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Abstract

Single-cell RNA sequencing is revolutionizing our
understanding of cell state dynamics, allowing researchers
to observe the progression of individual cells'
transcriptomic  profiles  over time. Among the
computational techniques used to predict future cellular
states, RNA velocity has emerged as a predominant tool
for modeling transcriptional dynamics. RNA velocity
leverages the mRNA maturation process to generate
velocity vectors that predict the likely future state of a cell,
offering insights into cellular differentiation, aging, and
disease progression. Although this technique has shown
promise across biological fields, the performance accuracy
varies depending on the RNA velocity method and dataset.
We established a comparative pipeline and analyzed the
performance of five RNA velocity methods on three
datasets based on local consistency, method agreement,
identification of driver genes, and robustness to
sequencing depth. This benchmark provides a resource for
scientists to understand the strengths and limitations of
different RNA velocity methods.

Introduction

Single-cell RNA sequencing (scRNA-seq) has enabled the
characterization of thousands of transcriptomic states, and
many computational methods have been developed to
infer the lineages between states. While some cell
populations exist in equilibrium, others constantly change
due to cell differentiation, environmental changes, cell
cycle, or disease perturbations’ . During cellular transitions,
scRNA-seq data provides a unique opportunity to
investigate how cells transition between states and which
regulatory programs are responsible for orchestrating such
trajectories®™.

Many computational methods exist to infer cellular
trajectories from single-cell data, and their performance
often varies depending on the type of data, the biological
context, and the performance metrics used®. One widely
used technique, RNA velocity, predicts the future state of a
cell based on its mRNA splicing dynamics (Fig. 1a). RNA
velocity has been applied to address fundamental
questions of cell state transitions in developmental
biology' and during perturbation®'0. Although RNA
velocity has been widely adopted by the community, there
are a variety of methods dependent on many parameters
and they are known to yield inconsistent or incorrect
directionalities'2. Given these limitations, this paper aims
to guide researchers in evaluating and choosing the best
RNA velocity method for their data.

RNA velocity applies dynamic modeling to scRNA-seq data
to predict state transitions between individual cells’™. As
the mRNA matures in a cell, a fraction of recently
synthesized mRNA molecules exist in their unspliced state,
while the rest are processed into their spliced, mature state
(Fig. 1a, upper panel)'™. By considering the ratio of spliced
and unspliced mRNA measurements, the RNA velocity
technique fits a dynamic model to predict the rate of
change in the number of MRNA molecules for a specific
gene'®. The rate of change of all genes defines a gradient
in the high-dimensional transcriptomic space and predicts
the directionality of the molecular states (Fig. 1a, lower
panel)’*'>. The method yields a set of RNA velocity vectors
representing the landscape of predicted transitions in the
transcriptomic space.
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Figure 1 - Different RNA velocity methods vary in directionality predictions.

a. Overview of the RNA velocity workflow, with the original Velocyto'® model as an example. The rates of transcription, splicing
and degradation are notated as «, 8, and y respectively. All RNA velocity models use spliced (s) and unspliced (u) mRNA counts
as model inputs and predict the directionality of a cell in transcriptomic space.

b. Summary of the five RNA velocity models studied in this work and the methodologies implemented in each model.

c. UMAP embeddings with RNA velocity predictions of mouse pancreas (n=3696 cells) across the five different methods,
highlighting different directionality predictions in the ‘Ductal’ cell type (bottom panel).

d. A schematic describing examples of inconsistency and disagreement in the velocity predictions between different methods:
(1) the consistency within the single cells in a neighborhood (the colored dots represent single cells), and (2) the agreement in

directionality between methods (black arrows between boxes).

See also Figure S1.

The original RNA velocity model, Velocyto', assumed a
constant rate of transcription for each gene and solved a
system of linear differential equations with a constant slope
for the steady-state solution (Fig. 1b). The model assigns
an RNA velocity estimate to each cell based on its deviance
from the equilibrium defined by the fit to the linear model.
Finally, the directionality in the cell-cell graph, as seen in
the UMAP embedding (Fig. 1c), is determined by the
similarity of a cell’s future transcriptomic state to other cells
in gene space’ (Supp. Fig. 1a-c). While Velocyto provided
a proof-of-principle and initial approximation to
understanding the gene expression landscape, its key
assumptions do not always hold"'2'¢. Not all genes follow
the expected behavior of a steady-state model', and the
results depend heavily on the chosen hyperparameters and
pre-processing decisions'".

Recent models have introduced improvements to address
these limitations. For example, scVelo introduced a

stochastic version (scv-Sto) of the original steady-state
model™ incorporating stochasticity for transcription,
splicing, and degradation, treating them as probabilistic
events and resulting in a Markov process (Fig. 1b).
Additionally, scVelo proposed a dynamic model (scv-Dyn)
to address many of the original issues. scv-Dyn introduces
a shared latent time across all cells and fits the gene-
specific  transcription,  splicing, and  degradation
parameters  using likelihood-based  expectation
maximization™ (Fig. 1b).

Like svc-Dyn, UniTVelo defines a shared latent time as a
cell-specific component to minimize the discrepancy
between the directionality of different genes' (Fig. 1b).
Instead of fitting gene-specific splicing functions,
UniTVelo' implements a general "profile” function that fits
all genes simultaneously, deriving gene-specific splicing
parameters in a single step, using expectation
maximization. Alternatively, DeepVelo uses a graph
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convolution network to estimate splicing and degradation
rates that are gene and cell-specific'’®. Notably, DeepVelo
considers not only a single cell but also its neighbors when
fitting the model (Fig. 1b).

Evaluating the accuracy of RNA velocity methods is
challenging because ground truth trajectories are rarely
available'.  Moreover, the increasing number of
computational methods available make it difficult for
scientists to decide the correct workflow for their research
(Fig. 1b). For example, even in the mouse pancreas, a well-
studied lineage, we observed significant discrepancies in
the RNA velocity streams generated by different methods
(Fig. 1cinset, e.g., Ductal cells, a progenitor cell state)'%.
Therefore, a general benchmark that compares RNA
velocity methods in different contexts is necessary to
understand this technology's predictive potential and help
scientists choose the best tool to address their questions.
We present a comparison of the five RNA velocity methods
detailed above (summarized in Fig. 1b). These methods are
evaluated across three developmental scRNAseq datasets,
including a mouse pancreatic development dataset'*?, a
single time-point zebrafish 24 hours post-fertilization
whole-embryo dataset?’, and a multi-time point zebrafish
neuro-mesodermal progenitors (NMP) lineage dataset”
(Supp. Fig. 1d-g).

To analyze the RNA velocity methods, we first evaluate the
local consistency (Lo within each method, determining if
the velocity vectors are consistent across neighbor cells
with high transcriptomic similarity (Fig. 1d). Second, we
examine method agreement (A1 and Az) to assess the
landscape’s robustness across different RNA velocity
methods (Fig. 1d). Disparate or contradictory results from
various RNA velocity methods undermine our confidence
in the predicted trajectories. We extend this framework and
evaluate the concordance in the downstream identification
of driver genes. Finally, we analyze the robustness of each
method relative to the number of reads, simulating the
sensitivity of RNA velocity methods to sequencing depth.
We observe that the smoothness and robustness of RNA
velocity landscapes vary significantly depending on the cell
type and biological context. We expect our benchmark to
provide insight into the strengths and weaknesses of RNA
velocity as a tool for understanding cell fate dynamics
during differentiation.

Results

Local Consistency.

We initially evaluated the methods by analyzing the
consistency of velocity vectors within neighborhoods, a
common metric for evaluating the performance of RNA
velocity methods''82223, The molecular state transitions

taking place can be represented with a Markov transition
matrix between individual cells that considers the
directionality and strength predicted by RNA velocity*'524,
In the Markov transition matrix, each cell has a state
transition vector representing the transition probabilities
that determine the cell’s likely future state. For each cell,
we quantified the local consistency as the relative
alignment between a cell’s state transition vector and those
of the most transcriptionally similar cells. We defined the
metric Lc as the average cosine similarity between a cell
and its 30 nearest neighbors (Fig. 2a)'®. Under this
definition, neighbor cells with transition vectors in
inconsistent directions will have a low score, whereas
agreement between neighbors will result in higher
consistency scores (Fig. 1d).

We next calculated the Lc scores for the cells in the
zebrafish neuromesodermal progenitor (ZF NMP) lineage
dataset for the RNA velocity method scv-Dyn and
projected them on the UMAP embedding (Fig. 2b). The
distribution of Lc scores showed significant differences
across cell types and UMAP regions. Cell types from well-
defined lineages, such as the mesodermal-derived cells,
showed high consistency, in particular the axial mesoderm
(PSM — somites — muscle)®?, and the lateral plate
mesoderm (Fig. 2b). In contrast, those with more complex
cellular heterogeneity, such as neural cells (see Fig. 2b,
neural tube and hindbrain), showed the lowest consistency
values. More generally, the Lc distribution showed high
heterogeneity and appeared to be cell type-specific (Fig.
2b, Supp. Fig. 2).

We then compared the local consistency distributions for
all three datasets and across RNA velocity methods (Fig.
2c, Supp. Fig. 2). Some methods, such as UniTVelo,
showed high Lc for all cells in the dataset, indicating a high
degree of smoothness across the whole velocity graph,
independently of the cell type (Fig. 2¢, Supp. Fig. 2a, c). In
contrast, DeepVelo and scv-Sto showed intermediate Lc
values with heterogeneous distributions for all three
datasets (Fig. 2c, d, Supp. Fig. 2a, c). We observed a clear
trend in Lc across methods and datasets, where scv-Dyn
consistently showed lower values, and UniTVelo showed
high Lc values across all datasets (Fig. 2c).

To understand the heterogeneity in Lc values, we explored
the distributions for the cell types in each dataset in more
detail. In whole zebrafish embryos at 24 hours post
fertilization (ZF embryo 24hpf) the distribution of Lc showed
significant differences between cell types (Fig. 2d), except
for UniTVelo's velocity calculations, which resulted in high
Lc values across diverse cell types (Fig. 2e, Supp. Fig. 2b,
d).
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Figure 2 — RNA velocity local consistency in cell neighborhoods.

a. The local consistency quantifies the average velocity transition vector alignment of a cell with its nearest neighbors. Each dot
is a cell, and the local consistency is the average of the cosine similarities between the target cell and each of its nearest
neighbors (k=30).

b. Single-cell local consistency of scv-Dyn projected into the UMAP embedding for the ZF NMP dataset (n=16035 cells).

c. Local consistency distributions for each RNA velocity method across the three datasets.

d. UMAP embeddings for zebrafish whole-embryos 24hpf (n=12914 cells) colored by the single-cell local consistency calculated
for each RNA velocity method. The labels highlight cell populations with high or low consistency.

e. Local consistency distributions for the three cell types with the highest and three with the lowest average local consistency
in the zebrafish embryos 24hpf dataset.

f. UMAPs colored by the average (consensus) local consistency across all methods, for the three datasets. The labels highlight

cell populations with high or low consensus consistency.
See also Figure S2.

For the cell types with the highest Lc values, we observed
strong agreement across most methods, suggesting that
the RNA velocity signal in these neighborhoods is strong
enough to be discernible by different models (Fig. 2e,
Supp. 2b, d). Together, these results indicate that the
landscape’s smoothness varies depending on cell type.

Given the diverse outcomes from different methods, we
grouped the results by creating a consensus score, the
average Lc across all methods, which enabled the
characterization of overall high or low agreement for
different datasets (Fig. 2f). In the pancreas dataset, 92% of
cells exhibited consensus Lc above 0.5, indicating high
agreement between methods (Fig. 2f). Similarly, 74% of
cells in ZF embryo 24hpf dataset had a consensus Lc above
0.5, but only 39% of cells are over 0.5 in the ZF NMP
dataset (Fig. 2f). The low consensus in the ZF NMPs dataset
can be explained by the heterogeneity in the age of the
cells, as this dataset integrates multiple time points. The
consensus Lc could assist in identifying regions where the
differentiation signal is strong enough to reconstruct
single-cell trajectories based on RNA velocity. On the other
hand, lower Lc across all methods could indicate that the
velocity signal for the cell type is noisy, their differentiation
process is more complex, or the cells are not differentiating
(e.g., hindbrain cells in the ZF NMP dataset or neurons in
the ZF embryo 24hpf (Fig. 2e, Fig. Supp. 2b). Overall, we
observed that well-defined developmental transitions with
low cell diversity have high local consistency, whereas
lineages with complex diversity show low local consistency.

Method Agreement. Though local consistency with a
method is an important metric in evaluating RNA velocity
methods, alternatively, one can ask if the vector predictions
from different velocity methods agree. Agreement
between methods can help to identify lineages and cellular

states with stronger velocity signals that correlate with
biological relevance. We analyzed the agreement between
methods using two approaches: (1) comparing the
directionality of each cell’s vector predictions for each pair
of methods and (2) comparing each method to the ‘median
vector,’ the central vector derived from all methods (Fig.
3a).

The metric A1 is defined as the landscape’s agreement
across pairs of different methods (Fig. 3a, right, Supp. Fig.
3-5, 6a). More specifically, the agreement (A1) quantifies the
cosine similarity between a pair of transition probability
vectors obtained from different methods for the same
cell. In comparing DeepVelo and Velocyto in the ZF NMP
dataset, levels of agreement varied by cell type. We
projected the As distribution on the UMAP embedding and
observed high agreement in the mesodermal lineages and
lower agreement in the hindbrain cells, consistent with
patterns of developmental heterogeneity? (see Results
Local Consistency, Fig. 3b). The mesodermal lineage
showed high agreement only in the early stages of
differentiation, but as cells differentiate into muscle, the
agreement across methods dropped to almost zero (Fig.
3b). The Ar (DeepVelo vs. Velocyto) scores (Fig. 3b,
histogram) over all cells were widely distributed, indicating
heterogeneity in the agreement between the two methods,
with patterns of low and high agreement similar to those
found for local consistency in the ZF NMP dataset (i.e.
highest in somites, lowest in the hindbrain) (Fig. 2b).

Next, we investigated the agreement across methods for
cell types in the ZF NMP dataset and observed consensus
across most methods. To examine the method agreement
for different cell types more closely, we computed the
mean A1 for each cell type across all pairs of methods (Fig.
30).
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Figure 3 — Comparing single-cell velocity agreement between methods.

a. Each RNA velocity method yields a cell-cell transition graph. Part (1) of the schematic shows different transition probability
vectors for the same cell obtained from different methods. A transition vector is defined by the transition probabilities between
cell states in the graph. The method agreement (1) metric quantifies the similarity between cell transition vectors across datasets
using cosine similarity. Part (2) of the schematic illustrates the median (central) vector for each cell, computed by taking the
median of all transition vectors across methods. The method agreement (2) metric quantifies the similarity of cell transition
vectors from each method as compared to the median vector by using cosine similarity.

b. UMAP embedding for the ZF NMP dataset with the method agreement (1) between DeepVelo and Velocyto. The labels
highlight cell populations with high or low agreement between the two methods. The histogram shows the distribution of
method agreement values for all the cells.

c. Pairwise comparisons for six cell types from the ZF NMP dataset across all methods. The heatmap shows the mean method
agreement across individual cells within a cell type for each pair of methods.

d. UMAP embeddings for ZF NMP for each RNA velocity method, colored by each method’s agreement (2) with the median
vector.

e. Distribution of method agreement (2), each method'’s agreement with the median vector for the three datasets.

See also Figures S3, 54, S5, and Sé.
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Analysis of the agreement between methods by cell type
revealed varying levels of agreement depending on the
method and cell population (Supp. Fig. 3-5). The lateral
plate, somites, and endoderm exhibited concordance
among all methods except for UniTVelo (Fig. 3c).
Examining the UMAP for the ZF NMP dataset revealed that
UniTVelo had predicted the opposite direction to the
known biological trajectory, going from the differentiated
cell type towards the progenitor?? (Supp. Fig. 1b). For
three cell types (notochord, endoderm and hindbrain) scv-
Dyn and DeepVelo had low agreement, which is correlated
with cell diversity and transcriptomic complexity. (Fig. 3c,
Supp. Fig. 6b).

To expand the investigation of method agreement on a
global scale and evaluate the systematic disagreement
across methods, we compared each method to the median
transition vector of each cell, computed across all methods
(Fig. 3a, right). We then computed the cosine similarity of
each method’s transition vector with the cell's derived
median vector (Az) (Fig. 3a). The A metric, therefore,
provides a measure of how well each method agrees with
the consensus prediction across all methods. For the ZF
NMP dataset, we noticed that UniTVelo systematically
disagreed across many cell types, whereas DeepVelo had
a scattering of cells with low Az, mixed with higher values
(Fig. 3d). Velocyto, scv-Dyn, and scv-Sto had high cosine
similarity with the median vector (Supp. Fig. éc, d).

When applying the analysis to the three datasets, we found
method agreement with the median vector varied
depending on the dataset, except for scv-Dyn and scv-Sto
(Fig. 3e). DeepVelo had high levels of agreement for the
pancreas dataset, but lower levels of agreement in the
zebrafish datasets (pancreas: median A»=0.894, ZF NMP:
median A»=0.667, ZF embryo 24hpf: median A»=0.726)
(Fig. 3e). The agreement for UniTVelo followed a similar
pattern, with much lower levels of agreement in the
zebrafish datasets (pancreas: median A»=0.848, ZF NMP:
median A2=0.305 and ZF embryo 24hpf: median A>=0.392)
(Fig. 3e). The high performance of deep learning-based
methods (DeepVelo and UniTVelo) on the pancreas (a
commonly tested dataset for developing RNA velocity
methods) can indicate overtraining or over smoothing''é.
The opposite pattern was seen in Velocyto, where
performance was low on the pancreas dataset (median
A>=0.432), and the method achieved the highest
agreement across all methods on the zebrafish datasets (ZF

NMP: median A»,=0.908, ZF embryo 24hpf: median
A2=0.922) (Fig. 3e). Altogether, the variation in agreement
across datasets and methods underscores the importance
of implementing and comparing predictions across
multiple methods when interpreting RNA velocity.

Downstream: Overlap of Driver Genes.

We next explored how the disagreements between
methods are propagated in downstream analysis by
evaluating the overlap in macrostates and top driver genes
in the pancreas dataset, the most well-studied lineage
among the datasets we evaluated. We utilized CellRank to
identify macrostates and driver genes, i.e. genes whose
expression highly correlates with a specific trajectory or
lineage with a velocity kernel generated from each
method™ (see Methods). CellRank estimates absorption
probabilities (i.e. probability of a cell fate trajectory towards
a particular terminal state) using ensembles of random
walks. Genes are classified as drivers if they are
systematically highly expressed in cells that are more likely
to differentiate towards a given terminal state' (see
Methods).

While the macrostates identified by CellRank generally
agreed across methods and corresponded to the Leiden
clusters and cell type annotations (initial cluster Ductal,
terminal Alpha, Beta, Delta, and Epsilon), we found that
some states didn’t agree across methods (Fig. 4a, b, Supp.
Fig. 7a, see Delta, Ngn3 low EP, Ductal 5).

In exploring the role of driver genes, we focused on the
terminal state Beta, as it was robustly identified by CellRank
in all methods (Fig. 4b). We looked at the overlap among
the identified top 100 driver genes across the methods.
Strikingly, we found only one gene, Pdx1, at the
intersection of all methods (Fig. 4c). Pdx1 is an essential
transcription factor and master regulator in the
development and maintenance of Beta cells®. While it is
encouraging that all methods agreed on Pdx1, it is notable
that only one gene appeared in the intersection.
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Figure 4 — Comparing driver genes predicted from different methods.

a. Macrostates identified by CellRank based on the velocity kernel from UniTVelo in the pancreas dataset (see Methods).

b. A summary of the macrostates identified by CellRank for different RNA velocity methods. The x-axis shows the macrostate
label. The y-axis shows the number of methods in which the macrostate was identified by CellRank.

c. A histogram showing the top 100 genes for the Beta lineage from each method. The bars indicate the number of genes that

appear at the intersection of the methods.
See also Figure S7.

Interestingly, the different methods clustered into two
groups with regard to the driver genes identified (Fig. 4c).
The first group (DeepVelo, scv-Sto and Velocyto, agreed on
79% of driver genes) (Fig. 4c); whereas the second group
(scv-Dyn and UniTVelo) agreed on 55% of their predicted
driver genes (Fig. 4c). scv-Dyn and UniTVelo both utilize a
shared latent time variable to fit their models. When
conducting an analysis of the driver genes for the Epsilon
terminal state, we found similarly low levels of overlap, with
three genes at the intersection of all methods (Supp. Fig.
7b). The general lack of agreement in driver genes
emphasizes the importance of considering multiple
methods when making trajectory predictions with RNA
Velocity and testing these predictions using experimental
perturbations or other validation methods.

Robustness to Sequencing Depth.

The robustness of the RNA velocity methods to changes in
sequencing depth was analyzed to evaluate the sensitivity
of the methods. To simulate different levels of depth, we
subset the ZF embryo 24hpf dataset, randomly selecting
different proportions of reads (2, 5, 12, 25, 50, 80, 95 and

98%, each repeated five times), computed each velocity
method and evaluated the robustness of the prediction as
compared to the full dataset (Fig. 5a, Supp. Fig. 8-9). The
impact on the velocity predictions can be observed at a
high level, as trajectories vary with different proportions of
reads. When computed by DeepVelo with 2% of the reads,
the velocity flow for the myotome is in the opposing
direction as compared to all increased subsets (Fig. 5b,
Supp. Fig. 8a). With Velocyto, the flow through the
hindbrain appears to become more complex as the
proportion of reads increases (Fig. 5c, Supp. Fig. 8c).

To evaluate the sensitivity of each method to sequencing
depth, we examined the magnitude and direction of the
transition vectors. As expected across all methods, the
magnitude of the transition vectors generally increased
with the number of reads (Fig. 5d). The transition vectors
from Velocyto had the largest magnitudes across all levels,
and scv-Dyn had similarly high magnitudes starting at 50%
of the original sequencing depth (Fig. 5d). The transition
vector magnitudes for scv-Sto, UniTVelo, and DeepVelo
remained much smaller (Fig. 5d).
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Figure 5 — Robustness of methods to sequencing depth.

a. Sequencing depth is simulated by taking a randomized subset of the reads, including 2, 5, 12, 25, 50, 80, 95, and 98%. The
input matrices, including raw, spliced, and unspliced counts, are then derived from the reads. All RNA velocity methods are
run on the subset, and we evaluate the robustness based on the vector's magnitude and direction as compared with the
predictions from 100% of the reads.
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b. lllustration of UMAP embeddings of the ZF whole-embryo 24hpf with RNA velocity predictions from DeepVelo, calculated
from subsets 2, 25, 50, and 100% of the reads. The labels highlight cell populations with directionality disagreement between

subsets.

c. UMAP embeddings of the ZF whole-embryo 24hpf with RNA velocity predictions from Velocyto, calculated from subsets 2,
25, 50, and 100% of the reads. The labels highlight cell populations with directionality disagreement between subsets.
d. Distribution of transition vector magnitudes across all subsets for the five RNA velocity methods for the ZF whole-embryo

24hpf dataset.

e. Comparison of directionality robustness for each method, determined by calculating the cosine similarity between the
transition vector from the subset and the directionality of the transition vector derived from 100% of the reads. This calculation
was averaged across all cells in the ZF whole-embryo 24hpf dataset.

See also Figures S8, S9 and S10.

In comparing the magnitudes derived from subsets to
those calculated from 100% of the data, the vector
magnitudes converged for scv-Sto and Velocyto, whereas
DeepVelo, scv-Dyn, and UniTVelo maintained low levels of
correlation with the magnitudes from the full reads (Supp.
Fig. 10a). Together, the data indicates that more reads lead
to larger transition vectors and that the vector magnitudes
for Velocyto and scv-Sto are more robust to read numbers
(Supp. Fig. 10a).

We evaluated the directionality robustness of the transition
vectors by computing the cosine similarity between each
cell's predicted transition vector from the subset reads and
the predicted vector from the full reads. Velocyto was the
most robust, with the largest increase at 5% of the reads to
a cosine similarity around 0.85, after which additional reads
provided a small amount of improvement (Fig. 5e). All
other methods plateau at lower values, with a jump at the
end between 98% and 100% of the reads and reaching
their stable points around 50% of the reads (Fig. 5e).
DeepVelo was the lowest, reaching a plateau of ~0.5, while
scv-Sto and scv-Dyn were just above UniTVelo (at 0.7) (Fig.
5e). We checked that the magnitude did not affect the
evaluation of directionality and observed that the variance
was smallest for Velocyto (Supp. Fig. 10b, ¢). The
directionality of the velocity predictions from Velocyto are
the most robust to simulated lower sequencing depth.

Discussion

We evaluated the performance of five RNA velocity
methods on three developmental datasets by analyzing
their local consistency, method agreement, overlap of
driver genes, and robustness to sequencing depth.
Collectively, the RNA velocity methods identified known
biological trajectories and important driver genes, with
each method displaying varying levels of performance
depending on the dataset and evaluation metric. Our
research emphasizes the importance of implementing a
method that best fits the dataset and encourages the

utilization of multiple approaches when identifying
trajectories for further experimentation.

Local consistency varied across cell types and methods (Fig
2c, 2e). For cell types with high local consistency, all five
methods showed similar results, suggesting that the signal
in the data was high enough to be identified by different
models. In some terminal state cell types (i.e., muscle,
hindbrain, neural tube), we observed low consistency,
which may be due to noisy measurements or heterogeneity
in subpopulations' (summarized in Fig. 6). Many methods
benchmark their performance using metrics to measure
local consistency'®222% and our findings highlight the value
of incorporating different analytical perspectives.

When evaluating the methods in comparison to the median
vector as computed across all methods, the inconsistencies
for different datasets were apparent. Because the pancreas
dataset is often used as a benchmark dataset for RNA
velocity methods, the high performance of other methods
over Velocyto (the original method) could indicate
improvement in the field'®?”. UniTVelo had low method
agreement for both zebrafish datasets yet high local
consistency, which is likely due to over-smoothing as the
method fits a single profile function for all cells and genes
and utilizes a unified latent time to infer dynamics in a
sample' (Fig. 6). Both deep learning-based methods,
UniTVelo and DeepVelo, had lower method agreement in
the zebrafish datasets as compared to the pancreas (Fig.
3e). We suspect that their default parameters were
optimized for a specific training set, and that with
parameter optimization these methods may perform more
accurately, as deep learning models are more complex®.
The downstream analysis identification of driver genes was
sensitive to the differences in velocity calculations between
methods, emphasizing the need to include multiple RNA
velocity predictions before making decisions about further
experimentation.
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method local method reads
consistency agreement robustness
DeepVelo J
+/ high performance

scVelo-Stochastic .

(scv-Sto) v medium performance
scVelo-Dynamic J J low performance

(scv-Dyn) v/

Velocyto J J

UniTVelo v v

Figure 6 — Guidelines to choose an RNA Velocity Method.

Table of metrics used to evaluate each RNA velocity method, with color indicating high (green), medium (yellow) or low (red)
performance of the method for each metric. Local consistency indicated is the median local consistency for each method across
the median for each dataset: high (0.8-1), medium (0.5-0.8), and low (0-0.5). Method agreement is the median agreement with
the center vector for each method, across the median for each dataset: high (0.8-1), medium (0.5-0.8), low (0-0.5). Reads
robustness is based on the cosine similarity plateau value for the directionality of each method: high (0.8-1), medium (0.5-0.8),

low (0-0.5).

The levels of robustness to the sequencing depth, as
simulated by downsampling the number of reads, varied
depending on the model type of each method. The deep
learning-based approaches were more sensitive to the
number of reads, as the models require a larger amount of
input data®. Velocyto was the most robust to the number
of reads (Fig. 6). For scientists who would like to implement
RNA velocity, we recommend considering sequencing
depth when considering the best method for their data.
Several limitations apply to the findings reported here: 1)
the number of datasets is limited and only includes two
organisms with vastly different numbers of cells, 2) our
study is not comprehensive of all current RNA velocity
methods, and 3) all comparisons rely on default parameters
as suggested by the authors as we do not explore method
optimization. Nonetheless, we believe our framework
provides an initial approach to address these questions.
With the current restraints of scRNA-seq, short-read mRNA
sequencing alone might be insufficient to describe the
differentiation dynamics of these cell types and additional
“omic” modalities could improve the modeling of
velocities'. For example, recent approaches combine RNA
sequencing with ATAC-seq to jointly model RNA velocity®'.
Other single-cell techniques may lead to improvements in
RNA velocity models, such as long-read sequencing®.
Capturing the full splicing dynamics with long-read
sequencing, along with improvements in genome
annotation, may provide additional transcriptomic
information needed to more accurately predict the future
state of a cell with RNA velocity. While RNA velocity is a
predictive model and ground truth is unavailable,
comparing multiple methods can provide overall insights
into trajectories in the transcriptomic space to help us
understand the underlying biological processes.
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Methods
Code availability. All relevant code is available here
https://github.com/czbiohub-sf/comparison-RNAVelo.

Single-cell quality control and RNA velocity method
implementation. The mouse pancreatic developmental
dataset is available through scVelo™2°. The ZF NMP and
the ZF embryo 24hpf datasets are subsets of the Zebrahub
data?'. For each RNA velocity method, we followed the
workflow and preprocessing as outlined in each method’s
tutorial. We executed the same preprocessing for Velocyto,
scv-Sto, scv-Dyn, and DeepVelo. For each dataset, we
normalized the raw counts using scVelo v0.2.5. Genes with
fewer than 20 total detected counts were excluded. Gene
counts were normalized by dividing by the total counts per
cell and multiplying by the median total counts per cell.
The top 2,000 highly variable genes were then log
normalized using the functions scvelo.pp_filter_genes,
scvelo.pp.normalize_per_cell,

scvelo.pp.filter_genes_dispersion, and scvelo.pp.loglp
respectively. Utilizing the scVelo pipeline, we computed
first and second moments for the velocity estimation, with
30 principal components and 30 nearest neighbors
(sc.pp.neighbors, scvelo.pp.moments). The scVelo v0.2.5
Deterministic mode recapitulates the Velocyto steady-state
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model. We ran this model with scvelo.tl.velocity
mode="deterministic’ using default parameters. For scv-
Sto and scv-Dyn, we ran scvelo.tl.velocity (scVelo v0.2.5)
with mode='stochastic’ and mode="dynamic’ with default
parameters. We ran DeepVelo'® (0.2.5rc1) with the default
configuration. For UniTVelo'’ (v0.2.5.2), all preprocessing is
part of the model, and we ran the model using its default
parameters. We input precomputed Leiden clusters for the
input parameter ‘cluster,’ as calculated with scanpy for the
zebrafish datasets?'. For the pancreas dataset, we input the
cell type parameter, as given with the dataset, as the
‘cluster’ input.

Velocity counts and generation of the velocity graph. For
each of the RNA velocity methods, a ‘velocity’ prediction
was generated. This yields a matrix in which each cell has a
velocity vector with directionality in the transcriptomic
space, and a ‘velocity_graph,’ a cell state—cell state graph.
To compare the methods directly, we used the scVelo
v0.2.4 function scv.utils.get_transition_matrix to compute
cell state—cell state transition probabilities from the velocity
graph, based on the similarity of a cell’s predicted future
state to the profile of cells observed in the sample. We
input the dataset and each method's ‘velocity_graph’
variable to get the transition matrix.

Consistency within single-cell neighborhoods. For each
method, we calculated the local neighborhood consistency
(Lc) as shown in DeepVelo™. We calculate Lg; =
izjem Scos(vyv;)r where L ; indicates the local consistency
of the cell i, and N; indicates the 30 nearest neighbors of
the cell. We computed the cosine similarity between the
cell state transition vectors of each cell to its neighbors,
using np.inner and np.linalg.norm from numpy v1.23.5. Lc
is defined as the average cosine similarity across all 30
nearest neighbors. We used the local neighborhood
calculation for each RNA velocity method, and for all
datasets. To identify cell types with higher or lower
consistency, we grouped cells together by Leiden cluster,
and labeled each Leiden cluster with the most prominent
cell type represented. To evaluate the local neighborhood
consistency across all methods, we took the average Lc
across all RNA velocity methods for each single cell.
Transition vector agreement between methods. We
calculated the pairwise method agreement by computing
the cosine similarity between two transition vectors for the
cell from transition matrices created by two different RNA
velocity methods: Ay = Seos(Vim1, Vi), where
Scos(vimine) INdicates the cosine similarity between state
transitions vectors for cell i, with pairs of methods M1

and M2 for each cell. The cosine similarity is defined as the
dot product of the vectors, divided by the product of the

norm of each vector, which we implemented using np.inner
and np.linalg.norm with numpy v1.23.5. For each pair of
methods and each cell, this yields a method agreement
score A1.

With the transition matrix from each method, we calculate
the central vector for each cell as the median transition
vector across all methods. We then compute the
agreement with the central vector for each individual
method as the cosine similarity 4; = S¢os(Vip1, Vimea) Of
the transition vector v; 4 (for the method M1 and cell i),
with the median vector for the cell i, v; yeq-

Computing macrostates and driver genes with CellRank.
In the pancreas dataset, we used the variable ‘velocity,’ the
velocity for each gene and cell generated from each RNA
velocity method, to create the velocity kernel from
CellRank™ v2.0.0, and we then computed a transition
matrix with CellRank’s default parameters, including
model='deterministic', similarity="correlation’, and
softmax_scale=6.925. The velocity kernel was generated
with the parameters backward=False and vkey="velocity.’
Next, we followed the CellRank pipeline and generated
macrostates, defined the terminal states, and computed
lineage drivers. We fit the pancreas cluster_key="clusters’
as the cell type variable, and we set the number of
macrostates to 8.

Based on the macrostates generated, we set the terminal
states to pancreatic cell types ‘Beta’, ‘Alpha’, ‘Delta’, and
‘Epsilon’ if identified. We then computed the lineage
drivers for the Beta lineage, as the terminal state Beta was
found in all methods.

In CellRank, the lineage driver genes were identified by the
correlation of gene expression with the fate probabilities of
the cells from the lineage. To find the overlapping driver
genes between velocity methods, we selected the top 100
driver genes with the highest correlation to the Beta
lineage from each method, and we utilized UpSet** to
visualize the overlap between all groupings of methods.

Sampling reads to simulate robustness to sequencing
depth. To simulate robustness, we subsampled the reads,
starting from the bam files for the zebrafish embryo 24
hours post fertilization. The full dataset contains four
zebrafish embryos. For each embryo, we utilized samtools
to subset a percentage (2, 12, 25, 50, 80, 95, and 98%) of
the total reads, creating 5 randomly sampled replicates for
each percent. We then ran Velocyto' v. 0.17.17 on each
subsampled bam file for each embryo, with the reference
genome used for the original dataset?’. We combined the
resulting count matrices for the four fish at each
subsampling percentage and iteration and ran the five RNA
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velocity methods on each of the resulting 35 anndata
objects as outlined earlier in the methods.

We analyzed the directionality and robustness by
comparing the resulting transition matrices, utilizing the
same workflow outlined in the method section ‘velocity
counts and generation of the velocity graph’ to generate
the matrix. We then computed the magnitude of the
transition vector for each cell (np.linalg.norm), and the
velocity vector (generated by RNA velocity in
transcriptomic space). To analyze the directionality, we
computed the cosine similarity for each cell between its
transition vector generated by a proportion of the reads
and the transition vector generated by 100% of the reads,
repeated for each replicate. The results were averaged
across cells and replicates before plotting.

To ensure the evaluation of directionality was not largely
affected by vectors with a small magnitude, we also
computed a min/max weighting for each cosine similarity
value, multiplying by the minimum magnitude of the two
vectors and dividing by the maximum magnitude of the
vectors.
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Supplementary Figure 1 — RNA Velocity methods and datasets, associated with Figure 1

a. RNA velocity UMAP projections for five methods, implemented in the pancreas dataset

b. RNA velocity UMAP projections for five methods, implemented in the zebrafish NMP (ZF NMP) dataset

c. RNA velocity UMAP projections for five methods, implemented in the zebrafish full embryo 24 hours post fertilization (ZF
embryo 24hpf) dataset

d. ZF NMP UMAP colored by cell type annotations

e. ZF embryo 24hpf UMAP colored by cell type annotations

f. Pancreas UMAP colored by cell type annotations

g. Table of datasets used in the paper, including information about the organism, biological context, number of cells, and
author reference.
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Supplementary Figure 2 — Local consistency across the ZF NMP and pancreas datasets, associated with Figure 2

a. UMAP embeddings for ZF NMP dataset colored by the single-cell local consistency for each RNA velocity method.

b. Local consistency distributions for the three top and bottom cell types from the ZF NMP dataset, as ranked by average
local consistency.
c. UMAP embeddings for pancreas dataset colored by the single-cell local consistency for each RNA velocity method.

d. Local consistency distributions for the three top and bottom cell types from the pancreas dataset, as ranked by average
local consistency.
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Supplementary Figure 3 — Pairwise Method Agreement UMAPs for ZF embryo 24hpf, associated with Figure 3

UMAP embedding for the ZF embryo 24hpf dataset with all unique pairs of method agreement.
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Supplementary Figure 4 — Pairwise Method Agreement UMAPs for pancreas, associated with Figure 3
UMAP embedding for the pancreas dataset with all unique pairs of method agreement.
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Supplementary Figure 6 — Additional pairwise method agreement distributions and agreement with median vector,

associated with Figure 3

a. Boxplots with distributions of pairwise method agreement for each pair of method for each of the three datasets.

b. Pairwise comparisons for six cell types from the ZF embryo 24hpf dataset across all methods. The heatmap shows the

median method agreement across individual cells within a cell type for each pair of methods.

c. UMAP embeddings for the pancreas for each RNA velocity method, colored by each method’s agreement (2) with the

median vector.

d. UMAP embeddings for Zebrafish NMPs for each RNA velocity method, colored by each method’s agreement (2) with the

median vector.
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Supplementary Figure 7 — Overlap of Driver Genes and CellRank Terminal States, associated with Figure 4

a. Macrostates identified by CellRank for scv-Sto, Velocyto, DeepVelo and scv-Dyn in the pancreas dataset. CellRank
identified different macrostates for each dataset depending on the model’s predictions (see Methods).

b. Venn diagram with the percentage overlap across all methods and select groups indicated of the top 100 driver genes for
the Epsilon lineage. Genes identified across all methods as top driver genes are labeled.
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Supplementary Figure 8 — Velocity UMAPs with Subsets of Reads for DeepVelo, scv-Dyn and Velocyto, associated with Figure
5

a. UMAP embeddings of the ZF 24hpf whole-embryo with RNA velocity predictions from DeepVelo, calculated from subsets
2,5,12, 25,50, 80, 95 and 100% of the reads.

b. UMAP embeddings of the ZF 24hpf whole-embryo with RNA velocity predictions from scv-Dyn, calculated from subsets 2,
5,12, 25, 50, 80, 95 and 100% of the reads.

c. UMAP embeddings of the ZF 24hpf whole-embryo with RNA velocity predictions from Velocyto, calculated from subsets 2,
5,12, 25, 50, 80, 95 and 100% of the reads.
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Supplementary Figure 9 — Velocity UMAPs with Subsets of Reads for scv-Sto and UniTVelo, associated with Figure 5

a. UMAP embeddings of the ZF 24hpf whole-embryo with RNA velocity predictions from scv-Sto calculated from subsets 2, 5,
12, 25, 50, 80, 95 and 100% of the reads.

b. UMAP embeddings of the ZF 24hpf whole-embryo with RNA velocity predictions from UniTVelo, calculated from subsets
2,5,12, 25, 50, 80, 95 and 100% of the reads.
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Supplementary Figure 10 — Robustness comparison of magnitude and direction for subset reads, associated with Figure 5
a. Scatterplots comparing the magnitude of the transition vector calculated from the subset reads (x-axis) vs. 100% of the
reads (y-axis) for each method. The columns correspond to different subsets, with increasing proportions of reads (2, 5, 12,
25, 50, 80, 95, 98%), and the rows correspond to different methods (DeepVelo, scv-Dyn, scv-Sto, UniTVelo, Velocyto).

b. Comparison of directionality robustness for each method weighted by the min/max, calculated as the cosine similarity of
the transition vector from the subset with the directionality from the transition vector calculated with 100% of the reads. We
multiply each similarity score by the minimum magnitude of the two vectors divided by the maximum magnitude. The line
plot shows the averaged value across all cells and subset iterations in the ZF 24hpf whole-embryo dataset.

c. Median and InterQuartile Range (IQR - 25% and 75% percentile) of the cosine similarity between the transition vector from
the subset with the directionality from the transition vector calculated with 100% of the reads, calculated across all cells and
subset iterations in the ZF embryo 24hpf dataset.
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