the original steady-state 
model14 incorporating stochasticity for transcription, 
splicing, and degradation, treating them as probabilistic 
events and resulting in a Markov process (Fig. 1b). 
Additionally, scVelo proposed a dynamic model (scv-Dyn) 
to address many of the original issues. scv-Dyn introduces 
a shared latent time across all cells and fits the gene-
specific transcription, splicing, and degradation 
parameters using likelihood-based expectation 
maximization14 (Fig. 1b).  
Like svc-Dyn, UniTVelo defines a shared latent time as a 
cell-specific component to minimize the discrepancy 
between the directionality of different genes17 (Fig. 1b). 
Instead of fitting gene-specific splicing functions, 
UniTVelo17 implements a general "profile” function that fits 
all genes simultaneously, deriving gene-specific splicing 
parameters in a single step, using expectation 
maximization. Alternatively, DeepVelo uses a graph 
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convolution network to estimate splicing and degradation 
rates that are gene and cell-specific18. Notably, DeepVelo 
considers not only a single cell but also its neighbors when 
fitting the model (Fig. 1b).  
Evaluating the accuracy of RNA velocity methods is 
challenging because ground truth trajectories are rarely 
available16. Moreover, the increasing number of 
computational methods available make it difficult for 
scientists to decide the correct workflow for their research 
(Fig. 1b). For example, even in the mouse pancreas, a well-
studied lineage, we observed significant discrepancies in 
the RNA velocity streams generated by different methods 
(Fig. 1c inset, e.g., Ductal cells, a progenitor cell state)19,20. 
Therefore, a general benchmark that compares RNA 
velocity methods in different contexts is necessary to 
understand this technology's predictive potential and help 
scientists choose the best tool to address their questions. 
We present a comparison of the five RNA velocity methods 
detailed above (summarized in Fig. 1b). These methods are 
evaluated across three developmental scRNAseq datasets, 
including a mouse pancreatic development dataset14,20, a 
single time-point zebrafish 24 hours post-fertilization 
whole-embryo dataset21, and a multi-time point zebrafish 
neuro-mesodermal progenitors (NMP) lineage dataset21 
(Supp. Fig. 1d-g). 
To analyze the RNA velocity methods, we first evaluate the 
local consistency (Lc) within each method, determining if 
the velocity vectors are consistent across neighbor cells 
with high transcriptomic similarity (Fig. 1d). Second, we 
examine method agreement (A1 and A2) to assess the 
landscape’s robustness across different RNA velocity 
methods (Fig. 1d). Disparate or contradictory results from 
various RNA velocity methods undermine our confidence 
in the predicted trajectories. We extend this framework and 
evaluate the concordance in the downstream identification 
of driver genes. Finally, we analyze the robustness of each 
method relative to the number of reads, simulating the 
sensitivity of RNA velocity methods to sequencing depth. 
We observe that the smoothness and robustness of RNA 
velocity landscapes vary significantly depending on the cell 
type and biological context. We expect our benchmark to 
provide insight into the strengths and weaknesses of RNA 
velocity as a tool for understanding cell fate dynamics 
during differentiation. 
 
Results 
Local Consistency.  
We initially evaluated the methods by analyzing the 
consistency of velocity vectors within neighborhoods, a 
common metric for evaluating the performance of RNA 
velocity methods17,18,22,23. The molecular state transitions 

taking place can be represented with a Markov transition 
matrix between individual cells that considers the 
directionality and strength predicted by RNA velocity14,15,24. 
In the Markov transition matrix, each cell has a state 
transition vector representing the transition probabilities 
that determine the cell’s likely future state. For each cell, 
we quantified the local consistency as the relative 
alignment between a cell’s state transition vector and those 
of the most transcriptionally similar cells. We defined the 
metric LC as the average cosine similarity between a cell 
and its 30 nearest neighbors (Fig. 2a)18. Under this 
definition, neighbor cells with transition vectors in 
inconsistent directions will have a low score, whereas 
agreement between neighbors will result in higher 
consistency scores (Fig. 1d).  
We next calculated the LC scores for the cells in the 
zebrafish neuromesodermal progenitor (ZF NMP) lineage 
dataset for the RNA velocity method scv-Dyn and 
projected them on the UMAP embedding (Fig. 2b). The 
distribution of LC scores showed significant differences 
across cell types and UMAP regions. Cell types from well-
defined lineages, such as the mesodermal-derived cells, 
showed high consistency, in particular the axial mesoderm 
(PSM → somites → muscle)25,26, and the lateral plate 
mesoderm (Fig. 2b). In contrast, those with more complex 
cellular heterogeneity, such as neural cells (see Fig. 2b, 
neural tube and hindbrain), showed the lowest consistency 
values. More generally, the LC distribution showed high 
heterogeneity and appeared to be cell type-specific (Fig. 
2b, Supp. Fig. 2).  
We then compared the local consistency distributions for 
all three datasets and across RNA velocity methods (Fig. 
2c, Supp. Fig. 2). Some methods, such as UniTVelo, 
showed high LC for all cells in the dataset, indicating a high 
degree of smoothness across the whole velocity graph, 
independently of the cell type (Fig. 2c, Supp. Fig. 2a, c). In 
contrast, DeepVelo and scv-Sto showed intermediate LC 
values with heterogeneous distributions for all three 
datasets (Fig. 2c, d, Supp. Fig. 2a, c). We observed a clear 
trend in LC across methods and datasets, where scv-Dyn 
consistently showed lower values, and UniTVelo showed 
high LC values across all datasets (Fig. 2c).  
To understand the heterogeneity in LC values, we explored 
the distributions for the cell types in each dataset in more 
detail. In whole zebrafish embryos at 24 hours post 
fertilization (ZF embryo 24hpf) the distribution of LC showed 
significant differences between cell types (Fig. 2d), except 
for UniTVelo’s velocity calculations, which resulted in high 
LC values across diverse cell types (Fig. 2e, Supp. Fig. 2b, 
d). 
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Figure 2 – RNA velocity local consistency in cell neighborhoods. 
a. The local consistency quantifies the average velocity transition vector alignment of a cell with its nearest neighbors. Each dot 
is a cell, and the local consistency is the average of the cosine similarities between the target cell and each of its nearest 
neighbors (k=30).  
b. Single-cell local consistency of scv-Dyn projected into the UMAP embedding for the ZF NMP dataset (n=16035 cells). 
c. Local consistency distributions for each RNA velocity method across the three datasets. 
d. UMAP embeddings for zebrafish whole-embryos 24hpf  (n=12914 cells) colored by the single-cell local consistency calculated 
for each RNA velocity method. The labels highlight cell populations with high or low consistency. 
e. Local consistency distributions for the three cell types with the highest and three with the lowest average local consistency 
in the zebrafish embryos 24hpf dataset. 
f. UMAPs colored by the average (consensus) local consistency across all methods, for the three datasets. The labels highlight 
cell populations with high or low consensus consistency.  
See also Figure S2. 
 
For the cell types with the highest LC values, we observed 
strong agreement across most methods, suggesting that 
the RNA velocity signal in these neighborhoods is strong 
enough to be discernible by different models (Fig. 2e, 
Supp. 2b, d). Together, these results indicate that the 
landscape’s smoothness varies depending on cell type. 
Given the diverse outcomes from different methods, we 
grouped the results by creating a consensus score, the 
average LC across all methods, which enabled the 
characterization of overall high or low agreement for 
different datasets (Fig. 2f). In the pancreas dataset, 92% of 
cells exhibited consensus LC above 0.5, indicating high 
agreement between methods (Fig. 2f). Similarly, 74% of 
cells in ZF embryo 24hpf dataset had a consensus LC above 
0.5, but only 39% of cells are over 0.5 in the ZF NMP 
dataset (Fig. 2f). The low consensus in the ZF NMPs dataset 
can be explained by the heterogeneity in the age of the 
cells, as this dataset integrates multiple time points. The 
consensus LC could assist in identifying regions where the 
differentiation signal is strong enough to reconstruct 
single-cell trajectories based on RNA velocity. On the other 
hand, lower LC across all methods could indicate that the 
velocity signal for the cell type is noisy, their differentiation 
process is more complex, or the cells are not differentiating 
(e.g., hindbrain cells in the ZF NMP dataset or neurons in 
the ZF embryo 24hpf (Fig. 2e, Fig. Supp. 2b). Overall, we 
observed that well-defined developmental transitions with 
low cell diversity have high local consistency, whereas 
lineages with complex diversity show low local consistency. 
 
Method Agreement. Though local consistency with a 
method is an important metric in evaluating RNA velocity 
methods, alternatively, one can ask if the vector predictions 
from different velocity methods agree. Agreement 
between methods can help to identify lineages and cellular 

states with stronger velocity signals that correlate with 
biological relevance. We analyzed the agreement between 
methods using two approaches: (1) comparing the 
directionality of each cell’s vector predictions for each pair 
of methods and (2) comparing each method to the ‘median 
vector,’ the central vector derived from all methods (Fig. 
3a). 
The metric A1 is defined as the landscape’s agreement 
across pairs of different methods (Fig. 3a, right, Supp. Fig. 
3-5, 6a). More specifically, the agreement (A1) quantifies the 
cosine similarity between a pair of transition probability 
vectors obtained from different methods for the same 
cell. In comparing DeepVelo and Velocyto in the ZF NMP 
dataset, levels of agreement varied by cell type. We 
projected the A1 distribution on the UMAP embedding and 
observed high agreement in the mesodermal lineages and 
lower agreement in the hindbrain cells, consistent with 
patterns of developmental heterogeneity21 (see Results 
Local Consistency, Fig. 3b). The mesodermal lineage 
showed high agreement only in the early stages of 
differentiation, but as cells differentiate into muscle, the 
agreement across methods dropped to almost zero (Fig. 
3b). The A1 (DeepVelo vs. Velocyto) scores (Fig. 3b, 
histogram) over all cells were widely distributed, indicating 
heterogeneity in the agreement between the two methods, 
with patterns of low and high agreement similar to those 
found for local consistency in the ZF NMP dataset (i.e. 
highest in somites, lowest in the hindbrain) (Fig. 2b). 
Next, we investigated the agreement across methods for 
cell types in the ZF NMP dataset and observed consensus 
across most methods. To examine the method agreement 
for different cell types more closely, we computed the 
mean A1 for each cell type across all pairs of methods (Fig. 
3c).  
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Figure 3 – Comparing single-cell velocity agreement between methods. 
a. Each RNA velocity method yields a cell-cell transition graph. Part (1) of the schematic shows different transition probability 
vectors for the same cell obtained from different methods. A transition vector is defined by the transition probabilities between 
cell states in the graph. The method agreement (1) metric quantifies the similarity between cell transition vectors across datasets 
using cosine similarity. Part (2) of the schematic illustrates the median (central) vector for each cell, computed by taking the 
median of all transition vectors across methods. The method agreement (2) metric quantifies the similarity of cell transition 
vectors from each method as compared to the median vector by using cosine similarity. 
b. UMAP embedding for the ZF NMP dataset with the method agreement (1) between DeepVelo and Velocyto. The labels 
highlight cell populations with high or low agreement between the two methods. The histogram shows the distribution of 
method agreement values for all the cells. 
c. Pairwise comparisons for six cell types from the ZF NMP dataset across all methods. The heatmap shows the mean method 
agreement across individual cells within a cell type for each pair of methods. 
d. UMAP embeddings for ZF NMP for each RNA velocity method, colored by each method’s agreement (2) with the median 
vector. 
e. Distribution of method agreement (2), each method’s agreement with the median vector for the three datasets. 
See also Figures S3, S4, S5, and S6. 
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Analysis of the agreement between methods by cell type 
revealed varying levels of agreement depending on the 
method and cell population (Supp. Fig. 3-5). The lateral 
plate, somites, and endoderm exhibited concordance 
among all methods except for UniTVelo (Fig. 3c). 
Examining the UMAP for the ZF NMP dataset revealed that 
UniTVelo had predicted the opposite direction to the 
known biological trajectory, going from the differentiated 
cell type towards the progenitor21,27 (Supp. Fig. 1b). For 
three cell types (notochord, endoderm and hindbrain) scv-
Dyn and DeepVelo had low agreement, which is correlated 
with cell diversity and transcriptomic complexity. (Fig. 3c, 
Supp. Fig. 6b).  
To expand the investigation of method agreement on a 
global scale and evaluate the systematic disagreement 
across methods, we compared each method to the median 
transition vector of each cell, computed across all methods 
(Fig. 3a, right). We then computed the cosine similarity of 
each method’s transition vector with the cell’s derived 
median vector (A2) (Fig. 3a). The A2 metric, therefore, 
provides a measure of how well each method agrees with 
the consensus prediction across all methods. For the ZF 
NMP dataset, we noticed that UniTVelo systematically 
disagreed across many cell types, whereas DeepVelo had 
a scattering of cells with low A2, mixed with higher values 
(Fig. 3d). Velocyto, scv-Dyn, and scv-Sto had high cosine 
similarity with the median vector (Supp. Fig. 6c, d).  
When applying the analysis to the three datasets, we found 
method agreement with the median vector varied 
depending on the dataset, except for scv-Dyn and scv-Sto 
(Fig. 3e). DeepVelo had high levels of agreement for the 
pancreas dataset, but lower levels of agreement in the 
zebrafish datasets (pancreas: median A2=0.894, ZF NMP: 
median A2=0.667, ZF embryo 24hpf: median A2=0.726) 
(Fig. 3e). The agreement for UniTVelo followed a similar 
pattern, with much lower levels of agreement in the 
zebrafish datasets (pancreas: median A2=0.848, ZF NMP: 
median A2=0.305 and ZF embryo 24hpf: median A2=0.392) 
(Fig. 3e). The high performance of deep learning-based 
methods (DeepVelo and UniTVelo) on the pancreas (a 
commonly tested dataset for developing RNA velocity 
methods) can indicate overtraining or over smoothing17,18. 
The opposite pattern was seen in Velocyto, where 
performance was low on the pancreas dataset (median 
A2=0.432), and the method achieved the highest 
agreement across all methods on the zebrafish datasets (ZF 

NMP: median A2=0.908, ZF embryo 24hpf: median 
A2=0.922) (Fig. 3e). Altogether, the variation in agreement 
across datasets and methods underscores the importance 
of implementing and comparing predictions across 
multiple methods when interpreting RNA velocity. 
 
Downstream: Overlap of Driver Genes. 
We next explored how the disagreements between 
methods are propagated in downstream analysis by 
evaluating the overlap in macrostates and top driver genes 
in the pancreas dataset, the most well-studied lineage 
among the datasets we evaluated. We utilized CellRank to 
identify macrostates and driver genes, i.e. genes whose 
expression highly correlates with a specific trajectory or 
lineage with a velocity kernel generated from each 
method15 (see Methods). CellRank estimates absorption 
probabilities (i.e. probability of a cell fate trajectory towards 
a particular terminal state) using ensembles of random 
walks. Genes are classified as drivers if they are 
systematically highly expressed in cells that are more likely 
to differentiate towards a given terminal state15 (see 
Methods).  
While the macrostates identified by CellRank generally 
agreed across methods and corresponded to the Leiden 
clusters and cell type annotations (initial cluster Ductal, 
terminal Alpha, Beta, Delta, and Epsilon), we found that 
some states didn’t agree across methods (Fig. 4a, b, Supp. 
Fig. 7a, see Delta, Ngn3 low EP, Ductal 5). 
In exploring the role of driver genes, we focused on the 
terminal state Beta, as it was robustly identified by CellRank 
in all methods (Fig. 4b). We looked at the overlap among 
the identified top 100 driver genes across the methods. 
Strikingly, we found only one gene, Pdx1, at the 
intersection of all methods (Fig. 4c). Pdx1 is an essential 
transcription factor and master regulator in the 
development and maintenance of Beta cells28. While it is 
encouraging that all methods agreed on Pdx1, it is notable 
that only one gene appeared in the intersection. 
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Figure 4 – Comparing driver genes predicted from different methods. 
a. Macrostates identified by CellRank based on the velocity kernel from UniTVelo in the pancreas dataset (see Methods).  
b. A summary of the macrostates identified by CellRank for different RNA velocity methods. The x-axis shows the macrostate 
label. The y-axis shows the number of methods in which the macrostate was identified by CellRank.  
c. A histogram showing the top 100 genes for the Beta lineage from each method. The bars indicate the number of genes that 
appear at the intersection of the methods. 
See also Figure S7. 
 
Interestingly, the different methods clustered into two 
groups with regard to the driver genes identified (Fig. 4c). 
The first group (DeepVelo, scv-Sto and Velocyto, agreed on 
79% of driver genes) (Fig. 4c); whereas the second group 
(scv-Dyn and UniTVelo) agreed on 55% of their predicted 
driver genes (Fig. 4c). scv-Dyn and UniTVelo both utilize a 
shared latent time variable to fit their models. When 
conducting an analysis of the driver genes for the Epsilon 
terminal state, we found similarly low levels of overlap, with 
three genes at the intersection of all methods (Supp. Fig. 
7b). The general lack of agreement in driver genes 
emphasizes the importance of considering multiple 
methods when making trajectory predictions with RNA 
Velocity and testing these predictions using experimental 
perturbations or other validation methods.  
 
Robustness to Sequencing Depth. 
The robustness of the RNA velocity methods to changes in 
sequencing depth was analyzed to evaluate the sensitivity 
of the methods. To simulate different levels of depth, we 
subset the ZF embryo 24hpf dataset, randomly selecting 
different proportions of reads (2, 5, 12, 25, 50, 80, 95 and 

98%, each repeated five times), computed each velocity 
method and evaluated the robustness of the prediction as 
compared to the full dataset (Fig. 5a, Supp. Fig. 8-9). The 
impact on the velocity predictions can be observed at a 
high level, as trajectories vary with different proportions of 
reads. When computed by DeepVelo with 2% of the reads, 
the velocity flow for the myotome is in the opposing 
direction as compared to all increased subsets (Fig. 5b, 
Supp. Fig. 8a). With Velocyto, the flow through the 
hindbrain appears to become more complex as the 
proportion of reads increases (Fig. 5c, Supp. Fig. 8c).  
To evaluate the sensitivity of each method to sequencing 
depth, we examined the magnitude and direction of the 
transition vectors. As expected across all methods, the 
magnitude of the transition vectors generally increased 
with the number of reads (Fig. 5d). The transition vectors 
from Velocyto had the largest magnitudes across all levels, 
and scv-Dyn had similarly high magnitudes starting at 50% 
of the original sequencing depth (Fig. 5d). The transition 
vector magnitudes for scv-Sto, UniTVelo, and DeepVelo 
remained much smaller (Fig. 5d).
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Figure 5 – Robustness of methods to sequencing depth. 
a. Sequencing depth is simulated by taking a randomized subset of the reads, including 2, 5, 12, 25, 50, 80, 95, and 98%. The 
input matrices, including raw, spliced, and unspliced counts, are then derived from the reads. All RNA velocity methods are 
run on the subset, and we evaluate the robustness based on the vector’s magnitude and direction as compared with the 
predictions from 100% of the reads.  
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b. Illustration of UMAP embeddings of the ZF whole-embryo 24hpf with RNA velocity predictions from DeepVelo, calculated 
from subsets 2, 25, 50, and 100% of the reads. The labels highlight cell populations with directionality disagreement between 
subsets. 
c. UMAP embeddings of the ZF whole-embryo 24hpf with RNA velocity predictions from Velocyto, calculated from subsets 2, 
25, 50, and 100% of the reads. The labels highlight cell populations with directionality disagreement between subsets. 
d. Distribution of transition vector magnitudes across all subsets for the five RNA velocity methods for the ZF whole-embryo 
24hpf dataset. 
e. Comparison of directionality robustness for each method, determined by calculating the cosine similarity between the 
transition vector from the subset and the directionality of the transition vector derived from 100% of the reads. This calculation 
was averaged across all cells in the ZF whole-embryo 24hpf dataset. 
See also Figures S8, S9 and S10. 
 
In comparing the magnitudes derived from subsets to 
those calculated from 100% of the data, the vector 
magnitudes converged for scv-Sto and Velocyto, whereas 
DeepVelo, scv-Dyn, and UniTVelo maintained low levels of 
correlation with the magnitudes from the full reads (Supp. 
Fig. 10a). Together, the data indicates that more reads lead 
to larger transition vectors and that the vector magnitudes 
for Velocyto and scv-Sto are more robust to read numbers 
(Supp. Fig. 10a). 
We evaluated the directionality robustness of the transition 
vectors by computing the cosine similarity between each 
cell’s predicted transition vector from the subset reads and 
the predicted vector from the full reads. Velocyto was the 
most robust, with the largest increase at 5% of the reads to 
a cosine similarity around 0.85, after which additional reads 
provided a small amount of improvement (Fig. 5e). All 
other methods plateau at lower values, with a jump at the 
end between 98% and 100% of the reads and reaching 
their stable points around 50% of the reads (Fig. 5e). 
DeepVelo was the lowest, reaching a plateau of ~0.5, while 
scv-Sto and scv-Dyn were just above UniTVelo (at 0.7) (Fig. 
5e). We checked that the magnitude did not affect the 
evaluation of directionality and observed that the variance 
was smallest for Velocyto (Supp. Fig. 10b, c). The 
directionality of the velocity predictions from Velocyto are 
the most robust to simulated lower sequencing depth. 
 
Discussion 
We evaluated the performance of five RNA velocity 
methods on three developmental datasets by analyzing 
their local consistency, method agreement, overlap of 
driver genes, and robustness to sequencing depth. 
Collectively, the RNA velocity methods identified known 
biological trajectories and important driver genes, with 
each method displaying varying levels of performance 
depending on the dataset and evaluation metric. Our 
research emphasizes the importance of implementing a 
method that best fits the dataset and encourages the 

utilization of multiple approaches when identifying 
trajectories for further experimentation.  
Local consistency varied across cell types and methods (Fig 
2c, 2e). For cell types with high local consistency, all five 
methods showed similar results, suggesting that the signal 
in the data was high enough to be identified by different 
models. In some terminal state cell types (i.e., muscle, 
hindbrain, neural tube), we observed low consistency, 
which may be due to noisy measurements or heterogeneity 
in subpopulations16 (summarized in Fig. 6). Many methods 
benchmark their performance using metrics to measure 
local consistency18,22,23 and our findings highlight the value 
of incorporating different analytical perspectives. 
When evaluating the methods in comparison to the median 
vector as computed across all methods, the inconsistencies 
for different datasets were apparent. Because the pancreas 
dataset is often used as a benchmark dataset for RNA 
velocity methods, the high performance of other methods 
over Velocyto (the original method) could indicate 
improvement in the field18,29. UniTVelo had low method 
agreement for both zebrafish datasets yet high local 
consistency, which is likely due to over-smoothing as the 
method fits a single profile function for all cells and genes 
and utilizes a unified latent time to infer dynamics in a 
sample17 (Fig. 6). Both deep learning-based methods, 
UniTVelo and DeepVelo, had lower method agreement in 
the zebrafish datasets as compared to the pancreas (Fig. 
3e). We suspect that their default parameters were 
optimized for a specific training set, and that with 
parameter optimization these methods may perform more 
accurately, as deep learning models are more complex30.  
The downstream analysis identification of driver genes was 
sensitive to the differences in velocity calculations between 
methods, emphasizing the need to include multiple RNA 
velocity predictions before making decisions about further 
experimentation. 
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Figure 6 – Guidelines to choose an RNA Velocity Method. 
Table of metrics used to evaluate each RNA velocity method, with color indicating high (green), medium (yellow) or low (red) 
performance of the method for each metric. Local consistency indicated is the median local consistency for each method across 
the median for each dataset: high (0.8-1), medium (0.5-0.8), and low (0-0.5). Method agreement is the median agreement with 
the center vector for each method, across the median for each dataset: high (0.8-1), medium (0.5-0.8), low (0-0.5). Reads 
robustness is based on the cosine similarity plateau value for the directionality of each method: high (0.8-1), medium (0.5-0.8), 
low (0-0.5). 
 
The levels of robustness to the sequencing depth, as 
simulated by downsampling the number of reads, varied 
depending on the model type of each method. The deep 
learning-based approaches were more sensitive to the 
number of reads, as the models require a larger amount of 
input data30. Velocyto was the most robust to the number 
of reads (Fig. 6). For scientists who would like to implement 
RNA velocity, we recommend considering sequencing 
depth when considering the best method for their data.  
Several limitations apply to the findings reported here: 1) 
the number of datasets is limited and only includes two 
organisms with vastly different numbers of cells, 2) our 
study is not comprehensive of all current RNA velocity 
methods, and 3) all comparisons rely on default parameters 
as suggested by the authors as we do not explore method 
optimization. Nonetheless, we believe our framework 
provides an initial approach to address these questions. 
With the current restraints of scRNA-seq, short-read mRNA 
sequencing alone might be insufficient to describe the 
differentiation dynamics of these cell types and additional 
“omic” modalities could improve the modeling of 
velocities16. For example, recent approaches combine RNA 
sequencing with ATAC-seq to jointly model RNA velocity31. 
Other single-cell techniques may lead to improvements in 
RNA velocity models, such as long-read sequencing32,33. 
Capturing the full splicing dynamics with long-read 
sequencing, along with improvements in genome 
annotation, may provide additional transcriptomic 
information needed to more accurately predict the future 
state of a cell with RNA velocity. While RNA velocity is a 
predictive model and ground truth is unavailable, 
comparing multiple methods can provide overall insights 
into trajectories in the transcriptomic space to help us 
understand the underlying biological processes.  
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Methods 
Code availability. All relevant code is available here 
https://github.com/czbiohub-sf/comparison-RNAVelo. 
 
Single-cell quality control and RNA velocity method 
implementation.  The mouse pancreatic developmental 
dataset is available through scVelo14,20. The ZF NMP and 
the ZF embryo 24hpf datasets are subsets of the Zebrahub 
data21. For each RNA velocity method, we followed the 
workflow and preprocessing as outlined in each method’s 
tutorial. We executed the same preprocessing for Velocyto, 
scv-Sto, scv-Dyn, and DeepVelo. For each dataset, we 
normalized the raw counts using scVelo v0.2.5. Genes with 
fewer than 20 total detected counts were excluded. Gene 
counts were normalized by dividing by the total counts per 
cell and multiplying by the median total counts per cell. 
The top 2,000 highly variable genes were then log 
normalized using the functions scvelo.pp_filter_genes, 
scvelo.pp.normalize_per_cell, 
scvelo.pp.filter_genes_dispersion, and scvelo.pp.log1p 
respectively. Utilizing the scVelo pipeline, we computed 
first and second moments for the velocity estimation, with 
30 principal components and 30 nearest neighbors 
(sc.pp.neighbors, scvelo.pp.moments). The scVelo v0.2.5 
Deterministic mode recapitulates the Velocyto steady-state 
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model. We ran this model with scvelo.tl.velocity 
mode=’deterministic’ using default parameters. For scv-
Sto and scv-Dyn, we ran scvelo.tl.velocity (scVelo v0.2.5) 
with mode=’stochastic’ and mode=‘dynamic’ with default 
parameters. We ran DeepVelo18 (0.2.5rc1) with the default 
configuration. For UniTVelo17 (v0.2.5.2), all preprocessing is 
part of the model, and we ran the model using its default 
parameters. We input precomputed Leiden clusters for the 
input parameter ‘cluster,’ as calculated with scanpy for the 
zebrafish datasets21. For the pancreas dataset, we input the 
cell type parameter, as given with the dataset, as the 
‘cluster’ input.   
 
Velocity counts and generation of the velocity graph. For 
each of the RNA velocity methods, a ‘velocity’ prediction 
was generated. This yields a matrix in which each cell has a 
velocity vector with directionality in the transcriptomic 
space, and a ‘velocity_graph,’ a cell state–cell state graph. 
To compare the methods directly, we used the scVelo 
v0.2.4 function scv.utils.get_transition_matrix to compute 
cell state–cell state transition probabilities from the velocity 
graph, based on the similarity of a cell’s predicted future 
state to the profile of cells observed in the sample. We 
input the dataset and each method’s ‘velocity_graph’ 
variable to get the transition matrix.  
 
Consistency within single-cell neighborhoods. For each 
method, we calculated the local neighborhood consistency 
(LC) as shown in DeepVelo18. We calculate 𝐿!,# =
$
%&
∑ 𝑆'()*+!,+",-∈/! , where  𝐿!,# indicates the local consistency 

of the cell i, and 𝑁# indicates the 30 nearest neighbors of 
the cell. We computed the cosine similarity between the 
cell state transition vectors of each cell to its neighbors, 
using np.inner and np.linalg.norm from numpy v1.23.5. LC 
is defined as the average cosine similarity across all 30 
nearest neighbors. We used the local neighborhood 
calculation for each RNA velocity method, and for all 
datasets. To identify cell types with higher or lower 
consistency, we grouped cells together by Leiden cluster, 
and labeled each Leiden cluster with the most prominent 
cell type represented. To evaluate the local neighborhood 
consistency across all methods, we took the average LC 
across all RNA velocity methods for each single cell. 
Transition vector agreement between methods. We 
calculated the pairwise method agreement by computing 
the cosine similarity between two transition vectors for the 
cell from transition matrices created by two different RNA 
velocity methods: 𝐴$ = 𝑆'()*𝑣#,0$, 𝑣#,01-, where 
𝑆'()*+!,$%,+!,$&, indicates the cosine similarity between state 
transitions vectors for cell i, with pairs of methods M1 
and M2 for each cell. The cosine similarity is defined as the 
dot product of the vectors, divided by the product of the 

norm of each vector, which we implemented using np.inner 
and np.linalg.norm with numpy v1.23.5.   For each pair of 
methods and each cell, this yields a method agreement 
score A1. 
With the transition matrix from each method, we calculate 
the central vector for each cell as the median transition 
vector across all methods. We then compute the 
agreement with the central vector for each individual 
method as the cosine similarity 𝐴$ = 𝑆'()*𝑣#,0$, 𝑣#,023- of 
the transition vector 𝑣#,0$ (for the method M1 and cell i), 
with the median vector for the cell i, 𝑣#,023.  
 
Computing macrostates and driver genes with CellRank. 
In the pancreas dataset, we used the variable ‘velocity,’ the 
velocity for each gene and cell generated from each RNA 
velocity method, to create the velocity kernel from 
CellRank15 v2.0.0, and we then computed a transition 
matrix with CellRank’s default parameters, including 
model='deterministic', similarity='correlation', and 
softmax_scale=6.925. The velocity kernel was generated 
with the parameters backward=False and vkey=’velocity.’ 
Next, we followed the CellRank pipeline and generated 
macrostates, defined the terminal states, and computed 
lineage drivers. We fit the pancreas cluster_key=’clusters’ 
as the cell type variable, and we set the number of 
macrostates to 8.  
Based on the macrostates generated, we set the terminal 
states to pancreatic cell types ‘Beta’, ‘Alpha’, ‘Delta’, and 
‘Epsilon’ if identified. We then computed the lineage 
drivers for the Beta lineage, as the terminal state Beta was 
found in all methods. 
In CellRank, the lineage driver genes were identified by the 
correlation of gene expression with the fate probabilities of 
the cells from the lineage. To find the overlapping driver 
genes between velocity methods, we selected the top 100 
driver genes with the highest correlation to the Beta 
lineage from each method, and we utilized UpSet34 to 
visualize the overlap between all groupings of methods. 
 
Sampling reads to simulate robustness to sequencing 
depth. To simulate robustness, we subsampled the reads, 
starting from the bam files for the zebrafish embryo 24 
hours post fertilization. The full dataset contains four 
zebrafish embryos. For each embryo, we utilized samtools 
to subset a percentage (2, 12, 25, 50, 80, 95, and 98%) of 
the total reads, creating 5 randomly sampled replicates for 
each percent. We then ran Velocyto13 v. 0.17.17 on each 
subsampled bam file for each embryo, with the reference 
genome used for the original dataset21. We combined the 
resulting count matrices for the four fish at each 
subsampling percentage and iteration and ran the five RNA 
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velocity methods on each of the resulting 35 anndata 
objects as outlined earlier in the methods.  
We analyzed the directionality and robustness by 
comparing the resulting transition matrices, utilizing the 
same workflow outlined in the method section ‘velocity 
counts and generation of the velocity graph’ to generate 
the matrix. We then computed the magnitude of the 
transition vector for each cell (np.linalg.norm), and the 
velocity vector (generated by RNA velocity in 
transcriptomic space). To analyze the directionality, we 
computed the cosine similarity for each cell between its 
transition vector generated by a proportion of the reads 
and the transition vector generated by 100% of the reads, 
repeated for each replicate. The results were averaged 
across cells and replicates before plotting.  
To ensure the evaluation of directionality was not largely 
affected by vectors with a small magnitude, we also 
computed a min/max weighting for each cosine similarity 
value, multiplying by the minimum magnitude of the two 
vectors and dividing by the maximum magnitude of the 
vectors. 
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Supplementary Figure 1 – RNA Velocity methods and datasets, associated with Figure 1 
a. RNA velocity UMAP projections for five methods, implemented in the pancreas dataset 
b. RNA velocity UMAP projections for five methods, implemented in the zebrafish NMP (ZF NMP) dataset 
c. RNA velocity UMAP projections for five methods, implemented in the zebrafish full embryo 24 hours post fertilization (ZF 
embryo 24hpf) dataset 
d. ZF NMP UMAP colored by cell type annotations 
e. ZF embryo 24hpf UMAP colored by cell type annotations 
f. Pancreas UMAP colored by cell type annotations 
g. Table of datasets used in the paper, including information about the organism, biological context, number of cells, and 
author reference. 
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Supplementary Figure 2 – Local consistency across the ZF NMP and pancreas datasets, associated with Figure 2 
a. UMAP embeddings for ZF NMP dataset colored by the single-cell local consistency for each RNA velocity method.  
b. Local consistency distributions for the three top and bottom cell types from the ZF NMP dataset, as ranked by average 
local consistency. 
c. UMAP embeddings for pancreas dataset colored by the single-cell local consistency for each RNA velocity method.  
d. Local consistency distributions for the three top and bottom cell types from the pancreas dataset, as ranked by average 
local consistency. 
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Supplementary Figure 3 – Pairwise Method Agreement UMAPs for ZF embryo 24hpf, associated with Figure 3 
UMAP embedding for the ZF embryo 24hpf dataset with all unique pairs of method agreement. 
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Supplementary Figure 4 – Pairwise Method Agreement UMAPs for pancreas, associated with Figure 3 
UMAP embedding for the pancreas dataset with all unique pairs of method agreement. 
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Supplementary Figure 5 – Pairwise Method Agreement UMAPs for ZF NMP, associated with Figure 3 
UMAP embedding for the ZF NMP dataset with all unique pairs of method agreement. 
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Supplementary Figure 6 – Additional pairwise method agreement distributions and agreement with median vector, 
associated with Figure 3 
a. Boxplots with distributions of pairwise method agreement for each pair of method for each of the three datasets. 
b. Pairwise comparisons for six cell types from the ZF embryo 24hpf dataset across all methods. The heatmap shows the 
median method agreement across individual cells within a cell type for each pair of methods. 
c. UMAP embeddings for the pancreas for each RNA velocity method, colored by each method’s agreement (2) with the 
median vector. 
d. UMAP embeddings for Zebrafish NMPs for each RNA velocity method, colored by each method’s agreement (2) with the 
median vector.  
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Supplementary Figure 7 – Overlap of Driver Genes and CellRank Terminal States, associated with Figure 4 
a. Macrostates identified by CellRank for scv-Sto, Velocyto, DeepVelo and scv-Dyn in the pancreas dataset. CellRank 
identified different macrostates for each dataset depending on the model’s predictions (see Methods). 
b. Venn diagram with the percentage overlap across all methods and select groups indicated of the top 100 driver genes for 
the Epsilon lineage. Genes identified across all methods as top driver genes are labeled. 
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Supplementary Figure 8 – Velocity UMAPs with Subsets of Reads for DeepVelo, scv-Dyn and Velocyto, associated with Figure 
5 
a. UMAP embeddings of the ZF 24hpf whole-embryo with RNA velocity predictions from DeepVelo, calculated from subsets 
2, 5, 12, 25, 50, 80, 95 and 100% of the reads. 
b. UMAP embeddings of the ZF 24hpf whole-embryo with RNA velocity predictions from scv-Dyn, calculated from subsets 2, 
5, 12, 25, 50, 80, 95 and 100% of the reads. 
c. UMAP embeddings of the ZF 24hpf whole-embryo with RNA velocity predictions from Velocyto, calculated from subsets 2, 
5, 12, 25, 50, 80, 95 and 100% of the reads. 
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Supplementary Figure 9 – Velocity UMAPs with Subsets of Reads for scv-Sto and UniTVelo, associated with Figure 5 
a. UMAP embeddings of the ZF 24hpf whole-embryo with RNA velocity predictions from scv-Sto calculated from subsets 2, 5, 
12, 25, 50, 80, 95 and 100% of the reads. 
b. UMAP embeddings of the ZF 24hpf whole-embryo with RNA velocity predictions from UniTVelo, calculated from subsets 
2, 5, 12, 25, 50, 80, 95 and 100% of the reads. 
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Supplementary Figure 10 – Robustness comparison of magnitude and direction for subset reads, associated with Figure 5 
a. Scatterplots comparing the magnitude of the transition vector calculated from the subset reads (x-axis) vs. 100% of the 
reads (y-axis) for each method. The columns correspond to different subsets, with increasing proportions of reads (2, 5, 12, 
25, 50, 80, 95, 98%), and the rows correspond to different methods (DeepVelo, scv-Dyn, scv-Sto, UniTVelo, Velocyto).  
b. Comparison of directionality robustness for each method weighted by the min/max, calculated as the cosine similarity of 
the transition vector from the subset with the directionality from the transition vector calculated with 100% of the reads. We 
multiply each similarity score by the minimum magnitude of the two vectors divided by the maximum magnitude. The line 
plot shows the averaged value across all cells and subset iterations in the ZF 24hpf whole-embryo dataset.  
c. Median and InterQuartile Range (IQR - 25% and 75% percentile) of the cosine similarity between the transition vector from 
the subset with the directionality from the transition vector calculated with 100% of the reads, calculated across all cells and 
subset iterations in the ZF embryo 24hpf dataset. 
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