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2 

ABSTRACT 26 

Background: Short-read RNA sequencing (RNAseq) has widely been used to sequence RNA 27 

from a wide range of different tissues, developmental stages and species. However, the 28 

technology is limited by inherent biases and its inability to capture full-length transcripts. Long-29 

read RNAseq overcomes these issues by providing reads that can span multiple exons, resolve 30 

complex repetitive regions and the capability to cover entire transcripts. Unfortunately, this 31 

technology is still prone to higher error rates. Noncoding RNA transcripts are highly specific to 32 

different cell types and tissues and remain underrepresented in current reference annotations. 33 

This problem is exacerbated by the dismissal of sequenced reads that align to genomic regions 34 

that do not contain annotated transcripts, resulting in approximately half of the expressed 35 

transcripts being overlooked in transcriptional studies. 36 

Results: We have developed a pipeline, named HyDRA (Hybrid de novo RNA assembly), which 37 

combines the precision of short reads with the structural resolution of long reads, enhancing the 38 

accuracy and reliability of custom transcriptome assemblies. Deep, short- and long-read RNAseq 39 

data derived from ovarian and fallopian tube samples were used to develop, validate and assess 40 

the efficacy of HyDRA. We identified more than 50,000 high-confidence long noncoding RNAs, 41 

most of which have not been previously detected using traditional methods. 42 

Conclusions: HyDRA’s assembly performed more than 40% better than a similar assembly 43 

obtained with the top-ranked stand-alone de novo transcriptome short-read-only assembly tool and 44 

over 30% better than one obtained with the best-in-class multistep short-read-only approach. 45 

Although long-read sequencing is rapidly advancing, the vast availability of short-read RNAseq 46 

data will ensure that hybrid approaches like the one implemented in HyDRA continue to be 47 

relevant, allowing the discovery of high-confidence transcripts within specific cell types and 48 

tissues. As the practice of performing hybrid de novo transcriptome assemblies becomes 49 

commonplace, HyDRA will advance the annotation of coding and noncoding transcripts and 50 

expand our knowledge of the noncoding genome. 51 
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 52 

BACKGROUND 53 

Short-read RNA sequencing (RNAseq) has revolutionized the transcriptomic era due to its high-54 

throughput, affordability and low error rates1. However, a limitation of short-read RNAseq lies in its 55 

dependency on fragmenting the original transcript molecules. Reassembling and quantifying these 56 

sequenced reads, typically of ~50 to ~500 nt in length, still poses significant computational 57 

challenges2. The majority of RNAseq studies measure the expression of genes and transcripts 58 

by mapping the sequenced reads to a reference annotated transcriptome and removing reads that 59 

fail to map. Notably, reference transcriptomes such as those annotated by ENSEMBL and 60 

GENCODE are far from complete3, leaving a large proportion of transcripts unquantified by standard 61 

RNAseq analysis methods3. To overcome these limitations, a de novo custom transcriptome 62 

assembly can be performed, to reconstruct the sequenced fragments of transcripts expressed in 63 

the sample of interest in substitution of a reference. Mapping sequenced reads onto a custom 64 

transcriptome allows the quantitation of expression levels from both annotated and unannotated 65 

transcripts4. However, to date, only a small fraction of publications make use of de novo custom 66 

assemblies, accounting for ~1% of the total PubMed publications that use RNAseq. In addition, de 67 

novo assemblies obtained using only short reads cannot accurately resolve all RNA transcripts5. 68 

 69 

Long-read sequencing platforms such as those from Pacific Biosciences (PacBio) and Oxford 70 

Nanopore Technology (ONT) have the potential to produce full-length transcripts6. These 71 

platforms can perform end-to-end sequencing of single complementary DNA (cDNA) or RNA 72 

molecules, generating long reads that ameliorate the issues caused by transcript 73 

fragmentation7. ONT platforms include a range of devices in which single molecules thread 74 

through a nanopore containing a nanoscale sensor able to detect each nucleotide within a single 75 

run8. The produced long reads are one order of magnitude longer than typical short reads, 76 

providing better resolution of splice junctions, increasing correct isoform identification and the 77 
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discovery of unannotated transcripts8. However, compared to short reads, long reads have much 78 

higher base-calling error rates7,9,10 and remain a costly and comparatively less used technology. 79 

Importantly, although both long-read sequencing and basecaller technologies are continually 80 

evolving, most facilities are not equipped to support long-term storage of the large raw data files 81 

due to associated costs. Therefore, most users cannot re-call previously sequenced reads when 82 

an improved basecalling algorithm is released to increase the quality of long-read data. 83 

 84 

Emerging studies have shown that hybrid transcriptome assembly approaches, which integrate 85 

short- and long-read RNAseq data, are more accurate than approaches that use data from 86 

either method independently11,12,13,14,15,16. Considering that the average human transcript length 87 

is one kilobase (kb)17 and that long-read sequences are on average 1-3 kb in length18,19, long 88 

reads should capture the majority of human transcripts within a single read and ideally bypass 89 

the need for reassembly. However, considering the low quality of long reads7,9,10, it is still 90 

recommended to correct for intrinsic errors9. Although there are different strategies to achieve 91 

this, a pre-assembly hybrid error correction using both short and long reads was recently shown 92 

to be the best-performing method10. Additionally, information from both long and short reads 93 

may be integrated at the assembly stage, to help reconstruct different isoforms20. To the best 94 

of our knowledge, none of the available tools fully benefit from the two types of read integration, 95 

but instead adopt either a hybrid-correction-only or a hybrid-assembly-only approach. 96 

 97 

Notably, for long noncoding RNAs (lncRNAs), which constitute the largest class of 98 

underrepresented RNA transcripts, their lower abundance in bulk tissues and high content of 99 

repetitive elements means the assembly challenge is even more pronounced21,22,23. The few 100 

lncRNA-focused hybrid assembly studies that have been performed indicate that RNAseq data 101 

integration can enhance the accuracy and reliability of lncRNA discovery24,25. However, no 102 

automated method for hybrid de novo assembly to date allows for accurate lncRNA discovery. 103 
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 104 

To address the need for comprehensive discovery of unannotated transcripts, we developed 105 

HyDRA (Hybrid de novo RNA assembly), a true-hybrid pipeline that integrates short- and long-106 

read RNAseq data for de novo transcriptome assembly, with additional steps for lncRNA 107 

discovery. Our pipeline combines read treatment, assembly, filtering and parallel quality control 108 

(QC) steps to ensure the reconstruction of high-quality transcripts. Comprehensive tests 109 

showed that HyDRA outperforms the current best-in-class short-read-only approach4. In 110 

contrast with long-read sequencing, a vast amount of short-read RNAseq data is readily 111 

available for many species, tissues and conditions. Pipelines like HyDRA can make best use of 112 

available data in its totality, allowing users to achieve high-quality transcriptome assemblies 113 

while long-read sequencing technologies continue to advance. We anticipate that HyDRA will 114 

facilitate the generation of tissue-specific custom transcriptomes, providing a valuable resource 115 

for expression analyses across different cell types and tissues.  116 

 117 

RESULTS AND DISCUSSION 118 

Overview of the HyDRA pipeline 119 

We developed HyDRA (Figure 1A), a hybrid pipeline that integrates bulk short- and long-read 120 

RNAseq data for generating custom transcriptomes. This is achieved through (i) read treatment 121 

steps to correct sequencing errors by treating low-frequency k-mers and removing contaminants 122 

(e.g. adaptors and reads from ribosomal RNAs), (ii) steps to de novo assemble the filtered and 123 

corrected reads and further process the resulting assembly, and (iii) optional steps to discover 124 

a high-confidence set of lncRNAs supported by multiple machine-learning model predictions 125 

(Figure 1B-D). This section and Additional file 1 contain a detailed explanation of HyDRA, 126 

including the tools and algorithms underlying each step (Table 1; Additional File 2: Table S1). 127 

 128 
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 129 
Figure 1 130 

HyDRA. (A) Overview of the pipeline, from RNA library preparation to sequencing and 131 

availability of raw fastQ files for both short- and long-read samples. (B) Both short and long 132 

reads first undergo extensive quality control and processing, including hybrid error-correction 133 

of long reads and short-read-only correction of short reads. These steps are important to assess 134 

low-frequency k-mers for error correction and to remove contaminants (e.g. adaptors and reads 135 

from ribosomal RNAs). Summary metrics for these steps are printed at the end. (C) Treated 136 

reads undergo a hybrid de novo transcriptome assembly and further filtering and quality 137 

assessment. Summary metrics for these steps are printed at the end. (D) Optional steps can 138 

be performed for the discovery of high-confidence lncRNAs. 139 

 140 
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Read treatment 141 

Sequencing errors are known to introduce artificial nodes in de Bruijn graphs during de novo 142 

isoform resolution26 and interfere with all downstream steps27,28. In addition to correcting 143 

sequenced reads, common read processing practice includes removing adaptor sequences 144 

identified during the raw quality assessment of the data29. Traditional tools optimized for short-145 

read data fail to correctly treat longer sequences7,9,30. Therefore, HyDRA includes scripts and 146 

subroutines carried out by best-performing tools specifically designed to process these data 147 

separately (Figure 1B). As a result, HyDRA’s read treatment phase includes 38 scripts that 148 

perform the first ten steps. The short-read processing steps of HyDRA follow our previously 149 

published de novo assembly pipeline, which is currently best-in-class4. Processed in parallel, 150 

long-read treatment steps are dependent on the pre-processed short-reads for hybrid error 151 

correction using FMLRC2 v.0.1.710,31. QC routines are interspersed throughout the read 152 

treatment steps to guarantee high read quality, including an in-house Python script 153 

(fasta_splitter.py) to assess long-read length, allowing the user to implement personalized cut-154 

offs for ultra-long reads (e.g. > 35 kb). These QC steps were designed to enhance the quality 155 

of input read data and are performed after each key processing step. 156 

 157 

De novo assembly 158 

We selected RnaSPAdes v.3.14.112 as the assembler for HyDRA, as it was specifically designed 159 

for integrating short and long RNAseq reads and is the only available assembler that uses a 160 

genome-independent process (Additional file 2: Table S1, Figure 1C). RnaSPAdes was developed 161 

from the foundational algorithms SPAdes and hybridSPAdes, enabling the integration of both 162 

paired-end short-read RNAseq data and single-end long-reads, from either PacBio or ONT. This 163 

approach facilitates the construction of a high-quality transcriptome assembly that represents 164 

full-length transcripts and their alternative isoforms12. Next in the HyDRA pipeline, a step is 165 

included to remove highly redundant transcripts and differentiate between multiexonic and 166 
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monoexonic sequences in the assembly. This allows users to set appropriate read support 167 

thresholds for each subset of transcripts, with monoexonic transcripts requiring higher read 168 

support to differentiate from sequencing noise or genomic DNA contamination. HyDRA uses 169 

reads per kilobase per million (RPKM) values from independent short- and long-read alignments 170 

to estimate read support, with user-defined thresholds for filtering.  171 

 172 

(𝑖)	𝑅𝑃𝐾𝑀	 = 	 !"#$	&'()*	×	,-!

.'*#/	0"#$1	×	2"#*(0"	/")3*4
 173 

 174 

Assembled transcripts are then aligned to the reference transcriptome to identify unannotated 175 

transcripts in the custom transcriptome. Similar to our QC routine for input reads, we use a series 176 

of biologically supported quality evaluation tools (BUSCO v.2016111932, Trinity Stats v.2.8.433 and 177 

TransRate v.1.0.327), to assess completeness and other metrics that characterize the generated 178 

custom transcriptome. With that, this section of the pipeline includes 9 scripts performing 7 steps, 179 

with 3 additional scripts included for short-read-only assembly and processing. 180 

 181 

LncRNA discovery (optional) 182 

A custom transcriptome assembly can help in the discovery of a variety of transcript types, with 183 

lncRNAs representing a substantial portion of the unannotated transcriptome. LncRNAs are highly 184 

specific to different tissues, cell types and developmental stages4,34. Despite their significance, 185 

lncRNAs are often underrepresented in transcriptional studies due to their lack of annotation in 186 

reference transcriptomes. This is partially due to short-read RNAseq inherent biases and 187 

inability to capture full-length transcripts. Using a combination of long and short reads, HyDRA 188 

is well-equipped to facilitate the annotation of lncRNAs. We have therefore included 4 optional 189 

steps after the core assembly that allow HyDRA to perform lncRNA discovery. Using a 190 

combination of three machine learning models from ezLncPred v.1.035, i.e. CPAT, CNCI, CPC2, 191 

we first predict the coding potential of the transcripts identified in the assembly. These transcripts 192 
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are then assessed in parallel by FEELnc v.0.2 for lncRNA characteristics36. FEELnc is a suite of 193 

machine learning algorithms that requires the user to supply both a reference annotation of protein-194 

coding transcripts and previously annotated lncRNA transcripts (e.g. GENCODE annotation) to 195 

train the model to classify transcripts assembled by HyDRA. A transcript is then considered to be a 196 

candidate lncRNA based on FEELnc’s prediction in combination with the predicted absence of 197 

coding potential detected by at least two different ezLncPred tools. To remove false-positive 198 

lncRNAs (i.e. transcripts that match annotated protein-coding transcripts), HyDRA maps the 199 

candidate lncRNAs to the reference transcriptome. Candidate lncRNAs matching protein-coding 200 

transcripts with at least 75% identity and a minimum bidirectional overlap of 85% on either 201 

strand, are identified as false-positives and removed. Coordinates of candidate lncRNAs are 202 

also intersected with protein-coding genes using BedTools37, resulting in a final set of high-203 

confidence lncRNAs. Finally, HyDRA maps the candidate lncRNAs to a comprehensive database 204 

of confirmed lncRNAs that can be the internal default (containing 112,439 lncRNAs from multiple 205 

sources, as described in Bitar et al. 20234) or a user-defined database. This allows the user to 206 

pinpoint which lncRNAs have been detected for the first time in the custom assembly, and which 207 

were already known, either from the reference transcriptome or from additional databases 208 

(Additional file 1). 209 

 210 

HyDRA improves the quality of both short- and long- sequenced reads 211 

HyDRA was developed and tested using data obtained from short- and long-read RNAseq on 212 

primary and immortalized fallopian tube secretory epithelial cells (FTSEC) and ovarian surface 213 

epithelial cells (OSEC) (Additional file 2: Table S2). QC of raw RNAseq data confirmed an 214 

expected high median Phred quality of 35.65 for the short-read data, and a median quality of 215 

12.90 for the long-read data (Additional file 2: Table S3; Additional file 3: Figures S2-S3). We 216 

used the Illumina NovaSeq™ 6000 for short read sequencing, which has the lowest error rates 217 

for high-throughput sequencing38. For long-read sequencing, we used ONT with current error 218 
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rates predicted at 5-10%9,39. Common practice with long read RNA sequencing includes the 219 

removal of reads below a mean minimum Phred quality of 7 (Q7), which is a much lower 220 

threshold than for short-read data. In our dataset, all long-reads were over Q7, with 93% of 221 

them surpassing Q10 (Additional file 2: Table S3).  222 

 223 

The short-read treatment steps begin with correction of raw reads and subsequent trimming. 224 

The majority of the short reads survived the correction step (average of 9.16% uncorrectable 225 

reads; Figure 2; Additional file 2: Table S3; Additional file 4) and about 60% of the sequence 226 

ends were above the minimum quality set for trimming Q30 (Additional file 2: Table S3), 227 

indicating a high quality of corrected and trimmed short reads. Median short-read quality 228 

measured in the Phred scale increased from 35.65 to 36.12 after treatment steps were 229 

performed (Additional file 3: Figure S1-S2; Additional file 2: Table S3), with a concomitant 230 

decrease in the calculated error rate from 1 base in ~3,000 to 1 in ~4,000. In HyDRA, due to 231 

the prerequisites of the selected tools, the long-read treatment steps follow the opposite order, 232 

with trimming (adaptor removal followed by quality trimming) performed before correction. 233 

Median long-read quality measured in the Phred scale showed an increase from 12.90 to 14.50 234 

after trimming. Approximately 5% of the reads were discarded during adaptor removal and 235 

quality trimming (Figure 2). From the remaining reads, 99% were above Q10 and 81% were 236 

above Q12 (Additional file 3: Figure S3; Additional file 2: Table S3). Next, we integrated the pre-237 

processed short- and long-read sequencing data to perform the hybrid error correction. We 238 

observed a balanced base composition in the Burrows-Wheeler transform created from all pre-239 

processed short reads. However, we consistently noticed that RopeBWT220, one of the tools 240 

used in the hybrid error correction steps (more details on Additional file 1) outputs a base count 241 

report in which thymine base counts and N (undefined) base counts are swapped. This has 242 

been addressed in HyDRA which now outputs the correct base counts to the user (Additional 243 

file 2: Table S3). Despite base quality information being lost after long-read correction, no 244 
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sequences were discarded at this point, implying that all reads that survived trimming were 245 

corrected and kept for further processing (Additional file 2: Table S3). 246 

 247 

Most RNAseq library preparation protocols include a ribodepletion or poly(A) selection step, but 248 

ribosomal RNAs (rRNAs) still represent a large portion of the sequenced data29. These are 249 

considered cognate contaminants, meaning they are reads originating from undesired RNA 250 

types and must be removed prior to the de novo assembly. Using a database of known rRNAs 251 

sequences (Additional file 2: Table S1), we have included a step in HyDRA where pre-252 

processed reads are computationally filtered to remove ribosomal contamination. During quality 253 

assessment with FastQC, two long-read sequences identified as overrepresented were 254 

confirmed through BLAT searches to be human rRNAs40. On average, short-read data 255 

contained 6.00% of rRNA-derived reads and long-read data contained 16.30% (Figure 2; 256 

Additional file 2: Table S3). These numbers align with expected rRNA sequencing levels, even 257 

after ribodepletion during library preparation41. 258 

 259 
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 260 

Figure 2 261 

Short- and long-read data treatment in HyDRA. (A) Paired-end short-read data, followed by pie 262 

charts highlighting the proportion of reads discarded in each step relative to the total number of 263 

raw reads. (B) Single-end long-read data, preceded by pie charts highlighting the proportion of 264 

reads discarded in each step relative to the total number of raw reads. 265 

 266 

Long-read sequences of up to 35 kb were kept and used for assembly  267 

The longest known human transcript is TTN (titin), with 109,224 nt42, thus we anticipated that 268 

certain long-read sequences in our dataset would be significantly longer than the reported 269 

average of 1-3 kb18, 19, potentially including ultra-long reads over 100 kb in length. Indeed, 270 
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although the average length of the raw long reads was 1024 nt, the longest was 103,744 nt 271 

(Additional file 3: Figure S4A-C; Additional file 2: Table S3). FastQC analysis indicated that, 272 

while reads with up to ~30,000 nt had the expected base composition (i.e. balanced proportions 273 

of A, T, C and G), longer sequences presented a distinctively biased pattern of nucleotide 274 

composition, rich in thymines and guanines (Additional file 3: Figure S4B). In light of this, we 275 

implemented an additional QC routine to analyze sequence lengths throughout the pipeline and 276 

allow users to remove sequences with unexpected nucleotide composition (fasta_splitter.py; 277 

Additional file 3: Figure S4D). After all read treatment steps were performed, the eight remaining 278 

longest sequenced reads (Additional file 2: Table S3; 30-35 kb), were aligned to the GRCh38 279 

reference genome using BLAT40 (Figure 3). All were confirmed as valid human sequences, 280 

aligning to AHNAK (desmoyokin), DST (dystonin) or LYST (lysosomal trafficking regulator). All 281 

treated long-read sequences were used for de novo assembly, including those reaching 35 kb. 282 

Importantly, this maximum length is dependent on the input data, the tissue(s), developmental 283 

stage and species being analyzed. Additionally, through fasta_splitter.py, HyDRA gives users 284 

the option to strictly keep sequences that have up to n nt in length. 285 

 286 

 287 
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Figure 3 288 

Treated long-read sequences reaching up to 35 kb aligned to the human genome using BLAT. 289 

These eight pre-processed reads (four from FTSEC and four from OSEC samples) were aligned 290 

against the human genome (GRCh38) in a UCSC BLAT search to confirm they were valid 291 

sequences. The sequencing reads that aligned to (A) AHNAK, (B) DST or (C) LYST.  292 

 293 

Hybrid transcriptome assembly performs better than short-read-only approaches 294 

To assess HyDRA’s assembly, a short-read-only assembly was created by combining the treated 295 

short reads as an input for Trinity v.2.8.433 with normalized read coverage at 50 to prevent 296 

fragmented transcripts4. This assembly was subjected to the same processing steps as the hybrid 297 

counterpart. To evaluate the quality of both assemblies, we used a subset of the metrics reported 298 

in a recent benchmark study and respective normalized score (0-1)43. These metrics included 299 

transcript length, N50, reference coverage, open reading frame (ORF) percentage, undefined 300 

base count and conserved orthologs representation. Based on the normalized score, the 301 

HyDRA generated assembly performed 31% better than the best performing short-read-only 302 

approach4, and outperformed the top-ranked de novo assembly tool alone by 41% (Figure 4A; 303 

Additional file 2: Table S4)43. Our hybrid approach generated 857,736 transcript sequences, 304 

reaching up to 67,466 nt, with an average transcript length of 2,409 nt and GC content of ~44% 305 

(Additional file 2: Table S4), which aligns with the reported human GC content of coding (~52%) 306 

and noncoding (~44%) isoforms44.  307 

 308 
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 309 

Figure 4 310 

Overall assessment of the HyDRA-generated assembly. (A) Normalized assembly scores. 311 

Bubbles sizes vary according to N50 value. The graph shows scores for the assemblies 312 

produced by i) the best (Trans-ABySS) and ii) second best de novo assembly tools alone 313 

(Trinity)43; iii) Bitar et al. 20234 pipeline; iv) HyDRA. Both (i) and (ii) were based on data 314 

described by Hölzer and Marz’s43 and (iii) and (iv) based on data described here (from human 315 

ovarian and fallopian tube samples). (B) HyDRA’s assembly completeness from BUSCO 316 

analysis. 317 

 318 

In terms of assembly contiguity, N50 is an important metric defined as the length of the 319 

sequence at which 50% of the total assembly size is contained in sequences of at least that 320 

length. HyDRA produced an assembly with N50 of 6708 nt, which reflects how a hybrid 321 

approach can represent full-length human transcripts (Additional file 2: Table S4). For 322 

comparison, Hölzer and Marz’s best performing assembler produced a transcriptome with an 323 

N50 of 441 nt (15.21 times smaller than HyDRA’s assembly)43 and Bitar et al. 2023 an N50 of 324 

1383 (4.85 times smaller than HyDRA’s assembly)4. The highest N50 observed by Hölzer and 325 

Marz43 was 2381 nt (2.82 times smaller than HyDRA’s assembly), but this study showed that 326 

the assembler performed poorly compared to the other tools and metrics. To investigate the 327 

contribution of adding long reads to transcriptome assembly, we used the Bitar et al. 20234 328 
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pipeline to create an assembly based only on our short-read data, comparing it with HyDRA’s 329 

hybrid assembly. The calculated N50 of the short-read-only assembly was three times smaller 330 

than HyDRA’s and the assembly had double the number of transcripts. This suggests HyDRA 331 

can generate less fragmented assemblies, that are likely to better recapitulate full-length 332 

transcripts, while maintaining high overall quality. Similar to the N50, the N90 metric 333 

corresponds to the transcript length at which 90% of the total assembly size is contained in 334 

sequences of at least that length. Using our hybrid approach, we achieved an N90 of ~1000 nt, 335 

meaning that 90% of the transcripts in the HyDRA assembly are sequences matching the 336 

average human transcript length17. This demonstrates the overall contiguity of the produced 337 

custom transcriptome (Additional file 3: Table S4). 338 

 339 

The HyDRA-generated assembly accurately recapitulated several aspects of the human 340 

transcriptome. For example, BUSCO analysis revealed > 98% of the eukaryotic (297/303), 341 

91.9% of the vertebrata (2376/2586) and 87.8% of the mammalian (3606/4104) conserved 342 

orthologs were captured in our hybrid assembly, indicating overall completeness (Figure 4B). 343 

These values were similar to those obtained from the short-read-only assembly (Additional file 344 

2: Table S4). According to TransRate, the custom hybrid assembly covered 24% of the 345 

reference human transcriptome (GENCODE), which is comparable to the 23-26% observed in 346 

the best performing assembler tools found by Hölzer and Marz43 (Additional file 2: Table S4). 347 

For perspective, HyDRA’s transcripts cover approximately 12% of the reference genome while 348 

the exons and UTRs in the reference annotation (GENCODE v36) cover approximately 5% 349 

(genome coverages were calculated with BedTools genomecov). 350 

 351 

Splicing assessment showed 30% of transcripts to be multiexonic 352 

Most assemblies to date disregard monoexonic transcripts, but recent evidence has shown this 353 

class contains conserved lncRNAs of functional relevance45,46,47,48. Similar to Bitar et al. 20234, 354 
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we have kept the monoexonic transcripts in our assembly, as long as they had high read 355 

support. Transcripts aligned to the reference human genome (GRCh38) were classified as 356 

monoexonic or multiexonic according to the presence of ‘N’ tags in the alignment file. A minimum 357 

length of 50 nt was defined to differentiate introns from insertions and deletions (indels), which 358 

aligns with current knowledge about human introns. Before filtering out low read support 359 

transcripts, our hybrid assembly showed a ratio of multiexonic:monoexonic transcripts of 3:7 360 

(~232,000 transcripts were classified as multiexonic and ~619,000 as monoexonic; Figure 4C; 361 

Additional file 2: Table S4). For comparison, the short-read-only approach showed a ratio of 362 

3:17 (~143,000 were multiexonic and ~740,000 were monoexonic), likely reflecting the power 363 

of long reads to resolve transcript architecture and improve overall isoform assembly.  364 

 365 

Removing transcripts with low read support helps remove technical artifacts and transcriptional 366 

leakage products, as well as problematic transcripts arising from misassembly. As HyDRA 367 

integrates short and long reads, read support for each transcript was calculated based on a 368 

combination of both subsets, which is computationally and biologically challenging. In HyDRA, 369 

redundant transcripts are collapsed prior to read support calculations. This redundancy 370 

reduction step removed ~8,500 transcripts from the original assembly (Additional file 2: Table 371 

S4). From the remaining ~224,500 multiexonic and ~618,000 monoexonic transcripts, ~189,000 372 

(84.34%) and ~13,000 (2.12%) respectively, passed the more permissive RPKM cut-off for read 373 

support (0.3 and 3 RPKM). As expected, the number of supported transcripts was much lower 374 

when using the stricter RPKM cut-off (1 and 5 RPKM), with a 90% decrease in multiexonic 375 

(~20,000) and 50% decrease in monoexonic transcripts (~7,300) passing the filtering step. 376 

Since we previously validated transcripts with low read support by qPCR, confirming that the 377 

less stringent cut-off still identifies bona fide transcripts4, we opted to use these transcripts for 378 

further analysis. The ratio of multiexonic to monoexonic transcripts in the assembly is 1:14, 379 

maintaining the expected lncRNA ratio observed in the Telomere-To-Telomere (T2T) human 380 
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genome (T2T-CHM13). In total, the final filtered custom assembly consists of 202,459 381 

transcripts, providing a comprehensive representation of the normal ovarian and fallopian tube 382 

transcriptome. 383 

 384 

Identification of unannotated lncRNAs in HyDRA’s custom transcriptome 385 

To assess the coding potential of the 202,459 transcripts, we ran three machine learning models 386 

from the ezLNCpred package, CPAT, CNCI and CPC235. On average, at least two of the models 387 

agree on 61% of the noncoding predictions (93,899), suggesting that these methods are more 388 

effective at confirming the absence of ORFs rather than detecting their presence. Additionally, 389 

26.6% (40,969) had no coding potential detected by any of the three models (Figure 5A; 390 

Additional file 2: Table S5). A total of 47,281 transcripts were predicted by at least two models 391 

as noncoding and not by any model as protein-coding. We decided to include all 93,899 392 

transcripts predicted as noncoding by at least two of the tools in our further analysis (Figure 5B; 393 

Additional file 2: Table S5).  394 

 395 

 396 

Figure 5 397 

LncRNA discovery. (A) Intersection of lncRNA candidates predicted by three different 398 

ezLncPred machine learning models (CNCI, CPAT and CPC2). (B) Intersection between 399 

FEELnc lncRNA predictions and the list of candidates predicted by at least two of the ezLncPred 400 

machine learning models. 401 
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 402 

FEELnc was trained using the GENCODE GRCh38 transcriptome annotation of protein-coding 403 

and lncRNA transcripts49. This enabled us to identify which of the 202,459 transcripts 404 

assembled by HyDRA had lncRNAs characteristics. To ensure robust predictive capability, we 405 

exclusively used experimentally validated GENCODE lncRNAs. FEELnc predicted 101,878 406 

transcripts to be lncRNAs (Additional file 2: Table S5). This represents about half of the total 407 

number of transcripts in our custom transcriptome, indicating that lncRNAs constitute a 408 

significant proportion of expressed transcripts in normal ovarian and fallopian tube tissues. 409 

Importantly, more than 60% of these (61,166) lncRNAs were supported by at least two of the 410 

three ezLncPred machine-learning models (Figure 5B). 411 

 412 

The majority of these candidate lncRNAs were multiexonic, which may reflect the biased 413 

training dataset. From the 61,166 candidate lncRNAs, 629 showed a bidirectional overlap of at 414 

least 85% with a protein-coding transcript and a minimum identity of 75%. We believe these to 415 

be either false-positives that our methods failed to detect, or noncoding isoforms of protein-416 

coding genes. Although monoexonic and sense genic transcripts (i.e. those overlapping 417 

protein-coding genes in the same strand) are functionally relevant, it is difficult to differentiate 418 

these from technical artifacts or transcriptional leakage. Furthermore, sense genic lncRNAs 419 

cannot easily be uncoupled from the corresponding protein-coding gene, and we have included 420 

a restrictive alignment step to facilitate their removal. From the remaining 60,537 lncRNAs, 228 421 

were already annotated in GENCODE (GRCh38: 19 multiexonic; 1 monoexonic) or known to 422 

the database of over 112,000 lncRNA transcripts (124 multiexonic; 84 monoexonic). We also 423 

intersected the coordinates of the remaining 60,309 lncRNAs with those of protein-coding 424 

genes using BedTools37. This allowed us to further remove 7,615 exon-overlapping transcripts, 425 

resulting in the identification of 53,551 high-confidence lncRNA transcripts. Importantly, HyDRA 426 

was designed to split monoexonic and multiexonic sequences after assembly, which allows 427 
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users to easily focus on either or both sets of transcripts.  428 

 429 

To demonstrate the functional relevance of these 53,551 high-confidence lncRNA transcripts 430 

from the normal ovaries and fallopian tubes, we assessed their expression profiles in a different 431 

subset of sequenced RNA samples (unrelated but biologically similar to those used for 432 

assembly). We used publicly available RNAseq data from normal and cancerous ovarian and 433 

fallopian tube tissues found in the RNA Atlas project50. This revealed that 27,257 (44.56%) 434 

lncRNAs were expressed in at least one of the samples, demonstrating HyDRA’s efficient 435 

assembly of both annotated and unannotated lncRNA transcripts, through the integration of 436 

long- and short-read RNAseq data. 437 

 438 

CONCLUSIONS 439 

Here we present HyDRA, a comprehensive pipeline that integrates short- and long-read 440 

sequencing data for a true-hybrid de novo transcriptome assembly and lncRNA discovery. We 441 

used deep, short- and long-read RNAseq from ovarian and fallopian tube epithelial cells 442 

samples to develop, validate and assess the efficacy of the pipeline in generating a high-quality 443 

custom transcriptome. We have shown that HyDRA’s assembly performed > 40% better than 444 

the top-ranked stand-alone de novo transcriptome assembly tool and > 30% better than our 445 

recent best-in-class short-read-only approach4. Based on this custom assembly, we identified 446 

61,166 candidate lncRNAs, among which 60,309 have not been previously annotated and 447 

53,551 showed no overlap with protein-coding transcripts. In summary, HyDRA is a high-448 

performing hybrid-assembly tool capable of facilitating accurate transcriptome reconstruction 449 

and advancing lncRNA annotation. 450 

 451 
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MATERIALS AND METHODS 452 

RNAseq sample preparation and sequencing 453 

RNA was extracted from primary and immortalized fallopian tube secretory epithelial cells 454 

(FTSEC) and ovarian surface epithelial cells (OSEC) using the QIAGEN RNeasy Plus Mini kit 455 

(Additional file 2: Table S2). One microgram of total RNA was rRNA depleted with the Ribo-456 

Zero™ Plus kit according to the manufacturers’ instructions (Illumina). Short-read RNAseq 457 

libraries were prepared using the Truseq Stranded mRNA Library Prep Kit (Illumina), and 458 

sequenced at high depth (PE150, > 75 million reads per sample; Additional file 2: Table S2) on 459 

the Illumina Novaseq™ 6000 (Australian Genome Research Facility, Melbourne, Australia). 460 

High sequence depth is considered best practice for lncRNA discovery, as they are often 461 

expressed at low levels and have poor isoform representation51. For long-read sequencing, 462 

cDNA was extracted from one FTSEC and one OSEC cell line (Additional file 2: Table S2). 463 

ONT cDNA libraries were generated with polyadenylation enrichment and SQK-NBD114.24 464 

native barcoding kit at the Garvan Institute’s Nanopore Sequencing Facility (Australia). 465 

Samples were barcoded using the supplied PCR barcodes and sequenced at high depth (> 69 466 

million reads per sample; Additional file 2: Table S2) on the PromethION™ P48 flowcells (FLO-467 

PRO114M - R10.4.1). The slow5 files were base-called using Guppy v.6.4.6+ae70e8f and 468 

MinKNOW v.22.12.5 by the Garvan Institute’s Nanopore Sequencing Facility (Australia). 469 

 470 

Databases and reference genome versions 471 

We used the human genome GCRh38 release 7949 for lncRNA identification and annotation), 472 

and the T2T-CHM13 genome52, for long-read effects on the produced transcriptome assembly. 473 

The GENCODE annotation for GCRh38 was used as the reference transcriptome. A previously 474 

published database of 169 human rRNA sequences4, with the addition of two sequences 475 

identified from our FastQC analysis (Additional file 2: Table S2), was used to filter pre-476 

processed reads for ribosomal contamination. To identify which of the discovered lncRNAs 477 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.24.600544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600544
http://creativecommons.org/licenses/by-nc-nd/4.0/


22 

were known and which were novel, we used all annotated lncRNAs in GENCODE GRCh38 478 

together with a comprehensive database of > 112,000 known lncRNA genes from 8 public 479 

repositories (BIGtranscriptome, MiTranscriptome and LNCipedia from lncRNAKB53; Cabili et al. 480 

201154; CancerSEA55; Lanzos et al. 201756; LncRNADisease57 and RNAcentral58), as 481 

described in Bitar et al.4. Experimentally confirmed protein-coding and lncRNAs annotated in 482 

the same GENCODE version were used to train the machine-learning algorithms FEELncfilter, 483 

FEELnc_codpot and FEELnc_classifier36.  484 

 485 

Parameters used for the ovarian and fallopian tube custom assembly 486 

A comprehensive list of the parameters used in each step is available in Additional file 2: Table 487 

S1). Importantly, we defined both a restrictive and permissive set of cut-offs for read support. A 488 

strict read support of 3 RPKM was enforced for monoexonic transcripts, but we relaxed the cut-489 

off to 0.3 RPKM for multiexonic transcripts. This is in agreement with4 and maintained the 490 

expected ratio of multiexonic to monoexonic lncRNAs of 14:1, consistent with annotations based 491 

on the T2T genome. A stricter threshold of 5 RPKM and 1 RPKM, respectively, was also tested. 492 

Importantly, lncRNAs expressed at ~0.5 RPKM had previously been experimentally confirmed 493 

by our group with an 80% success rate59. 494 

 495 

Expression profiles of lncRNA transcripts 496 

RNAseq analysis was run based on the GRADE (General RNAseq Analysis for Differential 497 

Expression) pipeline4. Modifications to these scripts now allow the user to quantify reads based 498 

on any user-provided transcriptome sequence and are available at60. The expression profiles of 499 

lncRNAs were assessed in (i) ovarian and fallopian tube whole tissue; (ii) high-grade serous ovarian 500 

carcinoma (HGSOC) tumor samples, including homologous recombination (HR)-deficient and HR-501 

proficient; and (iii) HGSOC cell lines. Public RNAseq of ovarian and fallopian tube samples, 502 

sequenced at high depth, were obtained from the RNA Atlas project50. 503 
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 504 

Bioinformatics tools used for HyDRA development 505 

Our pipeline integrates the currently available open-source tools in BASH scripts using basic UNIX 506 

commands to write and submit portable batch system (PBS) jobs. Our scripts were designed to run 507 

in a high-performance computer (HPC) where computational tasks are allocated in a PBS. However, 508 

general command lines are also available for users that wish to run the pipeline on a different system 509 

(See Availability of Data and Materials). Resources used for pipeline development are indicated in 510 

each script and can be controlled by the user according to their available computational power. The 511 

length evaluation script, fasta_splitter.py, was developed in Python 2.7+. To assess HyDRA’s 512 

assembly, a short-read-only assembly was created by combining the treated short reads as an 513 

input for Trinity 2.8.433 with normalized read coverage at 50 to prevent fragmented transcripts4. 514 

 515 

HyDRA was developed from 39 open-source tools and runs through BASH scripts (Table 1). A 516 

comprehensive list of the all tools used in each step is available in Additional file 2: Table S1). 517 

BLAT (BLAST-like alignment tool implemented at the UCSC genome browser) searches40 were 518 

performed to confirm rRNA sequences, long-read sequences and investigate identified lncRNAs. 519 

Plots were produced either directly by the underlying tools (referenced in text), with Python 2.7+ 520 

script available at HyDRA GitHub repository61). Venn Diagrams were generated with InteractVenn62. 521 

Figures were edited in Adobe Illustrator v.28.5. 522 

Step(s) Tool Version Source 

01L1, 03L1 NanoPlot 1.41.6 63 

01L2, 03L2 NanoComp 1.41.6 63 

01L3, 01S1, 03L3, 03S1, 05S1, 09S1 FastQC 0.12.1 64 

01L4, 01S2, 03L4, 03S2, 05S2, 09S2 MultiQC 1.14 65 

01L5, 03L5, 05L1, 09L1 Fasta_splitter.py v1.0.6 in house 

01L5, 03L5, 05L1, 09L1, 11H1, 14H1, 15H2, 21H2 seqtk 1.3 66 

02L1 Porechop 0.2.4 67 

02L2 Chopper 0.5.0 63 

02L3 Cutadapt 3.9.13 68 

02S1 Rcorrector 1 69 

02S1 Reformat 39.01 70 

02S2 FilterUncorrectabledPEfastq.py 2016 71 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2024. ; https://doi.org/10.1101/2024.06.24.600544doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600544
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

04L1 RopeBWT2 r187 20 

04L2, 04L3 FMLRC2 0.1.7 31 

04S1 Trimmomatic 0.36 72 

04S2, 06L1, 06S1 BBDuk 39.01 70 

07L1, 07S1, 13H1, 13H2, 15H1, 15H2 Bowtie2 2.2.9 73 

07L1, 07S1, 11H2, 12H2, 13H1, 13H2, 15H1, 15H2, 16H1, 19H1 SAMtools 1.9 74 

08L1, 08S1 RSeQC 2.6.4 75 

08S2 DeepTools2 3.5.0 76 

11H1 RnaSPAdes 3.14.1 12 

12H1 BUSCO 20161119 32 

12H1 BLAST 2.2.31+ 77 

11H2, 12H2 Trinity 2.8.4 33 

12H3, 12H4 TransRate 1.0.3 27 

12H3, 12H4 Fastq-pair 20231003 78 

13H1, 14H1, 16H1 GMAP 2023-07-20 79 

13H1, 13H2 Picard 2.19.0 80 

15H1, 19H1 Minimap2 2.26 81 

15H1, 15H2 CD-HIT 4.6.8 82 

16H1 Bedops 2.4.41 83 

16H1, 18H1, 19H1, 21H1 BedTools 2.29.0 37 

18H1 ezLncPred 1.0 35 

19H1 UCSC Tools 20160223 84 

19H1 FEELnc 0.2 36 

21H1 HTSlib 1.19.1 85 

21H1 gtf2gff 0.1 86 

21H1 genestats 1.0 in house 

21H2 PBLAT 2.5.1 87 

 523 

Table 1 524 

Open-source tools used in HyDRA. Steps are arranged in subroutines specific for long reads (L), 525 

short reads (S) and hybrid (H). 526 

 527 

SUPPLEMENTARY INFORMATION 528 

Additional file 1: Complete HyDRA pipeline description 529 

Additional file 2: Tables S1-S5 530 

Additional file 3: Figures S1-S4 531 

Additional file 4: Pipeline validation 532 

 533 
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