

1 **The PIN1-p38-CtIP signaling axis protects stalled replication forks from deleterious degradation**

2

3 Francesca Vivalda<sup>1</sup>, Marco Gatti<sup>1</sup>, Letizia Manfredi<sup>1</sup>, Hülya Dogan<sup>2</sup>, Antonio Porro<sup>1</sup>, Giulio Collotta<sup>1</sup>, Ilaria  
4 Ceppi<sup>3</sup>, Christine von Aesch<sup>1</sup>, Vanessa van Ackeren<sup>1</sup>, Sebastian Wild<sup>1</sup>, Martin Steger<sup>4</sup>, Begoña Canovas<sup>5</sup>,  
5 Monica Cubillos-Rojas<sup>5</sup>, Antoni Riera<sup>5,6</sup>, Petr Cejka<sup>3</sup>, Angel R. Nebreda<sup>4,7</sup>, Diego Dibitetto<sup>2,8</sup>, Sven  
6 Rottenberg<sup>2,9</sup> & Alessandro A. Sartori<sup>1,10,\*</sup>

7

8 <sup>1</sup>Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland.

9 <sup>2</sup>Institute of Animal Pathology and Bern Center for Precision Medicine, University of Bern, Bern,  
10 Switzerland.

11 <sup>3</sup>Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland

12 <sup>4</sup>NEOsphere Biotechnologies, Martinsried, Germany.

13 <sup>5</sup>Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology,  
14 Barcelona, Spain.

15 <sup>6</sup>Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona,  
16 Barcelona, Spain.

17 <sup>7</sup>ICREA, Barcelona, Spain.

18 <sup>8</sup>Department of Experimental Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan,  
19 Italy.

20 <sup>9</sup>Cancer Therapy Resistance Cluster, Department for Biomedical Research, University of Bern, Bern,  
21 Switzerland.

22 <sup>10</sup>Lead contact

23 \*Correspondence: [sartori@imcr.uzh.ch](mailto:sartori@imcr.uzh.ch)

24

25 **ABSTRACT**

26 Human CtIP plays a critical role in homologous recombination (HR) by promoting the resection of DNA  
27 double-strand breaks. Moreover, CtIP maintains genome stability through protecting stalled replication  
28 forks from nucleolytic degradation. However, the upstream signaling mechanisms governing the  
29 molecular switch between these two CtIP-dependent processes remain largely elusive. Here, we show  
30 that phosphorylation of CtIP by the p38 $\alpha$  stress kinase and subsequent PIN1-mediated CtIP *cis*-to-*trans*  
31 isomerization is required for fork stabilization but dispensable for HR. We found that stalled forks are  
32 degraded in cells expressing non-phosphorylatable CtIP or lacking PIN1-p38 $\alpha$  activity, while expression of  
33 a CtIP *trans*-locked mutant overcomes the requirement for PIN1-p38 $\alpha$  in fork protection. We further  
34 reveal that *Brca1*-deficient mammary tumor cells that have acquired PARPi resistance regain  
35 chemosensitivity after PIN1 or p38 $\alpha$  inhibition. Collectively, our findings identify the PIN1-p38-CtIP  
36 signaling pathway as a critical regulator of replication fork integrity.

37

38 **INTRODUCTION**

39 The maintenance of genome stability relies on the accurate completion of DNA replication during S-phase.  
40 The progression of replication forks can be impeded by many internal and external events such as DNA  
41 damage and depletion of nucleotide precursors, causing the accumulation of single-stranded DNA and  
42 triggering replication stress, a crucial vulnerability of cancer cells<sup>1</sup>. Numerous factors have been implicated  
43 in the protection and recovery of stalled replication forks to prevent their collapse into highly mutagenic  
44 DNA double-strand breaks (DSBs)<sup>2</sup>. This includes proteins involved in homologous recombination (HR),  
45 most notably BRCA1 and BRCA2, which protect nascent DNA from degradation by the MRE11  
46 exonuclease<sup>3</sup>. Moreover, we have recently uncovered a key role for CtIP in the protection of stalled forks  
47 from nucleolytic degradation by DNA2, through a mechanism that acts independently from its well-  
48 established DSB end resection function<sup>4,5</sup>. Accordingly, CtIP-T847A and -S327A phosphomutants defective  
49 in MRE11-RAD50-NBS1 (MRN) and BRCA1 interaction<sup>6-8</sup>, respectively, and thus, in HR, are proficient in  
50 fork protection. In contrast, CtIP nuclease-defective mutants proficient in DNA-end resection and HR were  
51 shown to cause fork degradation upon replicative stress<sup>4</sup>. However, the regulatory mechanisms mediating  
52 CtIP's role in fork protection have remained largely elusive.

53 PIN1 is a unique phosphorylation-specific peptidyl-prolyl *cis*-to-*trans* isomerase reported to act as a  
54 molecular switch and pivotal modulator of multiple cellular processes. Consistently, aberrant PIN1 activity  
55 has been linked to a plethora of human pathologies, including cancer and neurodegeneration<sup>9,10</sup>. Through  
56 proteomics, we previously identified several prominent DNA damage response factors as potential PIN1  
57 interaction partners, including BRCA1 and CtIP<sup>11</sup>. We further demonstrated that PIN1 can bind to two  
58 conserved phosphorylated S/T-P motifs (pS276 and pT315) but preferentially isomerizes the pS276-P277  
59 peptide bond in CtIP. This conformational change ultimately regulates CtIP protein turn-over, thereby  
60 fine-tuning DNA-end resection<sup>11</sup>. While we could reveal CDK2 as the major kinase responsible for CtIP-  
61 T315 phosphorylation during S and G2 phase, the proline-dependent kinase phosphorylating CtIP at S276

62 has not yet been identified. In addition to the canonical ATM and ATR signaling pathways, the stress-  
63 induced p38 mitogen-activated kinase (p38 MAPK) family has been reported to contribute to cell cycle  
64 arrest in response to genotoxic agents<sup>12,13</sup>. Notably, p38 $\alpha$ , the best characterized and ubiquitously  
65 expressed isoform of the p38 MAPK family, was reported to restrain chromosome instability in mammary  
66 tumor cells and to phosphorylate several S/T-P motifs in recombinant CtIP<sup>14</sup>.  
67 Here, we report that CtIP phosphorylation by p38 $\alpha$  kinase at S276 followed by PIN1-mediated *cis*-to-*trans*  
68 isomerization of the pS276/P277 peptide bond is necessary for the protection of stalled forks from  
69 nucleolytic degradation, but dispensable for HR. Expression of CtIP-S276A or inhibition of PIN1/p38 $\alpha$   
70 activity trigger forks degradation. We find that PIN1/p38 $\alpha$ -mediated CtIP isomerization is critical for CtIP  
71 accumulation at stalled forks. Finally, we reveal that *Brca1*-deficient mammary tumor cells, that acquired  
72 resistance to PARP inhibitor via CtIP-dependent restoration of fork stability, regain chemosensitivity after  
73 PIN1 or p38 $\alpha$  inhibition. Collectively, we define the p38 $\alpha$ -PIN1-CtIP phosphorylation-isomerization  
74 cascade as a crucial regulatory mechanism preserving replication fork integrity.

75

## 76 RESULTS

### 77 **Isomerization of the phospho-S276-P277 motif in CtIP protects stalled forks from nucleolytic 78 degradation**

79 In our past studies, we have identified CtIP as a target of PIN1 isomerization and demonstrated that CtIP  
80 depletion triggers DNA2-dependent fork degradation in a BRCA1-independent manner<sup>4,11</sup>. However, the  
81 mechanism underlying CtIP-mediated fork protection remained unknown.

82 This prompted us to investigate the potential role of CtIP isomerization in fork protection. We first  
83 performed DNA fiber spreading assays upon treatment with the ribonucleotide reductase inhibitor and  
84 replication stalling agent hydroxyurea (HU) to measure fork degradation in cells stably expressing different  
85 siRNA-resistant GFP-CtIP variants, established previously<sup>11</sup>. We observed that, unlike wild-type (wt) CtIP,

86 phosphomutants defective in PIN1 binding (T315A), isomerization (S276A) or both (S276A/T315A) failed  
87 to restore fork stability (Figure 1A). Moreover, temporary inhibition of DNA2 nuclease activity as well as  
88 depletion of the SMARCAL1 DNA translocase alleviated degradation of HU-stalled forks in cells expressing  
89 isomerization-defective CtIP mutants (Figures 1B, 1C and S1A). These results are consistent with our  
90 previous findings showing that CtIP prevents extensive nascent strand degradation by DNA2 after fork  
91 reversal<sup>4</sup> and suggest that PIN1-CtIP interaction is required to maintain fork stability in cells experiencing  
92 replication stress. We next wanted to assess more directly whether *cis* to *trans* prolyl-peptide bond  
93 isomerization at the pS276-P277 motif in CtIP is critical for replication fork protection. Therefore, we  
94 generated U2OS cells inducibly expressing GFP-tagged *trans*-locked mutants of CtIP, in which P277 was  
95 substituted with alanine, either alone (P277A) or in combination with S276A (S276A/P277A). First, we  
96 analyzed CtIP-S276 phosphorylation and CtIP-PIN1 interaction in cells expressing P277A mutants and  
97 found that both events are strongly impaired (Figures S1B and S1C), indicating a critical role for P277 in  
98 S276 phosphorylation, and, consequently, in PIN1 binding. Remarkably, however, employing two  
99 alternative experimental approaches to analyze fork stability, expression of CtIP *trans*-locked variants  
100 (P277A or S276A/P277A) rescued fork degradation in CtIP-depleted cells, indicating that forced *trans*-  
101 geometry of the P277 peptide bond can compensate for the lack of S276 phosphorylation and PIN1  
102 binding (Figure 1D and S1D). Notably, the observed differences in fork stability between CtIP mutant cells  
103 could not be attributed to differences in CtIP protein stability (Figure S1E).

104 We have previously demonstrated that engineered U2OS<sup>Cas9/CtIP</sup> cells, lacking two out of three existing CtIP  
105 gene copies, are largely proficient in resecting DSBs and HR but display replication stress-associated  
106 phenotypes comparable to those detected in CtIP-depleted cells, including nascent strand degradation  
107 and elevated levels of chromatin-bound RPA following HU treatment<sup>4</sup>. Using quantitative image-based  
108 cytometry (QIBC), we observed that stable expression of CtIP-wt in U2OS<sup>Cas9/CtIP</sup> cells alleviated HU-  
109 induced RPA hyperaccumulation on chromatin, whereas the CtIP-S276A phosphomutant did not.

110 Complementing the hypomorphic cells with the CtIP-S276A/P277A *trans*-locked mutant, however,  
111 restored chromatin-bound RPA levels comparable to CtIP-wt cells, indicating that CtIP isomerization limits  
112 the accumulation of RPA on single-stranded DNA due to replication stress (Figures S1F and S1G).  
113 Excessive nucleolytic resection of reversed forks hinders the faithful completion of DNA replication during  
114 S-phase, which can potentially cause chromosomal aberrations. Consistent with a role for CtIP  
115 isomerization in maintaining genome stability in response to replication stress, we detected a significantly  
116 higher frequency of HU-induced chromosomal aberrations in CtIP-depleted cells, which was rescued by  
117 the expression of CtIP-wt or -S276A/P277A *trans*-locked variants, but not by the S276A phosphomutant  
118 (Figures 1E, S1H and S1I). Collectively, our findings implicate *cis*-to-*trans* isomerization of the CtIP pS276-  
119 P277 peptide bond as a critical step in preventing the nucleolytic degradation of nascent DNA after  
120 replication stress.

121

122 **PIN1-catalyzed CtIP isomerization is required for fork protection but dispensable for HR**

123 To further corroborate the contribution of CtIP isomerization by PIN1 in fork stabilization, we made use  
124 of KPT-6566, a selective and covalent prolyl isomerase PIN1 inhibitor<sup>15</sup>. We found that 1 hour  
125 pretreatment of cells with KPT-6566 induced fork degradation in a dose-dependent manner without  
126 affecting CtIP protein stability (Figures S2A and S2B). PIN1-mediated BRCA1 isomerization was previously  
127 reported to protect forks from MRE11-dependent degradation<sup>16</sup>. In agreement with that study, we found  
128 that combined treatment of cells with KPT-6566 and mirin, an inhibitor of MRE11 3'-5' exonuclease  
129 activity<sup>17</sup>, restored fork stability (Figure 2A). Strikingly, co-treatment with NSC-105808, a selective and  
130 potent DNA2 nuclease inhibitor<sup>18</sup>, also rescued fork degradation (Figure 2A), indicating that PIN1 activity  
131 counteracts both MRE11- and DNA2-mediated resection of regressed DNA arms at stalled forks, and  
132 suggesting that both BRCA1 and CtIP functions at stalled forks are regulated by phosphorylation-  
133 dependent isomerization. To dissect the specific role of CtIP isomerization in this scenario, we assessed

134 HU-induced fork degradation in cells harboring different CtIP variants and pretreated with the PIN1  
135 inhibitor. Interestingly, expression of the CtIP S276A/P277A *trans*-locked mutant resulted in a significant,  
136 yet incomplete restoration of fork stability (Figure 2B), consistent with a scenario in which PIN1 inhibition  
137 simultaneously compromises BRCA1- and CtIP-mediated fork protection pathways. Therefore, expression  
138 of CtIP S276A/P277A was unable to rescue fork stability in BRCA1-depleted cells (Figures 2C and S2C).  
139 We have previously shown that PIN1 fine-tunes the balance between HR and non-homologous end-joining  
140 (NHEJ) primarily through modulating CtIP turnover via phosphorylation-mediated ubiquitination and  
141 subsequent proteasomal degradation<sup>11</sup>. Moreover, Luo *et al.* reported that all-*trans* retinoic acid (ATRA),  
142 another PIN1 inhibitor leading to PIN1 degradation, disrupts HR and sensitizes breast cancer cells to PARP  
143 inhibition due to decreased BRCA1 protein stability<sup>19</sup>. In agreement with this study, treatment of  
144 U2OS/DR-GFP cells with 10 µM of the PIN1 inhibitor KPT-6566 led to a significant defect in HR repair  
145 activity (Figure S2D). To examine the direct contribution of CtIP isomerization to HR, we performed DSB  
146 repair reporter assays in CtIP-depleted U2OS/DR-GFP cells transfected with siRNA-resistant FLAG-CtIP  
147 variants (S2E). Strikingly, we found that HR repair was efficiently and equally rescued by expression of  
148 CtIP-wt or any of the CtIP isomerization mutants, but not by expression of a T847A phosphomutant  
149 defective in stimulating the MRN endonuclease activity that initiates DNA end resection (Figure 2D)<sup>20</sup>.  
150 Moreover, CtIP isomerization mutants, but not the CtIP-S327A phosphomutant<sup>8</sup>, were proficient in BRCA1  
151 interaction (Figure S2F). Finally, expression of CtIP *trans*-locked mutants failed to restore HR deficiency in  
152 PIN1-inhibited cells (Figure S2G), suggesting that impaired BRCA1 (but not CtIP) isomerization contributes  
153 to HR deficiency caused by PIN1 inhibition.  
154 To further distinguish the specific function of CtIP-S276 phosphorylation-dependent isomerization in  
155 promoting fork protection *versus* DNA end resection, we performed *in vitro* nuclease assays with  
156 recombinant human CtIP and MRN purified from insect cells<sup>20</sup>. Treatment of CtIP-wt and -S276A with λ-  
157 phosphatase resulted in the disappearance of an electrophoretic mobility shift, confirming that both

158 variants exist as phosphorylated forms (pCtIP) after the purification procedure (Figure 2E). Importantly,  
159 both pCtIP-wt and pCtIP-S276A stimulated the MRN endonuclease, while lacking any detectable intrinsic  
160 nuclease activity (Figure 2F). Together, our findings demonstrate that PIN1-mediated CtIP isomerization  
161 at the pS276-P277 motif is critically required for fork protection, but dispensable for DSB resection and  
162 HR.

163

164 **Stress-activated p38 $\alpha$  kinase protects stalled forks from degradation by facilitating CtIP isomerization**

165 We have previously demonstrated that pT315 serves as the major CtIP binding site of PIN1, but that CtIP  
166 isomerization by PIN1 exclusively happens at the pS276-P277 motif<sup>11</sup>. In addition, using individual  
167 phospho-specific CtIP antibodies, we found that treatment of cells with roscovitine, a non-selective  
168 CDK1/2 inhibitor, impaired T315 (but not S276) phosphorylation, suggesting that a different proline-  
169 dependent kinase is acting upstream to phosphorylate S276 and facilitate CtIP isomerization in response  
170 to replication stress<sup>11</sup>.

171 We noticed that the region encompassing S276-P277 is highly conserved in mammalian CtIP orthologs  
172 and matches the consensus sequence for members of the mitogen-activated protein kinase (MAPK)  
173 family, especially that of p38 $\alpha$  (encoded by *MAPK14*) (Figure S3A). It has been repeatedly reported that  
174 HU treatment induced activation of p38 MAPKs in S-phase synchronized cells, as measured by  
175 phosphorylation of p38 itself (at T180/Y182) and of MK2, a bona fide downstream p38 substrate<sup>21-23</sup>.  
176 Moreover, p38 $\alpha$  was shown to directly phosphorylate CtIP on several S/T-P sites in *in vitro* kinase assays,  
177 including S276<sup>14</sup>. These findings prompted us to investigate whether p38 $\alpha$  interacts with CtIP and  
178 participates in CtIP-S276 phosphorylation following DNA replication stress.

179 First, we performed Myc-trap pulldowns from HEK293T cells transfected with Myc-p38 $\alpha$  and found that  
180 p38 $\alpha$  associates with CtIP but not with Mre11 (Figure 3A). We confirmed CtIP-p38 $\alpha$  interaction using a  
181 reciprocal approach, retrieving Myc-p38 $\alpha$  via immunoprecipitation of endogenous CtIP from HEK293T

182 lysates (Figure S3B). To investigate the role of p38 $\alpha$  in CtIP phosphorylation, we performed an anti-  
183 phospho-CtIP (S276) immunoprecipitation in non-synchronized U2OS cells expressing GFP-CtIP wt treated  
184 with HU alone or in combination with PH-797804, an ATP-competitive, selective p38 $\alpha$ / $\beta$  kinase inhibitor<sup>24</sup>.  
185 Western blotting of the immunoprecipitates revealed a moderate increase in CtIP-S276 phosphorylation  
186 upon HU treatment, which was reduced upon concomitant p38 $\alpha$  inhibition, both events coinciding with  
187 p38 $\alpha$  activation levels detected in the input samples (Figure 3B). To corroborate this result, we performed  
188 GFP-trap assays in the same cells but this time co-treated with the VHL-based PROTAC compound NR-11c,  
189 specifically targeting p38 $\alpha$  for proteasomal degradation<sup>25</sup>. Probing the pulldowns with the anti-phospho-  
190 CtIP (S276) antibody confirmed that p38 $\alpha$  mediates HU-induced phosphorylation of CtIP at S276 (Figure  
191 S3C). Notably, both experiments revealed the presence of CtIP-pS276 in absence of HU, suggesting basal  
192 S276 phosphorylation by p38 $\alpha$  (or another proline-directed kinase) in our engineered U2OS osteosarcoma  
193 cell line. In accordance with this, we observed p38 $\alpha$  phosphorylation in untreated cells (Figure 3B). This  
194 could be explained by GFP-CtIP overexpression upon doxycycline addition already releasing a cellular  
195 stress signal that is sufficient for p38 $\alpha$  activation even in unperturbed conditions. As CtIP-PIN1 interaction  
196 relies in part on S276 phosphorylation (Figure S1C), we reasoned that p38 $\alpha$  inhibition should similarly  
197 impair PIN1-CtIP interaction. Indeed, GFP-trap assays revealed that the binding of FLAG-CtIP-wt to GFP-  
198 PIN1 is reduced in cells treated with the p38 $\alpha$  inhibitor, to levels comparable to that of FLAG-CtIP-S276A  
199 (Figure 3C).

200 It has been previously reported that *Mapk14* deletion (p38 $\alpha$  $\Delta$ ) in mouse mammary tumor cells results in  
201 a higher frequency of fork stalling<sup>14</sup>. However, the function of p38 $\alpha$  in fork protection during acute HU-  
202 induced replication stress has to our knowledge never been elucidated. Thus, we next evaluated fork  
203 degradation upon p38 $\alpha$  inhibition or degradation. Remarkably, we found that treatment of U2OS cells  
204 with either PH-797804 or NR-11c resulted in HU-induced fork degradation (Figure 3D). Moreover, siRNA-  
205 mediated depletion of p38 $\alpha$  in U2OS resulted in significant fork degradation, consistent with a prominent

206 role of p38 $\alpha$  in fork stabilization in response to replication stress (Figure S3D). We earlier showed that  
207 expression of the CtIP *trans*-locked mutant resulted in a partial restoration of fork stability in PIN1-  
208 inhibited cells (Figure 2B). Remarkably, expressing CtIP-S276A/P277A in p38 $\alpha$ -depleted cells fully restored  
209 fork protection, indicating a key function of p38 $\alpha$ -mediated CtIP phosphorylation in preserving fork  
210 integrity upon HU-induced replication stress (Figures 3E and S3E). Consistent with a conserved function  
211 of the PIN1-p38 $\alpha$ -CtIP signaling axis in fork protection, we found that both PIN1 and p38 $\alpha$  inhibition  
212 induced fork degradation in spontaneously immortalized primary mouse embryonic fibroblasts (MEFs)  
213 (Figures 3F and S3F). Finally, we observed that HU-induced nascent strand degradation in *Pin1* knockout  
214 MEFs was not further enhanced upon pre-treatment with the p38 $\alpha$  inhibitor, indicating that PIN1 and  
215 p38 $\alpha$  most likely act in the same fork protection pathway.

216

#### 217 **PIN1 and p38 $\alpha$ are required for CtIP enrichment at HU-arrested forks**

218 Having established that CtIP *cis*-to-*trans* isomerization at the S276-P277 motif by the collaborative action  
219 of p38 $\alpha$  and PIN1 is required for fork protection, we next sought to determine whether the conformational  
220 change affects CtIP loading and accumulation on stalled replication forks. To test this hypothesis, we  
221 employed *in situ* analysis of protein interactions at DNA replication forks (SIRF) using pulsed Edu-CtIP  
222 proximity ligation assay (PLA) reactions (CtIP-SIRF)<sup>26,27</sup>. Notably, only PLA signals in cells with comparable  
223 Edu intensities were considered to ensure that observed changes in the number of PLA signals/cell did  
224 not relate to changes in Edu incorporation between the different experimental conditions. We first  
225 performed CtIP-SIRF in unperturbed U2OS cells and could readily detect nuclear PLA signals (Figure 4A),  
226 indicating CtIP loading nearby normal ongoing replication forks, as previously reported<sup>28</sup>. After HU  
227 treatment, we observed a significant increase in PLA signals, indicating CtIP accumulation at stalled forks  
228 (Figure 4A). Interestingly, CtIP loading to stalled forks was impaired when cells were pre-treated with the  
229 PIN1 inhibitor prior to addition of HU (Figure 4A). Similar results for CtIP-SIRF in response to HU are

230 obtained when U2OS cells were pre-treated with the p38 $\alpha$  inhibitor (Figure 4B), substantiating the  
231 importance of PIN1-p38 $\alpha$  signaling in facilitating the assembly of CtIP at stalled replication forks. Lastly,  
232 we performed SIRF assays in HU-treated cells expressing GFP-tagged CtIP variants (Figure S4A) and  
233 observed that the S276A phosphomutant displayed significantly reduced numbers of PLA foci, which were  
234 restored to wild-type levels in the S276A/P277A *trans*-locked mutant (Figure 4C). To rule out a more  
235 general role of CtIP isomerization in the recruitment to sites of DNA damage, we monitored GFP-CtIP  
236 accumulation at microlaser-induced DSBs. However, we could not observe any major differences in the  
237 assembly of GFP-CtIP at DSBs in cells either treated with the PIN1 inhibitor or expressing the  
238 isomerization-defective CtIP mutants (Figures S4B and S4C). Together, our data reveal a prominent role  
239 for PIN1-p38 $\alpha$ -mediated CtIP isomerization in efficient loading of CtIP at sites of stalled DNA replication.

240

241 **Inhibition of PIN1 or p38 $\alpha$  overcomes chemoresistance in *Brca1*-deficient mammary tumor cells.**

242 Recent work discovered that a large fraction of mammary tumors from KB1P (*K14cre;Trp53<sup>F/F</sup>;Brca1<sup>F/F</sup>*)  
243 mice with acquired PARP inhibitor (PARPi) resistance featured downregulated expression of the non-  
244 essential histone variant H2AX<sup>29,30</sup>. Unexpectedly, subsequent elucidation of the underlying molecular  
245 mechanism of PARPi resistance in this model revealed strongly enhanced association of CtIP at stalled  
246 forks, ultimately restoring fork integrity in absence of functional BRCA1<sup>29</sup>. Therefore, we reasoned that  
247 *Brca1*-deficient KB1P tumor cells represent an interesting system to further substantiate our results. As  
248 shown previously<sup>29</sup>, SIRF analysis revealed significantly higher levels of spontaneous and HU-induced CtIP  
249 PLA foci in H2AX-depleted KB1P cells compared to cells transduced with a non-targeting (NT) gRNA (Figure  
250 5A). Remarkably, pre-treatment with either PIN1 or p38 $\alpha$  inhibitor, strongly abrogated CtIP association  
251 with stalled forks in both KB1P-derived cell lines (Figure 5A), substantiating the crucial role of PIN1 and  
252 p38 $\alpha$  in CtIP isomerization to promote efficient localization of CtIP to sites of stalled forks.

253 The development of PARPi resistance poses a great clinical challenge for the treatment of BRCA1/2-  
254 deficient tumors<sup>31</sup>. In recent years, several distinct mechanisms underlying PARPi resistance have been  
255 identified, including restoration of fork protection, providing new therapeutic strategies to potentially  
256 overcome PARPi resistance. Based on our findings, we therefore speculated whether the use of PIN1 or  
257 p38 $\alpha$  inhibitors might represent such an opportunity. Strikingly, we observed that treatment with PIN1i  
258 significantly restored sensitivity to the PARPi Olaparib in H2AX-depleted KB1P cells (Figure 5B). As shown  
259 previously, we found that H2AX-deficient KB1P cells exhibit increased cellular resistance to chronic HU  
260 treatment (Figure S5A)<sup>29</sup>. Also here, PIN1 inhibition rendered BRCA1- and H2AX-deficient cells HU  
261 sensitive (Figure S5A). These findings reveal an unprecedented BRCA1- and HR-independent role of PIN1  
262 in promoting chemoresistance, most likely through mediating CtIP-dependent restoration of fork  
263 protection in this context.

264 Finally, and consistent with an important role of p38 $\alpha$  in promoting CtIP-dependent fork protection,  
265 combined treatment with the p38 $\alpha$  inhibitor PH-797804 significantly restored both Olaparib and HU  
266 sensitivity in H2AX-deficient KB1P cells (Figures 5C and S5B). Collectively, these data corroborate the  
267 important role of PIN1-p38 $\alpha$  signaling in promoting CtIP association with stalled forks and confirm a  
268 BRCA1-independent role of CtIP in fork stabilization that is governed by CtIP isomerization.

269

## 270 **DISCUSSION**

271 We previously reported a distinct role for CtIP in the replication stress response by protecting regressed  
272 nascent DNA arms at forks from excessive digestion by the DNA2 nuclease<sup>4</sup>. While we could demonstrate  
273 that CtIP's function in promoting DSB resection and HR repair is dispensable for fork stabilization, a broad  
274 understanding of the molecular mechanisms regulating CtIP-mediated fork protection remained to be  
275 established. Here, we reveal a critical role for phosphorylation-dependent prolyl isomerization of CtIP to  
276 protect HU-stalled forks from deleterious degradation. Based on our previous and present results, we

277 propose a model in which CDK-mediated phosphorylation of CtIP-T315 during unperturbed S-phase  
278 enables PIN1 to recognize CtIP through its WW-phospho-binding domain. Subsequently, when cells are  
279 exposed to acute replication stress, p38 $\alpha$  kinase phosphorylates CtIP at S276 to facilitate PIN1-mediated  
280 *cis-to-trans* isomerization of the S276-P277 peptide bond. This conformational change is required for  
281 efficient CtIP enrichment near stalled replication forks, which ultimately leads to the protection of nascent  
282 DNA at reversed forks from nucleolytic attack by DNA2 (Figure 6). Altogether, our data highlight CtIP  
283 isomerization as a molecular switch activating CtIP's function in protecting reversed forks from nucleolytic  
284 degradation without compromising the resection and HR repair of DSBs.

285

286 **Phosphorylation-dependent CtIP isomerization triggered by PIN1 and p38 $\alpha$  promotes fork integrity**

287 Earlier work from the Morris group demonstrated that fork protection by the BRCA1-BARD1 complex  
288 relies on PIN1-mediated isomerization of the BRCA1 pS114-P115 motif, which aids RAD51 recruitment to  
289 stalled forks, limiting nucleolytic processing of nascent DNA by MRE11<sup>16</sup>. Consistent with this work, we  
290 previously demonstrated that CtIP and BRCA1 act in separate fork protection pathways and synergistically  
291 alleviate replication stress-induced genomic instability, by restraining DNA2 and MRE11 fork resection  
292 activities, respectively<sup>4</sup>. We now provide evidence that, although counteracting fork degradation via two  
293 biochemically separable mechanisms, PIN1-mediated isomerization acts as a common upstream  
294 regulatory component controlling both CtIP- and BRCA1-dependent fork protection functions.  
295 Accordingly, we found that fork degradation induced by chemical inhibition of PIN1 isomerase activity is  
296 significantly, albeit not fully, rescued by the expression of a CtIP *trans*-locked mutant, indicating that  
297 BRCA1-mediated fork protection may be concomitantly compromised in this context.

298 Our previous work indicated that CDK-mediated T315 phosphorylation is a prerequisite for PIN1  
299 recognition, while S276 phosphorylation is required for CtIP isomerization at the pS276-P277 site and  
300 mediated by a hitherto unknown proline-directed kinase. The MAPK family member p38 $\alpha$  was reported

301 to be activated in response to various sources of cellular stress, ranging from physiological situations (e.g.  
302 cell differentiation) to a wide range of exogenous and endogenous triggers, such as hyperosmolarity,  
303 oxidative stress or DNA damage<sup>32</sup>. For example, after exposure to ultraviolet (UV) radiation, p38 $\alpha$  was  
304 reported to collaborate with CHK1 in the activation of the S-M checkpoint to prevent premature mitotic  
305 entry before completion of DNA replication<sup>33</sup>. This task was shown to gain even greater importance in  
306 p53-deficient cells, where ATM/ATR-dependent activation of p38 $\alpha$  secures cell cycle arrest and cell  
307 survival in response to cisplatin, doxorubicin or camptothecin exposure<sup>12</sup>. Here, we uncover an  
308 unprecedented role for p38 $\alpha$  in counteracting the degradation of HU-stalled forks through  
309 phosphorylating CtIP at S276, a requirement for subsequent *cis*-to-*trans* isomerization of the pS276-P277  
310 prolyl peptide bond. Despite the presence of CtIP-pS276 in untreated conditions, we observed a further  
311 increase in S276 phosphorylation after HU exposure, which returned to control levels upon concomitant  
312 p38 $\alpha$  inactivation, indicating that replication stress-induced CtIP-S276 phosphorylation relies on p38 $\alpha$ .  
313 Importantly, our experiments were performed in non-synchronized U2OS cells, whereas robust activation  
314 of p38 $\alpha$  was previously observed only when DNA-damaging agents were added in S-phase<sup>23</sup>. Strikingly,  
315 expression of the CtIP-S276A/P277A trans-locked variant completely restored fork stability in p38 $\alpha$ -  
316 depleted cells, underscoring p38 $\alpha$ -mediated S276 phosphorylation as a critical event in fork protection.  
317

318 **Inhibition of the PIN1-p38 $\alpha$  signaling axis restores chemosensitivity in *Brca1*-deficient mammary tumor  
319 cells**

320 We previously demonstrated that combined depletion of CtIP and BRCA1 in U2OS cells provokes elevated  
321 levels of chromosomal instability, which are most likely attributed to the persistence of replication-  
322 associated DNA lesions<sup>4</sup>. Furthermore, reduced survival of BRCA1-deficient but not BRCA1-proficient  
323 cancer cells upon treatment with a CtIP-stapled peptide inhibitor suggested a synthetic sick relationship  
324 between BRCA1 and CtIP<sup>34</sup>. Recent work from Dibitetto and colleagues revealed that H2AX loss restores

325 replication fork protection in *Brca1*-deficient mammary tumor cells via CtIP hyperaccumulation at stalled  
326 forks, resulting in PARPi resistance<sup>29</sup>. Consequently, CtIP inhibition using stapled peptides provoked fork  
327 degradation and restored chemosensitivity<sup>29</sup>. We now provide evidence that CtIP enrichment at HU-  
328 stalled forks in *Brca1*-deficient mouse tumor cells is compromised by PIN1 or p38 $\alpha$  inhibition, indicating a  
329 pivotal role for the PIN1-p38 $\alpha$ -CtIP signaling cascade as a critical regulator of fork stability in cells lacking  
330 functional BRCA1.

331 PIN1 ablation was previously reported to sensitize BRCA1-proficient breast cancer to PARPi as a result of  
332 impaired HR<sup>19</sup>. Here, we reveal that PIN1 and p38 $\alpha$  inhibition restored Olaparib and HU sensitivity of  
333 *Brca1*<sup>-/-</sup>;H2afx<sup>-/-</sup> tumor cells that have acquired chemoresistance via restoration of fork protection but are  
334 still defective in HR. We observed a more pronounced effect of PIN1 inhibition in restoration of  
335 chemosensitivity compared to p38 $\alpha$  inhibition, suggesting that besides BRCA1-BARD1 and CtIP, PIN1 is  
336 likely to engage more substrates than p38 $\alpha$  implicated in fork protection. An interesting factor could be  
337 PTIP, which we identified in our previous proteomics analysis as a potential PIN1 interactor<sup>11</sup>. Work from  
338 the Nussenzweig group has shown that PTIP accumulates at sites of replication stalling and deposits  
339 MRE11 on stalled forks<sup>35</sup>. Accordingly, they found that PTIP loss promotes fork stability and  
340 chemoresistance in BRCA1-deficient cells through inhibition of MRE11-dependent fork degradation<sup>35</sup>.  
341 Taken together, PTIP's function in response to replication stress might be negatively affected by  
342 isomerization and, thus, PIN1 inhibition could result in upregulated PTIP activity, resulting in MRE11  
343 hyperaccumulation at stalled forks.

344 Finally, our findings also highlight that targeting the PIN1-p38 $\alpha$ -CtIP axis might represent a promising  
345 therapeutic approach for BRCA1-mutated cancer that acquired chemoresistance. This strategy could also  
346 be relevant for pancreatic adenocarcinoma (PDAC), where PIN1 and p38 overexpression, as well as CtIP  
347 gene amplification, are frequently observed and found to correlate with poor prognosis<sup>36-42</sup>. Given the  
348 high prevalence of KRAS gain-of-function mutations in PDAC patients<sup>43</sup>, which endows those cancer cells

349 with the ability to tolerate high levels of DNA damage and replication stress, we reason that targeting the  
350 PIN1-p38 $\alpha$ -CtIP axis in pancreatic cancer may facilitate the development of improved therapies.

351

352

353 **METHODS**

354 **Cell culture**

355 U2OS and HEK293T, MEF and MEF *Pin1*<sup>-/-</sup> cells were grown in Dulbecco's modified Eagle's medium (DMEM, Thermo Fisher Scientific) supplemented with 10% fetal calf serum (FCS; GIBCO/Thermo Fisher Scientific) and 1% penicillin-streptomycin (Sigma-Aldrich). MDA-MB-436 cells were maintained in RPMI medium supplemented with 10% FCS and 1% penicillin-streptomycin. Cell lines were grown at 37° C in a humidified atmosphere with 6% CO<sub>2</sub>.

360 KB1P-G3 (*Trp53* <sup>-/-</sup>; *Brca1* <sup>-/-</sup> and *Trp53* <sup>-/-</sup>; *Brca1* <sup>-/-</sup>; *H2afx* <sup>-/-</sup>) cells were derived from KB1P mammary tumors as previously described<sup>29</sup> and were grown at 37° C in 3% O<sub>2</sub> in DMEM Nutrient mixture F-12 (Thermo Fisher Scientific) supplemented with 10% FCS, 1% penicillin-streptomycin, 5 ng/ml cholera toxin (Sigma-Aldrich), 5 µg/ml insulin (Sigma-Aldrich) and 5 ng/ml murine Epidermal Growth Factor (mEGF, Sigma-Aldrich). U2OS stably expressing GFP-empty vector (ev), GFP-CtIP-wt, S276A, T315A and S276A/T315A were generated as previously described<sup>5</sup>. U2OS cells inducibly expressing GFP-CtIP wt, S276A, P277A and S276A/P277A were generated as described below.

367

368 **Generation of U2OS GFP-CtIP doxycycline inducible cell lines**

369 The Flp-In T-Rex system was used to generate U2OS cell lines stably expressing different siRNA-resistant 370 GFP-CtIP constructs under the control of doxycycline-inducible promoter like described before<sup>44</sup>. In brief, 371 U2OS Flp-In T-Rex cells were transfected with expression vectors pcDNA5/FRT/TO-GFP-CtIP wt, S276A, 372 P277A and S276A/P277A and the Flp recombinase expression plasmid, pOG44, mixed in a 1:9 ratio using 373 FuGENE6 Transfection Reagent. Cells were plated 24 h post transfection. The next day, the medium was 374 supplemented with 250 µg/mL hygromycin B (InvivoGen) and 15.5 µg/mL blasticidin S (InvivoGen). GFP- 375 positive bulk cultures were sorted using a BD FACSAria III cell sorter (Flow Cytometry Facility, University 376 of Zurich). Sorted cell lines were tested for expression and nuclear localization of the transgene-products

377 via immunofluorescence microscopy and western blotting analysis. Induction of GFP-CtIP expression was  
378 performed by growing the inducible cell lines for 24 h in medium supplemented with 1 µg/ml of  
379 doxycycline.

380

381 **Generation of U2OS GFP-CtIP hypomorphic cells**

382 U2OS<sup>Cas9/CtIP</sup> cell lines stably expressing GFP-tagged wt and mutant CtIP were generated as previously  
383 described<sup>4</sup>. Briefly, U2OS<sup>Cas9/CtIP</sup> cells were transfected with the appropriate plasmids and with a  
384 puromycin resistant cassette containing pcDNA5/TO vector in a 5:1 ratio. Selection of GFP-positive cells  
385 was performed complementing the medium with 1 µg/mL puromycin (InvivoGen/LabForce). GFP-positive  
386 bulk cultures were tested for expression and nuclear localization of the transgene-products by  
387 immunofluorescence microscopy and western blotting analysis.

388

389 **Plasmids and cloning**

390 DNA primers used for cloning and sequencing were obtained from Microsynth (Balgach, Switzerland).  
391 pEGFP-C1 plasmids containing CtIP wt and S327A were previously described<sup>45</sup>. The pEGFP-C1 plasmid  
392 containing CtIP-S276A, P277A and S276A/P277A were generated by site-directed mutagenesis.  
393 pcDNA5/FRT/TO-GFP expressing CtIP-wt has been previously described<sup>44</sup>. The S276A, P277A and  
394 S276A/P277A mutants of CtIP in pcDNA5/FRT/TO-GFP vector were generated by site-directed  
395 mutagenesis. The FLAG-CtIP wt and T847A expression vectors were described previously<sup>44,46</sup>. The S276A,  
396 P277A and S276A/P277A mutants of CtIP in the FLAG vector were generated by site-directed mutagenesis.  
397 All constructs were verified by sequencing. Primers used for site-directed mutagenesis are reported below  
398 with 5' to 3' orientation:

399 CtIP\_S276A \_Forward: AAGGTCCATGGCCCCCTTGGTATGAGCTCTAC

400 CtIP\_S276A \_Reverse: CACCAAGGGGGCCATGGACCTTGAGTTTCAGA

401 CtIP\_P277A\_Forward: CATGAGCGCTCTGGTGATGAGCTCTACCACTGTC

402 CtIP\_P277A\_Reverse: CCAAGAGCGCTCATGGGACCTTGAGTTTCAG

403 CtIP\_S276A/P277A\_Forward: CCATGGCTGCCCTGGTGATGAGCTCTACAC

404 CtIP\_S276A/P277A\_Reverse: CAAGGGCAGCCATGGGACCTTGAGTTTCAG

405

406 **siRNA transfections and sequences**

407 siRNA oligos were transfected using Lipofectamine RNAiMAX (Invitrogen) according to manufacturer's  
408 instructions, at a final concentration of 10 nM or 40 nM. Experiments were performed 48 h post siRNA  
409 transfection.

410

411 **Drug treatments**

412 The following compounds were used at the indicated final concentrations: hydroxyurea (HU, 80  $\mu$ M in  
413 colony formation assay, 2 mM and 8 mM in DNA fibers and SIRF, 5 mM in metaphase spreads),  
414 cycloheximide (100  $\mu$ g/mL), mirin (25  $\mu$ M in DNA fibers), DNA2i NSC-105808 (2  $\mu$ M in DNA fibers), PIN1i  
415 KPT-6566 (2.5 and 7.5  $\mu$ M in colony formation assay and 5 and 10  $\mu$ M in DNA fibers, HR assays and laser  
416 micro-irradiation), p38 $\alpha$  PH-797804 (1  $\mu$ M in DNA fibers, SIRF and immunoprecipitation, 10  $\mu$ M in colony  
417 formation assay), p38 $\alpha$  Protac NR-11c (1  $\mu$ M in DNA fibers and immunoprecipitation), Olaparib (75 nM  
418 in colony formation assay).

419

420 **Immunoblotting and triton extraction**

421 For western blotting analysis, cell extracts were prepared in Laemmli buffer (4% SDS, 20% glycerol, 120  
422 mM Tris-HCl pH 6.8). Chromatin-enriched lysates were performed as previously described<sup>45</sup>. In brief, cells  
423 were washed with cold PBS and incubated 5min at 4°C with pre-extraction buffer (25 mM HEPES pH 7.4,  
424 50 mM NaCl, 1 mM EDTA, 3 mM MgCl<sub>2</sub>, 300 mM sucrose, 0.5% Triton X-100 and protease inhibitors).

425 Adherent cellular material was collected in Laemmli buffer. After heat-denaturation of the chromatin  
426 enriched fraction, lysates were sonicated and analyzed by western blotting.  
427 For immunoblotting proteins were resolved by SDS-PAGE and transferred to nitrocellulose membranes.  
428 Membranes were incubated at 4°C overnight with the appropriate primary antibodies and 1 h at room  
429 temperature (RT) with secondary antibodies. Proteins were then visualized with the Advansta  
430 WesternBright ECL reagent and the VilberLourmat Fusion Solo S imaging system.

431

#### 432 **Immunoprecipitation**

433 For immunoprecipitation (IP) , GFP-Trap and Myc-Trap (ChromoTek, proteintech) cells were lysed in NP-  
434 40 extraction buffer [50 mM Tris-HCl, pH 7.5, 120 mM NaCl, 1 mM EDTA, 6 mM EGTA, 15 mM sodium  
435 pyrophosphate and 1 % NP-40 supplemented with phosphatase inhibitors (20 mM NaF, 1 mM sodium  
436 orthovanadate) and protease inhibitors (1 mM benzamidine and 0.1 mM PMSF, Protease inhibitor  
437 cocktail, Sigma-Aldrich)]. Cell lysates were incubated with Benzonase (Merck) for at least 30 min at 4 °C  
438 cleared by centrifugation and protein concentration was determined by Bradford assay (Bio-Rad).  
439 1-2mg of cleared lysates were incubated with ChromoTek GFP/Myc-Trap Agarose beads (proteintech) for  
440 2h and washed three times with NTEN300 buffer (0.5% NP-40, 0.1 mM EDTA, 20 mM Tris-HCl pH 7.4,  
441 300 mM NaCl) or three times with NP-40 extraction buffer and once with TEN100 buffer (20 mM Tris-HCl  
442 pH 7.4, 0.1 mM EDTA and 100 mM NaCl).

443 For endogenous IPs lysates were incubated at 4°C overnight with 1 ug of antibody per milligram of lysates.  
444 Protein A beads (GE Healthcare) were added afterwards for 2 h and washed as described above.  
445 Complexes bound to beads were boiled in SDS sample buffer and analyzed by SDS-PAGE followed by  
446 western blotting analysis as described above.

447

#### 448 **Antibodies**

449 For DNA fiber assay the following antibodies are used: mouse anti-BrdU/IdU 1:80, BD Biosciences 347580;

450 Rat anti-BrdU/Cl<sub>d</sub>U 1:400, Abcam ab6326; goat anti-mouse Alexa Fluor<sup>TM</sup> 488 1:250, Thermo Fisher

451 Scientific; donkey anti-rat Cy3 1:250, Jackson ImmunoResearch.

452 For SIRF the following antibodies are used: rabbit anti-CtIP 1:100, Bethyl Laboratories #A300-488A; mouse

453 anti-Biotin 1:200, #200-002-211, Jackson Immuno Research; rabbit anti-Biotin 1:1000, A150-109A, Bethyl;

454 mouse anti-GFP 1:100, Roche 11814460001 IgG1 $\kappa$  clones 7.1 and 13.1; goat anti-mouse Alexa Fluor<sup>TM</sup> 488

455 1:1000, Thermo Fisher Scientific #A11029 and goat anti-rabbit Alexa Fluor<sup>TM</sup> 546 1:1000, Thermo Fisher

456 Scientific #A11010.

457 For QIBC the following antibodies are used: rabbit anti-RPA32 1:500, Abcam ab76420; donkey anti-rabbit

458 Alexa Fluor<sup>TM</sup> 647 1:500, Thermo Fisher Scientific #A31573.

459 For immunoblotting the following antibodies are used: mouse anti-Myc (9E10) 1:500, Thermo Fisher

460 Scientific MA1-980; mouse anti-CtIP (D4) 1:250, Santa Cruz sc-271339; rabbit anti-CtIP (D76F7) 1:1000,

461 Cell Signaling #9201; rabbit anti-pS276-CtIP 1:200 custom made with Eurogentec with synthetic

462 phosphopeptides (KLH-coupled) corresponding to residues surrounding S276 (ETQGPMpSPLGDEL)<sup>11</sup>;

463 mouse anti-Mre11 1:1000 Genetex #GTX70212; mouse anti-p38a 1:1000 Cell Signaling #9217; rabbit anti-

464 p38a 1:1000 Cell Signaling #9218; rabbit anti-Phospho-p38 MAPK T180/Y182 Cell Signaling #9211; mouse

465 anti-FLAG M2 1:1000, Sigma-Aldrich F1804; rabbit anti-Lamin B1 1:1000 ab16048; mouse anti-Tubulin

466 1:20'000 Sigma-Aldrich #T9026; rabbit anti-GFP 1:1000, Abcam ab290; mouse anti-GFP (B2) 1:500, Santa

467 Cruz sc-9996; rabbit anti-Cyclin D1 1:1000, Cell Signaling #2922; rabbit anti-SMARCAL1 1:1000, Abcam

468 ab154226; mouse anti-GAPDH 1:40'000, Millipore MAB374; mouse anti-BRCA1 (D9) 1:50, Santa Cruz sc-

469 6954.

470

471 **DNA fiber analysis**

472 DNA fiber analyzes were performed as described previously<sup>47,48</sup>. In brief, non-synchronized U2OS cells  
473 were labeled with CldU (33  $\mu$ M) for 30 min, followed by IdU (340  $\mu$ M) for 30 min before incubation with  
474 HU for 4 h. Alternatively, cells were labeled with CldU for 20 min, subsequently treated with HU for 2 h  
475 and chased with IdU for 40 min before harvesting in PBS. Cells lysis was performed (lysis buffer: 200 mM  
476 Tris-HCl (pH 7.4), 50 mM EDTA, 0.5% SDS) and DNA fibers were stretched onto glass slides, air-dried at RT  
477 for 30 min and fixed in Methanol:Acetic acid in a 3:1 ratio (Merck) at 4°C overnight. Fibers were rehydrated  
478 in PBS before denaturation with 2.5 M HCl for 1 h, washed with PBS and blocked with 2% BSA in PBS+0.1%  
479 Tween 20 for 45 min. The CldU and IdU tracks were immunostained using anti-BrdU primary and  
480 corresponding secondary antibodies. Coverslips were mounted using ProLong Gold Antifade Mountant  
481 (Life Technologies). Images were acquired on a Leica DMI 6000 fluorescence microscope using 63x  
482 objective and analyzed using Fiji software<sup>49</sup>.

483

#### 484 **Metaphase spreads**

485 Metaphase spreads were performed as described previously<sup>50</sup>. Briefly, 0.1  $\mu$ g/mL colcemid was added to  
486 the cells 2 h prior harvesting by trypsinization. Cell pellets were resuspended in 5 ml of hypotonic solution  
487 (potassium chloride 75 mM) and incubated at 37°C for 30 min for swelling. Cells were then fixed a first  
488 time for 3 min with 5% acetic acid and then two times for 10 min with ethanol-acetic acid in a 3:1 ratio.  
489 Fixed cells were gently resuspended in fixative solution to achieve optimal cell density before dropping  
490 onto glass slides. Slides were mounted using Vectashield® Mounting Media (Vector Laboratories)  
491 containing 4',6-Diamidino-2-Phenylindole Dihydrochloride (DAPI). Fluorescent images were acquired  
492 using a Leica DMI 6000 fluorescence microscope with 63x objective.

493

#### 494 **HR reporter assay**

495 HR reporter assay was carried out as described previously<sup>11,51</sup>. In brief, U2OS EGFP-HR were seeded into  
496 10 cm dishes and transfected with siRNA control (siCNTL) or targeting CtIP (siCtIP). After 24 h, cells were  
497 seeded into 12-well plate. The next day, cells were transfected with pcDNA3 or *I-SceI* expression plasmid  
498 (pCBASce) and FLAG-ev (empty vector), FLAG-CtIP-wt, S276A, P277A, S276A/P277A and T847A using  
499 jetPrime transfection reagent (Polyplus). For the experiments shown in figure S2D and S2G, cells were  
500 directly seeded into 12-well plates and treated with PIN1i KPT-6566 3 h before transfection with pcDNA3  
501 or *I-SceI* expression plasmid (pCBASce) and the indicated FLAG-CtIP constructs. For all experiments,  
502 medium was exchanged 4 h after transfection and cells were harvested 48 h post-transfection. As read  
503 out for HR, GFP expression was measured by flow cytometry using Attune Nxt Flow Cytometer equipped  
504 with a 488 nm laser and 530/30 band-pass filter. A minimum of 20'000 events per sample were recorded.  
505

#### 506 **Expression and purification of recombinant proteins**

507 The CtIP-S276A variant was prepared by mutating the respective wild-type pFB-2xMBP-CtIP-10xhis  
508 plasmid by QuickChange site-directed mutagenesis kit following manufacturer's instructions (Agilent  
509 Technology). The wild-type protein, as well as the point mutant, were expressed in Sf9 insect cells in SFX  
510 Insect serum-free medium (Hyclone) using the Bac-to-Bac expression system (Invitrogen), according to  
511 manufacturer's recommendations. Purification was performed by affinity chromatography exploiting the  
512 N-terminal maltose-binding protein (MBP)-tag and the C-terminal 10xhis-tag<sup>52</sup>. For expression of  
513 phosphorylated CtIP (pCtIP) variants, Sf9 cells were treated with 50 nM Okadaic acid (APExBIO) to  
514 preserve proteins in their phosphorylated state, and 1  $\mu$ M camptothecin (Sigma) to further activate  
515 protein phosphorylation cascade. The MRN complex was prepared using the 3xflag-tag at the C-terminus  
516 of RAD50.

517

#### 518 **Preparation of oligonucleotide-based substrate**

519 All oligonucleotides were purified by polyacrylamide gel electrophoresis and purchased from Eurogentec.  
520 The labeling of oligonucleotides at the 5'-end was carried out by T4 polynucleotide kinase (New England  
521 Biolabs) and [ $\gamma$ -32P] ATP (Hartmann Analytic). To prepare quadruple blocked 70-bp long DNA substrate,  
522 PC210 and PC211 oligonucleotides were used, as described previously<sup>53</sup>.

523

524 **Endonuclease assay with recombinant proteins**

525 Endonuclease assays (15  $\mu$ l volume) were performed in nuclease buffer containing 25 mM Tris-HCl pH 7.5,  
526 5 mM magnesium acetate, 1 mM manganese acetate, 1 mM dithiothreitol (DTT), 1 mM ATP, 0.25 mg/ml  
527 BSA (New England Biolabs) and 1 nM oligonucleotide-based DNA substrate (in molecules). The reactions  
528 were supplemented with 15 nM monovalent streptavidin and incubated for 5 min at RT to block the  
529 biotinylated ends of the DNA substrates. The recombinant proteins were then added to the reactions on  
530 ice and samples were incubated at 37°C for 2 h. Reactions were stopped by adding 0.5  $\mu$ l  
531 ethylenediaminetetraacetic (0.5 M EDTA) and 1  $\mu$ l Proteinase K (19 mg/ml, Roche), and incubated at 50°C  
532 for 30 min. Finally, 16.5  $\mu$ l loading buffer (5% formamide, 20 mM EDTA, bromophenol blue) was added to  
533 all samples and the products were separated on 15% polyacrylamide denaturing urea gels (19:1  
534 acrylamide-bisacrylamide, Bio-Rad). The gels were fixed in fixing solution (40% methanol, 10% acetic acid,  
535 5% glycerol) for 30 min at room temperature and dried on a 3MM Chr paper (Whatman). The dried gels  
536 were exposed to storage phosphor screen (GE Healthcare) and scanned by a Typhoon Phosphor Imager  
537 (FLA 9500, GE Healthcare).

538

539 **SIRF (in Situ analysis of protein Interactions at DNA Replication Forks)**

540 SIRF assay was performed as previously reported<sup>26,27</sup>. Briefly, cells were seeded on coverslips and, after  
541 24 h, pulsed-labelled with 25  $\mu$ M EdU for 10 min. Afterwards, cells were washed three times with PBS to  
542 remove the EdU and either incubated with HU and the indicated inhibitors or immediately pre-extracted

543 and fixed (for untreated samples). Pre-extraction was performed with CSK buffer containing 0.5% of  
544 Triton™ X-100 (Sigma-Aldrich) on ice for 5 min and fixation was done with 4% Paraformaldehyde at RT for  
545 15 min. Coverslips were then washed with PBS and stored overnight at 4°C. The following day, EdU was  
546 chemically linked to Biotin-azide using the Click-iT™ Reaction Kit (Thermo fisher scientific) for 1 h at 37°C.  
547 In situ proximity ligation assay (PLA) was performed using Duolink PLA technology (Sigma-Aldrich)  
548 according to the manufacture instructions. In brief, coverslips were blocked for 1h at 37°C with blocking  
549 solution, followed by incubation with primary antibodies for 2 h at RT. After primary antibody incubation,  
550 coverslips were washed with Wash Buffer A (0.01 M Tris, 0.15 M NaCl and 0.05% Tween 20) for 5 min at  
551 RT and incubated for 1 h at 37°C with Duolink anti-Mouse PLUS and anti-Rabbit MINUS PLA probes. After  
552 three wash steps in Wash Buffer A for 5 min, PLA probes were ligated for 30 min at 37°C. Coverslips were  
553 then washed three times 5 min in Wash Buffer A. Amplification was performed using the 'Duolink In Situ  
554 Detection Reagents FarRed' (Sigma-Aldrich) at 37°C for 100 min. After amplification, coverslips were  
555 washed twice in Wash Buffer B (0.2 M Tris and 0.1 M NaCl) for 10 min and incubated for 30 min at 37°C  
556 with the appropriate secondary antibody. Coverslips were then washed twice with Wash Buffer B and  
557 once in 0.01x Wash Buffer B for 1 min. Finally, coverslips were mounted using Vectashield® Mounting  
558 Media (Vector Laboratories) containing DAPI, sealed and imaged on a Leica DMI 6000 fluorescence  
559 microscope using a 63x objective. Analysis of PLA foci in EdU positive cells was performed using  
560 CellProfiler.

561

#### 562 **Laser micro-irradiation coupled live cell imaging**

563 Cells were seeded on a glass-bottom chambered coverslip (Ibidi), treated with 10 µM 5-bromo-2'-  
564 deoxyuridine for 24 h. Samples were imaged on an inverted confocal spinning disk microscope [Olympus  
565 IX83] equipped with CSU-W1 unit [Yokogawa, Japan] SoRa disk for super resolution imaging, using a 60X  
566 [Olympus, Japan] objective, under controlled temperature (37°C) and CO<sub>2</sub> (5%) (Cellvivo incubation

567 system). Additionally, cells were irradiated with a pulsed 355 nm laser [UGA 42 Caliburn, Rapp  
568 OptoElectronic, Wedel, Germany]. Cells were imaged with a 488nm laser, the emission wavelength range  
569 was 500-550 nm (BP 525/50). Time-lapse images were capture for the indicated time intervals.  
570 The media used during the live imaging is the Gibco™ FluoroBrite™ DMEM complemented with 10% FCS  
571 (GIBCO) and 1% penicillin-streptomycin (Sigma-Aldrich). The signal intensity of the irradiated path was  
572 calculated using ImageJ software.

573

#### 574 **High-content microscopy and quantitative image-based cytometry (QIBC)**

575 U2OS and U2OS<sup>Cas9/CtIP</sup> cell lines stably expressing GFP-tagged WT and mutant CtIP or transfected with the  
576 indicated siRNAs were grown on sterile 12mm glass cover slips. Typically, after indicated treatment or  
577 siRNA transfection, cells were then fixed in 3% formaldehyde for 15 min at room temperature, washed  
578 once in PBS, permeabilized for 5 min at room temperature in 0.2% Triton™ X-100 (Sigma-Aldrich) in PBS,  
579 washed twice in PBS and incubated in blocking solution (filtered DMEM containing 10%FBS and 0.02%  
580 Sodium Azide) for 15 min at room temperature. To detect chromatin-associated RPA2 levels, cells were  
581 pre-extracted in 0.2% Triton™ X-100 in PBS for two min on ice prior to formaldehyde fixation. For antibody  
582 staining, cells were incubated in blocking solution with primary antibodies for 2 h at room temperature,  
583 washed three times with PBS and incubated with secondary antibodies in blocking solution for 1h at room  
584 temperature. Cells were washed once with PBS and incubated for 10 min with DAPI (0.5 mg/ml) in PBS at  
585 room temperature. Following three washing steps in PBS, coverslips were briefly washed with distilled  
586 water and mounted on 5 ml Mowiol-based mounting media [Mowiol 4.88 (Calbiochem) in Glycerol/TRIS].  
587 Automated multichannel wide-field microscopy for high-content imaging and quantitative image-based  
588 cytometry (QIBC) was performed using the Olympus ScanR System as described previously<sup>54</sup>. Images were  
589 analyzed with the inbuilt Olympus ScanR Image Analysis Software Version 3.3.0, a dynamic background  
590 correction was applied, and nuclei segmentation was performed using an integrated intensity-based

591 object detection module based on the DAPI signal. All downstream analyzes were focused on properly  
592 detected nuclei containing a 2C-4C DNA content as measured by total and mean DAPI intensities.  
593 Fluorescence intensities were quantified and are depicted as arbitrary units. Color-coded scatterplots of  
594 asynchronous cell populations were generated with Spotfire data visualization software (TIBCO Spotfire  
595 10.10.1.7). Within one experiment, similar cell numbers were compared for the different conditions. For  
596 visualizing discrete data in scatterplots, mild jittering (random displacement of data points along discrete  
597 data axes) was applied to demerge overlapping data points. Representative scatterplots and  
598 quantifications of independent experiments, typically containing several thousand cells each, are shown.

599

600 **Colony formation assay**

601 KB1P cells were seeded in 6-well plates at 4,000 cells/well to assess survival upon treatment with Olaparib  
602 or HU. Cells were either mock treated (DMSO) or treated with the indicated concentrations of Olaparib,  
603 HU, PIN1 inhibitor KPT-6566 or p38 $\alpha$  inhibitor PH-797804 the day of seeding. The treatment lasted for the  
604 whole duration of the experiment and was refreshed twice a week. After 10 days of growth, cells were  
605 fixed with crystal violet solution [0.5% crystal violet and 20% ethanol (w/v)]. Plates were scanned and  
606 survival was analyzed with the ImageJ plugin Colony Area using the parameter colony intensity as readout.

607

608 **Quantification and Statistical Analysis**

609 For QIBC analysis a total of 20 images with 20x objective were acquired in an unbiased fashion from  
610 asynchronous cell population. Typically, between 1000 and 3000 cells per condition were analyzed, and  
611 representative single cell data of cell cohorts of comparable size are shown as one-dimensional cell cycle-  
612 resolved scatterplots. Fluorescence intensities were quantified and are depicted as arbitrary units. Color-  
613 coded scatterplots of asynchronous cell populations were generated with Spotfire data visualization  
614 software (TIBCO). Within one experiment, similar cell numbers were compared for the different

615 conditions. For visualizing discrete data in scatterplots, mild jittering (random displacement of data points  
616 along discrete data axes) was applied in order to demerge overlapping data points. Representative  
617 scatterplots and quantifications of independent experiments are shown.  
618 Statistical analyses were performed using GraphPad Prism (GraphPad Software Inc). For HR assay and  
619 colony formation assay p values were calculated with the unpaired t-test. When comparing more than  
620 two groups, one-way ANOVA was used. For DNA fibers experiments a minimum of 110 fibers were scored  
621 per sample. Each experiment was repeated at least twice, and representative experiments are shown. The  
622 samples were subjected to a Mann-Whitney analysis. In all cases: \*\*\*\*P ≤ 0.0001; \*\*\*P ≤ 0.001; \*\*P ≤  
623 0.01; \*P ≤ 0.05, ns, non-significant.

624

625 **ACKNOWLEDGEMENTS**

626 We wish to thank Sara Przetocka and all members of the Sartori lab for critical reading of the manuscript.  
627 We thank Matthias Altmeyer, Richard Chahwan and Massimo Lopes for helpful discussions. We thank  
628 Daniel Gonzalez Acosta for technical assistance with establishing the SIRF assay. We thank Giannino Del  
629 Sal for providing *Pin1*<sup>-/-</sup> MEFs. We are grateful to the Flow Cytometry Facility and the Center for  
630 Microscopy and Image Analysis at the University of Zurich for the sorting of U2OS cell lines and for  
631 technical support, respectively. Financial support came from the Swiss National Science Foundation  
632 (31003A\_176161 and 310030\_208143 to A.A.S., 320030M\_219453 to S.R., 310030\_207588 and  
633 310030\_205199 to P.C.), the European Union (ERC-2019-AdG-883877 to S.R., ERC-2020-AdG-101018257  
634 to P.C.), the UZH Candoc Grant (no. FK-23-050 to F.V.) and the AIRC Fellowship for Abroad (to L.M.). Figure  
635 6 was created with BioRender.

636

637 **AUTHOR CONTRIBUTIONS**

638 Conceptualization: F.V. and A.A.S.  
639 Investigation: F.V., M.G., L.M., H.D., A.P., G.C., I.C., C.v.A., V.v.A., S.W., B.C., M.C-R. and D.D.  
640 Resources: M.S., A.R., A.R.N., P.C. and S.R.  
641 Writing – Original Draft: F.V. and A.A.S.  
642 Writing – Review & Editing: F.V., M.G., A.R.N. and A.A.S.  
643 Supervision, Project Administration & Funding Acquisition: A.A.S.

644

645 **DISCLOSURE AND COMPETING INTEREST STATEMENT**

646 The authors declare no competing interests.

647

648 **Bibliography**

649

650 1. Zeman, M.K., and Cimprich, K.A. (2014). Causes and consequences of replication stress.  
651 *Nat. Cell Biol.* *16*, 2–9. <https://doi.org/10.1038/ncb2897>.

652 2. Toledo, L.I., Altmeyer, M., Rask, M.-B., Lukas, C., Larsen, D.H., Povlsen, L.K., Bekker-  
653 Jensen, S., Mailand, N., Bartek, J., and Lukas, J. (2013). ATR Prohibits Replication  
654 Catastrophe by Preventing Global Exhaustion of RPA. *Cell* *155*, 1088–1103.  
655 <https://doi.org/10.1016/j.cell.2013.10.043>.

656 3. Schlacher, K., Christ, N., Siaud, N., Egashira, A., Wu, H., and Jasin, M. (2011). Double-  
657 Strand Break Repair-Independent Role for BRCA2 in Blocking Stalled Replication Fork  
658 Degradation by MRE11. *Cell* *145*, 529–542. <https://doi.org/10.1016/j.cell.2011.03.041>.

659 4. Przetocka, S., Porro, A., Bolck, H.A., Walker, C., Lezaja, A., Trenner, A., von Aesch, C.,  
660 Himmels, S.-F., D'Andrea, A.D., Ceccaldi, R., et al. (2018). CtIP-Mediated Fork Protection  
661 Synergizes with BRCA1 to Suppress Genomic Instability upon DNA Replication Stress.  
662 *Mol. Cell* *72*, 568–582.e6. <https://doi.org/10.1016/j.molcel.2018.09.014>.

663 5. Sartori, A.A., Lukas, C., Coates, J., Mistrik, M., Fu, S., Bartek, J., Baer, R., Lukas, J., and  
664 Jackson, S.P. (2007). Human CtIP promotes DNA end resection. *Nature* *450*, 509–514.  
665 <https://doi.org/10.1038/nature06337>.

666 6. Huertas, P., and Jackson, S.P. (2009). Human CtIP Mediates Cell Cycle Control of DNA End  
667 Resection and Double Strand Break Repair. *J. Biol. Chem.* *284*, 9558–9565.  
668 <https://doi.org/10.1074/jbc.M808906200>.

669 7. Huertas, P., Cortés-Ledesma, F., Sartori, A.A., Aguilera, A., and Jackson, S.P. (2008). CDK  
670 targets Sae2 to control DNA-end resection and homologous recombination. *Nature* *455*,  
671 689–692. <https://doi.org/10.1038/nature07215>.

672 8. Yu, X., and Chen, J. (2004). DNA Damage-Induced Cell Cycle Checkpoint Control Requires  
673 CtIP, a Phosphorylation-Dependent Binding Partner of BRCA1 C-Terminal Domains. *Mol.*  
674 *Cell. Biol.* *24*, 9478–9486. <https://doi.org/10.1128/MCB.24.21.9478-9486.2004>.

675 9. Yu, J.H., Im, C.Y., and Min, S.-H. (2020). Function of PIN1 in Cancer Development and Its  
676 Inhibitors as Cancer Therapeutics. *Front. Cell Dev. Biol.* *8*.  
677 <https://doi.org/10.3389/fcell.2020.00120>.

678 10. Fagiani, F., Govoni, S., Racchi, M., and Lanni, C. (2021). The Peptidyl-prolyl Isomerase  
679 Pin1 in Neuronal Signaling: from Neurodevelopment to Neurodegeneration. *Mol. Neurobiol.*  
680 *58*, 1062–1073. <https://doi.org/10.1007/s12035-020-02179-8>.

681 11. Steger, M., Murina, O., Hühn, D., Ferretti, L.P., Walser, R., Hänggi, K., Lafranchi, L.,  
682 Neugebauer, C., Paliwal, S., Janscak, P., et al. (2013). Prolyl Isomerase PIN1 Regulates  
683 DNA Double-Strand Break Repair by Counteracting DNA End Resection. *Mol. Cell* *50*,  
684 333–343. <https://doi.org/10.1016/j.molcel.2013.03.023>.

685 12. Reinhardt, H.C., Aslanian, A.S., Lees, J.A., and Yaffe, M.B. (2007). p53-Deficient Cells  
686 Rely on ATM- and ATR-Mediated Checkpoint Signaling through the p38MAPK/MK2  
687 Pathway for Survival after DNA Damage. *Cancer Cell* *11*, 175–189.  
688 <https://doi.org/10.1016/j.ccr.2006.11.024>.

689 13. Manke, I.A., Nguyen, A., Lim, D., Stewart, M.Q., Elia, A.E.H., and Yaffe, M.B. (2005).  
690 MAPKAP Kinase-2 Is a Cell Cycle Checkpoint Kinase that Regulates the G2/M Transition  
691 and S Phase Progression in Response to UV Irradiation. *Mol. Cell* *17*, 37–48.  
692 <https://doi.org/10.1016/j.molcel.2004.11.021>.

693 14. Cánovas, B., Igea, A., Sartori, A.A., Gomis, R.R., Paull, T.T., Isoda, M., Pérez-Montoyo, H.,  
694 Serra, V., González-Suárez, E., Stracker, T.H., et al. (2018). Targeting p38 $\alpha$  Increases DNA  
695 Damage, Chromosome Instability, and the Anti-tumoral Response to Taxanes in Breast  
696 Cancer Cells. *Cancer Cell* *33*, 1094–1110.e8. <https://doi.org/10.1016/j.ccr.2018.04.010>.

697 15. Campaner, E., Rustighi, A., Zannini, A., Cristiani, A., Piazza, S., Ciani, Y., Kalid, O., Golan,  
698 G., Baloglu, E., Shacham, S., et al. (2017). A covalent PIN1 inhibitor selectively targets  
699 cancer cells by a dual mechanism of action. *Nat. Commun.* *8*, 15772.  
700 <https://doi.org/10.1038/ncomms15772>.

701 16. Daza-Martin, M., Starowicz, K., Jamshad, M., Tye, S., Ronson, G.E., MacKay, H.L.,  
702 Chauhan, A.S., Walker, A.K., Stone, H.R., Beesley, J.F.J., et al. (2019). Isomerization of  
703 BRCA1–BARD1 promotes replication fork protection. *Nature* *571*, 521–527.  
704 <https://doi.org/10.1038/s41586-019-1363-4>.

705 17. Dupré, A., Boyer-Chatenet, L., Sattler, R.M., Modi, A.P., Lee, J.-H., Nicolette, M.L.,  
706 Kopelovich, L., Jasin, M., Baer, R., Paull, T.T., et al. (2008). A forward chemical genetic  
707 screen reveals an inhibitor of the Mre11–Rad50–Nbs1 complex. *Nat. Chem. Biol.* *4*, 119–  
708 125. <https://doi.org/10.1038/nchembio.63>.

709 18. Kumar, S., Peng, X., Daley, J., Yang, L., Shen, J., Nguyen, N., Bae, G., Niu, H., Peng, Y.,  
710 Hsieh, H.-J., et al. (2017). Inhibition of DNA2 nuclease as a therapeutic strategy targeting  
711 replication stress in cancer cells. *Oncogenesis* *6*, e319–e319.  
712 <https://doi.org/10.1038/oncsis.2017.15>.

713 19. Luo, M.-L., Zheng, F., Chen, W., Liang, Z.-M., Chandramouly, G., Tan, J., Willis, N.A.,  
714 Chen, C.-H., Taveira, M. de O., Zhou, X.Z., et al. (2020). Inactivation of the Prolyl  
715 Isomerase Pin1 Sensitizes BRCA1-Proficient Breast Cancer to PARP Inhibition. *Cancer Res.*  
716 *80*, 3033–3045. <https://doi.org/10.1158/0008-5472.CAN-19-2739>.

717 20. Anand, R., Ranjha, L., Cannavo, E., and Cejka, P. (2016). Phosphorylated CtIP Functions as  
718 a Co-factor of the MRE11-RAD50-NBS1 Endonuclease in DNA End Resection. *Mol. Cell*  
719 *64*, 940–950. <https://doi.org/10.1016/j.molcel.2016.10.017>.

720 21. Florensa, R., Bachs, O., and Agell, N. (2003). ATM/ATR-independent inhibition of cyclin B  
721 accumulation in response to hydroxyurea in nontransformed cell lines is altered in tumour  
722 cell lines. *Oncogene* *22*, 8283–8292. <https://doi.org/10.1038/sj.onc.1207159>.

723 22. Rodríguez-Bravo, V., Guaita-Esteruelas, S., Salvador, N., Bachs, O., and Agell, N. (2007).  
724 Different S/M Checkpoint Responses of Tumor and Non-Tumor Cell Lines to DNA  
725 Replication Inhibition. *Cancer Res.* *67*, 11648–11656. <https://doi.org/10.1158/0008-5472.CAN-07-3100>.

727 23. Llopis, A., Salvador, N., Ercilla, A., Guaita-Esteruelas, S., Barrantes, I. del B., Gupta, J.,  
728 Gaestel, M., Davis, R.J., Nebreda, A.R., and Agell, N. (2012). The stress-activated protein  
729 kinases p38 $\alpha/\beta$  and JNK1/2 cooperate with Chk1 to inhibit mitotic entry upon DNA  
730 replication arrest. *Cell Cycle* *11*, 3627–3637. <https://doi.org/10.4161/cc.21917>.

731 24. Selness, S.R., Devraj, R.V., Devadas, B., Walker, J.K., Boehm, T.L., Durley, R.C., Shieh,  
732 H., Xing, L., Rucker, P.V., Jerome, K.D., et al. (2011). Discovery of PH-797804, a highly  
733 selective and potent inhibitor of p38 MAP kinase. *Bioorg. Med. Chem. Lett.* *21*, 4066–4071.  
734 <https://doi.org/10.1016/j.bmcl.2011.04.121>.

735 25. Cubillos-Rojas, M., Loren, G., Hakim, Y.Z., Verdaguer, X., Riera, A., and Nebreda, A.R.  
736 (2023). Synthesis and Biological Activity of a VHL-Based PROTAC Specific for p38 $\alpha$ .  
737 *Cancers* *15*, 611. <https://doi.org/10.3390/cancers15030611>.

738 26. Taglialatela, A., Alvarez, S., Leuzzi, G., Sannino, V., Ranjha, L., Huang, J.-W., Madubata,  
739 C., Anand, R., Levy, B., Rabadan, R., et al. (2017). Restoration of replication fork stability in  
740 BRCA1- and BRCA2-deficient cells by inactivation of SNF2-family fork remodelers. *Mol.*  
741 *Cell* *68*, 414-430.e8. <https://doi.org/10.1016/j.molcel.2017.09.036>.

742 27. Roy, S., Luzwick, J.W., and Schlacher, K. (2018). SIRF: Quantitative *in situ* analysis of  
743 protein interactions at DNA replication forks. *J. Cell Biol.* *217*, 1521–1536.  
744 <https://doi.org/10.1083/jcb.201709121>.

745 28. Dungrawala, H., Rose, K.L., Bhat, K.P., Mohni, K.N., Glick, G.G., Couch, F.B., and Cortez,  
746 D. (2015). The Replication Checkpoint Prevents Two Types of Fork Collapse without  
747 Regulating Replisome Stability. *Mol. Cell* *59*, 998–1010.  
748 <https://doi.org/10.1016/j.molcel.2015.07.030>.

749 29. Dibitetto, D., Liptay, M., Vivalda, F., Dogan, H., Gogola, E., González Fernández, M.,  
750 Duarte, A., Schmid, J.A., Decollogny, M., Francica, P., et al. (2024). H2AX promotes  
751 replication fork degradation and chemosensitivity in BRCA-deficient tumours. *Nat.*  
752 *Commun.* *15*, 4430. <https://doi.org/10.1038/s41467-024-48715-1>.

753 30. Celeste, A., Petersen, S., Romanienko, P.J., Fernandez-Capetillo, O., Chen, H.T.,  
754 Sedelnikova, O.A., Reina-San-Martin, B., Coppola, V., Meffre, E., Difilippantonio, M.J., et  
755 al. (2002). Genomic Instability in Mice Lacking Histone H2AX. *Science* *296*, 922–927.  
756 <https://doi.org/10.1126/science.1069398>.

757 31. Dias, M.P., Moser, S.C., Ganesan, S., and Jonkers, J. (2021). Understanding and overcoming  
758 resistance to PARP inhibitors in cancer therapy. *Nat. Rev. Clin. Oncol.* *18*, 773–791.  
759 <https://doi.org/10.1038/s41571-021-00532-x>.

760 32. Canovas, B., and Nebreda, A.R. (2021). Diversity and versatility of p38 kinase signalling in  
761 health and disease. *Nat. Rev. Mol. Cell Biol.* 22, 346–366. <https://doi.org/10.1038/s41580-020-00322-w>.

763 33. Borisova, M.E., Voigt, A., Tollenaere, M.A.X., Sahu, S.K., Juretschke, T., Kreim, N.,  
764 Mailand, N., Choudhary, C., Bekker-Jensen, S., Akutsu, M., et al. (2018). p38-MK2  
765 signaling axis regulates RNA metabolism after UV-light-induced DNA damage. *Nat.*  
766 *Commun.* 9, 1017. <https://doi.org/10.1038/s41467-018-03417-3>.

767 34. Kuster, A., Mozaffari, N.L., Wilkinson, O.J., Wojtaszek, J.L., Zurfluh, C., Przetocka, S.,  
768 Zyla, D., von Aesch, C., Dillingham, M.S., Williams, R.S., et al. (2021). A stapled peptide  
769 mimetic of the CtIP tetramerization motif interferes with double-strand break repair and  
770 replication fork protection. *Sci. Adv.* 7, eabc6381. <https://doi.org/10.1126/sciadv.abc6381>.

771 35. Ray Chaudhuri, A., Callen, E., Ding, X., Gogola, E., Duarte, A.A., Lee, J.-E., Wong, N.,  
772 Lafarga, V., Calvo, J.A., Panzarino, N.J., et al. (2016). Replication fork stability confers  
773 chemoresistance in BRCA-deficient cells. *Nature* 535, 382–387.  
774 <https://doi.org/10.1038/nature18325>.

775 36. Koikawa, K., Kibe, S., Suizu, F., Sekino, N., Kim, N., Manz, T.D., Pinch, B.J., Akshinthala,  
776 D., Verma, A., Gaglia, G., et al. (2021). Targeting Pin1 renders pancreatic cancer eradicable  
777 by synergizing with immunochemotherapy. *Cell* 184, 4753-4771.e27.  
778 <https://doi.org/10.1016/j.cell.2021.07.020>.

779 37. Chen, L., Xu, X., Wen, X., Xu, S., Wang, L., Lu, W., Jiang, M., Huang, J., Yang, D., Wang,  
780 J., et al. (2019). Targeting PIN1 exerts potent antitumor activity in pancreatic ductal  
781 carcinoma via inhibiting tumor metastasis. *Cancer Sci.* 110, 2442–2455.  
782 <https://doi.org/10.1111/cas.14085>.

783 38. Yang, L., Sun, X., Ye, Y., Lu, Y., Zuo, J., Liu, W., Elcock, A., and Zhu, S. (2019). p38 $\alpha$   
784 Mitogen-Activated Protein Kinase Is a Druggable Target in Pancreatic Adenocarcinoma.  
785 *Front. Oncol.* 9. <https://doi.org/10.3389/fonc.2019.01294>.

786 39. Alam, M.S., Gaida, M.M., Bergmann, F., Lasitschka, F., Giese, T., Giese, N.A., Hackert, T.,  
787 Hinz, U., Hussain, S.P., Kozlov, S.V., et al. (2015). Selective inhibition of the p38  
788 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression.  
789 *Nat. Med.* 21, 1337–1343. <https://doi.org/10.1038/nm.3957>.

790 40. Singh, S.P., Dosch, A.R., Mehra, S., De Castro Silva, I., Bianchi, A., Garrido, V.T., Zhou,  
791 Z., Adams, A., Amirian, H., Box, E.W., et al. (2024). Tumor Cell–Intrinsic p38 MAPK  
792 Signaling Promotes IL1 $\alpha$ -Mediated Stromal Inflammation and Therapeutic Resistance in  
793 Pancreatic Cancer. *Cancer Res.* 84, 1320–1332. <https://doi.org/10.1158/0008-5472.CAN-23-1200>.

795 41. Hoadley, K.A., Yau, C., Hinoue, T., Wolf, D.M., Lazar, A.J., Drill, E., Shen, R., Taylor,  
796 A.M., Cherniack, A.D., Thorsson, V., et al. (2018). Cell-of-Origin Patterns Dominate the  
797 Molecular Classification of 10,000 Tumors from 33 Types of Cancer. *Cell* 173, 291-304.e6.  
798 <https://doi.org/10.1016/j.cell.2018.03.022>.

799 42. Witkiewicz, A.K., McMillan, E.A., Balaji, U., Baek, G., Lin, W.-C., Mansour, J., Mollaee,  
800 M., Wagner, K.-U., Koduru, P., Yopp, A., et al. (2015). Whole-exome sequencing of  
801 pancreatic cancer defines genetic diversity and therapeutic targets. *Nat. Commun.* 6, 6744.  
802 <https://doi.org/10.1038/ncomms7744>.

803 43. Waters, A.M., and Der, C.J. (2018). KRAS: The Critical Driver and Therapeutic Target for  
804 Pancreatic Cancer. *Cold Spring Harb. Perspect. Med.* 8, a031435.  
805 <https://doi.org/10.1101/cshperspect.a031435>.

806 44. Ferretti, L.P., Himmels, S.-F., Trenner, A., Walker, C., Aesch, C. von, Eggenschwiler, A.,  
807 Murina, O., Enchev, R.I., Peter, M., Freire, R., et al. (2016). Cullin3-KLHL15 ubiquitin  
808 ligase mediates CtIP protein turnover to fine-tune DNA-end resection. *Nat. Commun.* 7, 1–  
809 16. <https://doi.org/10.1038/ncomms12628>.

810 45. Murina, O., von Aesch, C., Karakus, U., Ferretti, L.P., Bolck, H.A., Hänggi, K., and Sartori,  
811 A.A. (2014). FANCD2 and CtIP Cooperate to Repair DNA Interstrand Crosslinks. *Cell Rep.*  
812 7, 1030–1038. <https://doi.org/10.1016/j.celrep.2014.03.069>.

813 46. Davies, O.R., Forment, J.V., Sun, M., Belotserkovskaya, R., Coates, J., Galanty, Y., Demir,  
814 M., Morton, C.R., Rzechorzek, N.J., Jackson, S.P., et al. (2015). CtIP tetramer assembly is  
815 required for DNA-end resection and repair. *Nat. Struct. Mol. Biol.* 22, 150–157.  
816 <https://doi.org/10.1038/nsmb.2937>.

817 47. Merrick, C.J., Jackson, D., and Diffley, J.F.X. (2004). Visualization of Altered Replication  
818 Dynamics after DNA Damage in Human Cells\*. *J. Biol. Chem.* 279, 20067–20075.  
819 <https://doi.org/10.1074/jbc.M400022200>.

820 48. Nieminuszczy, J., Schwab, R.A., and Niedzwiedz, W. (2016). The DNA fibre technique –  
821 tracking helicases at work. *Methods* 108, 92–98.  
822 <https://doi.org/10.1016/j.ymeth.2016.04.019>.

823 49. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,  
824 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an open-source  
825 platform for biological-image analysis. *Nat. Methods* 9, 676–682.  
826 <https://doi.org/10.1038/nmeth.2019>.

827 50. Porro, A., Berti, M., Pizzolato, J., Bologna, S., Kaden, S., Saxer, A., Ma, Y., Nagasawa, K.,  
828 Sartori, A.A., and Jiricny, J. (2017). FAN1 interaction with ubiquitylated PCNA alleviates  
829 replication stress and preserves genomic integrity independently of BRCA2. *Nat. Commun.*  
830 8, 1073. <https://doi.org/10.1038/s41467-017-01074-6>.

831 51. Krajewska, M., Fehrmann, R.S.N., de Vries, E.G.E., and van Vugt, M.A.T.M. (2015).  
832 Regulators of homologous recombination repair as novel targets for cancer treatment. *Front.*  
833 *Genet.* 6. <https://doi.org/10.3389/fgene.2015.00096>.

834 52. Ceppi, I., Cannavo, E., Bret, H., Camarillo, R., Vivalda, F., Thakur, R.S., Romero-Franco,  
835 A., Sartori, A.A., Huertas, P., Guérois, R., et al. (2023). PLK1 regulates CtIP and DNA2

836        interplay in long-range DNA end resection. *Genes Dev.* *37*, 119–135.  
837        <https://doi.org/10.1101/gad.349981.122>.

838        53. Cannavo, E., and Cejka, P. (2014). Sae2 promotes dsDNA endonuclease activity within  
839        Mre11–Rad50–Xrs2 to resect DNA breaks. *Nature* *514*, 122–125.  
840        <https://doi.org/10.1038/nature13771>.

841        54. Teloni, F., Michelena, J., Lezaja, A., Kilic, S., Ambrosi, C., Menon, S., Dobrovolna, J.,  
842        Imhof, R., Janscak, P., Baubec, T., et al. (2019). Efficient Pre-mRNA Cleavage Prevents  
843        Replication-Stress-Associated Genome Instability. *Mol. Cell* *73*, 670–683.e12.  
844        <https://doi.org/10.1016/j.molcel.2018.11.036>.

845        55. Johnson, J.L., Yaron, T.M., Huntsman, E.M., Kerelsky, A., Song, J., Regev, A., Lin, T.-Y.,  
846        Liberatore, K., Cizin, D.M., Cohen, B.M., et al. (2023). An atlas of substrate specificities for  
847        the human serine/threonine kinome. *Nature* *613*, 759–766. <https://doi.org/10.1038/s41586-022-05575-3>.

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869 **FIGURE LEGENDS**

870 **Figure 1. CtIP *cis*-to-*trans* isomerization protects stalled forks from nucleolytic degradation.**

871 **(A)** Fork degradation was evaluated upon HU treatment in U2OS cells depleted of endogenous CtIP and  
872 stably expressing either GFP empty vector (ev), or siCtIP-resistant GFP-CtIP wild-type (wt), S276A, T315A,  
873 and S276A/T315A variants. Representative DNA fiber images are shown (top). **(B)** Fork degradation was  
874 evaluated upon HU treatment in U2OS cells depleted of endogenous CtIP and stably expressing siCtIP-  
875 resistant GFP-CtIP wt or S276A/T315A variants. In addition, cells were either mock-treated or treated with  
876 the DNA2 inhibitor NSC-105808 (2  $\mu$ M, simultaneously with HU). **(C)** Fork degradation was evaluated upon  
877 HU treatment in U2OS cells inducibly expressing siCtIP-resistant GFP-CtIP wt or S276A variants and  
878 depleted of endogenous CtIP alone, or co-depleted of CtIP and SMARCAL1. **(D)** Fork degradation was  
879 evaluated upon HU treatment in U2OS cells depleted of endogenous CtIP and inducibly expressing siCtIP-  
880 resistant GFP-CtIP wt, S276A, P277A, or S276A/P277A (*trans*-locked) variants. **(A-D)** Box and whisker plots  
881 of IdU/CldU-tract length ratios for individual replication forks are shown. Numbers indicated above the  
882 individual plots represent the mean ratios  $\pm$  standard deviation. Schematics of the CldU/IdU pulse-  
883 labelling protocol are shown (top). **(E)** Metaphase spread analysis upon HU treatment of U2OS cells  
884 depleted of endogenous CtIP and inducibly expressing siCtIP-resistant GFP-CtIP wt, S276A, or  
885 S276A/P277A (*trans*-locked) variants. Chromatid breaks, fusions and radials were scored. Total  
886 chromosomal aberrations per metaphase are shown. The mean (red line) with standard deviation of  
887 biological triplicates is shown.

888

889 **Figure 2. CtIP isomerization by PIN1 promotes fork stability but is dispensable for HR.**

890 **(A)** Fork degradation was evaluated upon HU treatment in U2OS cells pre-treated with the PIN1 inhibitor  
891 KPT-6566 (10  $\mu$ M) alone or in combination with either the Mre11 inhibitor Mirin (25  $\mu$ M) or the DNA2  
892 inhibitor NSC-105808 (2  $\mu$ M). **(B)** Fork degradation was evaluated upon HU treatment in U2OS cells

893 depleted of endogenous CtIP and inducibly expressing siCtIP-resistant GFP-CtIP wt, S276A or  
894 S276A/P277A *trans*-locked mutant. In addition, cells were either mock-treated or treated with the PIN1  
895 inhibitor KPT-6566 (10  $\mu$ M, 1 h before labelling). **(C)** Fork degradation was evaluated upon HU treatment  
896 in U2OS cells inducibly expressing siCtIP-resistant GFP-CtIP wt or S276A/P277A *trans*-locked mutant and  
897 depleted of endogenous CtIP alone, or co-depleted of CtIP and BRCA1. **(A-C)** Box and whisker plots of  
898 IdU/CldU-tract length ratios for individual replication forks are shown. Numbers indicated above the  
899 individual plots represent the mean ratios  $\pm$  standard deviation. Schematics of the CldU/IdU pulse-  
900 labelling protocol are shown (top). **(D)** HR efficiency was evaluated in U2OS DR-GFP cells depleted for  
901 endogenous CtIP and transfected with either empty vector (ev) or indicated siCtIP-resistant FLAG-CtIP  
902 constructs. Cells were co-transfected with the I-SceI expression plasmid and harvested at 48h post-  
903 transfection and analyzed by flow cytometry for GFP signal. Data are shown as percentage of GFP-positive  
904 cells. **(E)** Electrophoretic mobility of recombinant CtIP wild-type (wt) and S276A either not-treated or  
905 treated with  $\lambda$  phosphatase. **(F)** Endonuclease assay with recombinant MRN complex and either  
906 phosphorylated CtIP wt or phosphorylated S276A variant on a 5' end-labelled 70 bp-long double-stranded  
907 DNA substrate blocked at both ends with streptavidin. The quantitation (cleavage, %) is an average from  
908 three independent experiments. Schematic of the substrate and endonucleolytic cleavage is shown (top).  
909

910 **Figure 3. HU-activated p38 $\alpha$  phosphorylates CtIP at S276 and facilitates CtIP-dependent fork protection.**

911 **(A)** Myc-Trap of HEK293T cells transfected with Myc-p38 $\alpha$ . Whole-cell lysates (input) and  
912 immunoprecipitates were analyzed by western blotting using specific antibodies. **(B)** Immunoprecipitation  
913 (IP) of CtIP-pS276 from U2OS cells inducibly expressing GFP-CtIP either mock-treated or treated with HU  
914 (2 mM, 4h). Where indicated, cells were treated with the p38 $\alpha$  inhibitor PH-797804 (1  $\mu$ M, 24h before  
915 HU). Whole-cell lysates (input) and immunoprecipitates were analyzed by western blotting using specific  
916 antibodies. Densiometric quantification of CtIP band in the IP is shown (% indicates CtIP band intensity vs

917 IgG band intensity). **(C)** GFP-Trap of HEK293T cells co-transfected with GFP-PIN1 and indicated FLAG-CtIP  
918 variants. 24h post-transfection, cells were either mock-treated or treated with the p38 $\alpha$  inhibitor PH-  
919 797804 (1  $\mu$ M) for 24h. Whole-cell lysates (input) and immunoprecipitates were analyzed by western  
920 blotting using specific antibodies. **(D)** Fork degradation was evaluated upon HU treatment in U2OS cells  
921 either treated with the p38 $\alpha$  inhibitor PH-797804 (1  $\mu$ M, 24h before HU) or with the p38 $\alpha$  PROTAC NR-  
922 11c (1  $\mu$ M, 24h before HU). Western blotting of lysates from the same experiment is shown below. **(E)**  
923 Fork degradation was evaluated upon HU treatment in U2OS cells inducibly expressing siCtIP-resistant  
924 GFP-CtIP wt or S276A/P277A *trans*-locked mutant and depleted of endogenous CtIP alone, or co-depleted  
925 of CtIP and p38 $\alpha$ . **(F)** Fork degradation was evaluated upon HU treatment in wild-type mouse embryonic  
926 fibroblasts (MEFs) and *Pin1*<sup>-/-</sup> MEFs, pre-treated either for 24h with the p38 $\alpha$  inhibitor PH-797804 (1  $\mu$ M)  
927 or for 1h with the PIN1 inhibitor KPT-6566 (10  $\mu$ M). **(D-F)** Box and whisker plots of IdU/CldU-tract length  
928 ratios for individual replication forks are shown. Numbers indicated above the individual plots represent  
929 the mean ratios  $\pm$  standard deviation. Schematics of the CldU/IdU pulse-labelling protocol are shown  
930 (top).

931

932 **Figure 4. PIN1 and p38 $\alpha$  activities are required for CtIP accumulation at stalled replication forks.**

933 **(A)** CtIP SIRF assay in U2OS cells pulsed-labelled with EdU (25  $\mu$ M) for 10 min followed by treatment with  
934 HU (2mM) for 4h. Where indicated cells were treated with the PIN1 inhibitor KPT-6566 (10  $\mu$ M, 1h before  
935 EdU labelling). **(B)** CtIP SIRF assay in U2OS cells pulsed-labelled with EdU (25  $\mu$ M) for 10 min followed by  
936 treatment with HU (2mM) for 4h. Where indicated cells were treated with the p38 $\alpha$  inhibitor PH-797804  
937 (1  $\mu$ M, 24h before EdU labelling). **(C)** GFP-CtIP SIRF assay in U2OS cells inducibly expressing siCtIP-resistant  
938 GFP-CtIP wt, S276A or S276A/P277A *trans*-locked mutant and depleted of endogenous CtIP. Cells were  
939 pulsed-labelled with EdU (25  $\mu$ M) for 10 min followed by treatment with HU (2mM) for 4h. **(A-C)** Dot plots  
940 show the number of PLA foci and the median from at least 120 EdU-positive cells. Representative images

941 are shown on top of each figure. Scale bars, 10  $\mu$ m.

942

943 **Figure 5. PIN1 or p38 $\alpha$  inhibition impairs CtIP accumulation at stalled forks and overcomes Olaparib**  
944 **resistance in *Brca1*<sup>-/-</sup> tumor cells.**

945 **(A)** CtIP SIRF assay in KB1P-derived *Trp53*<sup>-/-</sup>; *Brca1*<sup>-/-</sup> and *Trp53*<sup>-/-</sup>; *Brca1*<sup>-/-</sup>; *H2afx*<sup>-/-</sup> cells, either mock-  
946 treated or treated with the PIN1 inhibitor KPT-6566 (10  $\mu$ M) for 1h, or with the p38 $\alpha$  inhibitor PH-797804  
947 (1  $\mu$ M) for 24h. Cells were pulse-labelled with EdU (25  $\mu$ M) for 10 min followed by treatment with HU (8  
948 mM) alone or in combination with the PIN1 or p38 $\alpha$  inhibitors for 6h. Dot plots show the number of PLA  
949 foci and the median from at least 150 EdU-positive cells. Representative images are shown on the right.  
950 Scale bars, 10  $\mu$ m. **(B)** Colony formation assay was performed in same cells as in (A), either mock-treated  
951 or treated with the PIN1 inhibitor KPT-6566 (2.5  $\mu$ M) and with the PARP inhibitor Olaparib (75 nM) for 10  
952 days. **(C)** Colony formation assay was performed in same cells as in (A), either mock-treated or treated  
953 with the p38 $\alpha$  inhibitor PH-797804 (10  $\mu$ M) and with the PARP inhibitor Olaparib (75 nM) for 10 days. **(B)**  
954 **and C)** Plotted values are mean  $\pm$  standard deviation of three biological replicates. Representative images  
955 are shown (top).

956

957 **Figure 6. Schematic model depicting the role of PIN1-p38 $\alpha$ -CtIP signaling in fork protection.**

958 During unperturbed S-phase, CDK2-mediated phosphorylation of T315 promotes PIN1 binding to CtIP. In  
959 response to replication stress, p38 $\alpha$  kinase phosphorylates CtIP at S276. Subsequently, PIN1 catalyzes the  
960 *cis*-to-*trans* isomerization of the pS276-P277 peptide bond, ensuring accumulation of CtIP at stalled forks.  
961 Ultimately, this phosphorylation-isomerization cascade promotes CtIP-dependent protection of nascent  
962 DNA from DNA2-mediated nucleolytic processing, thereby maintaining of genome stability.

963

964 **SUPPLEMENTAL INFORMATION LEGENDS**

965 **Figure S1 (Related to Figure 1).**

966 **(A)** Western blotting of lysates from U2OS cells inducibly expressing GFP-CtIP wt or S276A and depleted  
967 of endogenous CtIP alone, or co-depleted of CtIP and SMARCAL1. **(B)** GFP-Trap of U2OS cells inducibly  
968 expressing GFP-CtIP variants and depleted of endogenous CtIP. Whole-cell lysates (input) and  
969 immunoprecipitates were analyzed by western blotting using specific antibodies. **(C)** GFP-Trap of HEK293T  
970 cells co-transfected with GFP-PIN1 and indicated FLAG-CtIP variants. Whole-cell lysates (input) and  
971 immunoprecipitates were analyzed by western blotting using specific antibodies. **(D)** Fork degradation  
972 was evaluated upon HU treatment in U2OS cells depleted of endogenous CtIP and stably expressing  
973 indicated GFP-CtIP variants. Box and whisker plots of ClDU-tract length for individual replication forks are  
974 shown. Numbers indicated above the individual plots represent the mean tract length  $\pm$  standard  
975 deviation. Schematics of the ClDU/IdU pulse-labelling protocol are shown (top). **(E)** Western blotting of  
976 lysates from U2OS cells inducibly expressing GFP-CtIP wt, S276A and S276A/P277A *trans*-locked mutant  
977 were either mock-treated or treated with HU (2 mM) for 4h. Cells were then released into fresh medium  
978 supplemented with cycloheximide (CHX, 100  $\mu$ g/ml) for 6h, and lysates were analyzed by western blotting  
979 with the indicated antibodies. **(F)** Western blotting of chromatin-enriched lysates of U2OS<sup>Cas9/ev</sup> and  
980 U2OS<sup>Cas9/CtIP</sup> cells complemented with indicated GFP-CtIP variants. **(G)** Quantitative image-based  
981 cytometry (QIBC) of chromatin-loaded RPA2 in U2OS<sup>Cas9/ev</sup> and U2OS<sup>Cas9/CtIP</sup> cells complemented with  
982 indicated GFP-CtIP variants and treated or not with HU (2 mM for 2h). Chromatin-bound RPA2 mean  
983 intensities are plotted and color-coded. The mean (solid line) and standard deviation (dashed line) are  
984 indicated. n > 1'500 cells per condition from minimum of two biological replicates. **(H)** Western blotting  
985 of lysates from U2OS cells inducibly expressing indicated GFP-CtIP variants and depleted of endogenous  
986 CtIP as employed in the metaphase spread analysis. **(I)** Representative images of HU-induced

987 chromosomal aberrations typically observed in U2OS cells transfected with siCtIP or of CtIP-depleted cells  
988 expressing siRNA-resistant CtIP-S276A.

989

990 **Figure S2 (Related to Figure 2).**

991 **(A)** Fork degradation was evaluated upon HU treatment in U2OS cells pre-treated for 1h with the PIN1  
992 inhibitor KPT-6566. Box and whisker plots of IdU/CldU-tract length ratios for individual replication forks  
993 are shown. Numbers indicated above the individual plots represent the mean ratios  $\pm$  standard deviation.  
994 Schematics of the CldU/IdU pulse-labelling protocol are shown (top). **(B)** Western blotting of lysates from  
995 U2OS cells were either mock-treated, treated with HU (2mM, 4h) or with HU and PIN1 inhibitor (10 $\mu$ M,  
996 1h before HU treatment). Cells were then released into fresh medium supplemented with cycloheximide  
997 (CHX, 100  $\mu$ g/ml) for the indicated time points and analyzed using specific antibodies. **(C)** Western blotting  
998 of lysates from U2OS cells inducibly expressing indicated GFP-CtIP variants and depleted of endogenous  
999 CtIP alone or in combination with BRCA1 depletion and analyzed using specific antibodies. **(D)** HR  
1000 efficiency was evaluated in U2OS/DR-GFP cells mock-treated or treated for 3h with the indicated  
1001 concentrations of the PIN1 inhibitor KPT-6566 before transfection with the *I-SceI* expression plasmid. Cells  
1002 were harvested at 48h post-transfection and analyzed by flow cytometry for GFP signal. Data are shown  
1003 as percentage of GFP-positive cells. **(E)** Western blotting of lysates from U2OS/DR-GFP cells depleted for  
1004 endogenous CtIP and transfected with either empty vector (ev) or indicated FLAG-CtIP constructs. **(F)** GFP-  
1005 Trap of HEK293T cells transfected with indicated GFP-CtIP variants. Whole-cell lysates (input) and  
1006 immunoprecipitates were analyzed by western blotting using specific antibodies. **(G)** HR efficiency was  
1007 evaluated in U2OS/DR-GFP cells mock-treated or treated with the PIN1 inhibitor KPT-6566 3h before co-  
1008 transfection with the *I-SceI* expression plasmid and indicated FLAG-CtIP constructs. Cells were harvested  
1009 at 48h post-transfection and analyzed by flow cytometry for GFP signal. Data are shown as percentage of  
1010 GFP-positive cells. Western blotting of lysates from the same experiment is shown below.

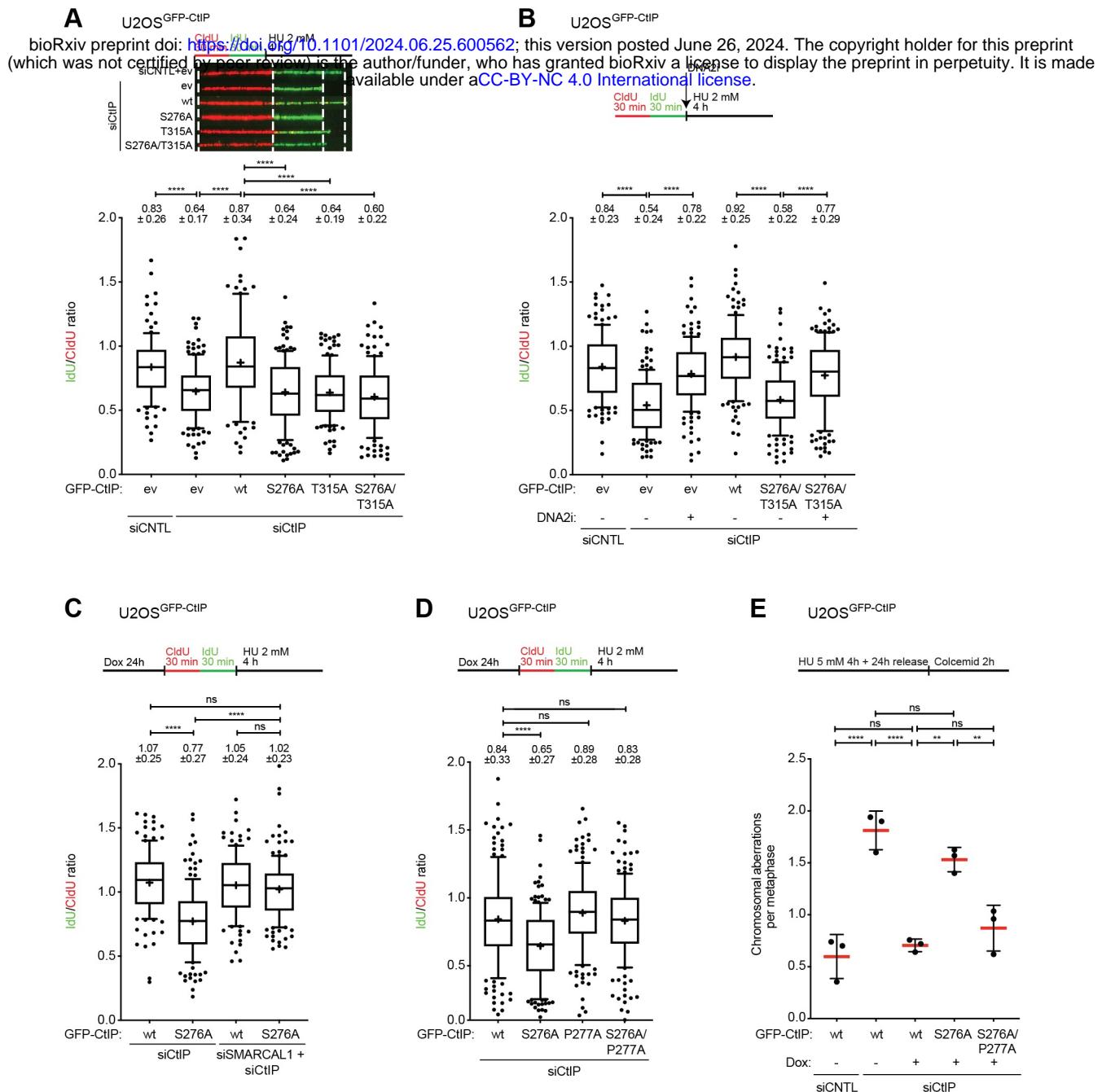
1011

1012 **Figure S3 (Related to Figure 3).**

1013 **(A)** Multiple sequence alignment of the CtIP region containing S276. The full consensus sequence for p38 $\alpha$   
1014 substrates is shown below (modified from Johnson et al., 2023<sup>55</sup>). **(B)** Immunoprecipitation of endogenous  
1015 CtIP from HEK293T cells transfected with Myc-p38 $\alpha$ . Whole-cell lysates (input) and immunoprecipitates  
1016 were analyzed by western blotting using specific antibodies. The \* indicates an unspecific band. **(C)** GFP-  
1017 Trap of U2OS cells inducibly expressing GFP-CtIP and treated with HU (2 mM, 4h). Where indicated, cells  
1018 were treated with the p38 $\alpha$  PROTAC NR-11c (1  $\mu$ M, 24h before HU). Whole-cell lysates (input) and  
1019 immunoprecipitates were analyzed by western blotting using specific antibodies. Densiometric  
1020 quantification of CtIP-pS276 band in the GFP-Trap is shown (% indicate CtIP-pS276 band intensity vs CtIP  
1021 band intensity). **(D)** Fork degradation was evaluated upon HU treatment in U2OS cells depleted of either  
1022 endogenous CtIP or p38 $\alpha$ . Box and whisker plots of IdU/CldU-tract length ratios for individual replication  
1023 forks are shown. Numbers indicated above the individual plots represent the mean ratios  $\pm$  standard  
1024 deviation. Schematics of the CldU/IdU pulse-labelling protocol are shown (top). Western blotting of  
1025 lysates from the same experiment is shown below. **(E)** Western blotting of lysates from cells used in figure  
1026 3E. **(F)** Western blotting of lysates from wild-type mouse embryonic fibroblasts (MEFs) and *Pin1*<sup>-/-</sup> MEFs.

1027

1028 **Figure S4 (Related to Figure 4).**


1029 **(A)** Western blotting of lysates from U2OS cells inducibly expressing indicated GFP-CtIP variants and  
1030 depleted of endogenous CtIP as employed in the SIRF analysis of figure 4C. **(B)** Laser micro-irradiation was  
1031 performed in U2OS cells inducibly expressing GFP-CtIP wt treated with the PIN1 inhibitor (10  $\mu$ M, 2h prior  
1032 to laser micro-irradiation). Cells were grown in the presence of 5'-bromo-2'-deoxyuridine (BrdU) for 24h  
1033 before micro-irradiation. Bottom: graph depicts GFP-CtIP intensity normalized on GFP pre-irradiation  
1034 levels. Data are shown as mean  $\pm$  standard deviation (n = 3). Representative images are shown (top, scale

1035 bars, 10  $\mu$ m). **(C)** Laser micro-irradiation was performed in U2OS cells inducibly expressing GFP-CtIP wt,  
1036 S276A and S276A/P277A *trans*-locked mutant depleted for endogenous CtIP. The next day cells were  
1037 grown in the presence of BrdU for 24h before micro-irradiation. Two time points 5 and 15 minutes were  
1038 taken after laser beam irradiation in live cell imaging. Bottom: Graph depicts GFP-CtIP intensity normalized  
1039 on GFP pre-irradiation levels. Data are shown as mean  $\pm$  standard deviation (n = 3). Representative images  
1040 are shown (top, scale bars, 10  $\mu$ m).

1041

1042 **Figure S5 (Related to Figure 5).**

1043 **(A)** Colony formation assay was performed in KB1P-derived *Trp53*<sup>-/-</sup>; *Brca1*<sup>-/-</sup> and *Trp53*<sup>-/-</sup>; *Brca1*<sup>-/-</sup>; *H2afx*<sup>-/-</sup>  
1044 cells, either mock-treated or treated with the PIN1 inhibitor KPT-6566 (7.5  $\mu$ M) and HU (80  $\mu$ M) for 10  
1045 days. **(B)** Colony formation assay was performed in same cells as in (A), either mock-treated or treated  
1046 with the p38 $\alpha$  inhibitor PH-797804 (10  $\mu$ M) and HU (80  $\mu$ M) for 10 days. **(A and B)** Plotted values are mean  
1047  $\pm$  standard deviation of three biological replicates. Representative images are shown (top).

**Figure 1.**

**Figure 2.**

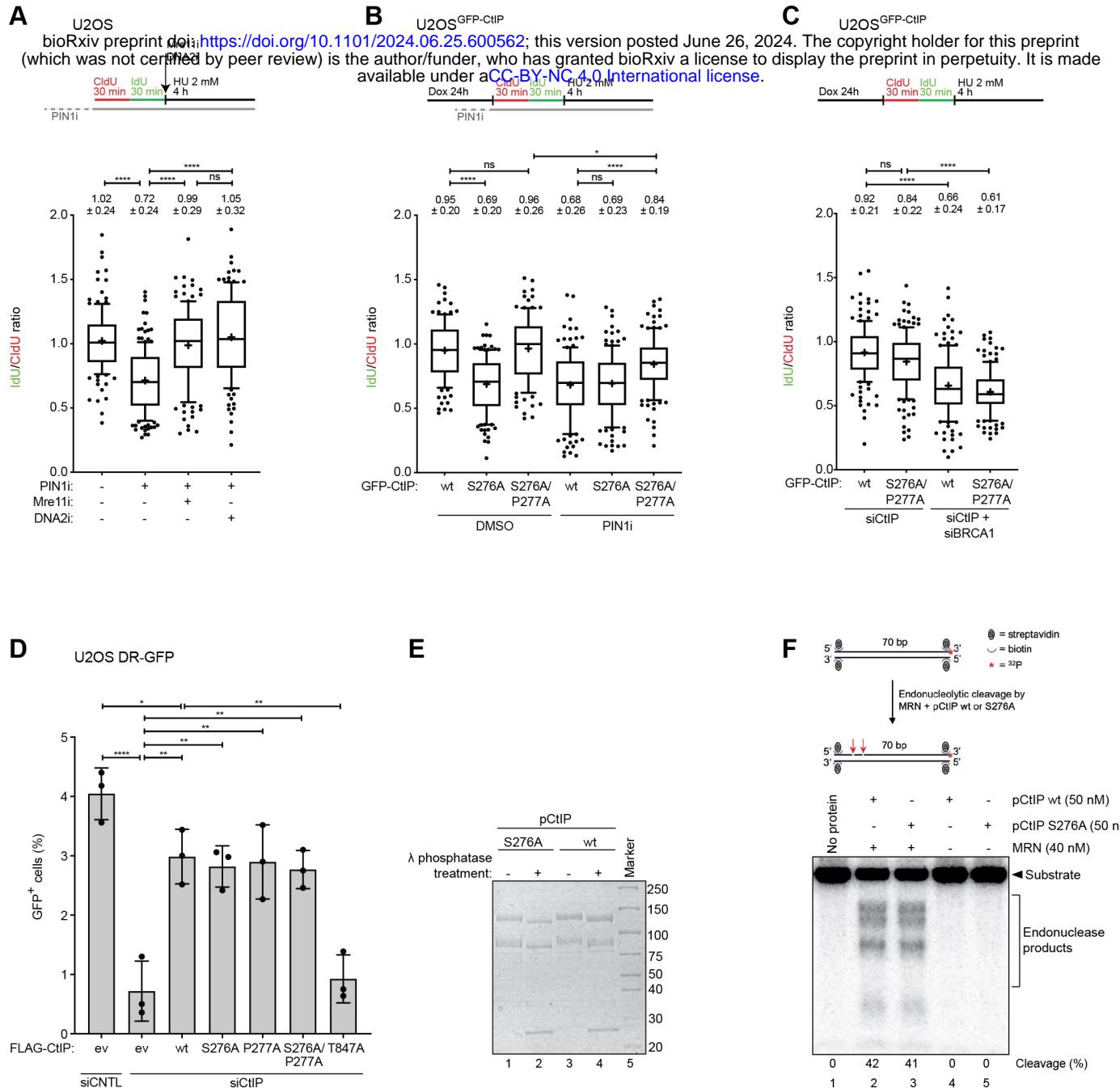
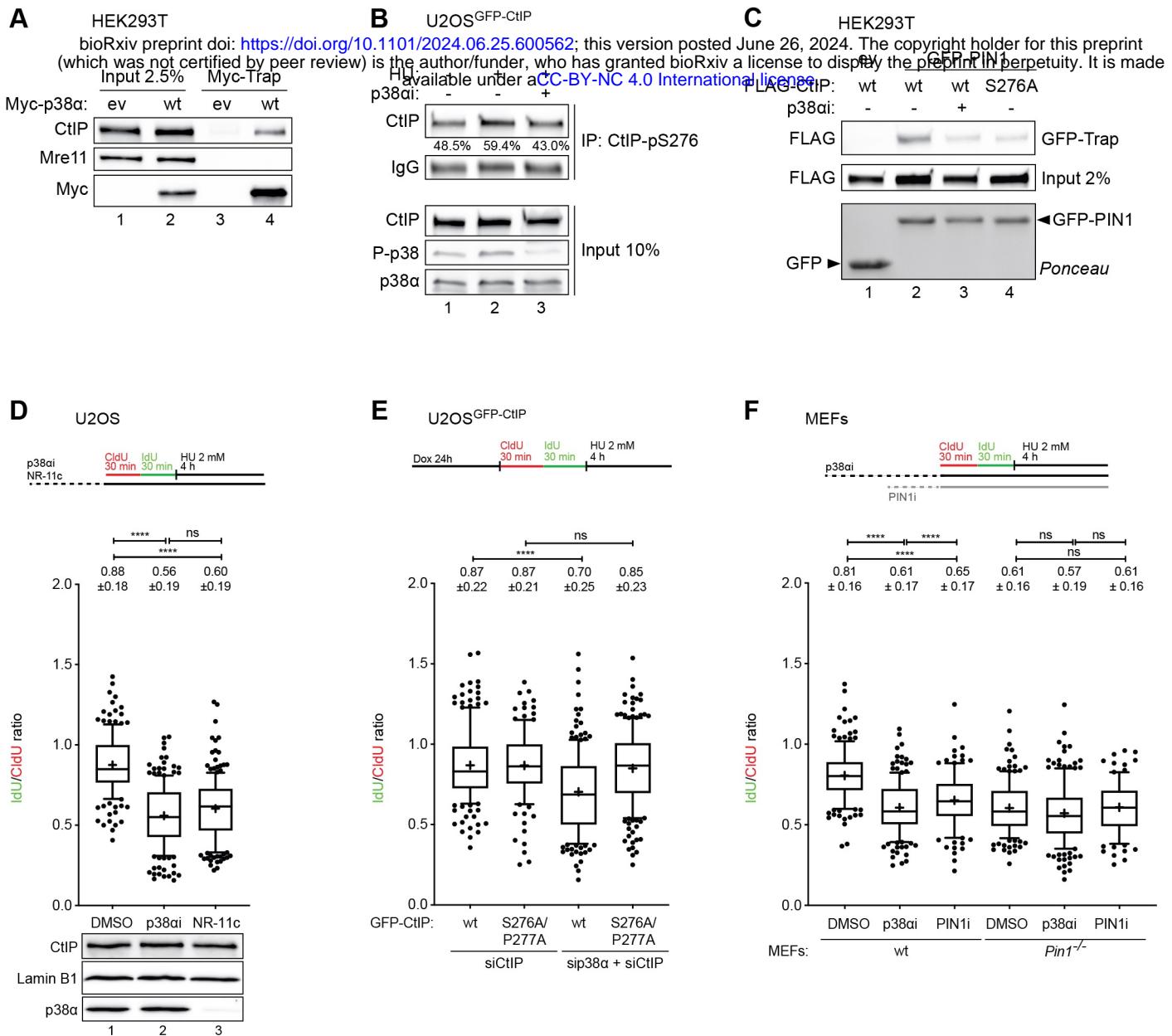




Figure 3.



**Figure 4.**

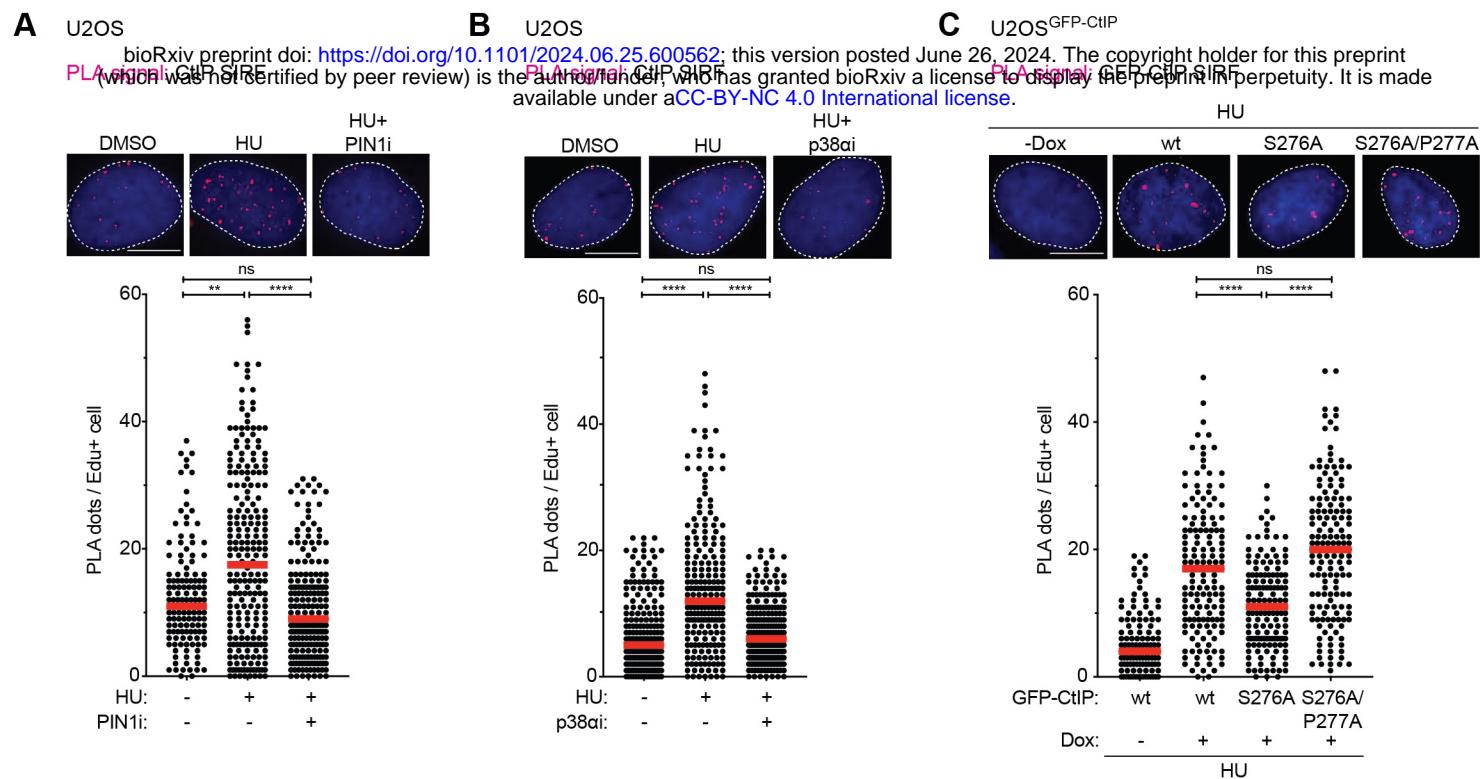
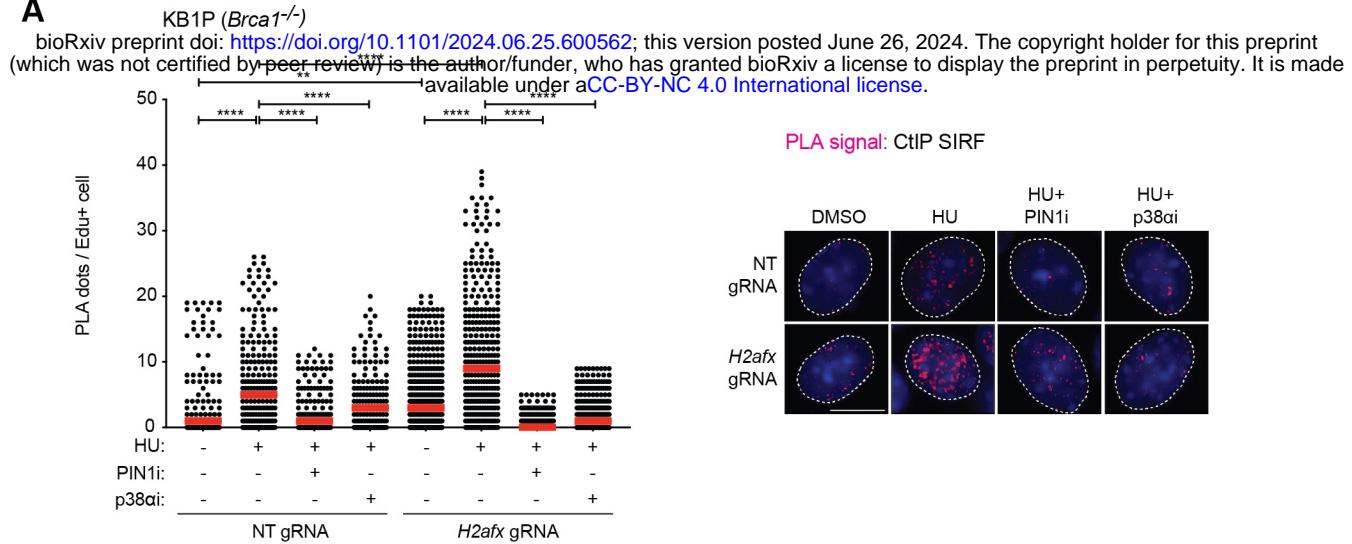




Figure 5.

A



B



C

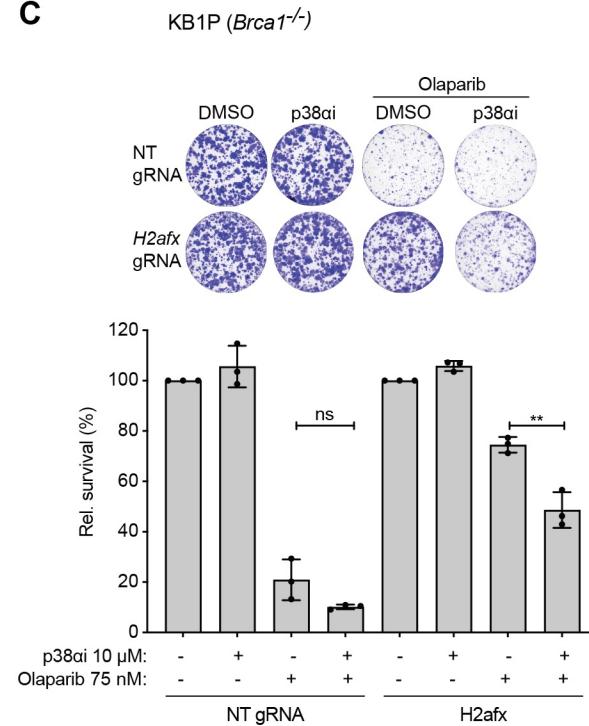



Figure 6.

bioRxiv preprint doi: <https://doi.org/10.1101/2024.06.25.600562>; this version posted June 26, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

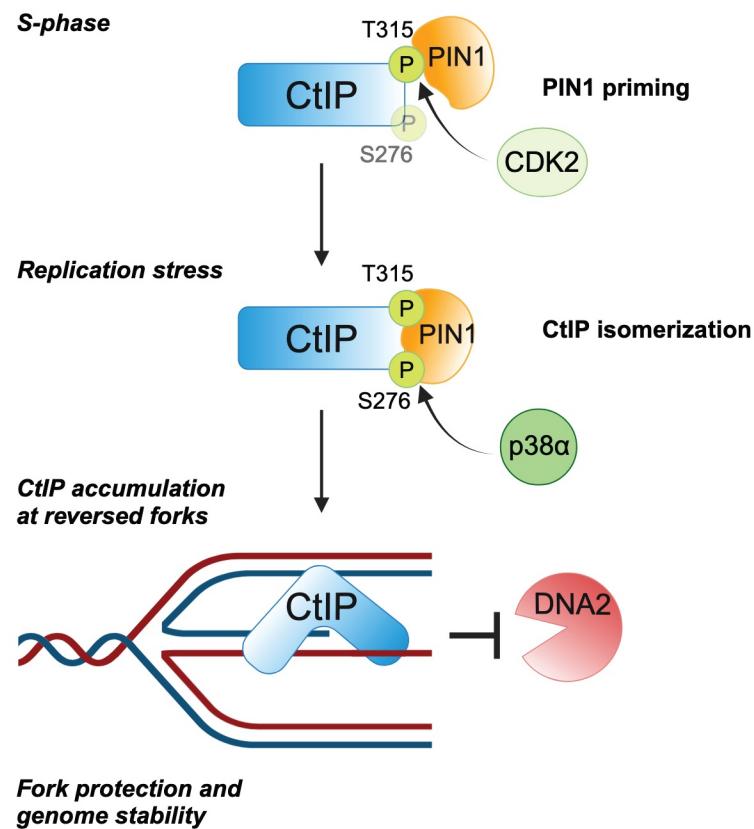



Figure S1 (Related to Figure 1).

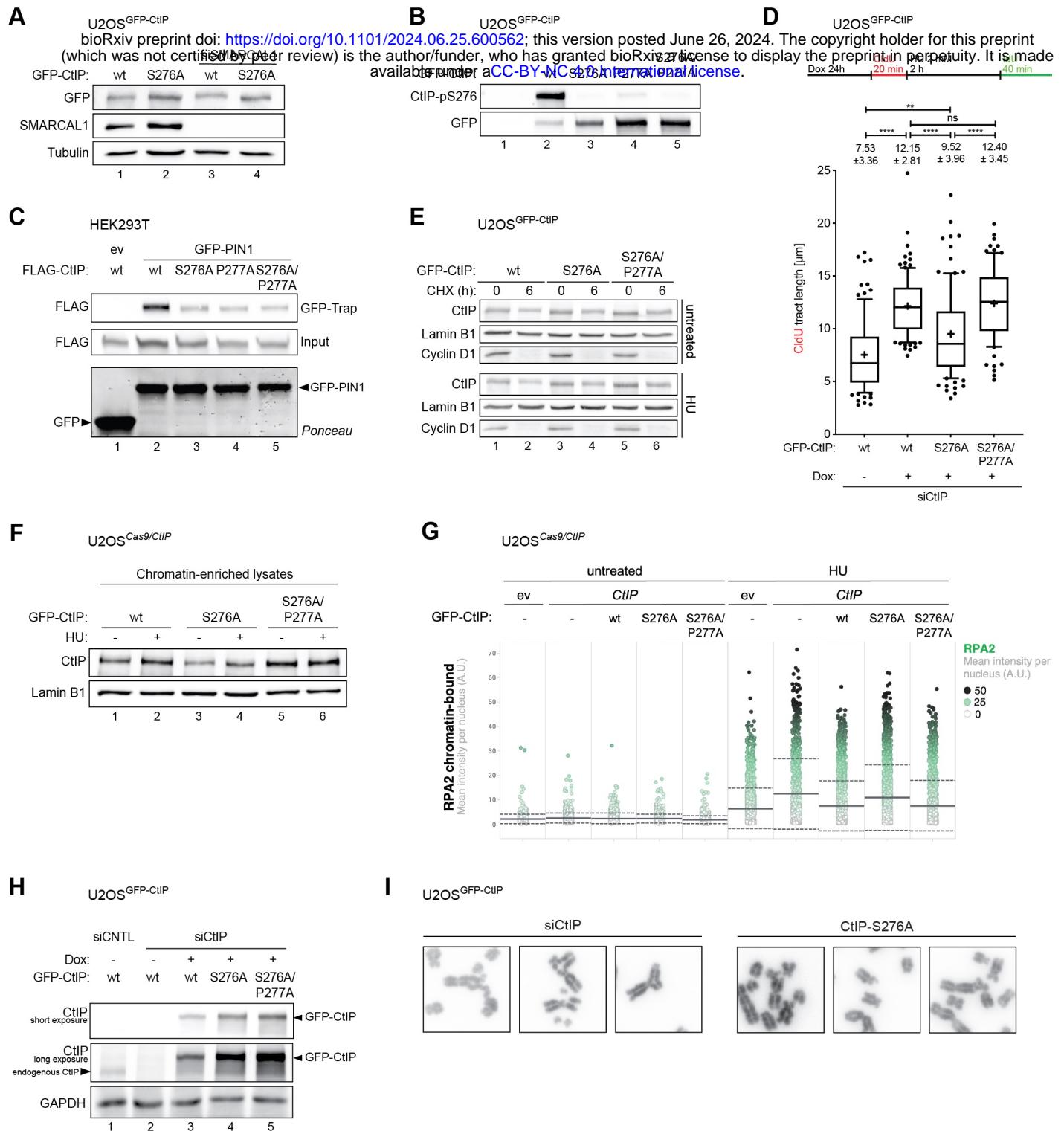
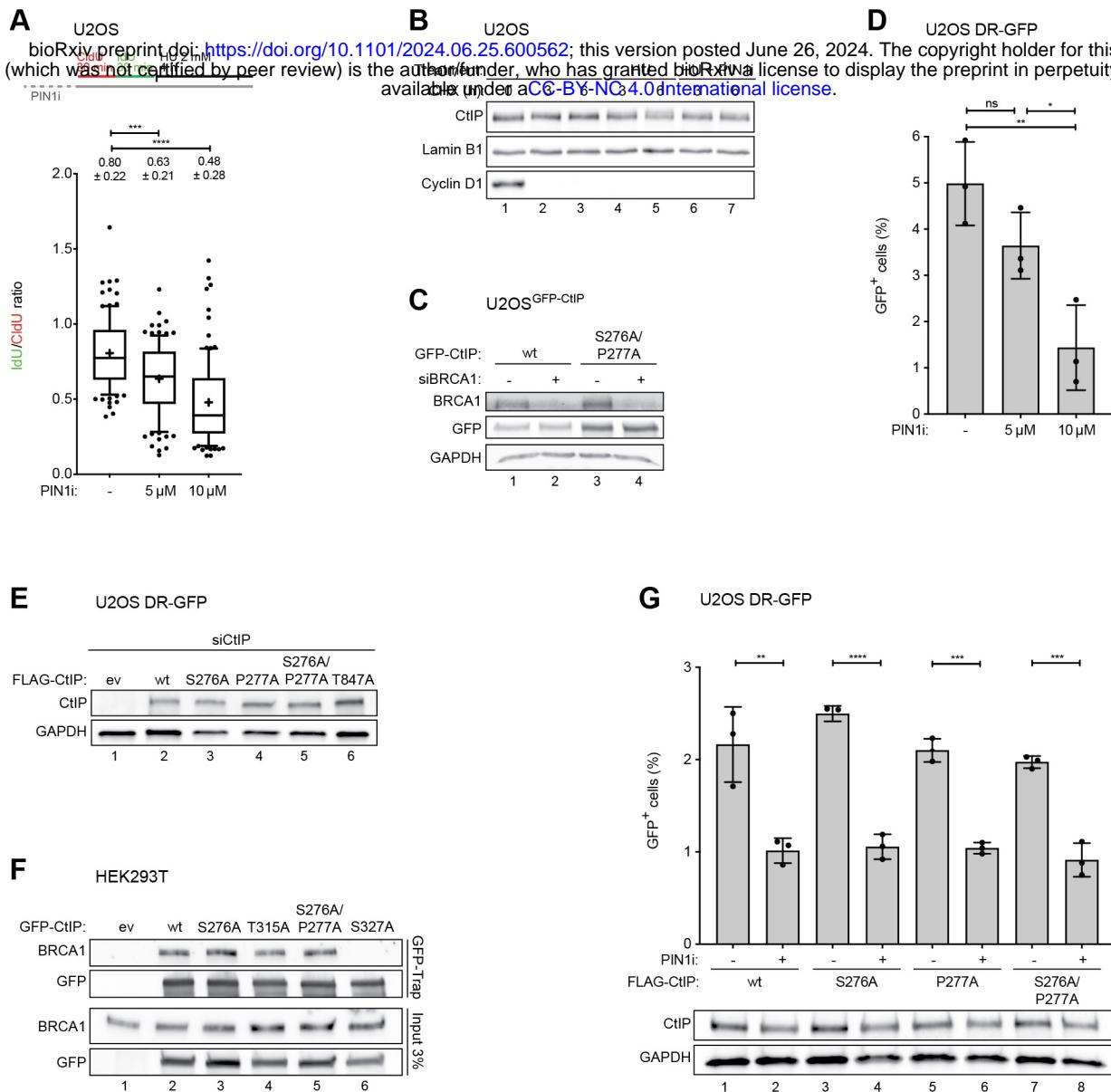




Figure S2 (Related to Figure 2).



**Figure S3 (Related to Figure 3).**

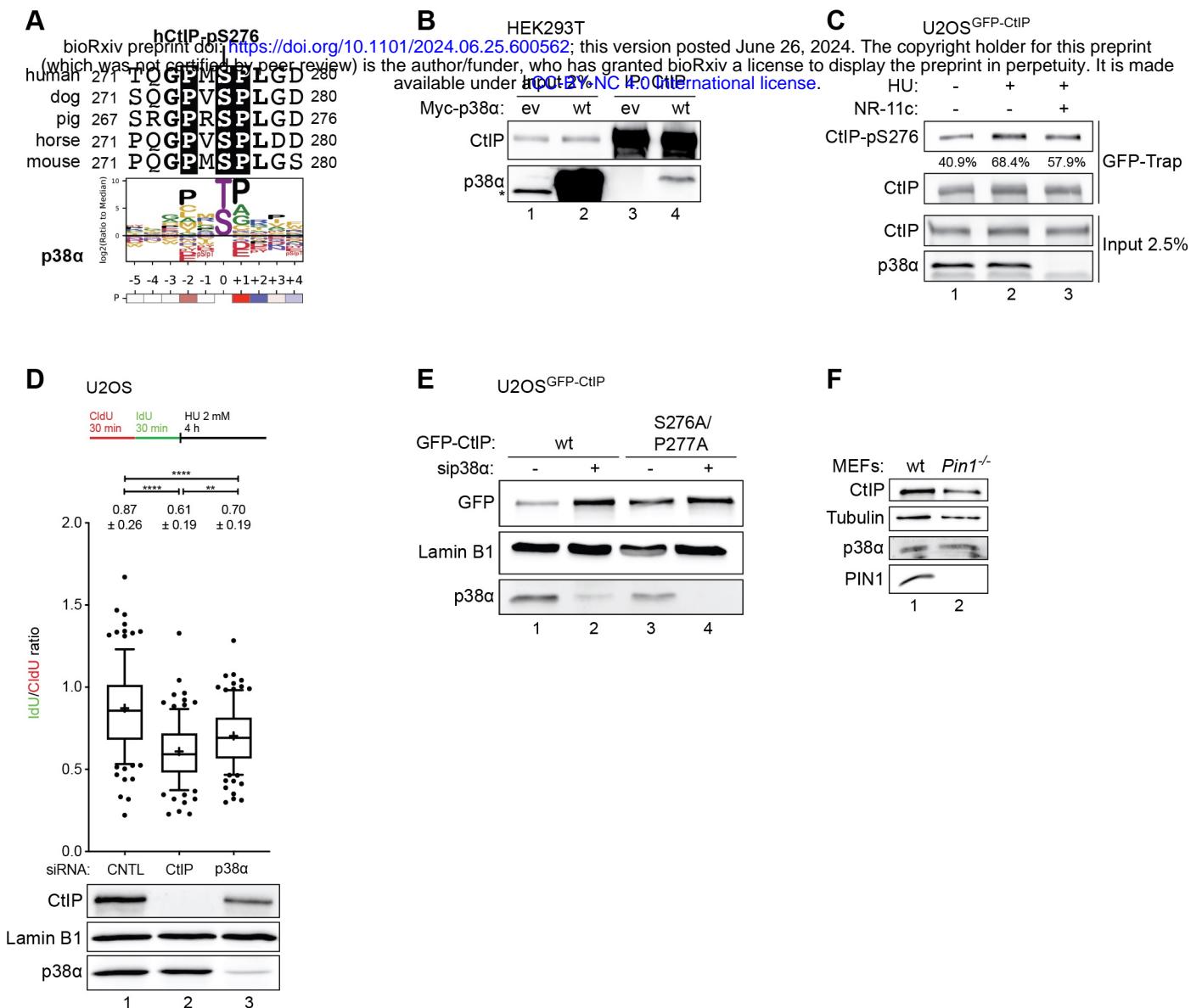



Figure S4 (Related to Figure 4).

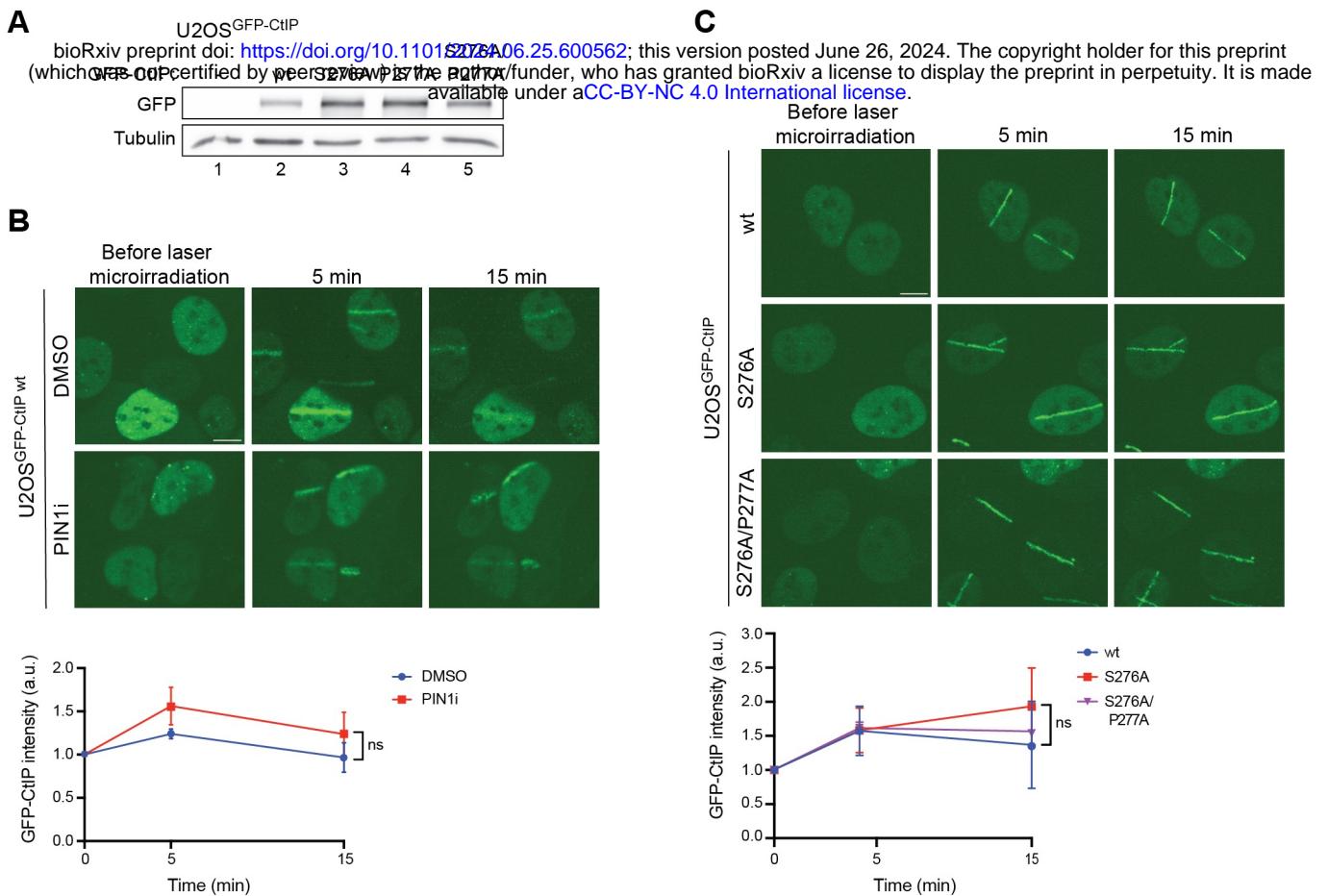
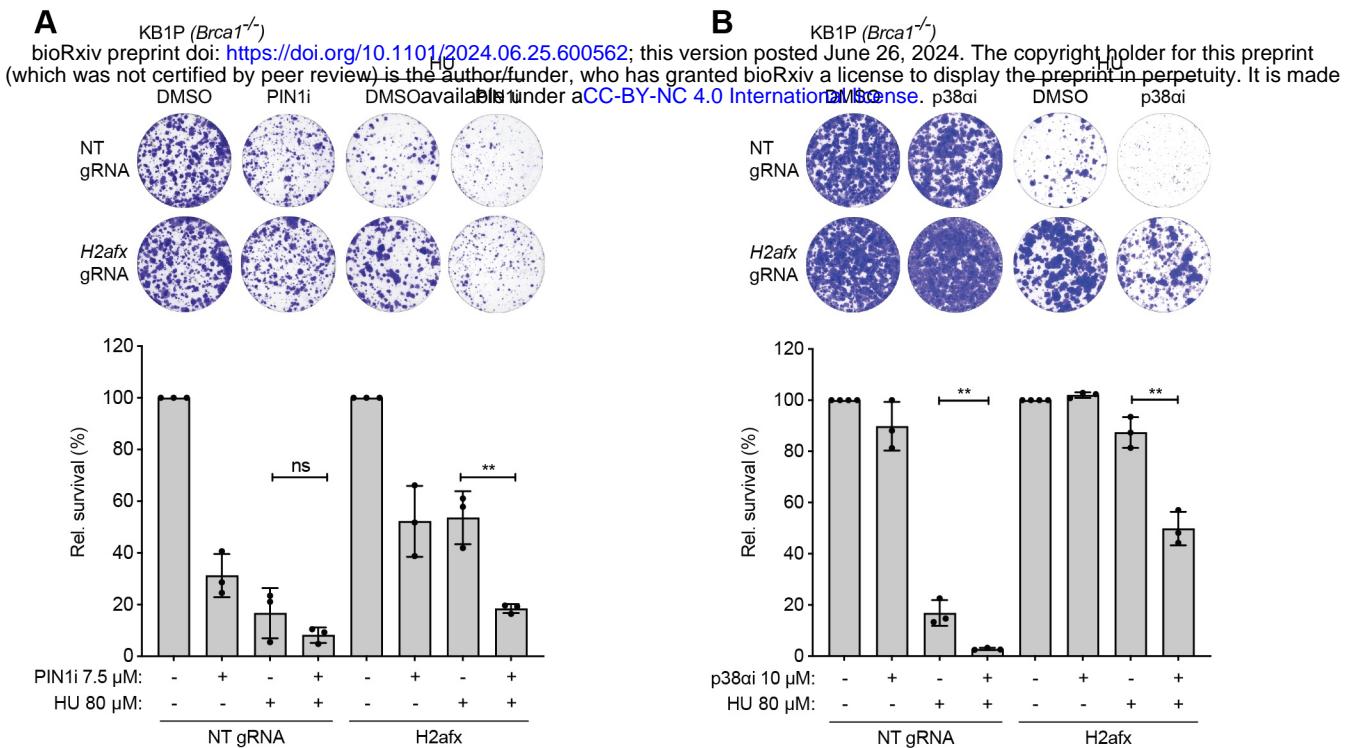




Figure S5 (Related to Figure 5).

