

1 Adhesive interactions within microbial consortia can be differentiated at the 2 single-cell level through expansion microscopy

3 Pu-Ting Dong¹, Wenyuan Shi¹, Xuesong He¹, and Gary G. Borisy^{1,*}

4 1. Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142,
5 USA

6 *Corresponding author. Email: gborisy@forsyth.org

7 **Classification:** Biological Sciences, Microbiology

8 **Keywords:** microbial adhesion, single-cell level, expansion microscopy, human microbiome,
9 polymicrobial communities

10 **Significance**

11 A single-cell understanding of microbe-microbe interactions is critical for unraveling the
12 organization and dynamics of microbial communities. Through an unconventional application of
13 expansion microscopy, we oppose the adhesive force holding microbes together by an expansion
14 force pulling them apart, resulting in microbial separation dependent on the strength of microbial
15 adhesion. Our new approach establishes a proof-of-principle for differentiating adhesive
16 interactions within microbial consortia at the single-cell level.

18 **Abstract**

19 Investigating microbe-microbe interactions at the single-cell level is critical to unraveling the
20 ecology and dynamics of microbial communities. In many situations, microbes assemble
21 themselves into densely packed multi-species biofilms. The density and complexity pose acute
22 difficulties for visualizing individual cells and analyzing their interactions. Here, we address this
23 problem through an unconventional application of expansion microscopy, which allows for the
24 ‘decrowding’ of individual bacterial cells within a multispecies community. Expansion
25 microscopy generally has been carried out under isotropic expansion conditions and used as a
26 resolution-enhancing method. In our variation of expansion microscopy, we carry out expansion
27 under heterotropic conditions; that is, we expand the space between bacterial cells but not the space
28 within individual cells. The separation of individual bacterial cells from each other reflects the
29 competition between the expansion force pulling them apart and the adhesion force holding them
30 together. We employed heterotropic expansion microscopy to study the relative strength of
31 adhesion in model biofilm communities. These included mono and dual-species *Streptococcus*
32 biofilms, and a three-species synthetic community (*Fusobacterium nucleatum*, *Streptococcus*
33 *mutans*, and *Streptococcus sanguinis*) under conditions that facilitated interspecies coaggregation.
34 Using adhesion mutants, we investigated the interplay between *F. nucleatum* outer membrane
35

36 protein RadD and different *Streptococcus* species. We also examined the *Schaalita-TM7* epibiont
37 association. Quantitative proximity analysis was used to evaluate the separation of individual
38 microbial members. Our study demonstrates that heterotrophic expansion microscopy can ‘decrowd’
39 dense biofilm communities, improve visualization of individual bacterial members, and enable
40 analysis of microbe-microbe adhesive interactions at the single-cell level.

41
42
43

44 **Introduction**

45 Microbes in nature are frequently found as multispecies communities growing on surfaces as
46 biofilms (1-4). The importance of spatial organization for understanding microbial ecosystems (5-
47 8) has been highlighted in recent reviews on the gut microbiome (9, 10), oral microbiome (11-15)
48 and polymicrobial infection (16, 17). Because many microbe-microbe interactions are short range,
49 it is critical to understand spatial organization at the single-cell level. A key approach in meeting
50 this objective has been simultaneous imaging of different bacterial taxa in a complex community
51 through multiplexed fluorescence imaging (18-20). The information obtained from such studies
52 establishes the spatial proximity relationship of individual microbes to other microbes or to host
53 tissue. However, connecting this spatial information to function remains challenging.

54 One aspect of function is the adhesion of microbes to each other or to host tissue. Adhesion is
55 of fundamental importance in microbial biofilms subject to flow, such as the oral microbiome (21).
56 Because of salivary flow, any oral microbe that does not adhere to host oral tissue or teeth either
57 directly or indirectly via interacting with other adhered microbes will be flushed into the
58 gastrointestinal tract. Adhesion is likely also instrumental to the building of oral biofilms (22) and
59 the emergence of spatial organization as it dictates the stability of microbe-microbe associations.
60 Coaggregation has been used with pure cultures in pairwise combinations *in vitro* to determine the
61 relative tendency of bacterial species to adhere to each other (2, 23, 24). However, this tool while
62 useful as an *in vitro* assay is not suited to evaluating adhesive interactions in a complex,
63 multispecies community *in situ*. Alternative approaches are needed to fill this gap.

64 Expansion microscopy is a novel approach introduced as a resolution-enhancing method (25).
65 It is based on coupling target molecules or structures to a swellable, polyelectrolyte gel. Isotropic
66 swelling of the gel causes the decrowding of target biomolecules and thus increased resolution
67 with conventional microscopes. The approach has been used to achieve super-resolution imaging
68 of protein complexes (26), RNA complexes (27) and microtubule nanostructures (28). Of note,
69 expansion microscopy also causes the samples to become nearly completely transparent with the
70 refractive index of the expanded gel close to that of water, enabling deep tissue imaging (29).

71 In this paper, we describe an unconventional application of expansion microscopy to
72 differentiate microbial adhesive interactions at the single-cell level. Whereas in conventional
73 expansion microscopy the objective is to render the gel-embedded tissue as uniform as possible to
74 achieve isotropic expansion, our goal is to maintain the integrity of the microbial cells while
75 expanding the extracellular space between them. The key novel principle we introduce is
76 heterotropic expansion--the application of expansion force to individual cells by embedding them
77 into a swellable gel without swelling the cells themselves. The expansion process, driven by
78 electrostatic repulsion of negatively charged groups on the gel polymer backbone, generates a
79 pulling force on objects contained within the gel, termed as expansion force. Our rationale is that
80 non-interacting or weakly interacting microbes will be pulled apart as manifested by an increase
81 in their inter-microbial distance, whereas strongly adherent cells will resist the expansion force
82 and remain close together (Figure 1). We first evaluated heterotropic expansion using mono- and
83 dual-species *in vitro* biofilms. After establishing minimally perturbing expansion conditions, we
84 applied our approach to investigate the physical interactions in a three-species consortium model
85 consisting of *Fusobacterium nucleatum* (*F. nucleatum*) and two *Streptococcus* species,
86 *Streptococcus mutans* (*S. mutans*) and *Streptococcus sanguinis* (*S. sanguinis*) under conditions
87 that facilitate interspecies co-aggregation. We also investigated an epibiont association, a recently
88 described episymbiosis between an ultrasmall bacterium *Nanosynbacter lyticus* strain TM7x, and
89 its host bacterium, *Schaalia odontolytica* strain XH001 (30). In combination with spectral imaging,
90 our new approach establishes a proof-of-principle for differentiating adhesive interactions within
91 microbial consortia at the single-cell level.

92

93 **Results**

94 **Evaluation of the basic methodology in a mono-species biofilm**

95 Initial experiments were carried out to evaluate whether heterotropic expansion microscopy
96 could be used to decrowd microbial biofilms. This would lay the groundwork for experiments to
97 differentiate microbial adhesive strength within the microbial communities. As a test system, we
98 used *S. mutans* which is known to self-aggregate (31), resulting in biofilms that are spatially
99 heterogeneous. A key property that needed to be established was the behavior of non-interacting
100 objects as a negative control for microbial interactions. For this purpose, fluorescent beads, 2 μm
101 in diameter, were used as a proxy for non-interacting objects. Beads were mixed with *S. mutans*
102 and became incorporated into the mono-species biofilm as the culture grew on saliva-coated glass
103 substrate. The bead-containing biofilm was then embedded in a swellable gel and subjected to the
104 expansion procedure as described in Material & Methods and reported by Chen *et al* (25). In the
105 absence of enzymes such as mutanolysin that specifically digest the bacterial cell wall (32),

106 expansion microscopy can be carried out on microbial cells without compromising cell integrity.
107 During expansion of the biofilm, the distance between beads increased and their concentration per
108 unit area decreased (Figure 2) as expected for a 3-fold expansion of the gel. This result is consistent
109 with the lack of any significant adhesive interaction between the beads.

110 Before expansion, the close packing of *S. mutans* in the biofilm hindered visualization of
111 individual cells (Figure 2A). After expansion, *S. mutans* cells showed separation reflecting their
112 initial heterogeneous spatial distribution (Figure 2B). Aggregates of cells evident before expansion
113 were still evident after expansion but were less densely packed as would be expected if the cells
114 were weakly adherent. Importantly, cells were pulled away from each other sufficiently to allow
115 for single-cell visualization. The integrity of the *S. mutans* cells was maintained in the expansion
116 procedure as judged by retention of their size and shape. The separation of individual biofilm cells
117 while maintaining microbial cell integrity establishes that expansion microscopy can be used to
118 decrowd bacterial biofilms.

119

120 Expansion microscopy analysis of a dual-species biofilm

121 The next question we addressed was whether adhesive interactions between microbes in
122 biofilms could be evaluated quantitatively. For this purpose, we evaluated the application of
123 expansion microscopy to a dual-species biofilm system. When more than one species is present in
124 a biofilm, reporter molecules are necessary to distinguish the different taxa comprising the biofilm.
125 We used genetically encoded fluorescent proteins as reporter molecules for the dual-species
126 biofilm experiments. Biofilms were grown from mCherry-expressing *S. mutans* and GFP-
127 expressing *S. sanguinis* that were mixed 1:1 at an initial OD₆₀₀ of 0.05 in Brain Heart Infusion
128 (BHI) broth. Fluorescent blue beads were added to the mixture as an internal control for measuring
129 the local expansion factor as described before. The fluorescence development of GFP and mCherry
130 is known to require their correct protein folding which is dependent on oxygen (33). Therefore,
131 dual-species biofilms were grown by incubating them aerobically at 37°C for 24 hours.

132 Imaging of the dual-species biofilms was carried out using spectral imaging followed by linear
133 unmixing to separate the individual fluorescent signals (Materials and Methods). Although not
134 strictly necessary for the dual-species biofilm, we employed the spectral approach in anticipation
135 of subsequent experiments involving multispecies biofilms. Since the growth of *S. mutans* biofilms
136 is known to be strongly dependent on sucrose concentration, we explored growth conditions to
137 achieve a balanced biofilm of both *S. mutans* and *S. sanguinis*. At 1% (w/v) sucrose concentration,
138 *S. mutans* overtook the co-culture, while 0.1% (w/v) sucrose allowed the co-existence of both
139 *Streptococcus* species. Thus, 0.1% (w/v) sucrose was used to grow the dual-species biofilm for
140 expansion analysis.

141 Using the same expansion procedure as used for the mono-species biofilm, dual-species
142 biofilms were imaged before and after expansion. Before expansion, the biofilm of *S. mutans* and
143 *S. sanguinis* contained closely packed aggregates. Although some individual cells could be
144 discerned, many cells were too close to or overlapped neighbors to allow for unambiguous
145 visualization (Figure 3A). However, after expansion, both *S. mutans* and *S. sanguinis* could be
146 visualized as individual cells in single confocal image planes (Figure 3B), indicating that they were
147 pulled away from each other in the xy plane. Confocal imaging at different axial planes showed
148 that *S. mutans* was more abundant near the glass substrate while *S. sanguinis* was more abundant
149 toward the outer periphery of the biofilm away from the glass bottom of the culture dish. Thus,
150 cells were also pulled apart in the z direction, revealing different spatial distribution patterns for
151 these two streptococci even within the same biofilm.

152 Spatial proximity relationships of cells within the biofilm were quantified using a program
153 developed for image analysis in microbial ecology, daime (34). Daime quantifies the spatial
154 relationship of two populations by computing a pairwise correlation value as a function of the
155 distance between individual objects. A correlation value larger than 1 means two populations tend
156 to cluster together, less than 1 means they tend to repel each other, and equal to 1 means they are
157 randomly distributed. As shown in Figure 4A, the spatial arrangement of fluorescent beads before
158 and after expansion showed apparent repulsion at short distances and random distribution above a
159 threshold distance. The apparent repulsion can be explained by the physical size of the beads which
160 was 2 μm . Before expansion, the apparent repulsion below 2.5 μm is a consequence of two beads
161 not being able to occupy the same space. After expansion, the threshold of 7.5 μm is a consequence
162 of the linear expansion of approximately 3-fold as found before in the mono-species *S. mutans*
163 biofilm experiments. The random distribution of the beads above these thresholds indicates that
164 they had no intrinsic attraction to or repulsion from each other. Thus, the quantitative analysis of
165 the bead distribution confirmed that the beads may be considered as non-interacting, reference objects
166 for interpreting the impact of expansion on the microbes of the biofilm.

167 Proximity analysis of microbes in the dual-species biofilm before expansion was ambiguous
168 because many cells in the aggregates overlapped each other and could not be discerned as
169 individual cells. However, after expansion, proximity analysis became unambiguous because
170 individual cells could be clearly visualized. The pairwise correlation patterns of *S. mutans* with
171 itself (Figure 4B) and *S. sanguinis* with itself (Figure 4C) both showed apparent repulsion below
172 1 μm and positive clustering at greater distances with a peak at about 2.5 μm . Apparent repulsion
173 at short distance is a consequence of the cells, like the beads, not being able to occupy the same
174 space. Positive association at greater distance reflects the existence of close aggregates before
175 expansion which is consistent with the known properties of *S. mutans* and *S. sanguinis* to self-

176 aggregate within biofilms (35). Since expansion was 3-fold and the diameters of *S. mutans* and *S.*
177 *sanguinis* are about 0.8-0.9 μm , the expected peak in the pairwise correlation curves after
178 expansion was approximately 2.4-2.7 μm , which agrees with the observed values of 2.5-3.0 μm .
179 This result indicates that many *S. mutans* and *S. sanguinis* cells were in close association before
180 expansion and were pulled apart by the expansion process. The pairwise correlation between *S.*
181 *mutans* and *S. sanguinis* was less than 1 over most of the distance range, suggesting apparent
182 repulsion (Figure 4D). However, this negative association does not indicate an intrinsic repulsive
183 interaction between these two *Streptococcus* species; rather, it is a mathematical consequence of
184 the positive clustering behavior of each of the *Streptococcus* species taken individually.

185 The dual-species biofilm confirmed important components of our expansion methodology.
186 These included the compatibility with genetically encoded fluorescent proteins as reporters, the
187 feasibility of imaging expanded gels by spectral imaging, and the quantification of spatial
188 proximity relationships by pairwise correlation analysis. The results quantitatively demonstrate
189 that microbial associations in a biofilm can be investigated at the single-cell level by expansion
190 microscopy.

191

192 **Differentiation of microbial interactions in a three-species consortium model**

193 The results with mono- and dual-species biofilms provided the groundwork for applying
194 heterotrophic expansion microscopy to analyze adhesive interactions within multispecies microbial
195 communities. As a model system, we adopted an *in vitro* three-member (*F. nucleatum*-*S. mutans*-
196 *S. sanguinis*) consortium under conditions that facilitate interspecies coaggregation. The binding
197 of different bacteria to each other via specific adhesion molecules (36, 37) can be visually assayed
198 by the resulting formation of flocculant precipitates (38). Coaggregation is thought to play an
199 essential role in the development of multispecies communities, such as dental plaque biofilms (39,
200 40). However, coaggregation is a population-level phenotype which is not a direct measurement
201 of the adhesive interactions between individual bacteria. Therefore, it would be significant to
202 deconstruct the coaggregation phenotype at the single-cell level.

203 To differentiate adhesive interactions within a multispecies bacterial system, we designed a
204 minimally perturbing expansion protocol. All three bacterial species were labeled vitally. Wild
205 type *F. nucleatum* was labeled with a membrane-specific fluorophore, FM 1-43. The labeled *F.*
206 *nucleatum* was mixed with mCherry-expressing *S. mutans* and GFP-expressing *S. sanguinis* at a
207 ratio of 1:1:1 in coaggregation buffer (Materials and Methods). The mixture resulted in the
208 formation of flocculant precipitate which settled at the bottom of the tube. Samples of the
209 precipitated aggregates were transferred to a glass bottom dish, and gelation was conducted
210 directly on the aggregates. This minimally perturbing protocol differed from conventional

211 expansion protocols in three ways: no fixation was carried out; no Acryloyl-X molecular linker
212 was employed; and no proteinase K digestion was carried out before expansion. Thus, in this
213 protocol, the samples were essentially unfixed, unlinked and undigested. Images before expansion
214 were taken immediately after the gelation step. After gelation, expansion was driven by adding
215 water to the aggregates-containing gel and changing the water three times over a period of 1-2
216 hours. The size of the aggregates increased after expansion but were less densely packed as would
217 be expected from the separation induced by the expansion process.

218 Before expansion (Figure 5A), even under a high-magnification 63 \times oil immersion objective
219 (NA=1.4) with a pixel size of 65 nm, we could not discern single bacteria inside the aggregates,
220 let alone determine the three-dimensional architecture of these aggregates. However, after
221 expansion, even with a low-magnitude 20 \times objective (NA=0.8), individual bacteria were clearly
222 distinguishable in single-plane confocal images (Figure 5B). We also examined the distribution of
223 bacteria within the aggregates in the axial direction by acquiring images along the z-axis and
224 representing the results through orthoslice views (Figure 5C). The results show that all three
225 bacterial species could be resolved individually in both lateral and axial directions.

226 The capacity to resolve individual cells through expansion microscopy enabled us to perform
227 quantitative proximity analysis at the single-cell level on the model consortium. Proximity analysis
228 demonstrated differential interactions between *F. nucleatum* and *S. sanguinis* vs *F. nucleatum* and
229 *S. mutans*. *F. nucleatum* showed a strong association with *S. sanguinis* at very short distances (<
230 3 μ m) but essentially a random association at greater distances (Figure 5D, F). In contrast, *F.*
231 *nucleatum* showed a repulsion to *S. mutans* at very short distances, changing to a neutral interaction
232 at greater distance (Figure 5D, G). The remarkable difference in behavior of *F. nucleatum* with
233 respect to *S. sanguinis* and *S. mutans* was investigated further by acquiring high-magnification
234 views of the aggregates after expansion. As shown in Figure 5D, the close association of *F.*
235 *nucleatum* and *S. sanguinis* was frequently manifested as overlapping cells. Overlapping *S.*
236 *sanguinis* and *F. nucleatum* can be documented in two ways: first, from direct visualization of high
237 magnification views, individual and merged panels show that *F. nucleatum* is juxtaposed with *S.*
238 *sanguinis* (Figure 5E); second, from the proximity analysis (Figure 5F-G), the high positive
239 pairwise correlation value at short distances (< 0.5 μ m) indicates that the bacterial cells are closer
240 together than a single cell diameter. In contrast, *F. nucleatum* and *S. mutans* were nearby or
241 adjacent to each other but still clearly distinct and generally not overlapping. The exclusion at short
242 distances accounts for the apparent repulsion of *F. nucleatum* and *S. mutans* shown by the
243 proximity analysis. We interpret these images and the proximity analysis results to signify that *F.*
244 *nucleatum* was in tight association with *S. sanguinis* but not with *S. mutans*. In short, our

245 heterotrophic expansion protocol indeed captured differences in the adhesion behavior of different
246 bacterial species in our model system at the single-cell level.

247
248 **Evaluation of *F. nucleatum* RadD dependent and independent adhesion to different**
249 ***Streptococcus* species**

250 The ability of *F. nucleatum* to adhere to other bacterial members of dental plaque has been
251 attributed to a group of outer membrane adhesion proteins (41). Among these, RadD has been
252 identified as the primary mediator of the inter-species adherence between *F. nucleatum* and various
253 *Streptococcus* spp., including *S. mutans* and *S. sanguinis* (42, 43). Here, we evaluate the adhesion
254 of wild type *F. nucleatum* and *F. nucleatum* Δ radD which is depleted in RadD using heterotrophic
255 expansion microscopy.

256 The three-species consortium containing *F. nucleatum* Δ radD, *S. mutans* and *S. sanguinis*
257 aggregated less in comparison to consortia with *F. nucleatum* wildtype (Figure 6A), confirming a
258 role for RadD in coaggregation. Nonetheless, some aggregation occurred. The residual aggregation
259 with the *F. nucleatum* Δ radD suggests a RadD-independent mode of coaggregation as well. This
260 result is in accord with the literature that adhesin(s) in addition to RadD may also contribute to *F.*
261 *nucleatum-Streptococcus* coaggregation (41). We then analyzed whether microbe-microbe
262 interaction inside these non-RadD aggregates could be differentiated from those in the wild type
263 consortia. Individual cells were clearly distinguished after expansion inside these aggregates
264 (Figure 6B), which was further confirmed by images of orthogonal views. High magnification
265 merged images of *F. nucleatum* Δ radD and the two *Streptococcus* species presented a similar
266 association pattern as that of *F. nucleatum* wildtype: a larger number of *S. sanguinis* cells
267 overlapped spatially with *F. nucleatum* compared to *S. mutans* (Figure 6C-D). Proximity analysis
268 (Figure 6E-F) showed that both *Streptococcus* species, especially *S. sanguinis* demonstrated a
269 close association with *F. nucleatum* Δ radD while the relationship between *S. mutans* and *S.*
270 *sanguinis* appeared spatially random (see SI Fig. S1C).

271 To gain a quantitative comparison of the spatial arrangement within the aggregates from the
272 three-species consortium containing *F. nucleatum* wildtype or Δ radD in terms of the interaction
273 with *S. mutans* and *S. sanguinis*, we randomly chose eight different fields of view to conduct the
274 proximity analysis and then compared them statistically. As shown in SI Fig. S1A, there was no
275 apparent difference in the pairwise correlation values between *F. nucleatum* wildtype/*S. mutans*
276 and *F. nucleatum* Δ radD/*S. mutans*. Similarly, the pairwise correlation values between *F.*
277 *nucleatum* Δ radD and *S. sanguinis* was almost the same as that of *F. nucleatum* wildtype with *S.*
278 *sanguinis* (SI Fig. S1B) while the spatial relationship between *S. mutans* and *S. sanguinis* was
279 essentially random (SI Fig. S1C). Each of the three taxa, *F. nucleatum*, *S. mutans* and *S. sanguinis*,

280 showed self-correlation at short distances indicating a tendency to self-associate (SI Fig. S1D-F).
281 Taken together, these data suggest that a non-RadD adhesin or adhesins contribute to the
282 interaction between *F. nucleatum* and *Streptococci* in addition to the RadD adhesin. Furthermore,
283 the non-RadD adhesin-mediated interaction between *F. nucleatum* and *S. sanguinis* was of
284 sufficient strength that it was not disrupted by the expansion force.

285 To understand whether the repulsive behavior between *S. mutans* and *F. nucleatum* (both
286 wildtype and *radD* mutant) at short distances in three-species consortium is due to the competitive
287 association between *S. sanguinis* and *F. nucleatum*, we carried out coaggregation experiments and
288 expansion analysis between *F. nucleatum* and individual *Streptococcus* species under the same
289 experimental conditions. Proximity analysis (SI Fig. S2) showed that both *F. nucleatum* wildtype
290 and *F. nucleatum* Δ *radD* displayed close association with *S. sanguinis* at short distances. In
291 contrast, the association with *S. mutans* appeared to be repulsive at shorter distances and random
292 at greater distances. Collectively, this evidence suggests that the close association between *F.*
293 *nucleatum* and *S. sanguinis* is intrinsic, and the apparent repulsive behavior between *F. nucleatum*
294 and *S. mutans* is not from competition with *S. sanguinis*.

295

296 Expansion microscopy analysis of a microbial episymbiosis model

297 Epibionts, by definition, are organisms that live on the surface of another organism and,
298 therefore, have a close structural association. We reasoned that the association of a bacterial
299 epibiont with its host cell might be particularly strong. As an additional illustration of the
300 application of heterotrophic expansion microscopy, we examined a two-member oral episymbiotic
301 system in which the epibiont was ultrasmall Saccharibacteria *Nanosynbacter lyticus* strain TM7x
302 and its host was a *Schaalia odontolyticus* strain XH001 (30, 44).

303 To query whether the expansion force could separate TM7x away from its host cell XH001,
304 we applied the expansion procedure to cocultures vitally stained with SYTO-9 (Materials and
305 Methods). Low magnification images of the coculture (Figure 7A) show aggregates of cells in
306 which individual XH001-TM7x complexes were hard to discern. After expansion, XH001-TM7x
307 complexes were pulled away from each other but many TM7x cells remained closely attached to
308 their host cells (Figure 7B) suggesting that the interaction force between TM7x and its host cell is
309 stronger than the expansion force. High-magnitude images confirmed that expansion did not
310 detectably alter the physical association between TM7x and its host cell (Figure 7B inserts).

311 Discussion

312 Our study demonstrates the utility of an unconventional application of expansion microscopy
313 to the analysis of microbial biofilms. We show how heterotrophic expansion can ‘decrowd’ dense

314 biofilm communities, improve visualization of individual bacterial members, and enable
315 differentiation of microbe-microbe adhesive interactions within microbial communities at the
316 single-cell level.

317 The application is unconventional in that its purpose is to exploit the force driving expansion
318 to assess microbial adhesion rather than to achieve super-resolution imaging. In conventional
319 expansion microscopy, the biological matter is digested to enable uniform, isotropic expansion of
320 the polymer gel. In contrast, in our application, the microbes remain intact while being entrapped
321 in the polymer network. The space between the microbes is expanded while the space within the
322 microbes is not, hence the term heterotrophic expansion. Expansion of the swellable polymer gel
323 generates a pulling force on the entrapped microbes. The result is a 'tug-of-war' competition
324 between the expansion force and microbial adhesive forces. Weakly adherent cells will be pulled
325 apart while strongly adherent cells will remain together. Thus, heterotrophic expansion enables the
326 differentiation of microbe-microbe interaction within microbial communities at the single-cell
327 level.

328 Our application of expansion microscopy is complementary to the conventional coaggregation
329 assay, which assesses the binding of pairs of bacteria to each other by whether they form visible
330 flocculant precipitates. Heterotrophic expansion microscopy deconstructs the coaggregation
331 phenotype at the single-cell level. Specifically, through investigating the aggregates formed by the
332 model community, *F. nucleatum*-*S. sanguinis*-*S. mutans*, we found that the spatial interaction
333 between *F. nucleatum* and *S. sanguinis* was significantly different from that of *F. nucleatum* and
334 *S. mutans*, a feature otherwise not evident in the coaggregation assays. The *F. nucleatum*-*S.*
335 *sanguinis* adhesion was evidently stronger than the expansion force since cells remained in close
336 proximity and many were juxtaposed upon each other even after expansion. In contrast, the
337 aggregates formed between *F. nucleatum* and *S. mutans* were pulled apart by expansion, indicating
338 that the *F. nucleatum*-*S. mutans* adhesion was weaker than the expansion force. The epibiont
339 association between TM7 and *Schaalia odontolytica* is another example of a tight association as
340 the expansion process failed to pull apart the interacting partners. This result was not surprising
341 since the association between an epibiont and its host was expected to be strong. Studies have
342 shown that type IV pili trigger a close association between Saccharibacteria and its host bacteria
343 (45).

344 RadD, a major outer membrane protein of *F. nucleatum*, has been reported to play a key role
345 in the binding phenotype between *F. nucleatum* and *Streptococci* including *S. mutans* (46) and *S.*
346 *sanguinis* (41) and, consequently, in the integration of *F. nucleatum* into the supragingival
347 microbial community (42). We investigated whether RadD was essential for the strong adhesive
348 interaction between *F. nucleatum* and *S. sanguinis* by testing a RadD deletion mutant of *F.*

349 *nucleatum*. Although the three-species community, *F. nucleatum* Δ radD-*S. sanguinis*-*S. mutans*,
350 showed a reduced level of coaggregation, expansion microscopy revealed that binding between *F.*
351 *nucleatum* Δ radD and *S. sanguinis* remained tight. This result indicated that RadD was not
352 essential for tight binding at the single-cell level and that a non-RadD adhesin or adhesins had
353 sufficient binding force to underlie the tight binding observed. By either mechanism, the strong
354 association between *F. nucleatum* and *S. sanguinis* supports the premise that this interspecies
355 interaction serves as an important association in the organization of supra- and subgingival plaque
356 (47, 48).

357 Although RadD was not essential for the tight binding between *F. nucleatum* and *S. sanguinis*,
358 deletion of RadD did lead to significant reduction in the overall amount of coaggregation. How
359 can these apparently conflicting results be explained? One possible explanation arises from the
360 likely multivalency of binding interactions. Each binding partner, *F. nucleatum* or *S. sanguinis*,
361 bears multiple copies of adhesin ligands or receptors. The large aggregates and flocculant
362 precipitate resulting from mixture of the two partners may be understood in a manner similar to an
363 antibody-antigen precipitation reaction. Following the antibody-antigen paradigm, we varied the
364 concentration ratio between *F. nucleatum* and *S. sanguinis* in the coaggregation experiment and
365 found that both *F. nucleatum* Δ radD and *F. nucleatum* wildtype had similar coaggregation profiles
366 (SI Fig. S3), peaking at a ratio (*F. nucleatum*/*S. sanguinis*) of one. However, the amount of
367 coaggregation with *F. nucleatum* Δ radD was approximately half of that for *F. nucleatum* wildtype.
368 Coaggregation at a *F. nucleatum* Δ radD/*S. sanguinis* ratio of 1.0 was essentially the same as that
369 of *F. nucleatum* wildtype at a *F. nucleatum*/*S. sanguinis* ratio of 0.5. From this result, we infer that
370 the reduced coaggregation observed after deletion of RadD may be a consequence of reduction in
371 the number of adhesins per *F. nucleatum* and, therefore, its effective valency ratio to *S. sanguinis*.
372 In sum, the reduced level of aggregates seen by coaggregation is fully consistent with the tight
373 binding between *F. nucleatum* Δ radD and *S. sanguinis* as assayed at the single-cell level.

374 Electro-repulsion among the negatively charged carboxylic groups in the swellable gel
375 generates the expansion force according to Coulomb's law. However, the net expansion force will
376 become attenuated gradually as it is opposed by the elasticity of the polyelectrolyte backbone,
377 resulting in a balance of force and a stable extent of expansion. It is noteworthy that the initial
378 expansion force is adjustable depending on the concentration of monomer and crosslinker
379 molecules during the gelation step (49). Therefore, we envision that gels with a series of expansion
380 forces can be prepared by carefully choosing the gelation recipes. In this way, we can better
381 differentiate microbial adhesive forces within microbial communities by varying the expansion
382 force.

383 Our approach for differentiating adhesive interactions within microbial consortia at the single-
384 cell level has some limitations. First, microbial consortia often involve multiple bacterial species,
385 where multiplexed fluorescence imaging is needed. Our study investigated adhesive interactions
386 in a model microbial community consisting of three members. To investigate the feasibility of this
387 single-cell functional platform within complex microbial communities, it will be necessary to
388 evaluate the compatibility between heterotrophic expansion microscopy and multiplexed
389 fluorescence imaging. Second, our approach thus far achieved the differentiation of interspecies
390 microbial adhesive strengths on a relative basis. However, the absolute binding strengths between
391 microbes with their neighbors remain to be determined. For the quantification of microbial binding
392 forces, a calibration method will be needed to quantify the gel expansion force. Finally, we need
393 to take into consideration whether the expansion process affects the viability of microbes.
394 Notwithstanding these limitations, our new approach establishes a proof-of-principle for
395 differentiating adhesive interactions within microbial consortia at the single-cell level.

396

397 **Materials and Methods**

398 **Materials:** Acryloyl-X SE (Invitrogen, A20770), Triton X-100 (Sigma Aldrich, 9036-19-5),
399 DMSO (Sigma Aldrich, 67-68-5), EDTA, disodium (0.5 M, pH=8, Invitrogen, AM9260G),
400 Tris·HCl (1 M, pH=8, ThermoFisher Scientific, 15568025), NaCl (Fisher Scientific,
401 AC447302500), proteinase K (1500 U/ml, ThermoFisher Scientific, 25530049), UltraPureTM
402 TEMED (ThermoFisher Scientific, 15524010), ammonium persulfate (APS, ThermoFisher
403 Scientific, 17874), sodium acrylate (Sigma Aldrich, 408220-25G), calcium chloride (Sigma
404 Aldrich, 10043-52-4), magnesium chloride (Sigma Aldrich, 7786-30-3), sodium azide (Sigma
405 Aldrich, 26628-22-8), glycine (ThermoFisher Scientific, 36435.A1), sucrose (Fisher Scientific,
406 AA3650830), acrylamide (40% (wt/vol), Fisher BioReagents, BP1402-1), N,N'-
407 methylenebisacrylamide (Sigma Aldrich, 110-26-9), Hi-DiTM formamide (Fisher Scientific, 44-
408 407-53), phosphate buffered saline, PBS (10× stock, Fisher BioReagents, BP3991). Poly-L-lysine
409 solution (Sigma Aldrich, 25988-63-0). 2-μm fluorescent beads (fluorescent blue, Sigma Aldrich,
410 L0280; fluorescent red, Sigma Aldrich, L3030). Dextran, Alexa FluorTM 647 (ThermoFisher
411 Scientific, D22914). SYTOTM 9 (ThermoFisher Scientific, S34854). FMTM 1-43 (ThermoFisher
412 Scientific, T3163). High-grid glass bottom dish (ibidi, 81148). Glass bottom dish (Fisher Scientific,
413 NC0662883).

414

415 **Bacteria and culture:**

416 Mono-species *Streptococcus mutans* biofilms

417 Planktonic *S. mutans* UA159 was cultured in Brain Heart Infusion (BHI) broth under aerobic (21%
418 O₂) conditions. To prepare *S. mutans* biofilms, *S. mutans* (OD₆₀₀=0.05) was mixed with 20 μl of
419 fluorescent blue beads into fresh BHI (supplemented with 0.1% sucrose) and added to saliva-
420 precoated glass bottom dish. Robust biofilms were formed after overnight aerobic incubation.

421

422 Dual-species *Streptococcus* spp. biofilms

423 GFP-expressing *Streptococcus sanguinis* (*S. sanguinis*) and mCherry-expressing *S. mutans* were
424 cultured in BHI broth under aerobic (21% O₂) conditions to allow maturation of GFP and mCherry.
425 Then, *S. mutans* (OD₆₀₀=0.05) and *S. sanguinis* (OD₆₀₀=0.05) were mixed with 20 μl of fluorescent
426 blue beads into fresh BHI (supplemented with 0.1% and 1% sucrose, respectively) and added to
427 saliva-precoated glass bottom dishes. Robust dual-species biofilms were formed after overnight
428 aerobic cultivation.

429

430 *F. nucleatum*-*S. mutans*-*S. sanguinis* coaggregation assay

431 *Fusobacterium nucleatum* ssp. *nucleatum* strain ATCC 23726 was cultured in Columbia Broth
432 (Fisher Scientific, DF0944-17-0) under anaerobic conditions (5% H₂, 5% CO₂, 90% N₂) at 37°C.
433 Then, *F. nucleatum* 23726 (*F. nucleatum* wildtype) was stained with a membrane-labeling
434 fluorophore, FMTM 1-43 for 30 min. Then, stained *F. nucleatum* were washed with 1×PBS before
435 combining with the two *Streptococcus* species (mCherry-expressing *S. mutans* and GFP-
436 expressing *S. sanguinis*) in the coaggregation buffer (see recipe). Three bacterial species were then
437 mixed together thoroughly at an OD₆₀₀ of 2 for each bacterial species and allowed to stand in the
438 dark. Flocculant precipitates appeared within 30 min after mixing. Precipitated aggregates were
439 removed three hours after gently mixing and placed onto a glass bottom dish, semi air-dried,
440 followed by gelation, imaging before expansion, expansion by solvent exchange with water, and
441 imaging after expansion.

442

443 **Solutions:**

444

445 **Coaggregation buffer:** were prepared according to reference (50). NaCl (150 mM), Tris·HCl (1
446 mM, pH=8.0), CaCl₂ (0.1 mM), NaN₃ (0.02% (w/v)), MgCl₂ (0.1 mM) were mixed in sterile water.

447

448 **Expansion-related solutions:** were prepared as reported (29).

449 Acryloyl-X SE (**AcX**) stock solution: 5 mg of acryloyl-X SE was dissolved in 500 μl of anhydrous
450 DMSO. Aliquots were stored at -20°C.

451

452 **TEMED and APS stock** solutions: both chemicals were dissolved in water at a concentration of
453 10 g/100 ml, and then divided into aliquots of 1 ml each and stored at -20°C.

454

455 Monomer solution (**Stock X**): Sodium acrylate (9% w/v), acrylamide (2.7% v/v), N,N'-
456 methylenebisacrylamide (0.16% w/v), NaCl (12.4% w/v), in 1×PBS.

457 The Stock X solution was then divided into aliquots of 940 μl each and stored at -20°C.

458

459 **Gelation solution:** Stock X solution plus TEMED (0.2% w/v), APS (0.2% w/v).

460

461 **Digestion buffer:** 0.5% w/v Triton X-100, 1 mM EDTA, 50 mM Tris·HCl, NaCl (4.67% w/v),
462 proteinase K (15 U/ml).

463

464 Digestion buffer was also divided into aliquots of 1 ml each and stored at -20°C, proteinase K was
465 added to the remaining digestion buffer immediately before the digestion step.

466

467 **Gelation, digestion, expansion on biofilms**

468 *S. mutans* UA159 biofilms and dual-species *Streptococcus* biofilms were fixed in 10% formalin
469 (Sigma Aldrich, HT501128-4L) for 1 hour, then glycine (100 mM) was added to quench the
470 fixation for 5 min. After that, fixed biofilm samples were washed with 1×PBS twice before the
471 gelation step. *S. mutans* UA159 biofilms were then stained with SYTO 9. 0.1 mg/ml AcX in PBS
472 (dilute AcX stock into PBS) was immediately added to the fixed biofilms samples overnight. After
473 incubation with AcX, biofilms were washed with PBS twice, each time for 15 min. Then monomer
474 solution (see recipe) was added to biofilms and gelation was allowed to occur for 1 hour at 37°C.
475 Immediately afterwards, digestion was carried out in the presence of proteinase K (10 U/ml, see
476 recipe). After overnight-digestion, expansion was induced by adding water to the digested samples,
477 and exchange with water for three times, each time for 20 min. Part of the expanded samples were
478 then carefully mounted to a poly-L-lysine-coated cover glass (VWR, 16004-348), and a few drops
479 of water were added to the top of the gel before image acquisition to prevent sample dehydration.
480

481 **Gelation, expansion of *F. nucleatum* wildtype/*F. nucleatum* Δ radD-*S. mutans*-*S. sanguinis* 482 aggregates**

483 Gelation in the presence of the monomer solution (Stock X) was immediately applied to the semi-
484 dried three-member aggregates at 37°C for 1 hour at a humidified chamber. Spectral imaging was
485 then employed after gelation to acquire images before expansion. After imaging, water was
486 directly added to the gels and gel samples were exchanged with water three times, each time for
487 20 min. Part of expanded samples were then carefully mounted to a poly-L-lysine coated cover
488 glass (VWR, 16004-348), and a few drops of water were added to the top of the gel before image
489 acquisition to prevent sample dehydration over the process of image acquisition.
490

491 **Gelation, expansion of epibiont interaction pair *Saccharibacteria* *Nanosynbacter* *lyticus* 492 strain TM7x/*Schaalia odontolytica* (XH001)**

493 Preparation of epibiont pair XH001/TM7x was described in the previously published studies (30,
494 51). Coculture was then harvested by passaging for two times, washed with 1×PBS. Cells were
495 stained with SYTO 9 afterwards, and washed with 1×PBS. SYTO 9-labelled XH001/TM7x were
496 then dropped on to the glass bottom dish, gelation happened on top of the coculture aggregates.
497 Imaging before expansion was acquired after gelation step, then water-induced expansion, and
498 imaging after expansion.
499

500 **Spectral imaging and linear unmixing**

501 Spectral images were acquired using a Carl Zeiss LSM 780 confocal microscope with a Plan-
502 Apochromat 20 \times , 0.8 N.A. dry objective or 63 \times , 1.4 N.A. oil immersion objective. Images were
503 obtained using simultaneous excitation with 405-, 488-, 561-nm laser lines for both dual-species
504 *Streptococcus* biofilms and three-member *F. nucleatum* wildtype/*F. nucleatum* Δ radD-*S. mutans-
505 *S. sanguinis* coaggregation assay. Spectral images were harvested at a bin size of 8.9 nm.
506 Individual reference emission profiles were obtained under the same conditions. Raw spectral
507 images were smoothed by a median filtering algorithm with a kernel pixel size of 3 through ZEN
508 Black software (Carl Zeiss). Linear unmixing was then performed using ZEN Black software (Carl
509 Zeiss) using reference spectra. Unmixed images were assembled and pseudo-colored using Fiji
510 software (52).*

511

512 **Acknowledgments**

513 This work was supported by National Institutes of Health (NIH) grant T90 DE026110 (to P.-T.D.),
514 Forsyth Pilot Grant FPILOT80 (to P.-T.D.), NIH Grant DE022586 (to J.L.M.W and G.G.B), and
515 NIH Grant DE023810, DE030943 (to X.H). We thank Ms. Jennifer Gundrum for technical
516 assistance, Dr. Jessica L. Mark Welch and Dr. S. Tabita Ramirez-Puebla for helpful discussions.

517 **Conflict of Interests**

518 The authors declare no conflict of interest.

519 **Author Contributions**

520 Conceptualization, P.-T.D., and G.G.B.; Investigation, G.G.B., X.H., and W.S.; Writing – Original
521 Draft, P.-T.D., and G.G.B.; Writing – Review & Editing, P.-T.D., W.S., X.H., and G.G.B.;
522 Visualization, P.-T.D.; Supervision, G.G.B., and X.H.; Funding Acquisition, P.-T.D., and G.G.B.

523

524

525

526 **References:**

- 527 1. J. W. Costerton, Z. Lewandowski, D. E. Caldwell, D. R. Korber, H. M. Lappin-Scott,
528 Microbial biofilms. *Annual Review of Microbiology* **49**, 711-745 (1995).
- 529 2. P. E. Kolenbrander, R. J. Palmer, S. Periasamy, N. S. Jakubovics, Oral multispecies biofilm
530 development and the key role of cell–cell distance. *Nature Reviews Microbiology* **8**, 471-
531 480 (2010).
- 532 3. H.-C. Flemming, S. Wuertz, Bacteria and archaea on Earth and their abundance in biofilms.
533 *Nature Reviews Microbiology* **17**, 247-260 (2019).
- 534 4. E. K. Perry, M.-W. Tan, Bacterial biofilms in the human body: prevalence and impacts on
535 health and disease. *Frontiers in Cellular and Infection Microbiology* **13** (2023).
- 536 5. J. W. T. Wimpenny, Spatial order in microbial ecosystems. *Biological Reviews* **56**, 295-
537 342 (1981).
- 538 6. P. S. Stewart, M. J. Franklin, Physiological heterogeneity in biofilms. *Nature Reviews
539 Microbiology* **6**, 199-210 (2008).
- 540 7. C. D. Nadell, K. Drescher, K. R. Foster, Spatial structure, cooperation and competition in
541 biofilms. *Nature Reviews Microbiology* **14**, 589-600 (2016).
- 542 8. D. Yanni, P. Márquez-Zacarías, P. J. Yunker, W. C. Ratcliff, Drivers of spatial structure in
543 social microbial communities. *Current Biology* **29**, R545-R550 (2019).
- 544 9. G. P. Donaldson, S. M. Lee, S. K. Mazmanian, Gut biogeography of the bacterial
545 microbiota. *Nature Reviews Microbiology* **14**, 20-32 (2016).
- 546 10. C. Tropini, K. A. Earle, K. C. Huang, J. L. Sonnenburg, The gut microbiome: Connecting
547 spatial organization to function. *Cell Host & Microbe* **21**, 433-442 (2017).
- 548 11. R. J. Lamont, H. Koo, G. Hajishengallis, The oral microbiota: dynamic communities and
549 host interactions. *Nature Reviews Microbiology* **16**, 745-759 (2018).
- 550 12. J. L. Mark Welch, F. E. Dewhirst, G. G. Borisy, Biogeography of the oral microbiome:
551 The site-specialist hypothesis. *Annual Review of Microbiology* **73**, 335-358 (2019).
- 552 13. J. L. Mark Welch, S. T. Ramírez-Puebla, G. G. Borisy, Oral microbiome geography:
553 micron-scale habitat and niche. *Cell Host & Microbe* **28**, 160-168 (2020).
- 554 14. P. I. Diaz, A. M. Valm, Microbial interactions in oral communities mediate emergent
555 biofilm properties. *Journal of Dental Research* **99**, 18-25 (2020).
- 556 15. J. L. Baker, J. L. Mark Welch, K. M. Kauffman, J. S. McLean, X. He, The oral microbiome:
557 diversity, biogeography and human health. *Nature Reviews Microbiology* **22**, 89-104
558 (2024).
- 559 16. A. Stacy, L. McNally, S. E. Darch, S. P. Brown, M. Whiteley, The biogeography of
560 polymicrobial infection. *Nature Reviews Microbiology* **14**, 93-105 (2016).
- 561 17. S. Azimi, G. R. Lewin, M. Whiteley, The biogeography of infection revisited. *Nature
562 Reviews Microbiology* **20**, 579-592 (2022).
- 563 18. A. M. Valm *et al.*, Systems-level analysis of microbial community organization through
564 combinatorial labeling and spectral imaging. *Proceedings of the National Academy of
565 Sciences* **108**, 4152-4157 (2011).
- 566 19. J. L. Mark Welch, B. J. Rossetti, C. W. Rieken, F. E. Dewhirst, G. G. Borisy, Biogeography
567 of a human oral microbiome at the micron scale. *Proceedings of the National Academy of
568 Sciences* **113**, E791-E800 (2016).
- 569 20. S. A. Wilbert, J. L. Mark Welch, G. G. Borisy, Spatial ecology of the human tongue dorsum
570 microbiome. *Cell Reports* **30**, 4003-4015.e4003 (2020).
- 571 21. R. J. Gibbons, J. V. Houte, Bacterial adherence in oral microbial ecology. *Annual Review
572 of Microbiology* **29**, 19-42 (1975).
- 573 22. A. Simon-Soro *et al.*, Polymicrobial aggregates in human saliva build the oral biofilm.
574 *mBio* **13**, e00131-00122 (2022).

575 23. J. O. Cisar, P. E. Kolenbrander, F. C. McIntire, Specificity of coaggregation reactions
576 between human oral streptococci and strains of *Actinomyces viscosus* or *Actinomyces*
577 *naeslundii*. *Infection and Immunity* **24**, 742-752 (1979).

578 24. J. A. Younes, H. C. van der Mei, E. van den Heuvel, H. J. Busscher, G. Reid, Adhesion
579 forces and coaggregation between vaginal *Staphylococci* and *Lactobacilli*. *PLOS ONE* **7**,
580 e36917 (2012).

581 25. F. Chen, P. W. Tillberg, E. S. Boyden, Expansion microscopy. *Science* **347**, 543-548
582 (2015).

583 26. Y. Wang *et al.*, Combined expansion microscopy with structured illumination microscopy
584 for analyzing protein complexes. *Nature Protocols* **13**, 1869-1895 (2018).

585 27. G. Wang, J. R. Moffitt, X. Zhuang, Multiplexed imaging of high-density libraries of RNAs
586 with MERFISH and expansion microscopy. *Scientific Reports* **8**, 4847 (2018).

587 28. C. Zhang, J. S. Kang, S. M. Asano, R. Gao, E. S. Boyden, Expansion microscopy for
588 beginners: Visualizing microtubules in expanded cultured HeLa cells. *Current Protocols*
589 in *Neuroscience* **92**, e96 (2020).

590 29. S. M. Asano *et al.*, Expansion microscopy: Protocols for imaging proteins and RNA in
591 cells and tissues. *Current Protocols in Cell Biology* **80**, e56 (2018).

592 30. X. He *et al.*, Cultivation of a human-associated TM7 phylotype reveals a reduced genome
593 and epibiotic parasitic lifestyle. *Proceedings of the National Academy of Sciences* **112**,
594 244-249 (2015).

595 31. S.-J. Ahn, S.-J. Ahn, Z. T. Wen, L. J. Brady, R. A. Burne, Characteristics of biofilm
596 formation by *Streptococcus mutans* in the presence of saliva. *Infection and Immunity* **76**,
597 4259-4268 (2008).

598 32. Y. Lim *et al.*, Mechanically resolved imaging of bacteria using expansion microscopy.
599 *PLOS Biology* **17**, e3000268 (2019).

600 33. M. C. Hansen, R. J. Palmer, C. Udsen, D. C. White, S. Molin, Assessment of GFP
601 fluorescence in cells of *Streptococcus gordonii* under conditions of low pH and low oxygen
602 concentration. *Microbiology* **147**, 1383-1391 (2001).

603 34. H. Daims, S. Lücker, M. Wagner, Daime, a novel image analysis program for microbial
604 ecology and biofilm research. *Environmental Microbiology* **8**, 200-213 (2006).

605 35. S. D. Forssten, M. Björklund, A. C. Ouwehand, *Streptococcus mutans*, caries and
606 simulation models. *Nutrients* **2**, 290-298 (2010).

607 36. A. H. Rickard, P. Gilbert, N. J. High, P. E. Kolenbrander, P. S. Handley, Bacterial
608 coaggregation: an integral process in the development of multi-species biofilms. *Trends in*
609 *Microbiology* **11**, 94-100 (2003).

610 37. P.-F. Liu *et al.*, Vaccination targeting surface FomA of *Fusobacterium nucleatum* against
611 bacterial co-aggregation: Implication for treatment of periodontal infection and halitosis.
612 *Vaccine* **28**, 3496-3505 (2010).

613 38. T. Thomas, S. K. Hawzeen, C. L. Jack, Bacterial autoaggregation. *AIMS Microbiology* **4**,
614 140-164 (2018).

615 39. P. E. Kolenbrander *et al.*, Bacterial interactions and successions during plaque
616 development. *Periodontology 2000* **42**, 47-79 (2006).

617 40. R. J. Gibbons, M. Nygaard, Interbacterial aggregation of plaque bacteria. *Archives of Oral*
618 *Biology* **15**, 1397-IN1339 (1970).

619 41. C. W. Kaplan, R. Lux, S. K. Haake, W. Shi, The *Fusobacterium nucleatum* outer
620 membrane protein RadD is an arginine-inhibitable adhesin required for inter-species
621 adherence and the structured architecture of multispecies biofilm. *Molecular Microbiology*
622 **71**, 35-47 (2009).

623 42. X. He *et al.*, Adherence to *Streptococci* facilitates *Fusobacterium nucleatum* integration
624 into an oral microbial community. *Microbial Ecology* **63**, 532-542 (2012).

625 43. D. J. Bradshaw, P. D. Marsh, G. K. Watson, C. Allison, Role of *Fusobacterium nucleatum*
626 and coaggregation in anaerobe survival in planktonic and biofilm oral microbial
627 communities during aeration. *Infection and Immunity* **66**, 4729-4732 (1998).

628 44. B. Bor, J. K. Bedree, W. Shi, J. S. McLean, X. He, Saccharibacteria (TM7) in the human
629 oral microbiome. *Journal of Dental Research* **98**, 500-509 (2019).

630 45. B. Xie *et al.*, Type IV pili trigger episymbiotic association of Saccharibacteria with its
631 bacterial host. *Proceedings of the National Academy of Sciences* **119**, e2215990119 (2022).

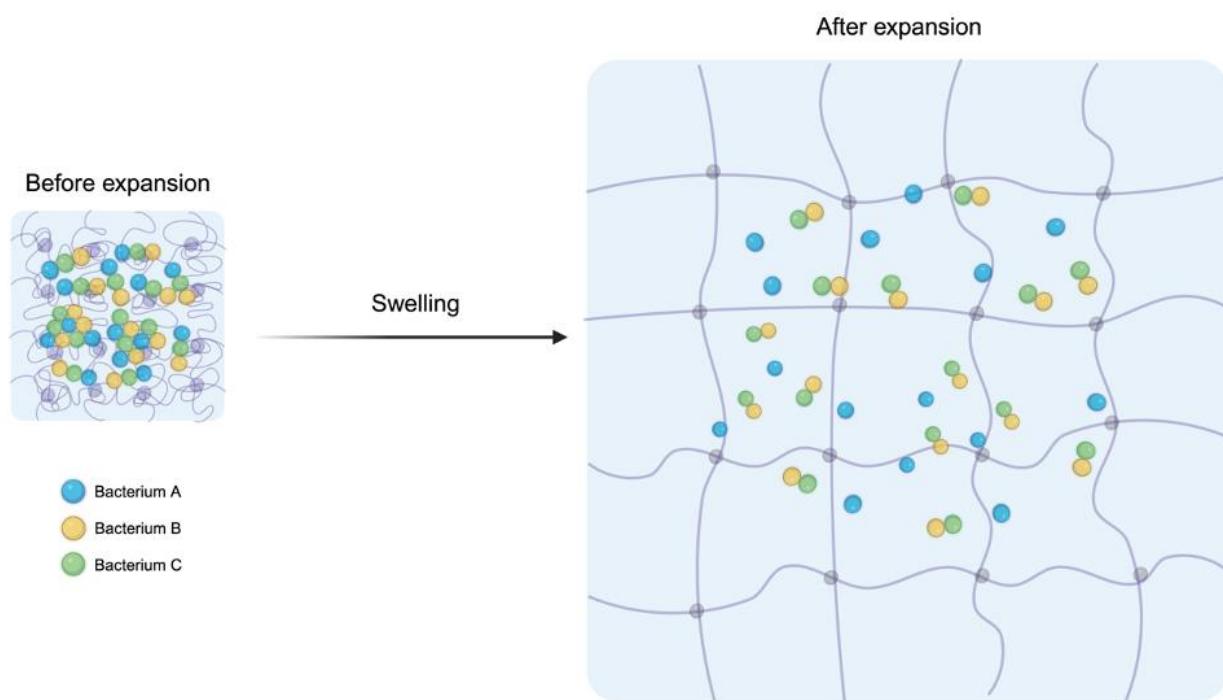
632 46. L. Guo, B. Shokeen, X. He, W. Shi, R. Lux, *Streptococcus mutans* SpaP binds to RadD of
633 *Fusobacterium nucleatum* ssp. *polymorphum*. *Molecular Oral Microbiology* **32**, 355-364
634 (2017).

635 47. P. Lancy, J. M. Dirienzo, B. Appelbaum, B. Rosan, S. C. Holt, Corncob formation between
636 *Fusobacterium nucleatum* and *Streptococcus sanguis*. *Infection and Immunity* **40**, 303-309
637 (1983).

638 48. B. Zhu, L. C. Macleod, T. Kitten, P. Xu, *Streptococcus sanguinis* biofilm formation &
639 interaction with oral pathogens. *Future Microbiology* **13**, 915-932 (2018).

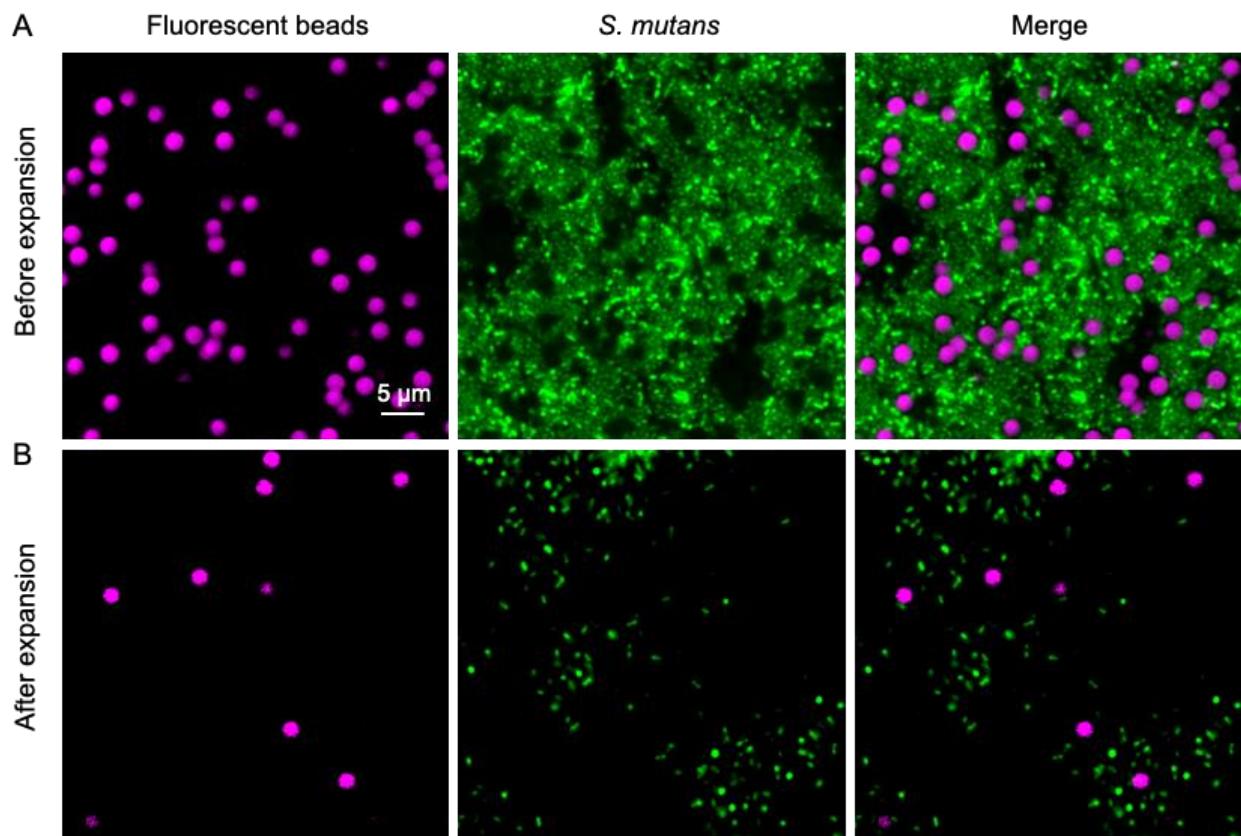
640 49. H. G. J. Damstra *et al.*, Visualizing cellular and tissue ultrastructure using Ten-fold Robust
641 Expansion Microscopy (TREx). *eLife* **11**, e73775 (2022).

642 50. A. H. Rickard, A. J. McBain, R. G. Ledder, P. S. Handley, P. Gilbert, Coaggregation
643 between freshwater bacteria within biofilm and planktonic communities. *FEMS
644 Microbiology Letters* **220**, 133-140 (2003).

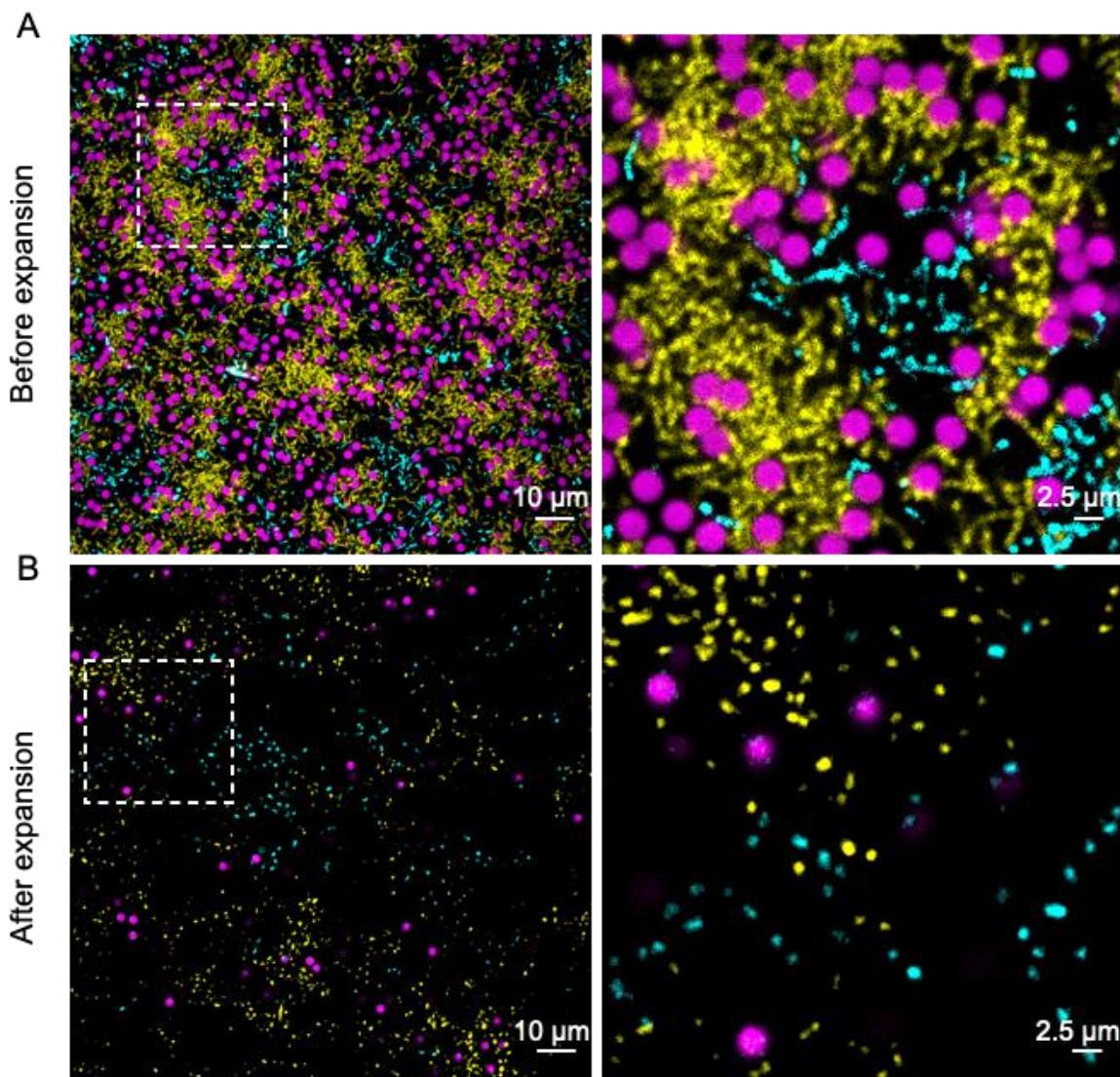

645 51. P.-T. Dong *et al.*, Episymbiotic Saccharibacteria induce intracellular lipid droplet
646 production in their host bacteria. *The ISME Journal* **18** (2024).

647 52. J. Schindelin *et al.*, Fiji: an open-source platform for biological-image analysis. *Nature
648 Methods* **9**, 676-682 (2012).

649

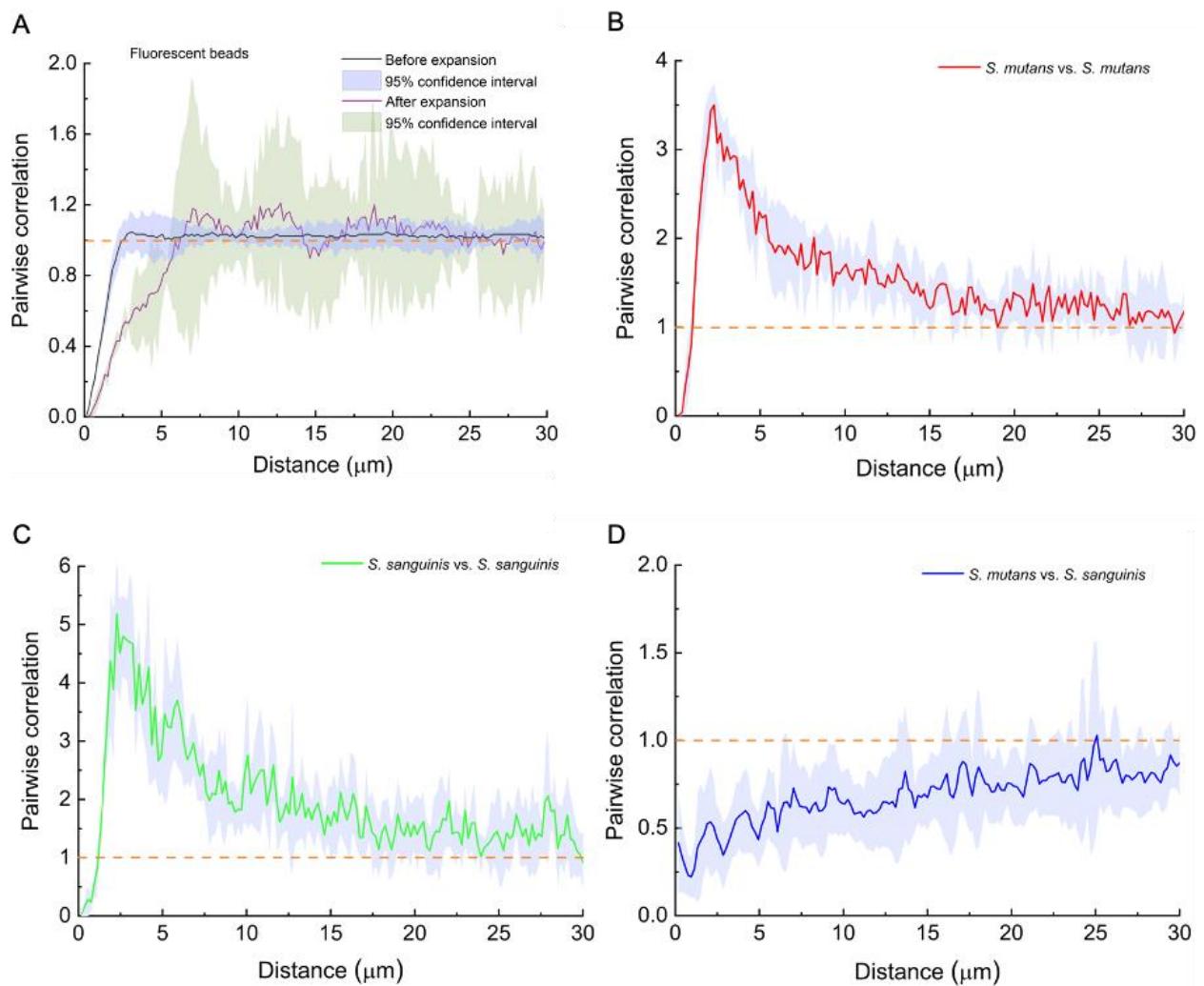

650

651 **Figure and Figure legends**

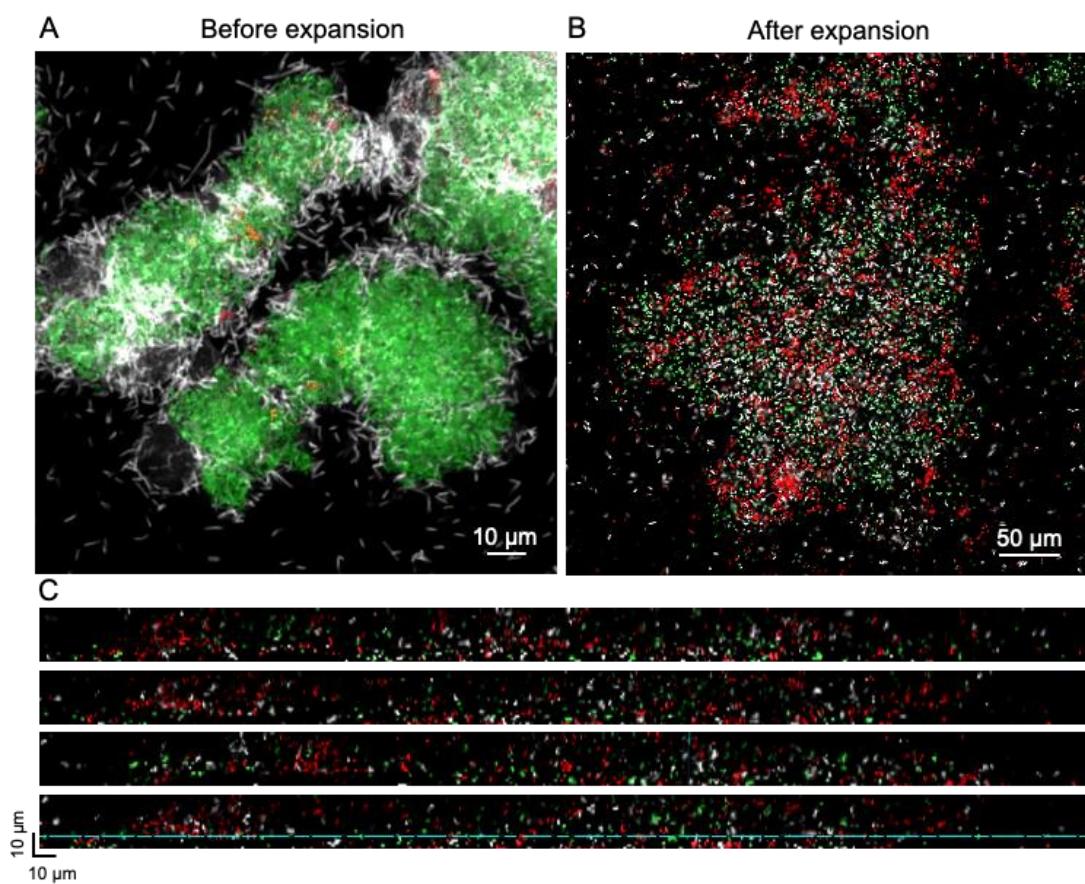


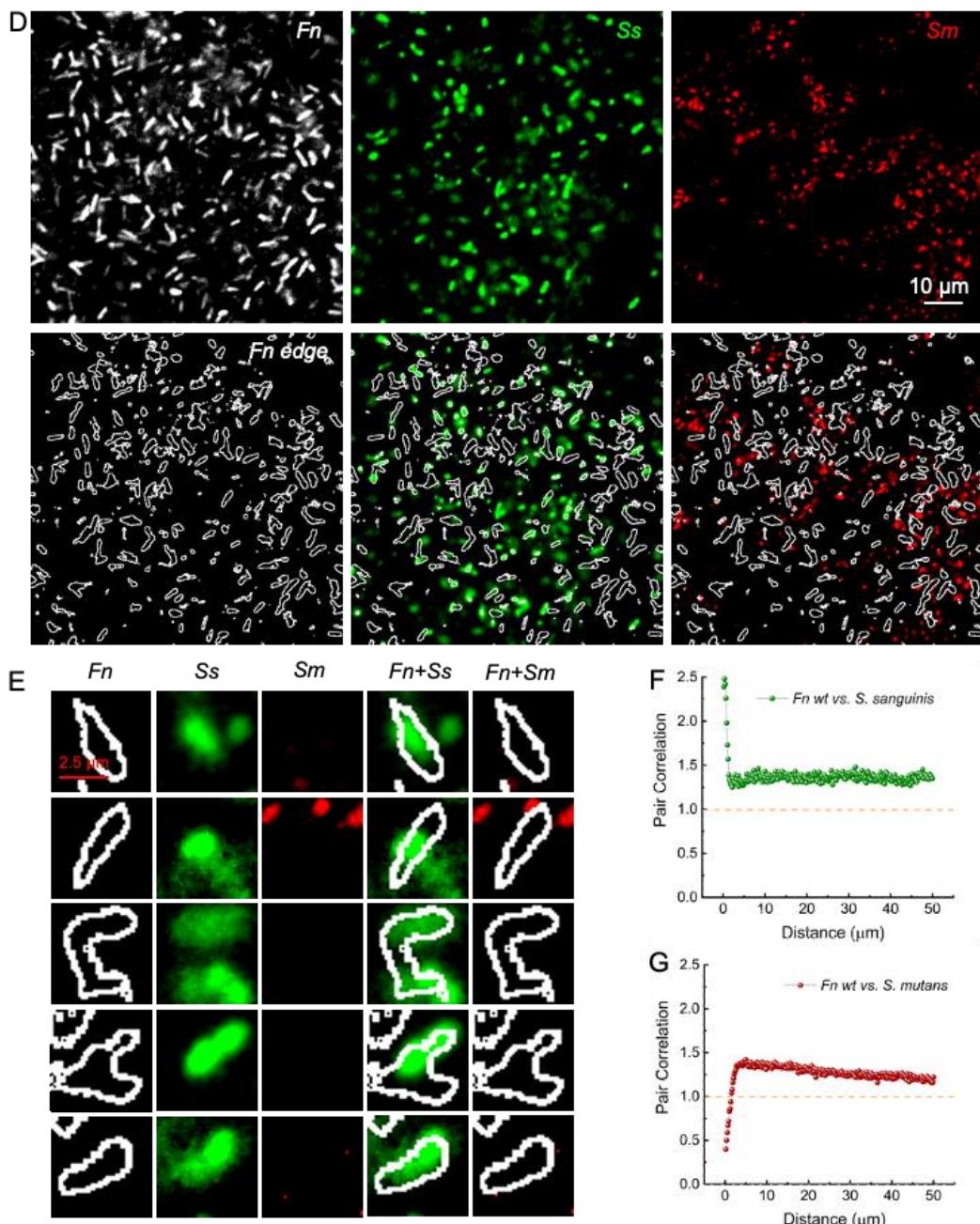
652

653 **Figure 1. Diagram illustrates application of expansion microscopy for the differentiation of microbe-microbe adhesive interactions within a microbial community.** Strongly adhesive bacteria (green and yellow) are not pulled apart during expansion while weakly adhesive bacteria (blue vs green and yellow) are pulled apart.

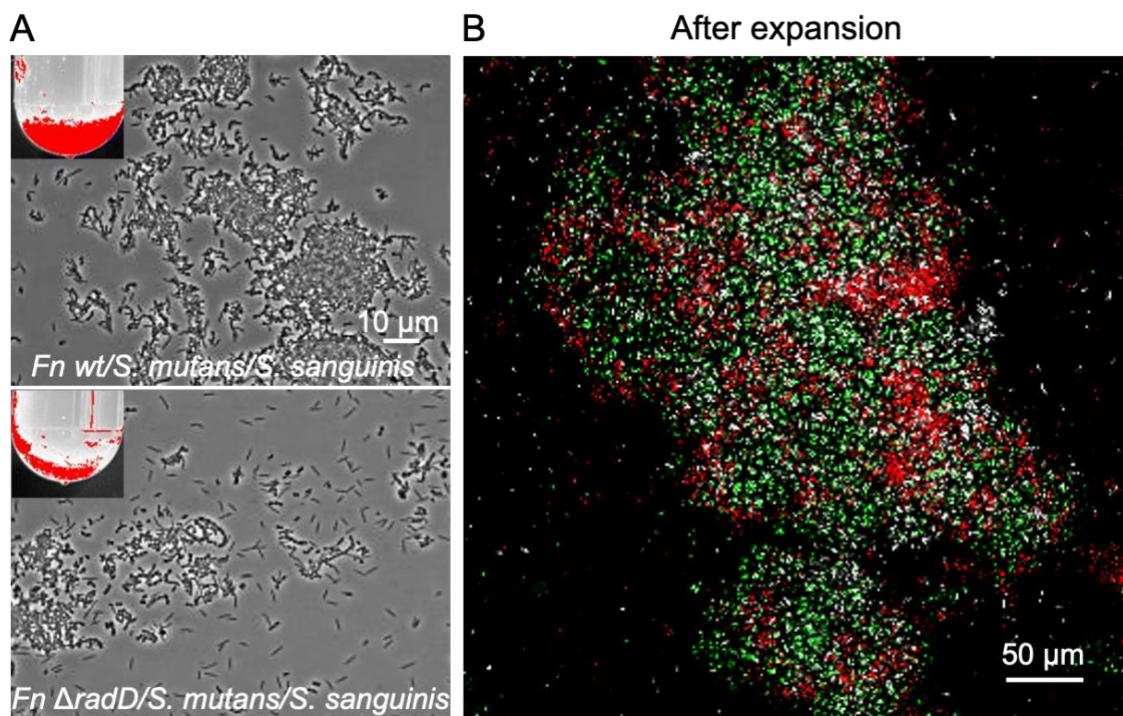

658 **Figure 2. Expansion procedure separates bacteria away from each other in a mono-species biofilm.**
659 A representative image of mono-species biofilm before expansion (A) and after expansion (B). Mono-
660 species *S. mutans* (SYTO 9-labeled; green) biofilms were cultured with fluorescent beads (magenta) serving
661 as an internal standard for non-adhesive objects. Images obtained with 63 \times oil immersion objective
662 (NA=1.4).

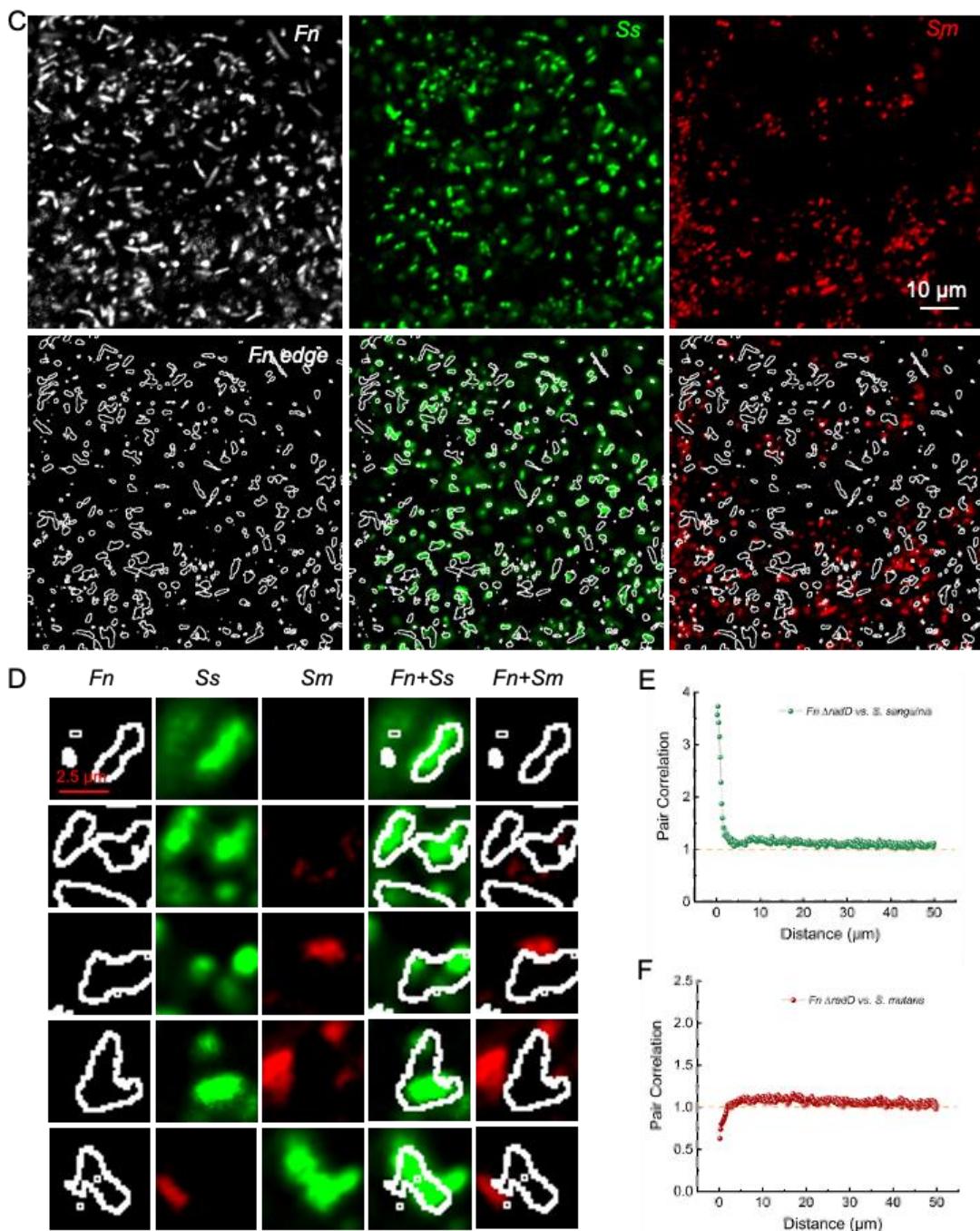
663


664 **Figure 3. Expansion procedure allows visualization of individual bacteria within a dual-species**
665 **biofilm.** A representative image along with a high-magnification image callout of dual-species biofilm
666 before (A) and after expansion (B). Dual-member *Streptococcus* biofilms were cultured with fluorescent
667 beads serving as an internal standard. Color annotation: fluorescent beads (magenta), mCherry-encoding
668 *Streptococcus mutans* (yellow), GFP-encoding *Streptococcus sanguinis* (cyan).


669

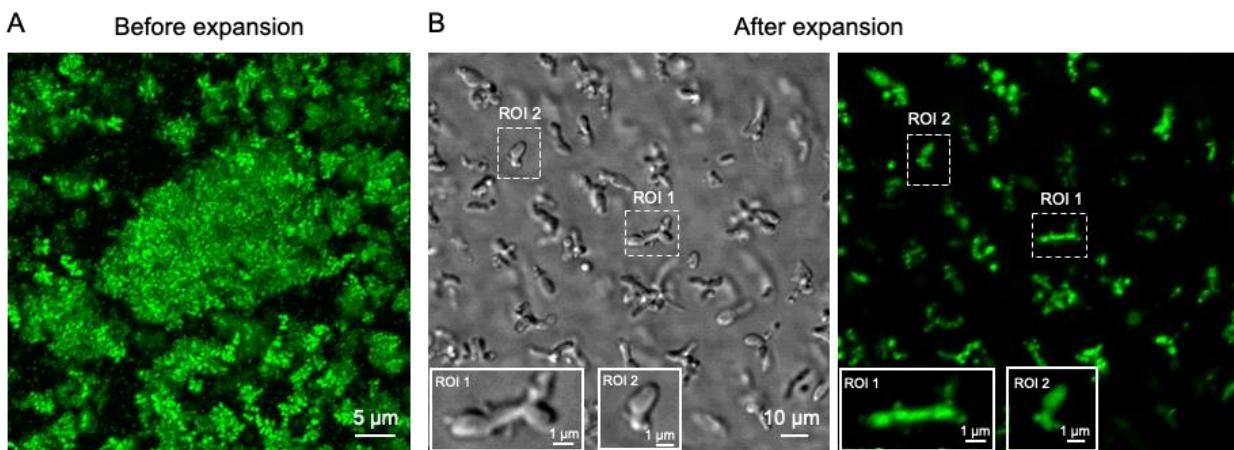
670
671
672
673
674
675
676


Figure 4. Linear dipole analysis quantifies spatial organization. Proximity analysis of fluorescent beads before and after expansion (A). Linear dipole analysis of images in Figure 3 shows within-taxon autocorrelation (B-C); inter-taxon correlation between *S. mutans* and *S. sanguinis* (D). Data: Mean (solid line) with 95% confidence interval (shaded area). A pair correlation value of 1 is highlighted by orange dashed lines in the figure panels. Pairwise correlations were calculated using 500,000 random dipoles per field of view.



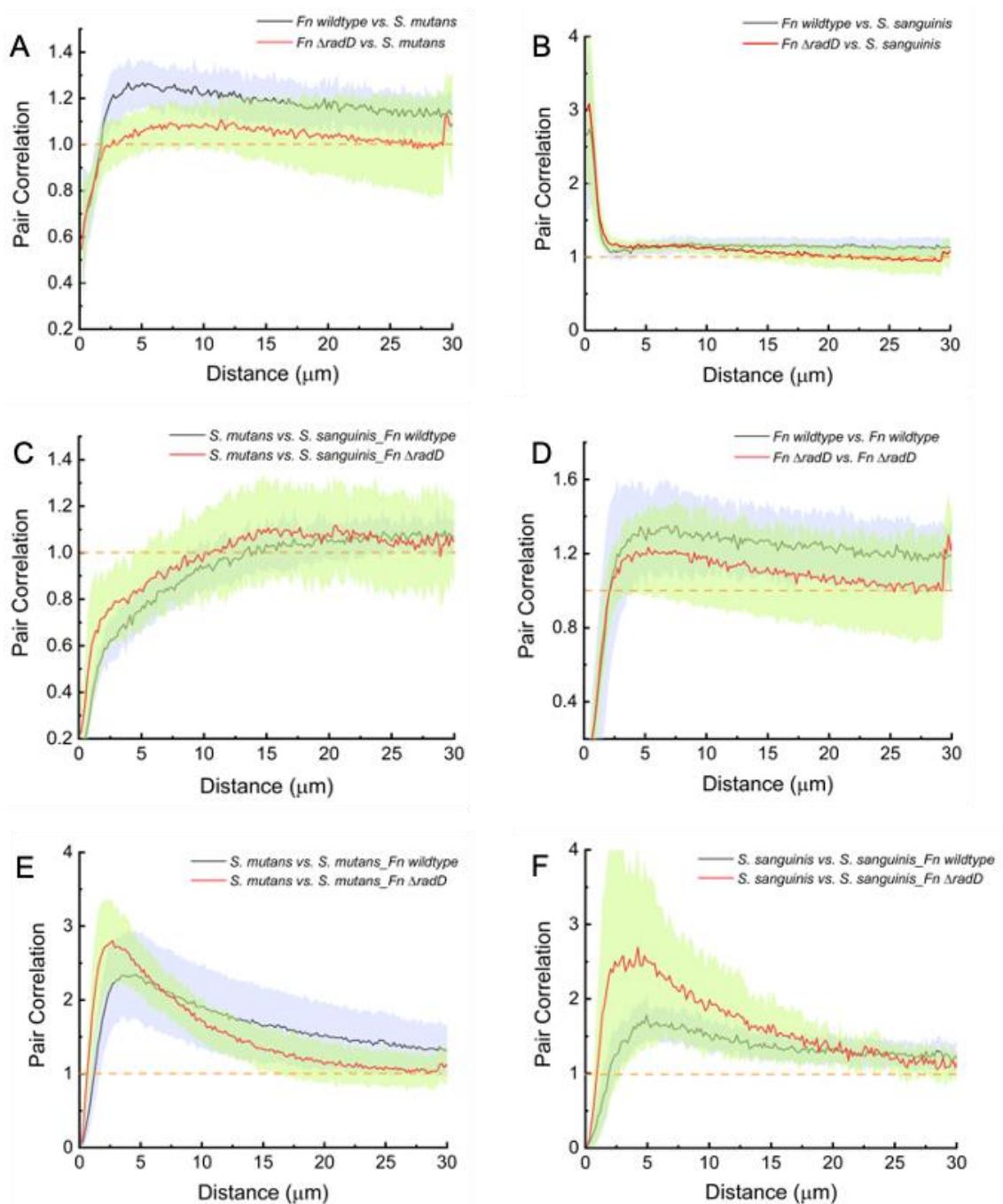
678
679
680
681
682
683
684
685
686
687
688
689
690

Figure 5. Expansion microscopy differentiates the interaction between *F. nucleatum* wildtype with two *Streptococcus* species. (A). Spectral imaging (after linear unmixing) of *F. nucleatum*-*S. mutans*-*S. sanguinis* aggregates before expansion under a 63 \times oil immersion objective (NA=1.4). Scale bar = 10 μm . (B). Spectral imaging (after linear unmixing) of *F. nucleatum*-*S. mutans*-*S. sanguinis* aggregates after expansion. 20 \times objective (NA=0.8). Scale bar = 50 μm . (C). Orthoslice views of *F. nucleatum*-*S. mutans*-*S. sanguinis* aggregates in panel (B) in the axial and lateral directions. (D-E). High-magnification views (D) and single-cell image callouts (E) of merged view of *F. nucleatum* wildtype with *S. mutans* and *S. sanguinis*. (F-G). Proximity analysis of image in (D) between *F. nucleatum* and different *Streptococcus* species aggregates after expansion. A pair correlation value of 1 is highlighted by orange dashed lines in the figure panels. Pairwise correlations were calculated using 500,000 random dipoles per field of view. Color annotation: *F. nucleatum* (white), *Streptococcus mutans* (red), *Streptococcus sanguinis* (green).



691

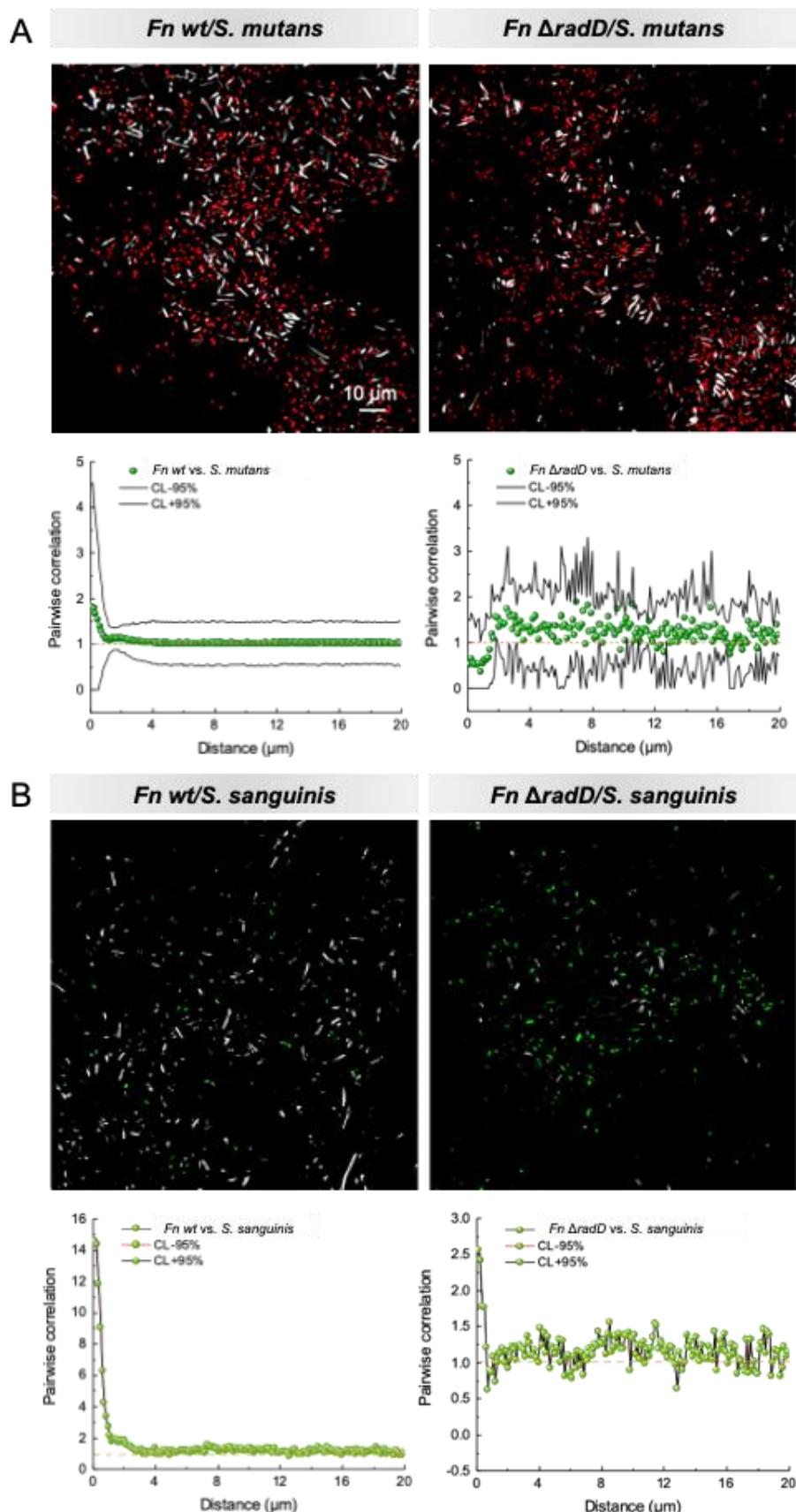
692
693
694
695
696
697
698
699
700
701
702
703
704


Figure 6. Expansion microscopy differentiates the interaction between *F. nucleatum* Δ radD with two *Streptococcus* species. (A). Coaggregation assay comparison between *F. nucleatum* wildtype and *F. nucleatum* Δ radD with two different *Streptococcus* species. Images obtained by phase microscopy; insert shows the aggregation in test-tube with heat-map to help visualize flocculant precipitate. (B). Spectral imaging (after linear unmixing) of *F. nucleatum* Δ radD-*S. mutans*-*S. sanguinis* aggregates after expansion under a 20 \times objective (NA=0.8). Scale bar = 50 μm . (C-D). High-magnification views (C) and single-cell image callouts (D) of merged view of *F. nucleatum* Δ radD with *S. mutans* and *S. sanguinis*. (E-F). Proximity analysis of image in (C) between *F. nucleatum* Δ radD and different *Streptococcus* species aggregates after expansion. A pair correlation value of 1 is highlighted by orange dashed lines in the figure panels. Pairwise correlations were calculated using 500,000 random dipoles per field of view. Color annotation: *F. nucleatum* Δ radD (white), *Streptococcus* *mutans* (red), *Streptococcus* *sanguinis* (green).

706 **Figure 7. Expansion force does not pull apart the epibiont interaction pair: *Saccharibacteria***
707 ***Nanosynbacter lyticus* strain TM7x and *Schaalia odontolytica* (XH001).** Confocal fluorescence imaging
708 of SYTO 9-labeled coculture XH001-TM7x complexes before (A) and after expansion (B). Two regions of
709 interest (ROI), dashed white boxes, are shown at high magnification (insets).
710

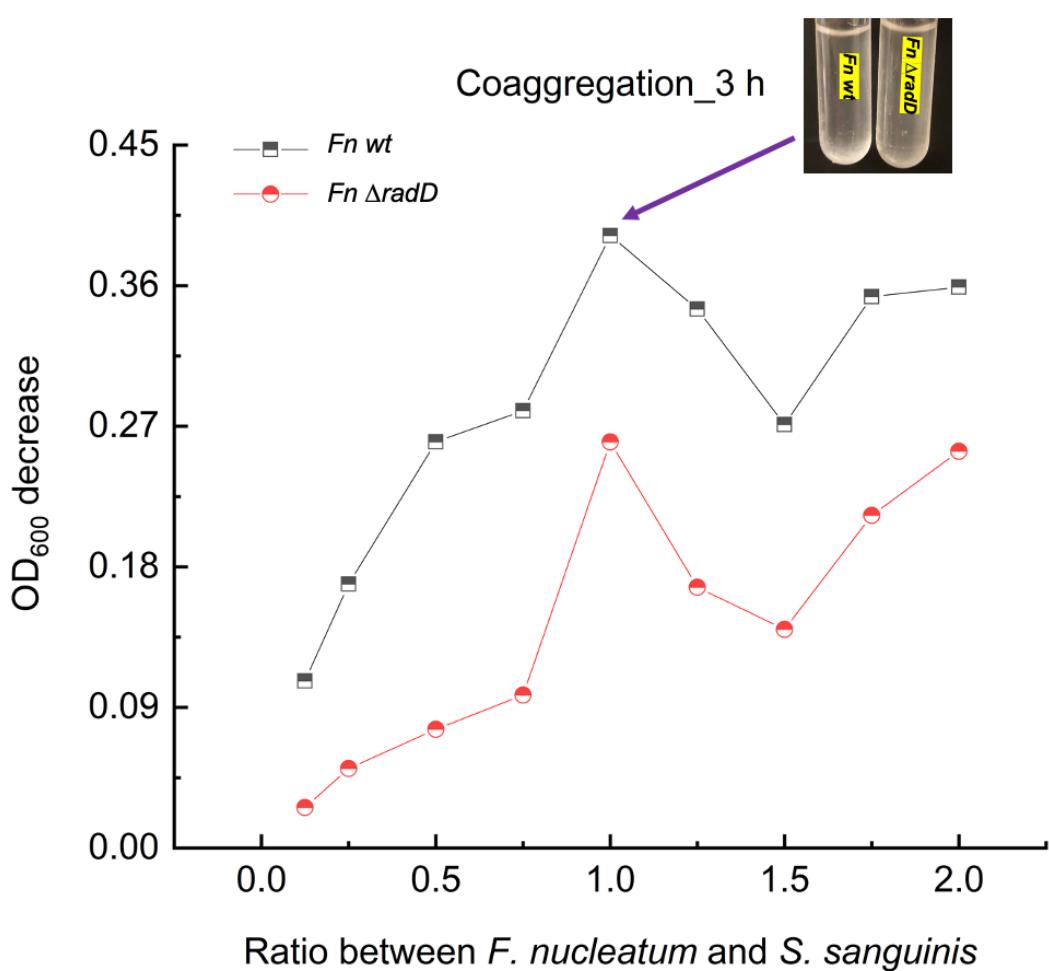
711 Supporting information

712



713

714


715 **Fig. S1. Linear dipole analysis quantifies the spatial organization of taxa within *F. nucleatum*-*S.*
716 *mutans*-*S. sanguinis* aggregates.** Data: Mean (solid line) with 95% confidence interval (shaded area) from
717 8 different fields of view. Pairwise correlations were calculated using 500,000 random dipoles per field of
718 view. A pair correlation value of 1 is highlighted by orange dashed lines in the figure panels.

719

720
721
722
723

Fig. S2. Confocal fluorescence imaging along with corresponding spatial arrangement analysis of aggregates formed between *Fn* and two individual *Streptococcus* species after expansion.

724
725
726

Fig. S3. Coaggregation assay between *Fn* wt/*Fn* ΔradD and *Streptococcus sanguinis*.