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Abstract

Marine foundation species are critical for the structure and functioning of ecosystems and
constitute the pillar of trophic chains while also providing a variety of ecosystem services. In
recent decades many foundation species have declined in abundance, sometimes threatening their
current geographical distribution. Kelps (Laminariales) are the primary foundation species in
temperate coastal systems worldwide. Kelp ecosystems are notoriously variable and identifying
the key factors that control the dynamics of kelp abundance is key to predicting the fate of kelp
ecosystems under climatic change and informing management and conservation decisions such
as forest restoration. Here, we used in situ data from long-term monitoring programs across
1,350 km of coast spanning multiple biogeographic regions in the state of California (USA) to
identify the major regional drivers of density of two dominant canopy-forming kelp species and
to elucidate the spatial and temporal scales over which they operate. We used generalized
additive models to identify the key drivers of density of two dominant kelp species (Nereocystis
luetkeana and Macrocystis pyrifera) across four ecological regions of the state of California
(north, central, south-west and south-east) and for the past two decades (2004-2021). Our study
identified that the dominant drivers of kelp density varied between regions and species but
always included some combination of nitrate availability, wave energy and exposure, density of
purple sea urchins, and temperature as the most important predictors explaining 63% of the
variability of bull kelp in the north and central regions, and 45% and 51.4% of the variability in
giant kelp for the central/south-west and south-east regions, respectively. These large-scale
analyses infer that a combination of lower nutrient availability, changes in wave energy and

exposure, and increases in temperature and purple sea urchin counts have contributed to the
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decline of kelp observed in the last decade. Understanding the drivers of kelp dynamics can be
used to identify regions and periods of significant change and historical stability, ultimately
informing resource management and conservation decisions such as site selection for kelp

protection and restoration.

Introduction

Of the many species whose distributions and dynamics are exhibiting dramatic changes in
response to a changing global climate, few are as important and concerning as foundation species
(sensu Dayton 1972, Ellison et al. 2005). These species support ecosystem productivity, create
structural habitat, act as ecological engineers (sensu Jones et al. 1994), and underpin a multitude
of ecosystem services. In coastal marine ecosystems, foundation species such as corals (Hughes
et al. 2003, Hoegh-Guldberg et al. 2007, De’ath et al. 2012), seagrasses (Short and Neckles 1999,
Koch et al. 2013, Serrano et al. 2021), mangroves (Alongi 2015, Ward et al. 2016), and oysters
(Beck et al. 2011), among others, are experiencing marked changes in distribution and dynamics
in response to gradual and episodic changes in water temperature (e.g., marine heatwaves) and
other anthropogenic stressors. These spatial and temporal responses in such population attributes
as abundance, productivity, and demographic and genetic structure are complex because of the
interactions among multiple simultaneously changing environmental and ecological drivers. This
complexity is compounded by the many spatial (local, regional, global) and temporal (seasonal,
interannual, decadal) scales over which environmental conditions vary and interactions among
scale-specific sources of variation. Consequently, one of the most challenging goals in ecology

and conservation biology is to elucidate the spatial and temporal relationships between species
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abundance and variable environmental and ecological conditions. Such relationships are central
to explaining variability in their distribution and predicting the dynamics of foundation species
abundance and the ecosystems they create. In light of the accelerating effects of climate change,
there is an urgent need to identify the key drivers of geographical and temporal variation in
foundation species in order to make effective management decisions that protect them and the

ecosystem services they provide.

Globally, kelps (Laminariales) are among the most important foundation species in temperate
coastal oceans, inhabiting shallow temperate rocky reefs throughout the world (Steneck et al.
2002, Graham et al. 2007, Bolton 2010, Assis et al. 2020, Eger et al. 2023). Like many other
foundation species, their primary production both fuels and creates physical habitat structures for
highly species-rich ecosystems. These productive ecosystems support a multitude of culturally
and economically important fisheries species, among other provisioning, regulating, supporting,
and cultural services (Vasquez et al. 2014, Eger et al. 2023). With declines of kelp forests in
many parts of the world associated with gradual and episodic (marine heatwaves) increases in
water temperature and other anthropogenic stressors (Krumhansl et al. 2016, Wernberg et al.
2016, Beas-Luna et al. 2020, Arafeh-Dalmau et al. 2021b), there is global interest in
conservation and restoration of kelps and their associated ecosystems (Morris et al. 2020, Eger et

al. 2022).

From Baja California, Mexico to southeast Alaska, USA, the dominant canopy-forming kelps are
the bull kelp (Nereocystis luetkeana) and the giant kelp (Macrocystis pyrifera), both of which
create large, floating canopies (Graham et al. 2007, Schiel and Foster 2015, Carr and Reed

2016). Over the past decade, both bull and giant kelp forests on the West coast of North America
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experienced two major disturbances: the 2013 sea star wasting disease that led to local extinction
of a key sea urchin predator, the sunflower star (Pycnopodia helianthoides), and the North East
Pacific marine heatwave of 2014-2016 (NE Pacific MHW)(Michaud et al. 2022). These events
were rapidly followed by extensive loss (> 90%) of bull kelp along the coast of northern
California (Rogers-Bennett and Catton 2019, McPherson et al. 2021) and substantial losses of
giant kelp in central California (Smith et al. 2021, 2024) and Baja California, Mexico
(Arafeh-dalmau et al. 2019, Beas-Luna et al. 2020). The loss of kelp in northern California drove
closures of important recreational and commercial fisheries such as red abalone and red sea
urchins, and critically, almost a decade later, these lost forests have yet to recover
(Rogers-Bennett and Catton 2019, McPherson et al. 2021). The detrimental consequences of the
widespread loss of kelp have given rise to an urgent need to better understand the drivers of kelp
dynamics in order to optimize decisions about conservation and restoration of this important

marine habitat.

In California, the geographic distributions of these two kelp species extend across two well
recognized biogeographic regions distinguished by persistent differences in oceanographic
conditions (e.g. water temperature, wave energy, and coastal upwelling) (Briggs 1974, Horn et al.
2006, Blanchette et al. 2008, Reed et al. 2011). This environmental variability generates
geographic differences in the structure and dynamics of kelp forest communities (Carr and Reed
2016), making California an ideal place to evaluate the drivers of climate-induced losses, gains,

and distributional shifts.

To further advance our understanding of the environmental and ecological variables that explain

the distribution and dynamics of canopy-forming kelps, including observed changes before and
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after the NE Pacific MHW, we ask (1) What environmental and biological variables best explain
and predict the density dynamics of bull kelp and giant kelp along the coast of California? (2)
How do the relative and combined impact of these variables on the spatio—temporal dynamics of
kelp density vary across the bioregions of the California coast? and (3) How well can these
variables explain and predict regional dynamics of kelp (canopy) abundance detected by satellite

imagery?

To answer these questions, we leverage a long-term (~18 years) dataset of biological
observations and remotely sensed environmental time series to construct species distribution
models (SDMs) of the densities of the two canopy-forming kelp species (bull and giant kelp). We
use the SDMs to extrapolate kelp distributions along the coast of California and apply these
annual predictions to construct a coast-wide time series of interannual kelp density dynamics. We
then compare the modeled regional kelp density dynamics with Landsat-derived spatio-temporal
kelp canopy dynamics to evaluate how well our model explains patterns observed from satellite
imagery. We used these results to inform resource managers about which sites are more likely to
support dense forests in the face of future MHWs, and this knowledge can be used to prioritize
sites for protection and restoration while considering the broad range of responses across a large

geographical area (Giraldo-Ospina et al. 2023a).

Materials and Methods

Study system

Study species


https://paperpile.com/c/JrlXSw/qCwu
https://doi.org/10.1101/2024.06.25.600483
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.25.600483; this version posted June 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Bull kelp (Nereocystis luetkeana) is an annual species with high interannual variation in forest
density and area (McPherson et al. 2021). In California, bull kelp is distributed from the Oregon
border in the north to Point Conception in the south. North of Monterey Bay, central California,
it is the dominant habitat-forming kelp, whereas in central California bull kelp usually grows in
mixed beds with giant kelp. Individuals are characterized by a single long stipe up to 25 m in
length that extends through the water column from the rocky reef surface, buoyed by a large
buoyant pneumatocyst. Long blades attached to the pneumatocyst contain spore-filled sori.
Haploid zoospores released from the adult sporophytes in fall, settle to the reef and grow into
microscopic gametophytes, which release gametes, fertilize, and develop into young sporophytes
during winter. Young sporophytes quickly grow into adults over spring, forming a surface
canopy in late summer and fall, which is typically dislodged by winter storms (Dobkowski et al.

2019).

Giant kelp (Macrocystis pyrifera) is a perennial species dominant in the temperate eastern Pacific
and Southern Oceans. Giant kelp forests experience large temporal variation with biomass
dynamics driven largely by the longevity of individual fronds rather than whole plants (Reed et
al. 2008, Rodriguez et al. 2013). In California, giant kelp ranges predominantly from Pigeon
Point in the north to the border with Mexico in the south (Graham et al. 2007, Schiel and Foster
2015, Carr and Reed 2016). Giant kelp abundance in California is very dynamic since
individuals as well as entire forests are highly susceptible to dislodgment by ocean waves
(Graham 1997, Edwards and Estes 2006). Because of this, forests are more persistent in the more
protected waters of southern versus central California (Reed et al. 2011). Individual adult

sporophytes are composed of numerous stipes that extend as much as 20-30 m through the water
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column from the rocky reef to the surface, each with many pneumatocysts and blades (Schiel and
Foster 2015). Sporophylls at the base of the alga have the potential to produce zoospores
throughout the year (Reed et al. 1997; Graham 1999). Like bull kelp, zoospores that settle to the
reef produce gametophytes, which produce gametes that become young sporophytes upon

fertilization.

Study region

This study focused on both bull kelp and giant kelp and encompassed the entire 1,350 km of
coastal California, between the borders of Mexico to Oregon, including the offshore islands
(Figure 1). The two species of kelp are distributed across two well-recognized biogeographic
regions, each of which encompasses smaller “ecoregions” distinguished by persistent differences
in ocean temperatures and species composition (Briggs 1974, Horn et al. 2006, Blanchette et al.
2008). In addition to persistent differences in oceanographic conditions, the coastal
geomorphology varies among provinces and ecoregions. These geomorphological differences
include the width of the continental shelf (and coastal upwelling), the exposure of the shoreline
to ocean swell, the steepness of subtidal rocky reefs, turbidity, and the composition, vertical
relief and rugosity of the rocky reef substratum (Hamilton et al. 2010; Blanchette et al. 2008).
Separately and in combination, these oceanographic and geomorphological features generate
persistent geographic patterns of the community structure and dynamics of kelp forest
ecosystems (Carr and Reed 2016, Beas-Luna et al. 2020). For example, some subregions, such as
the North-western Channel Islands, show evident separation from their ecoregion and such
breaks coincide with known differences in oceanographic patterns (Blanchette et al. 2008,

Hamilton et al. 2010). Based on these marked ecological and environmental differences, we
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divide the coastline into four regions to evaluate the determinants of kelp dynamics: 1) North,
from the border with Oregon to Pigeon Point; 2) Central, from Pigeon Point to Point Conception;
3) South-west, from Point Conception to Naples beach including San Miguel and Santa Rosa

Islands; and 4) South-east, from Naples beach to the border with Mexico (Figure 1).
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FIGURE 1. Study area along the coast of California and the four ecoregions that were used for modelling
density of bull kelp (Northern and Central), and giant kelp (central, south-west and south-east). Symbols

indicate the in situ survey sites used for modelling and their source (Reef Check vs. PISCO).
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Biological data from in situ surveys

Statewide data on kelp and grazer densities were obtained from kelp forest monitoring programs
initiated by the Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO; Carr et al.

2020, Malone et al. 2022) and Reef Check (https://www.reefcheck.org/country/usa-california/)

and more recently conducted by a consortium of institutions that survey kelp forest ecosystems
in California’s statewide network of marine protected areas (MPAs): UC Santa Barbara, UC
Santa Cruz, California State Polytechnic University, Humboldt, and the Vantuna Research Group
at Occidental College (VRG). Reef Check California conducts kelp monitoring surveys by
training and leading citizen scientists across the state using methods comparable to PISCO.
Densities of the giant kelp, purple sea urchin (Strongylocentrotus purpuratus) for the Central
region (PISCO-UCSC) and two Southern regions (PISCO-UCSB and VRG) of California were
obtained by visual surveys using scuba conducted at 95 sampling sites (Figure 1). Surveys were
conducted from 1999 to 2021 using two (Central region) and three (Southern regions) transects
of 30 m in length and 2 m width (60 m?) in three depth zones: inner (~ 5 m), mid (~12 m) and
outer (~20 m) at each site, for a total of six (Central region) and nine (Southern regions) transects
per site. Because the resolution of most environmental variables was much coarser than the scale
of a transect or site, we used a central coordinate in the center of each site to extract the
environmental data for each site. For the spatio-temporal modeling described below, only sites

that contained three years of survey data before the NE Pacific MHW were used (N= 95 sites).

We used Reef Check data for the Northern region models as PISCO data were limited before the
NE Pacific MHW. Reef Check California surveyed 25 sites in Sonoma and Mendocino Counties

10
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between 2006 and 2021, ranging between one and 21 sites annually. Two depths were surveyed
at each site (inner: 0-10 m, and outer: 10-20 m) using three consecutive transects, similar to
PISCO, for a total of six transects per surveyed site, per year. For the spatio-temporal modeling
described below, only sites that contained three years of survey data prior to NE Pacific MHW

were used (N= 10 sites).

Environmental datasets of predictor variables

Satellite derived environmental variables

We obtained data for a comprehensive suite of environmental variables previously identified as
correlates with bull and giant kelp distribution and dynamics (Bell et al. 2015). All temperature
data and derived metrics were produced from the Daily Global 5 km Satellite Sea Surface
Temperature dataset, available from NOAA Coral Reef Watch

(https://coralreefwatch.noaa.gov/product/Skm/index_5km_sst.php). The CoralTemp SST product

combines a series of datasets to produce a timeseries from 1985 to present of daily global
night-only SST at 5 km resolution. Daily SST data were used to calculate 44 annual and seasonal
(summer vs. upwelling) metrics of SST that included general statistics (mean, max, min SST)
and marine heatwave estimates (degree days and anomalies; see Appendix S1: Table S1 for full
list of metrics). Surface nitrate concentrations were estimated using the spatial SST datasets.
Surface nitrate concentrations for the Central and two Southern regions (< 37.75 N) were
calculated using the observed relationship between ocean temperature and nitrate concentration
as per (Snyder et al. 2020). The observed relationship between nitrate concentration and SST is

different north of 37.75 N, so to estimate nitrate concentrations from SST for the Northern

region, we used CalCOFI data (https://calcofi.org/data/oceanographic-data/) to develop a novel

11
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relationship using a generalized additive model. The resulting relationship was similar to the one
presented in (Garcia-Reyes et al. 2014). Using the daily spatial SST dataset, a suite of 41 metrics
of nitrate concentrations similar to the SST metrics were determined at 5 km resolution (See

Appendix S1: Table S1 for full list of metrics).

Wave height observations were obtained from the Coastal Data Information Program (CDIP;

http://cdip.ucsd.edu/) MOPv1.1 wave model on an hourly timescale at 1 km coastline segments

for the entire coast of California. All wave data prior to 2004 were hindcasted by developing a
non-linear statistical model (GAM) between CDIP data and data from one of 18 offshore US
Army Corp Wave Information Study (WIS) model sites. The site that produced the best model
estimating CDIP wave height from WIS wave height, period, and direction was used to model
the daily maximum significant wave height. Data on net primary production (NPP) were

acquired from the Ocean Productivity online facility of Oregon State University

(http://sites.science.oregonstate.edu/ocean.productivity/index.php). The Standard Vertical
Generalized Production Model (VGPM) dataset was used. This is a “chlorophyll-based” model
where NPP is a function of chlorophyll, available light, and photosynthetic efticiency. The NPP
monthly aggregation was obtained and processed to make spatial datasets at the same spatial
domain and pixels as the SST and nitrate concentration datasets. Monthly NPP data was also
processed to produce seasonal and annual metrics of mean, maximum and minimum NPP (see

Appendix S1: Table S1 for full list).

Seafloor terrain variables

We obtained spatial files of bathymetry data collected using multibeam sonar by the California
Seafloor Mapping Project (CSMP;

12
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https://www.usgs.gov/centers/pcmsc/science/california-seafloor-mapping-program). To include

information on substrate type (hard vs. soft) in the production of our models we also obtained
binary files (rock vs sediment) available at 2 x 2 m resolution (4 m?). These datasets are publicly
available for most of California with the exception of the northern Channel Islands (San Miguel,
Santa Rosa, Santa Cruz and Anacapa). We obtained the fine scale bathymetry for the northern
Channel Islands directly from NOAA. The mapped fine scale bathymetry of California is
missing or limited in shallow waters (referred to as the ‘white zone’; 50 m to S00m offshore)
where navigation hazards impede the access of seafloor mapping vessels and where multibeam
sonar is generally infeasible due to underwater hazards and/or dense kelp canopies. To extend the
bathymetry into the ‘white zone’ we interpolated the area between the mapped bathymetry and
the shoreline using a natural neighbor algorithm in ArcGIS 10.2 (ArcGIS 10.2, Esri Industries,
Redlands CA) (See Appendix S2 for interpolation details). To incorporate other characteristics of
substrate in our models, we used the bathymetry aggregated to a 900 m? grid (30 m x 30 m) to
calculate slope (using the ‘raster’ package) and vector roughness measure (VRM; spatialEco)
using R software (R Core Team 2022). Finally, we tested all bathymetry derivatives (depth,
probability of rock, slope and VRM) for spatial autocorrelation and found that bathymetry was
autocorrelated up to ~ 300 m, thus, all bathymetry files were aggregated to 300 m x 300 m
resolution (90,000 m?) by calculating the mean using the raster package in R (R Core Team

2022).

Zoospore availability and density

We created spatial layers that estimated annual giant kelp zoospore availability at any given 900

m? grid as a function of the maximum kelp canopy biomass each year and an empirical zoospore
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dispersal function. These layers were only estimated for giant kelp, since an equivalent dispersal
function for bull kelp does not yet exist. The framework to create annual spatial files of
maximum zoospore density per year required four steps: 1) Estimate giant kelp fecundity (cm? of
sorus area per m? of kelp biomass) from Landsat-derived kelp biomass using a nonlinear
relationship identified in previous work by Castorani et al. (2017); 2) estimate number of spores
released per fertile unit (cm? of sorus area per m* of kelp biomass); 3) estimate the dispersal
distances of spores for each pixel using a dispersal curve for giant kelp spores by Gaylord et al.
(2006), and construct a map of zoospore dispersal densities; and 4) filtering the maps of zoospore
density to areas with adequate substrate (rock). We repeated this procedure for every year we had
Landsat-derived canopy biomass data, resulting in a series of maps of number of zoospores per
900 m?. We then aggregated these data to a 90,000 m? grid (300 m x 300 m resolution) using the
sum of zoospore abundance (See Appendix S3 for detailed methods). Zoospore density data was
included in the giant kelp models as a lag effect variable, so that the zoospore density calculated

for year 1, was used as a predictor for kelp density in year 2.

Satellite- derived kelp abundance data

We used a remotely sensed time series of kelp canopy coverage (for bull kelp) and kelp canopy
biomass (for giant kelp) to compare with the regional kelp abundance dynamics reconstructed
from our kelp density models. Quarterly kelp canopy and biomass data for California from 1984
to 2022 were obtained from the Santa Barbara Coastal Long Term Ecological Research Program
(SBC LTER) (Bell et al. 2023a). From this dataset we extracted the maximum area (bull kelp;
North and Central regions) and biomass (giant kelp; Central and the two South regions) observed

in each year, which usually occurred in quarter two (April-June) or quarter three
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(July-September) to obtain the maximum area or biomass for each cell per year. The data is
available at 900 m? resolution which we then aggregated into 90,000 m? by summing the total
maximum canopy area or biomass and then we calculated the mean canopy among all pixels per
region, per year, to obtain a mean canopy estimate for each year, and region that we could

compare to the projections obtained from our regional kelp density models.

Spatio-temporal modeling of kelp density

Modelling framework

We modeled the density of each kelp species separately. The response variable for each model
was the mean density of kelp estimated from in situ SCUBA surveys. Independent variables
consisted of the environmental (e.g. temperature, nitrate, wave height, orbital velocity, NPP) and
ecological variables (sea urchin and zoospore density). We first tested the models for each
species in each of the regions to select the model with best predictive capacity. For bull kelp, we
tested the models separately for the Northern and Central regions and then tested a model for
both regions combined. For giant kelp we tested the models for the three regions containing giant
kelp separately (Central, South-west and South-east) and then tested a model combining Central
and South-west as previous studies indicate that these locations have similar species composition
(Hamilton et al. 2010, Claisse et al. 2018, Carr et al. 2021). We used generalized additive mixed
models (GAMs) (Wood 2006) to determine the best predictive relationship (i.e. deviance
explained) between giant and bull kelp density and the independent ecological and
environmental variables, and to identify the relative contribution of each independent variable in
contributing to the model. Models were run in the ‘mgcv’ package in R (Wood 2011) with a
tweedie distribution for the density of both species. The level of smoothing (number of basis ‘k’
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in smoothing functions) for each predictor variable was restricted to 4 to avoid overfitting. We
first assessed correlations between environmental variables using the training dataset and the
corrplot package (Wei and Simko 2021), and removed all predictors with correlations higher than
0.7 to reduce intensifying effects of correlated variables. Due to the large number of predictor
variables available, variable selection was first done by selecting a subset of metrics calculated
from each type of variable (i.e. SST, nutrients, NPP, waves, substrate) selecting the ones with
highest correlation with the dependent variable. Further variable selection was selection was
completed conducting a full-subset approach implemented in the package FSSgam (Fisher 2022)
which selected the best models (subset of predictors) based on performance and AIC. Prior to
running the models, data were split into training and evaluation sets (70% and 30% of the dataset
respectively). Final model selection was conducted with a 15-fold cross-validation approach and

the best model selected based on R? and deviance explained.

Spatial predictions of grazers

Density of purple sea urchins was the only biotic variable that was consistently selected in the
models of kelp density for all regions and for both kelp species. Since spatial data on urchin
densities were needed to recreate spatial maps of kelp density, we modeled the density of sea
urchins using the same framework and variables as described above for kelp. Urchin models
were tested separately in all four regions. Initial variable selection was done using the FSSgam
package and model selection by conducting a 15-fold cross-validation. Historical maps of urchin
densities were constructed by using the best models to predict in each region and for the years
we had environmental data for (2004-2021) (Appendix S4: Table S1 and Figures S1-S18).

Urchin density maps were created at the same 90,000 m? resolution as the kelp maps.
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Reconstruction of historical kelp densities and their correlation with satellite-derived data

We used the predict function within the ‘mgcv’ package in R software (Wood 2011) and the
historical spatial data of predictors selected in the best models for each region to create historical
maps of kelp density for each species and each year for which we had environmental data
(2004-2021) by projecting the density predictions over the study region (separately in each
region). All predictor variables were converted to 90,000 m? resolution (300 m x 300 m ) to
produce historical maps. This resolution was chosen based on the mean length of PISCO and
Reef Check survey sites used for this study and based on spatial autocorrelation of the
bathymetry data (depth and derivatives). Substrate and orbital velocity data that were at 30 m
resolution, were aggregated to 300 m by calculating the mean, while other environmental
variables which varied in spatial resolution from 1 to 5 km, were disaggregated using the ‘terra’
package in R (Hijmans 2022). The maps of kelp density produced with the best models were
processed by limiting the maximum kelp density to the maximum kelp observed for each species
from in situ surveys over the entire data series, and multiplied by the presence of rock in that
area so that if the probability of rock in a given pixel was zero, this would result in zero rock in

the produced maps.

Results

Predictors of spatial and temporal variation in bull kelp density

The density of bull kelp was best described by one model for both the North and Central regions
combined (Table 1, Figure 2a-2g) with a deviance explained of 63%, R* of 0.58 and the lowest

AIC (AIC =5098.27, Appendix 5: Table S1). The final model selected mean wave height,
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maximum orbital velocity, mean temperature during the upwelling season, mean density of
purple sea urchins, depth, mean annual NPP, and minimum annual nitrate concentrations to best

predict the density of bull kelp in California (Table 1, Figure 2a-2g).

The relationship between bull kelp density and mean wave height was positive asymptotic and
was the strongest contributor to the model (Figure 2a). Wave heights > 1.2 m were positively
correlated with bull kelp densities (relative importance = 1, P-value < 0.001, Figure 2a). The
relationship with orbital velocity was non-linear and negative when maximum orbital velocity
was higher than 5 m/s (relative importance = 1, P-value = 0.009, Figure 2b). Bull kelp density
was inversely related to the mean temperature during the upwelling season and the decline was
strongest across lower temperatures (relative importance = 1, P-value < 0.001, Figure 2c). The
relationship with purple sea urchin density was negative, but only at urchin densities greater than
2.5 (log individuals/60 m?,~ 0.18 individuals/m?) (relative importance = 1, P-value < 0.001,
Figure 2d). Mean depth had a negative linear relationship with bull kelp density, with a negative
effect at depths greater than 10 m (relative importance = 0.938, P-value < 0.001, Figure 2e).
Mean NPP also displayed a negative linear relationship with bull kelp, with a negative effect at
NPP higher than ~2,500 mg C m-2 d-1 (relative importance = 0.991, P-value < 0.001, Figure 2f).
Finally, minimum nitrate had a positive linear relationship in the density of bull kelp, with the
smallest magnitude of effect, with minimum nitrate values > 2.5 umol L-1 showing a positive

effect on bull kelp density (relative importance = 0.021, P-value = 0.07, Figure 2g).

Predictors of spatial and temporal variation in giant kelp density

The density of giant kelp was best predicted by two models with different geographic regions
combined. The first one, produced the best performance by combining the central and south-west
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regions into one model (from here referred to as central/south-west, deviance explained = 45%,
R? =0.59; Appendix 5: Table S2). The second model produced the best results for the south-east
region (deviance explained = 51%, R? = 0.62). One single model for both central, south-west and
south-east regions combined did not improve overall performance, and would have decreased the

deviance explained and R?, especially for the south-east coast (Appendix 5, Table S2).

The best models identified for giant kelp in the central/south-west and south-east regions shared
very similar predictors to each other with a few exceptions (Figure 2h-2w). Mean wave height
emerged as a more important predictor of giant kelp in the central/south-west region (relative
importance = 1, P-value < 0.001) than in the south-east coast (relative importance = 0.561,
P-value < 0.07) (Figure 2h and 2p). In the central/south-west region, there was a negative effect
of wave heights greater than 1 m (Figure 2h), while in the south-east coast mean wave heights
did not reach that magnitude and a small negative effect was displayed when wave height was
greater than approximately 0.65 m (Figure 2p). Maximum orbital velocity was important for
giant kelp density in the central/south-west region, showing a negative effect at values greater
than 4 m/s (relative importance = 0.689, P-value < 0.01, Figure 2i). The addition of maximum
orbital velocity to the south-east coast model did not improve the AIC and it was not included in
the final model for that region. Days above 21°C (log) for temperature was selected in both
models, however its importance was low compared to other predictors (relative importance of
0.081 and 0.225 and P-value of 0.06 and 0.18 for the central/south-west region and south-east
region models respectively), with a negative effect above ~ 2.5 log days above 21°C (Figure 2j

and 2q).
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Density of purple sea urchins showed a non-linear relationship and one of the largest effects on
giant kelp density in both regions, with a negative relationship at urchin densities higher than ~5
(log urchins/60 m?, ~ 2.5 individuals/m?) (relative importance = 1, P-value < 0.001, in both
regional models Figure 2k and 2r). Depth was also a significant predictor of giant kelp in both
models, showing a negative relationship at depths greater than 15 m however, the relationship
was stronger (greater slope) in the south-east (relative importance = 1, P-value < 0.001) than in
the central/south-west region (relative importance = 0.996, P-value < 0.001) (Figure 21 and 25s).
Mean NPP was another predictor selected in both regional models, however, its importance in
the central/south-west region (relative importance = 0.026, P-value = 0.71) was much lower than
in the south-east coast (relative importance = 0.654, P-value = 0.04) (Figure 2m and 2t), and
displayed a different relationship with giant kelp in both regions. In the central/south west
region, mean NPP showed a slight positive effect at NPP higher than 4000 mg C m™? d"' (Figure
2m) while in the south-east coast, it showed a negative linear relationship with kelp density with
negative effects at NPP higher than 2500 mg C m? d"' (Figure 2t). Different variables were
selected to describe the relationship between nutrients and giant kelp density for the
central/south-west region compared to the south-east region (Figure 2n and 2v). The
central/south-west model selected for days above 4 umol L' as the best nitrate predictor (relative
importance = 0.995, P-value < 0.001) and a non-linear relationship with kelp density, with a
positive effect when concentration of nitrate where above 4 pmol L' for more than 5 log days
(Figure 2n). On the other hand, the best model for the south-east region selected for the
maximum anomaly of nitrate concentration during the summer season, showing a negative linear
relationship and a negative effect after anomalies higher than log 0.25 umol L' (relative

importance = 0.722, P-value < 0.001, Figure 2v). Finally, abundance of zoospores in the previous
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year also had a large effect on giant kelp density in both regions, displaying a positive linear
relationship with kelp density at around 7.5 log spores/m? (relative importance = 1, P-value <

0.001, in both regional models Figure 20 and 2w).
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FIGURE 2. Drivers and trends of bull kelp density in north and central California (a-g), giant kelp in

central/south-west region (h-o0), and giant kelp in south-east region (p-w). Direction and magnitude of the
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predictors of best generalized additive models on kelp density in California. Shaded area indicates 95%

confidence interval.

TABLE 1. Summary statistics of predictive performance of the best GAMs describing drivers of kelp

density dynamics in California. Higuer r* and deviance explained indicate improved model fit.

Deviance
explained

Species Region Model r

N. luetkeana Northern Minimum nitrate + 0.58 |63.30%
and Central
mean temperature upwelling +
mean wave height +

max orbital velocity (log) +
mean NPP +

depth +

density of purple sea urchins (log)

M. pyrifera Central Days 4N (log) + 0.59 [45.03%
/South-west
maximum temperature anomaly +
mean wave height +

max orbital velocity (log) +

mean NPP +

depth +

density of purple sea urchins (log) +

Previous year spores (log)
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M. pyrifera South-east | Maximum nitrate summer anomaly (log) + | 0.62 | 51.44%
days 21C (log) +

mean wave height (log) +

mean NPP +

depth +

density of purple sea urchins (log) +

Previous year spores (log)

Reconstructed spatial dynamics of kelp density

Using the selected variables in each of the three best models described above, the density of kelp
was reconstructed for each year from 2004 to 2021. The effect of the NE Pacific MHW is well
captured by the models, which show the collapse in bull kelp populations from 2013 to 2014
(Appendix S5: Figure S3). After 2014, the reconstructed maps show the depletion of bull kelp
populations across the north region (Appendix S5: Figures S4-S5). The reconstructed maps also
show an increase in kelp densities in 2018 and from 2020 to 2021 (Appendix S5: Figures S4-S5),
where a large and widespread recovery of bull kelp populations was predicted but was not
observed by divers or was detected by remote sensing, indicating a mismatch between the drivers
of kelp density before and after the NE Pacific MHW. Yet, the estimated mean kelp densities
before the NE Pacific MHW (2004-2013) are visibly higher for the entire north coast region than

after the NE Pacific MHW (Figure 3).
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color coded corresponding to the mean predicted kelp density (log scale) across the years of each period
obtained from the best model for bull kelp and the two models for giant kelp (Appendix 5: Figures S1 and
S15). North region is depicting bull kelp density only since bull kelp is dominant in this region (top row),
central/south-west region is depicting density of giant kelp since kelp beds in this region are
predominantly dominated by this species (middle row), and the south-east region is depicting only

predicted mean densities of giant kelp (bottom row).

The reconstructed maps of predicted giant kelp density in the central/south-west regions show a
general decline in kelp density from 2013 to 2014 (Figure 3), particularly at the mainland sites,
while the decline in kelp density at the islands in that region becomes apparent only after 2016
with no significant recovery up to 2021 (Appendix 5: Figures S9-S10). A general decline in giant
kelp densities was projected after the NE Pacific MHW compared to mean kelp densities before

the NE Pacific MHW (2004-2013) (Figure 3).

The model for the south-east region showed a patchy distribution with fluctuations in kelp
densities between 2004 and 2015 (Appendix 5: Figures S11-S13) with no significant decline in
kelp densities observed in the region from 2013 to 2014 as was observed for bull kelp in the

north coast and giant kelp in the central/south-west coast (Figure 3).

A visible decline in kelp densities over the entire region was observed in 2016 potentially in
response to the NE Pacific MHW, however, in subsequent years an increase in kelp was observed
with similar fluctuations as observed previous to the NE Pacific MHW (Appendix 5: Figures
S13-S15). Mean kelp densities were slightly higher before than after the NE Pacific MHW, with
more evident declines observed north of San Clemente, in San Clemente Island and in the San

Diego region (Figure 3).
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Predicted kelp density vs satellite-derived kelp canopy abundance

Correlations between the mean annual kelp densities predicted from the best models with the
mean annual kelp canopy abundance (area for the bull kelp model or biomass for the giant kelp
models) derived from Landsat imagery were all positive and significant for each species and
region indicating that the interannual dynamics of kelp canopy were generally well captured by
the models (Figure 4). Mean annual bull kelp density in the north coast predicted by the models
generally followed the fluctuations of kelp area observed from Landsat imagery (r¢ = 0.66, p =
0.0026) (Figure 4a-4c). A large discrepancy between predicted bull kelp density and observed
kelp area in the north coast is evident in 2021 (Appendix 5: Figures S5), when predicted kelp
density is higher than the observed kelp area (Figure 4c) and in fact, when analyzed separately,
the high and significant correlation between predicted kelp density and observed kelp canopy
from Landsat pre-MHW (1, = 0.82, p = 0.0036, Figure 5a) becomes low and not significant after

the NE Pacific MHW (1, = 0.23, p = 0.58, Figure 5b).

Mean annual predicted giant kelp densities in the central/south-west region showed a general
trend of decline that began before the NE Pacific MHW and which is also observed in the
biomass derived from Landsat (Figure 4d-4f). The correlation between predicted kelp densities
and kelp area from Landsat was strongest for the giant kelp model in the central/south-west

region (16 = 0.72, p = 0.0081) (Figure 4f).

Finally, mean annual predicted giant kelp densities in the south-east region, showed fluctuations
in kelp density from year to year, with a slight trend of decline that was not associated with the
NE Pacific MHW conditions, as the years 2014 and 2015 were predicted to have had high kelp
densities (Figure 4g-41).
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FIGURE 4. Mean annual predicted kelp density (log) (a,d,g), mean annual kelp canopy abundance (area
or biomass) detected from Landsat (b, e, h) and correlation between these two (c, f, 1). For bull kelp in the
north coast (kelp canopy area in m? per 90,000 m?, top row), for giant kelp in the central/south-west
region (kelp canopy biomass in kg per 90,000 m?, middle row) and giant kelp in the south-east region
(kelp canopy biomass in kg per 90,000 m*, bottom row). Bars and points are the mean annual kelp

density, area or biomass over 90,000 m?* pixel per year for each region (+ standard error, for bars).

27


https://doi.org/10.1101/2024.06.25.600483
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.25.600483; this version posted June 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a 4000+ ° b
R=0.82, p=0.0038 900, R=0.52,p=0.18
30001
g g 8001
© ©
® 2000 i
i g 700
c c
© ©
| |
10001 6001
0 ' ' . ' 5OO-I | .
0.3 0.6 0.9 1.2 0.0 0.5 1.0
Predicted density (log) Predicted density (log)
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(in m?per 90,000 m?) detected from Landsat for bull kelp in the north coast before (a) and after (b) the NE
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90,000 m? pixel per year (+ standard error, for bars).

This is a discrepancy with the kelp biomass observed from Landsat where the years 2014 and
2015 showed some of the lowest biomass observed between 2004 and 2021 (Figure 4g-4h). The
mean annual kelp biomass in the south coast derived from Landsat shows large fluctuations from
year to year from 2004 to 2013 and lower fluctuations from 2014 to 2021 (Figure 4h). Lower
fluctuations in mean annual kelp densities were predicted from the model for the entire time
series, which resulted in this region having the weakest correlation between predicted kelp

density and kelp biomass (15 = 0.53, p = 0.023) (Figure 41).

Discussion

Kelp forests are dynamic ecosystems that naturally experience great variability across space and
time, yet, globally and in California, they have become increasingly threatened by multiple

stressors that are exacerbated by climate change (Krumhansl et al. 2016, Wernberg et al. 2016,
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Arafeh-Dalmau et al. 2021a). Indeed, many regions have lost all or much of their kelp forests
and are struggling with management and restoration decisions to stem further losses and/or
rebuild populations (Rogers-Bennett and Catton 2019, Butler et al. 2020, Hynes et al. 2021,
Miller et al. 2023). The first step to developing management actions to ensure the persistence of
kelp forest ecosystem functioning and services under a changing climate is to understand the key
environmental and ecological factors that shape both temporal and spatial patterns of abundance.
Kelps are unlike many terrestrial forest systems, being highly variable in time and space. Here
we have identified the key environmental and biological drivers of two dominant surface
canopy-forming kelp species (bull kelp and giant kelp) across the 1,350 km of coast of
California. The results from our models are robust as the drivers identified in this approach were
useful in reconstructing regional patterns of historical kelp density from remotely-sensed canopy
cover. However, we also identified important mismatches in the predicted dynamics resulting
from the two data sources, that arise from ecological processes (e.g. grazing by sea urchins)
which are not captured by remote sensing yet are critical to kelp population dynamics. The
results from this study highlight the importance of long-term in situ monitoring surveys of
complex ecosystems such as kelp forests (Magurran et al. 2010, Hughes et al. 2017), as well as
the role for remote sensing to fully understand population dynamics (Cavanaugh et al. 2021)

which are key for effective management of these species and the ecosystems they sustain.

Drivers of bull kelp distribution and dynamics

The best model we identified for bull kelp covered both the north and central coasts combined,
indicating that the drivers of bull kelp density were the same for the entire extent of its

distribution in the state of California. Increasing wave height had the largest effect on bull kelp
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density, as expected for a species that dominates exposed coastlines such as found in Northern
California (Springer et al. 2010, Carr and Reed 2016). In central California, bull kelp commonly
occurs in mixed beds with giant kelp where it thrives in the shallower areas that experience
breaking waves as evidenced by its higher density in areas with increased wave heights
compared to giant kelp (Springer et al. 2010). Higher water motion, brought on by waves may
aid in the uptake of nutrients and carbon (Koehl and Alberte 1988, Hurd 2000), increase
irradiance by pushing the fronds in different directions (Koehl and Alberte 1988), and enhance
blade production (Breitkreutz et al. 2022). However, an upper threshold of water motion for bull
kelp appeared to be reached at maximum orbital velocities higher than ~ 5 m/s, beyond which
density was reduced, likely the result of the ripping of kelp stipes from increased drag in high

flow speeds (Johnson and Koehl 1994).

Bull kelp inhabits areas of significant coastal upwelling, which delivers cold and nutrient-rich
water to coastal areas (Springer et al. 2010). The optimal growing temperature for adult and early
life stages of bull kelp in Canada has shown to be ~ 11.9°C with an upper thermal limit between
18°C and 20°C (Supratya et al. 2020). For California we found, similarly, that bull kelp density
increased at mean upwelling season temperatures lower than 12°C. Sea surface temperature
during the upwelling season is negatively associated with nutrient availability, indicating that
nutrient limitation during this time is usually what drives the interannual dynamics of bull kelp
(McPherson et al. 2021, Garcia-Reyes et al. 2022). Further evidence for the importance of
nutrient limitation to bull kelp dynamics was the positive relationship between bull kelp density
and minimum annual nitrate which indicated that the higher the nitrate concentration from the

physiological thresholds of bull kelp, the better it does in general.

30


https://paperpile.com/c/JrlXSw/yT27X+Ct9S
https://paperpile.com/c/JrlXSw/Ct9S
https://paperpile.com/c/JrlXSw/8X2yG+5akRq
https://paperpile.com/c/JrlXSw/5akRq
https://paperpile.com/c/JrlXSw/5RrU2
https://paperpile.com/c/JrlXSw/kYc5c
https://paperpile.com/c/JrlXSw/Ct9S
https://paperpile.com/c/JrlXSw/ITHWY
https://paperpile.com/c/JrlXSw/YauBw+qb1w
https://doi.org/10.1101/2024.06.25.600483
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.25.600483; this version posted June 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Increasing SST and lower nutrient levels combined with an increase in herbivory levels have
been shown to be important drivers in the collapse of bull kelp populations after the NE Pacific
MHW (McPherson et al. 2021). Densities of purple sea urchins spiked after the NE Pacific
MHW, potentially due to the combination of a lack of top-down control of sunflower sea stars on
herbivorous sea urchins (McPherson et al. 2021) and anomalously high settlement of sea urchins
around the Fort Bragg region between 2013 and 2015 resulting in high recruitment (Okamoto et
al. 2020). Densities of bull kelp did not show a response at low urchin densities, but declined
dramatically at urchin densities greater than ~ 4.5 log urchins per 60 m? transect (equivalent to
about 1.5 urchins/m?). This parallels previous findings that show urchin densities of about 0.1 to
1.7 urchins/m? before 2013, which increased up to 60 fold during the NE Pacific MHW and
persisted through the collapse of bull kelp coverage in northern California (Rogers-Bennett and
Catton 2019). Importantly, after the NE Pacific MHW, our model predicted a recovery of bull
kelp in 2018 and 2021, when our models predicted a decline in urchin populations and favorable
abiotic conditions for kelp had returned. However, this predicted recovery of bull kelp
abundances was not evident in satellite imagery or in situ diver surveys in the region (Cavanaugh
et al. 2023). This result may be evidence of hysteresis in the system driven by sea urchin

overgrazing (Filbee-Dexter and Scheibling 2014).

Net primary productivity was another factor associated with bull kelp density dynamics. High
values of NPP may indicate that kelp is competing for nutrients and light with phytoplankton in
the water column (Kavanaugh et al. 2009), explaining why NPP values higher than 2,500 mg C
m d!' resulted in a decline in bull kelp. Evidence of competition for nutrients at large spatial

scales has been shown in other kelps, especially during high-nutrient conditions driven by
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interannual climatic oscillations (Dayton et al. 1999). Densities of bull kelp declined linearly
with depth likely due to light attenuation (Goldberg and Kendrick 2004). In bull kelp, light is the
most important factor in the development of gametophytes and sporophytes, and allows
sporophytes to reach sexual maturity (Vadas 1972). We also found that grazers like sea urchins
were less abundant in shallower areas, potentially due to higher wave energy in shallow areas
(Duggins et al. 2001). The combination of higher light levels and lower grazer density potentially

creates an optimum environment in the shallows for bull kelp to thrive.

Drivers of giant kelp distribution and dynamics

Unlike bull kelp, two models were required to best describe the distribution of giant kelp in
California and were generally consistent with different oceanographic conditions between the
central and southern coasts. These domains are not defined by the typical biogeographic limit of
Point Conception (Blanchette et al. 2008, Hamilton et al. 2010, Claisse et al. 2018), but rather by
an approximate midpoint in Santa Barbara Channel, which has been shown to be the limit
between a system with more nutrient availability and lower sea surface temperatures driven by
upwelling conditions to the west of the Santa Barbara Channel, including Santa Rosa and San
Miguel islands (Broitman et al. 2005, Hamilton et al. 2010, Gosnell et al. 2014, Claisse et al.

2018).

Large waves are one of the most important causes of giant kelp mortality in California (Dayton
et al. 1984, Reed and Foster 1984) and wave height was an important driver of kelp density in
our models, but the effect was different in the two regions. In the central/southwest coast, which
naturally experiences larger waves than the south-east coast (Reed et al. 2011), kelp density was
resilient to mean annual wave heights up to approximately 1 m, while in the south coast, kelp
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density was the highest at lower wave heights of approximately 0.75 m. This regional difference
in wave disturbance has been shown to determine giant kelp net primary productivity in
California (Reed et al. 2011, Castorani et al. 2022). Stronger and more frequent wave events in
the central/southwest coast may explain why orbital velocity was a significant factor negatively
correlated with kelp density in that region but not in the calmer, south coast. In shallow waters,
the horizontal motion of a wave may be up to 5 times greater than the wave height, creating drag
forces which, when strong enough, break stipes or remove holdfasts (Seymour et al. 1989).
Previous studies in central California have found wave orbital velocity to be the most frequent
disturbance responsible for tearing out plants (Graham 1997) and giant kelp in the region can
occur across a range of wave orbital velocities but is most abundant in a moderate wave

environment (~ 0.86 m/s) (Young et al. 2016).

The nutrient environment varies widely along the distribution of giant kelp in California, which
covers approximately 10 degrees of latitude. Central California generally has a more stable and
consistent nutrient supply through upwelling due to the exposed coastline and narrow continental
shelf than the south coast (Huyer 1983, Zimmerman and Kremer 1984). Here, we add empirical
evidence suggesting that kelp populations are adapted to local nutrient conditions, a process
which has been observed in a number of marine species (Sanford and Kelly 2011, Howells et al.
2011, Bennett et al. 2015). Interestingly, in central/south-west California, kelp density was
positively related to the number of days above 4 umol L' while in the south coast, the maximum
nitrate anomaly during the summer season was the more important predictor, and was negatively
associated with kelp growth. Positive growth of giant kelp in southern populations has been

shown to occur at extremely low nitrate concentrations (less than 1 pmol L"), while in central
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California a positive effect on giant kelp biomass is only visible past the 4 umol L™ (Kopczak et
al. 1991). During the summer, declines in giant kelp are usually related to the reduction in
nutrient availability (Jackson 1977, Gerard 1982, North and Zimmerman 1984), with the
principal nutrient source during summer and fall through internal wave propagation (Zimmerman
and Kremer 1984). The negative relationship between maximum nitrate anomaly in the summer
months and kelp density that we found in the south coast is hence, unexpected. This may be
explained by low rates of frond production during summer, which may not be able to keep up
with natural frond loss (Zimmerman and Robertson 1985). Previous work has found that frond
dynamics are better explained by intrinsic biological processes, such as frond age, rather than
external environmental conditions (Rodriguez et al. 2013), indicating that kelp senescence,
which in southern California occurs in summer, can overpower external environmental

conditions (Bell and Siegel 2021).

As with nutrient availability, there is also evidence of adaptation to thermal stress in the
microscopic reproductive stages of giant kelp (Ladah and Zertuche-Gonzalez 2007). A strong
inverse relationship between SST and nitrate availability is known to exist in California
(Zimmerman and Robertson 1985) with warm sea temperatures typically associated with reduced
upwelling and nutrient limited conditions. Although the number of days above 21°C was
selected as an important driver for kelp density in central and southern California, we found it
had a small effect in both regions. Previous studies have also found SST metrics not to be
significantly related to the resilience of giant kelp to warming events (Cavanaugh et al. 2019),
indicating that nutrients and other local processes are more determinant at driving kelp

populations than temperature, both in central and southern California. We also found NPP to be
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an important factor explaining kelp density, with a small negative effect on kelp density overall.
Net primary productivity (NPP) can indicate the levels of plankton abundance and extensive
blooms of phytoplankton can reduce light intensity (Kavanaugh et al. 2009) especially during
upwelling periods (Strub and Powell 1987) when kelp is uptaking nutrients and growing. This
could result in competition for both light and nutrients between phytoplankton and the kelp
recruits, explaining the negative effect of increasing NPP. Competition for nutrients between
giant kelp and other species has been has been shown to be more noticeable in shallow depths
and during large-scale low frequency events that drive nutrient-rich conditions (such as La Nifia),
as these drive surface nutrient availability and have long-term influence on the surface canopy of

giant kelp (Dayton et al. 1999).

Both the density and foraging behavior of grazers have been shown to be an important factor
determining the distribution and biomass density of kelp beds (Johnson et al. 2011, Filbee-Dexter
and Scheibling 2014, Bell et al. 2015, Young et al. 2023). Similar to studies in other regions
(Filbee-Dexter and Scheibling 2014, Balemi and Shears 2023, Ling and Keane 2024) we found
that giant kelp declined in both central/south-west and south-east regions of California when
densities of sea urchins exceeded approximately 2.5 urchins/m? (5 log urchins per 60 m?
transect). However, a previous study of giant kelp abundance in the central coast of California
identified some sites with a positive relationship between urchins and kelp (Bell et al. 2015).
Indeed, under some circumstances, high density of giant kelp can co-exist with high densities of
grazers (Karatayev et al. 2021, Randell et al. 2022, Rennick et al. 2022). However, this was not
the case for giant kelp in central and northern California following the NE Pacific MHW, where

urchins increased dramatically to previously undocumented levels (Rogers-Bennett and Catton
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2019). This increase in grazing combined with increased physiological stress in the kelp caused
by high SST and low nutrient levels may explain the post-MHW decline in giant kelp, which
although not as dramatic as for bull kelp in the north coast, was more evident in the

central/south-west, than the south-east region.

Demographic connectivity is key to the persistence of kelp metapopulations, however, it is
highly variable due to spore supply and dispersal (Hanski 1998, Castorani et al. 2015). Previous
findings in southern California found that temporal variation in fecundity (i.e. spore supply) had
a larger effect on the persistence and recovery of giant kelp beds than variation in the physical
transport of spores (Castorani et al. 2017). Here, we used a spore supply metric that accounted
for annual variation based on the maximum kelp biomass from the previous year (a proxy for
spore production) and found that it was one of the most important drivers of giant kelp density in
both regions. While this might also be the case for bull kelp, we currently do not have a
relationship between adult biomass and spore production, or dispersal information for that

species.

Depth is known to be one of the most important factors affecting kelp growth and recruitment as
it is correlated with light availability (Gerard 1984). Our models found that giant kelp densities
declined below depths of 15 m in both regions, with a stronger negative effect in the south-east
coast. In addition to depth, light attenuation beneath the kelp canopy can be reduced up to 99% at
20 m of depth (Dean 1985). Such low irradiances may reduce kelp density by limiting
recruitment, as microscopic stages of kelp have high light requirements and are vulnerable to

intraspecific competition through shading (Stewart et al. 2009).

Comparison with Landsat observations
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Our comparison of the regional model predictions of in sifu kelp density with canopy cover
estimated from Landsat indicated that dynamics from the two sources match quite well for both
kelp species. Thus, the kelp dynamics model performed well in predicting the dynamics of forest
density of both canopy-forming species and provided confidence in spatially projecting forest
stability of both kelps throughout their California ranges. But the comparison also revealed a
critically important limitation of the model. The bull kelp density dynamics model predicted the
recovery of forests in the years following the NE Pacific MHW whereas Landsat did not detect a
recovery. This mismatch is likely due to a hysteresis effect that the modeling approach did not
capture, where abundances of kelp did not track abundances of urchins after the MHW as they
did before the MHW. Persistent overgrazing of macroalgae by urchins has been known to shift
algal ecosystems into an alternative stable state from which it is challenging to recover because
although high urchin densities are required to overgraze kelp, much lower densities are required
to maintain the deforested, urchin barren state (Filbee-Dexter and Scheibling 2014, Ling et al.
2019). One study found that the biomass of urchins required to tip a kelp forest into a barren
state is one order of magnitude higher than that required to maintain the urchin barrens state
(Ling et al. 2015). As such, the ecosystem shift into this alternative state can be difficult to
reverse, even when abiotic conditions are conducive for forest recovery, and such change in
ecological relationships is not adequately captured by the model. In the case of northern
California, further analyses of urchin densities from in sifu surveys are required to confirm such
change in the kelp-urchin relationship, once more reinforcing the necessity to couple in situ and
remote sensing monitoring data to inform the interpretation of ecological processes in modeling

results.
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Implication for understanding future disturbances and management of kelp forests

Identifying the biotic and abiotic factors that drive spatial and temporal variation in abundance
and condition of foundation species is key for successful management of biodiversity under a
changing climate. Our kelp density models quantified the functional relationships between
various environmental and ecological drivers and kelp. These models explained and predicted
spatial and temporal variation in the two kelp species quite well across markedly different
geographic regions. However, the bull kelp model failed to predict the persistence of a deforested
state as abiotic conditions were favorable for kelp. In this case, ecological interactions such as
overgrazing by sea urchins, superseded the ability of kelps to naturally recover. This result
reinforces the importance of coupling multiple sources of data, including in situ and remotely
sensed, to predict future dynamics. It also highlights the need to develop models that incorporate
shifts in ecological interactions, such as that between urchins and kelp (e.g., (Karatayev et al.
2021, Arroyo-Esquivel et al. 2023). While we expect that the environmental drivers identified in
this study will vary in strength and spatial distribution with future climate change, we also
assume that the functional relationships between kelp growth or loss and those drivers will
remain constant in the near future (years to decades). If the assumption holds, then the models
created here, when coupled with knowledge or predictions of urchin densities and projections of
environmental variables, should accurately reproduce kelp dynamics across the state for the
upcoming years, and can be used to predict the dynamics of kelp into the future. However, if the
fundamental nature of the relationships changes with climate change, then those relationships
will need to be explored with experiments, and new models will need to be developed. How

might the relationship between the drivers of kelp dynamics as we know them now, change in the
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future? Nutrients and temperature are important to primary producers, all of which possess
specific photosynthetic temperature response curves that define an optimal temperature for
photosynthesis and critical temperature thresholds. These are known for California kelps
(Zimmerman and Kremer 1984, Bell et al. 2015, Cavanaugh et al. 2019) but as sea temperature
increases local adaptation could change the response curves and the thresholds. Changes in the
spatial distribution of various ecotypes of kelp through movement (passive or assisted) could
also change these relationships. Similarly, interventions to assist the recovery of kelp forests,
may accelerate local adaptation and alter the response to environmental variables found here, so
as to contribute towards more resilient or resistant populations that can withstand contemporary

and future environmental conditions.

As we and others have demonstrated (Bell et al. 2015, Cavanaugh et al. 2019, McPherson et al.
2021), kelp forests are dynamic systems that can respond rapidly to fluctuating environmental
drivers. Much of our understanding of the dynamic relationships between these oscillations and
kelp dynamics is due to the availability of multidecadal time series of kelp canopy from remotely
sensed imagery (Bell et al. 2023b) and increasingly from in situ long-term monitoring of kelp
forests. The in situ diver surveys from long-term monitoring programs in California provided key
data that enabled the model construction of kelp and urchin densities, and identification of
ecological processes (i.e. grazing) that contribute to their temporal and spatial patterns of
abundance in the study region. The co-located and simultaneous sampling of kelp and urchin
densities was key to capture the covariation of urchin and kelp densities and incorporated that
covariance into the species distribution models (GAMs). These models revealed the important

inverse relationships between purple urchin density with either kelp species. Furthermore, our
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analyses allowed for an independent assessment of the drivers of kelp dynamics, and the
important drivers were similar to those identified using Landsat data from previous studies (Bell

et al. 2015), providing added confidence in both methods.

Conclusion

Understanding how biotic and abiotic factors contribute to the temporal variation in the
abundance of foundation species is a major focus of ecology and biogeography and is key to
understanding biodiversity in a changing climate. Our results demonstrate the benefits of
combining long-term in situ monitoring data that provides information about species interactions
(not yet obtainable through remote sensing) with remote sensing datasets to interpret population
modelling results. Using both in situ and remote sensing data to understand the dynamics of
surface canopy kelps allowed for the recognition of a tipping point in the system and validate the
robustness of the model outputs. The maps produced from these robust models provide valuable
information for managers and stakeholders about the locations that are more likely to support
healthy kelp ecosystems and the functional relationships identified, form a basis for future
focused on the future spatio-temporal dynamics of kelp forests under a changing climate

(Giraldo-Ospina et al. 2023a).
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