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Summary 
 
Genetically identical cells can respond heterogeneously to cancer therapy, with a 
subpopulation of cells often entering a temporarily arrested treatment-tolerant state 
before repopulating the tumor. To investigate how heterogeneity in the cell cycle arrest 
protein p21 arises, we imaged the dynamics of p21 transcription and protein expression 
along with those of p53, its transcriptional regulator, in single cells using live cell 
fluorescence microscopy. Surprisingly, we found that the rate of p21 transcription 
depends on the change in p53 rather than its absolute level. Through combined 
theoretical and experimental modeling, we determined that p21 transcription is 
governed by an incoherent feedforward loop mediated by MDM2. This network 
architecture facilitates rapid induction of p21 expression and variability in p21 
transcription. Abrogating the feedforward loop overcomes rapid S-phase p21 
degradation, with cells transitioning into a quiescent state that transcriptionally 
resembles a treatment-tolerant persister state. Our findings have important implications 
for therapeutic strategies based on activating p53. 
 
 
 
Introduction 
 
Genetically identical populations of cells often exhibit heterogeneous fates in response 
to the same environmental exposures. Such non-genetic variability in cell fates 
represents a major challenge for cancer therapy aiming to eliminate all tumor cells, 
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facilitating the survival of some cells in an otherwise treatment-sensitive population1. 
This non-genetic resistance can occur through a subpopulation of cells transiently 
entering a cell cycle-arrested state, during which they are able to tolerate therapies that 
target rapidly proliferating cells2–5, including radiation and chemotherapy, before re-
entering a proliferative state to repopulate the tumor. So-called cancer “persister” cells 
are now increasingly thought to be a substantial source of treatment failures in oncology 
and, hence, there is a pressing need to develop novel treatment approaches to 
overcome this form of resistance. To realize these new therapeutic strategies, an 
improved understanding of non-genetic resistance mechanisms is required. Knowledge 
of mechanisms underlying variability in cell cycle phase transitions could also inform 
approaches to protect normal cells from anti-cancer therapies and reduce treatment 
side effects. 
 
Previous work has shown that variability in cell fates can be explained by variability in 
the dynamics of transcription factors regulating fate-determining genes. Different stimuli 
can give rise to differences in the dynamics of the same transcription factor and result in 
divergent cell fates. For example, the levels of p53, a key transcription factor regulating 
the response to DNA damage, oscillate in response to ionizing radiation (IR) cells, but 
exhibit a sustained increase in response to ultraviolet (UV) radiation6. These different 
patterns of p53 expression dynamics are associated with different fates: senescence 
and apoptosis, respectively. However, even when cells are exposed to the same 
treatment and exhibit the same broad patterns of transcription factor dynamics, subtle 
variability in those dynamics can explain cell fate variability. Such subtle non-genetic 
intercellular heterogeneity in the dynamics of p53 can explain whether cells die or 
survive following treatment with cisplatin chemotherapy7.  
 
Cell cycle arrest is primarily controlled by the cyclin-dependent kinase inhibitor, 
CDKN1A (p21), which is transcriptionally activated by p53 in response to DNA 
damage8–12. Entry and exit of cell cycle arrest is controlled by a bistable switch created 
by double negative feedback between p21 and CDK213,14. Noise in p53 protein levels 
propagates to p21 protein levels and plays a role in cell fate heterogeneity, in particular 
the ability of cells to enter and escape from cell cycle arrest13,15,16. 
 
Given the importance of p21 expression dynamics in cell fate determination and 
heterogeneity in p21 dynamics on non-genetic variability in treatment response17, we 
sought to quantitatively characterize p21 expression dynamics through integrating 
single cell timelapse fluorescence microscopy of p21 and p53 and mathematical 
modeling of the regulation of and noise propagation through this circuit. 
 
 
Results 
 
Transcription of p21 is dependent on the change in p53 rather than its absolute 
level 
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To quantitatively characterize p53-dependent p21 expression, we used a recently 
developed experimental system to study the dynamics of the p53 and p21 proteins 
(using fluorescent reporters p53-CFP and p21-mCherry) together with the dynamics of 
p21 transcription (using the MS2 system) in single MCF-7 breast cancer epithelial 
cells18. We treated cells with IR (a single dose of either 10 Gy, 5 Gy or 2.5 Gy) and 
imaged them with time-lapse microscopy for approximately 2 days. As previously 
described19, p53 protein levels oscillated, with a period of approximately 5.5 h, in 
response to IR (Figures 1A and S1A). The p53 oscillations resulted in bursts of p21 
transcription (Figures 1B and S1B) and p21 protein accumulation (Figures 1C and 
S1C). 
 
When visualizing the dynamics of p53 and p21 transcription simultaneously in single 
cells, we observed that p21 transcription occurred only at the times corresponding to the 
peaks of the p53 oscillations (Figures S1D-G). This observation suggested that p21 
transcriptional output is dependent on the change in p53 rather than its absolute 
concentration. However, longer-term trends of increasing and decreasing p53, which 
are present in the signal, may represent technical artifacts, rather than true p53 
dynamics, confounding the interpretation. Therefore, before quantitatively investigating 
p53-dependent p21 transcription, we detrended the raw p53 dynamics data (Figures 1D 
and S1H-I) to minimize these trends. 
 
To formally test the hypothesis that p21 transcription is dependent on the change in 
p53, we developed two different statistical models that predict p21 transcription based 
on p53 protein expression: one based on the absolute level of p53 (Figure 1D) and a 
second based on the change in p53 level (Figure 1E). To infer when the p21 gene was 
in the “ON” and “OFF” states, we fit a two-state hidden Markov model to the p21-MS2 
time course data for each cell, estimating for each time point whether the gene is in the 
“ON” or “OFF” state (Figure 1F). We then fit logistic regression models of the inferred 
p21 gene state based on either the absolute (detrended) p53 level (Figure 1G), or the 
change in (detrended) p53 level (Figure 1H). We subsequently compared the predictive 
performance of the models for each cell, as assessed by the area under the receiver 
operating characteristic curve (AUC). We found that while the model based on the 
absolute p53 levels were able to partially predict p21 transcription (mean AUC = 0.63), 
the model based on the change in p53 was substantially superior (mean AUC = 0.82; 
(Figure 1I; p < 2.2E-16, paired Wilcoxon test). We repeated this analysis using data 
from an additional experiment employing the same reporter system, but a shorter time 
course of 15 h and a higher temporal resolution of 2 minutes18, to minimize the 
increasing and decreasing p53 trends apparent in the original experiment. Again, p21 
transcription was significantly better predicted by the change in p53 (mean AUC = 0.87) 
than the absolute p53 level (mean AUC = 0.66; Figure S1H; p < 2.2E-16, paired t-test). 
This finding suggests that p21 transcription is not solely dependent on p53 
concentration, but is instead under the control of a more complex regulatory mechanism 
capable of parsing the change in p53 expression. 
 
Transcription of p21 is governed by an incoherent feedforward loop that enables 
p53 change detection 
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We next investigated how the change in p53 could be parsed by the p21 promoter. 
Change detection cannot be achieved by a two-node network, such as a network 
consisting of only a p53 node and a p21 node; instead, the simplest gene network 
capable of change detection is a three-node network. An incoherent type-1 feedforward 
loop (IFFL) is a 3-node network that facilitates fold-change detection in other 
transcriptional systems, including NF-�B20 and TGF-�21. We observed that p21 
transcription displayed an ultrasensitive response, i.e. a rapid switching on and off of 
p21 transcriptional bursting as opposed to a gradual “ramp up” and “ramp down” 
(Figures 1B, S1E, S1G). This behavior suggests that the transcription of p21 is 
governed by a molecular titration mechanism, whereby p21 is transcribed when the 
concentration of p53 is above that of a negative regulator of p21 transcription. As IFFLs 
are capable of molecular titration and have previously been identified in gene regulation, 
we focused on this motif as a potential alternative mechanism of p21 transcription to 
simple positive regulation (PR) by p53. 
 
To formally compare alternative mechanisms of p21 transcription, namely PR and IFFL, 
we constructed stochastic mathematical models of each (Figures 2A-B; Materials and 
Methods). For these models we did not commit to an explicit functional form to describe 
the p53 dynamics to minimize the number of assumptions; instead, we used the p53 
data as input into the models. We simulated p21 transcription dynamics from our two 
stochastic models for each single cell in our data using the Gillespie stochastic 
simulation algorithm (Figures 2C-D) and compared the model simulations to our data by 
computing the p21-MS2 autocorrelation function (Figures 2E-F) and the p53 - p21-MS2 
cross-correlation function (Figures 2G-H). This approach takes advantage of the fact 
that our experimental data captures the transcription factor and transcription dynamics 
over time in the same single cells. We fit both models to our experimental 
measurements using approximate Bayesian computation-based inference, repeating 
the stochastic simulations for all cells for 5,000 combinations of different parameter 
values, to determine which model could best explain the data (Materials and Methods). 
We found that none of the correlation functions generated by the PR model simulations 
were able to match the correlation functions in the data from the long (Figures 2I-J, 
S2A-B and S2E-F) or short time course experiments (Figures S2I-J), whereas the IFFL 
model recapitulated these correlation functions well (Figures 2K-L, S2C-D and S2G-H). 
Our Bayesian model selection procedure indicated that the IFFL model provided the 
best fit to the data for all the dose levels and datasets (posterior probability of the IFFL 
model and not the PR model = 1.0, 1.0, 0.98 and 1.0 for the 10 Gy, 5 Gy, 2.5 Gy long 
time course datasets and short time course dataset, respectively). Thus, our combined 
experimental and theoretical modeling approach suggests that transcription of p21 is 
not governed by simple PR by p53, but instead by an IFFL involving p53 and an 
additional transcriptional repressor. 
 
The p53-MDM2 interaction is necessary for transcriptional repression of p21 
 
We next attempted to identify the repressor of p21 transcription, representing the third 
node in the IFFL. We reasoned that the transcriptional repressor should fulfil several 
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criteria: (1) it should be a transcriptional target of p53; (2) it should bind to a regulatory 
region of the CDKN1A gene (either directly or indirectly) and (3) it should have 
dynamics similar to those predicted by our computational model. Based on fulfilling 
these criteria, in addition to the fact that MDM2 has previously been shown to perform a 
role in transcriptional repression of p53 target genes22–27, including p2125, we predicted 
that MDM2 is the transcriptional repressor. We then leveraged our theoretical model to 
design and analyze an experiment to test this prediction. 
 
Our theoretical model predicts that inhibiting the activity of the repressor would result in 
the p21 transcription rate being dependent on the absolute abundance of p53 rather 
than the change in p53 concentration. Given that MDM2 is recruited to genes through 
binding to p5327, we reasoned that its predicted transcriptional repressor activity could 
be inhibited by pharmacologically blocking its binding to p53. To test our model 
prediction, we performed a validation experiment in which we treated cells with 10 Gy IR 
alone or in combination with 10 �M nutlin-3a (IR + nutlin-3a), a drug that inhibits the 
binding of MDM2 to p5328, and imaged the dynamics of p53 and p21 expression by 
time-lapse microscopy (Figure S3A-C). As described above, we compared the PR and 
IFFL model fits to the data by simulation and approximate Bayesian computation. We 
found that in the IR treated cells the PR model did not fit the data well (Figures 3A-B), 
whereas the IFFL model did (Figures 3C-D): the Bayesian model selection procedure 
strongly favored the IFFL model with a posterior probability of the IFFL model (and not 
the PR model) of 1.0. However, for the cells treated with IR + nutlin-3a, the PR model 
described the data similarly to the IFFL model (Figures 3E-H) and the posterior 
probability for the IFFL model was substantially reduced to 0.70. Note that the IFFL 
model reduces to the PR model when the level of the repressor or its effect are set to 0, 
which likely explains the preference for this model, although to a much lesser extent, 
even when the PR model can recapitulate the correlation functions in the data. This 
observation validates our model prediction. 
 
To further interrogate our proposed mechanism of p21 regulation, we returned to our 
statistical models of p21 transcription. We found that, for the cells treated with IR alone, 
the model based on the change in p53 was substantially superior (mean AUC = 0.82) to 
the one based on absolute level of p53 (mean AUC = 0.64), as before (Figure 3I; p < 
2.2E-16, paired Wilcoxon test). However, for the cells treated with IR + nutlin-3a, the 
reverse was true (Figure 3J; p53 level: mean AUC = 0.77; p53 change: mean AUC = 
0.63; p < 2.2E-16, paired Wilcoxon test). This observation provides further support for 
our proposed mechanism that the p53-MDM2 interaction is necessary for the 
transcriptional repression of p21. 
 
The incoherent feedforward loop may confer beneficial functionality 
 
We then sought to elucidate the functional consequences of p21 transcription being 
governed by an IFFL. Previous theoretical29 and experimental30 studies have proposed 
that the type-1 IFFL increases the response rate of the transcriptional target gene. The 
capability to rapidly enact cell cycle arrest upon detection of DNA damage would very 
likely be advantageous to cells. We, therefore, investigated whether this scenario was 
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the case for p21. Experimentally manipulating a system to test the effects of a specific 
regulatory interaction in isolation, without affecting other properties of the system such 
as steady state levels, is extremely challenging. However, such a controlled comparison 
can be achieved using mathematical modeling31. We thus employed mathematical 
modeling to investigate the effects of the IFFL on the p21 response rate. To this end, we 
modeled the dynamics of p53-dependent p21 protein expression with p21 production 
governed either by PR or an IFFL (Materials and Methods). We selected the p21 
production rates for the two models such that the “pseudo-steady state” levels of p21, 
i.e. where the time-averaged p21 level remains constant and does not continue to 
increase with additional p53 pulses, were approximately equal for both models. Using 
these models, we found that the time taken for p21 protein expression to reach half the 
value of its pseudo-steady state level for the PR model was approximately 15 h (Figure 
4A) while the corresponding time for the IFFL model was 5 h (Figure 4B). The higher 
p21 induction rate for the IFFL model is due to the production rate of p21 being higher 
than for the PR model during the time taken for the levels of the repressor to 
accumulate. This observation suggests that the IFFL indeed increases the rate of p21 
induction, which would facilitate rapid cell cycle arrest following DNA damage. 
 
It has also been proposed that the type-1 IFFL generates a large extent of noise32, 
which  would facilitate cells to enact “bet hedging”, a strategy to minimize the risk of 
population extinction. Consistent with that pattern, p21 has been observed to exhibit 
substantial heterogeneity in unstressed conditions, reminiscent of bet hedging14. 
Comparing the p21-MS2 noise between cells treated with IR and cells treated with IR + 
nutlin-3a revealed that inhibiting the p53-MDM2 interaction significantly decreased noise 
in p21 transcription, when noise was measured by either the Fano factor (standard 
deviation squared/mean) (Figure 4C) or the coefficient of variation (standard 
deviation/mean) (Figure S4A). This finding suggests that the IFFL increases p21 noise. 
However, given that nutlin-3a increases p53 protein stability and reduces p53 protein 
noise (Figure S4B) the reduction in p21-MS2 noise upon addition of nutlin-3a to IR may 
be solely due to effects on p53 noise and not the IFFL. We, therefore, compared the 
ratio of the p21-MS2 noise to the p53 noise and found that the p21-MS2 to p53 protein 
noise ratio was higher in cells treated with IR than when the IFFL is abrogated through 
treatment with nutlin-3a when measuring noise using either the Fano factor (Figure 4D) 
or coefficient of variation (Figure S4C). Both the p21-MS2 noise and p21-MS2 to p53 
protein noise ratio were consistent between IR treated cells in the experiments (Figure 
S4D-E). This observation suggests that MDM2-mediated transcriptional repression of 
p21 enhances p21 transcriptional noise. 
 
Another potential property of IFFLs is that they enable the transmission of multiple 
signals in the dynamics of a single transcription factor, known as “signal 
multiplexing”33,34, when integrated into a larger network. The dynamics of a single 
transcription factor could simultaneously encode two signals: one encoded in its 
absolute level and the other in the change in its level. Target genes whose transcription 
is governed by PR would decode the signal encoded in the absolute level and those 
whose transcription is governed by an IFFL would decode the change in transcription 
factor level. If multiple signals were indeed encoded in p53 dynamics, then we would 
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expect that to decode these signals some p53 transcriptional target genes would be 
regulated by PR and others by IFFL. To test this hypothesis, we performed a new, 
mathematical model-based analysis of previously published RNA-seq time course data 
of p53 transcriptional target genes35. Our modelling approach was based on 
distinguishing between differences in mRNA expression of p53 target genes following 
treatment with IR and IR + nutlin-3a that were due to differences in p53 levels alone and 
increases in expression greater than what would be expected based on increased p53 
level alone (Figure 4E). We modelled mRNA expression dynamics using ordinary 
differential equations with transcription governed by either PR or IFFL and performed 
model comparison individually for each p53 transcriptional target, previously defined 
based on RNA-seq and TP53 chromatin immunoprecipitation (ChIP)-seq data35, using 
approximate Bayesian computation (Figure 4F-G; Materials and Methods). This analysis 
indicated a high posterior probability that p21 transcription was governed by a MDM2-
mediated IFFL (0.88). The agreement of this finding, made from bulk RNA-seq data, 
with that made from our single cell time-lapse microscopy data validates the suitability 
of this approach for determining whether the transcription of genes is governed by a 
MDM2-mediated IFFL. We found that for 22% of p53 transcriptional target genes, 
mRNA expression dynamics were best described by a MDM2-mediated IFFL model 
(posterior probability of IFFL model > 0.5), whereas the remaining 78% were best 
described by a PR model (Figure 4F-G). In addition to p21, the IFFL model was strongly 
preferred for MDM2 (posterior probability = 0.91). This analysis provides evidence that, 
for a subset of genes, the addition of nutlin-3a to IR results in gene expression changes 
that are not solely dependent on changes in p53 dynamics, but also from the alleviation 
of the MDM2-dependent transcriptional repression of p53 target genes. These findings 
are consistent with a gene regulatory network structure that can decode a multiplexed 
signal encoded in p53 dynamics. 
 
To determine whether similar MDM2-mediated transcriptional repression may occur in a 
subset of p53 target genes in other cell lines, we reanalyzed TP53 and MDM2 ChIP-seq 
data of four different cell lines from a recent study36, searching for overlapping TP53 
and MDM2 peaks. Such overlapping peaks are likely necessary for MDM2-mediated 
repression of p53-dependent transcription. Consistent with IFFL regulation of a subset 
of p53 transcriptional target genes, we found both overlapping and non-overlapping 
TP53 and MDM2 peaks in all of the cell lines (Figures 4H-I and S4F-G). Three of the 4 
cell lines had overlapping TP53 and MDM2 peaks on the MDM2 gene and none had 
overlapping TP53 and MDM2 peaks on the CDKN1A gene. These observations suggest 
that the expression of a subset of p53 target genes may be regulated by a MDM2-
mediated IFFL, with the IFFL-regulated genes differing between different cells. 
 
It is unclear what determines which p53 target genes have their expression regulated by 
an IFFL. However, when analyzing the MCF-7 cell TP53 ChIP-seq data, we noted that 
p53 target genes that were inferred to be IFFL-regulated with high probability, CDKN1A 
and MDM2, had a short distance between the TP53 binding site and transcription start 
site (Figure 4G). We searched for a similar relationship in the TP53 and MDM2 ChIP-
seq data and found that the TP53 binding sites for genes bound by both TP53 and 
MDM2 were significantly closer to the transcription start sites (predominantly in regions 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2024. ; https://doi.org/10.1101/2024.06.25.600070doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.25.600070
http://creativecommons.org/licenses/by/4.0/


 8

designated promoters) than for genes bound by TP53 alone (predominantly in regions 
designated enhancers) (LPS141 p = 3.5E-9, LPS853 p = 1.2E-13; Figures 4J-K). Co-
binding of TP53 and MDM2, facilitating transcriptional repression, may therefore 
preferentially occur at gene promoters rather than enhancers. 
 
Abrogating MDM2-mediated transcriptional repression of p21 inhibits and 
reverses the G1-S transition 
 
Therapeutically targeting the interaction between p53 and MDM2 is an active area of 
research in oncology. This strategy is based on increasing p53 levels of p53 wild-type 
cancer cells through inhibiting its MDM2-mediated degradation. However, the distinct 
effects of abrogating the p21 IFFL by inhibiting the p53-MDM2 interaction have not been 
studied. We therefore investigated the impact of nutlin-3a on p21 expression in more 
detail. To disentangle the effects of inhibiting MDM2-mediated p53 degradation and 
MDM2-mediated p21 transcriptional repression on the accumulation of p21, we 
developed a combined theoretical and experimental modeling approach. 
 
Theoretical modelling of p21 expression dynamics (Materials and Methods) predicts that 
at pseudo-steady state with high concentrations of p53, the concentration of p21 is 
given by 
 ��21� 	 
� 

 
where 
 and � are the production and degradation rates of p21, respectively. This 
relationship indicates that if nutlin-3a only increases p53 levels, without affecting the 
p21 production rate per unit p53, then when �p21� is plotted against �p53� the y-
intercepts of IR and IR + nutlin-3a treated cells will be the same. Alternatively, if nutlin-
3a increases the production rate of p21 per unit p53, then the y-intercept of IR + nutlin-
3a treated cells will be greater than IR treated cells. Beyond detecting qualitative 
differences, the equation enables the ratio of p21 production and degradation rates to 
be inferred from measurements of p21 concentration. To test the validity of this theory 
we plotted experimentally derived values of �p21� against �p53� using the data from 
cells treated with IR and IR + nutlin-3a (Figures S3A-C). We used the data acquired 
from the final 2.5 h of the experiment when p21 protein levels reach pseudo-steady. The 
data clustered into two populations of cells for both conditions. This bimodal distribution 
is expected as p21 has two different degradation rates, with a rapid degradation 
occurring during S phase and a slower degradation during the remainder of the cell 
cycle37, leading to different steady state levels. Indeed, as predicted by the theory, this 
analysis gave rise to straight lines with slopes of 0 for both conditions (Figures 5A-B). 
The y-intercepts of the lines differed, with the lines corresponding to the cells treated 
with IR + nutlin-3a having greater y-intercepts (Figures 5A-B). This observation implies 
that the addition of nutlin-3a increases the production rate of p21 substantially beyond 
what would be expected based on the increased levels of p53 alone. This finding 
provides further evidence to support our finding that MDM2 represses p53-dependent 
p21 transcription. 
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To this point our theory allowed us to infer the ratio of the production and degradation 
rates of p21. Quantifying the p21 production rate, in the presence and absence of nutlin-
3a, enables further insights to be gleaned. In particular, previous theoretical models 
have suggested that the G1-S transition can be reversed by the accumulation of p21 in 
S-phase, achieved through loss of CDT38,39, which rapidly degrades p21 during S-
phase37. We considered that p21 accumulation during S-phase, and hence reversal of 
the G1-S transition, could also be achieved through increasing its production rate to a 
level higher than its degradation rate. Therefore, we performed an additional experiment 
to measure the p21 degradation rate, which would enable inferring the p21 production 
rates in the context of treatment with IR and IR + nutlin-3a. To measure the rates of p21 
protein degradation in single cells, we exposed cells to siRNA targeting either p21 alone 
or p53 and p21 at 20 h following IR (Figure S5A). This perturbation led to a two-phase 
decay of p21 (Figure 5C). Initially p21 levels decreased slowly, followed by a rapid 
decrease, presumably due to cells entering S phase during which CRL4CDT2-dependent 
rapid degradation occurs37. We inferred these two different decay rates in all cells (from 
both conditions) by fitting a piecewise linear regression model to the log-transformed 
expression level data (Figure 5C). The distribution of p21 degradation rates was 
bimodal with peak degradation rates (inferred by Gaussian mixture modeling) of 0.16 h-1 
and 3.09 h-1 (Figure 5D), corresponding to half-lives of 4.3 h and 0.2 h. These 
degradation rates imply, based on the equation for steady state levels of p21, that the 
production rates under IR and IR + nutlin-3a treatments are 520 a.u.h-1 and 4880 a.u.h-

1, respectively (Figure 5E). 
 
Having inferred the two different p21 production and degradation rates allowed us to 
mathematically decouple the effects of MDM2 on p53 levels and p21 production per unit 
concentration of p53 by computing the levels of p21 under different combinations of 
production and degradation rates. This analysis suggests that inhibiting MDM2-
mediated p53 degradation alone would be insufficient to cause p21 accumulation during 
S-phase (Figure S5B). However, additionally inhibiting the transcriptional repression of 
p21 will achieve p21 accumulation in S-phase (Figure 5F). This finding implies that the 
pharmacological abrogation of the p21 IFFL will lead to cells remaining in or 
transitioning to the G1 or G0 phases of the cell cycle and that this would not be 
achieved through increasing p53 alone without abrogating the IFFL. 
 
To test this prediction, we computed cell cycle signature40 scores for previously 
published RNA-seq time course data of cells treated with IR alone or IR + nutlin-3a35 
using gene set variation analysis. This analysis indicated that cells treated with IR 
predominantly arrest at the G2/M checkpoint whereas cells treated with IR + nutlin-3a 
exit the cell cycle, arresting in G0 (Figure 5G). We reasoned that this dramatic effect on 
cell cycle progression should also lead to changes in cell morphology associated with 
cell cycle phase, such as nuclear area. In cells that were treated with IR, the nuclear 
area increased over time following treatment (p < 2E-16, paired t-test; Figures S5C-D), 
suggestive of cell cycle progression. However, in cells that were treated with IR + nutlin-
3a the nuclear area decreased (p = 7.2E-6, paired t-test; Figures S5C-D). This 
observation provides morphological evidence, in addition to the transcriptional evidence, 
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of the divergent fates of cells treated with IR and IR + nutlin-3a. We corroborated this 
morphological change by confirming that nuclear size transcriptional signatures were 
decreased following treatment with IR + nutlin-3a, but not IR (Figure S5E). Together 
these findings suggest that IR causes cells to undergo G2/M arrest, but abrogating the 
p53-MDM2 interaction alters the fate of the cells to instead enter a G0 arrest. 
Importantly, while the effects of MDM2 on p53 degradation and transcriptional 
repression are challenging to experimentally decouple, our theoretical modeling 
supports the conclusion that the divergence in cell cycle progression is specifically 
related to the MDM2-dependent transcriptional repression, rather than increased levels 
of p53 alone. 
 
Abrogating the p53-MDM2 interaction steers cells into a persister state 
 
Having shown that abrogating the IFFL substantially altered p21 dynamics and cell 
cycle progression, we next sought to investigate the relative contribution of these effects 
to the global context of p53-mediated changes. We, therefore, compared transcriptome-
wide mRNA expression time courses in cells treated with IR in the presence or absence 
of nutlin-3a using RNA-seq data. Differential expression analyses of mRNA time series 
data35 identified 1473 upregulated and 1188 downregulated genes upon addition of 
nutlin-3a to IR (Figure 6A). This observation is consistent with our previous work 
showing p53-dependent increases and decreases in expression of different sets of 
genes following IR treatment in the same cell line35. Analysis of the transcriptional 
regulators of the differentially expressed genes (Materials and Methods) indicated that 
the upregulated genes were enriched for transcriptional targets of p53 and p63 (Figure 
6B), as expected. The downregulated genes were enriched for transcriptional targets of 
E2F4 and LIN9 (Figure 6C). E2F4 and LIN9 are members of the DREAM complex that 
represses transcription of cell cycle genes41 and whose formation is dependent on 
p2142. This finding suggests that inhibiting the interaction between p53 and MDM2 with 
nutlin-3a increases the levels of p21, activating the DREAM complex and repressing its 
target genes. The fact that many of the differentially expressed genes are transcriptional 
targets of E2F4 and LIN9 suggests that p21 plays a major role in the global gene 
expression changes resulting from inhibiting the p53-MDM2 interaction. 
 
Gene set variation analysis using the Hallmark pathways indicated nutlin-3a-dependent 
downregulation of E2F and MYC targets and the G2M checkpoint, in addition to the 
expected upregulation of TP53 (Figure S6A). This observation is consistent with the 
previously identified antagonistic role of p53 on MYC in breast cancer43. MYC is also 
involved in nuclear size regulation, which may explain our earlier finding of nuclear 
shrinkage upon treatment with IR + nutlin-3a. Downregulation of DREAM complex target 
genes and MYC is associated with quiescent states such as embryonic diapause, 
resistance of normal tissues44 and cancer cells45 to therapy and treatment-tolerant 
persister cells. We, therefore, studied persister cell signatures in our RNA-seq data. We 
found that, for almost all persister cell signatures, IR + nutlin-3a increased upregulated 
persister cell signatures and decreased downregulated persister cell signatures (Figure 
6D). This finding suggests that adding nutlin-3a to IR shifts cells into a quiescent 
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persister state, in large part mediated through abrogating p21 transcriptional repression, 
leading to downregulation of DREAM target genes. 
 
Finally, we tested whether the transcriptional differences induced by the addition of 
nutlin-3a to IR, leading to the alleviation of MDM2-mediated repression of p21 
transcription, were associated with treatment resistance, as suggested by the increase 
in persister cell signature scores. We created two gene signatures, consisting of genes 
either significantly upregulated or downregulated in IR + nutlin-3a versus IR treated 
MCF-7 cells (Figure 6A). Both the upregulated and downregulated gene signatures 
were associated with IR resistance in cell lines from the Cancer Cell Line 
Encyclopedia46 (p = 6.4E-6 and 1.5E-10, respectively; weighted means across multiple 
primary tumor sites) (Figure 6E). In breast cancer patients from the METABRIC 
cohort47, the downregulated gene signature was associated with longer recurrence-free 
(p = 7.1E-4) and overall (p = 0.0055) survival in patients not treated with adjuvant 
therapy (Figures S6B-C) and shorter recurrence-free and overall survival in patients 
treated with adjuvant chemo-radiation therapy (p = 0.021 and 0.021, respectively) 
(Figure 6F-G). The association between the upregulated signature and recurrence-free 
or overall survival was borderline significant in patients not treated with adjuvant therapy 
(p = 0.051 and 0.044, respectively; Figures S6D-E) and was not significant in patients 
treated with adjuvant chemo-radiation therapy (p = 0.7 and 0.39, respectively; Figures 
S6F-G). These results are consistent with tumors with lower expression of genes 
downregulated upon addition of nutlin-3a to IR being less proliferative and more 
resistant to chemo-radiation therapy. Taken together, our findings support a model of 
p21-mediated downregulation of genes shifting cells into a quiescent state that is 
resistant to cytotoxic therapy upon addition of nutlin-3a to IR. 
 
 
Discussion 
 
Revealing roles of network architecture in p53 signaling 
 
The tumor suppressor gene p53 and its transcriptional target p21 are among the most 
studied genes in biology. However, despite being the subjects of such extensive 
investigation, how these genes control cell fate decisions that are vital to successful 
outcomes of anti-cancer therapies are incompletely understood. Given the role of p21-
induced cell cycle arrest in treatment resistance, we aimed to uncover how 
heterogeneous p53 dynamics are propagated to p21 dynamics using combined single 
cell microscopy and computational modeling. We found that p21 transcription was far 
better predicted by the change in p53 than absolute p53 level. Three types of three-
node network motif capable of fold-change detection have been observed in biology: the 
IFFL, the nonlinear integral feedback loop, and the logarithmic sensor48. Nonlinear 
integral feedback loops enable fold-change detection in bacterial chemotaxis49,50, but 
have not been observed in gene regulation. Logarithmic sensors may play a role in 
allosteric regulation51. Given that the IFFL architecture has previously been shown to 
regulate transcription of other genes20,21, we focused our analysis on determining 
whether expression of p21 transcription is governed in this way. Through constructing 
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and comparing stochastic computational models of PR and IFFL network architectures 
we determined that p21 transcription is indeed governed by an IFFL. We then proposed 
that MDM2 binding to p53 is responsible for repression of p21 transcription and 
successfully validated the need for p53-MDM2 binding to explain p21 transcription 
dynamics. Pharmacological disruption of the IFFL inhibited and reversed the G1-S 
transition leading to G0 arrest instead of G2/M checkpoint arrest.  
 
It is important to note that this shift in cell fate is specifically related to the perturbation of 
the network structure and not just the altered p53 dynamics due to reduction in p53 
degradation. Given that UV radiation produces similar p53 dynamics to the IR + nutlin-
3a treatment used but different cell fates (predominantly apoptosis rather than cell cycle 
arrest)6 in the same cell line, we suggest that transcriptional repression of p21 enabled 
by MDM2 binding to p53 plays an important role in cell fate specification. UV radiation 
activates ATR, which inhibits MDM2-dependent degradation of p53, but does not alter 
MDM2 binding to p53 and, hence, the transcriptional activity of p5352. Therefore, UV 
radiation generates similar p53 dynamics to IR + nutlin-3a, but lower p21 induction. 
However, this difference in cell fates could alternatively be related to different p53 post-
translational modifications in response to the different stimuli. 
 
Beneficial properties of mode of regulation of p21 transcription 
 
Whilst MDM2-dependent transcriptional repression of p53 target genes has been 
observed previously, the reasons why p53 regulates its target genes in this manner has 
never been understood. We have demonstrated for the first time how the mechanism of 
p21 transcription can provide potential advantages to cells over simple positive 
regulation. Specifically, our analyses indicated that the IFFL architecture facilitates rapid 
cell cycle arrest and increases p21 noise. These findings, taken in combination with our 
findings on the influence of p21 protein noise on escape from cell cycle arrest15, suggest 
that the IFFL enables a population of cells to rapidly undergo cell cycle arrest following 
DNA damage and exhibit variability in the timing at which cells will exit cell cycle arrest, 
and become sensitive to subsequent stresses, reducing the probability of population 
extinction. 
 
Moreover, our combined experimental and mathematical modelling of the transcriptional 
dynamics of many p53 target genes found that while a small number of genes are 
regulated by IFFL, most are instead regulated by PR -- or IFFL with only a mild effect of 
MDM2 on repression of transcription. Such a difference in the modes of transcriptional 
regulation would enable cells to decode a multiplexed signal encoded in p53 dynamics. 
Our proposed model predicts that disrupting the IFFL through inhibiting the binding 
between p53 and MDM2 would lead to “crosstalk” between the multiple signals encoded 
in the p53 dynamics, with transcriptional target genes normally regulated by IFFL to 
parse the change in p53 instead parsing the absolute level of p53, possibly altering cell 
fates. This property of the p21 IFFL, inferred from bulk transcriptomics data, would be 
interesting to explore in more detail in future work by performing single cell 
measurements of multiple different p53 target genes. 
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Therapeutic implications 
 
Our findings provide important insights for the design of therapeutic strategies based on 
p53 activation. Due to the role of MDM2 in transcriptional repression of p21, but not 
apoptosis genes, inhibiting the p53-MDM2 interaction may steer cell fates towards a 
temporary G0 arrest, rather than apoptosis, protecting cancer cells from cytotoxic 
therapies targeting proliferating cells. In support of this assertion, p53 induction by 
nutlin-3a predominantly leads to cell cycle arrest rather than apoptosis in many cell 
lines53–55 and protects melanoma cell lines and patient-derived xenografts from mitotic 
inhibitor-induced DNA damage in a p21-dependent manner56. MDM2 antagonists have 
also been shown to inhibit the senescence associated secretory phenotype and 
permanent cell cycle arrest57. This finding could also be detrimental to successful 
cancer therapy as induction of tumor cell senescence can increase survival, at least in 
certain contexts. Given previous work showing that IR-induced senescence results from 
p53 activation in the G2 phase of the cell cycle58, our finding that concurrent nutlin-3a 
and IR administration leads to cells transitioning into the G0 phase of the cell cycle 
provides a possible explanation for this phenomenon. Alternative explanations include 
the negative regulation of p53 on mTOR signaling59. Our findings that nutlin-3a can 
steer cells into a therapy-resistant quiescent state caution against the use of MDM2 
antagonists concurrently with treatments targeting proliferating cells. Alternative 
strategies for activating p53 in tumor cells, such as through inhibiting Wip1, may be 
more likely to cause apoptosis, and hence be superior, to blocking the interaction 
between p53 and MDM2, which may predominantly result in quiescence. 
 
Our findings indicate that nutlin-3a induced quiescence could instead be exploited in the 
context of treating p53 mutant tumors by protecting normal tissues from apoptosis and 
senescence, without affecting cancer cells, thus widening the therapeutic window. 
Normal cell senescence is responsible for cancer therapy-associated side effects and 
can promote the aggressiveness of neighboring cancer cells60, an effect which is 
inhibited by MDM2 anatagonists57. Therefore, steering cells into a temporary G0 arrest, 
rather than senescence, could be advantageous. This strategy is supported by murine 
studies demonstrating associations between p21 expression and radioprotection of 
normal tissue61–63 and accomplishing radioprotection by pharmacological transient p53 
activation64. A similar approach has previously been proposed by using CDK4/6 
inhibitors to protect normal tissues from radiation through the induction of 
quiescence65,66. However, successful normal tissue protection is highly sensitive to the 
treatment administration schedule67. As such, detailed preclinical studies of the 
schedule-dependent effects of MDM2 antagonists on normal tissue protection should be 
performed prior to their clinical evaluation in this context. 
 
Limitations 
 
Our experiments were performed using MCF-7 cells and so the generality of our 
findings needs to be ascertained in future investigations. Our analysis of TP53 and 
MDM2 ChIP-seq data from four additional cell lines suggests that different p53 target 
genes may be IFFL-regulated in different cell lines. Therefore, pharmacologically 
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targeting MDM2 may result in different cell fates in different cell lines, with implications 
for the previously discussed therapeutic strategies. While the cumulative evidence 
provided by our study and others indicates that MDM2 antagonists predominantly lead 
to cell cycle arrest rather than apoptosis, this is not universally true. Concurrent 
radiation and MDM2 antagonist therapy induced substantial apoptosis and durable 
tumor regressions in a patient-derived xenograft model of adenoid cystic carcinoma68. 
Note also that MCF-7 rarely undergo apoptosis in response to IR due to caspase-3 
deficiency, which could potentially affect the fate of the cells following IR, causing them 
to undergo cell cycle arrest rather than apoptosis. However, the fact that we observed 
transcriptional changes consistent with treatment-tolerant persister cells following IR + 
nutlin-3a suggests that this treatment would be unlikely to predominantly cause 
apoptosis in a caspase-3 proficient context.  
 
Conclusions 
 
In conclusion, we demonstrated that p21 transcription is governed by an IFFL mediated 
by MDM2 binding to p53, enabling rapid p21 induction following DNA damage and 
increasing noise in p21 transcription. Pharmacologically abrogating the IFFL leads to 
G0 arrest, likely protecting cells against treatments that target proliferating cells. These 
findings suggest that combining inhibitors of the p53-MDM2 interaction with agents 
causing double strand breaks may be beneficial in the treatment of p53 mutant, rather 
than WT, tumors and that alternative p53 activation approaches may be superior in the 
context treating of p53 WT tumors. 
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Figure legends 
 
Figure 1: Transcription of p21 is dependent on the change in p53 rather than its 
absolute level. (A) p53 protein dynamics, imaged using cyan fluorescent protein, for a 
representative cell. (B) p21 transcription dynamics, imaged using the MS2 system, for 
the same representative cell as in (A). (C) p21 protein dynamics, imaged using mCherry 
fluorescent protein, for the same representative cell as in (A). (D) Smoothed and 
detrended p53 protein expression for the same cell as in (A). (E) Change in p53 protein 
expression for the same cell as in (D). (F) Inferred p21 gene state dynamics for the 
same cell as in (A) and (B). The gray line shows the p21-MS2 data from (B) and the 
pink line shows the fit of the hidden Markov model to the data. The y-axis scale 
indicates the level of the MS2 signal (gray) and additionally the fit of the two-state 
hidden Markov model (pink), with a value of 0 indicating the “OFF” state and 1 
representing the “ON” state. (G) Logistic regression model estimating the binary p21 
gene state (in (F)) based on the (detrended) absolute p53 expression level (in (D)). (H) 
Logistic regression model estimating the binary p21 gene state (in (F)) based on the 
change in the (detrended) p53 expression level (in (E). (I) Predictive performance of the 
logistic regression models based on the absolute p53 expression level and change in 
p53 expression level for all of the cells (all dose levels combined). AUC = area under 
receiver operating characteristic curve. See also Figure S1. 
 
Figure 2: Transcription of p21 is governed by an incoherent feedforward loop that 
enables p53 change detection. (A) Diagram of the positive regulation (PR) model of 
p21 transcriptional regulation. Switching of the CDKN1A gene from the “OFF” to the 
“ON” state depends solely on p53 bound to the promoter. Created with BioRender.com. 
(B) Diagram of the incoherent feedforward loop (IFFL) model of p21 transcriptional 
regulation. p53 induces expression of a repressor (R) in addition to switching the 
CDKN1A gene from the “OFF” to the “ON” state. Over time, R accumulates and inhibits 
CDKN1A gene activation by binding (either directly or indirectly) to the DNA. Created 
with BioRender.com. (C) Example simulation of p21 transcription dynamics under the 
PR model. The gray line indicates the p53 dynamics, the black line indicates the 
measured p21-MS2 dynamics and the blue line indicates the simulated p21-MS2 
dynamics. (D) Example simulation of p21 transcription dynamics under the IFFL model. 
The gray line indicates the p53 dynamics, the black line indicates the measured p21-
MS2 dynamics and the blue line indicates the simulated p21-MS2 dynamics. (E) p21-
MS2 autocorrelation function for the same cell as in (C). The black line shows the data 
and the dark blue line shows the positive regulation model simulation for an example set 
of parameter values. (F) p21-MS2 autocorrelation function for the same cell as in (D). 
The black line shows the data and the orange line shows the incoherent feedforward 
loop model simulation for an example set of parameter values. (G) p53-p21-MS2 cross-
correlation function for the same cell as in (C). The black line shows the data and the 
dark blue line shows the positive regulation model simulation for an example set of 
parameter values. (H) p53-p21-MS2 cross-correlation function for the same cell as in 
(D). The black line shows the data and the orange line shows the incoherent 
feedforward loop model simulation for an example set of parameter values. (I) Mean 
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p21-MS2 autocorrelation function for 10 Gy treated cells for the PR model. (J) Mean 
p53-p21-MS2 cross-correlation function for 10 Gy treated cells for the PR model. (K) 
Mean p21-MS2 autocorrelation function for 10 Gy treated cells for the IFFL model. (L) 
Mean p53-p21-MS2 cross-correlation function for 10 Gy treated cells for the IFFL 
model. In (I) – (L) the colored lines represent the correlation functions from the 
simulations that are closest to the correlation functions from the data and the shaded 
areas represent the 95 percentile confidence intervals of the correlation functions from 
the simulations. See also Figure S2. 
 
Figure 3: The p53-MDM2 interaction is necessary for transcriptional repression of 
p21. (A) Mean p21-MS2 autocorrelation function for IR treated cells for the PR model. 
(B) Mean p53 - p21-MS2 cross-correlation function for IR treated cells for the PR model. 
(C) Mean p21-MS2 autocorrelation function for IR + nutlin-3a treated cells for the PR 
model. (D) Mean p53 - p21-MS2 cross-correlation function for IR + nutlin-3a treated 
cells for the PR model. (E) Mean p21-MS2 autocorrelation function for IR treated cells 
for the IFFL model. (F) Mean p53 - p21-MS2 cross-correlation function for IR treated 
cells for the IFFL model. (G) Mean p21-MS2 autocorrelation function for IR + nutlin-3a 
treated cells for the IFFL model. (H) Mean p53 - p21-MS2 cross-correlation function for 
IR + nutlin-3a treated cells for the IFFL model. In (A) – (H) the colored lines represent 
the correlation functions from the simulations that are closest to the correlation functions 
from the data and the shaded areas represent the 95 percentile confidence intervals of 
the correlation functions from the simulations. (I) Predictive performance of logistic 
regression models of p21 gene state based on p53 expression level and change in p53 
expression level for IR treated cells. (J) Predictive performance of logistic regression 
models of p21 gene state based on p53 expression level and change in p53 expression 
level for IR + nutlin-3a treated cells. AUC = area under receiver operating characteristic 
curve. See also Figure S3. 
 
Figure 4: The incoherent feedforward loop increases p21 expression response 
rate and noise and governs a subset of other p53 target genes. (A) Simulated p21 
protein dynamics with p21 production governed by PR. (B) Simulated p21 protein 
dynamics with p21 production governed by an IFFL. (C) Longitudinal measurements of 
p21-MS2 noise, as measured by the Fano factor, in cells treated with IR and IR + nutlin-
3a. (D) Longitudinal measurements of p21-MS2 to p53 protein noise ratio, with noise 
measured by the Fano factor, in cells treated with IR and IR + nutlin-3a. (E) Approach to 
determining whether the transcription of p53 target genes are governed by PR or IFFL. 
Under PR the increased expression of a gene upon adding nutlin-3a to IR would be due 
to the increase in p53 levels alone. Under IFFL the increased expression would be 
greater than that expected from the increase in p53 levels alone. Created with 
BioRender.com. (F) Positive regulation (dark blue) and incoherent feedforward loop 
(orange) model simulations for approximate Bayesian computation. The plot shows the 
relationship between gene expression following IR + nutlin-3a and IR alone for each 
model and the corresponding measurements for p53 transcriptional target genes (light 
blue). (G) Time course of mRNA expression following IR + nutlin-3a. (H) Venn diagram 
of TP53 and MDM2 ChIP-seq peaks in the LPS141 liposarcoma patient-derived cell 
line. (I) Venn diagram of TP53 and MDM2 ChIP-seq peaks in the LPS853 liposarcoma 
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patient-derived cell line. (J) Distance between TP53, MDM2 and overlapping TP53 and 
MDM2 (TP53.MDM2) ChIP-seq peaks and transcription start site in LPS141 
liposarcoma patient-derived cell line. (K) Distance between TP53, MDM2 and 
overlapping TP53 and MDM2 (TP53.MDM2) ChIP-seq peaks and transcription start site 
in LPS853 liposarcoma patient-derived cell line. P(IFFL) – posterior probability of IFFL 
model; IFFL - posterior probability of IFFL model greater than 0.5; TSS Distance – 
distance between the transcription start site and the closest p53 ChIP-seq peak. See 
also Figure S4. 
 
Figure 5: Abrogating MDM2-mediated transcriptional repression of p21 prevents 
and reverses the G1-S transition. (A) Relationship between p21 protein and p53 
protein averaged over time points at pseudo-steady state for single cells treated with 10 
Gy IR or 10 Gy IR + nutlin-3a. The circular and triangular points designate the first and 
second components of the mixture distributions, respectively. The contours show the 
distirbutions of the data. The lines show linear regression fits to the data. (B) Slopes 
and y-intercepts of the regression lines in (A). The dotted line indicates the the value of 
the slope predicted by the mathematical model. (C) Fit of the piecewise linear 
regression model to p21 protein dynamics following addition of p21 siRNA IR treated 
cells to infer p21 protein degradation rates for an example cell. (D) Distribution of 
inferred p21 protein degradation rates for all cells. The histogram shows the inferred 
degradation rates and the line shows a fit of a Gaussian mixture model to the rate 
distribution. (E) Inferred p21 protein production rates for MDM2-repressed and 
unrepressed p21 production, inferred from the inverse variance weighted mean of the 
inferred production rates in cells with high and low p21 degradation rates. (F) Prediction 
of p21 protein levels from abrogating the IFFL without altering p53 protein levels in IR 
treated cells in S phase. The orange points (and error bars) show the predictions (and 
their standard errors) and the blue contours show the distribution of the data for IR 
treated cells (same as in (A)). Abrogating the IFFL without altering p53 levels is 
predicted to increase p21 levels of S phase cells to the levels of those in non-S phase 
cells. (G) Gene set variation analysis of cell cycle phase transcriptional signatures40. IR 
– ionizing radiation; GSVA – gene set variation analysis. See also Figure S5. 
 
Figure 6: Abrogating the p53-MDM2 interaction steers cells into a persister state. 
(A) RNA-seq differential expression of IR + nutlin-3a versus IR treated MCF-7 cells. (B) 
Transcriptional regulator enrichment analysis for differentially upregulated genes in IR + 
nutlin-3a versus IR treated MCF-7 cells. (C) Transcriptional regulator enrichment 
analysis for differentially downregulated genes in IR + nutlin-3a versus IR treated MCF-
7 cells. (D) Gene set variation analysis of IR and IR + nutlin-3a treated MCF-7 cells with 
cancer persister cell gene sets55–62. (E) Linear regression model coefficient evaluating 
the association between radiation response (area under radiation dose-response curve) 
and GSVA score of genes upregulated and downregulated in IR + nutlin-3a versus IR 
treated MCF-7 cells, in cell lines from the Cancer Cell Line Encyclopedia46. The 
weighted mean is the inverse variance weighted mean of the coefficients across all 
primary tumor sites. The size of the points corresponds to the number of cell lines. (F) 
Association between recurrence-free survival and GSVA score of genes downregulated 
in IR + nutlin-3a versus IR treated MCF-7 cells, in breast cancer patients treated with 
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chemo-radiation therapy from the METABRIC cohort47. (G) Association between overall 
survival and GSVA score of genes downregulated in IR + nutlin-3a versus IR treated 
MCF-7 cells, in breast cancer patients treated with chemo-radiation therapy from the 
METABRIC cohort47. The p-values in (F) and (G) are from Cox proportional hazards 
regression models with the signature score, as a continuous variable, as the covariate. 
OR – odds ratio; GSVA – gene set variation analysis. See also Figure S6. 
 
 
STAR Methods 
 
Live cell fluorescence microscopy 
 
Live cell fluorescence microscopy, image analysis and quantification of p53 and p21 
proteins and p21 transcription following treatment with IR in MCF-7 cells was performed 
as previously described18. In an initial experiment, we treated cells with either 2.5 Gy, 5 
Gy or 10 Gy of IR and imaged them for 45 h with a 15 minute temporal resolution 
(Figures 1, 2, S1A-I, S2A-H, S4D-E). In a second experiment, we treated cells with 10 
Gy of IR and imaged them for 15 h with a 2 minute temporal resolution (Figure S1J, S2I-
L). In a third experiment to validate the computational model predictions, cells were 
treated with 10 Gy IR alone or in combination with 10 �M nutlin-3a and imaged for 21 h 
with either a 15 minute (p53, p21-MS2) or 30 minute (p21) temporal resolution (Figures 
3, 4C-D, 5A-F, S3, S4A-C, S5B-D). In these three experiments, 835, 945 and 500 cells, 
respectively, were successfully segmented and tracked for the duration of the time 
course. “Outlier” cells with maximum signal intensity greater than 2 interquartile ranges 
above the 75th quartile, on the log10 scale, were removed. This exclusion criterion led to 
the removal of 5/835, 2/945 and 1/500 of the cells in the first, second and third 
experiments, respectively. As the fraction of excluded cells was very small, including 
these cells would minimally affect the results. 
 
Predictive modeling of p21 gene state based on absolute and change in p53 
protein level 
 
Following the “random telegraph” model of gene transcription, we assumed that the p21 
gene could be in one of two states: “ON” and “OFF”. We inferred the dynamics of the 
p21 gene state for each cell by fitting a 2 state hidden Markov model to the p21-MS2 
signal for that cell assuming two states and a Gaussian error distribution. 
 
We smoothed the p53 signal using loess smoothing with degree 2 and span 0.1. These 
parameters were chosen as they were found to successfully remove the spikes in the 
signal without affecting the p53 oscillations. To remove long-term trends in the p53 
signal that were present in IR treated cells, which were deemed likely technical artifacts 
rather than representing true p53 protein dynamics, we performed b-spline regression 
with 4 knots on the smoothed p53 signal and subtracted the fitted spline from the 
smoothed p53 signal. This number of knots was selected as it was found to successfully 
remove the longer-term trend in the signal while retaining the p53 oscillations. 
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Delays between the p53 and p21-MS2 signals may occur for biological reasons, such 
as the time taken for p53 to bind the promoter and recruit the transcriptional machinery, 
and technical reasons, for example, differences in the maturation times of the different 
fluorescent reporters. Such delays could bias models. We, therefore, computed the 
cross-correlation between the p53 and p21-MS2 time course for each cell and shifted 
the p53 signal to achieve the maximum correlation between the signals. We placed a 
constraint on the maximum size of the shift of 2.25 h, half the period of p53 oscillations 
in human cells, to prevent aligning incorrect p53 pulses with bursts of p21 transcription. 
 
We then fit two different univariable logistic regression models to the binary p21 gene 
state for each cell. For the first model we used the absolute (detrended and shifted) p53 
level as the covariate and for the second model we used the change in (detrended and 
shifted) p53. The predictive performance of the models was assessed using the area 
under the receiver operating characteristic curve and pairwise comparisons of the 
predictive performances of the models were performed using paired Wilcoxon tests. 
 
Stochastic modeling of p21 transcription dynamics 
 
As the number of nascent p21 RNA were very small we modeled p21 transcription 
dynamics as stochastic processes, employing continuous time Markov modeling. We 
chose to use the p53 data as input into the model rather than explicitly modeling the p53 
dynamics for two reasons. Firstly, the dynamics of p53 are complex, being affected by 
multiple other proteins for which we did not have data. Secondly, it allowed the 
modeling to be informed by the data, reducing the risk of removing biologically 
informative dynamics. 
 
In the PR model, the p21 promoter can switch between an “OFF” state (POFF) and “ON” 
state (PON), where the switching to the ON state is dependent on the level of p53. RNA 
molecules (RNA) are produced at the transcription site only when the promoter is in the 
“ON” state. The positive regulation model is defined by the following reactions with per 
capita rates: 
 

Promoter switching off:   ���                   ����               �������������� ���� 

Promoter switching on:    ����           ������	
�         �������������� ��� 

Production of p21 nascent RNA:  ���                ����                �������������� ��� � 1 

Release of p21 nascent RNA:  ���                
���                �������������� ��� � 1 
 
The master equation is given by 
 ����, �|��, ����� �  �!�"� � #�$�"� � #� , �%��, ��$ � !�������, �|��, �����

���

 

 
where the state vector for the system is 
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� � &����������' 

 
and the set of reactions is described by the state-transition matrix 
 # � &�1 �1 0 0�1 �1 0 00 0 �1 �1'  

 
 
and propensity vector 

) � *+
,���-�2�,���53���-�1�
���-�2�����-�3� ./  

 
 
The initial state vector is ��0� � &100'  

 
 
The IFFL model is similar to the PR model, but instead of the promoter switching from 
the “OFF” to the “ON” state being dependent on the level of p53, it is dependent on the 
level of p53 above the level of a repressor protein (R) whose production is dependent 
on the level of p53. The model makes the simplifying assumptions of a single step in the 
production of the repressor (rather than explicitly modeling transcription and translation) 
and rapid and strong binding of the repressor to p53. The IFFL model is defined by the 
reactions with the following per capita rates: 
 

Promoter switching off:   ���                  ����                ��������������� ���� 

Promoter switching on:    ����

���	���	
���	
������������������ ��� 

Production of p21 nascent RNA:  ���                ����                �������������� ��� � 1 

Release of p21 nascent RNA:  ���                
���                �������������� ��� � 1 

Production of repressor:   �               ���	
����
          �������������� � � 1 

Degradation of repressor:   �                
��	
����
         �������������� � � 1 
 
The state vector for the system is 
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� � 0����������� 1 

 
and the set of reactions is described by the state-transition matrix 
 

# � 0�1 �1 0 0 0 0�1 �1 0 0 0 00 0 �1 �1 0 00 0 0 0 �1 �11  

 
 
and propensity vector  
 

) �
*
222
+ ,���-�2�,��"�53��� � ����$�-�1�
���-�2�����-�3�
����������53�������������-�4� .

444
/

 

 
 
The initial state vector is 

��0� � 0 100�53�0�1  

 
 
Simulations were performed using the Gillespie stochastic simulation algorithm. For 
each run of the simulation, we randomly sampled parameter values from the prior 
distributions, defined in Supplemental Table 1, and simulated p21 transcription 
dynamics for the same number of cells as in the dataset that the simulations were being 
compared to. We performed 5000 simulation runs for each model. To perform the 
simulations of the time inhomogeneous continuous Markov process we made minor 
modifications to the ssar R package to increase its speed for our task. This adapted 
version of the package is available at https://github.com/jamiedean/ssar. 
 
Model comparison by approximate Bayesian computation random forest 
classification 
 
To select between the two alternative models, we performed model comparison using 
the approximate Bayesian computation random forest method76 implemented in the 
abcrf version 1.9 R package. To formally compare the model simulations to the data we 
computed the p21 nascent RNA concentration autocorrelation and the cross-correlation 
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between the p53 protein concentration and p21 nascent RNA concentration for all 
individual cells and took the mean of these functions over all cells, for both the 
simulations and the data. To account for the maturation time of the p53-tagged 
fluorescent protein, we advanced the p53 protein concentration time course by 50 
minutes relative to the p21 nascent RNA concentration prior to calculating the cross-
correlations for the simulations. We did not explicitly model maturation of fluorescent 
proteins to minimize the number of model parameters. The auto- and cross-correlation 
functions were chosen as they incorporate the information from the same single cells 
over time77, unlike the moments of distributions over all of the cells at single timepoints. 
The correlation function values at the first five peaks and troughs of the mean auto-
correlation function and the five peaks and troughs closest to a lag of 0 of the mean 
cross-correlation function were chosen as the summary statistics for Bayesian model 
comparison. The random forest model used 3000 trees (a number chosen because the 
out-of-bag performance had converged with this number of trees) and added linear 
discriminant analysis to the summary statistics. We only performed model comparison 
and did not perform parameter inference as this requires a much larger number of 
parameter sets, and therefore simulations, which would take several months with our 
available hardware. 
 
Delay differential equation models of p21 dynamics 
 
Delay differential equation models of p53 and p21 dynamics were developed to perform 
a mathematically controlled comparison of the effect of the IFFL on the p21 induction 
rate. The functional form of our model was inspired by two previous models, one of p53 
dynamics, incorporating activation of p53 by phosphorylated ATM (pATM) and negative 
regulation by the p53 transcriptional target genes MDM2 and Wip178, and another of 
p21 dynamics, incorporating a bistable switch between p21 and CDK215. We added two 
alternative p21 protein compartments, with p21 production governed either by PR 
(p21PR) or IFFL (p21IFFL): 
 5��53����
����5� � �� � 
 ���6762���53����
���� � �����53����
���� 8 ���96������96��� � 9�

��
:� 
!���;<�1���53��
���� � 
����53����
���� 

 5��53��
����5� � �����53����
���� 8 ���96������96��� � 9�
��

: � 
!���;<�1���53��
����� 
 ����53��
���� 
 5�6762�5� � � ��53��
����� � = �� � � � � 
� ���96��6762� � 
 �6762� 
 5�;<�1�5� � �!��53��
����� � =!�� � 
!�;<�1� 
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5���96�5� � �� � 
����96� � 
!����96� 8 �;<�1��
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�


: 
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where ?7@2��
���
#,*��+ � 
� A &�

��

'()	�%�����������&
�

��B 

 
The model parameter values and initial conditions used are given in Supplemental 
Table 2. We chose the same parameter values and initial conditions as those used in 
the original publications as these had previously been shown to reproduce the relevant 
experimental measurements, with the following exceptions: (i) we selected the value for 
the p21 production rate under positive regulation ���

"�� and scaling of the CDK2-
dependent p21 degradation �>� to produce similar p21 dynamics as observed in our 
data; (ii) we selected the p21 production rate under incoherent feedforward loop 
regulation ���

*��+� to produce a pseudo-steady state level of p21 matching that under 
positive regulation; (iii) we selected the time delay in p21 production �=�� to match that 
of MDM2. The model was implemented in Julia using the DifferentialEquations package. 
Note that neither the details of the part of the model that produces the p53 oscillations 
nor govern p21 degradation affect the relationship between IFFL regulation of p21 
production and increased response rate. Alternative mathematical models of p53 
dynamics and p21 degradation, demonstrate the same relationship between the mode 
of p21 regulation and response rate (confirmed when constructing this model). 
 
Inferring the mode of transcriptional regulation of p53 target genes 
 
Time course RNA-sequencing data and p53 protein levels of MCF-7 cells treated with 
IR and IR + nutlin-3a were obtained from a previous study35. The p53 proteins were 
smoothed using a smoothing spline with 12 knots, a number selected based on 
successfully capturing the known patterns of p53 dynamics following IR and IR + nutlin-
3a. 
 
The dynamics of p53 transcriptional target gene mRNA expression, M, were modelled 
using ordinary differential equation models with transcription governed by either PR or 
IFFL: 
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56*�5� � 
. �53*�����53*���� � @ � �. 6*� 

 56*���,
-��,"�5� � 
. �53*���,
-������53*���,
-����� � @ � �. 6*���,
-��,"� 

 56*���,
-��,*��+5� � �
 �  D����. �53*���,
-������53*���,
-����� � @ � �. 6*���,
-��,*��+ 

 D��� � E0     � F 3D     � G 3H 
 
where 
 is the transcription rate, � is the degradation rate, @ is the Michaelis-Menten 
constant, and D is the increase in transcription rate due to inhibition of transcriptional 
repression in the presence of nutlin-3a. The time dependence of D is due to nutlin-3a 
being administered 3 h after IR administration. 
 
mRNA expression dynamics were simulated under both models for 10,000 different 
combinations of parameter values, with parameters sampled from the prior distributions 
defined in Supplemental Table 3. Model comparison was performed using approximate 
Bayesian computation random forest method76 implemented in the abcrf version 1.9 R 
package. The mRNA levels at each timepoint under both treatment conditions were 
used as the summary statistics. For the data, the mean values across the two replicates 
were used. The random forest model used 3000 trees (a number selected because the 
out-of-bag performance had converged with this number of trees) and added linear 
discriminant analysis to the summary statistics. 
 
ChIP-seq data analysis 
 
TP53 and MDM2 ChIP-seq data of four cell lines were obtained from a previous study36. 
Overlaps between TP53 and MDM2 peaks and distances from the centers of TP53 
peaks to transcription start sites were computed using the ChIPpeakAnno version 
3.34.1 R package, with genes annotated using the 
TxDb.Hsapiens.UCSC.hg38.knownGene version 3.17.0 R package. The analysis of 
distances between TP53 peaks and transcription start sites was not performed for the 
HCT116 and U2OS cell lines as the number of overlapping TP53 and MDM2 peaks was 
too small (3 and 4 overlapping TP53 and MDM2 peaks, respectively) to perform a 
meaningful statistical analysis. 
 
Theoretical modeling for inference of p21 production and degradation rates 
 
To infer p21 production and degradation rates from timelapse microscopy data, we 
begin by assuming that p21 protein concentration, ��21�, is described by the ordinary 
differential equation 
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./�%�0
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� 
 /���0

/���0�&
� ���21�  (1) 

 
where 
 is rate of production of the p21 protein, @ is the Michaelis-Menten constant and � is the degradation rate of the p21 protein. At pseudo-steady state, 

./�%�0

.

	 0, and 

equation (1) can be rearranged to give 
 ��21� 	 �




/���0

/���0�&
  (2) 

 
If  ��53� I @, then 
 ��21� 	 �



   (3) 

 
Therefore, given the assumptions of this model, for sufficiently high levels of p53, 
plotting ��21� against �p53� would give rise to a straight line with slope of 0 and y-
intercept of 

�



. If this theoretical insight is correct, and assuming that p21 degradation 

rate is unaffected by nutlin-3a, this argument would enable the relative difference in the 
p21 production rate between cells treated with IR alone and IR + nutlin-3a to be 
inferred. Measuring the degradation rate of p21 (method described below) enables the 
absolute p21 production rates in the absence and presence of nutlin-3a to be inferred 
by  
 
 	 ���21]   (4) 
 
As p21 has two different degradation rates: rapid degradation in S phase of the cell 
cycle and slow degradation in the remainder of the cell cycle37, Gaussian mixture 
models with 2 components were fit to the [p21] data for each treatment condition. For 
each treatment condition, the p21 production rate was inferred separately for each of 
the two mixture components and the inverse variance weighted mean was used to 
combine these estimates into a single production rate estimate. 
 
To predict the effect of abrogating MDM2-mediated transcriptional repression without 
affecting p53 degradation, and therefore p53 levels, in S phase cells (rapid p21 
degradation), we multiplied the p21 levels of IR treated cells in the mixture component 
with lower p21 levels by the ratio of production rates inferred for IR + nutlin-3a and IR 
treated cells (Figure 5F). To predict the effect of abrogating MDM2-mediated p53 
degradation without affecting transcriptional repression, we added the difference in the 
mean p53 levels between IR + nutlin-3a and IR treated cells to the p53 levels of IR 
treated cells in the mixture component with lower p21 levels (Figure S5B). In both cases 
we computed standard errors by propagating errors in the rate and protein steady state 
level estimates. 
 
Measurement and inference of p21 degradation rates 
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MCF-7 cells were treated with IR and then imaged with a 15 minute temporal resolution 
with 40 nM siRNA targeting either p21 alone or p53 and p21 at 20 h. Piecewise linear 
regression models were fit to the log-transformed p21 protein signal versus time from 
27.5 h (to allow time sufficient time for p21 protein production to be inhibited) for each 
cell individually using the dpseg version 0.1.1 R package. The slopes of the first two 
lines were taken to be the low and high degradation rates for each cell. A Gaussian 
mixture model with 2 components was fit to the distribution of inferred degradation rates 
(combining cells from both datasets as there was the degradation dynamics were the 
same under both conditions) using the mclust version 6.0.1 R package. 
 
RNA-sequencing data analysis 
 
Raw RNA-seq time course data of MCF-7 cells sequenced from 3 h to 12 h in 1 h 
intervals following treatment with IR and IR + nutlin-3a35 were downloaded from the 
Gene Expression Omnibus (GSE100099). Expression of transcripts was quantified 
using Salmon version 1.1.079 with GENCODE release 3380 Homo sapiens GRCh38 for 
the reference transcriptome annotation. Differential expression analysis was performed 
to test for differences in gene expression over time between treatments using the 
likelihood ratio test, with expression ~ time + replicate + treatment + treatment:time as 
the full model and expression ~ time + replicate + treatment as the reduced model, in 
the DESeq2 version 1.40.2 R package. 
 
Transcription factor enrichment analysis 
 
Transcription factor enrichment analysis was performed using the TFEA.ChIP version 
1.20.0 R package81 with the ReMap2022+EnsTSS+CellTypeEnh.Rdata database 
accessed from 
https://github.com/LauraPS1/TFEA.ChIP_downloads/tree/master/R%20Databases. 
Over-representation analysis of transcriptional regulators for significantly upregulated 
and downregulated genes was performed. Upregulated and downregulated genes were 
defined as those with a differential expression adjusted p-value less than 0.05 and a 
positive or negative estimates of differences in gene expression over time, respectively. 
Genes with a differential expression adjusted p-value greater than 0.5 were selected as 
control genes. 
 
Transcriptional signatures 
 
Transcriptional signature scores were calculated with gene set variance analysis, 
implemented in the GSVA version 1.48.3 R package. Cell cycle phase40, nuclear size82 
and persister cell signatures55–62 were obtained from the referenced studies. 
 
Gene expression signatures were created for genes significantly upregulated and 
downregulated in IR + nutlin versus IR treated cells with an adjusted p-value of less 
than 0.05 and effect size of magnitude greater than 0.5. The associations between the 
upregulated and downregulated gene expression signatures and cell line radiation 
response were measured by fitting linear regression models with area under the 
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radiation dose response curve as the outcome variable and the gene set variance 
analysis signature scores as the covariate, using data from the RadioGx version 4.2.0 R 
package46. Separate regression models were fit for cell lines from different primary 
disease sites, for disease sites with at least 10 cell lines, and an inverse variance 
weighted mean coefficient across all of the primary disease sites calculated (Figure 6E). 
 
The associations between the upregulated and downregulated gene expression 
signatures and breast cancer patient recurrence-free and overall survival were 
measured by fitting Cox proportional hazards regression models with the gene set 
variance analysis signature scores as the covariates, using data from the METABRIC 
cohort47 (Figures 6F-G and S6B-G). Patients treated with hormone therapy (n = 1216) 
were excluded as hormone therapy could potentially confound inference of cytotoxic 
therapy response, leaving 311 patients receiving no adjuvant therapy and 173 patients 
treated with radiation and chemotherapy. 
 
Materials availability 
 
This study did not generate new unique reagents. 
 
 
Data and code availability 
 
Data and code are available at https://github.com/jamiedean/p21-iffl-regulation. 
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