O 00 N o uu B~ W N

N NN N RN N N N NN P P P R P R R R R o
© 0 N O U1 B W N P O O O N OO0 1 M W N R, O

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.25.600660; this version posted June 26, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Revised version mSphere-00039-24

Title: Genomic evidence of Escherichia coli gut population diversity translocation in leukemia
patients

Running Head: E. coli translocation in leukemia patients

Authors: Julie Marin®*, Violaine Walewski®*, Thorsten Braun®®, Samira Dziri®, Mélanie Magnanc'g@,'g

. . * . - . .
Erick Denamur®, Etienne Carbonnelle®®”, Antoine Bridier-Nahmias®.

® Université Sorbonne Paris Nord, Inserm, IAME, F-93000 Bobigny, France

b APHP, HUPSSD, Hopital Avicenne, Service de Microbiologie clinique, F-93009 Bobigny, France
 Université Paris Cité, INSERM, IAME, 75018 Paris, France

# Corresponding authors: Julie Marin (julie.marin@sorbonne-paris-nord.fr)

‘ present address: Violaine Walewski, Microbiologie, Centre Hospitalier H. Mondor, 50 avenue de
la République, 15000 Aurillac.

ggpresent address: Mélanie Magnan, Université Paris Cité, CNRS, Inserm, Institut Cochin, F-75014
Paris, France.

* present address: Etienne Carbonnelle, Pole Biopathologie, Centre Hospitalier Universitaire

d’Orléans, 14 Avenue de I'Hopital, 45100 Orléans.


https://doi.org/10.1101/2024.06.25.600660
http://creativecommons.org/licenses/by-nd/4.0/

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.25.600660; this version posted June 26, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Abstract

Escherichia coli, a commensal species of the human gut, is an opportunistic pathogen which can
reach extra-intestinal compartments, including the bloodstream and the bladder, among others. In
non-immunosuppressed patients, purifying or neutral evolution of E. coli populations has been
reported in the gut. Conversely, it has been suggested that when migrating to extra-intestinal
compartments, E. coli genomes undergo diversifying selection as supported by strong evidence for
adaptation. The level of genomic polymorphism and the size of the populations translocating from
gut to extra-intestinal compartments is largely unknown.

To gain insights in the pathophysiology of these translocations, we investigated the level of
polymorphism and the evolutionary forces acting on the genomes of 77 E. coli isolated from
various compartments in three immunosuppressed patients. Each patient had a unique strain
which was a mutator in one case. In all instances, we observed that translocation encompasses
the majority of the genomic diversity present in the gut. The same signature of selection, whether
purifying or diversifying, and as anticipated, neutral for mutator isolates, was observed in both the
gut and bloodstream. Additionally, we found a limited number of non-specific mutations among
compartments for non-mutator isolates. In all cases, urine isolates were dominated by neutral
selection. These findings indicate that substantial proportions of populations are undergoing
translocation and that they present a complex compartment-specific pattern of selection at the

patient level.

Importance

It has been suggested that intra and extra-intestinal compartments differentially constrain the
evolution of E. coli strains. Whether host particular conditions, such as immunosuppression, could
affect the strain evolutionary trajectories remain understudied. We found that, in
immunosuppressed patients, large fractions of E. coli gut populations are translocating with
variable modifications of the signature of selection for commensal and pathogenic isolates
according to the compartment and/or the patient. Such multiple site sampling should be
performed in large cohorts of patients to get a better understanding of E. coli extra-intestinal

diseases.
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Introduction

Bloodstream infections (BSIs) are still a major concern among onco-hematologic patients,
influenced by factors such as the type of pathogen, the degree of host immunodeficiency and the
status of underlying disease. Despite advances in the clinical management of hematological
malignancies, BSIs remain life-threatening complications in the clinical course of these patients,
with reported crude mortality rate up to 40% (1-3). A clear shift in the bacterial species causing
BSIs in patients with hematological malignancies has been recently reported transitioning from
Gram-positive to Gram-negative, in the first place Enterobacteriaceae, and in particular
Escherichia coli, represent the most frequently involved bacterial species, together with the
worrisome and growing phenomenon of multiresistant bacteria (4, 5).

E. coli is a commensal species of the lower intestine of humans (6). The gut is its primary
habitat, and probably the main ecological context of selection. Virulence genes, for instance, are
thought to be primarily selected in the intestine as a by-product of commensalism (7, 8). E. coli is
also an opportunistic pathogen, frequently responsible for intestinal and extra-intestinal infections
(9). When reaching a new compartment, such as the bladder or the bloodstream, E. coli faces new
challenges and new opportunities for adaptation.

Previous studies have mainly investigated the signatures of selection in commensal E. coli
isolates and those sampled from extra-intestinal infections, revealing different scenarios. The
evolution of commensal E. coli has been found to be governed by purifying selection, whether it
implies the entire genome (10) or specific genes such as the H7 flagellin genes (11). However,
another study, following the evolution of a clone in a single individual, did not find any evidence
for selection in the gut (12). On the contrary, adaptation during chronic and acute infections has
been observed (13). In particular, it has been shown that E. coli isolates colonizing extra-intestinal
sites were adapting under strong selective pressure, with an excess of non-synonymous mutations

and patterns of convergence at the gene level (including for H7 flagellin genes). Evidence for


https://doi.org/10.1101/2024.06.25.600660
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.25.600660; this version posted June 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

88 adaptation during chronic infection have been emphasized for other bacteria, such as
89  Burkholderia dolosa (14) or Pseudomonas aeruginosa (15-17), with genotypically and
90 phenotypically diversifying lineages during cystic fibrosis infections for instance (18-21).
91 Adaptation to the human host (22, 23), evasion from the immune response (24, 25) and
92  acquisition of antibiotic resistances (26, 27) are favored by this accumulation of mutations. In
93 addition, niche adaptation shapes the allelic diversity among compartments with specific
94  mutations occurring in the gut or in the bladder associated with functions increasing E. coli fitness
95 in each respective compartment (28).
96 What happens when the intestinal barrier and the immune response are weakened?
97  Patient deficiencies, such as immunosuppression, weakening of the intestinal barrier by antibiotic
98 therapy or chemotherapy, can increased the risk of E. coli extra-intestinal infections (29-31).
99  Anticancer chemotherapy drugs directly impact the intestinal microbiota (32), leading to dysbiosis

100 and subsequent intestinal mucositis which increase the risk of bacterial translocation to the

101  bloodstream (33). Moreover, among patients undergoing chemotherapy, those with leukemia are

102  highly prone to extra-intestinal infections and relapse (34). The weakening of intestinal barriers

103  and the lack of immune defense could alter the adaptive conditions described for commensal and

104  pathogenic isolates of E. coli in non-immunosuppressed patients. Modifications of the signature of

105 selection are therefore expected for commensal and pathogenic isolates of E. coli in

106 immunosuppressed patients. In addition, the level of genomic polymorphism and the proportion

107  of the population translocating is largely unknown.

108 Here, we evaluated the selective forces acting on E. coli evolution in three

109 immunosuppressed patients among three compartments: bladder, bloodstream and gut. For each

110 patient, we analyzed whole genome sequences from isolates found in each compartment to

111  assess the genetic diversity and the strength of the various selective processes at play.

112

113  Material and methods

114  Sampling

115 Clinical isolates were isolated from three patients with leukemia and E. coli sepsis hospitalized in

116  Avicenne hospital (Seine-Saint-Denis, France). Patient A experienced three infectious episodes
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117  while patient B and C had one each. For each episode, these patients had at least one blood
118  culture positive for E. coli. Isolates were sampled from positive blood culture and from bladder
119 and feces samples on the same or subsequent day. The initial blood culture was obtained before
120 any antibiotic therapy in patients newly admitted to the hospital. All procedures performed were
121  in accordance with the ethical standards of the responsible committee on human experimentation
122  (institutional and national), validated by the ethics committee of Avicenne hospital (Comité Local
123  d’Ethique d’Avicenne). Information on the type and status of hematologic disease, presence of
124  neutropenia (<0.5x10%/L), previous exposure to any antibiotic therapy, including prophylaxis or
125 treatment of prior infectious episodes, type of infection, microbiological isolate, and outcome was
126  collected in a database.

127

128  Patient characteristics

129 The three patients (A to C) studied had hematological pathologies: two with acute myeloid
130 leukemia and one with Hodgkin's lymphoma. Patient A was diagnosed with acute myeloid
131  leukemia and myelofibrosis in January 2014 (Acute myeloblastic leukemia with minimal
132  maturation M1), treated with an allograft. He experienced relapse in March 2015, with febrile
133  neutropenia and presence of circulating blasts. During the BSI, the patient presented an
134  inflammatory syndrome, a severe immunosuppression and had received antibiotics in the
135 previous 30 days. Patient B suffered from undifferentiated acute myeloblastic leukemia (MO)
136  diagnosed and allografted in 2015. At the time of BSI, he was receiving chemotherapy, had severe
137  immunosuppression, an inflammatory syndrome, and had received antibiotics within the
138  preceding 30 days. Patient C was diagnosed with Hodgkin's lymphoma in 2009. Relapsed in 2017
139  during the BSI episode, the patient exhibited inflammatory syndrome, severe immunosuppression
140 and had previously received antibiotics.

141

142 Prior in vitro phylogroup typing

143  Phylogroup of each sample (blood, urinary or feces) were determined using quadruplex PCR (35)
144  to select isolates belonging to the same phylogroup for each infection episode.

145


https://doi.org/10.1101/2024.06.25.600660
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.25.600660; this version posted June 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

146  Genome sequencing and assembling

147  Whole-genome sequencing was performed on each sample using lllumina Technology (MiSeq and
148  HiSeq 2500) and Nextera XT library preparation kits as instructed by the manufacturer (Illumina,
149  San Diego, CA). Fastq files (raw sequencing data) were submitted to the European nucleotide
150 archive (see Table S1 for accession numbers). Genome assembly was performed with SPAdes
151  v.3.15.5(36) (see Table S1 for assembly quality results).

152 For each patient, one strain was chosen as a reference and was sequenced with the Oxford
153  Nanopore Technologies MinlON platform using an R9.4 flow cell. We prepared the samples with
154  kits LSK-108 and NBD-104 for library preparation and barcoding. The Nanopore reads were filtered
155  with Filtlong (37) using the following parameters: minimum length of 1000 and 95% of the best
156  reads kept. High-quality assemblies of the three reference genomes were assembled with a hybrid
157  strategy, using both lllumina and Nanopore reads with Unicycler V0.4.4 (38). Information on the
158  hybrid assembly quality is presented in Table S2.

159

160  Core and accessory genome

161  Seventy-seven SPAdes assemblies were annotated with Prokka (39). Plasmid sequences were
162  predicted by PlaScope (40). Pan-genome analysis from annotated assemblies were performed with
163  Roary using default parameters (41). The core genome alignment and the list of genes of the
164  accessory genome were generated for the 3 patients.

165

166  Variant calling (SNPs and deletions)

167 Bases with a low-quality score (< 30) were discarded and the adapters were removed with Trim
168  Galore [a wrapper of the Cutadapt program (42)]. SNPs were detected by aligning the reads to the
169 corresponding reference sequence of each patient (Table S1) with Snippy 4.4.0 (43) with the
170 following parameters: the nucleotide minimum quality to be analyzed (basequal) equal to 20, the
171  minimum number of reads covering a site (mincov) equal to 10 and the minimum proportion of
172  those reads different from the reference (minfrac) equal to 0.9. Structural variants (deletions)
173  were detected by mapping reads to the corresponding reference assembly with BWA-MEM (44)

174  and then Sequence Alignment Map (sam) files were analyzed with Wham (45). As recommended,
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175 we remove calls smaller than 50 bp and larger than 2 Mbs. For each strain, we also removed calls
176  with less than 5 supporting reads.

177

178  Detection of insertion sequence (IS) elements

179 IS elements on the three reference sequences were identified with ISFinder (46). We selected hits
180 with an e-value lower than 10e-10, a minimum alignment coverage of 50% and a minimum
181 identity of 70%. Next, we searched for differences in the IS repertoire for each isolate against the
182  corresponding reference with panlSa v0.1.6 (47).

183

184  Typing and genotypic antibiotic resistance and virulence

185  We used an in-house script, Petanc (48), that integrates several existing bacterial genomic tools to
186  perform the typing of isolates with several genotyping schemes using the genomic tool SRST2 (49).
187  Sequence types (STs) were defined using the Warwick MLST scheme and the Pasteur scheme (50,
188 51). We only used the Warwick scheme for the analyses described hereafter. We also determined
189 the O:H serotypes and the FimH alleles (52, 53). The phylogroups were confirmed using the
190 ClermonTyping method (54).

191 The resistome and virulome were first established using the in-house script Petanc (48).
192 They were defined by BlastN with Abricate (https:// github.com/tseemann/abricate) using the
193  ResFinder (version 4.2.2) database (55), a custom database including the VirulenceFinder database
194 and VFDB (56, 57), to which we added selected genes (58). We set the threshold for minimum
195 identity to 80% with a minimum coverage of 90%. Next, a pan-resistome and pan-virulome were
196  built including all the antibiotic resistance and virulence associated genes of all isolates. We
197 mapped the reads to the corresponding pan-resistome and pan-virulome with BWA-MEM (44).
198 We considered a gene as present when we found more than 80% coverage and at least one read.
199  We also tested more conservative thresholds with 80% coverage and more than 5 reads.

200 To evaluate the possibility of false-negative results, we applied the same methodology for
201 14 MLST genes (adk, dinB, fumC, gyrB, icd, mdh, pabB, polB, purA, putP, recA, trpA, trpB, uidA) and
202  for genes encoded on a plasmid (predicted by PlaScope (40)), 157, 381 and 157 genes for patient
203 A, B, and C, respectively).
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204

205  Genomic diversity and traces of selection

206 Rates of nonsynonymous and synonymous mutation were compared by computing non-
207  synonymous substitution / synonymous substitution (dN/dS) ratios (R language (59)) from the
208 gene alignments obtained with Roary, to evaluate the genomic traces of selection. To be able to
209 compare the isolates taking into account their phylogenetic history, we reconstructed an ancestral
210 sequence for each patient to which each isolate was then compared. We first midpoint rooted the
211  trees of patient B and C for which there was only one sampling time. For patient A, we rooted the
212  tree based on the best root-to-tip correlation (function ‘initRoot’, package BactDating (60)). Next
213  we inferred the ancestral sequence as the sequence at the root of each tree using parsimony
214  (function ancestral.pars, package phangorn (61)). We calculated dN and dS as the observed
215 number of substitutions of each type divided by the number of potential substitutions of the same
216  type in the considered sequence. For each codon, the number of potential non-synonymous or
217  synonymous substitutions is determined by the genetic code. We then computed the dN/dS ratio
218 for each pair of sequences, we determined the mean dN/dS ratio and assessed whether it
219  significantly differed from 1 (Wilcoxon test), where 1 represents perfect balance between
220 diversifying and purifying selection indicating no visible selection. When in a pair of sequences,
221  one or more non-synonymous and zero synonymous mutations are encountered, an infinite value
222  is returned. To take into account these non-synonymous mutations, we used the Laplace
223  smoothing technique (62), which is used to overcome issues caused by certain values having zero
224 occurrence. We computed the standard deviation of all possible synonymous mutations and
225 added this value to each term of the dN/dS ratio. When there was no mutation, neither
226  synonymous nor non-synonymous, we removed this comparison because this case did not
227  correspond to any of the three categories, diversifying, purifying or neutral selection.

228 To examine changes that occurred specifically in each compartment, we used the same
229 methodology and computed dN/dS ratios for clades grouping samples of the same compartment.
230 Here, the ancestral sequence was defined as the inferred sequence at the root of the focal clade.
231

232 Results
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233  We evaluated the genomic diversity (SNPs and deletions) and the genomic traces of selection in 77
234 E. coli isolates sampled concomitantly from the gut, blood and urine compartments of three
235  patients (Figure 1). The distribution of isolates for each patient and compartment is detailed in
236 Table1.

237

238  Phylogroup, ST, serotype and fimH allele diversity

239  Within each infection episode, all isolates belonged to the same phylogroup and ST and had the
240 same serotype and fimH allele (Table 1). Isolates belonged to the phylogroup A (patient A), B1
241  (patients B) and B2 (patient C).

242

243  Global genomic diversity (SNPs and IS)

244  We first looked at the SNP diversity. With the exception of patient B, isolates exhibited a low
245 number of mutated genes (between 8 and 11) and no deletion (Table S3). Patient B isolates
246  however, revealed 328 mutated genes. Indeed, we noted a deletion of mutS in patient B isolates.
247  This inactivation of the DNA mismatch repair system conferred to them a mutator phenotype (63,
248  64) (Table S4).

249 In line with those results, we found a low number of SNPs in isolates from patients A and C
250 (mean number of 5.07 [95% confidence interval: 4.20-5.95]) compared to those of patient B (mean
251  number of 117.13 [82.16-152.10], p-value = 1.237e-08 (Wilcoxon test)) (Figure 2). Similarly, intra-
252  and extra-intestinal isolates did not differ significantly in term of variant categories (Table 2) (chi-
253  squared test after correcting for sample size, p-value = 0.99). No common genes with SNPs (Table
254  S5) were identified among patients (Table S3).

255 Additionally, the diversity in IS elements revealed only few differences among isolates of
256 the same patient (0 to 5 for non-mutator strains) (Tables S6-S7). The number of IS within the
257  isolates of each patient was in the upper part of the range found for E. coli genomes (65), with a
258 lower number of IS elements for the mutator strain, as expected (66). We detected 5
259  supplementary potential IS elements in 1 to 14 isolates (4.6 isolates in average) for patient A
260 compared to the reference genome (189 IS elements). For patient B (mutator strain), we detected

261 22 supplementary potential IS elements in 1 to 11 isolates (2.63 isolates in average) compared to
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262  the reference genome (97 IS elements). We did not find any supplementary potential IS element in
263  patient Cisolates compared to the reference genome (136 IS elements).

264

265  Within patient compartment diversity

266  All isolates from a given patient were highly similar (except for patient B with mutator isolates)
267  (Figures 2-3). Consequently, no large deletions were detected because we used one of these
268 isolates as the reference strain for each patient (Table S3).

269 The majority of SNPs were shared among compartments (Figure 4). For patient A, 13 over
270 20 SNPs were identical among at least 2 compartments and 13 over 22 for patient C. For patient B
271  (mutator strain), despite a high level of polymorphism, most SNPs were shared among stool and
272  blood isolates. Furthermore, most of the stool polymorphism was found in other compartments,
273 87%, 77% and 87% for patient A, B and C respectively, suggesting a large population translocation
274  from the gut.

275 Additional IS elements were also shared among compartments (Table S7). For patient A, 3
276  over 5 additional IS elements were shared among 2 compartments and 12 over 22 for patient B.
277

278  Antibiotic resistance and virulence associated gene content

279 Regarding genes associated with antibiotic resistance, isolates within each infection were
280  highly similar. Limited variations were observed among isolates of patient B (mutator isolates) and
281 A which were sampled at different time points (Figures 1 and 5). For patient A, we found gene
282  presence/absence discrepancies for three resistance genes, sul2, tet(A) and dfrA5. The gene sul2
283  was consistently predicted as encoded on a plasmid across all isolates (Table S8). The genes dfrA5
284  and tet(A) were found on the same contig in 20 isolates out of 23 isolates possessing both genes,
285 and were predicted as encoded on a plasmid for 96.67% and 86.96% of the isolates respectively.
286  For patient B, we found presence/absence discrepancies for all the 7 resistance genes detected.
287  The genes qnrS1, blaCTX-M-15, blaTEM-1B, aph(6)-1d, aph(3”’)-lb and sul2 were always co-located
288 on the same contig and predicted as encoded on a plasmid. The gene dfrAl14 was predicted as

289 encoded on a plasmid for all isolates. Similar results were obtained using a more conservative

10
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290 threshold (at least 5 reads covering more than 80% of the gene) (Figure S1), with the exception of
291 the gene mdf(A), predicted as chromosomal, which was missing in three isolates of patient B.

292 High gene content similarity was also observed for virulence associated genes (Figure 6).
293  An identical gene content was found in patient A isolates. For patient C, we noted a discrepancy
294  for a single gene, issll, consistently predicted as chromosomal, and absent in four isolates.
295  Slightly more differences were found in patient B isolates (mutator strain). The genes espX5 and
296 espX1 were missing for one isolate and gad20 for five isolates, all predicted as chromosomal
297 (Table S9). We found more discrepancies with a more conservative threshold (at least 5 reads
298 covering more than 80% of the gene), highlighting lower sequencing depth of two isolates in
299  particular (Figure S2). In patient A, all the isolates had the same gene content as the exception of 2
300 isolates (2ana3 and 9b4c8). We found six missing genes for 2ana3 and one missing gene for 2c1c5,
301 all predicted as chromosomal. In addition, entA, entB genes were always adjacent on the same
302 contig (Table S9). In patient C isolates, the gene issl11, always predicted as chromosomal, was
303 missing in 5 isolates. Patient B displayed a greater number of differences, over the 47 virulence-
304 associated genes detected, all predicted as chromosomal, only 15 were present in all isolates.

305 As a control for false-negative results, we evaluated the presence of 14 MLST genes and of
306 genes encoded on plasmids. We recovered all the MLST genes for all patients (Figure S3). With a
307 more conservative threshold (at least 5 reads covering more than 80% of the gene), we also found
308 all the MLST genes for patient A and C. For patient B (mutator strain), 6 genes were not recovered
309 over the 238 possibilities (Figure S3). Regarding genes encoded on a plasmid, there were very few
310 differences depending on the depth threshold used (Figure S4-S5). With a more stringent
311  threshold, we found 6 additional missing genes, over 4710 possibilities, for patient A and 7
312  additional missing genes, over 6477 possibilities for patient B. We did not find any differences for
313  patient C. For patient A and B, in most of the cases missing genes corresponded to the absence of
314  all the genes encoded on the corresponding plasmid. There were few exceptions that could be
315 explained by a recent loss of the plasmid either in vivo, when isolates of the same cluster lack the
316  same plasmid (e.g. plasmid 2 of patient A), or in vitro during the lab subcultures as we detected
317  traces of the lost plasmids (i.e. portions of some of the genes encoded on the plasmid) suggesting

318 the presence of the plasmid at a low frequency in the sequenced colony.

11
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319

320 Genomic traces of selection

321 We computed dN/dS ratios to assess whether gene sequences evolved neutrally or were
322  under purifying or diversifying selection (Figure 7, Table $10). As expected, all isolates of patient B
323  were under neutral selection (67, 68). For patients A and C, the same pattern of selection was
324  found for blood and stool isolates, diversifying selection for patient A and purifying selection for
325 patient C. We also found that all isolates sampled in urine evolved under neutral selection
326 (patients A and C). As such results might be biased when the phylogenetic history is likely to
327 include changes that occurred in other compartments, we computed dN/dS ratios in clades
328 grouping samples of the same compartment (stool or blood). Despite the limited number of
329 samples preventing us from obtaining significant results, we globally found the same trends in
330 selection patterns (Table S11).

331 This analysis does not compute the variation in non-coding regions; however, it encompasses
332  more than 80% of all the variants and more than 87% of the genome. It should be noted that the
333  number of variants (missense and synonymous) cannot be directly compared to dN/dS ratios
334 (Table 1). These variants were computed with reference to a single sequence whereas ratios were
335 computed against a reconstructed ancestral sequence.

336

337  Discussion

338 The bacterial species E. coli is an opportunistic pathogen (6, 9) which may cross the intestinal
339  barrier to reach extra-intestinal compartments causing infections. In this context, it has been
340 proposed that virulence could be a by-product of commensalism (8). While evidence for purifying
341 and neutral selection has been detected in commensal E. coli (10-12), extra-intestinal infection
342 isolates have been shown to be under strong adaptive selection (13). Here we investigated both
343 commensal and extra-intestinal isolates from leukemia patients undergoing chemotherapy. We
344  observed the same strain in all compartments. Isolates of patients A and C were characterized by a
345  very limited number of SNPs, 5 in average (ranging from 0 to 14) (69) and patient B was infected
346 by a mutator strain (64). Interestingly, while each patient had a different selection signature, it

347  wasidentical in both the bloodstream and gut. In urine, in all cases, neutral selection was at play.

12


https://doi.org/10.1101/2024.06.25.600660
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.25.600660; this version posted June 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

348

349  Gut origin of urine and blood immunosuppressed patient isolates

350 For each patient, the isolates collected from the gut, urine, and blood displayed highly similar
351 sequences. They share the same phylogroup, ST, serotype, and fimH allele (Table 1), indicating
352 that the strain most likely originated from the gut, as previously shown (31, 34). Moreover, with
353 the exception of the mutator isolates, there were fewer than 15 SNPs between pairs of isolates of
354  the same patient (Figure 2), the resistance and virulence profiles were stable and there were few
355 differences in the IS repertoire (Figures 5-6). The phylogenetic distribution of isolates, together
356  with the SNPs and IS distribution among compartments, suggested the translocation of the gut
357 population diversity to extra-intestinal compartments for all patients (Figures 3-4).

358

359  Same adaptation forces at play in the gut and bloodstream of immunosuppressed patient

360 Innon-immunosuppressed patients, purifying (or neutral) evolution of E. coli populations has been
361 reported in the gut (12) but not in extra-intestinal compartments where bacteria DNA sequence
362 are under diversifying selection with strong evidence for gene level convergence (13).

363 Here, we found various signatures of selection in gut isolates. However, the same adaptive
364  process was at play in the bloodstream and in the gut for each patient. For patient B, the presence
365 of mutators at high-frequency in the population (all isolates) is indirect evidence for ongoing
366 selection (70, 71). Indeed, even if they will ultimately be counter-selected (64), mutator alleles can
367 reach 100% frequency in a population because they are associated with beneficial mutations
368 (genetic hitchhiking) (72). In natural populations, mutators are present up to 15% frequency (73—
369 76). Despite the low number of patients, we noted a higher frequency (33%), that might be
370 explained by patient treatment. Indeed, some anticancer chemotherapy drugs enhance the
371  bacterial mutagenesis, thus promoting the emergence of a mutator clone (77). The presence of
372  mutators at high frequency suggests a recent adaptative episode with a temporary indirect
373  selection of this phenotype. Then, the mutator phenotype, even if the high mutation load
374  observed might already have reduced the strain fitness, did not inhibit this E. coli population from

375 causing a bloodstream infection. In patient A, diversifying selection is at play, whereas purifying
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376 selection shaped the isolates of patient C. Differences in the microbiota perturbation of these
377 patients undergoing a specific antibiotic therapy and chemotherapy could explain this discrepancy.
378 Unlike in extra-intestinal infection of non-immunosuppressed patients (13), no
379 convergence among patients was detected. Moreover, isolates were almost identical with a very
380 low number of SNPs differentiating them (five on average) unspecific to the compartment.
381 Whereas, in non-immunosuppressed patients, niche adaptation was evidenced by specific
382 mutations associated with isolates from the gut or the bladder (28). A weakened immune system
383 and a permeable intestinal barrier, due to chemotherapy and antibiotic treatments, likely
384  contribute to this this phenomenon.

385

386  Neutral selection in the bladder of immunosuppressed patient

387  For both patients with urine samples, isolates evolved neutrally. Fluctuating environment or a
388 small population size could explain the weak strength of selection observed in the commensal
389 habitat of E. coli. Indeed, bacteria in the bladder face continuous adaptive challenges including
390 fluctuations in exposure to the host immune system, antibiotic treatments, nutrients availability
391 and a diverse microbial community due to an alternation between storage and voiding phases
392 (78).

393

394 Our work obviously presents a major limitation as we evaluated a very limited number of
395 patients, which prevents us from overgeneralizing our conclusions. Collecting stool before
396 antibiotic treatment is indeed very difficult to achieve in clinical practices. Nevertheless, the
397 evaluation of larger cohorts is necessary to associate evolution patterns and the environment
398 (patient follow-up and patient-dependent factors) and to decipher the factors linked to the
399 selection patterns observed here.

400

401 Conclusion

402  We evaluated the diversity of E. coli isolates in stool, blood and urine of immunocompromised
403  patients and found the same strain across compartments. We showed that all the diversity of the

404  population is translocating. However, contrary to non- immunocompromised patients, we did not
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405 detect any modifications in the adaptive constraints between the gut and the bloodstream. Such
406  multi-site sampling studies should be performed in non-immunosuppressed patients to strengthen
407  our findings.

408

409 Data availability

410 The data generated in this study have been submitted to the NCBI BioProject database under the
411  accession number PRJEB69525 [https://www.ncbi.nlm.nih.gov/bioproject/?term=PRIEB69525].
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651  Figure legends

652

653  Figure 1. Patient follow-up with their main clinical characteristics and the sampling schemes.
654  Absence (light gray) or presence (dark grey) of each criterion are shown. Patient A had four
655 infectious episodes, patients B and C had one infectious episode.

656

657  Figure 2. Genomic diversity of E. coli isolates among samples and compartments for the three
658 patients. (A-C) Heatmaps showing the number of SNPs between each isolate of patients (A, B and
659 C). Samples are ordered by site horizontally and clustered according to their SNP similarities
660 vertically (method: complete). All isolates of patient B are mutators (*). The isolate corresponding
661 to the reference sequence is indicated (#). We used the same color scale for all patients. Note that
662  the number of SNPs for patients A and C is between 0 and 14 and between 0 and 400 for patient
663 B.

664

665  Figure 3. Unrooted trees of E. coli isolates from patients A, B and C. Trees were built using
666  neighbor joining from the substitution presence/absence matrix. The scale indicates the number
667  of substitutions. All isolates of patient B are mutators (*). We zoomed in on a clade of the patient
668 B to highlight the scale difference. The bicolor points (patients A and C) denote the presence of
669 isolates sampled in different sites with identical sequences (0 SNP).

670

671  Figure 4. Venn diagrams showing the SNPs distribution among compartments for patients A, B and
672 C.The ellipses are proportional to the number of SNPs. All isolates of patient B are mutators (*).
673

674  Figure 5. Presence/absence heatmaps of antibiotic resistance genes of E. coli isolates when
675 compared to the pan-resistome (including the resistance genes of all isolates). We considered a
676 gene as present when at least 80% of its length was covered by at least one read. Genes are
677 ordered by synteny on contigs. All isolates of patient B are mutators (*). The prevailing predicted
678 localization of genes by PlaScope (chromosomic or plasmidic) is indicated (full list in

679  supplementary Table S8). Note that chromosomal genes are not mobile.

23


https://doi.org/10.1101/2024.06.25.600660
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.25.600660; this version posted June 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

680

681  Figure 6. Presence/absence heatmaps of virulence associated genes of E. coli isolates when
682 compared to the pan-virulome (including the virulence genes of all isolates). We considered a
683 gene as present when at least 80% of its length was covered by at least one read. Genes are
684  ordered by synteny on contigs. All isolates of patient B are mutators (*). The prevailing predicted
685 localization of genes by PlaScope (chromosomic or plasmidic) is indicated (full list in
686  supplementary Table S9). Note that plasmidic genes are not mobile, at the opposite of resistance
687  genes (see Figure 5).

688

689  Figure 7. Action of selection on sequences (dN/dS) of E. coli isolates for patients A, B and C.
690  Significant results are framed in black (see Table S9). All isolates of patient B are mutators (*).
691  Neutrality (dN/dS not significantly different from 0) is indicated in pale yellow whereas purifying
692  and diversifying selection are indicated in green and red, respectively.

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

24


https://doi.org/10.1101/2024.06.25.600660
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.25.600660; this version posted June 26, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

709 Tables
710

711  Table 1. Patient sampling and strain typing.

Patient Number of isolates Phylogroup  Sequence type Serotype fimH allele

(stool — blood — urine) *

Patient A 30(13-12-5) A 10 0101:H9 fimH54
Patient B* 17 (10-7) Bl 1431 08:H19 fimH32
Patient C 30(10-10-10) B2 131 025b:H4 fimH30

712

713  Phylogroups, MLSTs (Warwick and Pasteur), serotypes and fimH alleles are indicated. All the
714  isolates of patient B were mutators (*).
715  (+) Patients B and C were sampled at a single time point whereas samples of patient A correspond
716  to 4 timepoints.
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733 Table 2. Number of variant types among isolates of a patient’s infection episode found with

734  snippy.

Site conservative disruptive frameshift missense non coding stop stop lost synonymous
inframe inframe variant variant transcript  gained variant
insertion deletion variant

Patient A blood 9 0 1 3 0 1 0 9

(n=12)

stool 12 1 0 6 0 0 1 17

(n=13)

urine 0 5 0 20 0 0 5 20

(n=5)

Patient B* blood 0 0 216 541 5 11 20 292

(n=7)

stool 0 0 86 177 1 4 4 146

(n=10)

Patient C blood 0 0 9 7 0 0 0 2

(n=10)

stool 0 0 16 26 0 0 0 14

(n=10)

urine 0 0 12 20 0 0 0 6

(n=10)

Intra-intestinal  stool 12 1 16 32 0 0 1 31
isolates (n=23)
Extra-intestinal blood/urine 9 5 22 50 0 1 5 37
isolates (n=37)

735

736  We excluded patient B from intra- and extra-intestinal isolates because all the 17 isolates were

737  mutators (*). n: number of isolates.
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