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Summary

Genetically identical cells can respond heterogeneously to cancer therapy, with a
subpopulation of cells often entering a temporarily arrested treatment-tolerant state
before repopulating the tumor. To investigate how heterogeneity in the cell cycle arrest
protein p21 arises, we imaged the dynamics of p21 transcription and protein expression
along with those of p53, its transcriptional regulator, in single cells using live cell
fluorescence microscopy. Surprisingly, we found that the rate of p21 transcription
depends on the change in p53 rather than its absolute level. Through combined
theoretical and experimental modeling, we determined that p2l transcription is
governed by an incoherent feedforward loop mediated by MDM2. This network
architecture facilitates rapid induction of p21 expression and variability in p21
transcription. Abrogating the feedforward loop overcomes rapid S-phase p21
degradation, with cells transitioning into a quiescent state that transcriptionally
resembles a treatment-tolerant persister state. Our findings have important implications
for therapeutic strategies based on activating p53.

Introduction

Genetically identical populations of cells often exhibit heterogeneous fates in response
to the same environmental exposures. Such non-genetic variability in cell fates
represents a major challenge for cancer therapy aiming to eliminate all tumor cells,
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facilitating the survival of some cells in an otherwise treatment-sensitive population®.
This non-genetic resistance can occur through a subpopulation of cells transiently
entering a cell cycle-arrested state, during which they are able to tolerate therapies that
target rapidly proliferating cells*>, including radiation and chemotherapy, before re-
entering a proliferative state to repopulate the tumor. So-called cancer “persister” cells
are now increasingly thought to be a substantial source of treatment failures in oncology
and, hence, there is a pressing need to develop novel treatment approaches to
overcome this form of resistance. To realize these new therapeutic strategies, an
improved understanding of non-genetic resistance mechanisms is required. Knowledge
of mechanisms underlying variability in cell cycle phase transitions could also inform
approaches to protect normal cells from anti-cancer therapies and reduce treatment
side effects.

Previous work has shown that variability in cell fates can be explained by variability in
the dynamics of transcription factors regulating fate-determining genes. Different stimuli
can give rise to differences in the dynamics of the same transcription factor and result in
divergent cell fates. For example, the levels of p53, a key transcription factor regulating
the response to DNA damage, oscillate in response to ionizing radiation (IR) cells, but
exhibit a sustained increase in response to ultraviolet (UV) radiation®. These different
patterns of p53 expression dynamics are associated with different fates: senescence
and apoptosis, respectively. However, even when cells are exposed to the same
treatment and exhibit the same broad patterns of transcription factor dynamics, subtle
variability in those dynamics can explain cell fate variability. Such subtle non-genetic
intercellular heterogeneity in the dynamics of p53 can explain whether cells die or
survive following treatment with cisplatin chemotherapy’.

Cell cycle arrest is primarily controlled by the cyclin-dependent kinase inhibitor,
CDKN1A (p21), which is transcriptionally activated by p53 in response to DNA
damage® ™. Entry and exit of cell cycle arrest is controlled by a bistable switch created
by double negative feedback between p21 and CDK2*'*. Noise in p53 protein levels
propagates to p21 protein levels and plays a role in cell fate heterogeneity, in particular
the ability of cells to enter and escape from cell cycle arrest'3*>1°,

Given the importance of p21 expression dynamics in cell fate determination and
heterogeneity in p21 dynamics on non-genetic variability in treatment response'’, we
sought to quantitatively characterize p21 expression dynamics through integrating
single cell timelapse fluorescence microscopy of p21 and p53 and mathematical
modeling of the regulation of and noise propagation through this circuit.

Results

Transcription of p21 is dependent on the change in p53 rather than its absolute
level


https://doi.org/10.1101/2024.06.25.600070
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.25.600070; this version posted June 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

To quantitatively characterize p53-dependent p21 expression, we used a recently
developed experimental system to study the dynamics of the p53 and p2l1 proteins
(using fluorescent reporters p53-CFP and p21-mCherry) together with the dynamics of
p21 transcription (using the MS2 system) in single MCF-7 breast cancer epithelial
cells'®. We treated cells with IR (a single dose of either 10 Gy, 5 Gy or 2.5 Gy) and
imaged them with time-lapse microscopy for approximately 2 days. As previously
described®®, p53 protein levels oscillated, with a period of approximately 5.5 h, in
response to IR (Figures 1A and S1A). The p53 oscillations resulted in bursts of p21
transcription (Figures 1B and S1B) and p21 protein accumulation (Figures 1C and
S1C).

When visualizing the dynamics of p53 and p21 transcription simultaneously in single
cells, we observed that p21 transcription occurred only at the times corresponding to the
peaks of the p53 oscillations (Figures S1D-G). This observation suggested that p21
transcriptional output is dependent on the change in p53 rather than its absolute
concentration. However, longer-term trends of increasing and decreasing p53, which
are present in the signal, may represent technical artifacts, rather than true p53
dynamics, confounding the interpretation. Therefore, before quantitatively investigating
p53-dependent p21 transcription, we detrended the raw p53 dynamics data (Figures 1D
and S1H-I) to minimize these trends.

To formally test the hypothesis that p21 transcription is dependent on the change in
p53, we developed two different statistical models that predict p21 transcription based
on p53 protein expression: one based on the absolute level of p53 (Figure 1D) and a
second based on the change in p53 level (Figure 1E). To infer when the p21 gene was
in the “ON” and “OFF” states, we fit a two-state hidden Markov model to the p21-MS2
time course data for each cell, estimating for each time point whether the gene is in the
“ON” or “OFF” state (Figure 1F). We then fit logistic regression models of the inferred
p21 gene state based on either the absolute (detrended) p53 level (Figure 1G), or the
change in (detrended) p53 level (Figure 1H). We subsequently compared the predictive
performance of the models for each cell, as assessed by the area under the receiver
operating characteristic curve (AUC). We found that while the model based on the
absolute p53 levels were able to partially predict p21 transcription (mean AUC = 0.63),
the model based on the change in p53 was substantially superior (mean AUC = 0.82;
(Figure 1I; p < 2.2E-16, paired Wilcoxon test). We repeated this analysis using data
from an additional experiment employing the same reporter system, but a shorter time
course of 15 h and a higher temporal resolution of 2 minutes®, to minimize the
increasing and decreasing p53 trends apparent in the original experiment. Again, p21
transcription was significantly better predicted by the change in p53 (mean AUC = 0.87)
than the absolute p53 level (mean AUC = 0.66; Figure S1H; p < 2.2E-16, paired t-test).
This finding suggests that p21 transcription is not solely dependent on p53
concentration, but is instead under the control of a more complex regulatory mechanism
capable of parsing the change in p53 expression.

Transcription of p21 is governed by an incoherent feedforward loop that enables
p53 change detection
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We next investigated how the change in p53 could be parsed by the p21 promoter.
Change detection cannot be achieved by a two-node network, such as a network
consisting of only a p53 node and a p21 node; instead, the simplest gene network
capable of change detection is a three-node network. An incoherent type-1 feedforward
loop (IFFL) is a 3-node network that facilitates fold-change detection in other
transcriptional systems, including NF-«B®° and TGF-8?*. We observed that p21
transcription displayed an ultrasensitive response, i.e. a rapid switching on and off of
p21 transcriptional bursting as opposed to a gradual “ramp up” and “ramp down”
(Figures 1B, S1E, S1G). This behavior suggests that the transcription of p21 is
governed by a molecular titration mechanism, whereby p21 is transcribed when the
concentration of p53 is above that of a negative regulator of p21 transcription. As IFFLs
are capable of molecular titration and have previously been identified in gene regulation,
we focused on this motif as a potential alternative mechanism of p21 transcription to
simple positive regulation (PR) by p53.

To formally compare alternative mechanisms of p21 transcription, namely PR and IFFL,
we constructed stochastic mathematical models of each (Figures 2A-B; Materials and
Methods). For these models we did not commit to an explicit functional form to describe
the p53 dynamics to minimize the number of assumptions; instead, we used the p53
data as input into the models. We simulated p21 transcription dynamics from our two
stochastic models for each single cell in our data using the Gillespie stochastic
simulation algorithm (Figures 2C-D) and compared the model simulations to our data by
computing the p21-MS2 autocorrelation function (Figures 2E-F) and the p53 - p21-MS2
cross-correlation function (Figures 2G-H). This approach takes advantage of the fact
that our experimental data captures the transcription factor and transcription dynamics
over time in the same single cells. We fit both models to our experimental
measurements using approximate Bayesian computation-based inference, repeating
the stochastic simulations for all cells for 5,000 combinations of different parameter
values, to determine which model could best explain the data (Materials and Methods).
We found that none of the correlation functions generated by the PR model simulations
were able to match the correlation functions in the data from the long (Figures 2I-J,
S2A-B and S2E-F) or short time course experiments (Figures S21-J), whereas the IFFL
model recapitulated these correlation functions well (Figures 2K-L, S2C-D and S2G-H).
Our Bayesian model selection procedure indicated that the IFFL model provided the
best fit to the data for all the dose levels and datasets (posterior probability of the IFFL
model and not the PR model = 1.0, 1.0, 0.98 and 1.0 for the 10 Gy, 5 Gy, 2.5 Gy long
time course datasets and short time course dataset, respectively). Thus, our combined
experimental and theoretical modeling approach suggests that transcription of p21 is
not governed by simple PR by p53, but instead by an IFFL involving p53 and an
additional transcriptional repressor.

The p53-MDM2 interaction is necessary for transcriptional repression of p21

We next attempted to identify the repressor of p21 transcription, representing the third
node in the IFFL. We reasoned that the transcriptional repressor should fulfil several
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criteria: (1) it should be a transcriptional target of p53; (2) it should bind to a regulatory
region of the CDKN1A gene (either directly or indirectly) and (3) it should have
dynamics similar to those predicted by our computational model. Based on fulfilling
these criteria, in addition to the fact that MDM2 has previously been shown to perform a
role in transcriptional repression of p53 target genes®~?’, including p21%°, we predicted
that MDM2 is the transcriptional repressor. We then leveraged our theoretical model to
design and analyze an experiment to test this prediction.

Our theoretical model predicts that inhibiting the activity of the repressor would result in
the p21 transcription rate being dependent on the absolute abundance of p53 rather
than the change in p53 concentration. Given that MDM2 is recruited to genes through
binding to p53%’, we reasoned that its predicted transcriptional repressor activity could
be inhibited by pharmacologically blocking its binding to p53. To test our model
prediction, we performed a validation experiment in which we treated cells with 10 Gy IR
alone or in combination with 10 uM nutlin-3a (IR + nutlin-3a), a drug that inhibits the
binding of MDM2 to p53%, and imaged the dynamics of p53 and p21 expression by
time-lapse microscopy (Figure S3A-C). As described above, we compared the PR and
IFFL model fits to the data by simulation and approximate Bayesian computation. We
found that in the IR treated cells the PR model did not fit the data well (Figures 3A-B),
whereas the IFFL model did (Figures 3C-D): the Bayesian model selection procedure
strongly favored the IFFL model with a posterior probability of the IFFL model (and not
the PR model) of 1.0. However, for the cells treated with IR + nutlin-3a, the PR model
described the data similarly to the IFFL model (Figures 3E-H) and the posterior
probability for the IFFL model was substantially reduced to 0.70. Note that the IFFL
model reduces to the PR model when the level of the repressor or its effect are set to 0,
which likely explains the preference for this model, although to a much lesser extent,
even when the PR model can recapitulate the correlation functions in the data. This
observation validates our model prediction.

To further interrogate our proposed mechanism of p21 regulation, we returned to our
statistical models of p21 transcription. We found that, for the cells treated with IR alone,
the model based on the change in p53 was substantially superior (mean AUC = 0.82) to
the one based on absolute level of p53 (mean AUC = 0.64), as before (Figure 3I; p <
2.2E-16, paired Wilcoxon test). However, for the cells treated with IR + nutlin-3a, the
reverse was true (Figure 3J; p53 level: mean AUC = 0.77; p53 change: mean AUC =
0.63; p < 2.2E-16, paired Wilcoxon test). This observation provides further support for
our proposed mechanism that the p53-MDM2 interaction is necessary for the
transcriptional repression of p21.

The incoherent feedforward loop may confer beneficial functionality

We then sought to elucidate the functional consequences of p21 transcription being
governed by an IFFL. Previous theoretical®® and experimental® studies have proposed
that the type-1 IFFL increases the response rate of the transcriptional target gene. The
capability to rapidly enact cell cycle arrest upon detection of DNA damage would very
likely be advantageous to cells. We, therefore, investigated whether this scenario was
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the case for p21. Experimentally manipulating a system to test the effects of a specific
regulatory interaction in isolation, without affecting other properties of the system such
as steady state levels, is extremely challenging. However, such a controlled comparison
can be achieved using mathematical modeling®’. We thus employed mathematical
modeling to investigate the effects of the IFFL on the p21 response rate. To this end, we
modeled the dynamics of p53-dependent p21 protein expression with p21 production
governed either by PR or an IFFL (Materials and Methods). We selected the p21
production rates for the two models such that the “pseudo-steady state” levels of p21,
i.e. where the time-averaged p2l level remains constant and does not continue to
increase with additional p53 pulses, were approximately equal for both models. Using
these models, we found that the time taken for p21 protein expression to reach half the
value of its pseudo-steady state level for the PR model was approximately 15 h (Figure
4A) while the corresponding time for the IFFL model was 5 h (Figure 4B). The higher
p21 induction rate for the IFFL model is due to the production rate of p21 being higher
than for the PR model during the time taken for the levels of the repressor to
accumulate. This observation suggests that the IFFL indeed increases the rate of p21
induction, which would facilitate rapid cell cycle arrest following DNA damage.

It has also been proposed that the type-1 IFFL generates a large extent of noise®,
which would facilitate cells to enact “bet hedging”, a strategy to minimize the risk of
population extinction. Consistent with that pattern, p21 has been observed to exhibit
substantial heterogeneity in unstressed conditions, reminiscent of bet hedging*.
Comparing the p21-MS2 noise between cells treated with IR and cells treated with IR +
nutlin-3a revealed that inhibiting the p53-MDM2 interaction significantly decreased noise
in p21 transcription, when noise was measured by either the Fano factor (standard
deviation squared/mean) (Figure 4C) or the coefficient of variation (standard
deviation/mean) (Figure S4A). This finding suggests that the IFFL increases p21 noise.
However, given that nutlin-3a increases p53 protein stability and reduces p53 protein
noise (Figure S4B) the reduction in p21-MS2 noise upon addition of nutlin-3a to IR may
be solely due to effects on p53 noise and not the IFFL. We, therefore, compared the
ratio of the p21-MS2 noise to the p53 noise and found that the p21-MS2 to p53 protein
noise ratio was higher in cells treated with IR than when the IFFL is abrogated through
treatment with nutlin-3a when measuring noise using either the Fano factor (Figure 4D)
or coefficient of variation (Figure S4C). Both the p21-MS2 noise and p21-MS2 to p53
protein noise ratio were consistent between IR treated cells in the experiments (Figure
S4D-E). This observation suggests that MDM2-mediated transcriptional repression of
p21 enhances p21 transcriptional noise.

Another potential property of IFFLs is that they enable the transmission of multiple
signals in the dynamics of a single transcription factor, known as *“signal
multiplexing”®%*, when integrated into a larger network. The dynamics of a single
transcription factor could simultaneously encode two signals: one encoded in its
absolute level and the other in the change in its level. Target genes whose transcription
is governed by PR would decode the signal encoded in the absolute level and those
whose transcription is governed by an IFFL would decode the change in transcription
factor level. If multiple signals were indeed encoded in p53 dynamics, then we would
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expect that to decode these signals some p53 transcriptional target genes would be
regulated by PR and others by IFFL. To test this hypothesis, we performed a new,
mathematical model-based analysis of previously published RNA-seq time course data
of p53 transcriptional target genes®. Our modelling approach was based on
distinguishing between differences in mRNA expression of p53 target genes following
treatment with IR and IR + nutlin-3a that were due to differences in p53 levels alone and
increases in expression greater than what would be expected based on increased p53
level alone (Figure 4E). We modelled mRNA expression dynamics using ordinary
differential equations with transcription governed by either PR or IFFL and performed
model comparison individually for each p53 transcriptional target, previously defined
based on RNA-seq and TP53 chromatin immunoprecipitation (ChlP)-seq data®, using
approximate Bayesian computation (Figure 4F-G; Materials and Methods). This analysis
indicated a high posterior probability that p21 transcription was governed by a MDM2-
mediated IFFL (0.88). The agreement of this finding, made from bulk RNA-seq data,
with that made from our single cell time-lapse microscopy data validates the suitability
of this approach for determining whether the transcription of genes is governed by a
MDM2-mediated IFFL. We found that for 22% of p53 transcriptional target genes,
MRNA expression dynamics were best described by a MDM2-mediated IFFL model
(posterior probability of IFFL model > 0.5), whereas the remaining 78% were best
described by a PR model (Figure 4F-G). In addition to p21, the IFFL model was strongly
preferred for MDM2 (posterior probability = 0.91). This analysis provides evidence that,
for a subset of genes, the addition of nutlin-3a to IR results in gene expression changes
that are not solely dependent on changes in p53 dynamics, but also from the alleviation
of the MDM2-dependent transcriptional repression of p53 target genes. These findings
are consistent with a gene regulatory network structure that can decode a multiplexed
signal encoded in p53 dynamics.

To determine whether similar MDM2-mediated transcriptional repression may occur in a
subset of p53 target genes in other cell lines, we reanalyzed TP53 and MDM2 ChiP-seq
data of four different cell lines from a recent study®®, searching for overlapping TP53
and MDM2 peaks. Such overlapping peaks are likely necessary for MDM2-mediated
repression of p53-dependent transcription. Consistent with IFFL regulation of a subset
of p53 transcriptional target genes, we found both overlapping and non-overlapping
TP53 and MDM2 peaks in all of the cell lines (Figures 4H-l1 and S4F-G). Three of the 4
cell lines had overlapping TP53 and MDM2 peaks on the MDM2 gene and none had
overlapping TP53 and MDM2 peaks on the CDKN1A gene. These observations suggest
that the expression of a subset of p53 target genes may be regulated by a MDM2-
mediated IFFL, with the IFFL-regulated genes differing between different cells.

It is unclear what determines which p53 target genes have their expression regulated by
an IFFL. However, when analyzing the MCF-7 cell TP53 ChiIP-seq data, we noted that
p53 target genes that were inferred to be IFFL-regulated with high probability, CDKN1A
and MDM2, had a short distance between the TP53 binding site and transcription start
site (Figure 4G). We searched for a similar relationship in the TP53 and MDM2 ChlIP-
seq data and found that the TP53 binding sites for genes bound by both TP53 and
MDM2 were significantly closer to the transcription start sites (predominantly in regions
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designated promoters) than for genes bound by TP53 alone (predominantly in regions
designated enhancers) (LPS141 p = 3.5E-9, LPS853 p = 1.2E-13; Figures 4J-K). Co-
binding of TP53 and MDM2, facilitating transcriptional repression, may therefore
preferentially occur at gene promoters rather than enhancers.

Abrogating MDM2-mediated transcriptional repression of p21 inhibits and
reverses the G1-S transition

Therapeutically targeting the interaction between p53 and MDM2 is an active area of
research in oncology. This strategy is based on increasing p53 levels of p53 wild-type
cancer cells through inhibiting its MDM2-mediated degradation. However, the distinct
effects of abrogating the p21 IFFL by inhibiting the p53-MDMZ2 interaction have not been
studied. We therefore investigated the impact of nutlin-3a on p21 expression in more
detail. To disentangle the effects of inhibiting MDM2-mediated p53 degradation and
MDM2-mediated p21 transcriptional repression on the accumulation of p21, we
developed a combined theoretical and experimental modeling approach.

Theoretical modelling of p21 expression dynamics (Materials and Methods) predicts that
at pseudo-steady state with high concentrations of p53, the concentration of p21 is
given by

p21] ~ =
Per™ B

where a and f are the production and degradation rates of p21, respectively. This
relationship indicates that if nutlin-3a only increases p53 levels, without affecting the
p21 production rate per unit p53, then when [p21] is plotted against [p53] the y-
intercepts of IR and IR + nutlin-3a treated cells will be the same. Alternatively, if nutlin-
3a increases the production rate of p21 per unit p53, then the y-intercept of IR + nutlin-
3a treated cells will be greater than IR treated cells. Beyond detecting qualitative
differences, the equation enables the ratio of p21 production and degradation rates to
be inferred from measurements of p21 concentration. To test the validity of this theory
we plotted experimentally derived values of [p21] against [p53] using the data from
cells treated with IR and IR + nutlin-3a (Figures S3A-C). We used the data acquired
from the final 2.5 h of the experiment when p21 protein levels reach pseudo-steady. The
data clustered into two populations of cells for both conditions. This bimodal distribution
is expected as p2l1 has two different degradation rates, with a rapid degradation
occurring during S phase and a slower degradation during the remainder of the cell
cycle®, leading to different steady state levels. Indeed, as predicted by the theory, this
analysis gave rise to straight lines with slopes of 0 for both conditions (Figures 5A-B).
The y-intercepts of the lines differed, with the lines corresponding to the cells treated
with IR + nutlin-3a having greater y-intercepts (Figures 5A-B). This observation implies
that the addition of nutlin-3a increases the production rate of p21 substantially beyond
what would be expected based on the increased levels of p53 alone. This finding
provides further evidence to support our finding that MDM2 represses p53-dependent
p21 transcription.
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To this point our theory allowed us to infer the ratio of the production and degradation
rates of p21. Quantifying the p21 production rate, in the presence and absence of nutlin-
3a, enables further insights to be gleaned. In particular, previous theoretical models
have suggested that the G1-S transition can be reversed by the accumulation of p21 in
S-phase, achieved through loss of CDT**%*, which rapidly degrades p21 during S-
phase®. We considered that p21 accumulation during S-phase, and hence reversal of
the G1-S transition, could also be achieved through increasing its production rate to a
level higher than its degradation rate. Therefore, we performed an additional experiment
to measure the p21 degradation rate, which would enable inferring the p21 production
rates in the context of treatment with IR and IR + nutlin-3a. To measure the rates of p21
protein degradation in single cells, we exposed cells to siRNA targeting either p21 alone
or p53 and p21 at 20 h following IR (Figure S5A). This perturbation led to a two-phase
decay of p21 (Figure 5C). Initially p21 levels decreased slowly, followed by a rapid
decrease, presumably due to cells entering S phase during which CRL4°P"2-dependent
rapid degradation occurs®’. We inferred these two different decay rates in all cells (from
both conditions) by fitting a piecewise linear regression model to the log-transformed
expression level data (Figure 5C). The distribution of p21 degradation rates was
bimodal with peak degradation rates (inferred by Gaussian mixture modeling) of 0.16 h™*
and 3.09 h' (Figure 5D), corresponding to half-lives of 4.3 h and 0.2 h. These
degradation rates imply, based on the equation for steady state levels of p21, that the
production rates under IR and IR + nutlin-3a treatments are 520 a.u.h™* and 4880 a.u.h’
! respectively (Figure 5E).

Having inferred the two different p21 production and degradation rates allowed us to
mathematically decouple the effects of MDM2 on p53 levels and p21 production per unit
concentration of p53 by computing the levels of p21 under different combinations of
production and degradation rates. This analysis suggests that inhibiting MDM2-
mediated p53 degradation alone would be insufficient to cause p21 accumulation during
S-phase (Figure S5B). However, additionally inhibiting the transcriptional repression of
p21 will achieve p21 accumulation in S-phase (Figure 5F). This finding implies that the
pharmacological abrogation of the p2l1 IFFL will lead to cells remaining in or
transitioning to the G1 or GO phases of the cell cycle and that this would not be
achieved through increasing p53 alone without abrogating the IFFL.

To test this prediction, we computed cell cycle signature®® scores for previously
published RNA-seq time course data of cells treated with IR alone or IR + nutlin-3a®
using gene set variation analysis. This analysis indicated that cells treated with IR
predominantly arrest at the G2/M checkpoint whereas cells treated with IR + nutlin-3a
exit the cell cycle, arresting in GO (Figure 5G). We reasoned that this dramatic effect on
cell cycle progression should also lead to changes in cell morphology associated with
cell cycle phase, such as nuclear area. In cells that were treated with IR, the nuclear
area increased over time following treatment (p < 2E-16, paired t-test; Figures S5C-D),
suggestive of cell cycle progression. However, in cells that were treated with IR + nutlin-
3a the nuclear area decreased (p = 7.2E-6, paired t-test; Figures S5C-D). This
observation provides morphological evidence, in addition to the transcriptional evidence,
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of the divergent fates of cells treated with IR and IR + nutlin-3a. We corroborated this
morphological change by confirming that nuclear size transcriptional signatures were
decreased following treatment with IR + nutlin-3a, but not IR (Figure S5E). Together
these findings suggest that IR causes cells to undergo G2/M arrest, but abrogating the
p53-MDM2 interaction alters the fate of the cells to instead enter a GO arrest.
Importantly, while the effects of MDM2 on p53 degradation and transcriptional
repression are challenging to experimentally decouple, our theoretical modeling
supports the conclusion that the divergence in cell cycle progression is specifically
related to the MDM2-dependent transcriptional repression, rather than increased levels
of p53 alone.

Abrogating the p53-MDM2 interaction steers cells into a persister state

Having shown that abrogating the IFFL substantially altered p21 dynamics and cell
cycle progression, we next sought to investigate the relative contribution of these effects
to the global context of p53-mediated changes. We, therefore, compared transcriptome-
wide mMRNA expression time courses in cells treated with IR in the presence or absence
of nutlin-3a using RNA-seq data. Differential expression analyses of mMRNA time series
data® identified 1473 upregulated and 1188 downregulated genes upon addition of
nutlin-3a to IR (Figure 6A). This observation is consistent with our previous work
showing p53-dependent increases and decreases in expression of different sets of
genes following IR treatment in the same cell line®*. Analysis of the transcriptional
regulators of the differentially expressed genes (Materials and Methods) indicated that
the upregulated genes were enriched for transcriptional targets of p53 and p63 (Figure
6B), as expected. The downregulated genes were enriched for transcriptional targets of
E2F4 and LIN9 (Figure 6C). E2F4 and LIN9 are members of the DREAM complex that
represses transcription of cell cycle genes* and whose formation is dependent on
p21*2. This finding suggests that inhibiting the interaction between p53 and MDM2 with
nutlin-3a increases the levels of p21, activating the DREAM complex and repressing its
target genes. The fact that many of the differentially expressed genes are transcriptional
targets of E2F4 and LIN9 suggests that p21 plays a major role in the global gene
expression changes resulting from inhibiting the p53-MDM2 interaction.

Gene set variation analysis using the Hallmark pathways indicated nutlin-3a-dependent
downregulation of E2F and MYC targets and the G2M checkpoint, in addition to the
expected upregulation of TP53 (Figure S6A). This observation is consistent with the
previously identified antagonistic role of p53 on MYC in breast cancer®®. MYC is also
involved in nuclear size regulation, which may explain our earlier finding of nuclear
shrinkage upon treatment with IR + nutlin-3a. Downregulation of DREAM complex target
genes and MYC is associated with quiescent states such as embryonic diapause,
resistance of normal tissues*® and cancer cells® to therapy and treatment-tolerant
persister cells. We, therefore, studied persister cell signatures in our RNA-seq data. We
found that, for almost all persister cell signatures, IR + nutlin-3a increased upregulated
persister cell signatures and decreased downregulated persister cell signatures (Figure
6D). This finding suggests that adding nutlin-3a to IR shifts cells into a quiescent
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persister state, in large part mediated through abrogating p21 transcriptional repression,
leading to downregulation of DREAM target genes.

Finally, we tested whether the transcriptional differences induced by the addition of
nutlin-3a to IR, leading to the alleviation of MDM2-mediated repression of p21
transcription, were associated with treatment resistance, as suggested by the increase
in persister cell signature scores. We created two gene signatures, consisting of genes
either significantly upregulated or downregulated in IR + nutlin-3a versus IR treated
MCF-7 cells (Figure 6A). Both the upregulated and downregulated gene signatures
were associated with IR resistance in cell lines from the Cancer Cell Line
Encyclopedia® (p = 6.4E-6 and 1.5E-10, respectively; weighted means across multiple
primary tumor sites) (Figure 6E). In breast cancer patients from the METABRIC
cohort*’, the downregulated gene signature was associated with longer recurrence-free
(p = 7.1E-4) and overall (p = 0.0055) survival in patients not treated with adjuvant
therapy (Figures S6B-C) and shorter recurrence-free and overall survival in patients
treated with adjuvant chemo-radiation therapy (p = 0.021 and 0.021, respectively)
(Figure 6F-G). The association between the upregulated signature and recurrence-free
or overall survival was borderline significant in patients not treated with adjuvant therapy
(p = 0.051 and 0.044, respectively; Figures S6D-E) and was not significant in patients
treated with adjuvant chemo-radiation therapy (p = 0.7 and 0.39, respectively; Figures
S6F-G). These results are consistent with tumors with lower expression of genes
downregulated upon addition of nutlin-3a to IR being less proliferative and more
resistant to chemo-radiation therapy. Taken together, our findings support a model of
p21l-mediated downregulation of genes shifting cells into a quiescent state that is
resistant to cytotoxic therapy upon addition of nutlin-3a to IR.

Discussion
Revealing roles of network architecture in p53 signaling

The tumor suppressor gene p53 and its transcriptional target p21 are among the most
studied genes in biology. However, despite being the subjects of such extensive
investigation, how these genes control cell fate decisions that are vital to successful
outcomes of anti-cancer therapies are incompletely understood. Given the role of p21-
induced cell cycle arrest in treatment resistance, we aimed to uncover how
heterogeneous p53 dynamics are propagated to p21 dynamics using combined single
cell microscopy and computational modeling. We found that p21 transcription was far
better predicted by the change in p53 than absolute p53 level. Three types of three-
node network motif capable of fold-change detection have been observed in biology: the
IFFL, the nonlinear integral feedback loop, and the logarithmic sensor*®. Nonlinear
integral feedback loops enable fold-change detection in bacterial chemotaxis®®*°, but
have not been observed in gene regulation. Logarithmic sensors may play a role in
allosteric regulation®. Given that the IFFL architecture has previously been shown to
regulate transcription of other genes®?!, we focused our analysis on determining
whether expression of p21 transcription is governed in this way. Through constructing
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and comparing stochastic computational models of PR and IFFL network architectures
we determined that p21 transcription is indeed governed by an IFFL. We then proposed
that MDM2 binding to p53 is responsible for repression of p2l1 transcription and
successfully validated the need for p53-MDM2 binding to explain p21 transcription
dynamics. Pharmacological disruption of the IFFL inhibited and reversed the G1-S
transition leading to GO arrest instead of G2/M checkpoint arrest.

It is important to note that this shift in cell fate is specifically related to the perturbation of
the network structure and not just the altered p53 dynamics due to reduction in p53
degradation. Given that UV radiation produces similar p53 dynamics to the IR + nutlin-
3a treatment used but different cell fates (predominantly apoptosis rather than cell cycle
arrest)® in the same cell line, we suggest that transcriptional repression of p21 enabled
by MDM2 binding to p53 plays an important role in cell fate specification. UV radiation
activates ATR, which inhibits MDM2-dependent degradation of p53, but does not alter
MDM2 binding to p53 and, hence, the transcriptional activity of p53°2. Therefore, UV
radiation generates similar p53 dynamics to IR + nutlin-3a, but lower p21 induction.
However, this difference in cell fates could alternatively be related to different p53 post-
translational modifications in response to the different stimuli.

Beneficial properties of mode of regulation of p21 transcription

Whilst MDM2-dependent transcriptional repression of p53 target genes has been
observed previously, the reasons why p53 regulates its target genes in this manner has
never been understood. We have demonstrated for the first time how the mechanism of
p21 transcription can provide potential advantages to cells over simple positive
regulation. Specifically, our analyses indicated that the IFFL architecture facilitates rapid
cell cycle arrest and increases p21 noise. These findings, taken in combination with our
findings on the influence of p21 protein noise on escape from cell cycle arrest™®, suggest
that the IFFL enables a population of cells to rapidly undergo cell cycle arrest following
DNA damage and exhibit variability in the timing at which cells will exit cell cycle arrest,
and become sensitive to subsequent stresses, reducing the probability of population
extinction.

Moreover, our combined experimental and mathematical modelling of the transcriptional
dynamics of many p53 target genes found that while a small number of genes are
regulated by IFFL, most are instead regulated by PR -- or IFFL with only a mild effect of
MDM2 on repression of transcription. Such a difference in the modes of transcriptional
regulation would enable cells to decode a multiplexed signal encoded in p53 dynamics.
Our proposed model predicts that disrupting the IFFL through inhibiting the binding
between p53 and MDM2 would lead to “crosstalk” between the multiple signals encoded
in the p53 dynamics, with transcriptional target genes normally regulated by IFFL to
parse the change in p53 instead parsing the absolute level of p53, possibly altering cell
fates. This property of the p21 IFFL, inferred from bulk transcriptomics data, would be
interesting to explore in more detail in future work by performing single cell
measurements of multiple different p53 target genes.

12


https://doi.org/10.1101/2024.06.25.600070
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.25.600070; this version posted June 29, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Therapeutic implications

Our findings provide important insights for the design of therapeutic strategies based on
p53 activation. Due to the role of MDM2 in transcriptional repression of p21, but not
apoptosis genes, inhibiting the p53-MDM2 interaction may steer cell fates towards a
temporary GO arrest, rather than apoptosis, protecting cancer cells from cytotoxic
therapies targeting proliferating cells. In support of this assertion, p53 induction by
nutlin-3a predominantly leads to cell cycle arrest rather than apoptosis in many cell
lines>*>° and protects melanoma cell lines and patient-derived xenografts from mitotic
inhibitor-induced DNA damage in a p21-dependent manner®. MDM2 antagonists have
also been shown to inhibit the senescence associated secretory phenotype and
permanent cell cycle arrest®’. This finding could also be detrimental to successful
cancer therapy as induction of tumor cell senescence can increase survival, at least in
certain contexts. Given previous work showing that IR-induced senescence results from
p53 activation in the G2 phase of the cell cycle®, our finding that concurrent nutlin-3a
and IR administration leads to cells transitioning into the GO phase of the cell cycle
provides a possible explanation for this phenomenon. Alternative explanations include
the negative regulation of p53 on mTOR signaling®®. Our findings that nutlin-3a can
steer cells into a therapy-resistant quiescent state caution against the use of MDM2
antagonists concurrently with treatments targeting proliferating cells. Alternative
strategies for activating p53 in tumor cells, such as through inhibiting Wipl, may be
more likely to cause apoptosis, and hence be superior, to blocking the interaction
between p53 and MDM2, which may predominantly result in quiescence.

Our findings indicate that nutlin-3a induced quiescence could instead be exploited in the
context of treating p53 mutant tumors by protecting normal tissues from apoptosis and
senescence, without affecting cancer cells, thus widening the therapeutic window.
Normal cell senescence is responsible for cancer therapy-associated side effects and
can promote the aggressiveness of neighboring cancer cells®®, an effect which is
inhibited by MDM2 anatagonists®’. Therefore, steering cells into a temporary GO arrest,
rather than senescence, could be advantageous. This strategy is supported by murine
studies demonstrating associations between p21 expression and radioprotection of
normal tissue®*®® and accomplishing radioprotection by pharmacological transient p53
activation®. A similar approach has previously been proposed by using CDK4/6
inhibitors to protect normal tissues from radiation through the induction of
quiescence®®. However, successful normal tissue protection is highly sensitive to the
treatment administration schedule®’. As such, detailed preclinical studies of the
schedule-dependent effects of MDM2 antagonists on normal tissue protection should be
performed prior to their clinical evaluation in this context.

Limitations
Our experiments were performed using MCF-7 cells and so the generality of our
findings needs to be ascertained in future investigations. Our analysis of TP53 and

MDM2 ChlP-seq data from four additional cell lines suggests that different p53 target
genes may be IFFL-regulated in different cell lines. Therefore, pharmacologically
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targeting MDM2 may result in different cell fates in different cell lines, with implications
for the previously discussed therapeutic strategies. While the cumulative evidence
provided by our study and others indicates that MDM2 antagonists predominantly lead
to cell cycle arrest rather than apoptosis, this is not universally true. Concurrent
radiation and MDM2 antagonist therapy induced substantial apoptosis and durable
tumor regressions in a patient-derived xenograft model of adenoid cystic carcinoma®.
Note also that MCF-7 rarely undergo apoptosis in response to IR due to caspase-3
deficiency, which could potentially affect the fate of the cells following IR, causing them
to undergo cell cycle arrest rather than apoptosis. However, the fact that we observed
transcriptional changes consistent with treatment-tolerant persister cells following IR +
nutlin-3a suggests that this treatment would be unlikely to predominantly cause
apoptosis in a caspase-3 proficient context.

Conclusions

In conclusion, we demonstrated that p21 transcription is governed by an IFFL mediated
by MDM2 binding to p53, enabling rapid p21 induction following DNA damage and
increasing noise in p21 transcription. Pharmacologically abrogating the IFFL leads to
GO arrest, likely protecting cells against treatments that target proliferating cells. These
findings suggest that combining inhibitors of the p53-MDM2 interaction with agents
causing double strand breaks may be beneficial in the treatment of p53 mutant, rather
than WT, tumors and that alternative p53 activation approaches may be superior in the
context treating of p53 WT tumors.
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Figure legends

Figure 1: Transcription of p21 is dependent on the change in p53 rather than its
absolute level. (A) p53 protein dynamics, imaged using cyan fluorescent protein, for a
representative cell. (B) p21 transcription dynamics, imaged using the MS2 system, for
the same representative cell as in (A). (C) p21 protein dynamics, imaged using mCherry
fluorescent protein, for the same representative cell as in (A). (D) Smoothed and
detrended p53 protein expression for the same cell as in (A). (E) Change in p53 protein
expression for the same cell as in (D). (F) Inferred p21 gene state dynamics for the
same cell as in (A) and (B). The gray line shows the p21-MS2 data from (B) and the
pink line shows the fit of the hidden Markov model to the data. The y-axis scale
indicates the level of the MS2 signal (gray) and additionally the fit of the two-state
hidden Markov model (pink), with a value of O indicating the “OFF” state and 1
representing the “ON” state. (G) Logistic regression model estimating the binary p21
gene state (in (F)) based on the (detrended) absolute p53 expression level (in (D)). (H)
Logistic regression model estimating the binary p21 gene state (in (F)) based on the
change in the (detrended) p53 expression level (in (E). (I) Predictive performance of the
logistic regression models based on the absolute p53 expression level and change in
p53 expression level for all of the cells (all dose levels combined). AUC = area under
receiver operating characteristic curve. See also Figure S1.

Figure 2: Transcription of p21 is governed by an incoherent feedforward loop that
enables p53 change detection. (A) Diagram of the positive regulation (PR) model of
p21 transcriptional regulation. Switching of the CDKN1A gene from the “OFF” to the
“ON” state depends solely on p53 bound to the promoter. Created with BioRender.com.
(B) Diagram of the incoherent feedforward loop (IFFL) model of p21 transcriptional
regulation. p53 induces expression of a repressor (R) in addition to switching the
CDKNZ1A gene from the “OFF” to the “ON” state. Over time, R accumulates and inhibits
CDKN1A gene activation by binding (either directly or indirectly) to the DNA. Created
with BioRender.com. (C) Example simulation of p21 transcription dynamics under the
PR model. The gray line indicates the p53 dynamics, the black line indicates the
measured p21-MS2 dynamics and the blue line indicates the simulated p21-MS2
dynamics. (D) Example simulation of p21 transcription dynamics under the IFFL model.
The gray line indicates the p53 dynamics, the black line indicates the measured p21-
MS2 dynamics and the blue line indicates the simulated p21-MS2 dynamics. (E) p21-
MS2 autocorrelation function for the same cell as in (C). The black line shows the data
and the dark blue line shows the positive regulation model simulation for an example set
of parameter values. (F) p21-MS2 autocorrelation function for the same cell as in (D).
The black line shows the data and the orange line shows the incoherent feedforward
loop model simulation for an example set of parameter values. (G) p53-p21-MS2 cross-
correlation function for the same cell as in (C). The black line shows the data and the
dark blue line shows the positive regulation model simulation for an example set of
parameter values. (H) p53-p21-MS2 cross-correlation function for the same cell as in
(D). The black line shows the data and the orange line shows the incoherent
feedforward loop model simulation for an example set of parameter values. (I) Mean
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p21-MS2 autocorrelation function for 10 Gy treated cells for the PR model. (J) Mean
p53-p21-MS2 cross-correlation function for 10 Gy treated cells for the PR model. (K)
Mean p21-MS2 autocorrelation function for 10 Gy treated cells for the IFFL model. (L)
Mean p53-p21-MS2 cross-correlation function for 10 Gy treated cells for the IFFL
model. In (I) — (L) the colored lines represent the correlation functions from the
simulations that are closest to the correlation functions from the data and the shaded
areas represent the 95 percentile confidence intervals of the correlation functions from
the simulations. See also Figure S2.

Figure 3: The p53-MDM2 interaction is necessary for transcriptional repression of
p21. (A) Mean p21-MS2 autocorrelation function for IR treated cells for the PR model.
(B) Mean p53 - p21-MS2 cross-correlation function for IR treated cells for the PR model.
(C) Mean p21-MS2 autocorrelation function for IR + nutlin-3a treated cells for the PR
model. (D) Mean p53 - p21-MS2 cross-correlation function for IR + nutlin-3a treated
cells for the PR model. (E) Mean p21-MS2 autocorrelation function for IR treated cells
for the IFFL model. (F) Mean p53 - p21-MS2 cross-correlation function for IR treated
cells for the IFFL model. (G) Mean p21-MS2 autocorrelation function for IR + nutlin-3a
treated cells for the IFFL model. (H) Mean p53 - p21-MS2 cross-correlation function for
IR + nutlin-3a treated cells for the IFFL model. In (A) — (H) the colored lines represent
the correlation functions from the simulations that are closest to the correlation functions
from the data and the shaded areas represent the 95 percentile confidence intervals of
the correlation functions from the simulations. (I) Predictive performance of logistic
regression models of p21 gene state based on p53 expression level and change in p53
expression level for IR treated cells. (J) Predictive performance of logistic regression
models of p21 gene state based on p53 expression level and change in p53 expression
level for IR + nutlin-3a treated cells. AUC = area under receiver operating characteristic
curve. See also Figure S3.

Figure 4. The incoherent feedforward loop increases p2l expression response
rate and noise and governs a subset of other p53 target genes. (A) Simulated p21
protein dynamics with p21 production governed by PR. (B) Simulated p21 protein
dynamics with p21 production governed by an IFFL. (C) Longitudinal measurements of
p21-MS2 noise, as measured by the Fano factor, in cells treated with IR and IR + nutlin-
3a. (D) Longitudinal measurements of p21-MS2 to p53 protein noise ratio, with noise
measured by the Fano factor, in cells treated with IR and IR + nutlin-3a. (E) Approach to
determining whether the transcription of p53 target genes are governed by PR or IFFL.
Under PR the increased expression of a gene upon adding nutlin-3a to IR would be due
to the increase in p53 levels alone. Under IFFL the increased expression would be
greater than that expected from the increase in p53 levels alone. Created with
BioRender.com. (F) Positive regulation (dark blue) and incoherent feedforward loop
(orange) model simulations for approximate Bayesian computation. The plot shows the
relationship between gene expression following IR + nutlin-3a and IR alone for each
model and the corresponding measurements for p53 transcriptional target genes (light
blue). (G) Time course of mMRNA expression following IR + nutlin-3a. (H) Venn diagram
of TP53 and MDM2 ChiIP-seq peaks in the LPS141 liposarcoma patient-derived cell
line. (I) Venn diagram of TP53 and MDM2 ChlP-seq peaks in the LPS853 liposarcoma
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patient-derived cell line. (J) Distance between TP53, MDM2 and overlapping TP53 and
MDM2 (TP53.MDM2) ChlP-seq peaks and transcription start site in LPS141
liposarcoma patient-derived cell line. (K) Distance between TP53, MDM2 and
overlapping TP53 and MDM2 (TP53.MDM2) ChiIP-seq peaks and transcription start site
in LPS853 liposarcoma patient-derived cell line. P(IFFL) — posterior probability of IFFL
model; IFFL - posterior probability of IFFL model greater than 0.5; TSS Distance —
distance between the transcription start site and the closest p53 ChiP-seq peak. See
also Figure S4.

Figure 5: Abrogating MDM2-mediated transcriptional repression of p21 prevents
and reverses the G1-S transition. (A) Relationship between p21 protein and p53
protein averaged over time points at pseudo-steady state for single cells treated with 10
Gy IR or 10 Gy IR + nutlin-3a. The circular and triangular points designate the first and
second components of the mixture distributions, respectively. The contours show the
distirbutions of the data. The lines show linear regression fits to the data. (B) Slopes
and y-intercepts of the regression lines in (A). The dotted line indicates the the value of
the slope predicted by the mathematical model. (C) Fit of the piecewise linear
regression model to p21 protein dynamics following addition of p21 siRNA IR treated
cells to infer p21 protein degradation rates for an example cell. (D) Distribution of
inferred p21 protein degradation rates for all cells. The histogram shows the inferred
degradation rates and the line shows a fit of a Gaussian mixture model to the rate
distribution. (E) Inferred p21 protein production rates for MDM2-repressed and
unrepressed p21 production, inferred from the inverse variance weighted mean of the
inferred production rates in cells with high and low p21 degradation rates. (F) Prediction
of p21 protein levels from abrogating the IFFL without altering p53 protein levels in IR
treated cells in S phase. The orange points (and error bars) show the predictions (and
their standard errors) and the blue contours show the distribution of the data for IR
treated cells (same as in (A)). Abrogating the IFFL without altering p53 levels is
predicted to increase p21 levels of S phase cells to the levels of those in non-S phase
cells. (G) Gene set variation analysis of cell cycle phase transcriptional signatures®. IR
— ionizing radiation; GSVA — gene set variation analysis. See also Figure Sb.

Figure 6: Abrogating the p53-MDM2 interaction steers cells into a persister state.
(A) RNA-seq differential expression of IR + nutlin-3a versus IR treated MCF-7 cells. (B)
Transcriptional regulator enrichment analysis for differentially upregulated genes in IR +
nutlin-3a versus IR treated MCF-7 cells. (C) Transcriptional regulator enrichment
analysis for differentially downregulated genes in IR + nutlin-3a versus IR treated MCF-
7 cells. (D) Gene set variation analysis of IR and IR + nutlin-3a treated MCF-7 cells with
cancer persister cell gene sets>>®. (E) Linear regression model coefficient evaluating
the association between radiation response (area under radiation dose-response curve)
and GSVA score of genes upregulated and downregulated in IR + nutlin-3a versus IR
treated MCF-7 cells, in cell lines from the Cancer Cell Line Encyclopedia®. The
weighted mean is the inverse variance weighted mean of the coefficients across all
primary tumor sites. The size of the points corresponds to the number of cell lines. (F)
Association between recurrence-free survival and GSVA score of genes downregulated
in IR + nutlin-3a versus IR treated MCF-7 cells, in breast cancer patients treated with
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chemo-radiation therapy from the METABRIC cohort*’. (G) Association between overall
survival and GSVA score of genes downregulated in IR + nutlin-3a versus IR treated
MCF-7 cells, in breast cancer patients treated with chemo-radiation therapy from the
METABRIC cohort*’. The p-values in (F) and (G) are from Cox proportional hazards
regression models with the signature score, as a continuous variable, as the covariate.
OR - odds ratio; GSVA — gene set variation analysis. See also Figure S6.

STAR Methods
Live cell fluorescence microscopy

Live cell fluorescence microscopy, image analysis and quantification of p53 and p21
proteins and p21 transcription following treatment with IR in MCF-7 cells was performed
as previously described®™. In an initial experiment, we treated cells with either 2.5 Gy, 5
Gy or 10 Gy of IR and imaged them for 45 h with a 15 minute temporal resolution
(Figures 1, 2, S1A-1, S2A-H, S4D-E). In a second experiment, we treated cells with 10
Gy of IR and imaged them for 15 h with a 2 minute temporal resolution (Figure S1J, S2I-
L). In a third experiment to validate the computational model predictions, cells were
treated with 10 Gy IR alone or in combination with 10 uM nutlin-3a and imaged for 21 h
with either a 15 minute (p53, p21-MS2) or 30 minute (p21) temporal resolution (Figures
3, 4C-D, 5A-F, S3, S4A-C, S5B-D). In these three experiments, 835, 945 and 500 cells,
respectively, were successfully segmented and tracked for the duration of the time
course. “Outlier” cells with maximum signal intensity greater than 2 interquartile ranges
above the 75™ quartile, on the logso scale, were removed. This exclusion criterion led to
the removal of 5/835, 2/945 and 1/500 of the cells in the first, second and third
experiments, respectively. As the fraction of excluded cells was very small, including
these cells would minimally affect the results.

Predictive modeling of p21 gene state based on absolute and change in p53
protein level

Following the “random telegraph” model of gene transcription, we assumed that the p21
gene could be in one of two states: “ON” and “OFF”. We inferred the dynamics of the
p21 gene state for each cell by fitting a 2 state hidden Markov model to the p21-MS2
signal for that cell assuming two states and a Gaussian error distribution.

We smoothed the p53 signal using loess smoothing with degree 2 and span 0.1. These
parameters were chosen as they were found to successfully remove the spikes in the
signal without affecting the p53 oscillations. To remove long-term trends in the p53
signal that were present in IR treated cells, which were deemed likely technical artifacts
rather than representing true p53 protein dynamics, we performed b-spline regression
with 4 knots on the smoothed p53 signal and subtracted the fitted spline from the
smoothed p53 signal. This number of knots was selected as it was found to successfully
remove the longer-term trend in the signal while retaining the p53 oscillations.
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Delays between the p53 and p21-MS2 signals may occur for biological reasons, such
as the time taken for p53 to bind the promoter and recruit the transcriptional machinery,
and technical reasons, for example, differences in the maturation times of the different
fluorescent reporters. Such delays could bias models. We, therefore, computed the
cross-correlation between the p53 and p21-MS2 time course for each cell and shifted
the p53 signal to achieve the maximum correlation between the signals. We placed a
constraint on the maximum size of the shift of 2.25 h, half the period of p53 oscillations
in human cells, to prevent aligning incorrect p53 pulses with bursts of p21 transcription.

We then fit two different univariable logistic regression models to the binary p21 gene
state for each cell. For the first model we used the absolute (detrended and shifted) p53
level as the covariate and for the second model we used the change in (detrended and
shifted) p53. The predictive performance of the models was assessed using the area
under the receiver operating characteristic curve and pairwise comparisons of the
predictive performances of the models were performed using paired Wilcoxon tests.

Stochastic modeling of p21 transcription dynamics

As the number of nascent p21 RNA were very small we modeled p21 transcription
dynamics as stochastic processes, employing continuous time Markov modeling. We
chose to use the p53 data as input into the model rather than explicitly modeling the p53
dynamics for two reasons. Firstly, the dynamics of p53 are complex, being affected by
multiple other proteins for which we did not have data. Secondly, it allowed the
modeling to be informed by the data, reducing the risk of removing biologically
informative dynamics.

In the PR model, the p21 promoter can switch between an “OFF” state (Porr) and “ON”
state (Pon), where the switching to the ON state is dependent on the level of p53. RNA
molecules (RNA) are produced at the transcription site only when the promoter is in the
“ON” state. The positive regulation model is defined by the following reactions with per
capita rates:

k
Promoter switching off: Pyn i Pypr
o ) konp53(t)

Promoter switching on: Popr . Pyn
Production of p21 nascent RNA: RNA o JRNA+1
Release of p21 nascent RNA: RNA Frns RNA -1
The master equation is given by

IP(x, tlxe b)) N

X, t|xo,
TOO — Z[aj(x —v;))P(x — v, t]xo, t0) — a; ()P (x, t]xo, to)]
j=1

where the state vector for the system is
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POFF
X =| Pyy
RNA

and the set of reactions is described by the state-transition matrix

+1 -1 0 O
v=(—1 +1 0 0)

0 0 +1 -1

and propensity vector
koprx[2]
konp53(t)x[1]
arnax[2]
Bruax(3]

1
x(0) = (O)
0

The IFFL model is similar to the PR model, but instead of the promoter switching from
the “OFF” to the “ON” state being dependent on the level of p53, it is dependent on the
level of p53 above the level of a repressor protein (R) whose production is dependent
on the level of p53. The model makes the simplifying assumptions of a single step in the
production of the repressor (rather than explicitly modeling transcription and translation)
and rapid and strong binding of the repressor to p53. The IFFL model is defined by the
reactions with the following per capita rates:

The initial state vector is

korr

Promoter switching off: Pon Popr
Promoter switching on: Pypr Kon (PSSO RO Pyn
Production of p21 nascent RNA: RNA RNA L RNA+1
Release of p21 nascent RNA: RNA P RNA -1
Production of repressor: R TRepresor R+ 1
Degradation of repressor: R Prepressor g _ 4

The state vector for the system is
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POFF
PON

RNA
R

X =

and the set of reactions is described by the state-transition matrix

+1 -1 0 0 0
-1 +1 0 0 O
0 0 +1 -1 0
0 0 0 0 +1 -1

Vv =

O OO

and propensity vector

koprx[2]
kon(P53(6) = R(D)) " x1]
arnax[2]
Bruax(3]
aRepressorp53 (t)
IBRepressorx[Ll’]

The initial state vector is

1
%(0) = 8
p53(0)

Simulations were performed using the Gillespie stochastic simulation algorithm. For
each run of the simulation, we randomly sampled parameter values from the prior
distributions, defined in Supplemental Table 1, and simulated p2l transcription
dynamics for the same number of cells as in the dataset that the simulations were being
compared to. We performed 5000 simulation runs for each model. To perform the
simulations of the time inhomogeneous continuous Markov process we made minor
modifications to the ssar R package to increase its speed for our task. This adapted
version of the package is available at https://github.com/jamiedean/ssar.

Model comparison by approximate Bayesian computation random forest
classification

To select between the two alternative models, we performed model comparison using
the approximate Bayesian computation random forest method’® implemented in the
abcrf version 1.9 R package. To formally compare the model simulations to the data we
computed the p21 nascent RNA concentration autocorrelation and the cross-correlation
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between the p53 protein concentration and p21 nascent RNA concentration for all
individual cells and took the mean of these functions over all cells, for both the
simulations and the data. To account for the maturation time of the p53-tagged
fluorescent protein, we advanced the p53 protein concentration time course by 50
minutes relative to the p21 nascent RNA concentration prior to calculating the cross-
correlations for the simulations. We did not explicitty model maturation of fluorescent
proteins to minimize the number of model parameters. The auto- and cross-correlation
functions were chosen as they incorporate the information from the same single cells
over time’’, unlike the moments of distributions over all of the cells at single timepoints.
The correlation function values at the first five peaks and troughs of the mean auto-
correlation function and the five peaks and troughs closest to a lag of O of the mean
cross-correlation function were chosen as the summary statistics for Bayesian model
comparison. The random forest model used 3000 trees (a number chosen because the
out-of-bag performance had converged with this number of trees) and added linear
discriminant analysis to the summary statistics. We only performed model comparison
and did not perform parameter inference as this requires a much larger number of
parameter sets, and therefore simulations, which would take several months with our
available hardware.

Delay differential equation models of p21 dynamics

Delay differential equation models of p53 and p21 dynamics were developed to perform
a mathematically controlled comparison of the effect of the IFFL on the p21 induction
rate. The functional form of our model was inspired by two previous models, one of p53
dynamics, incorporating activation of p53 by phosphorylated ATM (pATM) and negative
regulation by the p53 transcriptional target genes MDM2 and Wip1’®, and another of
p21 dynamics, incorporating a bistable switch between p21 and CDK2™. We added two
alternative p21 protein compartments, with p21 production governed either by PR
(p21pR) or IFFL (p21||:|:|_):

d [pS 3 inactive ]
dt

[pATM]"s )

= — Ompi MDM2 53inac ivel — Ps 53inac ive n
By — Ampil Ilp tive] = Bsp[P t ]([pATM]”S-I-TSS

+ awpa[Wipl] [p53active] - api [p53inactive]

d[p53active] [pATM]nS .
T - ﬂsp [p53inactive] [pATM]nS + Tsns - OCWpa [Wlpl] [p53active]
- 6{‘mpa[pssactive]
d[MDM2]
T = ﬁm[p53active (t - Tm)] + ﬁmi - asm[pATM] [MDMZ] - am[MDMZ]
d[Wipl] ,
T = ﬁw [psgactive (t - Tw)] — Qy [Wlp]-]
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d[pATM] [Wip1]™w
——— = f, — a,|pATM| — a ATM
dt ﬁs s[p ] ws [p ] [Wipl]ns n T]::W
d[p21p] CDK24% 0 PR
TPR = fR [p53active (t - Tc)] — ac [p21PR] - AﬁS CDK2n2 ey an
activity,PR + 2
_ Kyt
Where CDKZactivity,PR =as (log(p21PR+1)n1+KIll)
d[p21;pp, ]
T = ﬁgFFL([psgactive (t - TC)] - [MDMZ(t - TC)])+ — Q. [p21IFFL]
AB ( CDK ZZZtivity,IFFL )
- 3 n n
CDKZaitivity,IFFL + KZ ’
_ Kyt
where CDKzactivity,IFFL = a3 (log(P211FFL+1)n1+Kr1>

The model parameter values and initial conditions used are given in Supplemental
Table 2. We chose the same parameter values and initial conditions as those used in
the original publications as these had previously been shown to reproduce the relevant
experimental measurements, with the following exceptions: (i) we selected the value for
the p21 production rate under positive regulation (8Z®) and scaling of the CDK2-
dependent p21 degradation (1) to produce similar p21 dynamics as observed in our
data; (i) we selected the p21 production rate under incoherent feedforward loop
regulation (BFFL) to produce a pseudo-steady state level of p21 matching that under
positive regulation; (iii) we selected the time delay in p21 production (z,.) to match that
of MDM2. The model was implemented in Julia using the DifferentialEquations package.
Note that neither the details of the part of the model that produces the p53 oscillations
nor govern p2l degradation affect the relationship between IFFL regulation of p21
production and increased response rate. Alternative mathematical models of p53
dynamics and p21 degradation, demonstrate the same relationship between the mode
of p21 regulation and response rate (confirmed when constructing this model).

Inferring the mode of transcriptional regulation of p53 target genes

Time course RNA-sequencing data and p53 protein levels of MCF-7 cells treated with
IR and IR + nutlin-3a were obtained from a previous study®. The p53 proteins were
smoothed using a smoothing spline with 12 knots, a number selected based on
successfully capturing the known patterns of p53 dynamics following IR and IR + nutlin-
3a.

The dynamics of p53 transcriptional target gene mRNA expression, M, were modelled
using ordinary differential equation models with transcription governed by either PR or
IFFL:
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dMp _ a.p53;z(t)
dt p53,:(t) +K

_ﬁ'MIR

dMIR+nutlin,PR _ . 053 g+ nutlin (1)
dt p531R+nutlin (t) + K

- B MIR+nutlin,PR

AMig snutiingrre (@ + Y(©)). P53 g 4nuttin (0
- - ﬂ MIR+nutlin,IFFL

dt p531R+nutlin(t) +K

0 t<3
y(t)_{y t>3

where « is the transcription rate, § is the degradation rate, K is the Michaelis-Menten
constant, and y is the increase in transcription rate due to inhibition of transcriptional
repression in the presence of nutlin-3a. The time dependence of y is due to nutlin-3a
being administered 3 h after IR administration.

MRNA expression dynamics were simulated under both models for 10,000 different
combinations of parameter values, with parameters sampled from the prior distributions
defined in Supplemental Table 3. Model comparison was performed using approximate
Bayesian computation random forest method’® implemented in the abcrf version 1.9 R
package. The mRNA levels at each timepoint under both treatment conditions were
used as the summary statistics. For the data, the mean values across the two replicates
were used. The random forest model used 3000 trees (a number selected because the
out-of-bag performance had converged with this number of trees) and added linear
discriminant analysis to the summary statistics.

ChlIP-seq data analysis

TP53 and MDM2 ChiP-seq data of four cell lines were obtained from a previous study*®.
Overlaps between TP53 and MDM2 peaks and distances from the centers of TP53
peaks to transcription start sites were computed using the ChIPpeakAnno version
3.34.1 R package, with genes annotated using the
TxDb.Hsapiens.UCSC.hg38.knownGene version 3.17.0 R package. The analysis of
distances between TP53 peaks and transcription start sites was not performed for the
HCT116 and U20S cell lines as the number of overlapping TP53 and MDM2 peaks was
too small (3 and 4 overlapping TP53 and MDM2 peaks, respectively) to perform a
meaningful statistical analysis.

Theoretical modeling for inference of p21 production and degradation rates
To infer p21 production and degradation rates from timelapse microscopy data, we

begin by assuming that p21 protein concentration, [p21], is described by the ordinary
differential equation
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d[p2 53
Pl = ap Do — BIp21] (1)

dt [p53]+K

where « is rate of production of the p21 protein, K is the Michaelis-Menten constant and
p is the degradation rate of the p21 protein. At pseudo-steady state, % ~ 0, and
equation (1) can be rearranged to give

~ @ [p53]
[p21] = B [p53]+K

)
If [p53] >» K, then

p21] ~ % 3)
Therefore, given the assumptions of this model, for sufficiently high levels of p53,
plotting [p21] against [p53] would give rise to a straight line with slope of 0 and y-

intercept of % If this theoretical insight is correct, and assuming that p21 degradation

rate is unaffected by nutlin-3a, this argument would enable the relative difference in the
p21 production rate between cells treated with IR alone and IR + nutlin-3a to be
inferred. Measuring the degradation rate of p21 (method described below) enables the
absolute p21 production rates in the absence and presence of nutlin-3a to be inferred

by
a ~ f[p21] 4

As p21 has two different degradation rates: rapid degradation in S phase of the cell
cycle and slow degradation in the remainder of the cell cycle®’, Gaussian mixture
models with 2 components were fit to the [p21] data for each treatment condition. For
each treatment condition, the p21 production rate was inferred separately for each of
the two mixture components and the inverse variance weighted mean was used to
combine these estimates into a single production rate estimate.

To predict the effect of abrogating MDM2-mediated transcriptional repression without
affecting p53 degradation, and therefore p53 levels, in S phase cells (rapid p21
degradation), we multiplied the p21 levels of IR treated cells in the mixture component
with lower p21 levels by the ratio of production rates inferred for IR + nutlin-3a and IR
treated cells (Figure 5F). To predict the effect of abrogating MDM2-mediated p53
degradation without affecting transcriptional repression, we added the difference in the
mean p53 levels between IR + nutlin-3a and IR treated cells to the p53 levels of IR
treated cells in the mixture component with lower p21 levels (Figure S5B). In both cases
we computed standard errors by propagating errors in the rate and protein steady state
level estimates.

Measurement and inference of p21 degradation rates
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MCEF-7 cells were treated with IR and then imaged with a 15 minute temporal resolution
with 40 nM siRNA targeting either p21 alone or p53 and p21 at 20 h. Piecewise linear
regression models were fit to the log-transformed p21 protein signal versus time from
27.5 h (to allow time sufficient time for p21 protein production to be inhibited) for each
cell individually using the dpseg version 0.1.1 R package. The slopes of the first two
lines were taken to be the low and high degradation rates for each cell. A Gaussian
mixture model with 2 components was fit to the distribution of inferred degradation rates
(combining cells from both datasets as there was the degradation dynamics were the
same under both conditions) using the mclust version 6.0.1 R package.

RNA-sequencing data analysis

Raw RNA-seq time course data of MCF-7 cells sequenced from 3 h to 12 hin 1 h
intervals following treatment with IR and IR + nutlin-3a* were downloaded from the
Gene Expression Omnibus (GSE100099). Expression of transcripts was quantified
using Salmon version 1.1.0”° with GENCODE release 33% Homo sapiens GRCh38 for
the reference transcriptome annotation. Differential expression analysis was performed
to test for differences in gene expression over time between treatments using the
likelihood ratio test, with expression ~ time + replicate + treatment + treatment:time as
the full model and expression ~ time + replicate + treatment as the reduced model, in
the DESeq2 version 1.40.2 R package.

Transcription factor enrichment analysis

Transcription factor enrichment analysis was performed using the TFEA.ChIP version
1.20.0 R package®™ with the ReMap2022+EnsTSS+CellTypeEnh.Rdata database
accessed from
https://qgithub.com/LauraPS1/TFEA.ChIP_downloads/tree/master/R%20Databases.
Over-representation analysis of transcriptional regulators for significantly upregulated
and downregulated genes was performed. Upregulated and downregulated genes were
defined as those with a differential expression adjusted p-value less than 0.05 and a
positive or negative estimates of differences in gene expression over time, respectively.
Genes with a differential expression adjusted p-value greater than 0.5 were selected as
control genes.

Transcriptional signatures

Transcriptional signature scores were calculated with gene set variance analysis,
implemented in the GSVA version 1.48.3 R package. Cell cycle phase®, nuclear size®?
and persister cell signatures® % were obtained from the referenced studies.

Gene expression signatures were created for genes significantly upregulated and
downregulated in IR + nutlin versus IR treated cells with an adjusted p-value of less
than 0.05 and effect size of magnitude greater than 0.5. The associations between the
upregulated and downregulated gene expression signatures and cell line radiation
response were measured by fitting linear regression models with area under the
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radiation dose response curve as the outcome variable and the gene set variance
analysis signature scores as the covariate, using data from the RadioGx version 4.2.0 R
package®®. Separate regression models were fit for cell lines from different primary
disease sites, for disease sites with at least 10 cell lines, and an inverse variance
weighted mean coefficient across all of the primary disease sites calculated (Figure 6E).

The associations between the upregulated and downregulated gene expression
signatures and breast cancer patient recurrence-free and overall survival were
measured by fitting Cox proportional hazards regression models with the gene set
variance analysis signature scores as the covariates, using data from the METABRIC
cohort”” (Figures 6F-G and S6B-G). Patients treated with hormone therapy (n = 1216)
were excluded as hormone therapy could potentially confound inference of cytotoxic
therapy response, leaving 311 patients receiving no adjuvant therapy and 173 patients
treated with radiation and chemotherapy.

Materials availability

This study did not generate new unique reagents.

Data and code availability

Data and code are available at https://github.com/jamiedean/p21-iffl-regulation.
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