

1 **Repression of varicella zoster virus gene expression during quiescent**
2 **infection in the absence of detectable histone deposition**

3 Jiayi Wang¹, Nadine Brückner¹, Simon Weißmann², Thomas Günther²,
4 Shuyong Zhu^{1,3}, Carolin Vogt^{1,4}, Guorong Sun¹, Renzo Bruno¹, Birgit Ritter¹,
5 Lars Steinbrück¹, Benedikt B. Kaufer⁵, Daniel P. Depledge^{1,3,4}, Adam
6 Grundhoff² and Abel Viejo-Borbolla^{1,3*}

7 ¹ Institute of Virology, Hannover Medical School, Hannover, Germany

8 ² Leibniz Institute of Virology, Hamburg, Germany

9 ³ Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover
10 30625, Germany

11 ⁴ German Center for Infection Research (DZIF), partner site Hannover-
12 Braunschweig, Hannover, Germany

13 ⁵ Institute for Virology, Freie Universität Berlin, Berlin, Germany

14

15

16

17

18

19

20 *Corresponding author

21 Email: viejo-borbolla.abel@mh-hannover.de

22

23

24 **Abstract**

25 Varicella zoster virus (VZV) is a human-specific herpesvirus that establishes
26 latency in peripheral neurons. The only transcripts detected in infected human
27 trigeminal ganglia (TG) obtained shortly after death correspond to the VZV
28 latency-associated transcript (VLT) and associated VLT-ORF63 splice variants.
29 *In vitro* studies showed that VLT-ORF63 is translated into a protein (pVLT-
30 ORF63) that induces VZV transcription. The mechanisms that lead to this
31 restricted gene expression and the transition to lytic replication remain
32 unknown, partly due to the difficulty of working with human neurons. In this
33 study, we addressed whether the neuroblastoma-derived cell line SH-SY5Y
34 could serve as a model to investigate the mechanisms that lead to repression
35 of VZV gene expression followed by reactivation. VZV productively infected
36 differentiated SH-SY5Y (dSH-SY5Y) whereas incubation with acyclovir (ACV)
37 inhibited virus replication and induced a progressive repression of the virus.
38 Upon removal of ACV there was production of viral particles in a subset of cells,
39 while others contained non-replicating VZV genomes and VLT-containing
40 transcripts for at least 20 days post-infection (dpi). Exogenous expression of
41 VLT-ORF63 induced productive infection, suggesting that the non-replicating
42 and repressed genomes remained functional. Interestingly, histone deposition
43 was undetectable at VZV genomes in quiescently infected dSH-SY5Y cells,
44 pointing to a potential novel mechanism leading to VZV repression in this
45 neuronal setting.

46 **Introduction**

47 Varicella zoster virus (VZV) is a highly prevalent human pathogen that causes
48 varicella during primary infection and herpes zoster upon symptomatic
49 reactivation. A large percentage of elderly individuals also suffer post-herpetic
50 neuralgia [1, 2], the second most common type of neuropathic pain worldwide
51 [3]. Moreover, VZV can also cause pneumonia, encephalitis, meningitis and
52 vasculitis in some individuals [4, 5].

53 VZV establishes latency in neurons of the peripheral nervous system and VZV
54 DNA is detected in approximately 2-5% of sensory neurons in human trigeminal
55 ganglia (TG), with an average of 5-7 copies of the viral genome per infected
56 neuron [6-9]. Epidemiological data and clinical studies suggest that the virus
57 can also establish latency and reactivate in autonomic neurons [10, 11].

58 VZV latency is characterized by the persistence of the viral genome as an
59 episome, restricted viral transcription, and the capacity of the virus to reactivate,
60 leading to the production of new virions [12]. The VZV latency transcript (VLT)
61 is the only consistently detected VZV transcript in human TGs obtained at short
62 post-mortem intervals. Several TGs also contain VLT splice variants that
63 incorporate the open reading frame 63 (ORF63) sequence (VLT-ORF63) [13,
64 14]. VLT is encoded antisense to ORF61, the VZV homolog of herpes simplex
65 virus (HSV) infected cell polypeptide 0 [13]. *In vitro* studies with VZV-latently
66 infected human induced pluripotent stem cell (iPSC)-derived neurons (termed
67 HSN) confirmed the expression of VLT during latency, while VLT-ORF63

68 transcripts were only detected following the incubation of the cells with
69 reactivation stimuli [14]. Translation of VLT-ORF63-1 results in a protein (pVLT-
70 ORF63) that induces widespread VZV gene expression *in vitro* [14]. These
71 results suggest that VLT-ORF63 plays a role during reactivation rather than
72 latency.

73 The cellular and viral processes leading to VZV latency and reactivation are still
74 unclear. In particular, the kinetics and mechanisms of VZV genome repression
75 are not known. Foetal human neurons have been employed to study VZV
76 neuropathogenesis *ex vivo* or xenotransplanted in severe combined
77 immunodeficiency (SCID) mice [4, 15, 16]. Access to these human cells is
78 scarce, and not permitted in certain countries, complicating their use as a model
79 in many laboratories. As an alternative, human neurons can be derived from
80 embryonic and adult stem cells as well as from iPSCs to study VZV latency and
81 reactivation [17]. Human stem cell-derived neurons treated with acyclovir (ACV)
82 one day prior to infection and infected with low multiplicity of infection (MOI) in
83 the presence of ACV during 6 days support quiescent VZV infection [18]. A
84 similar model had been established for HSV by Wilcox and Johnson and is
85 widely employed to study HSV latency and reactivation, with variations in the
86 exposure time to ACV [19-25].

87 In an alternative model, infection of stem cell-derived human neurons through
88 the axonal end resulted in a phenotype reminiscent of latency [18]. Interestingly,
89 both models showed a similar phenotype, characterized by very low genome-

90 wide viral gene expression, no detectable protein translation and no viral
91 particle production. The axonal model of infection was also employed to
92 determine other aspects of VZV latent infection, including the reactivation
93 potential of the vaccine Oka strain and the expression profile of the VZV latency
94 transcript (VLT) *in vitro* [14, 26].

95 The derivation of human neurons from stem cells is expensive and time
96 consuming. In addition, it is difficult to obtain sufficient neuronal cells for
97 mechanistic experiments and to study the kinetics of VZV gene repression
98 during establishment of latency. Furthermore, the obtained neuronal cultures
99 tend to be heterogenous [27-30] and the starting precursor culture and the
100 differentiation method employed determine the percentages and types of
101 derived neuronal cells [31]. There is thus an unmet need for an expandable
102 neuron-like model that allows the study of VZV repression and reactivation.

103 To address this, we here examined the utility of the SH-SY5Y cells for the study
104 of VZV repression prior to the establishment of latency. SH-SY5Y is a subclone
105 of a neuroblastoma cell line obtained from a bone marrow biopsy [32]. SH-
106 SY5Y cells can be differentiated into mature neuron-like cells by different
107 protocols and are commonly employed to study neurological processes and
108 diseases [33-35]. They have also been employed to study the neurotropism of
109 several viruses including VZV [36, 37], HSV and HSV-derived vectors [38, 39]
110 and human cytomegalovirus [40]. While laboratory adapted and clinical VZV

111 strains productively infect differentiated SH-SY5Y cells (dSH-SY5Y) [36, 37],
112 latent infection and reactivation has not been studied with these cells.
113 Here we established a model to study VZV repression and de-repression
114 employing dSH-SY5Y cells. Our results suggest that a progressive repression
115 of VZV gene expression occurs upon ACV incubation. Non-replicating viral
116 genomes and transcripts from the VLT locus were detected in a small
117 percentage of dSH-SY5Y cells up to 20 days post-infection (dpi). Ectopic
118 expression of pVLT-ORF63 induced productive VZV infection. Interestingly, the
119 bulk of VZV genomes in non-productively infected cells were not occupied by
120 histone H3. Despite the apparent absence of repressive chromatin, however,
121 we found only a subfraction of genomes to be in an accessible state, a finding
122 which was in accord with the observed low levels of transcripts throughout the
123 viral genome and the absence of detectable viral protein and virus production.
124 These results, together with the expandable nature and robust differentiation of
125 SH-SY5Y provide an opportunity to study the mechanisms leading to VZV
126 repression and de-repression in human neuron-like cells.
127
128

129 **Results**

130 **Differentiation of SH-SY5Y cells into neuron-like cells**

131 Non-differentiated SH-SY5Y cells contain a mixture of neuronal and epithelial
132 precursor cells. To obtain differentiated SH-SY5Y (dSH-SY5Y) cells with
133 characteristics of human neurons, we modified a successful differentiation
134 method [41]. A schematic representation of the protocol is shown in Figure 1A.

135 The main modification from the original protocol was the detachment of neuron-
136 like cells with collagenase followed by seeding onto Matrigel-coated plates,
137 while the epithelial-like cells remained attached onto the original well.

138 After 18 days of differentiation, the dSH-SY5Y neuron-like cells had a smaller
139 cell body than the original cells and long, branched neurite projections
140 connecting with the surrounding cells (Fig 1B). Furthermore, from 18 days post
141 differentiation (dpd), the dSH-SY5Y cells expressed several proteins found in
142 mature neurons, including microtubule-associated protein 2 (MAP2), β -III-
143 tubulin (Tuj1), Nav 1.7, and dopamine beta hydroxylase (DBH) (Fig 1C). We
144 did not detect DAPI positive cells lacking neuronal markers, suggesting that the
145 majority of cells had a neuron-like phenotype. We then tested whether dSH-
146 SY5Y cells underwent active mitosis by performing KI67 staining. In
147 undifferentiated SH-SY5Y cells, 56% of the cells were KI67 positive. This
148 reduced to 14% at 12 dpd, 3% at 20 dpd, and 1% at 30 dpd (Fig 1D), indicating
149 that dSH-SY5Y cells were predominantly post-mitotic at 20 dpd.

150 These results indicate that the modified protocol resulted in successful neuronal
151 differentiation of SH-SY5Y cells.

152

153 **VZV reporter virus replicates efficiently in neuron-like SH-SY5Y cells**

154 To follow the infection and spread of VZV in dSH-SY5Y cells, we employed a
155 recombinant bacterial artificial chromosome (BAC) VZV pOka strain [42]
156 expressing RFP fused to immediate early ORF63 and GFP fused to the leaky-
157 late gene ORF11 (termed v63R/11G, Fig 2A). The expression of the fluorescent
158 proteins allowed us to observe the progression of VZV productive infection.

159 We infected dSH-SY5Y cells with cell-free v63R/11G at an MOI of 0.001, and
160 detected RFP and GFP positive cells at 3, 5 and 12 dpi. The number of RFP
161 and GFP positive cells increased over time (Fig 2B). Similarly, the viral genome
162 copy number increased from an average of 2 copies per cell at 1 dpi to an
163 average of 50 copies per cell at 6 dpi (Fig 2C). The transcripts of immediate
164 early genes ORF4 (IE4), ORF61 (IE61) and early gene ORF68 (glycoprotein E,
165 gE) [43] also increased over time (Fig 2D-F). These results showed that
166 v63R/11G efficiently replicates in dSH-SY5Y, in line with previous observations
167 [36, 37].

168

169 **The duration of ACV incubation determines the level of repression of VZV
170 gene expression in dSH-SY5Y cells**

171 A previous study showed that pretreatment of human stem cell-derived neurons
172 with ACV for 24 hours followed by low MOI VZV infection in the presence of
173 ACV for 6 days leads to a phenotype reminiscent of latency [18]. Therefore, we
174 employed the same procedure in an attempt to establish VZV quiescent
175 infection and reactivation in dSH-SY5Y cells. We also employed different ACV
176 incubation times to determine whether this would impact VZV repression. We
177 pretreated dSH-SY5Y cells for 24 hours with ACV and then infected them at an
178 MOI of 0.001 in the presence of the drug during 2, 3, 4, 5 or 6 dpi (Fig 3A). We
179 monitored the cells twice a day for 30 dpi to detect ORF63-RFP and ORF11-
180 GFP expression, indicative of productive VZV replication. We observed a
181 negative correlation between the number of days the infected-cells were
182 incubated with ACV and the time post-ACV removal when ORF63-RFP- and
183 ORF11-GFP-positive cells were detected (Fig 3B, C). At 30 dpi, only 1 well
184 (1.4% of wells) had ORF63-RFP- and ORF11-GFP-positive cells when cells
185 had been incubated with ACV for 6 dpi. However, this increased to 45.7% of
186 wells in cells incubated with ACV for 5 dpi. These results indicated that the time
187 of ACV incubation positively correlates with the duration of VZV inhibition.

188

189 **Incubation with ACV for 5 days results in a repressive phenotype that can
190 be spontaneously reversed**

191 We next focused on dSH-SY5Y cells incubated with ACV for 5 dpi (Fig 4A). The
192 samples containing cells expressing ORF63-RFP and ORF11-GFP have

193 replicating VZV and were termed “R”, while those lacking the fluorophores were
194 termed “NR”. The expression of ORF63-RFP and ORF11-GFP also correlated
195 with the presence of VZV gE (Fig 4C).

196 We quantified the expression of *ORF61* and *ORF68* during acute infection as
197 well as at several dpi following incubation with ACV in samples lacking
198 detectable ORF63-RFP and ORF11-GFP (Fig 4D, E). We also analyzed cells
199 expressing ORF63-RFP and ORF11-GFP at different days post-release of
200 repression (dpr) by ACV. The expression of both *ORF61* and *ORF68* was
201 higher during acute infection than in the other conditions and it increased with
202 time, indicating productive viral replication and virus spread. By contrast, the
203 expression of both genes was very low in the presence of ACV and following
204 ACV removal. The viral gene expression in wells that contained ORF63-
205 RFP/ORF11-GFP positive cells, indicative of VZV replication, was 10-20 times
206 higher than in those lacking ORF63-RFP/ORF11-GFP positive cells but lower
207 than in acute infection, and also increased with time (Fig 4D,E).

208 We also quantified VZV genome copy numbers as a surrogate of VZV
209 replication (Fig 4F). The number of viral genomes increased in the cells infected
210 without ACV, while in those exposed to ACV for 5 days, the level of viral
211 genomes decreased with time. To determine whether cells lacking detectable
212 ORF63-RFP and ORF11-GFP expression contained the viral genome, we
213 performed *in situ* hybridization (DNAscope) in wells lacking detectable
214 expression of these fluorophores and detected VZV DNA (VLT locus) at 12 and

215 20 dpi. The virus genome was detected in about 5% of the cells that were
216 incubated with ACV for 5 days (Fig 4G). The low number of viral genomes
217 detected by *in situ* hybridization combined with qPCR results, suggest that there
218 was no ongoing viral replication in these cells.

219 Finally, seeding of dSH-SY5Y cells expressing ORF63-RFP and ORF11-GFP
220 on top of ARPE19 cells led to productive infection of these epithelial cells (Fig
221 4H), demonstrating the presence of infectious viral particles. These results
222 suggest that incubation with ACV for 5 days leads to two phenotypes, one
223 characterized by cells containing viral genomes that produce infectious virus
224 and another one by cells that maintain non-replicating viral genomes.

225

226 **Less than 5% of dSH-SY5Y cells incubated with ACV during 6 days
227 maintain non-replicating viral genomes for at least 30 dpi**

228 The presence of ACV 1 day prior to VZV infection and during 6 dpi led to a near
229 complete repression of VZV, with 98.6% of VZV infected wells containing cells
230 lacking ORF63-RFP and ORF11-GFP expression for up to 30 days (Fig 3C and
231 Fig 5A, B). Similarly, we could not detect viral proteins gE and IE4 by WB at
232 different dpi following 6 days incubation with ACV (Fig 5C). The expression of
233 VZV *ORF4*, *ORF61* and *ORF68* was much lower in ACV incubated cells than
234 in acute infected cells at 6 dpi and decreased further over time following ACV
235 removal (Fig 5D-F). We detected viral DNA by qPCR in the inoculated wells at

236 6, 12, 16, 20 and 30 dpi, with DNA copy numbers consistently averaging 1
237 genome copy or less per cell (Fig 5G).

238 We detected VZV DNA (VLT locus) at 12 and 20 dpi in about 4.4% of cells that
239 were incubated with ACV for 6 days (Fig 5H). These results suggested that a
240 low number of dSH-SY5Y cells infected with VZV in the presence of ACV for 6
241 dpi maintain VZV genomes with very low gene expression, lack of detectable
242 protein and virus production, potentially reflecting a quiescent state.

243 We repeated these experiments with a BAC-derived pOka strain VZV
244 expressing GFP instead of ORF57 (pOka-Δ57-GFP, Supplementary Figure 1
245 and not shown). This virus was previously generated (Accession number
246 PP378487; [44]). We obtained similar repression of VZV in the presence of ACV
247 for 6 days, suggesting that the obtained results were not strain specific.

248

249 **Ectopic VLT-ORF63 expression induces VZV replication and virus
250 production in infected dSH-SY5Y cells incubated with ACV for 6 days**

251 We next examined whether addition of drugs previously used as reactivation
252 stimuli could induce de-repression of VZV after 6 days incubation with ACV.

253 We tested LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K) and
254 suberanilohydroxamic acid (SAHA), an inhibitor of histone deacetylases, at 8
255 dpi (2 days after removal of ACV) (Fig 6A). LY294002 has been previously
256 shown to induce VZV reactivation [18], while SAHA induces reactivation of
257 Kaposi's sarcoma-associated herpesvirus (KSHV) [45]. Incubation with LY or

258 SAHA slightly increased VZV gene expression without detectable ORF63-RFP
259 and ORF11-GFP protein, lack of infectious virus, and led to cell death after 4
260 days of incubation (Fig 6B,C).

261 Ectopic VLT-ORF63 expression induced transcription of VZV IE, E, and L
262 genes in latently VZV-infected HSN, suggesting that the pVLT-ORF63 fusion
263 protein is involved in the transition from latency to lytic infection [14]. Therefore,
264 we addressed whether the ectopic expression of VLT-ORF63 could induce VZV
265 reactivation and production of infectious virus in the dSH-SY5Y cells infected in
266 the presence of ACV for 6 days. We incubated quiescently infected dSH-SY5Y
267 cells with SAHA and LY294002, or transduced them with lentiviruses
268 expressing VLT-ORF63 or GFP (Supplementary Figure 2). The VLT-ORF63
269 lentivirus induced VZV protein expression and virus spread, monitored by
270 ORF63-RFP and ORF11-GFP positive cells in about half (21/41) of the wells
271 (Figure 6D,E), while the eGFP control lentivirus or the treatment with SAHA and
272 LY did not (Figure 6B,C and data not shown).

273 A single nitrocellulose membrane was used to detect protein expression
274 sequentially (Supplementary Figure 3, blots on left side). VLT-ORF63 or
275 ORF63-RFP proteins were detected in acutely infected cells, in “NR” (probably
276 expressed from the VLT-ORF63 lentivirus) and “R” samples. ORF63, gE and
277 ORF11-GFP were detected only in acutely infected cells and “R” samples, while
278 eGFP was also observed in cells transduced with eGFP control lentivirus.
279 Considering the similar size of VLT-ORF63 and ORF63-RFP proteins, another

280 nitrocellulose membrane loaded with the same samples was incubated with an
281 anti-RFP antibody to confirm the expression of ORF63-RFP in acutely infected
282 cells and “R” samples (Supplementary Figure 3, blots on right side).

283 These results show that pVLT-ORF63 releases the repression on the VZV
284 genome in dSH-SY5Y cells incubated with ACV for 6 days, highlighting that the
285 infection was not abortive.

286

287 **Incubation with ACV leads to low level genome-wide VZV transcription in
288 infected dSH-SY5Y cells**

289 We next analyzed the VZV transcriptome in dSH-SY5Y cells infected in the
290 presence of ACV during 3, 4, 5 and 6 dpi at different times post-ACV removal.

291 We detected transcripts across the VZV genome, although of low magnitude
292 (Fig 7A, B). The expression level negatively correlated with ACV incubation
293 time. Whether any of these transcripts corresponds to mature RNA that could

294 be translated is unknown at present. We detected transcription across the VLT
295 exons in acutely infected cells and at 2 days post-ACV removal following 5 and
296 6 days incubation with ACV (Supplementary Figure 4). VZV genome-wide
297 expression was also reported when infecting human stem cell-derived neurons

298 in the presence of ACV or through the axonal end [18, 26]. We also performed
299 RNA *in situ* hybridization (RNAscope) with a probe that binds VLT and VLT-

300 ORF63 transcripts [14] and detected these transcripts in the cytoplasm of about
301 1% of dSH-SY5Y cells at 12 and 20 dpi (following incubation with ACV for 6

302 days) (Fig 7C). This corresponds to about 20-25% of cells containing the viral
303 genome. These results suggest that a small number of dSH-SY5Y cells
304 maintained the viral genome without active replication and expressing VLT or
305 VLT-ORF63.

306

307 **Only a minority of VZV genomes in quiescently infected dSH-SY5Y cells**
308 **are accessible while the bulk of genomes lack detectable histone**
309 **deposition**

310 We performed ChIP-seq and ATAC-seq analyses of ACV-treated dSH-SY5Y
311 cells 13 days after infection to elucidate the chromatin status of resident VZV
312 genomes. These experiments were performed with v63R/11G and the parental
313 BAC-derived pOka strain lacking any fluorophores (termed WT, [42]). Mapping
314 to the human genome confirmed the fidelity and functionality of reagents and
315 experimental protocols. As examples, the top and center panels in Figure 8
316 show coverage tracks of two regions on chromosome 17 and 19 that
317 encompass loci enriched for facultative and constitutive heterochromatin marks
318 (H3K27me3 and H3K9me3, respectively), but also contain euchromatic
319 promoter regions decorated by activation-associated H3K3me3 and H3K27ac
320 marks. Figure 8B shows average read densities of ChIP-seq and ATAC-seq
321 samples across all annotated human transcriptional start sites (TSS). As
322 expected, H3K27ac and H3K4me3 signals were strongly enriched in the +/- 2.5
323 kb flanking regions, with locally decreased coverage indicative of a

324 nucleosome-free region at the TSS in the center. Conversely, ATAC-seq
325 densities exhibited marked peaks flanking the position of the +1 nucleosome.
326 Surprisingly, although VZV was highly covered by input reads, we did not
327 observe any significant histone modification patterns across the viral genome
328 (lower panel in Figure 8A). Indeed, when compared to input and the host
329 genome, pan-H3 ChIP-seq coverage was also very low, suggesting that most
330 viral genomes lack canonical chromatin. In support of this notion, Figure 8C
331 shows a relative enrichment analysis of the viral genome compared to positive
332 and negative host regions for each of the analyzed histone marks. For this
333 purpose, we determined average ChIP-seq signals by calculating enrichment
334 in the most significantly called host peak regions (positive control regions, left
335 panel) relative to a set of randomly selected negative host regions (set to one;
336 center panel) and compared these to input-normalized values from windows
337 shifted across the viral genome (right panel). As anticipated, the magnitude of
338 positive control ChIP-signals varied between individual antibodies, with the
339 greatest and lowest values observed for the H3K4me3 and pan-H3 antibodies,
340 respectively (note that low signals are to be expected for pan-H3, as overall
341 nucleosome density does not exhibit high variability across host regions). As
342 shown in the right panel, ChIP-seq signals in the viral genome were consistently
343 below one (i.e., the value assigned to the negative control regions), likely
344 reflecting the fact that histone-free genomes do not elicit either specific or
345 unspecific signals and contribute to input only.

346 In contrast to ChIP-seq, ATAC-seq produced appreciable coverage across the
347 entire viral genome (bottom panel and track in Figure 8A). Nevertheless,
348 quantitative analyses of input-normalized ATAC-seq signals demonstrates that
349 viral ATAC-seq signal levels, though significantly above background ($p=1.2E-$
350 48, one-sided heteroscedastic t-test), reach only 6% of those seen in positive
351 host regions (Fig. 8D). This observation suggests that, although the bulk of viral
352 genomes is not decorated by histones, only a subset of them is accessible to
353 Tn5 transposase in ATAC-seq assays. Since we obtained similar results with
354 pOka and v63R/11G, our results indicate that the obtained results are not strain
355 specific.

356

357

358 **Discussion**

359 How neuronal cells repress and regulate VZV gene expression prior to and
360 during latency and how this repression is released upon reactivation is not
361 known. This is partly due to the difficulty of performing experiments such as
362 ChIP-seq that require large number of cells with human neuronal models that
363 support latency and reactivation. Here, we attempted to establish a human
364 neuronal model with dSH-SY5Y cells to investigate how VZV is repressed and
365 maintained in a quiescent state.

366 dSH-SY5Y cells are commonly employed in neurobiological research [46-48],
367 in neuroinfection [36, 37, 49, 50] and support full VZV replication and cell-to-
368 cell spread [36, 37, 51], but a quiescent state has not been previously reported.
369 Differentiation of SH-SY5Y cells was successful as shown by the expression of
370 neuronal markers, as well as by lack of cell division. Two different recombinant
371 VZV replicated and spread in dSH-SY5Y, in line with previous reports [36, 37,
372 52]. We employed ACV to establish a non-productive infection as previously
373 done with stem cell-derived neurons [18]. Longer ACV incubation times
374 drastically reduced the frequency of productive replication after ACV removal.
375 These results, together with the progressive reduction in gene expression
376 across the whole VZV genome upon removal of ACV, suggest that following
377 VZV entry in dSH-SY5Y cells, there was a progressive repression of viral gene
378 expression that correlated with the duration of ACV treatment. One interesting
379 observation was the different phenotype when cells were treated with ACV for

380 5 days in comparison with 6 days. Incubation with ACV for 5 dpi repressed VZV
381 but allowed spontaneous de-repression in about half of the wells following
382 removal of the drug. In contrast, repression after 6 days of ACV treatment was
383 nearly complete, with only 1.4% of wells containing productively infected cells
384 at 30 dpi.

385 Approximately 4.4% of individual neuron-like cells treated with ACV for 6 dpi
386 retained the viral genome for at least 20 dpi. The fact that only one copy of the
387 genome was normally detected in these cells suggests that there was no DNA
388 replication and the infection could be abortive. However, about 1% of these
389 repressed cells – corresponding to approximately 20-25% of cells harboring the
390 genome – expressed transcripts across VLT exons at 12 and 20 dpi. Since the
391 RNAscope probe employed detects both VLT and VLT-ORF63 transcripts, we
392 cannot conclude which one is expressed in these neuron-like cells. However,
393 these results suggest the establishment of restricted gene expression in a
394 reduced number of dSH-SY5Y cells and indicate that the infection in the
395 presence of ACV during 6 days was not abortive, at least in these cells. This
396 was supported by the production of infectious virus upon exogenous expression
397 of VLT-ORF63.

398 We also observed a reduction in the level of viral gene expression over time
399 when analyzing the VZV transcriptome. The transcriptome profile of VZV in
400 dSH-SY5Y cells incubated with ACV was similar to that of acutely infected cells,
401 although with much lower expression. Previous results employing stem cell-

402 derived neurons also found that following ACV incubation, or upon axonal
403 infection, the transcription profile of VZV did not mirror the transcriptome
404 obtained in human TG following decades of latent infection [18, 26]. In these
405 reports the expression of VLT was not investigated since this transcript had not
406 been discovered yet [13]. In another report, axonal infection of human iPSC-
407 derived neurons with cell-free VZV pOka strain led to expression of VLT and
408 non-detectable expression of ORF63 by RT-qPCR, suggesting that a latent
409 phenotype was achieved, although the genome-wide transcription profile of
410 VZV was not analyzed [14].

411 As has been shown for HSV [53, 54], regulation of VZV latency is probably
412 mediated by a combination of immune and epigenetic mechanisms. We
413 hypothesized that repressive histone modifications were responsible for the
414 phenotypes observed after long-term ACV incubation in dSH-SY5Y cells.
415 Surprisingly, however, we could not detect any significant enrichment of
416 histones (H3 and modifications as well as H2AK119Ub) on the viral genome of
417 infected dSH-SY5Y cells treated with ACV during 13 days. These results were
418 obtained with two different recombinant VZV, the parental pOka and v63R/11G,
419 indicating that they were not due to the modification of the viral genome. Our
420 observations strongly suggest that the bulk of VZV genomes in ACV-treated
421 cells are nucleosome-free and consequently cannot be silenced by
422 transcriptional repressors recruited via histone marks. Nevertheless,
423 considering that only a small proportion of viral genomes produced ATAC-seq

424 signals, we suspect that repression may, at least in part, be the consequence
425 of reduced accessibility of viral genomes to transcription factors and/or the
426 transcriptional machinery. While the underlying mechanisms will doubtlessly
427 require further investigation, we consider sequestration or entrapment of
428 genomes in sub-nuclear compartments such as, for example, phase-separated
429 PML bodies or stalled replication compartments as potentially contributing
430 factors.

431 There is also the possibility that at least some of the persisting VZV genomes
432 may be partially or fully protected by capsid proteins, e.g., in virions trapped at
433 the nuclear envelope or in PML bodies [55, 56]. Likewise, it is possible that
434 histone-independent recruitment of repressors such as IFI16 or SMC5/6 could
435 contribute to transcriptional repression, as shown for other viruses including
436 HSV-1 [57-62]. Another confounding factor could be DNA methylation, although
437 this epigenetic mark does not seem to be relevant during HSV-1 latency [63,
438 64]. Apart from the presumably inactive genomes, we also do not know to what
439 extent the minority of VZV genomes that are accessible in ATAC-seq assays
440 contribute to the observed phenotypes. Since these genomes appear to be
441 globally accessible, it is tempting to speculate that they may represent the
442 source of the observed low-level genome-wide transcription patterns. However,
443 at present we also cannot exclude the possibility that transcription originates
444 from a very small subfraction of chromatinized genomes that is below the
445 detection limit of our ChiP-seq assays.

446 Therefore, more research is warranted to understand how VZV is repressed

447 upon infection of neuronal cells.

448 Overall, our results suggest that dSH-SY5Y could be employed to investigate

449 the initial steps that lead to repression, persistence and reactivation of the VZV

450 genome. Moreover, they point to the existence of potentially novel mechanisms

451 involved in VZV repression.

452

453

454

455

456

457 **Materials and methods**

458 **Cells and virus**

459 Neuroblastoma-derived SH-SY5Y (ATCC-CRL-2266) and epithelial ARPE19
460 (ATCC-CRL-2302) cells were maintained in a humidified incubator at 37 °C with
461 5% CO₂. Undifferentiated SH-SY5Y cells were cultured in DMEM/Nutrient
462 mixture F-12 Ham medium (Sigma) with 15% Fetal bovine serum (Sigma),
463 supplemented with penicillin–streptomycin (Cytogen) and L-glutamine
464 (Cytogen). ARPE19 cells were cultured in DMEM/Nutrient mixture F-12 Ham
465 medium with 8% FBS, supplemented with penicillin–streptomycin and L-
466 glutamine.

467 **Generation of fluorescent reporter viruses**

468 We previously fused the monomeric red fluorescent protein (mRFP) to the C-
469 terminus of ORF63/70 in the pOka bacterial artificial chromosome system
470 (BAC) (pP-Oka) [42] and could show that it is expressed in persistently infected
471 neuronal cells [65, 66]. To visualize productively infected cells, we fused eGFP
472 to the C-terminus of ORF11 (UL47), a tegument protein that is only expressed
473 during lytic replication, using two-step Red-mediated en passant mutagenesis
474 [67, 68]. Recombinant BAC clones were confirmed by PCR, DNA sequencing
475 and RFLP using different restriction enzymes to ensure integrity of the virus
476 genome. The recombinant virus was reconstituted by transfection of BAC DNA
477 into MeWo cells as described previously [42, 69].

478

479 **Cell-free VZV preparation**

480 Monolayers of ARPE19 cells growing in P150 dishes were used to prepare cell-
481 free virus. ARPE19 cells were infected with the VZV cell debris or cell-
482 associated virus. Cell-free virus was prepared when about 80% of cells were
483 RFP positive. The infected ARPE19 cells were washed with ice-cold PBS and
484 then detached by scraping in ice-cold PSGC (PBS containing 5% sucrose
485 (Roth), 0.1% monosodium-glutamate (Sigma) and 10% FCS) buffer (5 ml
486 PSGC buffer/ P150 dish). The cells were transferred into 50 ml tubes and
487 sonicated on ice 3 times for 15 seconds with a 15 second interval with a
488 Bandelin Sonorex RK100 sonicator. Then, the cells were centrifuged for 15
489 minutes at 1000 g at 4 °C. The supernatant was transferred to a new 50 ml tube
490 and mixed with ice-cold Lenti-X concentrator (ratio Lenti-X:supernatant = 1:4 or
491 1:3). The mixture was incubated at 4 °C for 2-3 hours, followed by centrifugation
492 at 1,500 g at 4 °C for 45 min and removal of the supernatant. The cell pellet
493 containing 10-fold concentrated cell-free virus was resuspended and aliquoted
494 in ice-cold PSGC buffer and stored at -80 °C.

495

496 **Titration of VZV**

497 The determination of 50% tissue culture infection dose (TCID50) based on
498 Spearman-Karber method was used to determine the virus titer. To this end,
499 ARPE19 cells at a confluence of about 70% in 96 well plates (~ 10⁴ cells per
500 well) were infected with serial dilutions of cell-free VZV. Cell-free VZV stocks

501 were thawed in a 37 °C water bath and 10-fold serial dilutions were prepared in
502 DMEM/F12 medium containing 2% FBS. For each viral dilution factor, 8 wells
503 in a 96 well plate were inoculated with 100 µL/well and infection was assessed
504 by RFP and GFP expression. The inoculum was maintained for 6 days, when
505 the number of wells containing RFP and GFP expression was counted, and the
506 VZV titer was calculated according to the Spearman-Karber formula:
507 $\log_{10} \text{TCID50} = -(X_0 - d/2 + d/n * \sum X_i)$.

508 $X_0 = \log_{10}$ of the reciprocal of the maximum dilution (minimum concentration)
509 where all wells were infected; $d = \log_{10}$ of the dilution factor; $n =$ number of
510 replicates / dilution; $X_i =$ total number of virus-infected wells after X_0 , including
511 X_0 . The final titer in plaque forming units per mL (PFU/mL) was calculated using
512 the formula $0.69 * \text{TCID50}/\text{mL}$.

513

514 **Differentiation of SH-SY5Y cells**

515 When SH-SY5Y cells reached approx. 60-70% density in a P100 dish, they
516 were used for differentiation. Two types of differentiation media were used
517 during 18-day differentiation. The cells were cultured in Differentiation Medium
518 #1 (47.7 ml Nutrient Mixture F12 (DMEM F12) (Gibco), 1.3 ml Fetal bovine
519 serum (Sigma), 0.5 ml GlutaMAX supplement (Gibco) and 0.5 ml penicillin–
520 streptomycin (Cytogen)) with 10 µM All-trans retinoic acid (RA) during the first
521 10 days of differentiation. The medium was replaced every two days. At day 10,
522 the cells were washed with PBS and incubated with 200 U/mL Collagenase

523 Type IV (Gibco) diluted in DMEM/F-12 GlutaMAX(TM) medium at 37 °C for 5-
524 10 min, until the axons of the neuron-like cells disappeared. The collagenase
525 was gently removed and the edge of the plate was tapped to detach the neuron-
526 like cells, leaving the epithelial-like cells still attached. The detached cells were
527 rinsed with DMEM/F-12 GlutaMAX(TM) medium, transferred into a 50 mL
528 centrifuge tube and centrifuged at 200 g for 5 min. The supernatant was
529 removed and the cell pellet was resuspended in Differentiation Medium #2 (47
530 ml Neurobasal Medium (Gibco), 1 ml B-27 Supplement Minus AO (50X)
531 (Gibco), 20 mM potassium chloride (Carl Roth), 0.5 ml GlutaMAX supplement
532 (Gibco), 0.5 ml penicillin–streptomycin (Cytogen), 1 mM Dibutyryl-cAMP
533 (dbcAMP) (Selleckchem), 20 ng/mL recombinant human brain-derived
534 neurotrophic factor (Peprotech) and 10 ng/mL recombinant human nerve
535 growth factor (Peprotech) containing 10 µM RA. 100,000-150,000 or 50,000-
536 75,000 cells/well were seeded on Matrigel-coated (0.15-0.16 mg/ml; Corning)
537 12- or 24-well plates, respectively. The cells were cultured in Differentiation
538 Medium #2, which was replaced every two days. From day 18, the dSH-SY5Y
539 cells were used for experiments.

540

541 **Virus infection and establishment of VZV repression state in dSH-SY5Y**
542 **cells**

543 dSH-SY5Y neuron-like cells at 18-20 days post-differentiation were employed
544 in infection experiments. For acute infection, dSH-SY5Y cells were incubated

545 with cell-free v63R/11G for 4 h at 37°C using an MOI based on the titer of virus
546 obtained in ARPE19 cells. After 4 h, the virus inoculum was removed, the cells
547 were carefully rinsed 3 times with PBS and Differentiation Medium #2 with 10
548 µM RA was added. To study VZV repression, dSH-SY5Y cells were incubated
549 with Differentiation Medium #2 containing 10 µM RA and 100 µM acyclovir
550 (Acycloguanosine, ACV, Sigma) 24 hours prior to infection. Before infection,
551 the supernatant of dSH-SY5Y containing RA and 100 µM ACV was harvested
552 and used as conditioned medium. Neuron-like cells were infected with cell-free
553 v63R/11G in Differentiation Medium #2 containing 100 µM ACV. Mock-infected
554 control dSH-SY5Y cells were incubated in Differentiation Medium #2 containing
555 100 µM ACV and the same volume of PSGC buffer as in the virus preparation
556 used for infection. After 4 hours incubation, dSH-SY5Y cells were carefully
557 rinsed 3 times with PBS and incubated with conditioned medium. Differentiation
558 Medium #2 containing 10 µM RA and 100 µM ACV was changed every two
559 days. To induce virus replication, 10 µM PI3-kinase inhibitor (LY294002,
560 Abcam), 2 µM histone deacetylase (HDAC) inhibitor suberoylanilide
561 hydroxamic acid (SAHA) or lentivirus expressing eGFP or VLT-ORF63 were
562 added at 8 dpi and incubated for 1 - 4 days.

563

564 **Generation of a lentivirus expressing VLT-ORF63**

565 For the lentiviral RRLPPTSF-based VLT63-1 vector, the VLT63-1 cDNA
566 sequence was inserted into the vector using *Age*I and *Bam*H I restriction sites.

567 For virus production, 5×10^6 HEK 293T cells were seeded in a 10-cm dish the
568 day before transfection. Transfections were performed using the calcium
569 phosphate precipitation method with 5 μg RRLPPTSF-pVLT63-1 (or a
570 RRLPPTSF-eGFP control vector [70]), 10 μg gag-pol, and 0.5 μg vsvg
571 (packaging and envelope plasmids). Supernatants were collected 42 h and 48
572 h after transfection, passed through a 0.22 μm filter (Millipore), and stored at –
573 80°C.

574

575 **DNA and RNA isolation, cDNA synthesis and quantitative PCR**

576 Total DNA and RNA were isolated from cells using the AllPrep DNA/RNA Mini
577 Kit (Qiagen) according to the manufacturer's instructions. The cDNA was
578 synthesized using the LunaScript™ RT SuperMix Kit (New England Biolabs) in
579 20 μL reaction containing 4 μL SuperMix (5X) and 1 μg RNA. Relative
580 quantitative PCR (qPCR) and absolute qPCR were performed using a
581 qTOWER³ Real-time Thermal Cycler (Analytik Jena). 2 μL template cDNA/DNA
582 was used in a 20 μL reaction containing 10 μL Luna® Universal qPCR Master
583 Mix (New England Biolabs). The qPCR program was: 1 cycle of 95 °C hot start
584 for 10 min and 45 cycles of 95 °C for 15 s and 60 °C for 45 s. For relative qPCR,
585 viral mRNA was detected from VZV genes ORF4, ORF61, ORF62 and ORF68,
586 human β -actin measured for normalization. For absolute qPCR, VZV ORF63
587 served as the viral genome target, while human β -actin served as the host
588 genome target for normalization. PCR products were cloned into pGEM-T Easy

589 Vector (Promega) and standard curves were generated using 10-fold serial
590 dilutions (10^2 - 10^9) of templates. The copy number of the target gene in the
591 sample was calculated by normalizing to the standard curve. Primer sequences
592 can be found in Table 1 and 2.

Name	Sequence (5'-3')
ORF4_F	GCCCATGAATCACCCCTC
ORF4_R	ACTCGGTACGCCATTAG
ORF61_F	GGACAGACTGCCTTCGAG
ORF61_R	GACAACGCAGGGATTTTT
ORF68_F	GTACATTTGGAACATGCGCG
ORF68_R	TCCACATATGAAACTCAGCCC
actin_F	TCATCACCATGGCATGAG
actin_R	AGCACTGTGTTGGCGTACAG

593 Table 1: Sequences of primers used to quantify gene expression

594

Name	Sequence (5'-3')
VZV-ORF63_F	CCCGGCGCGTTTGTACTCC
VZV-ORF63_R	ACAATTCCCTCCCAGCACGCTA
h-β-Actin_F	TCCTCCTGAGCGCAAGTACTCC
h-β-Actin_R	AAGTCATAGTCCGCCTAGAAGCA

595 Table 2: Sequences of primers used to determine genome copy number

596

597 **Western blotting**

598 Cells were lysed using radioimmunoprecipitation assay (RIPA) buffer (Sigma-
599 Aldrich) with Pierce protease inhibitor minitablets (Thermo Fisher Scientific).
600 Lysates were rocked for 20 min at 4 °C and centrifuged at 13,000 rpm at 4 °C
601 for 15 min. Supernatant was collected as total protein. Stain-free total protein
602 detection was performed as previously described [71]. Briefly, protein samples
603 were mixed with SDS loading buffer, heated at 98 °C for 5 min and loaded into
604 SDS-PAGE gels containing 1% 2,2,2-Trichloroethanol (TCE). Total proteins
605 were visualized by illumination with UV light using ChemiDoc MP Imaging
606 System (Bio-Rad). The separated proteins were transferred onto nitrocellulose
607 membranes and then blocked in 5% skimmed milk plus PBS-0.1% Tween 20
608 (PBS-T). Primary antibodies were diluted in PBS-T containing 5% skimmed milk
609 and incubated overnight at 4 °C. Membranes were then washed 3 times with
610 PBS-T buffer for 10 min and then incubated in PBS-T containing 5% skimmed
611 milk and fluorescently-conjugated secondary antibody for 1 h at room
612 temperature. Membranes were then washed as described above and detection
613 was performed with ChemiDoc MP Imaging System (Bio-Rad). The antibodies
614 were as follows: mouse monoclonal anti-VZV gE (LSBio Biozol, 1:2,000);
615 mouse anti-VZV ORF4 (CapRi, 1:1,000); mouse monoclonal anti-VZV ORF63
616 Cl.63.08, kappa IgG1 (Capri Center for Proteomics, 1:1,000); mouse
617 monoclonal anti-β-actin (Thermo Scientific, 1:5000); mouse monoclonal anti-

618 RFP-antibody (3F5) (ChromoTek GmbH, 1:1000); mouse monoclonal anti-GFP
619 (TaKaRa, 1:1000); anti-mouse IgG IRDye 800 (LI-COR, 1:10,000).

620

621 **Immunofluorescence**

622 Cells were washed with PBS, fixed for 20 min with 4% paraformaldehyde at
623 room temperature, washed again and incubated in permeabilizing and blocking
624 solution (0.5 % Triton X-100, 5 % BSA) for 1 h. Cells were labelled with the
625 following primary antibodies diluted in PBS containing 0.1% Triton X-100, 1%
626 BSA at 4 °C overnight: rabbit anti-microtubule-associated protein 2 (MAP2,
627 Millipore 1: 200); sheep polyclonal anti-dopamine beta hydroxylase (DBH,
628 Thermo Fisher Scientific, 1:50); Tuj1 mouse anti-tubulin-β-III (Tuj1, Millipore,
629 1:300); rabbit polyclonal anti-Nav 1.7 (Alomone, 1:200); rabbit polyclonal anti-
630 KI67 (Proteintech, 1:400). Cells were then washed, incubated 1 h at room
631 temperature with DAPI and conjugated secondary antibodies: anti-mouse IgG
632 Alexa Fluor 488 (Life Technologies, 1:1000); anti-mouse IgG Alexa Fluor 555
633 (Life Technologies, 1:1000); anti-sheep IgG Alexa Fluor 488 (Life
634 Technologies, 1:1000). Cells were washed and mounted onto glass slides with
635 Prolong Gold Antifade Mountant (Thermo Fisher). Images were obtained using
636 a Zeiss observer Z1 inverted microscope.

637

638 **Chromatin Immunoprecipitation (ChIP)**

639 ChIP was performed as described previously [72]. Cells were cross-linked (1 %
640 formaldehyde, 10 minutes), quenched with 125 mM glycine, washed twice with
641 PBS and harvested in 1 ml buffer 1 (50 mM Hepes-KOH, 140 mM NaCl, 1 mM
642 EDTA, 10 % glycerol, 0.5 % NP-40, 0.25 % Triton X-100) and incubated for 10
643 min at 4 °C while rotating. After centrifugation (1,350 x g, 5 min), nuclei were
644 incubated with 1 ml buffer 2 (10 mM Tris-HCl, 200 mM NaCl, 1 mM EDTA, 0.5
645 mM EGTA) for 10 min at 4 °C while rotating. Pelleted nuclei were lysed in buffer
646 3 (1 % SDS, 10 mM EDTA, 50 mM Tris-HCl). Chromatin was sonicated
647 (fragment size 200-500 bp) using a Bioruptor™ (Diagenode). After addition of
648 Triton X-100 (1 % final concentration) cell debris was pelleted (20,000 x g, 4°C)
649 and chromatin containing supernatant was collected. Chromatin of 1x10⁶ cells
650 was diluted 1:10 in dilution buffer (0.01 % SDS, 1.1 % Triton X-100, 1.2 mM
651 EDTA, 16.7 mM Tris-HCl, 167 mM NaCl) and incubated with respective
652 antibodies overnight. 50 µl BSA-blocked Protein A/G Magnetic Beads
653 (Pierce™) was added to precipitate the chromatin-immunocomplexes and
654 incubated for 3 hr at 4°C. Beads were washed once with 1 ml of the following
655 buffers: low-salt buffer (0.1 % SDS, 1 % Triton X-100, 2 mM EDTA, 20 mM Tris-
656 HCl, 150 mM NaCl); high-salt buffer (0.1 % SDS, 1 % Triton X-100, 2 mM
657 EDTA, 20 mM Tris-HCl, 500 mM NaCl); LiCl-wash buffer (0.25 M LiCl, 1 %
658 Nonidet P-40, 1 % Na-deoxycholate, 1 mM EDTA, 10 mM Tris-HCl) and TE-
659 wash buffer. Chromatin was eluted and decrosslinked from the beads by
660 incubation in 120 µl SDS containing elution-buffer (50 mM Tris-HCl pH 8.0, 10

661 mM EDTA, 1 % SDS) containing 200 mM NaCl at 65 °C overnight. Chromatin
662 containing supernatant was separated from the beads by a magnetic rack. DNA
663 was purified using a DNA Clean & Concentrator kit (Zymo Research). For ChIP-
664 seq, 1–2 ng of ChIP DNA was used for library preparation, using the NEBNext
665 Ultra II DNA Library prep Kit (E7370; NEB). Libraries were sequenced using an
666 Illumina NextSeq 2000 sequencer 75 bp Single End.

667

668 **Assay for Transposase-Accessible Chromatin using sequencing (ATAC-
669 seq)**

670 ATACseq was performed using the Omni-ATAC-seq protocol [73]. Briefly,
671 1x10⁵ cells were treated with DNase I (200 U/ml, Worthington) at 37°C for 30
672 min, washed with cold PBS twice and resuspended in 1 ml cold RSB buffer (10
673 mM Tris-HCl pH 7.4, 10 mM NaCl, 3 mM MgCl₂). Cells were pelleted again at
674 500 x g for 5 min and resuspended in 50 µl of cold ATAC-NTD lysis buffer (RSB
675 Buffer + 0.1% NP40, 0.1% Tween-20, 0.01% Digitonin). Lysed cells were
676 diluted in 1 ml cold ATAC-T buffer (RSB + 0.1% Tween-20) and inverted three
677 times. The resulting nuclei were pelleted at 500 x g for 10 minutes and the
678 supernatant was removed. Cell pellets were transposed with 50 µl of
679 transposition mix containing 25 µl 2xTD Buffer (20 mM 1M Tris-HCl pH 7.6, 10
680 mM MgCl₂, 20% Dimethyl Formamide), 2.5 µl transposase (custom made,
681 100nM final), 16.5 µl PBS, 0.5 µl 1% digitonin, 0.5 µl 10% Tween-20 and 5 µl
682 H₂O) at 37°C and 1000 rpm on a thermomixer for 30 min. The reaction was

683 stopped by adding 250 μ l of DNA Binding Buffer and DNA was isolated using
684 the Clean and Concentrator-5 Kit (Zymo). Libraries were produced by PCR
685 amplification of tagmented DNA and sequenced on a NextSeq 2000 sequencer
686 150 bp Paired End.

687

688 **Sequencing data processing**

689 For ChIPseq, quality filtered single end reads were aligned to the viral reference
690 genome of VZV (NC_001348.1) and human (hg38) using Bowtie [74] with
691 standard settings. Analysis of histone modification enrichment on the VZV
692 genome was done as described in [75].

693 For ATACseq, reads were processed using the PEPATAC pipeline [76]. Exact
694 integration sites were extended +/-25bp and visualized using IGV tools.
695 Average read density of ChIPseq and ATACseq data at human transcriptional
696 start sites (+/- 2.5kbp) was calculated and visualized using EaSeq [77].

697

698 **RNA in situ hybridization (RNAscope)**

699 RNAscope was performed using the RNAscope[®] Fluorescent Multiplex Kit
700 (ACD BioTechne). In brief, cells on 8-well chambers were fixed with 4% PFA
701 for 20 min at RT and overnight at 4 °C. On the next day, the cells were incubated
702 with RNAscope[®] hydrogen peroxide for 10 min at RT followed by protease
703 digestion for 10 min at RT. After washing with PBS, the cells were incubated
704 with pre-mixed target probe (RNAscope[®] Probe-V-VZV-O2, targeting VZV

705 VLT) or control probe (RNAscope® 3-Plex Negative control Probe/ RNAscope®
706 3-Plex Positive control Probe_Hs), both designed by ACD BioTechne, for 2
707 hours at 40°C in the HybEZ hybridization oven (ACD). Cells were washed with
708 1x wash buffer and incubated with amplification reagents (Amp 1 for 30 min,
709 Amp 2 for 30 min and Amp 3 for 15 min at 40°C). After washing with 1x wash
710 buffer, the cells were incubated with HRP adaptor for 15 min at 40°C, followed
711 by incubation with the corresponding dye for 30 min at 40°C and incubated with
712 HRP blocker for 15 min at 40°C. Cells were counterstained with DAPI and
713 mounted onto glass slides with Prolong Gold Antifade Mountant (Thermo
714 Fisher). Images were obtained using a Zeiss observer Z1 inverted microscope
715 and Leica Inverted-3 microscope and analyzed by Fiji.

716

717 **DNA in situ hybridization (DNAscope)**

718 Viral DNA detection was performed using the RNAscope® Fluorescent
719 Multiplex Kit (ACD BioTechne) with modifications using the RNAscope® Probe-
720 V-VZV-O2, targeting VZV VLT, designed by ACD BioTechne. Briefly, we
721 performed an RNase treatment with Resuspension buffer A1 containing RNase
722 and 0.05% Tween-20 for 30 min at 40°C after the protease digestion step. The
723 negative control wells were incubated with DNasel for 40 min at 40°C after
724 RNase treatment and washed 3 times with PBS containing 1 mM EDTA to
725 inactivate DNasel. We also performed a short denaturation step by incubating
726 the 8-well chamber at 60°C with pre-warmed (60°C) probe for 10 min, and then

727 immediately transferred the chamber to the oven at 40°C, followed by
728 hybridization overnight. Amplification and detection were performed as
729 described for RNAscope (see above), using 0.5x wash buffer for all washing
730 steps.

731

732 **RNA-Seq library preparation and sequencing**

733 For each sample, polyadenylated (poly(A)) RNA was isolated from one
734 microgram of total RNA using the NEBNext Poly(A) mRNA Magnetic Isolation
735 Module. Reverse transcription, second strand synthesis, end-repair and A-
736 tailing were subsequently performed using the NEBNext Ultra II Directional
737 RNA Library prep kit. For the adaptor ligation step, we used TWIST Universal
738 Adapters from the standard TWIST Library Preparation Kit and omitted the
739 addition of NEB USER enzyme. Resulting libraries were subsequently amplified
740 (six cycles of PCR) using TWIST UDI primers and the Equinox Library Amp
741 Mix, all according to the protocols laid out in the TWIST Library Preparation
742 manual. Resulting libraries were purified using AMPure XP beads and
743 subsequently multiplexed in equimolar ratios. Hybridization was performed for
744 18 hours using biotinylated oligos designed by TWIST Biosciences against all
745 known VZV genome sequences. Post-hybridization washes and amplification
746 (18 cycles of PCR) were used to produce the final multiplexed library which was
747 subsequently sequenced on an Illumina MiSeq using a 2x150bp Micro Kit.

748

749 **RNA-Seq analysis**

750 Sequence data were de-multiplexed and individual sequence data sets were
751 trimmed using the TrimGalore software
752 (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to remove
753 adaptor sequences and low-quality 3' ends. Sequence reads were
754 competitively aligned against the human (HG38) and VZV genomes (strain
755 Dumas, NC_001348) using STAR v2.7.9
756 (<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530905/>). De-duplication of
757 aligned reads was performed using picardtools MarkDuplicates
758 (<http://broadinstitute.github.io/picard>). Resulting assemblies were parsed using
759 SAMTools v1.15 (<https://pubmed.ncbi.nlm.nih.gov/19505943/>) and BEDTools
760 v2.27 (<https://pubmed.ncbi.nlm.nih.gov/20110278/>) to produce bedgraphs that
761 were visualized in Rstudio using the package GVIZ
762 (<https://pubmed.ncbi.nlm.nih.gov/27008022/>).

763

764 **Data availability**

765 The RNAseq datasets generated and analysed in the current study are
766 available in the European Nucleotide Archive (ENA) repository, with the
767 following accession number: PRJEB68225. The ChIP-Seq and ATAC-Seq data
768 for this study have been deposited in the ENA at EMBL-EBI under accession
769 number PRJEB75685.

770

771 **Acknowledgements**

772 This work was funded by the Deutsche Forschungsgemeinschaft (DFG,
773 German Research Foundation) under Germany's Excellence Strategy – EXC
774 2155 "RESIST" – project number 390874280 (<https://www.resist-cluster.de/en/>)
775 and by the Deutsche Forschungsgemeinschaft (DFG, German Research
776 Foundation) in the framework of the Research Unit FOR5200 DEEP-DV
777 (443644894) projects VI 762/4-1 and KA 3492/12-1. J.W. and G.S. were funded
778 by a fellowship from the China Scholarship Council No. 201908370216 and
779 201808230268, respectively. We thank Werner Ouwendijk and Georges
780 Verjans (Erasmus MC, Rotterdam, The Netherlands) for providing the original
781 protocol to produce cell-free VZV. We thank Jens Bohne (Institute of Virology,
782 Hannover Medical School, Germany) for providing the lentivirus expressing
783 eGFP. The funders had no role in study design, data collection and analysis,
784 the decision to publish, or preparation of the manuscript.

785

786

787 **References**

788 1. Yawn BP, Saddier P, Wollan PC, St Sauver JL, Kurland MJ, Sy LS. A population-based study of the incidence and complication rates of herpes zoster before zoster vaccine introduction. *Mayo Clin Proc.* 2007;82(11):1341-9. doi: 10.4065/82.11.1341. PubMed PMID: 17976353.

792 2. Dworkin RH, Gnann JW, Jr., Oaklander AL, Raja SN, Schmader KE, Whitley RJ. Diagnosis and assessment of pain associated with herpes zoster and postherpetic neuralgia. *J Pain.* 2008;9(1 Suppl 1):S37-44. doi: 10.1016/j.jpain.2007.10.008. PubMed PMID: 18166464.

796 3. Zin CS, Nissen LM, Smith MT, O'Callaghan JP, Moore BJ. An update on the pharmacological management of post-herpetic neuralgia and painful diabetic neuropathy. *CNS Drugs.* 2008;22(5):417-42. doi: 10.2165/00023210-200822050-00005. PubMed PMID: 18399710.

800 4. Zerboni L, Sen N, Oliver SL, Arvin AM. Molecular mechanisms of varicella zoster virus pathogenesis. *Nat Rev Microbiol.* 2014;12(3):197-210. doi: 10.1038/nrmicro3215. PubMed PMID: 24509782; PubMed Central PMCID: PMCPMC4066823.

804 5. Gershon AA, Breuer J, Cohen JI, Cohrs RJ, Gershon MD, Gilden D, et al. Varicella zoster virus infection. *Nat Rev Dis Primers.* 2015;1:15016. doi: 10.1038/nrdp.2015.16. PubMed PMID: 27188665; PubMed Central PMCID: PMCPMC5381807.

808 6. Clarke P, Beer T, Cohrs R, Gilden DH. Configuration of latent varicella-zoster
809 virus DNA. *J Virol.* 1995;69(12):8151-4. Epub 1995/12/01. doi:
810 10.1128/jvi.69.12.8151-8154.1995. PubMed PMID: 7494340; PubMed Central
811 PMCID: PMCPMC189772.

812 7. Kennedy PG, Grinfeld E, Gow JW. Latent varicella-zoster virus is located
813 predominantly in neurons in human trigeminal ganglia. *Proc Natl Acad Sci U S A.*
814 1998;95(8):4658-62. Epub 1998/05/16. doi: 10.1073/pnas.95.8.4658. PubMed
815 PMID: 9539794; PubMed Central PMCID: PMCPMC22546.

816 8. Levin MJ, Cai GY, Manchak MD, Pizer LI. Varicella-zoster virus DNA in cells
817 isolated from human trigeminal ganglia. *J Virol.* 2003;77(12):6979-87. Epub
818 2003/05/28. doi: 10.1128/jvi.77.12.6979-6987.2003. PubMed PMID: 12768016;
819 PubMed Central PMCID: PMCPMC156183.

820 9. Wang K, Lau TY, Morales M, Mont EK, Straus SE. Laser-capture
821 microdissection: refining estimates of the quantity and distribution of latent
822 herpes simplex virus 1 and varicella-zoster virus DNA in human trigeminal Ganglia
823 at the single-cell level. *J Virol.* 2005;79(22):14079-87. Epub 2005/10/29. doi:
824 10.1128/jvi.79.22.14079-14087.2005. PubMed PMID: 16254342; PubMed Central
825 PMCID: PMCPMC1280223.

826 10. Gershon AA, Chen J, Gershon MD. Use of Saliva to Identify Varicella Zoster
827 Virus Infection of the Gut. *Clin Infect Dis.* 2015;61(4):536-44. Epub 2015/04/18.
828 doi: 10.1093/cid/civ320. PubMed PMID: 25882301; PubMed Central PMCID:
829 PMCPMC4607733.

830 11. Gershon M, Gershon A. Varicella-Zoster Virus and the Enteric Nervous
831 System. *J Infect Dis.* 2018;218(suppl_2):S113-s9. Epub 2018/09/25. doi:
832 10.1093/infdis/jiy407. PubMed PMID: 30247599; PubMed Central PMCID:
833 PMCPMC6151087.

834 12. Depledge DP, Sadaoka T, Ouwendijk WJD. Molecular Aspects of Varicella-
835 Zoster Virus Latency. *Viruses.* 2018;10(7). Epub 2018/07/01. doi:
836 10.3390/v10070349. PubMed PMID: 29958408; PubMed Central PMCID:
837 PMCPMC6070824.

838 13. Depledge DP, Ouwendijk WJD, Sadaoka T, Braspenning SE, Mori Y, Cohrs RJ,
839 et al. A spliced latency-associated VZV transcript maps antisense to the viral
840 transactivator gene 61. *Nat Commun.* 2018;9(1):1167. Epub 20180321. doi:
841 10.1038/s41467-018-03569-2. PubMed PMID: 29563516; PubMed Central
842 PMCID: PMCPMC5862956.

843 14. Ouwendijk WJD, Depledge DP, Rajbhandari L, Lenac Rovis T, Jonjic S, Breuer
844 J, et al. Varicella-zoster virus VLT-ORF63 fusion transcript induces broad viral gene
845 expression during reactivation from neuronal latency. *Nat Commun.*
846 2020;11(1):6324. doi: 10.1038/s41467-020-20031-4. PubMed PMID: 33303747;
847 PubMed Central PMCID: PMCPMC7730162.

848 15. Gowrishankar K, Slobedman B, Cunningham AL, Miranda-Saksena M, Boadle
849 RA, Abendroth A. Productive varicella-zoster virus infection of cultured intact
850 human ganglia. *J Virol.* 2007;81(12):6752-6. doi: 10.1128/JVI.02793-06. PubMed
851 PMID: 17409155; PubMed Central PMCID: PMCPMC1900131.

852 16. Hood C, Cunningham AL, Slobedman B, Boadle RA, Abendroth A. Varicella-
853 zoster virus-infected human sensory neurons are resistant to apoptosis, yet
854 human foreskin fibroblasts are susceptible: evidence for a cell-type-specific
855 apoptotic response. *J Virol.* 2003;77(23):12852-64. doi: 10.1128/jvi.77.23.12852-
856 12864.2003. PubMed PMID: 14610206; PubMed Central PMCID: PMCPMC262578.

857 17. Baird NL, Zhu S, Pearce CM, Viejo-Borbolla A. Current In Vitro Models to
858 Study Varicella Zoster Virus Latency and Reactivation. *Viruses.* 2019;11(2). doi:
859 10.3390/v11020103. PubMed PMID: 30691086; PubMed Central PMCID:
860 PMCPMC6409813.

861 18. Markus A, Lebenthal-Loinger I, Yang IH, Kinchington PR, Goldstein RS. An in
862 vitro model of latency and reactivation of varicella zoster virus in human stem cell-
863 derived neurons. *PLoS Pathog.* 2015;11(6):e1004885. doi:
864 10.1371/journal.ppat.1004885. PubMed PMID: 26042814; PubMed Central
865 PMCID: PMCPMC4456082.

866 19. Wilcox CL, Johnson EM, Jr. Nerve growth factor deprivation results in the
867 reactivation of latent herpes simplex virus in vitro. *J Virol.* 1987;61(7):2311-5. doi:
868 10.1128/JVI.61.7.2311-2315.1987. PubMed PMID: 3035230; PubMed Central
869 PMCID: PMCPMC283698.

870 20. Wilcox CL, Johnson EM, Jr. Characterization of nerve growth factor-
871 dependent herpes simplex virus latency in neurons in vitro. *J Virol.* 1988;62(2):393-
872 9. doi: 10.1128/JVI.62.2.393-399.1988. PubMed PMID: 2826804; PubMed Central
873 PMCID: PMCPMC250548.

874 21. Camarena V, Kobayashi M, Kim JY, Roehm P, Perez R, Gardner J, et al. *Nature*
875 and duration of growth factor signaling through receptor tyrosine kinases
876 regulates HSV-1 latency in neurons. *Cell Host Microbe*. 2010;8(4):320-30. doi:
877 10.1016/j.chom.2010.09.007. PubMed PMID: 20951966; PubMed Central PMCID:
878 PMCPMC2988476.

879 22. Kim JY, Mandarino A, Chao MV, Mohr I, Wilson AC. Transient reversal of
880 episome silencing precedes VP16-dependent transcription during reactivation of
881 latent HSV-1 in neurons. *PLoS Pathog*. 2012;8(2):e1002540. doi:
882 10.1371/journal.ppat.1002540. PubMed PMID: 22383875; PubMed Central
883 PMCID: PMCPMC3285597.

884 23. Cuddy SR, Schinlever AR, Dochnal S, Seegren PV, Suzich J, Kundu P, et al.
885 Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus
886 reactivation that can be induced by IL-1. *eLife*. 2020;9. doi: 10.7554/eLife.58037.
887 PubMed PMID: 33350386; PubMed Central PMCID: PMCPMC7773336.

888 24. Barrozo ER, Nakayama S, Singh P, Neumann DM, Bloom DC. Herpes Simplex
889 Virus 1 MicroRNA miR-H8 Is Dispensable for Latency and Reactivation In Vivo. *J*
890 *Virol*. 2021;95(4). doi: 10.1128/JVI.02179-20. PubMed PMID: 33208453; PubMed
891 Central PMCID: PMCPMC7851547.

892 25. Edwards TG, Bloom DC. Lund Human Mesencephalic (LUHMES) Neuronal Cell
893 Line Supports Herpes Simplex Virus 1 Latency In Vitro. *J Virol*. 2019;93(6). doi:
894 10.1128/JVI.02210-18. PubMed PMID: 30602607; PubMed Central PMCID:
895 PMCPMC6401467.

896 26. Sadaoka T, Depledge DP, Rajbhandari L, Venkatesan A, Breuer J, Cohen JI. In
897 vitro system using human neurons demonstrates that varicella-zoster vaccine
898 virus is impaired for reactivation, but not latency. *Proc Natl Acad Sci U S A.*
899 2016;113(17):E2403-12. doi: 10.1073/pnas.1522575113. PubMed PMID:
900 27078099; PubMed Central PMCID: PMCPMC4855584.

901 27. Pourchet A, Modrek AS, Placantonakis DG, Mohr I, Wilson AC. Modeling HSV-
902 1 Latency in Human Embryonic Stem Cell-Derived Neurons. *Pathogens.* 2017;6(2).
903 Epub 2017/06/09. doi: 10.3390/pathogens6020024. PubMed PMID: 28594343;
904 PubMed Central PMCID: PMCPMC5488658.

905 28. Markus A, Grigoryan S, Sloutskin A, Yee MB, Zhu H, Yang IH, et al. Varicella-
906 zoster virus (VZV) infection of neurons derived from human embryonic stem cells:
907 direct demonstration of axonal infection, transport of VZV, and productive
908 neuronal infection. *J Virol.* 2011;85(13):6220-33. Epub 2011/04/29. doi:
909 10.1128/jvi.02396-10. PubMed PMID: 21525353; PubMed Central PMCID:
910 PMCPMC3126485.

911 29. Zhu S, Stanslowsky N, Fernandez-Trillo J, Mamo TM, Yu P, Kalmbach N, et al.
912 Generation of hiPSC-derived low threshold mechanoreceptors containing axonal
913 termini resembling bulbous sensory nerve endings and expressing Piezo1 and
914 Piezo2. *Stem Cell Res.* 2021;56:102535. Epub 20210911. doi:
915 10.1016/j.scr.2021.102535. PubMed PMID: 34607262.

916 30. Zhu S, Stanslowsky N, Fernández-Trillo J, Mamo TM, Yu P, Kalmbach N, et al.
917 Generation of hiPSC-derived low threshold mechanoreceptors containing axonal

918 termini resembling bulbous sensory nerve endings and expressing Piezo1 and
919 Piezo2. *Stem Cell Res.* 2021;56:102535. Epub 2021/10/05. doi:
920 10.1016/j.scr.2021.102535. PubMed PMID: 34607262.

921 31. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, et al. Neural
922 differentiation of human induced pluripotent stem cells follows developmental
923 principles but with variable potency. *Proc Natl Acad Sci U S A.* 2010;107(9):4335-
924 40. Epub 2010/02/18. doi: 10.1073/pnas.0910012107. PubMed PMID: 20160098;
925 PubMed Central PMCID: PMCPMC2840097 board member of Cellular Dynamics
926 International (CDI). He also serves as a scientific advisor to and has financial
927 interests in Tactics II Stem Cell Ventures.

928 32. Biedler JL, Helson L, Spengler BA. Morphology and growth, tumorigenicity,
929 and cytogenetics of human neuroblastoma cells in continuous culture. *Cancer Res.*
930 1973;33(11):2643-52. PubMed PMID: 4748425.

931 33. Xicoy H, Wieringa B, Martens GJ. The SH-SY5Y cell line in Parkinson's disease
932 research: a systematic review. *Mol Neurodegener.* 2017;12(1):10. doi:
933 10.1186/s13024-017-0149-0. PubMed PMID: 28118852; PubMed Central PMCID:
934 PMCPMC5259880.

935 34. D'Aloia A, Pastori V, Blasa S, Campioni G, Peri F, Sacco E, et al. A new advanced
936 cellular model of functional cholinergic-like neurons developed by
937 reprogramming the human SH-SY5Y neuroblastoma cell line. *Cell Death Discov.*
938 2024;10(1):24. Epub 20240112. doi: 10.1038/s41420-023-01790-7. PubMed
939 PMID: 38216593; PubMed Central PMCID: PMCPMC10786877.

940 35. Bell M, Zempel H. SH-SY5Y-derived neurons: a human neuronal model
941 system for investigating TAU sorting and neuronal subtype-specific TAU
942 vulnerability. *Rev Neurosci.* 2022;33(1):1-15. Epub 20210419. doi:
943 10.1515/revneuro-2020-0152. PubMed PMID: 33866701.

944 36. Christensen J, Steain M, Slobedman B, Abendroth A. Differentiated
945 neuroblastoma cells provide a highly efficient model for studies of productive
946 varicella-zoster virus infection of neuronal cells. *J Virol.* 2011;85(16):8436-42. doi:
947 10.1128/JVI.00515-11. PubMed PMID: 21632750; PubMed Central PMCID:
948 PMCPMC3147949.

949 37. Gerada C, Steain M, McSharry BP, Slobedman B, Abendroth A. Varicella-
950 Zoster Virus ORF63 Protects Human Neuronal and Keratinocyte Cell Lines from
951 Apoptosis and Changes Its Localization upon Apoptosis Induction. *J Virol.*
952 2018;92(12). doi: 10.1128/JVI.00338-18. PubMed PMID: 29593042; PubMed
953 Central PMCID: PMCPMC5974485.

954 38. Shipley MM, Mangold CA, Kuny CV, Szpara ML. Differentiated Human SH-
955 SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism.
956 *J Virol.* 2017;91(23). doi: 10.1128/JVI.00958-17. PubMed PMID: 28956768;
957 PubMed Central PMCID: PMCPMC5686721.

958 39. Gimenez-Cassina A, Lim F, Diaz-Nido J. Differentiation of a human
959 neuroblastoma into neuron-like cells increases their susceptibility to transduction
960 by herpesviral vectors. *J Neurosci Res.* 2006;84(4):755-67. doi: 10.1002/jnr.20976.
961 PubMed PMID: 16802347.

962 40. Luo MH, Fortunato EA. Long-term infection and shedding of human
963 cytomegalovirus in T98G glioblastoma cells. *J Virol.* 2007;81(19):10424-36. doi:
964 10.1128/JVI.00866-07. PubMed PMID: 17652378; PubMed Central PMCID:
965 PMCPMC2045481.

966 41. Shipley MM, Mangold CA, Szpara ML. Differentiation of the SH-SY5Y Human
967 Neuroblastoma Cell Line. *J Vis Exp.* 2016;(108):53193. doi: 10.3791/53193.
968 PubMed PMID: 26967710; PubMed Central PMCID: PMCPMC4828168.

969 42. Tischer BK, Kaufer BB, Sommer M, Wussow F, Arvin AM, Osterrieder N. A self-
970 excisable infectious bacterial artificial chromosome clone of varicella-zoster virus
971 allows analysis of the essential tegument protein encoded by ORF9. *J Virol.*
972 2007;81(23):13200-8. Epub 20071003. doi: 10.1128/JVI.01148-07. PubMed PMID:
973 17913822; PubMed Central PMCID: PMCPMC2169085.

974 43. Braspenning SE, Sadaoka T, Breuer J, Verjans G, Ouwendijk WJD, Depledge
975 DP. Decoding the Architecture of the Varicella-Zoster Virus Transcriptome. *mBio.*
976 2020;11(5). Epub 20201006. doi: 10.1128/mBio.01568-20. PubMed PMID:
977 33024035; PubMed Central PMCID: PMCPMC7542360.

978 44. Jurgens C, Ssebyatika G, Beyer S, Pluckebaum N, Kropp KA, Gonzalez-Motos
979 V, et al. Viral modulation of type II interferon increases T cell adhesion and virus
980 spread. *bioRxiv.* 2023. Epub 20230526. doi: 10.1101/2023.05.26.542397. PubMed
981 PMID: 37292914; PubMed Central PMCID: PMCPMC10246016.

982 45. Bhatt S, Ashlock BM, Toomey NL, Diaz LA, Mesri EA, Lossos IS, et al. Efficacious
983 proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma.

984 J Clin Invest. 2013;123(6):2616-28. Epub 2013/05/03. doi: 10.1172/jci64503.

985 PubMed PMID: 23635777; PubMed Central PMCID: PMCPMC3668825.

986 46. Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, et al. Effects of all-trans-

987 retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity

988 research. Neurotoxicology. 2009;30(1):127-35. Epub 2008/12/06. doi:

989 10.1016/j.neuro.2008.11.001. PubMed PMID: 19056420.

990 47. Guarnieri S, Pilla R, Morabito C, Sacchetti S, Mancinelli R, Fanò G, et al.

991 Extracellular guanosine and GTP promote expression of differentiation markers

992 and induce S-phase cell-cycle arrest in human SH-SY5Y neuroblastoma cells. Int

993 J Dev Neurosci. 2009;27(2):135-47. Epub 2008/12/30. doi:

994 10.1016/j.ijdevneu.2008.11.007. PubMed PMID: 19111604.

995 48. Kovalevich J, Langford D. Considerations for the use of SH-SY5Y

996 neuroblastoma cells in neurobiology. Methods Mol Biol. 2013;1078:9-21. Epub

997 2013/08/27. doi: 10.1007/978-1-62703-640-5_2. PubMed PMID: 23975817;

998 PubMed Central PMCID: PMCPMC5127451.

999 49. La Monica N, Racaniello VR. Differences in replication of attenuated and

1000 neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. J Virol.

1001 1989;63(5):2357-60. doi: 10.1128/JVI.63.5.2357-2360.1989. PubMed PMID:

1002 2539524; PubMed Central PMCID: PMCPMC250657.

1003 50. Sanchez-San Martin C, Li T, Bouquet J, Streithorst J, Yu G, Paranjpe A, et al.

1004 Differentiation enhances Zika virus infection of neuronal brain cells. Sci Rep.

1005 2018;8(1):14543. doi: 10.1038/s41598-018-32400-7. PubMed PMID: 30266962;

1006 PubMed Central PMCID: PMCPMC6162312.

1007 51. Christensen J, Steain M, Slobedman B, Abendroth A. Varicella-zoster virus

1008 glycoprotein I is essential for spread in dorsal root ganglia and facilitates axonal

1009 localization of structural virion components in neuronal cultures. *J Virol.*

1010 2013;87(24):13719-28. Epub 2013/10/11. doi: 10.1128/jvi.02293-13. PubMed

1011 PMID: 24109230; PubMed Central PMCID: PMCPMC3838295.

1012 52. Jiang HF, Wang W, Jiang X, Zeng WB, Shen ZZ, Song YG, et al. ORF7 of

1013 Varicella-Zoster Virus Is Required for Viral Cytoplasmic Envelopment in

1014 Differentiated Neuronal Cells. *J Virol.* 2017;91(12). Epub 20170526. doi:

1015 10.1128/JVI.00127-17. PubMed PMID: 28356523; PubMed Central PMCID:

1016 PMCPMC5446663.

1017 53. Cliffe AR, Garber DA, Knipe DM. Transcription of the herpes simplex virus

1018 latency-associated transcript promotes the formation of facultative

1019 heterochromatin on lytic promoters. *J Virol.* 2009;83(16):8182-90. Epub

1020 2009/06/12. doi: 10.1128/jvi.00712-09. PubMed PMID: 19515781; PubMed

1021 Central PMCID: PMCPMC2715743.

1022 54. Kwiatkowski DL, Thompson HW, Bloom DC. The polycomb group protein

1023 Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive

1024 histone marks during latency. *J Virol.* 2009;83(16):8173-81. Epub 2009/06/12. doi:

1025 10.1128/jvi.00686-09. PubMed PMID: 19515780; PubMed Central PMCID:

1026 PMCPMC2715759.

1027 55. Reichelt M, Wang L, Sommer M, Perrino J, Nour AM, Sen N, et al. Entrapment
1028 of viral capsids in nuclear PML cages is an intrinsic antiviral host defense against
1029 varicella-zoster virus. *PLoS Pathog.* 2011;7(2):e1001266. Epub 20110203. doi:
1030 10.1371/journal.ppat.1001266. PubMed PMID: 21304940; PubMed Central
1031 PMCID: PMCPMC3033373.

1032 56. Scherer M, Read C, Neusser G, Kranz C, Kuderna AK, Müller R, et al. Dual
1033 signaling via interferon and DNA damage response elicits entrapment by giant
1034 PML nuclear bodies. *Elife.* 2022;11. Epub 2022/03/24. doi: 10.7554/eLife.73006.
1035 PubMed PMID: 35319461; PubMed Central PMCID: PMCPMC8975554.

1036 57. Irwan ID, Cullen BR. The SMC5/6 complex: An emerging antiviral restriction
1037 factor that can silence episomal DNA. *PLoS Pathog.* 2023;19(3):e1011180. Epub
1038 20230302. doi: 10.1371/journal.ppat.1011180. PubMed PMID: 36862666; PubMed
1039 Central PMCID: PMCPMC9980727.

1040 58. Xu W, Ma C, Zhang Q, Zhao R, Hu D, Zhang X, et al. PJA1 Coordinates with
1041 the SMC5/6 Complex To Restrict DNA Viruses and Episomal Genes in an
1042 Interferon-Independent Manner. *J Virol.* 2018;92(22). Epub 20181029. doi:
1043 10.1128/JVI.00825-18. PubMed PMID: 30185588; PubMed Central PMCID:
1044 PMCPMC6206484.

1045 59. Sodroski CN, Knipe DM. Nuclear interferon-stimulated gene product
1046 maintains heterochromatin on the herpes simplex viral genome to limit lytic
1047 infection. *Proc Natl Acad Sci U S A.* 2023;120(45):e2310996120. Epub 2023/10/26.

1048 doi: 10.1073/pnas.2310996120. PubMed PMID: 37883416; PubMed Central
1049 PMCID: PMCPMC10636318.

1050 60. Orzalli MH, Conwell SE, Berrios C, DeCaprio JA, Knipe DM. Nuclear interferon-
1051 inducible protein 16 promotes silencing of herpesviral and transfected DNA. Proc
1052 Natl Acad Sci U S A. 2013;110(47):E4492-501. Epub 2013/11/08. doi:
1053 10.1073/pnas.1316194110. PubMed PMID: 24198334; PubMed Central PMCID:
1054 PMCPMC3839728.

1055 61. Merkl PE, Orzalli MH, Knipe DM. Mechanisms of Host IFI16, PML, and Daxx
1056 Protein Restriction of Herpes Simplex Virus 1 Replication. J Virol. 2018;92(10).
1057 Epub 2018/03/02. doi: 10.1128/jvi.00057-18. PubMed PMID: 29491153; PubMed
1058 Central PMCID: PMCPMC5923075.

1059 62. Merkl PE, Knipe DM. Role for a Filamentous Nuclear Assembly of IFI16, DNA,
1060 and Host Factors in Restriction of Herpesviral Infection. mBio. 2019;10(1). Epub
1061 20190122. doi: 10.1128/mBio.02621-18. PubMed PMID: 30670617; PubMed
1062 Central PMCID: PMCPMC6343039.

1063 63. Dressler GR, Rock DL, Fraser NW. Latent herpes simplex virus type 1 DNA is
1064 not extensively methylated in vivo. J Gen Virol. 1987;68 (Pt 6):1761-5. doi:
1065 10.1099/0022-1317-68-6-1761. PubMed PMID: 3035069.

1066 64. Kubat NJ, Tran RK, McAnany P, Bloom DC. Specific histone tail modification
1067 and not DNA methylation is a determinant of herpes simplex virus type 1 latent
1068 gene expression. J Virol. 2004;78(3):1139-49. doi: 10.1128/jvi.78.3.1139-
1069 1149.2004. PubMed PMID: 14722269; PubMed Central PMCID: PMCPMC321404.

1070 65. Goodwin TJ, McCarthy M, Cohrs RJ, Kaufer BB. 3D tissue-like assemblies: A
1071 novel approach to investigate virus-cell interactions. *Methods*. 2015;90:76-84.
1072 doi: 10.1016/j.ymeth.2015.05.010. PubMed PMID: 25986169.

1073 66. Goodwin TJ, McCarthy M, Osterrieder N, Cohrs RJ, Kaufer BB. Three-
1074 dimensional normal human neural progenitor tissue-like assemblies: a model of
1075 persistent varicella-zoster virus infection. *PLoS pathogens*. 2013;9(8):e1003512.
1076 Epub 2013/08/13. doi: 10.1371/journal.ppat.1003512. PubMed PMID: 23935496;
1077 PubMed Central PMCID: PMC3731237.

1078 67. Tischer BK, von Einem J, Kaufer B, Osterrieder N. Two-step red-mediated
1079 recombination for versatile high-efficiency markerless DNA manipulation in
1080 *Escherichia coli*. *Biotechniques*. 2006;40(2):191-7. PubMed PMID: 16526409.

1081 68. Tischer BK, Kaufer BB. Viral bacterial artificial chromosomes: generation,
1082 mutagenesis, and removal of mini-F sequences. *Journal of biomedicine &*
1083 *biotechnology*. 2012;2012:472537. Epub 2012/04/13. doi: 10.1155/2012/472537.
1084 PubMed PMID: 22496607; PubMed Central PMCID: PMC3303620.

1085 69. Kaufer BB, Smejkal B, Osterrieder N. The varicella-zoster virus ORFS/L (ORF0)
1086 gene is required for efficient viral replication and contains an element involved in
1087 DNA cleavage. *J Virol*. 2010;84(22):11661-9.

1088 70. Schambach A, Mueller D, Galla M, Verstegen MM, Wagemaker G, Loew R, et
1089 al. Overcoming promoter competition in packaging cells improves production of
1090 self-inactivating retroviral vectors. *Gene Ther*. 2006;13(21):1524-33. Epub
1091 20060608. doi: 10.1038/sj.gt.3302807. PubMed PMID: 16763662.

1092 71. Ladner CL, Yang J, Turner RJ, Edwards RA. Visible fluorescent detection of
1093 proteins in polyacrylamide gels without staining. *Anal Biochem*. 2004;326(1):13-
1094 20. Epub 2004/02/11. doi: 10.1016/j.ab.2003.10.047. PubMed PMID: 14769330.

1095 72. Gunther T, Grundhoff A. The epigenetic landscape of latent Kaposi sarcoma-
1096 associated herpesvirus genomes. *PLoS Pathog*. 2010;6(6):e1000935. Epub
1097 20100603. doi: 10.1371/journal.ppat.1000935. PubMed PMID: 20532208; PubMed
1098 Central PMCID: PMCPMC2880564.

1099 73. Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA,
1100 Vesuna S, et al. An improved ATAC-seq protocol reduces background and
1101 enables interrogation of frozen tissues. *Nat Methods*. 2017;14(10):959-62. Epub
1102 20170828. doi: 10.1038/nmeth.4396. PubMed PMID: 28846090; PubMed Central
1103 PMCID: PMCPMC5623106.

1104 74. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
1105 alignment of short DNA sequences to the human genome. *Genome Biol*.
1106 2009;10(3):R25. Epub 20090304. doi: 10.1186/gb-2009-10-3-r25. PubMed PMID:
1107 19261174; PubMed Central PMCID: PMCPMC2690996.

1108 75. Gunther T, Frohlich J, Herrde C, Ohno S, Burkhardt L, Adler H, et al. A
1109 comparative epigenome analysis of gammaherpesviruses suggests cis-acting
1110 sequence features as critical mediators of rapid polycomb recruitment. *PLoS*
1111 *Pathog*. 2019;15(10):e1007838. Epub 20191031. doi:
1112 10.1371/journal.ppat.1007838. PubMed PMID: 31671162; PubMed Central
1113 PMCID: PMCPMC6932816.

1114 76. Smith JP, Corces MR, Xu J, Reuter VP, Chang HY, Sheffield NC. PEPATAC: an
1115 optimized pipeline for ATAC-seq data analysis with serial alignments. NAR Genom
1116 Bioinform. 2021;3(4):lqab101. Epub 20211123. doi: 10.1093/nargab/lqab101.
1117 PubMed PMID: 34859208; PubMed Central PMCID: PMCPMC8632735.

1118 77. Lerdrup M, Johansen JV, Agrawal-Singh S, Hansen K. An interactive
1119 environment for agile analysis and visualization of ChIP-sequencing data. Nat
1120 Struct Mol Biol. 2016;23(4):349-57. Epub 20160229. doi: 10.1038/nsmb.3180.
1121 PubMed PMID: 26926434.

1122

1123

1124

1125 **Figure legends:**

1126 **Figure 1: Successful differentiation of SH-SY5Y into neuron-like cells. (A)**

1127 Schematic representation of the differentiation process showing representative

1128 pictures of SH-SY5Y before treatment with collagenase (left) at day 10 post-

1129 differentiation, epithelial-like cells that remained in the well (middle) and neuron-

1130 like cells after seeding onto a new Matrigel-coated well. Scale bar: 100 μ m. **(B)**

1131 Representative pictures of SH-SY5Y during the differentiation process. Scale

1132 bar: 100 μ m. **(C)** Representative pictures showing expression of neuronal

1133 markers in dSH-SY5Y at 18 dpd. Scale bar: 10 μ m. **(D)** Representative images

1134 showing KI67 expression in SH-SY5Y during the differentiation process. Scale

1135 bar: 20 μ m. Abbreviations / acronyms: dpd, days post-differentiation; MAP2,

1136 microtubule-associated protein 2; DBH, dopamine beta-hydroxylase; Nav1.7,

1137 voltage-gated sodium channel Nav1.7; TuJ1, beta-III-tubulin antibody.

1138

1139 **Figure 2: VZV productively infects dSH-SY5Y. (A)** Schematic representation

1140 of the recombinant v63R/11G showing the terminal repeats long and short (TR_L

1141 and TR_S, respectively) the unique long and short regions (U_L and U_S,

1142 respectively) and the internal repeat short (IR_S). ORF63 and ORF70 correspond

1143 to duplications of the same ORF, with ORF63 located in the IR_S and ORF70 in

1144 the TR_S. **(B)** Images showing spread of v63R/11G in dSH-SY5Y cells. **(C-F)**

1145 Graphs showing VZV genome copies n=3-9 (B) and relative expression of VZV

1146 genes, n=3-6 (C-E) at different times post-infection. Abbreviations: dpi, days

1147 post-infection. The results in (B-E) are from 3 biological replicates. Values are
1148 presented as mean \pm s.e.m.

1149

1150 **Figure 3: Incubation with ACV progressively represses VZV in dSH-SY5Y.**

1151 (A) Schematic representation of the experiment. (B) Graph showing the day
1152 post-infection when wells containing ORF63-RFP/ORF11-GFP positive dSH-
1153 SY5Y cells were detected following incubation with ACV for 2-6 days. Each
1154 symbol represents one well containing ORF63-RFP/ORF11-GFP positive cells.
1155 “n” refers to the number of wells infected with VZV for each condition. (C) Graph
1156 showing the number of wells containing ORF63-RFP/ORF11-GFP positive
1157 (orange) and negative (blue) dSH-SY5Y cells following incubation with ACV for
1158 2-6 days. The percentage on top of each column indicates the percentage of
1159 wells with ORF63-RFP/ORF11-GFP positive dSH-SY5Y cells at the end of the
1160 experiment (30 dpi). Abbreviations: dpi, days post-infection.

1161

1162 **Figure 4: Incubation with ACV during 5 days results in a repressive**
1163 **phenotype that can be released.** (A) Schematic representation of the
1164 experiment. (B) Representative images showing dSH-SY5Y cells infected with
1165 v63R/11G in the absence (acute) or presence of ACV for 5 dpi and lacking or
1166 containing ORF63-RFP/ORF11-GFP positive dSH-SY5Y cells. The dSH-SY5Y
1167 cells were labelled with an anti-TuJ1 antibody and the nuclei were stained with
1168 DAPI. Scale bar: 100 μ m. (C) Western blot detecting VZV gE (top blot) and

1169 actin (bottom blot) in dSH-SY5Y cell lysates obtained from mock- or v63R/11G-
1170 infected cells without ACV (acute) or with 5 days incubation with ACV. **(D-F)**
1171 Relative gene expression of VZV genes, n=3-9 (D,E) and quantification of VZV
1172 genomes, n=3-9 (F) in mock- or v63R/11G-infected dSH-SY5Y cells in the
1173 absence (acute) or presence of ACV for 5 dpi. **(G)** Detection of VZV genomes
1174 by *in situ* hybridization in dSH-SY5Y infected with v63R/11G in the presence of
1175 ACV for 5 days in wells where no ORF63-RFP/ORF11-GFP positive cells were
1176 detected. DAPI was used to stain nuclei. The white arrows point to the VZV
1177 genomes. Scale bar: 10 μ m. **(H)** Detection of ORF63-RFP/ORF11-GFP in
1178 ARPE19 cells incubated with dSH-SY5Y cells (infected in the presence of ACV
1179 for 5 days) from wells lacking (NR) or containing (R) ORF63-RFP/ORF11-GFP-
1180 positive cells. DAPI was used to stain nuclei. In all panels NR refers to “non-
1181 replicating” VZV, while R refers to “replicating” VZV, determined by the
1182 expression of ORF63-RFP/ORF11-GFP. Abbreviations: dpi, days post-
1183 infection. The results in (D-F) are from 3 biological replicates. The images in
1184 (G) are representative from more than six samples. Values are presented as
1185 mean \pm s.e.m.

1186

1187 **Figure 5: A small percentage of dSH-SY5Y cells incubated with ACV for**
1188 **six days maintain non-replicating viral genomes for up to 20 days. (A)**
1189 Schematic representation of the experiment. **(B)** Representative images
1190 showing dSH-SY5Y cells infected with v63R/11G in the absence (acute) or

1191 presence of ACV for 6 dpi and lacking or containing ORF63-RFP/ORF11-GFP
1192 positive dSH-SY5Y cells. The dSH-SY5Y cells were labelled with an anti-TuJ1
1193 antibody and the nuclei were stained with DAPI. Scale bar: 100 μ m. **(C)**
1194 Western blot detecting VZV gE and IE4 (top blot) and actin (bottom blot) in dSH-
1195 SY5Y cell lysates obtained from mock- or v63R/11G-infected cells without ACV
1196 (acute) or with 6 days incubation with ACV. **(D-G)** Relative gene expression of
1197 VZV genes, n=3-6 (D-F) and quantification of VZV genomes, n=3-6 (G) in
1198 mock- or v63R/11G-infected dSH-SY5Y cells in the absence (acute) or
1199 presence of ACV for 6 dpi. **(H)** Detection of VZV genomes (grey dots) by *in situ*
1200 hybridization in dSH-SY5Y cells infected with v63R/11G in the absence (acute)
1201 and presence of ACV for 6 days in wells where no ORF63-RFP/ORF11-GFP
1202 positive cells were detected. DAPI was used to stain nuclei. The white arrow
1203 points to the VZV genome. Scale bar: 10 μ m. Abbreviations: dpi, days post-
1204 infection. The results in (D-G) are from 3 biological replicates. Values are
1205 presented as mean \pm s.e.m.

1206

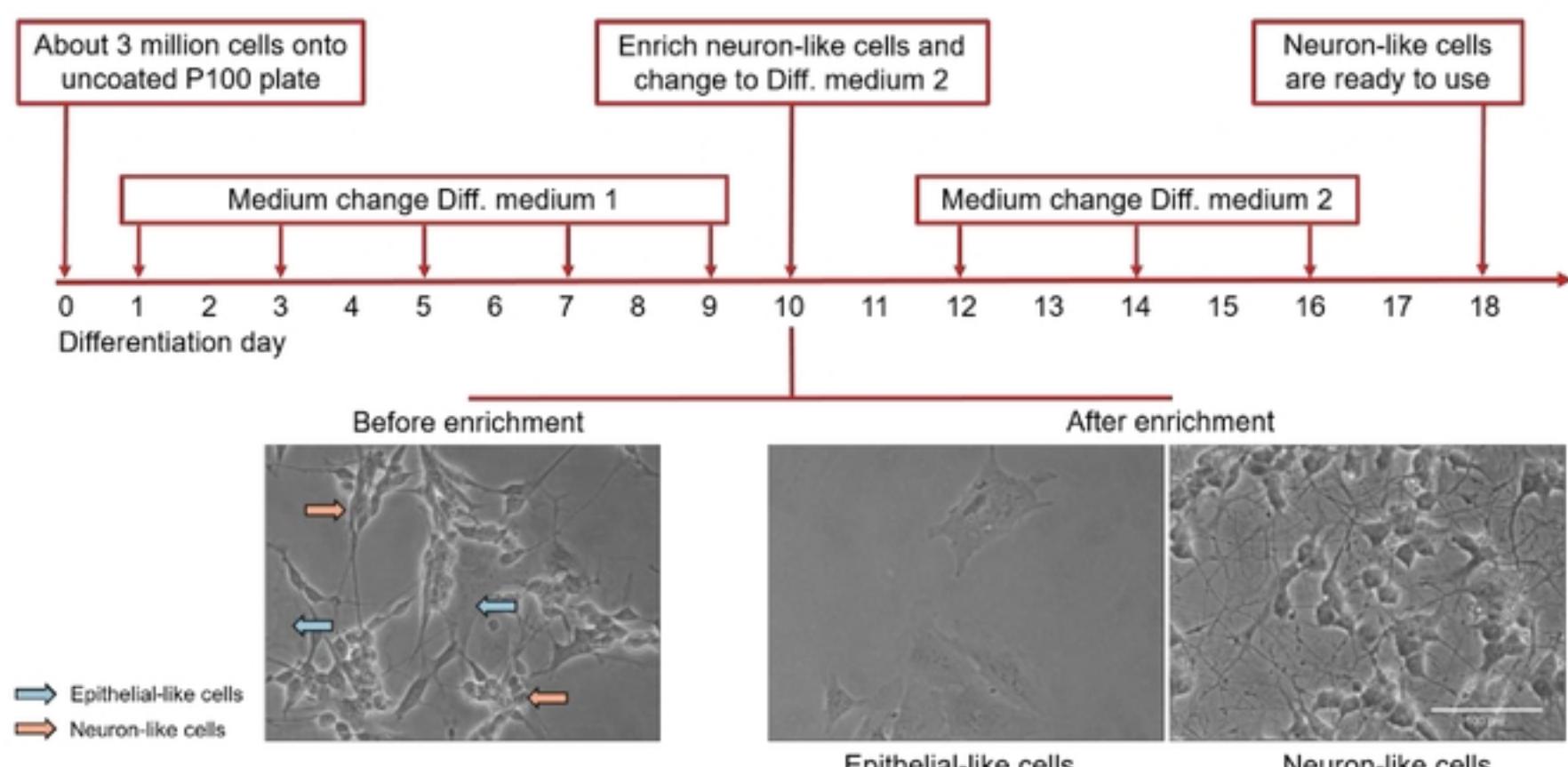
1207 **Figure 6: Incubation with ACV progressively represses VZV in dSH-SY5Y.**

1208 **(A)** Schematic representation of the experiment. **(B)** Relative VZV gene
1209 expression in dSH-SY5Y cells infected with v63R/11G in the presence of ACV
1210 for 6 days and incubated with LY294002 or SAHA at 8 dpi, n=3-4. The results
1211 are from 3 biological replicates. Values are presented as mean \pm s.e.m. **(C)**
1212 Representative images of dSH-SY5Y infected cells in the absence (acute) or

1213 presence of ACV during 6 days and incubated or nor with LY294002 or SAHA
1214 at 8 dpi during 4 days. The pictures were taken at 6 dpi for acute infected cells
1215 and at 14 dpi for the samples treated with ACV. **(D)** Representative images of
1216 dSH-SY5Y cells infected with v63R/11G in the presence of ACV for 6 days and
1217 transduced with a lentivirus expressing VLT-ORF63 (top) or eGFP (bottom).
1218 The left and middle panels show direct fluorescent expression of ORF63-RFP,
1219 ORF11-GFP, RFP and GFP, while the right panels show the merge of the
1220 fluorescent channels with phase-contrast images. Scale bar: 100 μ m. **(E)**
1221 Graphs showing the percentage and number of wells containing ORF63-
1222 RFP/ORF11-GFP positive dSH-SY5Y cells (representing replicating virus),
1223 following transduction with lentivirus expressing VLT-ORF63 or eGFP.
1224

1225 **Figure 7: Incubation with ACV leads to low level genome-wide VZV**
1226 **transcription in dSH-SY5Y cells. (A,B)** Genome-wide transcription profiles of
1227 dSH-SY5Y cells infected with v63R/11G in the absence (acute, violet) and
1228 presence of ACV for 6 dpi (orange, A; blue, B) or for 3, 4, 5 and 6 dpi (orange,
1229 B). Bulk RNA-Seq was performed at different times post-infection, as labelled.
1230 Transcription from both DNA strands is shown with the depth of coverage
1231 labelled on the y-axis. A representation of the VZV genome and all encoded
1232 transcripts is shown. **(C)** Detection by *in situ* hybridization of VZV mRNA
1233 (greydots) with a probe that detects VLT and VLT-ORF63 transcripts in dSH-
1234 SY5Y infected in the absence (acute) or presence of ACV for 6 days in wells

1235 where no ORF63-RFP/ORF11-GFP positive cells were detected. DAPI was
1236 used to stain nuclei. The white arrow points to the transcript. Scale bar: 10 μ m.
1237 Abbreviations: dpi, days post-infection.


1238

1239 **Figure 8: ChIP-seq and ATAC-seq analysis of differentiated SH-SY5Y cells**
1240 **quiescently infected with VZV at 13 days post-infection. (A)** Read density
1241 coverage tracks of histone marks and ATAC-seq signal on two host loci and
1242 VZV, determined by ChIP-seq. **(B)** Average read density of ChIP-seq and
1243 ATAC-seq reads at all human TSS (+/- 2.5kb). **(C)** Input-normalized
1244 quantification of ChIP-seq signals in a 10 kb sliding window across the VZV
1245 genome (VZV, right panel), relative to the 200 most significantly enriched host
1246 regions (hg38 positives, left panel) and an equal number of size matched,
1247 randomly selected host control loci (hg38 random, center). Signals observed in
1248 host control regions were set to 1 (10E0). Experiments were independently
1249 performed with VZV BAC pOka (WT) and v63R/11G. **(D)** Input-normalized
1250 quantification quantification of ATAC-seq coverage at all positive host sites
1251 (n=54760) compared to a count/size-matched collection of randomly selected
1252 control regions and 500bp sliding windows across the VZV genome (n=249).

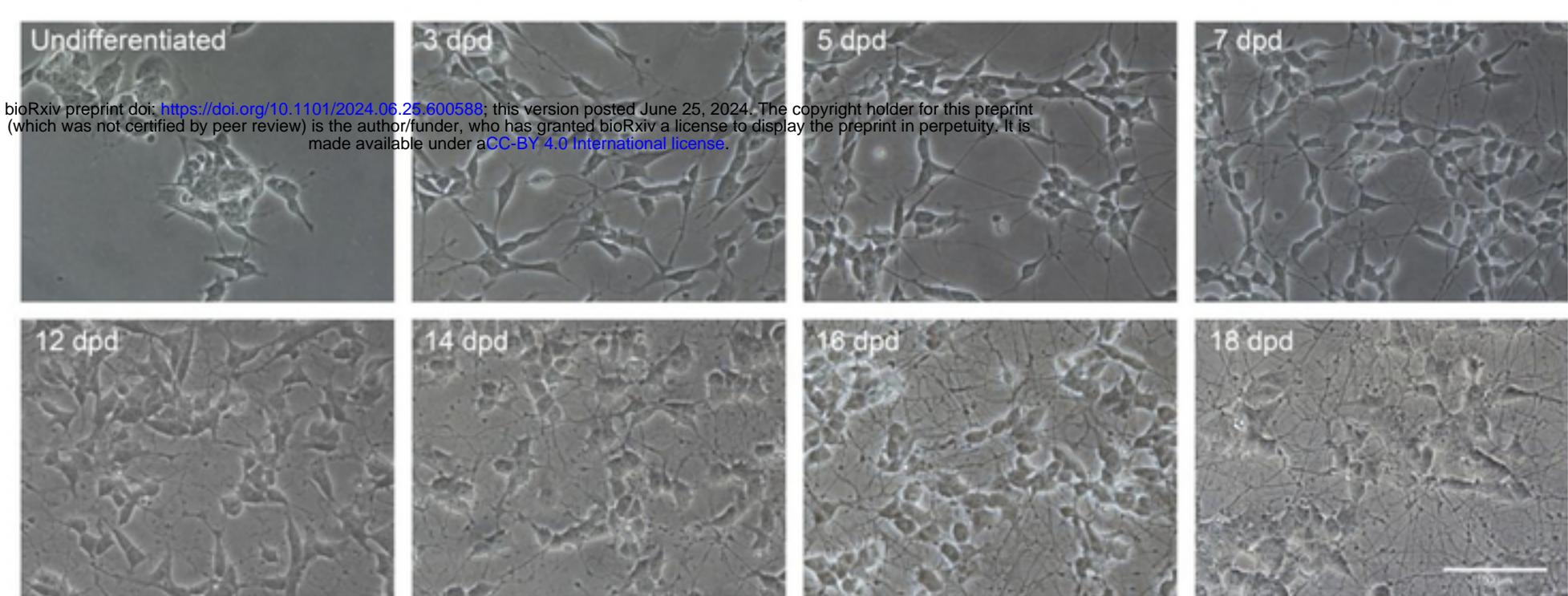
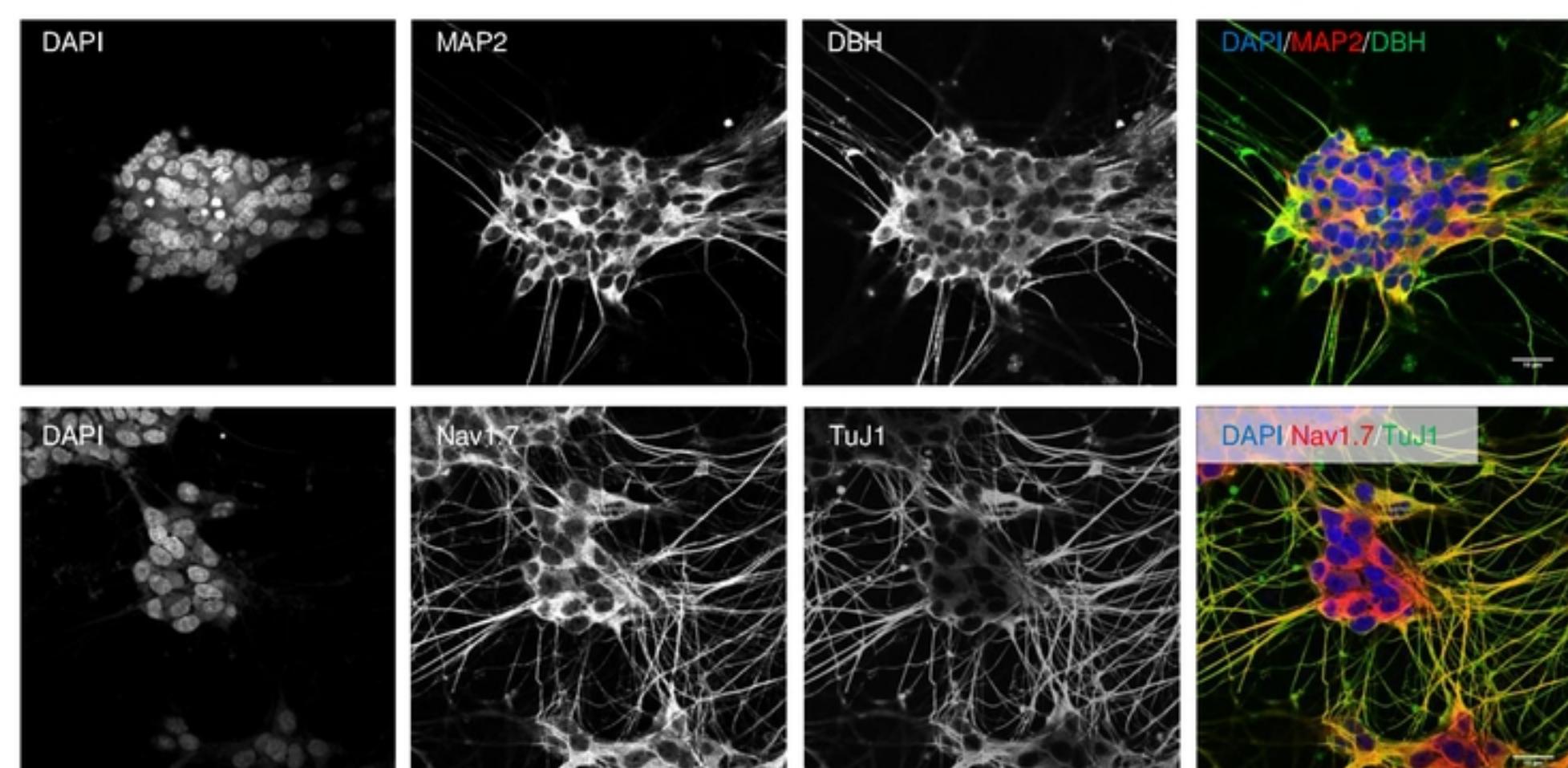

1253

Figure 1


A

B

C

D

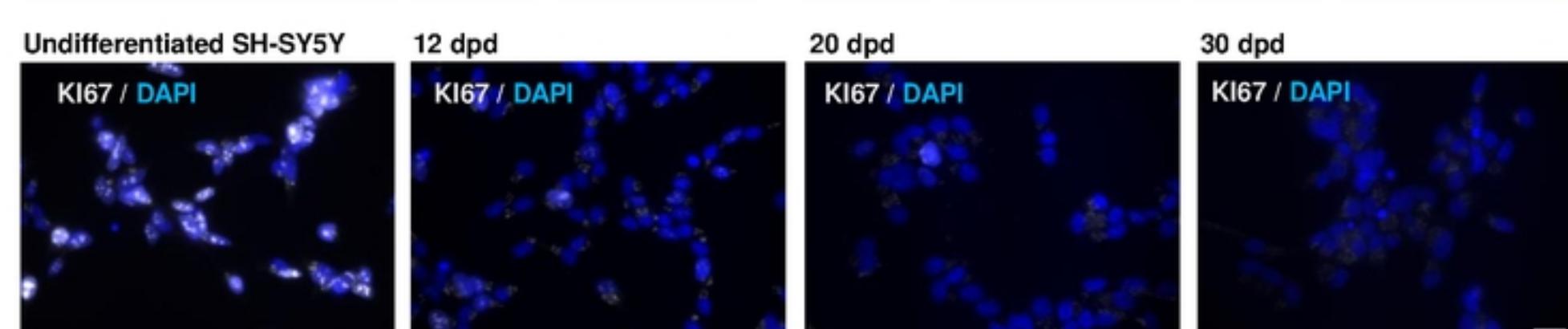
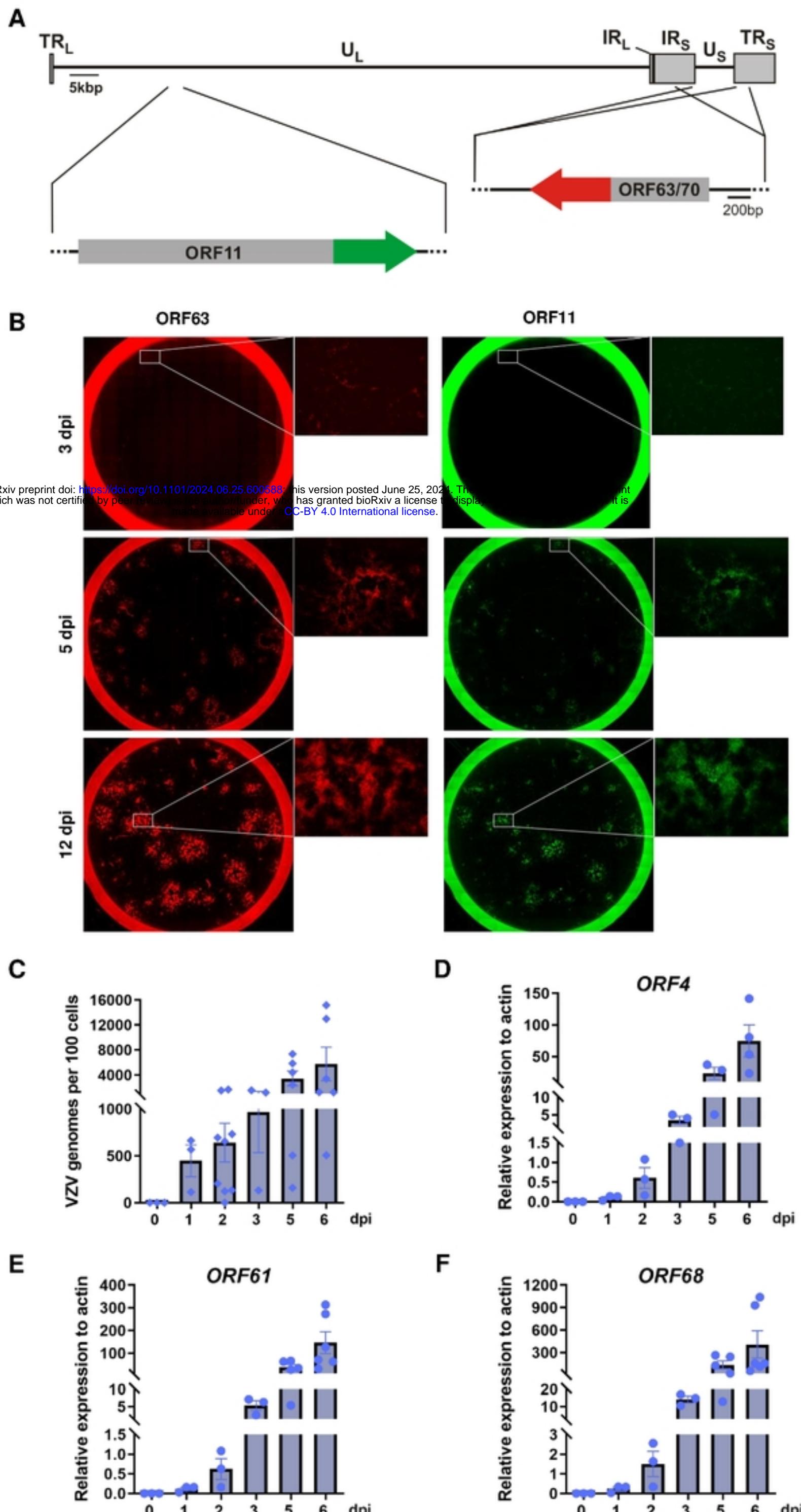
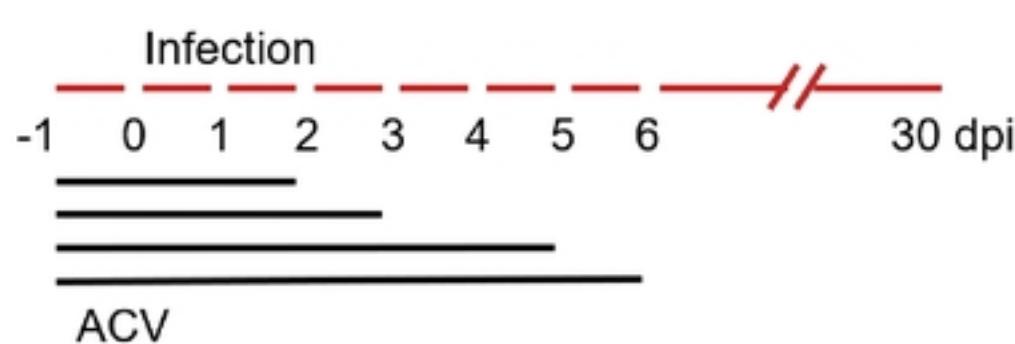


Figure 1

Figure 2

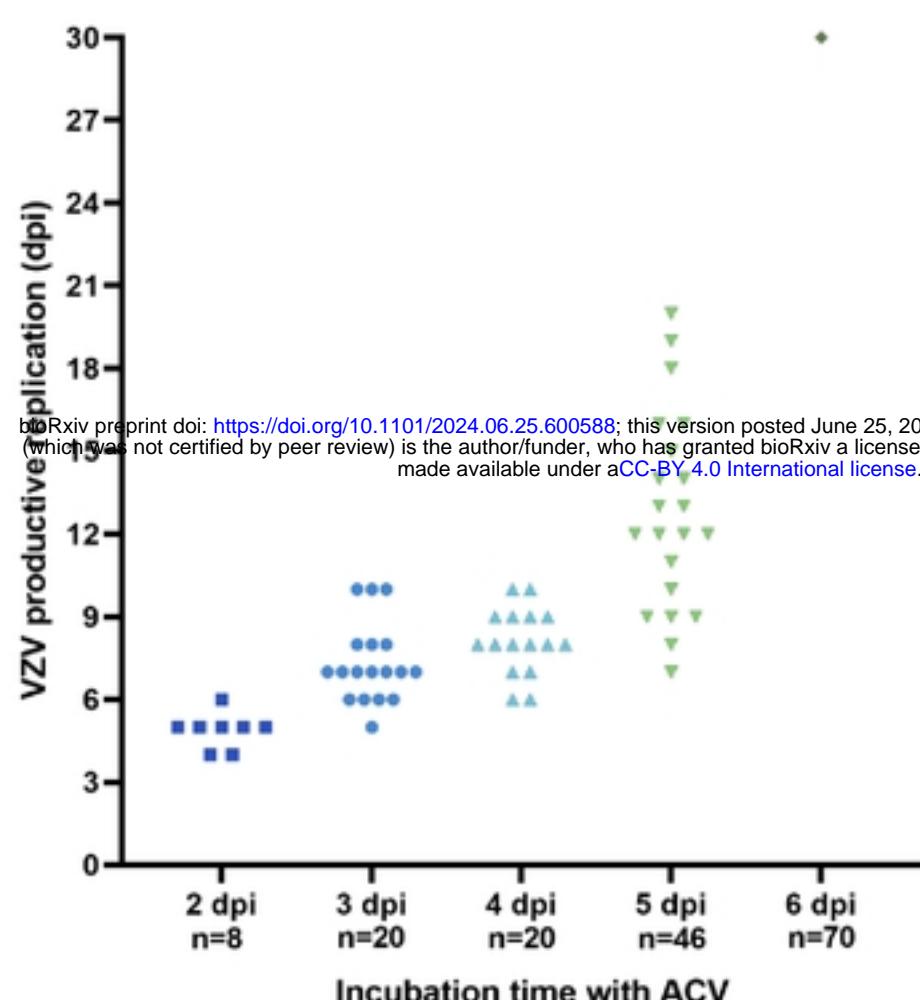

Figure 2

Figure 3

A

B

C

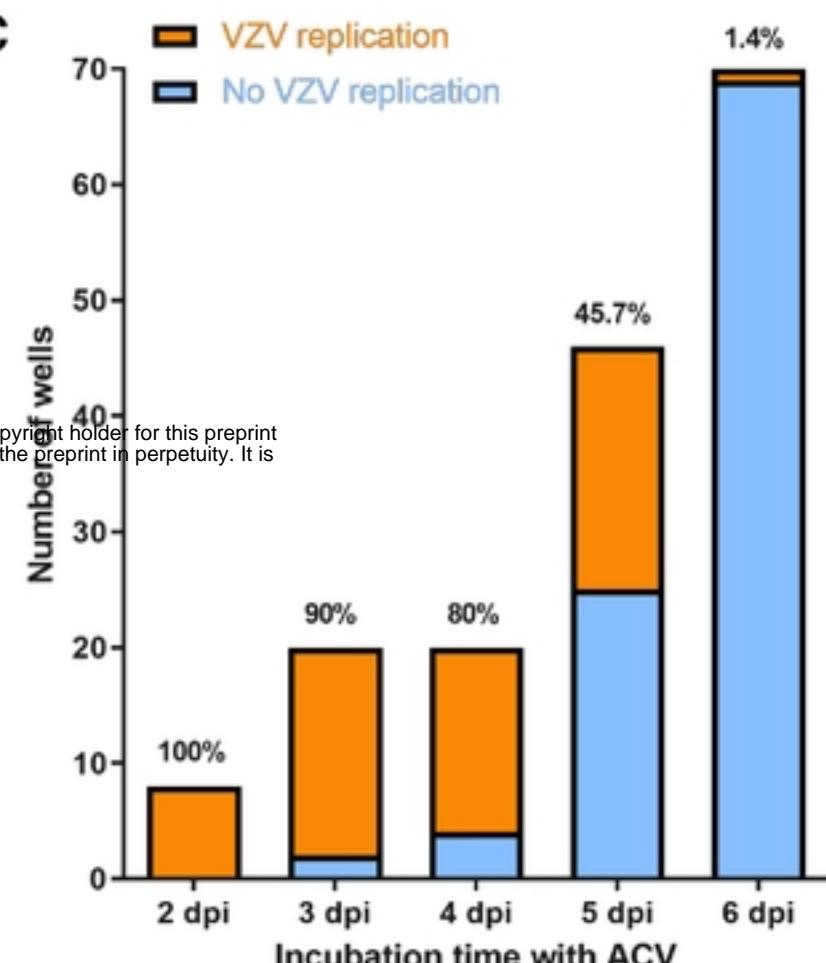
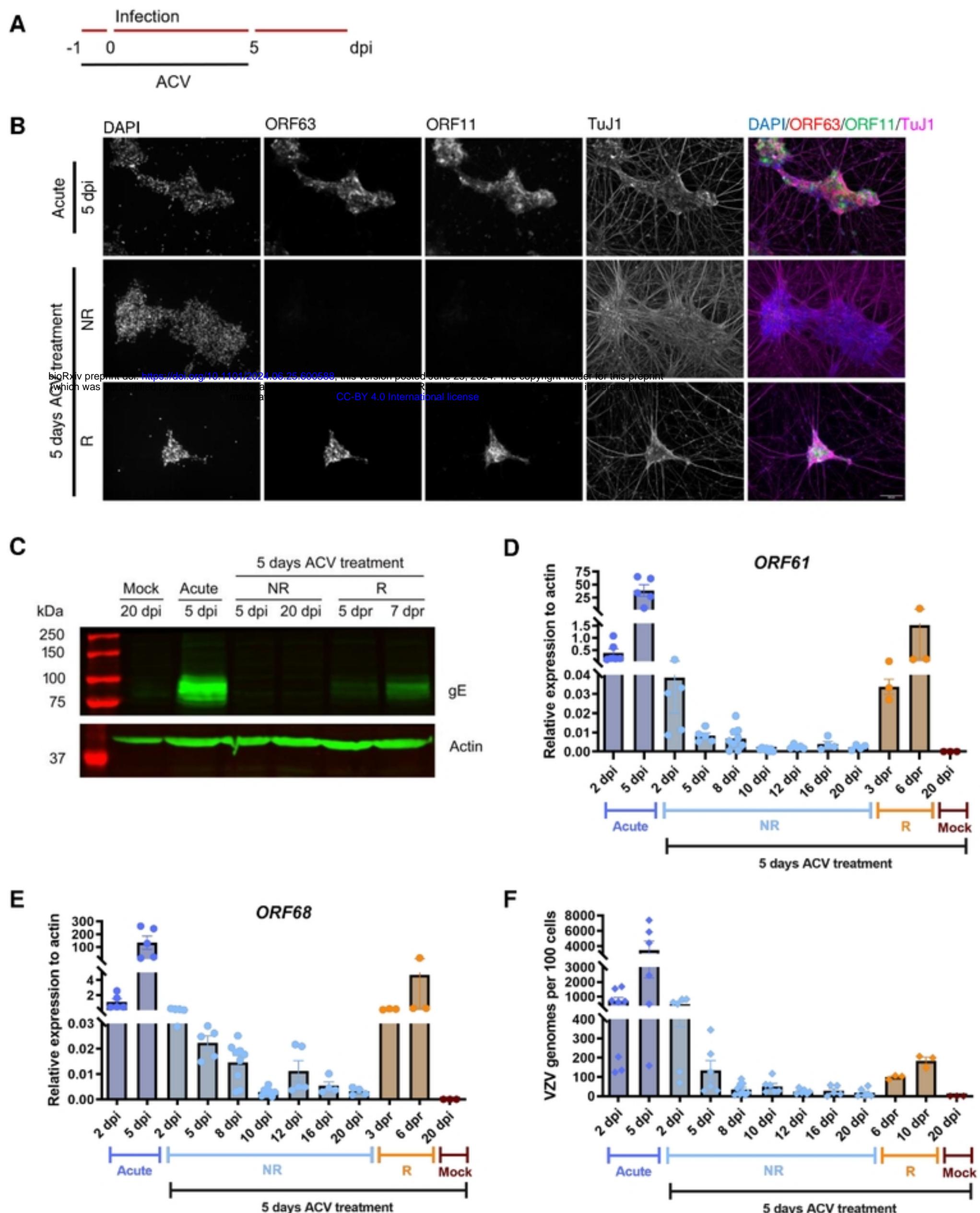
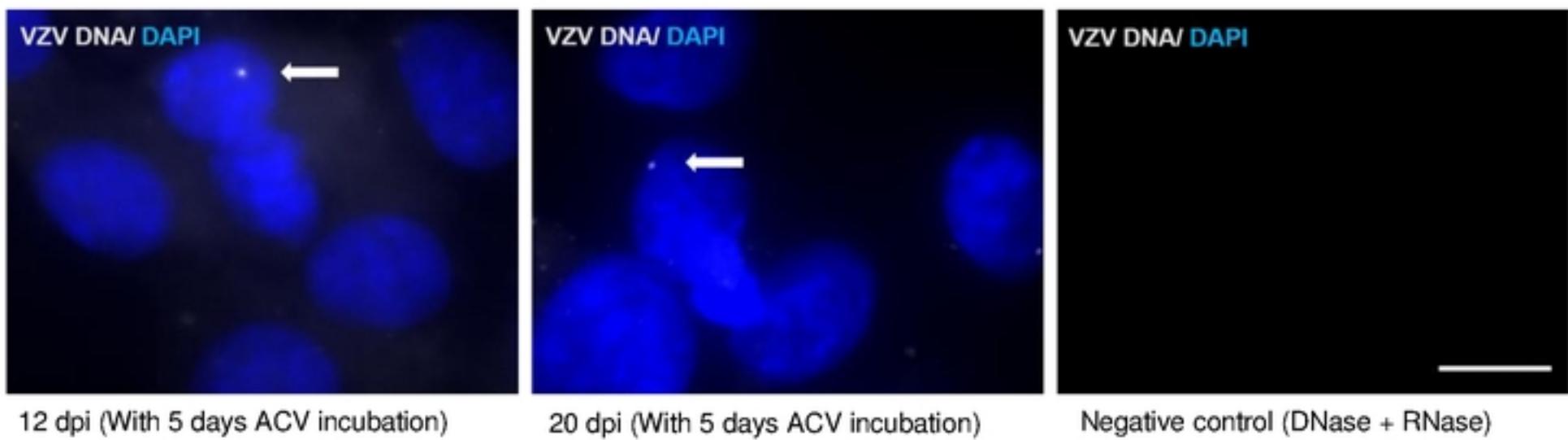
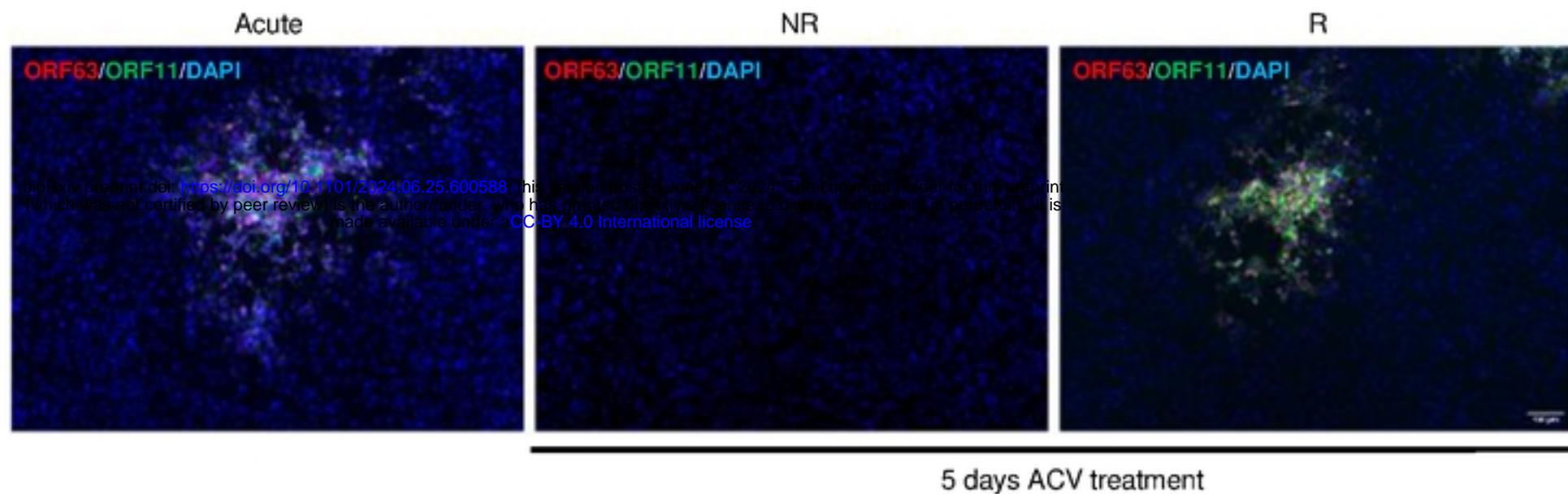





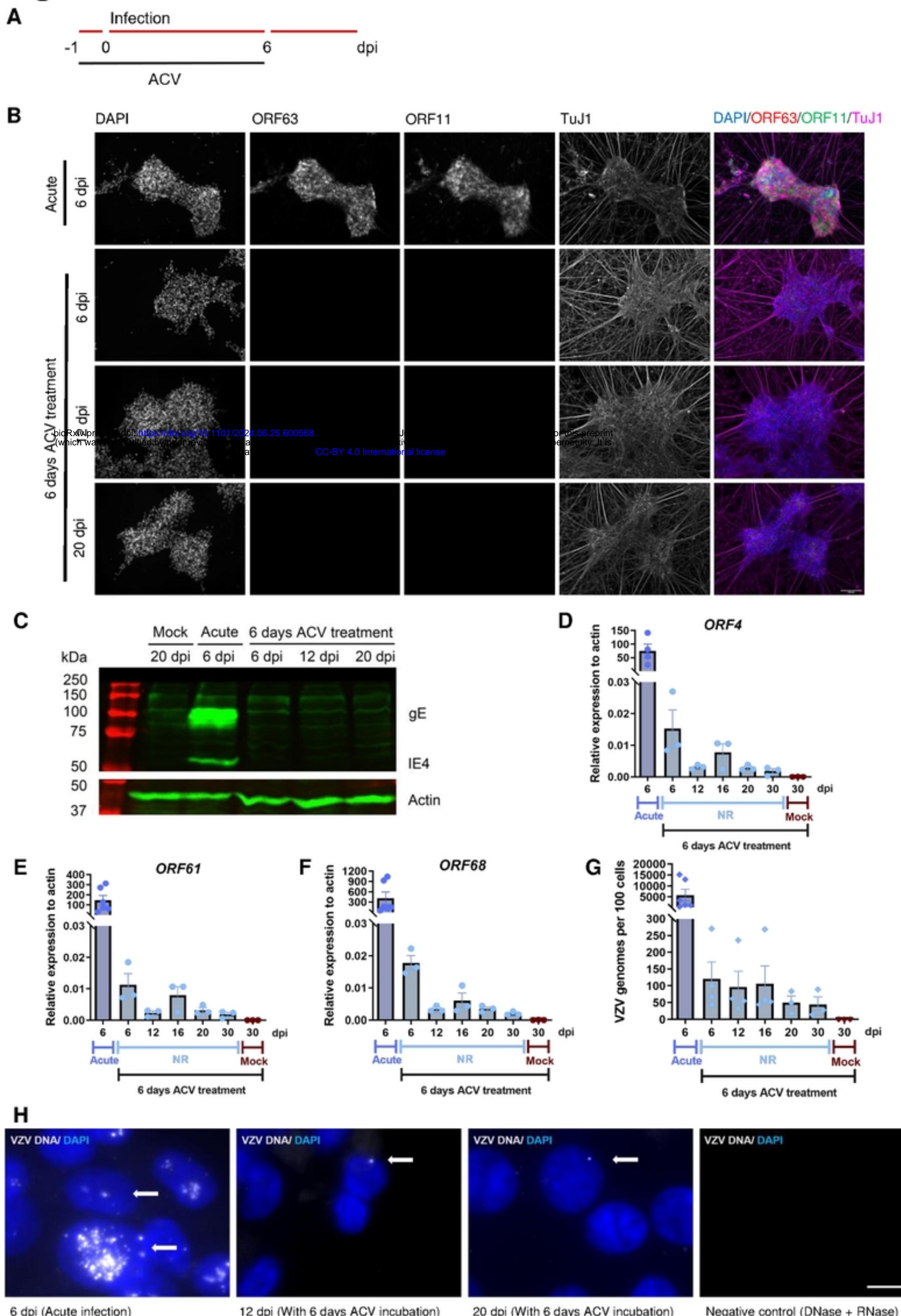
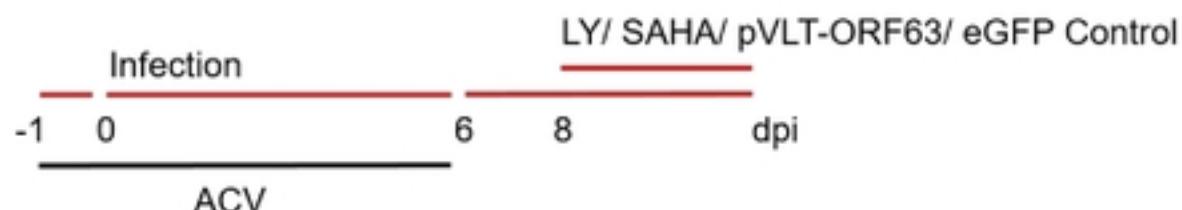
Figure 3

Figure 4

G**H**

bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.25.600588>; this version posted June 25, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 5

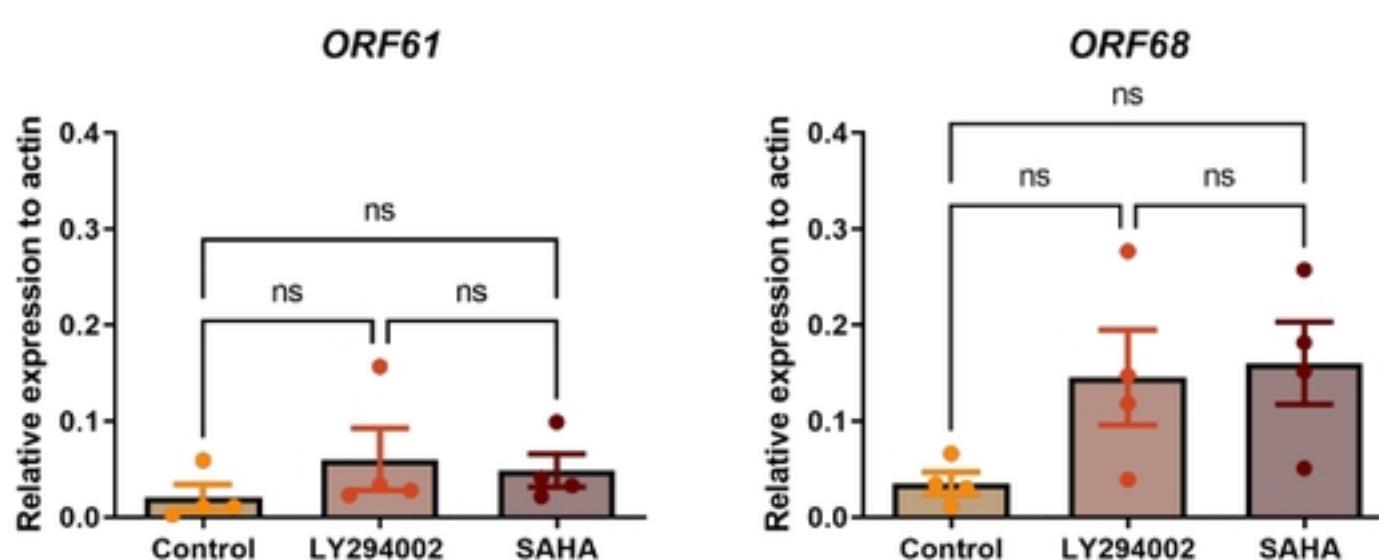
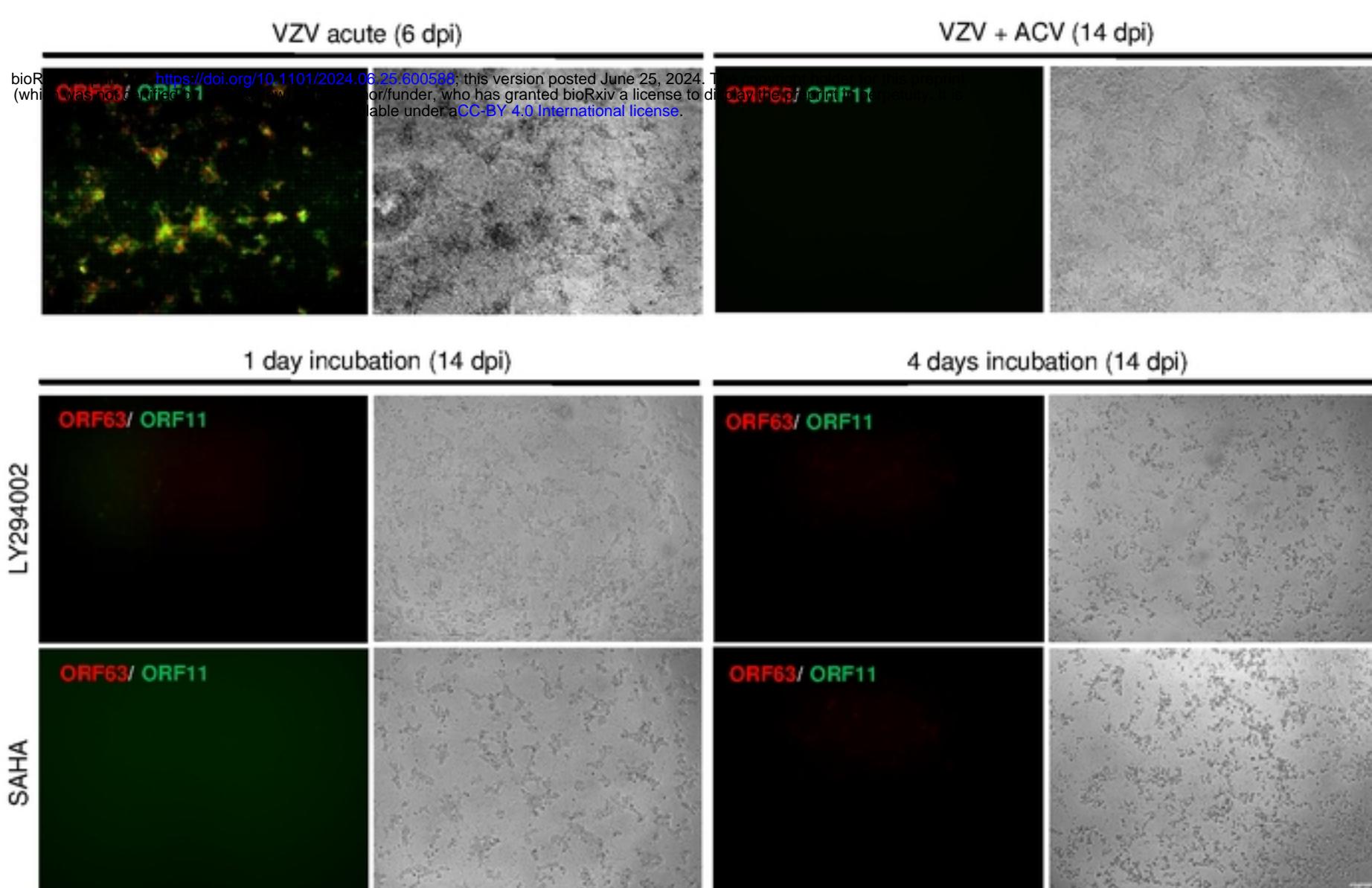
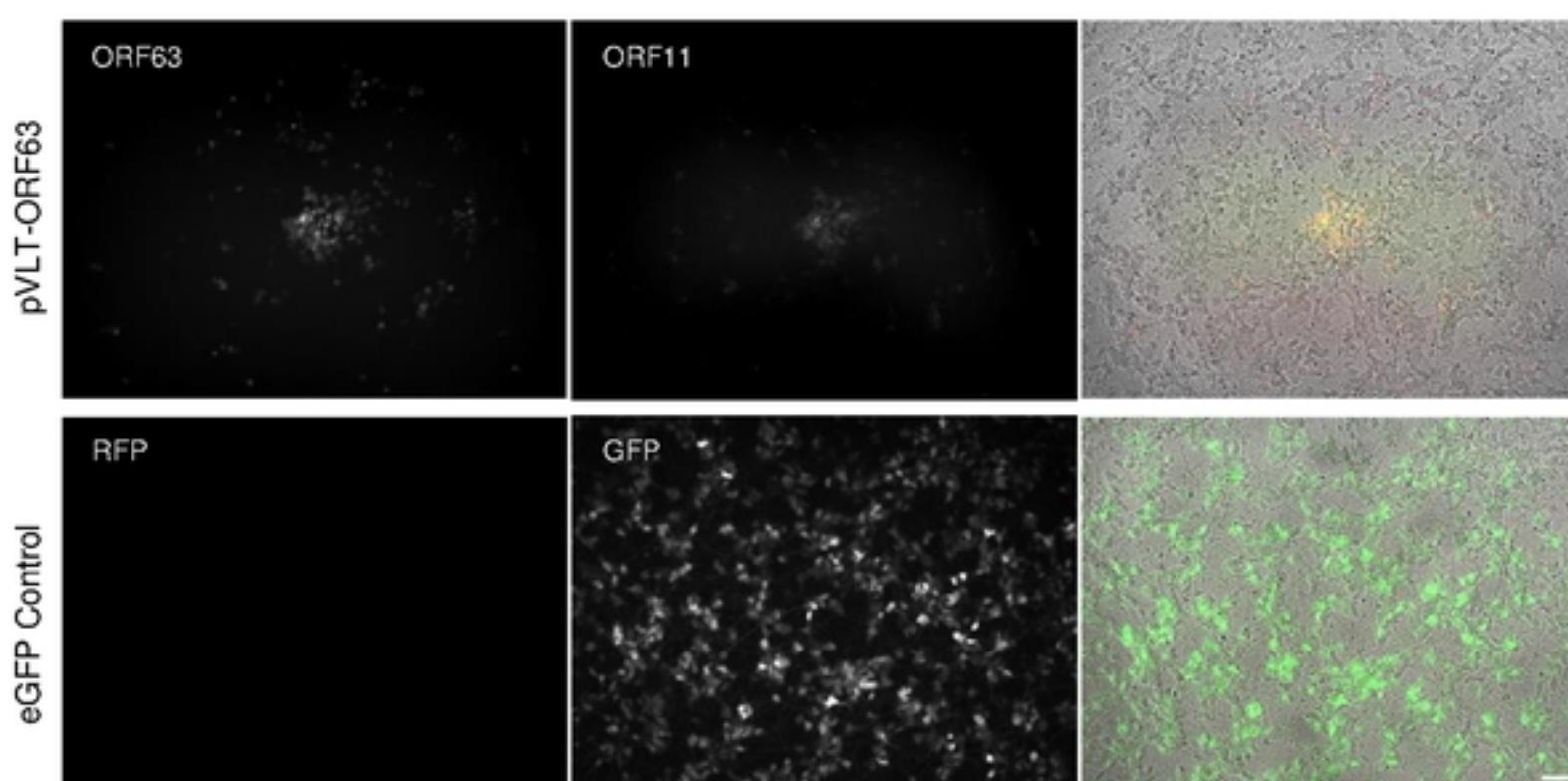

Figure 5

Figure 6


A


B

C

D

E

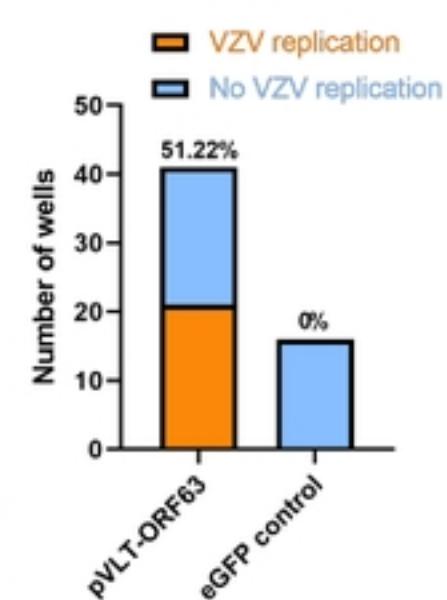
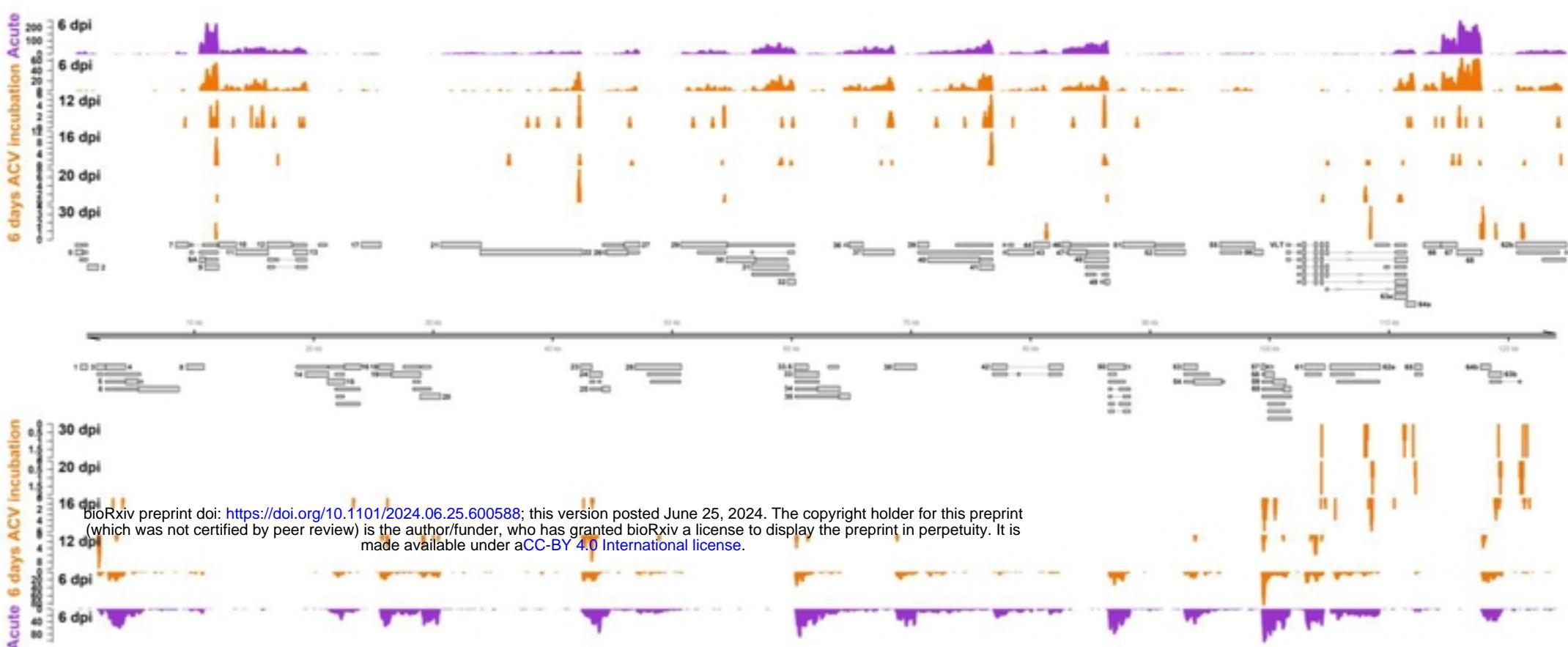
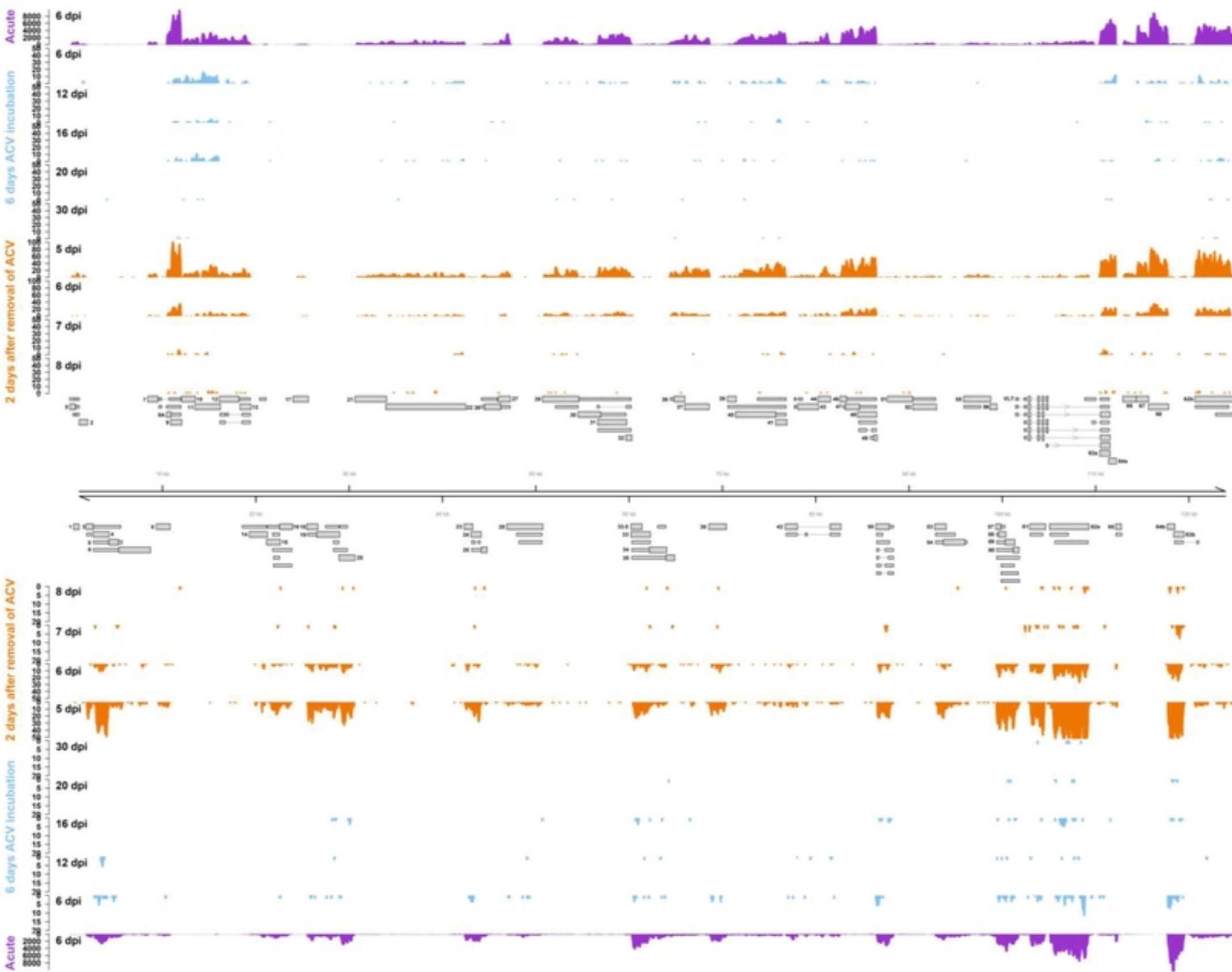
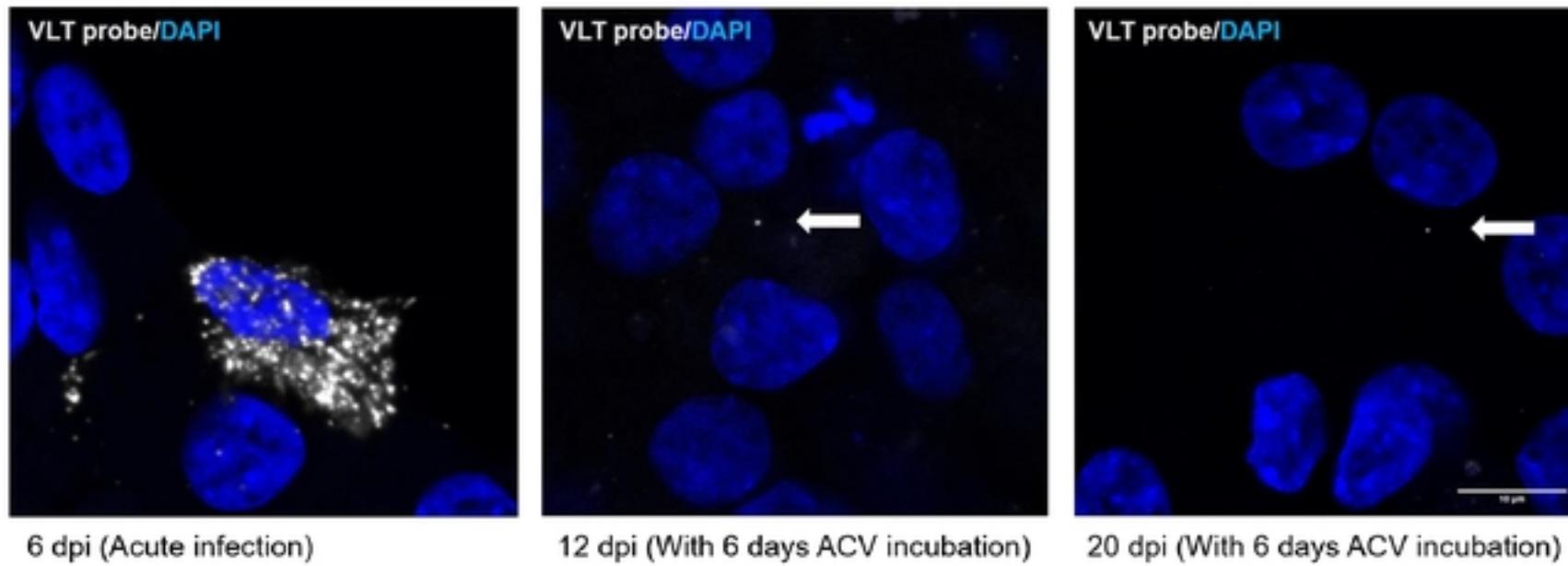
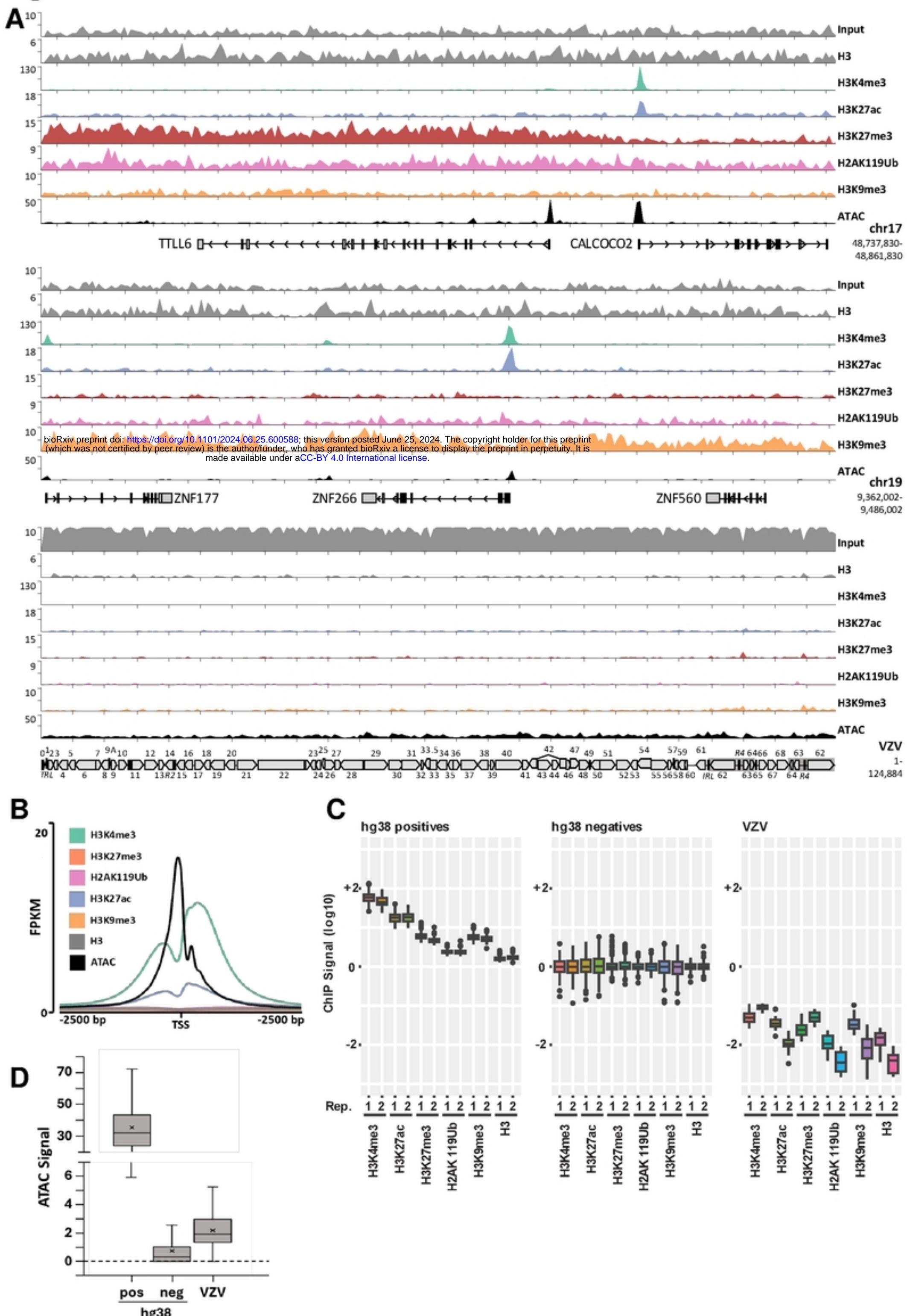



Figure 6


Figure 7


A

bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.25.600588>; this version posted June 25, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.


B

C

bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.25.600588>; this version posted June 25, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

Figure 8

Figure 8