

1 **Revised version mSphere-00039-24**

2

3 **Title:** Genomic evidence of *Escherichia coli* gut population diversity translocation in leukemia
4 patients

5 **Running Head:** *E. coli* translocation in leukemia patients

6

7 **Authors:** Julie Marin^{a#}, Violaine Walewski^{b,◊}, Thorsten Braun^{a,b}, Samira Dziri^b, Mélanie Magnan^{c,✉},
8 Erick Denamur^c, Etienne Carbonnelle^{a,b,*}, Antoine Bridier-Nahmias^c.

9

10 ^a Université Sorbonne Paris Nord, Inserm, IAME, F-93000 Bobigny, France

11 ^b APHP, HUPSSD, Hôpital Avicenne, Service de Microbiologie clinique, F-93009 Bobigny, France

12 ^c Université Paris Cité, INSERM, IAME, 75018 Paris, France

13 # Corresponding authors: Julie Marin (julie.marin@sorbonne-paris-nord.fr)

14 [◊] present address: Violaine Walewski, Microbiologie, Centre Hospitalier H. Mondor, 50 avenue de
15 la République, 15000 Aurillac.

16 [✉] present address: Mélanie Magnan, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014
17 Paris, France.

18 * present address: Etienne Carbonnelle, Pôle Biopathologie, Centre Hospitalier Universitaire
19 d'Orléans, 14 Avenue de l'Hôpital, 45100 Orléans.

20

21

22

23

24

25

26

27

28

29

30 **Abstract**

31 *Escherichia coli*, a commensal species of the human gut, is an opportunistic pathogen which can
32 reach extra-intestinal compartments, including the bloodstream and the bladder, among others. In
33 non-immunosuppressed patients, purifying or neutral evolution of *E. coli* populations has been
34 reported in the gut. Conversely, it has been suggested that when migrating to extra-intestinal
35 compartments, *E. coli* genomes undergo diversifying selection as supported by strong evidence for
36 adaptation. The level of genomic polymorphism and the size of the populations translocating from
37 gut to extra-intestinal compartments is largely unknown.

38 To gain insights in the pathophysiology of these translocations, we investigated the level of
39 polymorphism and the evolutionary forces acting on the genomes of 77 *E. coli* isolated from
40 various compartments in three immunosuppressed patients. Each patient had a unique strain
41 which was a mutator in one case. In all instances, we observed that translocation encompasses
42 the majority of the genomic diversity present in the gut. The same signature of selection, whether
43 purifying or diversifying, and as anticipated, neutral for mutator isolates, was observed in both the
44 gut and bloodstream. Additionally, we found a limited number of non-specific mutations among
45 compartments for non-mutator isolates. In all cases, urine isolates were dominated by neutral
46 selection. These findings indicate that substantial proportions of populations are undergoing
47 translocation and that they present a complex compartment-specific pattern of selection at the
48 patient level.

49

50 **Importance**

51 It has been suggested that intra and extra-intestinal compartments differentially constrain the
52 evolution of *E. coli* strains. Whether host particular conditions, such as immunosuppression, could
53 affect the strain evolutionary trajectories remain understudied. We found that, in
54 immunosuppressed patients, large fractions of *E. coli* gut populations are translocating with
55 variable modifications of the signature of selection for commensal and pathogenic isolates
56 according to the compartment and/or the patient. Such multiple site sampling should be
57 performed in large cohorts of patients to get a better understanding of *E. coli* extra-intestinal
58 diseases.

59

60 **Keywords** *Escherichia coli*, evolution, whole-genome sequencing, infection, immunosuppression,
61 adaptation, blood stream infection (BSI), genomics

62

63 **Introduction**

64 Bloodstream infections (BSIs) are still a major concern among onco-hematologic patients,
65 influenced by factors such as the type of pathogen, the degree of host immunodeficiency and the
66 status of underlying disease. Despite advances in the clinical management of hematological
67 malignancies, BSIs remain life-threatening complications in the clinical course of these patients,
68 with reported crude mortality rate up to 40% (1–3). A clear shift in the bacterial species causing
69 BSIs in patients with hematological malignancies has been recently reported transitioning from
70 Gram-positive to Gram-negative, in the first place Enterobacteriaceae, and in particular
71 *Escherichia coli*, represent the most frequently involved bacterial species, together with the
72 worrisome and growing phenomenon of multiresistant bacteria (4, 5).

73 *E. coli* is a commensal species of the lower intestine of humans (6). The gut is its primary
74 habitat, and probably the main ecological context of selection. Virulence genes, for instance, are
75 thought to be primarily selected in the intestine as a by-product of commensalism (7, 8). *E. coli* is
76 also an opportunistic pathogen, frequently responsible for intestinal and extra-intestinal infections
77 (9). When reaching a new compartment, such as the bladder or the bloodstream, *E. coli* faces new
78 challenges and new opportunities for adaptation.

79 Previous studies have mainly investigated the signatures of selection in commensal *E. coli*
80 isolates and those sampled from extra-intestinal infections, revealing different scenarios. The
81 evolution of commensal *E. coli* has been found to be governed by purifying selection, whether it
82 implies the entire genome (10) or specific genes such as the H7 flagellin genes (11). However,
83 another study, following the evolution of a clone in a single individual, did not find any evidence
84 for selection in the gut (12). On the contrary, adaptation during chronic and acute infections has
85 been observed (13). In particular, it has been shown that *E. coli* isolates colonizing extra-intestinal
86 sites were adapting under strong selective pressure, with an excess of non-synonymous mutations
87 and patterns of convergence at the gene level (including for H7 flagellin genes). Evidence for

88 adaptation during chronic infection have been emphasized for other bacteria, such as
89 *Burkholderia dolosa* (14) or *Pseudomonas aeruginosa* (15–17), with genotypically and
90 phenotypically diversifying lineages during cystic fibrosis infections for instance (18–21).
91 Adaptation to the human host (22, 23), evasion from the immune response (24, 25) and
92 acquisition of antibiotic resistances (26, 27) are favored by this accumulation of mutations. In
93 addition, niche adaptation shapes the allelic diversity among compartments with specific
94 mutations occurring in the gut or in the bladder associated with functions increasing *E. coli* fitness
95 in each respective compartment (28).

96 What happens when the intestinal barrier and the immune response are weakened?
97 Patient deficiencies, such as immunosuppression, weakening of the intestinal barrier by antibiotic
98 therapy or chemotherapy, can increased the risk of *E. coli* extra-intestinal infections (29–31).
99 Anticancer chemotherapy drugs directly impact the intestinal microbiota (32), leading to dysbiosis
100 and subsequent intestinal mucositis which increase the risk of bacterial translocation to the
101 bloodstream (33). Moreover, among patients undergoing chemotherapy, those with leukemia are
102 highly prone to extra-intestinal infections and relapse (34). The weakening of intestinal barriers
103 and the lack of immune defense could alter the adaptive conditions described for commensal and
104 pathogenic isolates of *E. coli* in non-immunosuppressed patients. Modifications of the signature of
105 selection are therefore expected for commensal and pathogenic isolates of *E. coli* in
106 immunosuppressed patients. In addition, the level of genomic polymorphism and the proportion
107 of the population translocating is largely unknown.

108 Here, we evaluated the selective forces acting on *E. coli* evolution in three
109 immunosuppressed patients among three compartments: bladder, bloodstream and gut. For each
110 patient, we analyzed whole genome sequences from isolates found in each compartment to
111 assess the genetic diversity and the strength of the various selective processes at play.

112

113 **Material and methods**

114 *Sampling*

115 Clinical isolates were isolated from three patients with leukemia and *E. coli* sepsis hospitalized in
116 Avicenne hospital (Seine-Saint-Denis, France). Patient A experienced three infectious episodes

117 while patient B and C had one each. For each episode, these patients had at least one blood
118 culture positive for *E. coli*. Isolates were sampled from positive blood culture and from bladder
119 and feces samples on the same or subsequent day. The initial blood culture was obtained before
120 any antibiotic therapy in patients newly admitted to the hospital. All procedures performed were
121 in accordance with the ethical standards of the responsible committee on human experimentation
122 (institutional and national), validated by the ethics committee of Avicenne hospital (Comité Local
123 d'Ethique d'Avicenne). Information on the type and status of hematologic disease, presence of
124 neutropenia ($<0.5 \times 10^9/L$), previous exposure to any antibiotic therapy, including prophylaxis or
125 treatment of prior infectious episodes, type of infection, microbiological isolate, and outcome was
126 collected in a database.

127

128 *Patient characteristics*

129 The three patients (A to C) studied had hematological pathologies: two with acute myeloid
130 leukemia and one with Hodgkin's lymphoma. Patient A was diagnosed with acute myeloid
131 leukemia and myelofibrosis in January 2014 (Acute myeloblastic leukemia with minimal
132 maturation M1), treated with an allograft. He experienced relapse in March 2015, with febrile
133 neutropenia and presence of circulating blasts. During the BSI, the patient presented an
134 inflammatory syndrome, a severe immunosuppression and had received antibiotics in the
135 previous 30 days. Patient B suffered from undifferentiated acute myeloblastic leukemia (M0)
136 diagnosed and allografted in 2015. At the time of BSI, he was receiving chemotherapy, had severe
137 immunosuppression, an inflammatory syndrome, and had received antibiotics within the
138 preceding 30 days. Patient C was diagnosed with Hodgkin's lymphoma in 2009. Relapsed in 2017
139 during the BSI episode, the patient exhibited inflammatory syndrome, severe immunosuppression
140 and had previously received antibiotics.

141

142 *Prior in vitro phylogroup typing*

143 Phylogroup of each sample (blood, urinary or feces) were determined using quadruplex PCR (35)
144 to select isolates belonging to the same phylogroup for each infection episode.

145

146 *Genome sequencing and assembling*

147 Whole-genome sequencing was performed on each sample using Illumina Technology (MiSeq and
148 HiSeq 2500) and Nextera XT library preparation kits as instructed by the manufacturer (Illumina,
149 San Diego, CA). Fastq files (raw sequencing data) were submitted to the European nucleotide
150 archive (see **Table S1** for accession numbers). Genome assembly was performed with SPAdes
151 v.3.15.5 (36) (see **Table S1** for assembly quality results).

152 For each patient, one strain was chosen as a reference and was sequenced with the Oxford
153 Nanopore Technologies MinION platform using an R9.4 flow cell. We prepared the samples with
154 kits LSK-108 and NBD-104 for library preparation and barcoding. The Nanopore reads were filtered
155 with Filtlong (37) using the following parameters: minimum length of 1000 and 95% of the best
156 reads kept. High-quality assemblies of the three reference genomes were assembled with a hybrid
157 strategy, using both Illumina and Nanopore reads with Unicycler V0.4.4 (38). Information on the
158 hybrid assembly quality is presented in **Table S2**.

159

160 *Core and accessory genome*

161 Seventy-seven SPAdes assemblies were annotated with Prokka (39). Plasmid sequences were
162 predicted by PlaScope (40). Pan-genome analysis from annotated assemblies were performed with
163 Roary using default parameters (41). The core genome alignment and the list of genes of the
164 accessory genome were generated for the 3 patients.

165

166 *Variant calling (SNPs and deletions)*

167 Bases with a low-quality score (< 30) were discarded and the adapters were removed with Trim
168 Galore [a wrapper of the Cutadapt program (42)]. SNPs were detected by aligning the reads to the
169 corresponding reference sequence of each patient (**Table S1**) with Snippy 4.4.0 (43) with the
170 following parameters: the nucleotide minimum quality to be analyzed (basequal) equal to 20, the
171 minimum number of reads covering a site (mincov) equal to 10 and the minimum proportion of
172 those reads different from the reference (minfrac) equal to 0.9. Structural variants (deletions)
173 were detected by mapping reads to the corresponding reference assembly with BWA-MEM (44)
174 and then Sequence Alignment Map (sam) files were analyzed with Wham (45). As recommended,

175 we remove calls smaller than 50 bp and larger than 2 Mbs. For each strain, we also removed calls
176 with less than 5 supporting reads.

177

178 *Detection of insertion sequence (IS) elements*

179 IS elements on the three reference sequences were identified with ISFinder (46). We selected hits
180 with an e-value lower than 10e-10, a minimum alignment coverage of 50% and a minimum
181 identity of 70%. Next, we searched for differences in the IS repertoire for each isolate against the
182 corresponding reference with panISa v0.1.6 (47).

183

184 *Typing and genotypic antibiotic resistance and virulence*

185 We used an in-house script, Petanc (48), that integrates several existing bacterial genomic tools to
186 perform the typing of isolates with several genotyping schemes using the genomic tool SRST2 (49).
187 Sequence types (STs) were defined using the Warwick MLST scheme and the Pasteur scheme (50,
188 51). We only used the Warwick scheme for the analyses described hereafter. We also determined
189 the O:H serotypes and the FimH alleles (52, 53). The phylogroups were confirmed using the
190 ClermonTyping method (54).

191 The resistome and virulome were first established using the in-house script Petanc (48).
192 They were defined by BlastN with Abricate (<https://github.com/tseemann/abricate>) using the
193 ResFinder (version 4.2.2) database (55), a custom database including the VirulenceFinder database
194 and VFDB (56, 57), to which we added selected genes (58). We set the threshold for minimum
195 identity to 80% with a minimum coverage of 90%. Next, a pan-resistome and pan-virulome were
196 built including all the antibiotic resistance and virulence associated genes of all isolates. We
197 mapped the reads to the corresponding pan-resistome and pan-virulome with BWA-MEM (44).
198 We considered a gene as present when we found more than 80% coverage and at least one read.
199 We also tested more conservative thresholds with 80% coverage and more than 5 reads.

200 To evaluate the possibility of false-negative results, we applied the same methodology for
201 14 MLST genes (*adk*, *dinB*, *fumC*, *gyrB*, *icd*, *mdh*, *pabB*, *polB*, *purA*, *putP*, *recA*, *trpA*, *trpB*, *uidA*) and
202 for genes encoded on a plasmid (predicted by PlaScope (40)), 157, 381 and 157 genes for patient
203 A, B, and C, respectively).

204

205 *Genomic diversity and traces of selection*

206 Rates of nonsynonymous and synonymous mutation were compared by computing non-
207 synonymous substitution / synonymous substitution (dN/dS) ratios (R language (59)) from the
208 gene alignments obtained with Roary, to evaluate the genomic traces of selection. To be able to
209 compare the isolates taking into account their phylogenetic history, we reconstructed an ancestral
210 sequence for each patient to which each isolate was then compared. We first midpoint rooted the
211 trees of patient B and C for which there was only one sampling time. For patient A, we rooted the
212 tree based on the best root-to-tip correlation (function ‘initRoot’, package BactDating (60)). Next
213 we inferred the ancestral sequence as the sequence at the root of each tree using parsimony
214 (function ancestral.pars, package phangorn (61)). We calculated dN and dS as the observed
215 number of substitutions of each type divided by the number of potential substitutions of the same
216 type in the considered sequence. For each codon, the number of potential non-synonymous or
217 synonymous substitutions is determined by the genetic code. We then computed the dN/dS ratio
218 for each pair of sequences, we determined the mean dN/dS ratio and assessed whether it
219 significantly differed from 1 (Wilcoxon test), where 1 represents perfect balance between
220 diversifying and purifying selection indicating no visible selection. When in a pair of sequences,
221 one or more non-synonymous and zero synonymous mutations are encountered, an infinite value
222 is returned. To take into account these non-synonymous mutations, we used the Laplace
223 smoothing technique (62), which is used to overcome issues caused by certain values having zero
224 occurrence. We computed the standard deviation of all possible synonymous mutations and
225 added this value to each term of the dN/dS ratio. When there was no mutation, neither
226 synonymous nor non-synonymous, we removed this comparison because this case did not
227 correspond to any of the three categories, diversifying, purifying or neutral selection.

228 To examine changes that occurred specifically in each compartment, we used the same
229 methodology and computed dN/dS ratios for clades grouping samples of the same compartment.
230 Here, the ancestral sequence was defined as the inferred sequence at the root of the focal clade.

231

232 **Results**

233 We evaluated the genomic diversity (SNPs and deletions) and the genomic traces of selection in 77
234 *E. coli* isolates sampled concomitantly from the gut, blood and urine compartments of three
235 patients (**Figure 1**). The distribution of isolates for each patient and compartment is detailed in
236 **Table 1**.

237

238 *Phylogroup, ST, serotype and fimH allele diversity*

239 Within each infection episode, all isolates belonged to the same phylogroup and ST and had the
240 same serotype and *fimH* allele (**Table 1**). Isolates belonged to the phylogroup A (patient A), B1
241 (patients B) and B2 (patient C).

242

243 *Global genomic diversity (SNPs and IS)*

244 We first looked at the SNP diversity. With the exception of patient B, isolates exhibited a low
245 number of mutated genes (between 8 and 11) and no deletion (**Table S3**). Patient B isolates
246 however, revealed 328 mutated genes. Indeed, we noted a deletion of *mutS* in patient B isolates.
247 This inactivation of the DNA mismatch repair system conferred to them a mutator phenotype (63,
248 64) (**Table S4**).

249 In line with those results, we found a low number of SNPs in isolates from patients A and C
250 (mean number of 5.07 [95% confidence interval: 4.20-5.95]) compared to those of patient B (mean
251 number of 117.13 [82.16-152.10], p-value = 1.237e-08 (Wilcoxon test)) (**Figure 2**). Similarly, intra-
252 and extra-intestinal isolates did not differ significantly in term of variant categories (**Table 2**) (chi-
253 squared test after correcting for sample size, p-value = 0.99). No common genes with SNPs (**Table**
254 **S5**) were identified among patients (**Table S3**).

255 Additionally, the diversity in IS elements revealed only few differences among isolates of
256 the same patient (0 to 5 for non-mutator strains) (**Tables S6-S7**). The number of IS within the
257 isolates of each patient was in the upper part of the range found for *E. coli* genomes (65), with a
258 lower number of IS elements for the mutator strain, as expected (66). We detected 5
259 supplementary potential IS elements in 1 to 14 isolates (4.6 isolates in average) for patient A
260 compared to the reference genome (189 IS elements). For patient B (mutator strain), we detected
261 22 supplementary potential IS elements in 1 to 11 isolates (2.63 isolates in average) compared to

262 the reference genome (97 IS elements). We did not find any supplementary potential IS element in
263 patient C isolates compared to the reference genome (136 IS elements).

264

265 *Within patient compartment diversity*

266 All isolates from a given patient were highly similar (except for patient B with mutator isolates)
267 (**Figures 2-3**). Consequently, no large deletions were detected because we used one of these
268 isolates as the reference strain for each patient (**Table S3**).

269 The majority of SNPs were shared among compartments (**Figure 4**). For patient A, 13 over
270 20 SNPs were identical among at least 2 compartments and 13 over 22 for patient C. For patient B
271 (mutator strain), despite a high level of polymorphism, most SNPs were shared among stool and
272 blood isolates. Furthermore, most of the stool polymorphism was found in other compartments,
273 87%, 77% and 87% for patient A, B and C respectively, suggesting a large population translocation
274 from the gut.

275 Additional IS elements were also shared among compartments (**Table S7**). For patient A, 3
276 over 5 additional IS elements were shared among 2 compartments and 12 over 22 for patient B.

277

278 *Antibiotic resistance and virulence associated gene content*

279 Regarding genes associated with antibiotic resistance, isolates within each infection were
280 highly similar. Limited variations were observed among isolates of patient B (mutator isolates) and
281 A which were sampled at different time points (**Figures 1 and 5**). For patient A, we found gene
282 presence/absence discrepancies for three resistance genes, *sul2*, *tet(A)* and *dfrA5*. The gene *sul2*
283 was consistently predicted as encoded on a plasmid across all isolates (**Table S8**). The genes *dfrA5*
284 and *tet(A)* were found on the same contig in 20 isolates out of 23 isolates possessing both genes,
285 and were predicted as encoded on a plasmid for 96.67% and 86.96% of the isolates respectively.
286 For patient B, we found presence/absence discrepancies for all the 7 resistance genes detected.
287 The genes *qnrS1*, *blaCTX-M-15*, *blaTEM-1B*, *aph(6)-Id*, *aph(3'')-Ib* and *sul2* were always co-located
288 on the same contig and predicted as encoded on a plasmid. The gene *dfrA14* was predicted as
289 encoded on a plasmid for all isolates. Similar results were obtained using a more conservative

290 threshold (at least 5 reads covering more than 80% of the gene) (**Figure S1**), with the exception of
291 the gene *mdf(A)*, predicted as chromosomal, which was missing in three isolates of patient B.

292 High gene content similarity was also observed for virulence associated genes (**Figure 6**).
293 An identical gene content was found in patient A isolates. For patient C, we noted a discrepancy
294 for a single gene, *iss11*, consistently predicted as chromosomal, and absent in four isolates.
295 Slightly more differences were found in patient B isolates (mutator strain). The genes *espX5* and
296 *espX1* were missing for one isolate and *gad20* for five isolates, all predicted as chromosomal
297 (**Table S9**). We found more discrepancies with a more conservative threshold (at least 5 reads
298 covering more than 80% of the gene), highlighting lower sequencing depth of two isolates in
299 particular (**Figure S2**). In patient A, all the isolates had the same gene content as the exception of 2
300 isolates (2ana3 and 9b4c8). We found six missing genes for 2ana3 and one missing gene for 2c1c5,
301 all predicted as chromosomal. In addition, *entA*, *entB* genes were always adjacent on the same
302 contig (**Table S9**). In patient C isolates, the gene *iss11*, always predicted as chromosomal, was
303 missing in 5 isolates. Patient B displayed a greater number of differences, over the 47 virulence-
304 associated genes detected, all predicted as chromosomal, only 15 were present in all isolates.

305 As a control for false-negative results, we evaluated the presence of 14 MLST genes and of
306 genes encoded on plasmids. We recovered all the MLST genes for all patients (**Figure S3**). With a
307 more conservative threshold (at least 5 reads covering more than 80% of the gene), we also found
308 all the MLST genes for patient A and C. For patient B (mutator strain), 6 genes were not recovered
309 over the 238 possibilities (**Figure S3**). Regarding genes encoded on a plasmid, there were very few
310 differences depending on the depth threshold used (**Figure S4-S5**). With a more stringent
311 threshold, we found 6 additional missing genes, over 4710 possibilities, for patient A and 7
312 additional missing genes, over 6477 possibilities for patient B. We did not find any differences for
313 patient C. For patient A and B, in most of the cases missing genes corresponded to the absence of
314 all the genes encoded on the corresponding plasmid. There were few exceptions that could be
315 explained by a recent loss of the plasmid either *in vivo*, when isolates of the same cluster lack the
316 same plasmid (*e.g.* plasmid 2 of patient A), or *in vitro* during the lab subcultures as we detected
317 traces of the lost plasmids (*i.e.* portions of some of the genes encoded on the plasmid) suggesting
318 the presence of the plasmid at a low frequency in the sequenced colony.

319

320 *Genomic traces of selection*

321 We computed dN/dS ratios to assess whether gene sequences evolved neutrally or were
322 under purifying or diversifying selection (**Figure 7, Table S10**). As expected, all isolates of patient B
323 were under neutral selection (67, 68). For patients A and C, the same pattern of selection was
324 found for blood and stool isolates, diversifying selection for patient A and purifying selection for
325 patient C. We also found that all isolates sampled in urine evolved under neutral selection
326 (patients A and C). As such results might be biased when the phylogenetic history is likely to
327 include changes that occurred in other compartments, we computed dN/dS ratios in clades
328 grouping samples of the same compartment (stool or blood). Despite the limited number of
329 samples preventing us from obtaining significant results, we globally found the same trends in
330 selection patterns (**Table S11**).

331 This analysis does not compute the variation in non-coding regions; however, it encompasses
332 more than 80% of all the variants and more than 87% of the genome. It should be noted that the
333 number of variants (missense and synonymous) cannot be directly compared to dN/dS ratios
334 (**Table 1**). These variants were computed with reference to a single sequence whereas ratios were
335 computed against a reconstructed ancestral sequence.

336

337 **Discussion**

338 The bacterial species *E. coli* is an opportunistic pathogen (6, 9) which may cross the intestinal
339 barrier to reach extra-intestinal compartments causing infections. In this context, it has been
340 proposed that virulence could be a by-product of commensalism (8). While evidence for purifying
341 and neutral selection has been detected in commensal *E. coli* (10–12), extra-intestinal infection
342 isolates have been shown to be under strong adaptive selection (13). Here we investigated both
343 commensal and extra-intestinal isolates from leukemia patients undergoing chemotherapy. We
344 observed the same strain in all compartments. Isolates of patients A and C were characterized by a
345 very limited number of SNPs, 5 in average (ranging from 0 to 14) (69) and patient B was infected
346 by a mutator strain (64). Interestingly, while each patient had a different selection signature, it
347 was identical in both the bloodstream and gut. In urine, in all cases, neutral selection was at play.

348

349 *Gut origin of urine and blood immunosuppressed patient isolates*

350 For each patient, the isolates collected from the gut, urine, and blood displayed highly similar
351 sequences. They share the same phylogroup, ST, serotype, and *fimH* allele (**Table 1**), indicating
352 that the strain most likely originated from the gut, as previously shown (31, 34). Moreover, with
353 the exception of the mutator isolates, there were fewer than 15 SNPs between pairs of isolates of
354 the same patient (**Figure 2**), the resistance and virulence profiles were stable and there were few
355 differences in the IS repertoire (**Figures 5-6**). The phylogenetic distribution of isolates, together
356 with the SNPs and IS distribution among compartments, suggested the translocation of the gut
357 population diversity to extra-intestinal compartments for all patients (**Figures 3-4**).

358

359 *Same adaptation forces at play in the gut and bloodstream of immunosuppressed patient*

360 In non-immunosuppressed patients, purifying (or neutral) evolution of *E. coli* populations has been
361 reported in the gut (12) but not in extra-intestinal compartments where bacteria DNA sequence
362 are under diversifying selection with strong evidence for gene level convergence (13).

363 Here, we found various signatures of selection in gut isolates. However, the same adaptive
364 process was at play in the bloodstream and in the gut for each patient. For patient B, the presence
365 of mutators at high-frequency in the population (all isolates) is indirect evidence for ongoing
366 selection (70, 71). Indeed, even if they will ultimately be counter-selected (64), mutator alleles can
367 reach 100% frequency in a population because they are associated with beneficial mutations
368 (genetic hitchhiking) (72). In natural populations, mutators are present up to 15% frequency (73–
369 76). Despite the low number of patients, we noted a higher frequency (33%), that might be
370 explained by patient treatment. Indeed, some anticancer chemotherapy drugs enhance the
371 bacterial mutagenesis, thus promoting the emergence of a mutator clone (77). The presence of
372 mutators at high frequency suggests a recent adaptative episode with a temporary indirect
373 selection of this phenotype. Then, the mutator phenotype, even if the high mutation load
374 observed might already have reduced the strain fitness, did not inhibit this *E. coli* population from
375 causing a bloodstream infection. In patient A, diversifying selection is at play, whereas purifying

376 selection shaped the isolates of patient C. Differences in the microbiota perturbation of these
377 patients undergoing a specific antibiotic therapy and chemotherapy could explain this discrepancy.

378 Unlike in extra-intestinal infection of non-immunosuppressed patients (13), no
379 convergence among patients was detected. Moreover, isolates were almost identical with a very
380 low number of SNPs differentiating them (five on average) unspecific to the compartment.
381 Whereas, in non-immunosuppressed patients, niche adaptation was evidenced by specific
382 mutations associated with isolates from the gut or the bladder (28). A weakened immune system
383 and a permeable intestinal barrier, due to chemotherapy and antibiotic treatments, likely
384 contribute to this this phenomenon.

385

386 *Neutral selection in the bladder of immunosuppressed patient*

387 For both patients with urine samples, isolates evolved neutrally. Fluctuating environment or a
388 small population size could explain the weak strength of selection observed in the commensal
389 habitat of *E. coli*. Indeed, bacteria in the bladder face continuous adaptive challenges including
390 fluctuations in exposure to the host immune system, antibiotic treatments, nutrients availability
391 and a diverse microbial community due to an alternation between storage and voiding phases
392 (78).

393

394 Our work obviously presents a major limitation as we evaluated a very limited number of
395 patients, which prevents us from overgeneralizing our conclusions. Collecting stool before
396 antibiotic treatment is indeed very difficult to achieve in clinical practices. Nevertheless, the
397 evaluation of larger cohorts is necessary to associate evolution patterns and the environment
398 (patient follow-up and patient-dependent factors) and to decipher the factors linked to the
399 selection patterns observed here.

400

401 *Conclusion*

402 We evaluated the diversity of *E. coli* isolates in stool, blood and urine of immunocompromised
403 patients and found the same strain across compartments. We showed that all the diversity of the
404 population is translocating. However, contrary to non- immunocompromised patients, we did not

405 detect any modifications in the adaptive constraints between the gut and the bloodstream. Such
406 multi-site sampling studies should be performed in non-immunosuppressed patients to strengthen
407 our findings.

408

409 **Data availability**

410 The data generated in this study have been submitted to the NCBI BioProject database under the
411 accession number PRJEB69525 [<https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJEB69525>].

412

413 **Acknowledgments**

414 We are grateful to the INRAE MIGALE bioinformatics facility (MIGALE, INRAE, 2020. Migale
415 bioinformatics Facility, doi: 10.15454/1.5572390655343293E12) for providing computing
416 resources. We would also like to thank the Molecular Biology and Data Processing Platform of the
417 Sorbonne Paris Nord University. This study was partly financed by two grants: one awarded by the
418 research commission of the Université Sorbonne Paris Nord (BQR) and the other by the IFRB, UFR
419 SMBH, Université Sorbonne Paris Nord.

420

421 **References**

- 422 1. Pagano L, Caira M, Rossi G, Tumbarello M, Fanci R, Garzia MG, Vianelli N, Filardi N, De
423 Fabritiis P, Beltrame A, Musso M, Piccin A, Cuneo A, Cattaneo C, Aloisi T, Riva M, Rossi G,
424 Salvadori U, Brugiatelli M, Sannicolò S, Morselli M, Bonini A, Viale P, Nosari A, Aversa F, for
425 the Hema e-Chart Group I. 2012. A prospective survey of febrile events in hematological
426 malignancies. *Ann Hematol* 91:767–774.
- 427 2. Klastersky J, Ameye L, Maertens J, Georgala A, Muanza F, Aoun M, Ferrant A, Rapoport
428 B, Rolston K, Paesmans M. 2007. Bacteraemia in febrile neutropenic cancer patients. *International
429 Journal of Antimicrobial Agents* 30:51–59.
- 430 3. Tumbarello M, Spanu T, Caira M, Trecarichi EM, Laurenti L, Montuori E, Fianchi L, Leone
431 F, Fadda G, Cauda R, Pagano L. 2009. Factors associated with mortality in bacteremic patients with
432 hematologic malignancies. *Diagnostic Microbiology and Infectious Disease* 64:320–326.
- 433 4. Trecarichi EM, Pagano L, Candoni A, Pastore D, Cattaneo C, Fanci R, Nosari A, Caira M,
434 Spadea A, Busca A, Vianelli N, Tumbarello M. 2015. Current epidemiology and antimicrobial

435 resistance data for bacterial bloodstream infections in patients with hematologic malignancies: an
436 Italian multicentre prospective survey. *Clinical Microbiology and Infection* 21:337–343.

437 5. Montassier E, Batard E, Gastinne T, Potel G, de La Cochetière MF. 2013. Recent changes in
438 bacteremia in patients with cancer: a systematic review of epidemiology and antibiotic resistance.
439 *Eur J Clin Microbiol Infect Dis* 32:841–850.

440 6. Tenaillon O, Skurnik D, Picard B, Denamur E. 2010. The population genetics of commensal
441 *Escherichia coli*. *Nat Rev Microbiol* 8:207–217.

442 7. Diard M, Garry L, Selva M, Mosser T, Denamur E, Matic I. 2010. Pathogenicity-Associated
443 Islands in Extraintestinal Pathogenic *Escherichia coli* Are Fitness Elements Involved in Intestinal
444 Colonization. *Journal of Bacteriology* 192:4885–4893.

445 8. Le Gall T, Clermont O, Gouriou S, Picard B, Nassif X, Denamur E, Tenaillon O. 2007.
446 Extraintestinal Virulence Is a Coincidental By-Product of Commensalism in B2 Phylogenetic
447 Group *Escherichia coli* Strains. *Molecular Biology and Evolution* 24:2373–2384.

448 9. Denamur E, Clermont O, Bonacorsi S, Gordon D. 2021. The population genetics of
449 pathogenic *Escherichia coli*. *Nat Rev Microbiol* 19:37–54.

450 10. Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR,
451 Kultima JR, Martin J, Kota K, Sunyaev SR, Weinstock GM, Bork P. 2013. Genomic variation
452 landscape of the human gut microbiome. *Nature* 493:45–50.

453 11. Hu D, Fuller NR, Caterson ID, Holmes AJ, Reeves PR. 2022. Single-gene long-read
454 sequencing illuminates *Escherichia coli* strain dynamics in the human intestinal microbiome. *Cell*
455 *Rep* 38:110239.

456 12. Ghalayini M, Launay A, Bridier-Nahmias A, Clermont O, Denamur E, Lescat M, Tenaillon
457 O. 2018. Evolution of a Dominant Natural Isolate of *Escherichia coli* in the Human Gut over the
458 Course of a Year Suggests a Neutral Evolution with Reduced Effective Population Size. *Applied*
459 *and Environmental Microbiology* 84:e02377-17.

460 13. Bridier-Nahmias A, Launay A, Bleibtreu A, Magnan M, Walewski V, Chatel J, Dion S,
461 Robbe-Saule V, Clermont O, Norel F, Denamur E, Tenaillon O. 2021. *Escherichia coli* Genomic
462 Diversity within Extraintestinal Acute Infections Argues for Adaptive Evolution at Play. *mSphere*
463 6:e01176-20.

464 14. Lieberman TD, Michel J-B, Aingaran M, Potter-Bynoe G, Roux D, Davis MR, Skurnik D,
465 Leiby N, LiPuma JJ, Goldberg JB, McAdam AJ, Priebe GP, Kishony R. 2011. Parallel bacterial

466 evolution within multiple patients identifies candidate pathogenicity genes. 12. *Nat Genet* 43:1275–
467 1280.

468 15. Yang L, Jelsbak L, Marvig RL, Damkiær S, Workman CT, Rau MH, Hansen SK, Folkesson
469 A, Johansen HK, Ciofu O, Høiby N, Sommer MOA, Molin S. 2011. Evolutionary dynamics of
470 bacteria in a human host environment. *Proceedings of the National Academy of Sciences*
471 108:7481–7486.

472 16. Marvig RL, Sommer LM, Molin S, Johansen HK. 2015. Convergent evolution and
473 adaptation of *Pseudomonas aeruginosa* within patients with cystic fibrosis. 1. *Nat Genet* 47:57–64.

474 17. Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H, Garudathri J, Harding CL, Radey MC,
475 Rezayat A, Bautista G, Berrington WR, Goddard AF, Zheng C, Angermeyer A, Brittnacher MJ,
476 Kitzman J, Shendure J, Fligner CL, Mittler J, Aitken ML, Manoil C, Bruce JE, Yahr TL, Singh PK.
477 2015. Regional Isolation Drives Bacterial Diversification within Cystic Fibrosis Lungs. *Cell Host &*
478 *Microbe* 18:307–319.

479 18. Ashish A, Paterson S, Mowat E, Fothergill JL, Walshaw MJ, Winstanley C. 2013. Extensive
480 diversification is a common feature of *Pseudomonas aeruginosa* populations during respiratory
481 infections in cystic fibrosis. *Journal of Cystic Fibrosis* 12:790–793.

482 19. Darch SE, McNally A, Harrison F, Corander J, Barr HL, Paszkiewicz K, Holden S, Fogarty
483 A, Crusz SA, Diggle SP. 2015. Recombination is a key driver of genomic and phenotypic diversity
484 in a *Pseudomonas aeruginosa* population during cystic fibrosis infection. 1. *Sci Rep* 5:7649.

485 20. Lieberman TD, Flett KB, Yelin I, Martin TR, McAdam AJ, Priebe GP, Kishony R. 2014.
486 Genetic variation of a bacterial pathogen within individuals with cystic fibrosis provides a record of
487 selective pressures. 1. *Nat Genet* 46:82–87.

488 21. Williams D, Evans B, Haldenby S, Walshaw MJ, Brockhurst MA, Winstanley C, Paterson
489 S. 2015. Divergent, Coexisting *Pseudomonas aeruginosa* Lineages in Chronic Cystic Fibrosis Lung
490 Infections. *Am J Respir Crit Care Med* 191:775–785.

491 22. Suerbaum S, Josenhans C. 2007. *Helicobacter pylori* evolution and phenotypic
492 diversification in a changing host. 6. *Nat Rev Microbiol* 5:441–452.

493 23. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D'Argenio DA, Miller
494 SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R, Olson MV. 2006. Genetic
495 adaptation by *Pseudomonas aeruginosa* to the airways of cystic fibrosis patients. *Proceedings of the*
496 *National Academy of Sciences* 103:8487–8492.

497 24. Moxon ER, Rainey PB, Nowak MA, Lenski RE. 1994. Adaptive evolution of highly
498 mutable loci in pathogenic bacteria. *Current Biology* 4:24–33.

499 25. van der Woude MW, Bäumler AJ. 2004. Phase and Antigenic Variation in Bacteria. *Clinical*
500 *Microbiology Reviews* 17:581–611.

501 26. Musher DM, Dowell ME, Shortridge VD, Flamm RK, Jorgensen JH, Le Magueres P,
502 Krause KL. 2002. Emergence of Macrolide Resistance during Treatment of Pneumococcal
503 Pneumonia. *New England Journal of Medicine* 346:630–631.

504 27. Wong A, Kassen R. 2011. Parallel evolution and local differentiation in quinolone
505 resistance in *Pseudomonas aeruginosa*. *Microbiology* 157:937–944.

506 28. Thänert R, Choi J, Reske KA, Hink T, Thänert A, Wallace MA, Wang B, Seiler S, Cass C,
507 Bost MH, Struttmann EL, Iqbal ZH, Sax SR, Fraser VJ, Baker AW, Foy KR, Williams B, Xu B,
508 Capocci-Tolomeo P, Lautenbach E, Burnham C-AD, Dubberke ER, Kwon JH, Dantas G. 2022.
509 Persisting uropathogenic *Escherichia coli* lineages show signatures of niche-specific within-host
510 adaptation mediated by mobile genetic elements. *Cell Host & Microbe* 30:1034-1047.e6.

511 29. Kessler R, Nissa S, Hazen TH, Horneman A, Amoroso A, Rasko DA, Donnenberg MS.
512 2015. Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic
513 *Escherichia coli* strain with enteropathogenic *E. coli* genes. *Pathogens and Disease* 73.

514 30. Maslow JN, Mulligan ME, Arbeit RD. 1994. Recurrent *Escherichia coli* bacteremia. *Journal*
515 *of Clinical Microbiology* 32:710–714.

516 31. Berg RD. 1995. Bacterial translocation from the gastrointestinal tract. *Trends in*
517 *Microbiology* 3:149–154.

518 32. van Vliet MJ, Tissing WJE, Dun CAJ, Meessen NEL, Kamps WA, de Bont ESJM, Harmsen
519 HJM. 2009. Chemotherapy Treatment in Pediatric Patients with Acute Myeloid Leukemia
520 Receiving Antimicrobial Prophylaxis Leads to a Relative Increase of Colonization with Potentially
521 Pathogenic Bacteria in the Gut. *Clinical Infectious Diseases* 49:262–270.

522 33. van Vliet MJ, Harmsen HJM, Bont ESJM de, Tissing WJE. 2010. The Role of Intestinal
523 Microbiota in the Development and Severity of Chemotherapy-Induced Mucositis. *PLOS*
524 *Pathogens* 6:e1000879.

525 34. Samet A, Śledzińska A, Krawczyk B, Hellmann A, Nowicki S, Kur J, Nowicki B. 2013.
526 Leukemia and risk of recurrent *Escherichia coli* bacteremia: genotyping implicates *E. coli*
527 translocation from the colon to the bloodstream. *Eur J Clin Microbiol Infect Dis* 32:1393–1400.

528 35. Clermont O, Christenson JK, Denamur E, Gordon DM. 2013. The Clermont Escherichia
529 coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups.
530 Environmental Microbiology Reports 5:58–65.

531 36. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM,
532 Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotnik AV, Vyahhi N, Tesler G, Alekseyev
533 MA, Pevzner PA. 2012. SPAdes: A New Genome Assembly Algorithm and Its Applications to
534 Single-Cell Sequencing. Journal of Computational Biology 19:455–477.

535 37. Wick R. 2022. rrwick/Filtlong. C++.

536 38. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: Resolving bacterial genome
537 assemblies from short and long sequencing reads. PLOS Computational Biology 13:e1005595.

538 39. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–
539 2069.

540 40. Royer G, Decousser JW, Branger C, Dubois M, Médigue C, Denamur E, Vallenet D. 2018.
541 PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species
542 level. Microbial Genomics 4:e000211.

543 41. Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D,
544 Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis.
545 Bioinformatics 31:3691–3693.

546 42. Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing
547 reads. 1. EMBnet.journal 17:10–12.

548 43. Seemann T. 2015. Snippy: fast bacterial variant calling from NGS reads.

549 44. Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-
550 MEM. arXiv:13033997 [q-bio].

551 45. Kronenberg ZN, Osborne EJ, Cone KR, Kennedy BJ, Domyan ET, Shapiro MD, Elde NC,
552 Yandell M. 2015. Wham: Identifying Structural Variants of Biological Consequence. PLOS
553 Computational Biology 11:e1004572.

554 46. Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference
555 centre for bacterial insertion sequences. Nucleic Acids Research 34:D32–D36.

556 47. Treepong P, Guyeux C, Meunier A, Couchoud C, Hocquet D, Valot B. 2018. *panISa*: *ab*
557 *initio* detection of insertion sequences in bacterial genomes from short read sequence data.
558 Bioinformatics 34:3795–3800.

559 48. Bourrel AS, Poirel L, Royer G, Darty M, Vuillemin X, Kieffer N, Clermont O, Denamur E,
560 Nordmann P, Decousser J-W, IAME Resistance Group. 2019. Colistin resistance in Parisian
561 inpatient faecal *Escherichia coli* as the result of two distinct evolutionary pathways. *Journal of*
562 *Antimicrobial Chemotherapy* 74:1521–1530.

563 49. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ, Tomita T, Zobel J, Holt KE.
564 2014. SRST2: Rapid genomic surveillance for public health and hospital microbiology labs.
565 *Genome Medicine* 6:90.

566 50. Jaureguy F, Landraud L, Passet V, Diancourt L, Frapy E, Guigon G, Carbonnelle E,
567 Lortholary O, Clermont O, Denamur E, Picard B, Nassif X, Brisson S. 2008. Phylogenetic and
568 genomic diversity of human bacteremic *Escherichia coli* strains. *BMC Genomics* 9:560.

569 51. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden
570 MCJ, Ochman H, Achtman M. 2006. Sex and virulence in *Escherichia coli*: an evolutionary
571 perspective. *Molecular Microbiology* 60:1136–1151.

572 52. Ingle DJ, Valcanis M, Kuzevski A, Tauschek M, Inouye M, Stinear T, Levine MM, Robins-
573 Browne RM, Holt KE. 2016. In silico serotyping of *E. coli* from short read data identifies limited
574 novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic
575 lineages. *Microbial Genomics* 2.

576 53. Roer L, Tchesnokova V, Allesøe R, Muradova M, Chattopadhyay S, Ahrenfeldt J, Thomsen
577 MCF, Lund O, Hansen F, Hammerum AM, Sokurenko E, Hasman H. 2017. Development of a Web
578 Tool for *Escherichia coli* Subtyping Based on *fimH* Alleles. *Journal of Clinical Microbiology*
579 55:2538–2543.

580 54. Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. 2018.
581 ClermonTyping: an easy-to-use and accurate in silico method for *Escherichia* genus strain
582 phylotyping. *Microb Genom* 4:e000192.

583 55. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM,
584 Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. *Journal of*
585 *Antimicrobial Chemotherapy* 67:2640–2644.

586 56. Chen L, Zheng D, Liu B, Yang J, Jin Q. 2016. VFDB 2016: hierarchical and refined dataset
587 for big data analysis—10 years on. *Nucleic Acids Research* 44:D694–D697.

588 57. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS, Nielsen EM, Aarestrup FM. 2014.
589 Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection

590 of Verotoxigenic *Escherichia coli*. *Journal of Clinical Microbiology* 52:1501–1510.

591 58. Marin J, Clermont O, Royer G, Mercier-Darty M, Decousser JW, Tenaillon O, Denamur E,
592 Blanquart F. 2022. The Population Genomics of Increased Virulence and Antibiotic Resistance in
593 Human Commensal *Escherichia coli* over 30 Years in France. *Applied and Environmental
594 Microbiology* 0:e00664-22.

595 59. R Developement Core Team. 2010. R: A language and environment for statistical
596 computing. (No Title).

597 60. Didelot X, Croucher NJ, Bentley SD, Harris SR, Wilson DJ. 2018. Bayesian inference of
598 ancestral dates on bacterial phylogenetic trees. *Nucleic Acids Research* 46:e134.

599 61. Schliep KP. 2011. phangorn: phylogenetic analysis in R. *Bioinformatics* 27:592–593.

600 62. Manning CD, Raghavan P, Schütze H. 2008. Introduction to information retrieval.
601 Cambridge University Press, New York.

602 63. Oliver A, Cantón R, Campo P, Baquero F, Blázquez J. 2000. High Frequency of
603 Hypermutable *Pseudomonas aeruginosa* in Cystic Fibrosis Lung Infection. *Science* 288:1251–1253.

604 64. Touchon M, Perrin A, Sousa JAM de, Vangchhia B, Burn S, O'Brien CL, Denamur E,
605 Gordon D, Rocha EP. 2020. Phylogenetic background and habitat drive the genetic diversification
606 of *Escherichia coli*. *PLOS Genetics* 16:e1008866.

607 65. Fehér T, Bogos B, Méhi O, Fekete G, Csörgő B, Kovács K, Pósfai G, Papp B, Hurst LD, Pál
608 C. 2012. Competition between Transposable Elements and Mutator Genes in Bacteria. *Molecular
609 Biology and Evolution* 29:3153–3159.

610 66. Maharjan RP, Liu B, Li Y, Reeves PR, Wang L, Ferenci T. 2013. Mutation accumulation
611 and fitness in mutator subpopulations of *Escherichia coli*. *Biology Letters* 9:20120961.

612 67. Kishimoto T, Iijima L, Tatsumi M, Ono N, Oyake A, Hashimoto T, Matsuo M, Okubo M,
613 Suzuki S, Mori K, Kashiwagi A, Furusawa C, Ying B-W, Yomo T. 2010. Transition from Positive
614 to Neutral in Mutation Fixation along with Continuing Rising Fitness in Thermal Adaptive
615 Evolution. *PLoS Genet* 6:e1001164.

616 68. Duval A, Opatowski L, Brisson S. 2023. Defining genomic epidemiology thresholds for
617 common-source bacterial outbreaks: a modelling study. *The Lancet Microbe* 4:e349–e357.

618 69. Denamur E, Matic I. 2006. Evolution of mutation rates in bacteria. *Molecular Microbiology*
619 60:820–827.

620 70. Tenaillon O, Toussaint B, Le Nagard H, Taddei F, Godelle B. 1999. Mutators, Population

621 Size, Adaptive Landscape and the Adaptation of Asexual Populations of Bacteria. *Genetics*
622 152:485–493.

623 71. Sniegowski PD, Gerrish PJ, Lenski RE. 1997. Evolution of high mutation rates in
624 experimental populations of *E. coli*. 6634. *Nature* 387:703–705.

625 72. Smith JM, Haigh J. 1974. The hitch-hiking effect of a favourable gene. *Genetics Research*
626 23:23–35.

627 73. Jyssum K. 1960. Observations on Two Types of Genetic Instability in *Escherichia Coli*.
628 *Acta Pathologica Microbiologica Scandinavica* 48:113–120.

629 74. Gross MD, Siegel EC. 1981. Incidence of mutator strains in *Escherichia coli* and coliforms
630 in nature. *Mutation Research Letters* 91:107–110.

631 75. LeClerc JE, Li B, Payne WL, Cebula TA. 1996. High Mutation Frequencies Among
632 *Escherichia coli* and *Salmonella* Pathogens. *Science* 274:1208–1211.

633 76. Matic I, Radman M, Taddei F, Picard B, Doit C, Bingen E, Denamur E, Elion J. 1997.
634 Highly Variable Mutation Rates in Commensal and Pathogenic *Escherichia coli*. *Science* 277:1833–
635 1834.

636 77. Hobson CA, Bonacorsi S, Hocquet D, Baruchel A, Fahd M, Storme T, Tang R, Doit C,
637 Tenaillon O, Birgy A. 2020. Impact of anticancer chemotherapy on the extension of beta-lactamase
638 spectrum: an example with KPC-type carbapenemase activity towards ceftazidime-avibactam. 1.
639 *Sci Rep* 10:589.

640 78. Vahabi B, Drake MJ. 2015. Physiological and pathophysiological implications of
641 micromotion activity in urinary bladder function. *Acta Physiologica* 213:360–370.

642

643

644

645

646

647

648

649

650

651 **Figure legends**

652

653 **Figure 1.** Patient follow-up with their main clinical characteristics and the sampling schemes.
654 Absence (light gray) or presence (dark grey) of each criterion are shown. Patient A had four
655 infectious episodes, patients B and C had one infectious episode.

656

657 **Figure 2.** Genomic diversity of *E. coli* isolates among samples and compartments for the three
658 patients. (A-C) Heatmaps showing the number of SNPs between each isolate of patients (A, B and
659 C). Samples are ordered by site horizontally and clustered according to their SNP similarities
660 vertically (method: complete). All isolates of patient B are mutators (*). The isolate corresponding
661 to the reference sequence is indicated (#). We used the same color scale for all patients. Note that
662 the number of SNPs for patients A and C is between 0 and 14 and between 0 and 400 for patient
663 B.

664

665 **Figure 3.** Unrooted trees of *E. coli* isolates from patients A, B and C. Trees were built using
666 neighbor joining from the substitution presence/absence matrix. The scale indicates the number
667 of substitutions. All isolates of patient B are mutators (*). We zoomed in on a clade of the patient
668 B to highlight the scale difference. The bicolor points (patients A and C) denote the presence of
669 isolates sampled in different sites with identical sequences (0 SNP).

670

671 **Figure 4.** Venn diagrams showing the SNPs distribution among compartments for patients A, B and
672 C. The ellipses are proportional to the number of SNPs. All isolates of patient B are mutators (*).

673

674 **Figure 5.** Presence/absence heatmaps of antibiotic resistance genes of *E. coli* isolates when
675 compared to the pan-resistome (including the resistance genes of all isolates). We considered a
676 gene as present when at least 80% of its length was covered by at least one read. Genes are
677 ordered by synteny on contigs. All isolates of patient B are mutators (*). The prevailing predicted
678 localization of genes by PlaScope (chromosomal or plasmidic) is indicated (full list in
679 supplementary Table S8). Note that chromosomal genes are not mobile.

680

681 **Figure 6.** Presence/absence heatmaps of virulence associated genes of *E. coli* isolates when
682 compared to the pan-virulome (including the virulence genes of all isolates). We considered a
683 gene as present when at least 80% of its length was covered by at least one read. Genes are
684 ordered by synteny on contigs. All isolates of patient B are mutators (*). The prevailing predicted
685 localization of genes by PlaScope (chromosomal or plasmidic) is indicated (full list in
686 supplementary Table S9). Note that plasmidic genes are not mobile, at the opposite of resistance
687 genes (see Figure 5).

688

689 **Figure 7.** Action of selection on sequences (dN/dS) of *E. coli* isolates for patients A, B and C.
690 Significant results are framed in black (see Table S9). All isolates of patient B are mutators (*).
691 Neutrality (dN/dS not significantly different from 0) is indicated in pale yellow whereas purifying
692 and diversifying selection are indicated in green and red, respectively.

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709 **Tables**

710

711 **Table 1.** Patient sampling and strain typing.

Patient	Number of isolates (stool – blood – urine) †	Phylogroup	Sequence type	Serotype	<i>fimH</i> allele
Patient A	30 (13 -12 - 5)	A	10	O101:H9	<i>fimH54</i>
Patient B*	17 (10 - 7)	B1	1431	O8:H19	<i>fimH32</i>
Patient C	30 (10 - 10 - 10)	B2	131	O25b:H4	<i>fimH30</i>

712

713 Phylogroups, MLSTs (Warwick and Pasteur), serotypes and *fimH* alleles are indicated. All the
714 isolates of patient B were mutators (*).

715 (+) Patients B and C were sampled at a single time point whereas samples of patient A correspond
716 to 4 timepoints.

717

718

719

720

721

722

723

724

725

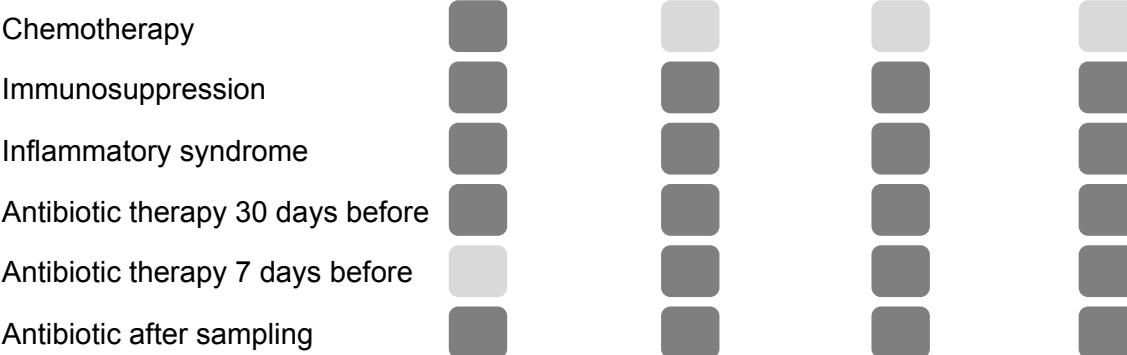
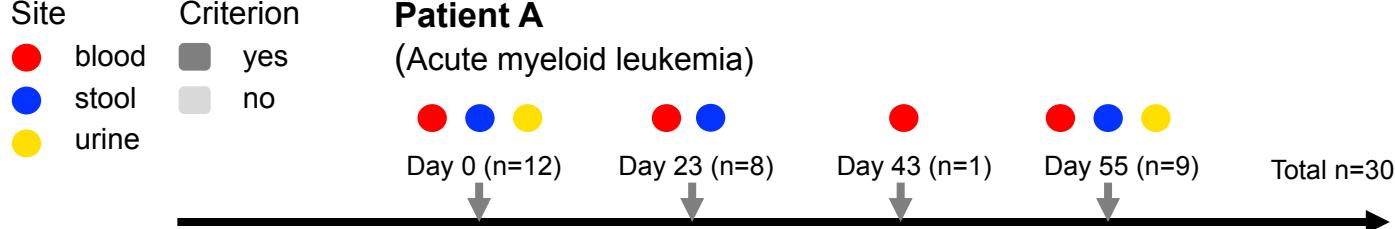
726

727

728

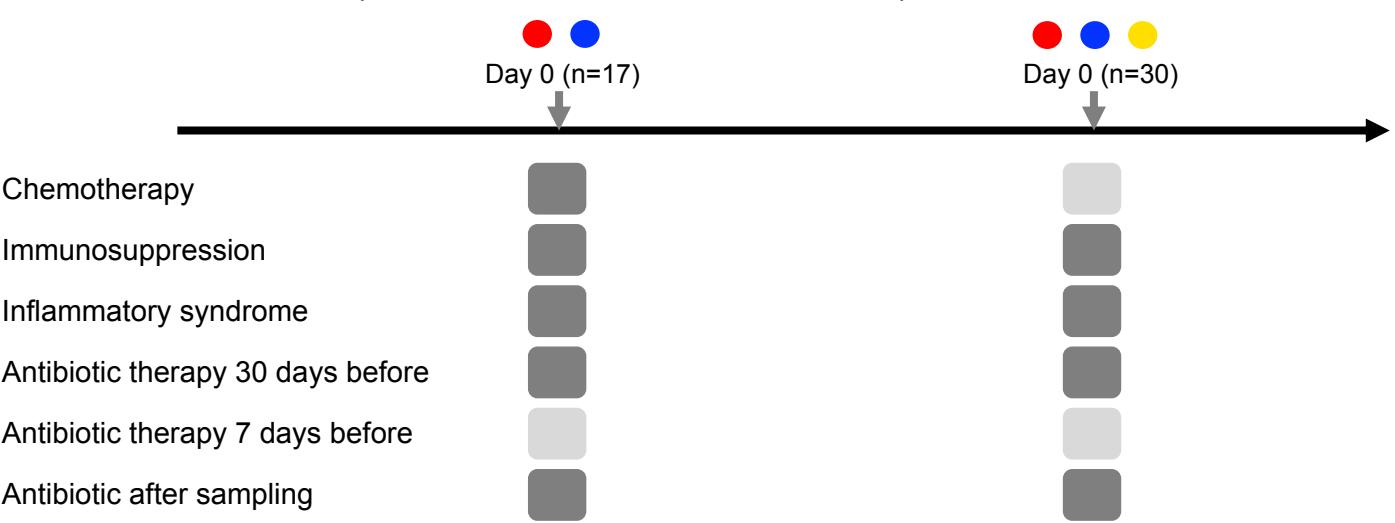
729

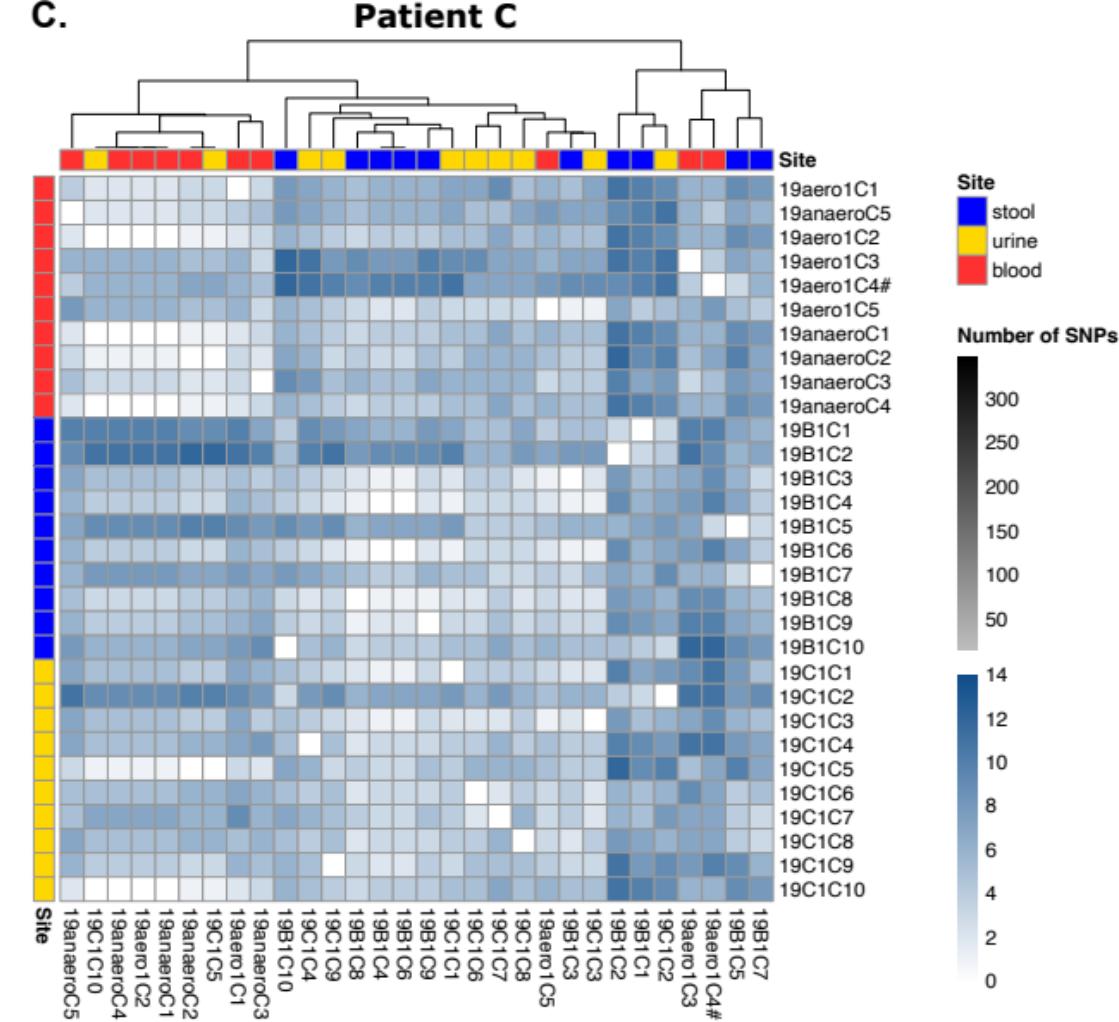
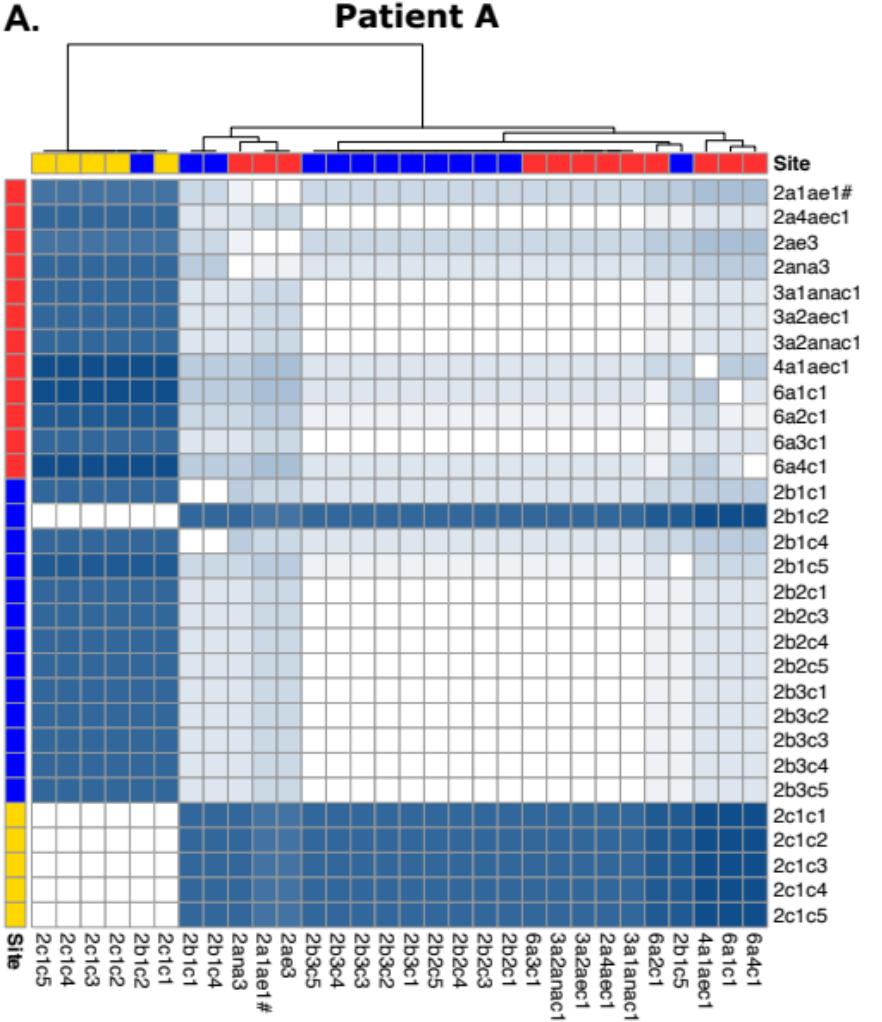
730

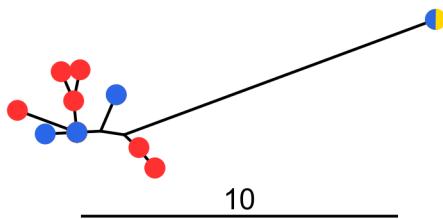


731

732

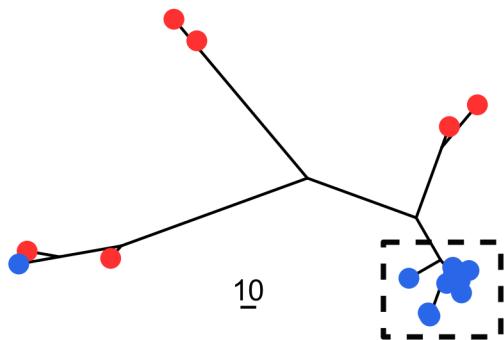
733 **Table 2.** Number of variant types among isolates of a patient's infection episode found with
 734 snippy.

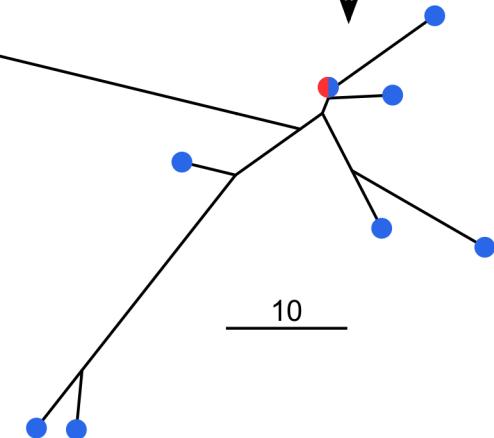
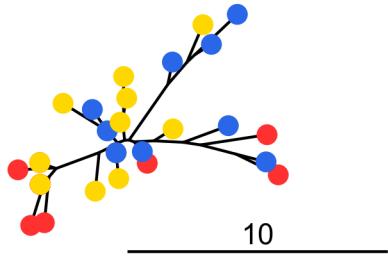

	Site	conservative	disruptive	frameshift	missense	non coding	stop	stop lost	synonymous
		inframe	inframe	variant	variant	transcript	gained		variant
		insertion	deletion			variant			
Patient A	blood	9	0	1	3	0	1	0	9
	(n=12)								
	stool	12	1	0	6	0	0	1	17
Patient B*	urine	0	5	0	20	0	0	5	20
	(n=5)								
	blood	0	0	216	541	5	11	20	292
Patient C	(n=7)								
	stool	0	0	86	177	1	4	4	146
	(n=10)								
Intra-intestinal isolates	blood	0	0	9	7	0	0	0	2
	(n=10)								
	stool	0	0	16	26	0	0	0	14
Extra-intestinal isolates	urine	0	0	12	20	0	0	0	6
	(n=10)								
	stool	12	1	16	32	0	0	1	31
Extra-intestinal isolates	(n=23)								
	blood/urine	9	5	22	50	0	1	5	37
735									



736 We excluded patient B from intra- and extra-intestinal isolates because all the 17 isolates were
 737 mutators (*). n: number of isolates.

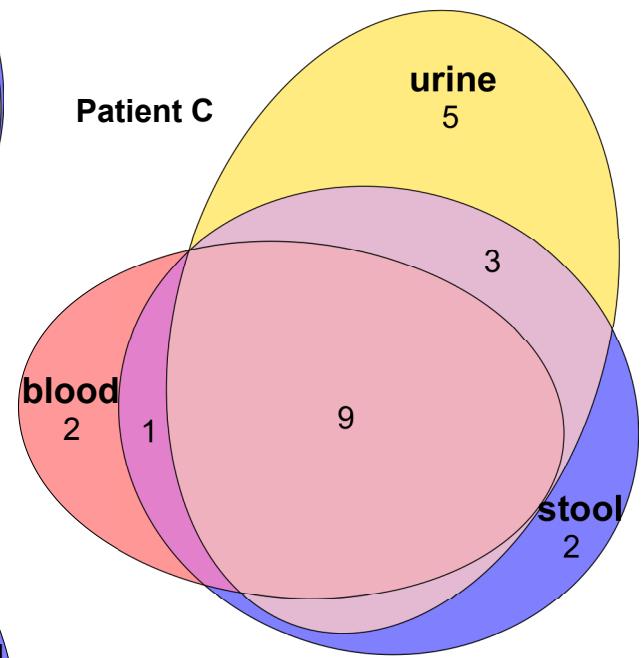
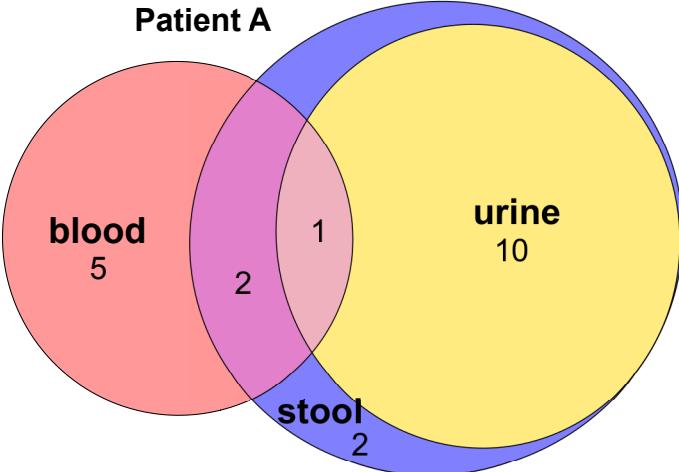

Patient B
 (Acute myeloid leukemia)

Patient C
 (Hodgkin's lymphoma)

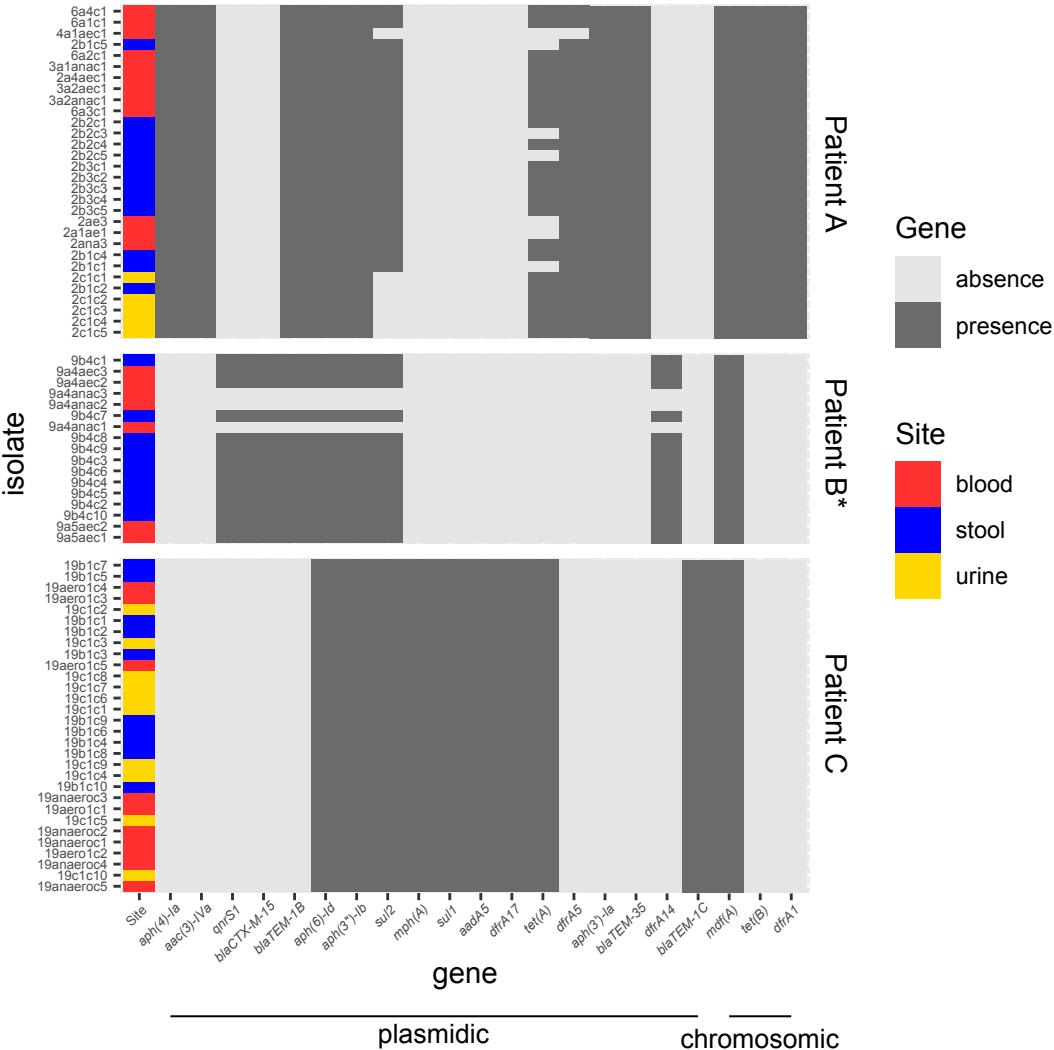




Patient A

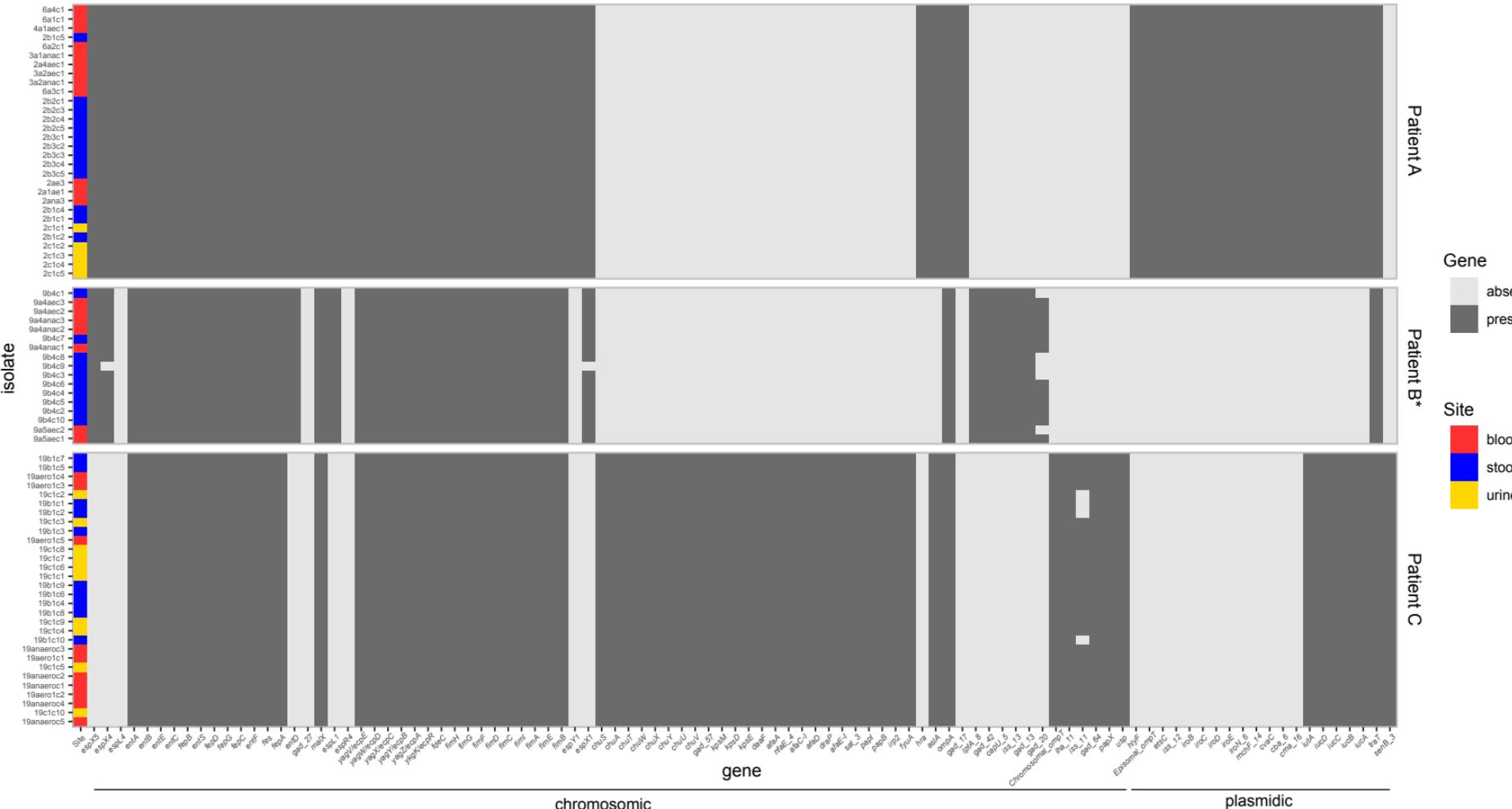
Patient B*

Patient C



Site


- blood
- stool
- urine

Resistance genes

Virulence associated genes

C


blood
(n=10)

urine
(n=10)

stool
(n=10)

blood
(n=7)

dN/dS

B*

urine
(n=5)

stool
(n=13)

A

blood
(n=12)

stool
(n=10)