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ABSTRACT

Background: Short-read RNA sequencing (RNAseq) has widely been used to sequence RNA
from a wide range of different tissues, developmental stages and species. However, the
technology is limited by inherent biases and its inability to capture full-length transcripts. Long-
read RNAseq overcomes these issues by providing reads that can span multiple exons, resolve
complex repetitive regions and the capability to cover entire transcripts. Unfortunately, this
technology is still prone to higher error rates. Noncoding RNA transcripts are highly specific to
different cell types and tissues and remain underrepresented in current reference annotations.
This problem is exacerbated by the dismissal of sequenced reads that align to genomic regions
that do not contain annotated transcripts, resulting in approximately half of the expressed
transcripts being overlooked in transcriptional studies.

Results: We have developed a pipeline, named HyDRA (Hybrid de novo RNA assembly), which
combines the precision of short reads with the structural resolution of long reads, enhancing the
accuracy and reliability of custom transcriptome assemblies. Deep, short- and long-read RNAseq
data derived from ovarian and fallopian tube samples were used to develop, validate and assess
the efficacy of HyDRA. We identified more than 50,000 high-confidence long noncoding RNAs,
most of which have not been previously detected using traditional methods.

Conclusions: HyDRA’s assembly performed more than 40% better than a similar assembly
obtained with the top-ranked stand-alone de novo transcriptome short-read-only assembly tool and
over 30% better than one obtained with the best-in-class multistep short-read-only approach.
Although long-read sequencing is rapidly advancing, the vast availability of short-read RNAseq
data will ensure that hybrid approaches like the one implemented in HyDRA continue to be
relevant, allowing the discovery of high-confidence transcripts within specific cell types and
tissues. As the practice of performing hybrid de novo transcriptome assemblies becomes
commonplace, HyDRA will advance the annotation of coding and noncoding transcripts and

expand our knowledge of the noncoding genome.
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BACKGROUND

Short-read RNA sequencing (RNAseq) has revolutionized the transcriptomic era due to its high-
throughput, affordability and low error rates’. However, a limitation of short-read RNAseq lies in its
dependency on fragmenting the original transcript molecules. Reassembling and quantifying these
sequenced reads, typically of ~50 to ~500 nt in length, still poses significant computational
challenges?. The majority of RNAseq studies measure the expression of genes and transcripts
by mapping the sequenced reads to a reference annotated transcriptome and removing reads that
fail to map. Notably, reference transcriptomes such as those annotated by ENSEMBL and
GENCODE are far from complete?, leaving a large proportion of transcripts unquantified by standard
RNAseq analysis methods®. To overcome these limitations, a de novo custom transcriptome
assembly can be performed, to reconstruct the sequenced fragments of transcripts expressed in
the sample of interest in substitution of a reference. Mapping sequenced reads onto a custom
transcriptome allows the quantitation of expression levels from both annotated and unannotated
transcripts*. However, to date, only a small fraction of publications make use of de novo custom
assemblies, accounting for ~1% of the total PubMed publications that use RNAseq. In addition, de

novo assemblies obtained using only short reads cannot accurately resolve all RNA transcripts®.

Long-read sequencing platforms such as those from Pacific Biosciences (PacBio) and Oxford
Nanopore Technology (ONT) have the potential to produce full-length transcripts®. These
platforms can perform end-to-end sequencing of single complementary DNA (cDNA) or RNA
molecules, generating long reads that ameliorate the issues caused by transcript
fragmentation”. ONT platforms include a range of devices in which single molecules thread
through a nanopore containing a nanoscale sensor able to detect each nucleotide within a single
run8. The produced long reads are one order of magnitude longer than typical short reads,

providing better resolution of splice junctions, increasing correct isoform identification and the
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discovery of unannotated transcripts®. However, compared to short reads, long reads have much

higher base-calling error rates”*°

and remain a costly and comparatively less used technology.
Importantly, although both long-read sequencing and basecaller technologies are continually
evolving, most facilities are not equipped to support long-term storage of the large raw data files
due to associated costs. Therefore, most users cannot re-call previously sequenced reads when

an improved basecalling algorithm is released to increase the quality of long-read data.

Emerging studies have shown that hybrid transcriptome assembly approaches, which integrate
short- and long-read RNAseq data, are more accurate than approaches that use data from
either method independently'"12.13.14.15.16_Considering that the average human transcript length
is one kilobase (kb)'” and that long-read sequences are on average 1-3 kb in length'®'°, long
reads should capture the majority of human transcripts within a single read and ideally bypass
the need for reassembly. However, considering the low quality of long reads’%1, it is still
recommended to correct for intrinsic errors®. Although there are different strategies to achieve
this, a pre-assembly hybrid error correction using both short and long reads was recently shown
to be the best-performing method'®. Additionally, information from both long and short reads
may be integrated at the assembly stage, to help reconstruct different isoforms?°. To the best
of our knowledge, none of the available tools fully benefit from the two types of read integration,

but instead adopt either a hybrid-correction-only or a hybrid-assembly-only approach.

Notably, for long noncoding RNAs (IncRNAs), which constitute the largest class of
underrepresented RNA transcripts, their lower abundance in bulk tissues and high content of
repetitive elements means the assembly challenge is even more pronounced?'?223, The few
IncRNA-focused hybrid assembly studies that have been performed indicate that RNAseq data
integration can enhance the accuracy and reliability of IncRNA discovery?*2°, However, no

automated method for hybrid de novo assembly to date allows for accurate IncRNA discovery.

4
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To address the need for comprehensive discovery of unannotated transcripts, we developed
HyDRA (Hybrid de novo RNA assembly), a true-hybrid pipeline that integrates short- and long-
read RNAseq data for de novo transcriptome assembly, with additional steps for IncCRNA
discovery. Our pipeline combines read treatment, assembly, filtering and parallel quality control
(QC) steps to ensure the reconstruction of high-quality transcripts. Comprehensive tests
showed that HyDRA outperforms the current best-in-class short-read-only approach?. In
contrast with long-read sequencing, a vast amount of short-read RNAseq data is readily
available for many species, tissues and conditions. Pipelines like HyDRA can make best use of
available data in its totality, allowing users to achieve high-quality transcriptome assemblies
while long-read sequencing technologies continue to advance. We anticipate that HyDRA will
facilitate the generation of tissue-specific custom transcriptomes, providing a valuable resource

for expression analyses across different cell types and tissues.

RESULTS AND DISCUSSION

Overview of the HyDRA pipeline

We developed HyDRA (Figure 1A), a hybrid pipeline that integrates bulk short- and long-read
RNAseq data for generating custom transcriptomes. This is achieved through (i) read treatment
steps to correct sequencing errors by treating low-frequency k-mers and removing contaminants
(e.g. adaptors and reads from ribosomal RNAS), (ii) steps to de novo assemble the filtered and
corrected reads and further process the resulting assembly, and (iii) optional steps to discover
a high-confidence set of IncRNAs supported by multiple machine-learning model predictions
(Figure 1B-D). This section and Additional file 1 contain a detailed explanation of HyDRA,

including the tools and algorithms underlying each step (Table 1; Additional File 2: Table S1).


https://doi.org/10.1101/2024.06.24.600544
http://creativecommons.org/licenses/by-nc-nd/4.0/

129
130

131

132

133

134

135

136

137

138

139

140

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600544, this version posted June 27, 2024. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder who has granted bioRxiv a license to display the preprint in perpetuity. It is made

A HyDRA overview

RNA sequencing
% FastQ FastQ
RNA short-read  long-read
libraries RNAseq RNAseq

Read treatment

raw short reads short-read-only

correction
— W — .
— '
— " —
O NN s ) 0
— W E—
— | discarded

hybrid error

w lon: ;
raw long reads correction

[ NI ]
——— o m ome—— )

‘_

Hybrid transcriptome assembly

‘_

IncRNA discovery (optional)

coding

’T _, potentia é&%ﬂtm

IncRNA
characterlstlcs v

short reads hybrid |l seq. error
longreads [ IncRNA [l adaptor

Figure 1

der
rea

a@llﬁb

Quality control Read trimming

101
G NanoPlot @( fL1\ Porechopp
@NanoComp %« @Chopper
C@ FastQC (@ Cutadapt

@ Fasta_splitter.py Read correction

C@Mu[tlQC fE*‘
ih @

(@ RopeBWT2
Genome mapping ({2 FMLRC2-convert
(07
(L) Bowtie2 & I "G Fmirez
=~ SAMtools ‘:: ——
X Ribodepletion
Summary metrics
({1 BBDUK

10,
(1) BASH, AWK, sed

C Hybrid transcriptome assembly

Quality control

Y-NC-ND 4.0 International license.

Read correction

Quality control

Q
)

@ Rcorrector (@ FastQC
(52 FUPER 7 [*G2muttiac

i ©

Read trimming
@ Trimmomatic ~

[l F® <[]l H

Genome mappin:
(52 BBDUK — L
_ T (L1Bowtie2 &
SAMtools
Ribodepletion
= 06
s1BBDuk Strandness &

TR

FastQ

Read support

12
cf\Busco
l o (12 TrinityStats )
L ch TransRate i @
Fasta FastQ — 1=

Assemble reads Read representation

> F\CDHII Mlnlmap2 \Ii
~ Bowtie2 &
SAMtools L
L L1}

Annotation ¢

113
(H) masPAdes (H)GMAP, Bowtie2

Splicing detection

-m
114
(H) GMAP T

D IncRNA discovery (optional)

D Lm _ﬂ

LLL L] Ll L]
Codlng potential IncRNA characterlsnc,s\

116,
(H)GMAP h

Summary metrics

17
1| (F)BASH, AWK, sed T/

Candidate IncRNAs Filtering & annotation

() ezLncPred
i.e. CPAT, CNCI, CPC2

(H)FEELNC 3: { (H)FEELNC

(h 1 BedTools
(52 PBLAT

sample correlation
08,
(H)BASH, AWK, sed

(oo)(oé
SNIHBA=R

QF

HyDRA. (A) Overview of the pipeline, from RNA library preparation to sequencing and

availability of raw fastQ files for both short- and long-read samples. (B) Both short and long

reads first undergo extensive quality control and processing, including hybrid error-correction

of long reads and short-read-only correction of short reads. These steps are important to assess

low-frequency k-mers for error correction and to remove contaminants (e.g. adaptors and reads

from ribosomal RNAs). Summary metrics for these steps are printed at the end. (C) Treated

reads undergo a hybrid de novo transcriptome assembly and further filtering and quality

assessment. Summary metrics for these steps are printed at the end. (D) Optional steps can

be performed for the discovery of high-confidence INncRNAs.
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Read treatment

Sequencing errors are known to introduce artificial nodes in de Bruijn graphs during de novo
isoform resolution?® and interfere with all downstream steps?’2. In addition to correcting
sequenced reads, common read processing practice includes removing adaptor sequences
identified during the raw quality assessment of the data?®. Traditional tools optimized for short-
read data fail to correctly treat longer sequences’%3°. Therefore, HyDRA includes scripts and
subroutines carried out by best-performing tools specifically designed to process these data
separately (Figure 1B). As a result, HyDRA'’s read treatment phase includes 38 scripts that
perform the first ten steps. The short-read processing steps of HyDRA follow our previously
published de novo assembly pipeline, which is currently best-in-class®*. Processed in parallel,
long-read treatment steps are dependent on the pre-processed short-reads for hybrid error
correction using FMLRC2 v.0.1.7'%3'. QC routines are interspersed throughout the read
treatment steps to guarantee high read quality, including an in-house Python script
(fasta_splitter.py) to assess long-read length, allowing the user to implement personalized cut-
offs for ultra-long reads (e.g. > 35 kb). These QC steps were designed to enhance the quality

of input read data and are performed after each key processing step.

De novo assembly

We selected RnaSPAdes v.3.14.1'2 as the assembler for HyDRA, as it was specifically designed
for integrating short and long RNAseq reads and is the only available assembler that uses a
genome-independent process (Additional file 2: Table S1, Figure 1C). RnaSPAdes was developed
from the foundational algorithms SPAdes and hybridSPAdes, enabling the integration of both
paired-end short-read RNAseq data and single-end long-reads, from either PacBio or ONT. This
approach facilitates the construction of a high-quality transcriptome assembly that represents
full-length transcripts and their alternative isoforms’?. Next in the HyDRA pipeline, a step is

included to remove highly redundant transcripts and differentiate between multiexonic and

7
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monoexonic sequences in the assembly. This allows users to set appropriate read support
thresholds for each subset of transcripts, with monoexonic transcripts requiring higher read
support to differentiate from sequencing noise or genomic DNA contamination. HyDRA uses
reads per kilobase per million (RPKM) values from independent short- and long-read alignments

to estimate read support, with user-defined thresholds for filtering.

Read count x 10°

(i) RPKM =

Total reads X Feature length

Assembled transcripts are then aligned to the reference transcriptome to identify unannotated
transcripts in the custom transcriptome. Similar to our QC routine for input reads, we use a series
of biologically supported quality evaluation tools (BUSCO v.2016111932, Trinity Stats v.2.8.4% and
TransRate v.1.0.3%"), to assess completeness and other metrics that characterize the generated
custom transcriptome. With that, this section of the pipeline includes 9 scripts performing 7 steps,

with 3 additional scripts included for short-read-only assembly and processing.

LncRNA discovery (optional)

A custom transcriptome assembly can help in the discovery of a variety of transcript types, with
IncRNAs representing a substantial portion of the unannotated transcriptome. LncRNAs are highly
specific to different tissues, cell types and developmental stages*34. Despite their significance,
IncRNAs are often underrepresented in transcriptional studies due to their lack of annotation in
reference transcriptomes. This is partially due to short-read RNAseq inherent biases and
inability to capture full-length transcripts. Using a combination of long and short reads, HyDRA
is well-equipped to facilitate the annotation of IncRNAs. We have therefore included 4 optional
steps after the core assembly that allow HyDRA to perform IncRNA discovery. Using a
combination of three machine learning models from ezLncPred v.1.0%%, i.e. CPAT, CNCI, CPC2,
we first predict the coding potential of the transcripts identified in the assembly. These transcripts

8
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are then assessed in parallel by FEELnc v.0.2 for IncRNA characteristics®. FEELnc is a suite of

machine learning algorithms that requires the user to supply both a reference annotation of protein-
coding transcripts and previously annotated IncRNA transcripts (e.g. GENCODE annotation) to
train the model to classify transcripts assembled by HyDRA. A transcript is then considered to be a
candidate IncRNA based on FEELNC’s prediction in combination with the predicted absence of
coding potential detected by at least two different ezLncPred tools. To remove false-positive
IncRNAs (i.e. transcripts that match annotated protein-coding transcripts), HyDRA maps the
candidate IncRNAs to the reference transcriptome. Candidate IncRNAs matching protein-coding
transcripts with at least 75% identity and a minimum bidirectional overlap of 85% on either
strand, are identified as false-positives and removed. Coordinates of candidate IncRNAs are
also intersected with protein-coding genes using BedTools®, resulting in a final set of high-
confidence InNcRNAs. Finally, HyDRA maps the candidate IncRNAs to a comprehensive database
of confirmed IncRNAs that can be the internal default (containing 112,439 IncRNAs from multiple
sources, as described in Bitar et al. 2023%) or a user-defined database. This allows the user to
pinpoint which IncRNAs have been detected for the first time in the custom assembly, and which
were already known, either from the reference transcriptome or from additional databases

(Additional file 1).

HyDRA improves the quality of both short- and long- sequenced reads

HyDRA was developed and tested using data obtained from short- and long-read RNAseq on
primary and immortalized fallopian tube secretory epithelial cells (FTSEC) and ovarian surface
epithelial cells (OSEC) (Additional file 2: Table S2). QC of raw RNAseq data confirmed an
expected high median Phred quality of 35.65 for the short-read data, and a median quality of
12.90 for the long-read data (Additional file 2: Table S3; Additional file 3: Figures S2-S3). We
used the lllumina NovaSeq™ 6000 for short read sequencing, which has the lowest error rates

for high-throughput sequencing®. For long-read sequencing, we used ONT with current error
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rates predicted at 5-10%7°°. Common practice with long read RNA sequencing includes the

removal of reads below a mean minimum Phred quality of 7 (Q7), which is a much lower
threshold than for short-read data. In our dataset, all long-reads were over Q7, with 93% of

them surpassing Q10 (Additional file 2: Table S3).

The short-read treatment steps begin with correction of raw reads and subsequent trimming.
The majority of the short reads survived the correction step (average of 9.16% uncorrectable
reads; Figure 2; Additional file 2: Table S3; Additional file 4) and about 60% of the sequence
ends were above the minimum quality set for trimming Q30 (Additional file 2: Table S3),
indicating a high quality of corrected and trimmed short reads. Median short-read quality
measured in the Phred scale increased from 35.65 to 36.12 after treatment steps were
performed (Additional file 3: Figure S1-S2; Additional file 2: Table S3), with a concomitant
decrease in the calculated error rate from 1 base in ~3,000 to 1 in ~4,000. In HyDRA, due to
the prerequisites of the selected tools, the long-read treatment steps follow the opposite order,
with trimming (adaptor removal followed by quality trimming) performed before correction.
Median long-read quality measured in the Phred scale showed an increase from 12.90 to 14.50
after trimming. Approximately 5% of the reads were discarded during adaptor removal and
quality trimming (Figure 2). From the remaining reads, 99% were above Q10 and 81% were
above Q12 (Additional file 3: Figure S3; Additional file 2: Table S3). Next, we integrated the pre-
processed short- and long-read sequencing data to perform the hybrid error correction. We
observed a balanced base composition in the Burrows-Wheeler transform created from all pre-
processed short reads. However, we consistently noticed that RopeBWT22°, one of the tools
used in the hybrid error correction steps (more details on Additional file 1) outputs a base count
report in which thymine base counts and N (undefined) base counts are swapped. This has
been addressed in HyDRA which now outputs the correct base counts to the user (Additional

file 2: Table S3). Despite base quality information being lost after long-read correction, no

10
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sequences were discarded at this point, implying that all reads that survived trimming were

corrected and kept for further processing (Additional file 2: Table S3).

Most RNAseq library preparation protocols include a ribodepletion or poly(A) selection step, but
ribosomal RNAs (rRNAs) still represent a large portion of the sequenced data?®. These are
considered cognate contaminants, meaning they are reads originating from undesired RNA
types and must be removed prior to the de novo assembly. Using a database of known rRNAs
sequences (Additional file 2: Table S1), we have included a step in HyDRA where pre-
processed reads are computationally filtered to remove ribosomal contamination. During quality
assessment with FastQC, two long-read sequences identified as overrepresented were
confirmed through BLAT searches to be human rRNAs*’. On average, short-read data
contained 6.00% of rRNA-derived reads and long-read data contained 16.30% (Figure 2;
Additional file 2: Table S3). These numbers align with expected rRNA sequencing levels, even

after ribodepletion during library preparation*'.
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262  Short- and long-read data treatment in HyDRA. (A) Paired-end short-read data, followed by pie
263  charts highlighting the proportion of reads discarded in each step relative to the total number of
264 raw reads. (B) Single-end long-read data, preceded by pie charts highlighting the proportion of
265 reads discarded in each step relative to the total number of raw reads.

266

267 Long-read sequences of up to 35 kb were kept and used for assembly

268  The longest known human transcript is TTN (titin), with 109,224 nt*2, thus we anticipated that
269 certain long-read sequences in our dataset would be significantly longer than the reported

270 average of 1-3 kb'® 19 potentially including ultra-long reads over 100 kb in length. Indeed,
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although the average length of the raw long reads was 1024 nt, the longest was 103,744 nt
(Additional file 3: Figure S4A-C; Additional file 2: Table S3). FastQC analysis indicated that,
while reads with up to ~30,000 nt had the expected base composition (i.e. balanced proportions
of A, T, C and G), longer sequences presented a distinctively biased pattern of nucleotide
composition, rich in thymines and guanines (Additional file 3: Figure S4B). In light of this, we
implemented an additional QC routine to analyze sequence lengths throughout the pipeline and
allow users to remove sequences with unexpected nucleotide composition (fasta_splitter.py;
Additional file 3: Figure S4D). After all read treatment steps were performed, the eight remaining
longest sequenced reads (Additional file 2: Table S3; 30-35 kb), were aligned to the GRCh38
reference genome using BLAT# (Figure 3). All were confirmed as valid human sequences,
aligning to AHNAK (desmoyokin), DST (dystonin) or LYST (lysosomal trafficking regulator). All
treated long-read sequences were used for de novo assembly, including those reaching 35 kb.
Importantly, this maximum length is dependent on the input data, the tissue(s), developmental
stage and species being analyzed. Additionally, through fasta_splitter.py, HyDRA gives users

the option to strictly keep sequences that have up to n nt in length.
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T T
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Read06_3429nt_IOSE Il

C Chr1qg42 234,700,000 235,750,000 | 235,800,000 | 235,850,000 |

I L T | H
Read07_34183nt_IOSE [ I HHHHE
LYST M+ HH A H

1t

13


https://doi.org/10.1101/2024.06.24.600544
http://creativecommons.org/licenses/by-nc-nd/4.0/

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600544; this version posted June 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
. available under aCC-BY-NC-ND 4.0 International license.
Figure 3

Treated long-read sequences reaching up to 35 kb aligned to the human genome using BLAT.
These eight pre-processed reads (four from FTSEC and four from OSEC samples) were aligned
against the human genome (GRCh38) in a UCSC BLAT search to confirm they were valid

sequences. The sequencing reads that aligned to (A) AHNAK, (B) DST or (C) LYST.

Hybrid transcriptome assembly performs better than short-read-only approaches

To assess HyDRA'’s assembly, a short-read-only assembly was created by combining the treated
short reads as an input for Trinity v.2.8.4%3 with normalized read coverage at 50 to prevent
fragmented transcripts®. This assembly was subjected to the same processing steps as the hybrid
counterpart. To evaluate the quality of both assemblies, we used a subset of the metrics reported
in a recent benchmark study and respective normalized score (0-1)*3. These metrics included
transcript length, N50, reference coverage, open reading frame (ORF) percentage, undefined
base count and conserved orthologs representation. Based on the normalized score, the
HyDRA generated assembly performed 31% better than the best performing short-read-only
approach*, and outperformed the top-ranked de novo assembly tool alone by 41% (Figure 4A,;
Additional file 2: Table S4)*. Our hybrid approach generated 857,736 transcript sequences,
reaching up to 67,466 nt, with an average transcript length of 2,409 nt and GC content of ~44%
(Additional file 2: Table S4), which aligns with the reported human GC content of coding (~52%)

and noncoding (~44%) isoforms*4,
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Figure 4

Overall assessment of the HyDRA-generated assembly. (A) Normalized assembly scores.
Bubbles sizes vary according to N50 value. The graph shows scores for the assemblies
produced by i) the best (Trans-ABySS) and ii) second best de novo assembly tools alone
(Trinity)*3; iii) Bitar et al. 2023* pipeline; iv) HyDRA. Both (i) and (ii) were based on data
described by Holzer and Marz’s*? and (iii) and (iv) based on data described here (from human
ovarian and fallopian tube samples). (B) HyDRA’s assembly completeness from BUSCO

analysis.

In terms of assembly contiguity, N50 is an important metric defined as the length of the
sequence at which 50% of the total assembly size is contained in sequences of at least that
length. HyDRA produced an assembly with N50 of 6708 nt, which reflects how a hybrid
approach can represent full-length human transcripts (Additional file 2: Table S4). For
comparison, Holzer and Marz’'s best performing assembler produced a transcriptome with an
N50 of 441 nt (15.21 times smaller than HyDRA’s assembly)*3 and Bitar et al. 2023 an N50 of
1383 (4.85 times smaller than HyDRA'’s assembly)*. The highest N50 observed by Hélzer and
Marz*® was 2381 nt (2.82 times smaller than HyDRA’s assembly), but this study showed that
the assembler performed poorly compared to the other tools and metrics. To investigate the

contribution of adding long reads to transcriptome assembly, we used the Bitar et al. 2023*
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pipeline to create an assembly based only on our short-read data, comparing it with HyDRA'’s
hybrid assembly. The calculated N50 of the short-read-only assembly was three times smaller
than HyDRA'’s and the assembly had double the number of transcripts. This suggests HyDRA
can generate less fragmented assemblies, that are likely to better recapitulate full-length
transcripts, while maintaining high overall quality. Similar to the N50, the N90 metric
corresponds to the transcript length at which 90% of the total assembly size is contained in
sequences of at least that length. Using our hybrid approach, we achieved an N90 of ~1000 nt,
meaning that 90% of the transcripts in the HyDRA assembly are sequences matching the
average human transcript length'”. This demonstrates the overall contiguity of the produced

custom transcriptome (Additional file 3: Table S4).

The HyDRA-generated assembly accurately recapitulated several aspects of the human
transcriptome. For example, BUSCO analysis revealed > 98% of the eukaryotic (297/303),
91.9% of the vertebrata (2376/2586) and 87.8% of the mammalian (3606/4104) conserved
orthologs were captured in our hybrid assembly, indicating overall completeness (Figure 4B).
These values were similar to those obtained from the short-read-only assembly (Additional file
2: Table S4). According to TransRate, the custom hybrid assembly covered 24% of the
reference human transcriptome (GENCODE), which is comparable to the 23-26% observed in
the best performing assembler tools found by Holzer and Marz*® (Additional file 2: Table S4).
For perspective, HyDRA'’s transcripts cover approximately 12% of the reference genome while
the exons and UTRs in the reference annotation (GENCODE v36) cover approximately 5%

(genome coverages were calculated with BedTools genomecov).

Splicing assessment showed 30% of transcripts to be multiexonic
Most assemblies to date disregard monoexonic transcripts, but recent evidence has shown this

class contains conserved IncRNAs of functional relevance*>46:4748_Similar to Bitar et al. 20234,
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we have kept the monoexonic transcripts in our assembly, as long as they had high read
support. Transcripts aligned to the reference human genome (GRCh38) were classified as
monoexonic or multiexonic according to the presence of ‘N’ tags in the alignment file. A minimum
length of 50 nt was defined to differentiate introns from insertions and deletions (indels), which
aligns with current knowledge about human introns. Before filtering out low read support
transcripts, our hybrid assembly showed a ratio of multiexonic:monoexonic transcripts of 3:7
(~232,000 transcripts were classified as multiexonic and ~619,000 as monoexonic; Figure 4C;
Additional file 2: Table S4). For comparison, the short-read-only approach showed a ratio of
3:17 (~143,000 were multiexonic and ~740,000 were monoexonic), likely reflecting the power

of long reads to resolve transcript architecture and improve overall isoform assembly.

Removing transcripts with low read support helps remove technical artifacts and transcriptional
leakage products, as well as problematic transcripts arising from misassembly. As HyDRA
integrates short and long reads, read support for each transcript was calculated based on a
combination of both subsets, which is computationally and biologically challenging. In HyDRA,
redundant transcripts are collapsed prior to read support calculations. This redundancy
reduction step removed ~8,500 transcripts from the original assembly (Additional file 2: Table
S4). From the remaining ~224,500 multiexonic and ~618,000 monoexonic transcripts, ~189,000
(84.34%) and ~13,000 (2.12%) respectively, passed the more permissive RPKM cut-off for read
support (0.3 and 3 RPKM). As expected, the number of supported transcripts was much lower
when using the stricter RPKM cut-off (1 and 5 RPKM), with a 90% decrease in multiexonic
(~20,000) and 50% decrease in monoexonic transcripts (~7,300) passing the filtering step.
Since we previously validated transcripts with low read support by gPCR, confirming that the
less stringent cut-off still identifies bona fide transcripts*, we opted to use these transcripts for
further analysis. The ratio of multiexonic to monoexonic transcripts in the assembly is 1:14,

maintaining the expected IncRNA ratio observed in the Telomere-To-Telomere (T2T) human
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genome (T2T-CHM13). In total, the final filtered custom assembly consists of 202,459
transcripts, providing a comprehensive representation of the normal ovarian and fallopian tube

transcriptome.

Identification of unannotated IncRNAs in HyDRA'’s custom transcriptome

To assess the coding potential of the 202,459 transcripts, we ran three machine learning models
from the ezLNCpred package, CPAT, CNCl and CPC23%. On average, at least two of the models
agree on 61% of the noncoding predictions (93,899), suggesting that these methods are more
effective at confirming the absence of ORFs rather than detecting their presence. Additionally,
26.6% (40,969) had no coding potential detected by any of the three models (Figure 5A;
Additional file 2: Table S5). A total of 47,281 transcripts were predicted by at least two models
as noncoding and not by any model as protein-coding. We decided to include all 93,899
transcripts predicted as noncoding by at least two of the tools in our further analysis (Figure 5B;

Additional file 2: Table S5).

A Noncoding potential B IncRNA characteristics
CNCI
(102,277) ezlncPred FEELnc
46,858 (93,899) (101,878)
4,443 10,007 32,733 40,712
40,969

4683 38480 8,452

CPC2 CPAT
(88,575) (97,908)
Figure 5

LncRNA discovery. (A) Intersection of IncRNA candidates predicted by three different
ezLncPred machine learning models (CNCI, CPAT and CPC2). (B) Intersection between
FEELnNc IncRNA predictions and the list of candidates predicted by at least two of the ezLncPred

machine learning models.
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FEELnc was trained using the GENCODE GRCh38 transcriptome annotation of protein-coding
and IncRNA transcripts*®. This enabled us to identify which of the 202,459 transcripts
assembled by HyDRA had IncRNAs characteristics. To ensure robust predictive capability, we
exclusively used experimentally validated GENCODE IncRNAs. FEELnc predicted 101,878
transcripts to be IncRNAs (Additional file 2: Table S5). This represents about half of the total
number of transcripts in our custom transcriptome, indicating that IncRNAs constitute a
significant proportion of expressed transcripts in normal ovarian and fallopian tube tissues.
Importantly, more than 60% of these (61,166) IncRNAs were supported by at least two of the

three ezLncPred machine-learning models (Figure 5B).

The majority of these candidate IncRNAs were multiexonic, which may reflect the biased
training dataset. From the 61,166 candidate IncRNAs, 629 showed a bidirectional overlap of at
least 85% with a protein-coding transcript and a minimum identity of 75%. We believe these to
be either false-positives that our methods failed to detect, or noncoding isoforms of protein-
coding genes. Although monoexonic and sense genic transcripts (i.e. those overlapping
protein-coding genes in the same strand) are functionally relevant, it is difficult to differentiate
these from technical artifacts or transcriptional leakage. Furthermore, sense genic IncRNAs
cannot easily be uncoupled from the corresponding protein-coding gene, and we have included
a restrictive alignment step to facilitate their removal. From the remaining 60,537 IncRNAs, 228
were already annotated in GENCODE (GRCh38: 19 multiexonic; 1 monoexonic) or known to
the database of over 112,000 IncRNA transcripts (124 multiexonic; 84 monoexonic). We also
intersected the coordinates of the remaining 60,309 IncRNAs with those of protein-coding
genes using BedTools®. This allowed us to further remove 7,615 exon-overlapping transcripts,
resulting in the identification of 53,551 high-confidence IncRNA transcripts. Importantly, HyDRA

was designed to split monoexonic and multiexonic sequences after assembly, which allows
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users to easily focus on either or both sets of transcripts.

To demonstrate the functional relevance of these 53,551 high-confidence INcRNA transcripts
from the normal ovaries and fallopian tubes, we assessed their expression profiles in a different
subset of sequenced RNA samples (unrelated but biologically similar to those used for
assembly). We used publicly available RNAseq data from normal and cancerous ovarian and
fallopian tube tissues found in the RNA Atlas project®™. This revealed that 27,257 (44.56%)
IncRNAs were expressed in at least one of the samples, demonstrating HyDRA'’s efficient
assembly of both annotated and unannotated IncRNA transcripts, through the integration of

long- and short-read RNAseq data.

CONCLUSIONS

Here we present HyDRA, a comprehensive pipeline that integrates short- and long-read
sequencing data for a true-hybrid de novo transcriptome assembly and IncRNA discovery. We
used deep, short- and long-read RNAseq from ovarian and fallopian tube epithelial cells
samples to develop, validate and assess the efficacy of the pipeline in generating a high-quality
custom transcriptome. We have shown that HyDRA's assembly performed > 40% better than
the top-ranked stand-alone de novo transcriptome assembly tool and > 30% better than our
recent best-in-class short-read-only approach*. Based on this custom assembly, we identified
61,166 candidate IncRNAs, among which 60,309 have not been previously annotated and
53,551 showed no overlap with protein-coding transcripts. In summary, HyDRA is a high-
performing hybrid-assembly tool capable of facilitating accurate transcriptome reconstruction

and advancing IncRNA annotation.
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MATERIALS AND METHODS

RNAseq sample preparation and sequencing

RNA was extracted from primary and immortalized fallopian tube secretory epithelial cells
(FTSEC) and ovarian surface epithelial cells (OSEC) using the QIAGEN RNeasy Plus Mini kit
(Additional file 2: Table S2). One microgram of total RNA was rRNA depleted with the Ribo-
Zero™ Plus kit according to the manufacturers’ instructions (lllumina). Short-read RNAseq
libraries were prepared using the Truseq Stranded mRNA Library Prep Kit (lllumina), and
sequenced at high depth (PE150, > 75 million reads per sample; Additional file 2: Table S2) on
the lllumina Novaseq™ 6000 (Australian Genome Research Facility, Melbourne, Australia).
High sequence depth is considered best practice for IncRNA discovery, as they are often
expressed at low levels and have poor isoform representation®'. For long-read sequencing,
cDNA was extracted from one FTSEC and one OSEC cell line (Additional file 2: Table S2).
ONT cDNA libraries were generated with polyadenylation enrichment and SQK-NBD114.24
native barcoding kit at the Garvan Institute’s Nanopore Sequencing Facility (Australia).
Samples were barcoded using the supplied PCR barcodes and sequenced at high depth (> 69
million reads per sample; Additional file 2: Table S2) on the PromethlON™ P48 flowcells (FLO-
PRO114M - R10.4.1). The slow5 files were base-called using Guppy v.6.4.6+ae70e8f and

MinKNOW v.22.12.5 by the Garvan Institute’s Nanopore Sequencing Facility (Australia).

Databases and reference genome versions

We used the human genome GCRh38 release 79*° for IncRNA identification and annotation),
and the T2T-CHM13 genome®?, for long-read effects on the produced transcriptome assembly.
The GENCODE annotation for GCRh38 was used as the reference transcriptome. A previously
published database of 169 human rRNA sequences®, with the addition of two sequences
identified from our FastQC analysis (Additional file 2: Table S2), was used to filter pre-

processed reads for ribosomal contamination. To identify which of the discovered IncRNAs
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were known and which were novel, we used all annotated IncRNAs in GENCODE GRCh38
together with a comprehensive database of > 112,000 known IncRNA genes from 8 public
repositories (BIGtranscriptome, MiTranscriptome and LNCipedia from IncRNAKB?53; Cabili et al.
2011%4; CancerSEA®; Lanzos et al. 2017%; LncRNADisease® and RNAcentral®®), as
described in Bitar et al.*. Experimentally confirmed protein-coding and IncRNAs annotated in
the same GENCODE version were used to train the machine-learning algorithms FEELnNCcfilter,

FEELnc_codpot and FEELnc_classifier®.

Parameters used for the ovarian and fallopian tube custom assembly

A comprehensive list of the parameters used in each step is available in Additional file 2: Table
S1). Importantly, we defined both a restrictive and permissive set of cut-offs for read support. A
strict read support of 3 RPKM was enforced for monoexonic transcripts, but we relaxed the cut-
off to 0.3 RPKM for multiexonic transcripts. This is in agreement with* and maintained the
expected ratio of multiexonic to monoexonic IncRNAs of 14:1, consistent with annotations based
on the T2T genome. A stricter threshold of 5 RPKM and 1 RPKM, respectively, was also tested.
Importantly, IncRNAs expressed at ~0.5 RPKM had previously been experimentally confirmed

by our group with an 80% success rate®°.

Expression profiles of IncRNA transcripts

RNAseq analysis was run based on the GRADE (General RNAseq Analysis for Differential
Expression) pipeline*. Modifications to these scripts now allow the user to quantify reads based
on any user-provided transcriptome sequence and are available at®°. The expression profiles of
IncRNAs were assessed in (i) ovarian and fallopian tube whole tissue; (ii) high-grade serous ovarian
carcinoma (HGSOC) tumor samples, including homologous recombination (HR)-deficient and HR-
proficient; and (iii) HGSOC cell lines. Public RNAseq of ovarian and fallopian tube samples,

sequenced at high depth, were obtained from the RNA Atlas project™.
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Bioinformatics tools used for HyDRA development

Our pipeline integrates the currently available open-source tools in BASH scripts using basic UNIX
commands to write and submit portable batch system (PBS) jobs. Our scripts were designed to run
in a high-performance computer (HPC) where computational tasks are allocated in a PBS. However,
general command lines are also available for users that wish to run the pipeline on a different system
(See Availability of Data and Materials). Resources used for pipeline development are indicated in
each script and can be controlled by the user according to their available computational power. The
length evaluation script, fasta_splitter.py, was developed in Python 2.7+. To assess HyDRA's
assembly, a short-read-only assembly was created by combining the treated short reads as an

input for Trinity 2.8.432 with normalized read coverage at 50 to prevent fragmented transcripts*.

HyDRA was developed from 39 open-source tools and runs through BASH scripts (Table 1). A
comprehensive list of the all tools used in each step is available in Additional file 2: Table S1).
BLAT (BLAST-like alignment tool implemented at the UCSC genome browser) searches*® were
performed to confirm rRNA sequences, long-read sequences and investigate identified INCRNAs.
Plots were produced either directly by the underlying tools (referenced in text), with Python 2.7+
script available at HyDRA GitHub repository®’). Venn Diagrams were generated with InteractVenn®2.

Figures were edited in Adobe lllustrator v.28.5.

Step(s) Tool Version Source
01L1, O3L1 NanoPlot 1.41.6 63
01L2, 03L2 NanoComp 1.41.6 63
01L3, 01S1, 03L3, 03S1, 05S1, 09S1 FastQC 0.12.1 64
01L4, 0182, 03L4, 03S2, 05S2, 0952 MultiQC 1.14 65
01L5, 03L5, 05L1, 09L1 Fasta_splitter.py v1.0.6 in house
01L5, 03L5, 05L1, 09L1, 11H1, 14H1, 156H2, 21H2 seqtk 1.3 66
02L1 Porechop 0.2.4 67
02L2 Chopper 0.5.0 63
02L3 Cutadapt 3.9.13 68
02S1 Rcorrector 1 69
02S1 Reformat 39.01 0
02S2 FilterUncorrectabledPEfastq.py 2016 7
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04L1 RopeBWT2 r187 20
04L2, 04L3 FMLRC2 0.1.7 31
0431 Trimmomatic 0.36 72
04S2, 06L1, 06S1 BBDuk 39.01 70
07L1, 0781, 13H1, 13H2, 15H1, 15H2 Bowtie2 229 3
07L1, 0781, 11H2, 12H2, 13H1, 13H2, 15H1, 15H2, 16H1, 19H1 SAMtools 1.9 74
08L1, 08S1 RSeQC 264 75
08S2 DeepTools2 3.5.0 7
11H1 RnaSPAdes 3.14.1 12
12H1 BUSCO 20161119 32
12H1 BLAST 2.2.31+ 77
11H2, 12H2 Trinity 284 33
12H3, 12H4 TransRate 1.0.3 2
12H3, 12H4 Fastqg-pair 20231003 8
13H1, 14H1, 16H1 GMAP 2023-07-20 9
13H1, 13H2 Picard 2.19.0 80
15H1, 19H1 Minimap2 2.26 81
15H1, 15H2 CD-HIT 4.6.8 82
16H1 Bedops 2.4.41 83
16H1, 18H1, 19H1, 21H1 BedTools 2.29.0 37
18H1 ezLncPred 1.0 35
19H1 UCSC Tools 20160223 84
19H1 FEELnc 0.2 36
21H1 HTSIlib 1.19.1 85
21H1 gtf2gff 0.1 86
21H1 genestats 1.0 in house
21H2 PBLAT 251 87
Table 1
Open-source tools used in HyDRA. Steps are arranged in subroutines specific for long reads (L),

short reads (S) and hybrid (H).
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