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23 Abstract

24 Unraveling the regulatory mechanisms that govern complex traits is pivotal for advancing
25 crop improvement. Here we present a comprehensive regulome atlas for rice (Oryza sativa),
26  charting the chromatin accessibility across 23 distinct tissues from three representative
27  varieties. Our study uncovers 117,176 unique open chromatin regions (OCRs), accounting for
28  ~15% of the rice genome, a notably higher proportion compared to previous reports in
29  plants. Integrating RNA-seq data from matched tissues, we confidently predict 59,075
30  OCR-to-gene links, with enhancers constituting 69.54% of these associations, including many
31 known enhancer-to-gene links. Leveraging this resource, we re-evaluate genome-wide
32  association study results and discover a previously unknown function of OsbZIP06 in seed
33  germination, which we subsequently confirm through experimental validation. We optimize
34  deep learning models to decode regulatory grammar, achieving robust modeling of
35  tissue-specific chromatin accessibility. This approach allows to predict cross-variety
36  regulatory dynamics from genomic sequences, shedding light on the genetic underpinnings
37  of cis-regulatory divergence and morphological disparities between varieties. Overall, our
38  study establishes a foundational resource for rice functional genomics and precision
39  molecular breeding, providing valuable insights into regulatory mechanisms governing
40  complex traits.

41
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43 Introduction

44  Rice (Oryza sativa) is not only one of the most important crops in the world but also an
45  outstanding model species for studying plant growth and development. Over the past two
46  decades, tremendous efforts have been made to understand the genetic basis of important
47  agronomic traits in rice’. Genome-wide association studies (GWAS) have played a pivotal role
48 in this pursuit, helping to link genetic variations to phenotypic diversity. These studies have
49  identified a large number of candidate genes that hold promise for trait improvement®®.
50 However, despite these advances, our understanding of the regulatory mechanisms
51 governing complex traits in rice remains incomplete.

52

53  Gene regulatory networks (GRNs) are largely dictated by cis-regulatory DNA sequences, such
54  as promoters and enhancers, which are bound by specific transcription factors (TFs)°.
55  Deciphering the regulatory code within these regulatory sequences and linking the
56  regulatory sequences to target genes are crucial for rewiring GRNs for crop improvement and
57  trait optimization®. Nonetheless, efforts to profile the regulome, encompassing the entirety
58  of regulatory elements in the genome, remain constrained in rice. These efforts often
59  concentrate on specific tissues, neglecting the comprehensive landscape across
60  developmental stages and tissues’®. Similarly, endeavors to establish links between
61 regulatory regions and their target genes in rice are also limited®.

62

63  Meanwhile, many functional genetic variants associated with agronomic traits in rice reside
64  within noncoding regulatory regions (e.g., gSH1°, DROT1%, and FZP™), which makes their
65 interpretation challenging and underscores the necessity for a systematic dissection of
66  regulatory sequences. Given that diverse traits manifest across distinct developmental stages
67 and tissues, systematic annotation of noncoding regulatory variants in rice is currently
68  hindered by the lack of a comprehensive epigenome map across various tissues and growth
69  stages.

70

71 To bridge these gaps, we systematically mapped chromatin accessibility profiles in various
72  tissues across the life cycle of three representative rice cultivars using the UMI-ATAC-seq
73  method®?, a modified ATAC-seq (assay for transposase accessible chromatin-sequencing)
74 protocol developed in our lab. Through analysis of 145 ATAC-seq datasets, we obtained a
75  total of 117,176 unique open chromatin regions (OCRs), accounting for ~15% of the rice

76  genome. By integration of RNA-seq data from matched tissues, we predicted potential target
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77  genes for OCRs based on the correlation of gene expression and adjacent chromatin
78  accessibility across tissues. Through TF footprinting analysis, we inferred tissue- or
79  stage-specific regulatory networks and identified cultivar-polymorphic/trait-associated OCRs
80 by comparing the regulatory landscapes between indica and japonica rice subspecies.
81 Notably, our analysis unveiled a preference for GWAS-associated variants within
82  tissue-specific OCRs, enabling the identification of causal associations between 209 complex
83  agronomic traits and noncoding regulatory variants using this OCR landscape. Utilizing
84  optimized deep learning models, we decoded the regulatory grammar through modeling of
85  tissue-specific chromatin accessibility and across-variety predictions from sequences. The
86  modeling approach sheds light on the key genetic alterations contributing to cis-regulatory
87  divergence. Overall, these data not only serve as a cornerstone resource for the plant

88  research community but also provide valuable regulatory variants for precision molecular

89  breeding.
90
91 Results

92  Charting a reference atlas of chromatin accessibility in rice
93  To generate a comprehensive landscape of accessible chromatin in rice (Oryza sativa), we
94  took advantage of an improved ATAC-seq protocol (UMI-ATAC-seq'’, which incorporates
95  unique molecular identifiers to the regular ATAC-seq technique for accurate quantification
96  and footprinting) to perform chromatin accessibility profiling in 23 tissues/organs spanning
97  the entire life cycle of rice. The representative tissues include callus, radicle, plumule, leaf,
98 leaf sheath, root, apical meristem (AM1/AM2), dormant buds (DBuds), shoot apical
99  meristem (SAM1/SAM2/SAM3), panicle neck node (PNN), stem, young panicle
100 (Paniclel/Panicle2/Panicle3/Panicle4), lemma, palea, pistil, stamen and seed coat
101 (Seed1/Seed2/Seed3). The experiments were conducted in three representative rice
102  varieties, namely Nipponbare (NIP; japonica subspecies), Minghui 63 (MH63; indica
103  subspecies type Il), and Zhenshan 97 (2597; indica subspecies type ), with each experiment
104  consisting of at least two biological replicates (Fig. 1a and Supplementary Data 1). In total,
105 145 genome-wide chromatin accessibility datasets with high sequencing depth (~30.7M

13,14

106  reads on average) were generated. We applied the ENCODE standards to establish the

107  analysis pipeline (see Methods). Compared to published ATAC-seq datasets in the plants as
108  deposited in the ChIP-Hub database™, our data exhibited a significantly higher
109  signal-to-noise ratio (Supplementary Fig. 1). Through data analysis using the corresponding

15,16

110  reference genomes of the three cultivars™", we identified on average of 40,676 (ranging
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111 from 28,991 to 49,737) reproducible OCRs (with an Irreproducible Discovery Rate [IDR]* <
112 0.05) per experiment (Fig. 1b). As expected, the identified OCRs from all experiments
113  predominantly located either in the proximal upstream regions of the transcription start site
114 (TSS) or the distal intergenic regions (Fig. 1b,f, Supplementary Fig. 2 and Supplementary Data
115 2), resembling promoters or enhancers, respectively'®. Of note, OCRs from intragenic regions
116  accounted for a relatively small proportion (about 15.7%), while most of these OCRs
117  originated from intronic regions (Supplementary Fig. 2b). These observations indicate that
118  the vast majority of OCRs originate from noncoding regions of the rice genome.

119

120  We estimated that approximate 15% of the rice genome could be annotated as OCRs, with a
121 consistent pattern observed across each variety (Fig. 1c), and the estimation appeared to
122 have reached saturation in rice (Fig. 1d). OCRs contain multiple TF binding sites and are

123 responsible for regulating the expression of target genes®'®

. We collected publicly available
124  ChIP-seq data for 56 distinct TFs (Supplementary Data 3) and predicted DNA motifs for 458
125  TFs in rice from the ChIP-Hub database'®, and showed that OCRs were significantly enriched
126  for TF binding sites (Fig. 1le). Furthermore, we found that OCRs are highly evolutionarily
127  constrained compared to flanking genomic regions (Fig. 1g), supporting previous findings
128  that conserved noncoding sequences (CNSs) are predictive of OCRs in plants'®?°.

129

130  We next assessed the overall similarities and differences of chromatin accessibility across
131  varieties and tissues. We quantified all datasets based on the merged OCRs (n = 117,176)
132  called from the same reference genome (i.e., Nipponbare) and visualized their global
133 patterns using t-distributed stochastic neighbor embedding (t-SNE)*'. While dimension 1 and
134 2 of t-SNE results generally reflected differences between the indica (MH63 and Z597) and
135  japonica (NIP) subspecies, dimension 2 and 3 primarily delineated distinct clusters among
136  tissue types (Fig. 1h). For instance, the chromatin accessibility patterns of vegetative and
137  productive tissues of NIP were separated into distinct clusters, whereas young panicles and
138  callus tissues exhibited similar patterns regardless of their variety origin. We further
139  calculated the tissue specificity of each OCR based on the Jensen-Shannon divergence (JSD)
140  index. Obviously, distal OCRs showed significantly higher specificity scores than proximal
141 OCRs (Fig. 1i and Supplementary Fig. 3a,b), consistent with previous findings'****.
142

143  In short, the comprehensive accessible chromatin landscape in rice represents a value

144  resource for crop functional genomic studies.
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145

146  Linking open chromatin regions to target genes

147  To decipher which genes these OCRs may regulate, we generated matched RNA-seq datasets
148  for the investigated tissues in each rice variety (Supplementary Fig. 3c and Supplementary
149  Data 4). We adopted a strategy” to predict OCR-to-gene links based on correlation analysis
150  between the OCR accessibility and gene expression across all samples (Fig. 2a; see Methods).
151 Genes can be regulated by multiple OCRs (including promoters and enhancers) through
152  chromatin interactions, which are supposed to occur within topologically associated domains
153  (TADs). Since the size of TADs in the rice genome was estimated to be ranging from 35
154 kilobase pair (kb) to 45 kb based on Hi-C data®*®, we restricted our analysis to 40 kb (i.e.,
155  from 20 kb upstream to 20 kb downstream of the TSS) to predict target genes of OCRs. Using
156  a cutoff of absolute Pearson correlation coefficient |R| >= 0.4 and P < 0.05, we obtained a
157  total of 59,075 unique links between OCRs (n = 38,437, 32.8% of all OCRs) and genes (n =
158 18,781, 48.1% of annotated genes; Supplementary Fig. 4a, b and Supplementary Data 5). As
159  expected, the OCR-to-gene links tended to occur more frequently in the proximal OCRs, and
160  consequently the correlation between the gene expression and chromatin accessibility is
161 higher for proximal links (Supplementary Fig. 4c-f).

162

163  Genetic variants within OCRs can contribute to changes in gene expression levels through
164  expression quantitative trait loci (eQTL). We colocalized the identified OCR-to-gene links
165  from our study with published eQTL data in rice®®, and we found a significant overlap
166  (Chi-squared test, P < 1.55e-06) between OCR-to-gene links and eQTL-gene pairs
167  (Supplementary Fig. 4g). As expected, the correlation coefficients of colocalized OCR-to-gene
168  links with eQTLs are significantly higher than those without colocalization (Wilcoxon test, P =
169  4.11e-38; Supplementary Fig. 4h). We identified numerous known regulatory variants that
170  influence the expression of genes associated with agronomic traits. To name a few, a variant
171 within a distal regulatory region (~¥12 kb upstream) of gSH1 modulates its expression
172 dynamics, leading to change the seed shattering in rice”’. Accordingly, there is a positive
173  correlation (R = 0.47, P < 0.013) between the accessibility of this enhancer and the
174  expression of gSH1 in various tissues, particularly in SAM where gene expression increases
175  (Supplementary Fig. 4i,1). Similarly, OsLG1 is tightly linked to upstream regulatory regions
176  that colocalize with a strong QTL associated with the panicle shape trait®® (Supplementary Fig.
177  4j,1). IPA1 showed significantly positive correlation (R = 0.84, P < 2.95e-8) between its

178  enhancer activity and gene expression, with increased expression in yield-related tissues


https://doi.org/10.1101/2024.06.24.600524
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600524; this version posted June 27, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

179  (Supplementary Fig. 4k,l), confirming an important role of /PA1 to shape rice ideal plant
180  architecture (IPA) and thus to enhance grain yield®.

181

182  Taken together, the predicted OCR-to-gene links provide regulatory insights into agronomic
183  trait development in rice and highlight targetable OCRs of important genes for genome
184  editing.

185

186  Dissecting tissue-specific and stage-specific regulatory grammar

187  The comprehensive chromatin accessibility landscape of representative tissues gave us an
188  opportunity to wuncover tissue-specific regulatory grammar. We quantified the
189  tissue-specificity of OCRs by utilizing the JSD score, which enables the discrimination of
190  target genes from housekeeping (e.g., GAPDH> and OsGOGAT1*') to tissue-specific (e.g.,
191  OsYABBY5” and OsWRKY47%®) according to the above predicted OCR-to-gene links
192  (Supplementary Fig. 5 and Supplementary Data 6). We have specifically focused on analyzing
193  highly tissue-specific OCRs (n = 6,686 with a cutoff of JSD > 0.08, ~ 7% of all OCRs) as they
194  may encode the tissue-specific regulatory grammar. These OCRs were further annotated as
195  promoters (n = 2,322) or enhancers (n = 4,364) according to the genomic distance to the TSS.
196 By performing joint clustering analysis of chromatin accessibility and target gene expression
197  using OCR-to-gene links, we identified 20 distinct clusters of OCRs (Fig. 2b and
198  Supplementary Data 7). Each cluster had 200~500 OCR-to-gene links that were highly
199  activated in specific tissues, and showed a high degree of consistency with the known
200  biological characteristics of the corresponding tissues (Fig. 2b-d). For instance, the palea- and
201 lemma-specific links in cluster 5 (C5) contained promoter-enhancer interactions at the locus
202  of GWS, which is a known gene controlling grain weight in rice® (Fig. 2c). Accordingly, GWS8
203  was highly expressed in pistil, lemma, and palea. Gene ontology (GO) enrichment analysis
204  using genes from C5 revealed that biological processes such as ‘pollen—pistil interaction’ and
205  ‘pollination’ were overrepresented (Fig. 2d). Similarly, we identified a number of OCRs in C19
206  that were highly and specifically accessible in meristem-like tissues (including young panicle
207  and shoot apical meristem), and the associated target genes showed significant enrichment
208 for functions related to ‘reproductive system development’, flower development’, and
209  ‘shoot system development’ (Fig. 2b, d). Notably, RFL, a crucial regulator for plant

>3¢ was among these target genes (Fig. 2c). Interestingly, we

210  architecture and flowering time’
211 observed that a higher proportion (28.9%) of tissue-specific OCRs originated from distal

212  intergenic regions compared to constitutive OCRs (12.3%). In contrast, approximately 85% of
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213  constitutive OCRs were derived from the proximal-promoter regions. (Fig. 2e).

214

215  To delineate the TFs that may bind to these tissue-specific OCRs, we used GimmeMotifs*’, a
216  versatile tool can detect tissue-specific TF binding motifs by comparing TF binding activity
217  across multiple experiments. We restricted our analysis to the top 2,500 OCRs in each tissue,
218  as determined by their specificity measurement (SPM) score®. The predicted regulatory
219  motifs showed significant enrichments in a tissue-specific manner in matching tissue types
220  (Supplementary Fig 6 and Supplementary Data 8). We narrowed our focus to the top
221 enriched regulators in each tissue type, and found many of the inferred links correspond to
222  known regulatory relationships (Fig. 3a). For example, OsIDS1, a gene that plays a vital role in

223  shaping inflorescence structure and establishing floral meristems®*°

, exhibited relatively
224 high activity in the panicle. OsbZIP72, enriched in plumule tissue, has been found to regulate
225  plumule length by modulating abscisic acid (ABA) signaling and promote seed

226  germination*"*?

. Notably, the tissues of seed and pistil demonstrated a co-enrichment
227  pattern of crucial regulators involved in flower and seed development, including MFO1 and
228  MADS63*™ from the MADS gene family (Fig. 3a). For each tissue type, we performed a
229  systematic analysis to calculate the relative preference of regulators within TF families. Our
230  analysis revealed distinct tissue-specific TF binding patterns, indicating clear preferences for
231 specific regulators in different tissues (Fig. 3b). For instance, the TCP TF family showed a
232 preference for enrichment in stem, stamen, and panicle neck node (PNN) tissues. This
233  observation aligns with the known biological function of TCP genes, specifically their role in
234  regulating cell proliferation in developing tissues™.

235

236  Analyzing temporal ATAC-seq data through footprinting could assist in identifying key
237  regulators, such as pioneer factors, that control developmental progression and transition’.
238  We generated temporal open chromatin data from the young panicle, which is a crucial

48,49

239  organ determining the yield of rice™™, across four successive developmental stages (<1 mm,
240  1-2 mm, 3-5 mm, and 5-10 mm; Fig. 1a). We endeavored to identify regulatory motifs that
241 exhibited either positive or negative correlation with the young panicle developmental stage
242  in terms of enrichment, using dynamically changing OCRs (n = 9,244; Fig. 3c, Supplementary
243  Fig. 7a and Supplementary Data 9). The regulators that were most enriched displayed
244  predominantly positive correlations, indicating their function as transcriptional activators.

245  Conversely, a subset of factors exhibited negative correlations, suggesting a repressive role.

246  In this regard, DL (encoding OsYABBY®), OsSPL9> and OsSPL14>> were identified as
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247  representative positive regulators, during the development of young panicles in rice (Fig. 3d
248  and Supplementary Fig. 7b). However, further experimental data is necessary to validate the
249  potential involvement of these TFs in young panicle development.

250

251 Overall, the above results provide a valuable resource that can help guide studies of
252  candidate key regulators for tissue-specific gene regulation.

253

254  Systemic localization of GWAS variants in tissue-specific regulatory DNA

255  Genome-wide association studies (GWAS) have identified numerous natural variations linked
256  to various agronomic traits in rice’. To systematically colocalize GWAS-associated variants
257  with the above annotated regulatory elements, especially those from noncoding regulatory
258  regions, we compiled a comprehensive rice GWAS catalog from recent genome-wide
259  association meta-analysis studies®>*>° as well as the NGDC GWAS Atlas database™. In total,
260  we collected 4,831 significant (P < le-5) and representative (only considering lead SNP)
261 associations for 209 distinct quantitative traits which can be classified into seven major
262  categories’’: morphological characteristics, physiological features, yield components, grain
263  quality, resistance, coloration, and others (Fig. 4a and Supplementary Data 10). In a nutshell,
264  these GWAS SNPs dominantly located in intergenic noncoding regions (Fig. 4b and
265  Supplementary Fig. 8a) and 24.5% of them were either situated within a noncoding OCR
266  (21.1%) or located in linkage disequilibrium (LD) with SNPs in a neighboring OCR (3.4%) (Fig.
267  4c). Moreover, OCRs revealed significantly higher enrichment of GWAS SNPs than
268  protein-coding sequences (Fig. 4d), highlighting the crucial function of regulatory variants in
269  determining phenotypic characteristics.

270

271 Furthermore, our findings demonstrated that OCRs containing GWAS SNPs exhibited greater
272  tissue specificity (Fig. 4e,f and Supplementary Fig. 8b-d). For instance, one of the OCRs
273  containing a GWAS lead variant vg0724671055>* (C/T, GWAS P < 9.27e-8) significantly
274  associated to panicle number. This OCR was found to be highly accessible specifically to
275  young panicle tissues and its accessibility showed a positive OCR-to-gene link with the
276  expression of GW7 (R = 0.59, P < 9.14e-5; Fig. 4g). In another example, the GWAS lead
277  variant vg0431427332 is significantly associated to leaf blade width®® (P < 1.58e-8), which
278  was located in a SAM/Panicle-specific OCR to positively regulate the expression of NALI (R =
279  0.72, P <1.16e-6) (Fig. 4h). The previous studies have shown that NALI is not only associated

280  with leaf width but also with yield® and has natural variations in expression levels®®. More
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281 examples of validated OCR-related associations are presented in Supplementary Fig. 8e.

282

283  Tissue-specific regulatory variants explain agronomic trait associations

284  The variation in DNA sequences within OCRs plays a significant role in driving phenotypic
285  innovation through altering chromatin state and gene expression patterns, which usually
286  occurs in a tissue-specific manner. To investigate the relationship between genetic variations
287 associated with agronomic traits and tissue-specific OCRs, we calculated the enrichment of
288  genetic variations within OCRs in a tissue-specific manner. It turned out that significant
289 GWAS SNPs were frequently enriched in OCRs of trait-relevant tissues (Fig. 4f and
290  Supplementary Fig. 8d). For example, GWAS variants associated with spikelet traits were
291 highly enriched in OCRs specific to the tissues of SAM1, pistil and panicle. Motivated by this
292  observation, we performed an enrichment analysis of GWAS-identified SNPs in OCRs from
293  various tissues, using a SNP enrichment method termed CHEERS™® (Supplementary Fig. 9). Of
294  the 209 curated GWAS-related traits, ~78% (163 of 209) phenotypic traits showed GWAS SNP
295  enrichment in at least one tissue (Supplementary Fig. 10 and Supplementary Data 11). The
296  observed enrichment of agronomic trait-associated variants in regulatory elements was
297  highly specific to tissue types, and the association is largely compatible with our current
298  understanding of the tissue function (Fig. 5a). For example, in various GWAS studies,
299  regulatory variants associated with plant height was enriched in stem-related tissues; while
300 genetic associations for grain-related traits (such as grain thickness, grain width, grain length,
301 blighted grains per plant, and filled grains per plant) were highly enriched in OCRs specific to
302  the tissues of seed, lemma, pistil, and stamen (Fig. 5a). Meanwhile, we found that variants
303  associated with root length were predominantly enriched in the root tissue. Specifically, a
304  significant SNP (vg0806201957%, P < 3.98e-8) located in a root-specific enhancer of OsHAK12,
305  which has been shown to be involved in K" uptake in roots®® (Supplementary Fig. 11a).

306

307  In the case of seed germination percentage, GWAS SNPs were most significantly enriched in
308  plumule-specific OCRs (Fig. 5a). We noted a lead SNP (vg0131729028%, A/G, P < 8.4e-8)
309  localized within an intronic OCR of OsbZIP06, where the intronic OCR and OsbZIP06 formed a
310  positive OCR-to-gene link (R = 0.82, P < 2.55e-7) with high tissue specificity in plumule and
31 radicle (Fig. 5b). The minor allele (G) of vg0131729028 was present in a very small proportion
312  (0.3%) in the X/ population, but in 65.80% of the Aus population (Fig. 5¢c). We mutated the
313  coding region (mainly 1st exon) of OsbZIPO6 with CRISPR/Cas9 and found that the

314 germination rate was higher in two frameshift mutations (osbzip06-1 and osbzip06-2) than in
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315  the wild type (Fig. 5d-f and Supplementary Data 12). In contrast, overexpression of the
316  OsbZIPO6 resulted in lower germination rate (Fig.5¢,f). Therefore, integration of publish
317  GWAS data and our chromatin landscape can greatly facilitate the identification of candidate
318  genes and the functional annotation of noncoding variants.

319

320 Furthermore, when we divided the OCRs into proximal (< 3kb from the TSS, 60,006 OCRs)
321 and distal OCRs (> 3kb from TSS, 35,691 OCRs) before using CHEERS to do enrichment
322  analysis. We observed that the proximal OCRs are more enriched in GWAS SNPs (Fig. 5g-i and
323  Supplementary Fig. 11b). This implies that the enrichment above is mainly driven by the OCR
324 close to the TSS and this result is consistent with previous studies®®®.

325

326 Deep learning models accurately predict differences in chromatin accessibility
327  between tissues and unveil common regulatory grammar among varieties

328  We further investigated whether the tissue- and stage-specific regulatory grammar can be
329  modelled. Deep learning has been successfully utilized to learn and identify essential

. . . o . . 63,64
330 features in genomic sequences, such as the identification of cis-elements™

. Our previous
331  study demonstrated that the Basenji deep learning framework®® is powerful for modelling
332  epigenomic data in rice, such as the ability to accurately predict chromatin accessibility and
333  to assess the impacts of variants’. Therefore, we optimized the Basenji framework to
334  effectively model our ATAC-seq datasets from multiple tissues (Supplementary Fig. 12a,b).
335  Three distinct models were trained for the varieties of NIP, MH63 and ZS97, demonstrating
336  high accuracy with the mean AUROC values of 0.931, 0.921, and 0.928, respectively (Fig. 6a
337  and Supplementary Fig. 12c). We observed that the Pearson's correlation coefficient
338  between the predicted and observed values of chromatin accessibility at different locations
339  on the genome reached approximately 0.81, with the best prediction at the location of < 1kb
340  upstream regions (Fig.6b and Supplementary Fig. 12d). This implies that the regulatory
341 syntax patterns within promoter regions could carry more significant information encoded in
342  sequences, which can be effectively captured by deep learning models. Furthermore, the
343  predicted signals from the test sets exhibit the ability to discern between distinct tissues and
344  closely align with the clustering results of the actual values (Fig. 6c). For example, the
345  root-specific expressed gene RCc3, responsible for regulating lateral root growth®, exhibits
346  distinct chromatin accessibility patterns specifically in root (Fig. 6d and Supplementary Fig.
347  13).

348
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349  Subsequently, for each variety-specific model, we used test sets from the remaining two
350 varieties to evaluate the model's capacity for making predictions across different varieties.
351 Our analysis revealed high Pearson correlation coefficients (about 0.8) between the
352  predicted and observed signals (Fig. 6e). Notably, in the GSE9 promoter region, there is
353  divergence between indica and japonica rice, marked by a 9 bp deletion and several SNPs in
354 MH63 when compared to the sequences of NIP and ZS97%. The ZS97 model predicted the
355  chromatin accessibility of this region in MH63 with weak signals. Contrarily, the ZS97 model
356  accurately predicted the chromatin accessibility in NIP and ZS97, showing strong signals
357  (Fig.6f and Supplementary Fig. 14). These results suggest that the deep learning model can
358  effectively make accurate predictions across varieties, implying that shared regulatory
359  grammar across rice varieties.

360

361 We next performed comparative analyses on ATAC-seq data of 22 matched tissues/organs in
362  both japonica rice (NIP) and indica rice (MH63 and Z597), utilizing their respective reference
363  genomes (Fig. 1a,b). We found that roughly 60% (60,764 out of 95,697) of OCRs were shared
364  across all three cultivars (Fig. 6g and Supplementary Data 13). The indica varieties MH63 and
365 7597 exhibited a higher proportion of shared OCRs compared to NIP which from different
366  subspecies (Fig. 6g). We next sought to compare chromatin accessibility dynamics of the
367  1:1:1 orthologous OCRs across the three varieties (referred to as triads; see Methods). To
368 investigate the accessible bias of orthologous OCRs, we compared the chromatin accessibility
369  of orthologous OCRs in each individual tissue (Fig. 6h). Orthologous OCRs were assigned into
370  seven categories on the ternary plot based on their relative accessibility, including a
371 balanced category and six dominated or suppressed categories in specific cultivars
372  (Supplementary Fig. 15). The proportion of OCR triads assigned to unbalanced categories
373  varied among different tissues, ranging from 3.2% in plumule to 24.8% in AM1 (Fig. 6h and
374  Supplementary Fig. 16a). While promoters generally display balanced OCRs, indicating
375  consistent accessibility across different cultivars, enhancers frequently exhibit unbalanced
376  OCRs, reflecting cultivar-specific regulation (Supplementary Fig. 16b). Interestingly,
377  unbalanced OCRs harbored more genotypic variations in terms of SNPs (Fig. 6i). This
378  observation led us to suppose whether sequence variation among different varieties caused
379  the differences in chromatin accessibility of these OCR orthologs. Therefore, we used
380  NIP-based deep learning model to predict the chromatin accessibility signals of sequences
381 from orthologous OCRs in NIP, MH63 and ZS97, respectively, and then compare these

382  predictions. The results showed that about 50% of the differences in orthologous OCRs could
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383  be successfully resolved in terms of sequence variation (Fig. 6] and Supplementary Fig. 17).
384

385  In summary, the above results illustrate that deep learning models could accurately predict
386  chromatin accessibility across tissues and varieties. The high accuracy of the models also
387  indicates the high quality of our data.

388

389 Elucidate key genetic changes underlying cis-regulatory divergence by deep
390 learning models

391 Genetic variants and de novo mutations in regulatory regions may lead to cis-regulatory
392  divergence and thus changes in gene expression and organismal phenotypes®. We
393  systematically dissected the cis-regulatory divergence due to genomic sequence changes
394  (e.g., SNPs) in regulatory regions, which could be inferred from ATAC-seq data. To measure
395  the effect of the variant on chromatin accessibility, we extracted variants that differed in the
396 three varieties. The effect of different alleles of each variant on chromatin accessibility was
397  evaluated using the deep learning models. We found that unbalanced OCRs had a higher
398  absolute effect score than the balanced OCRs (Supplementary Fig. 18a) and these

26,69

399  large-effect loci were significantly enriched for eQTLs (Supplementary Fig. 18b). This
400  observation suggests that these putative large effect variants are associated with changes in
401 chromatin accessibility and gene expression. Meanwhile, we performed separate
402  OCR-to-gene correlation analysis for each of the three varieties. We then identified
403  conserved OCR-to-gene links and compared the correlation coefficients between them (Fig.
404  7a). Notably, OCRs with significant differences in correlation coefficients exhibited higher
405  SNP density (Fig. 7b), and the OCR-to-gene links with large differences in correlation
406  coefficients between MH63 and ZS97 were significantly enriched for differential cis-eQTL
407  between MH63 and ZS97 (Fisher’s exact test, odds ratio = 1.81 and P < 1.83e-28)°. These
408  suggesting that regulatory sequence variations among different varieties could influence
409 gene expression. For instance, we observed that a SNP (vg0336150781, G/A) located in the
410  GNPI1 promoter region control grain number and plant height”*. Among the OCR-to-gene
411 links we inferred, the allele in NIP (‘G’ at this SNP) correlated with GNP1 (R = 0.59, P <
412  6.48e-04), whereas the allele (A’ at this SNP) did not show OCR-to-gene correlation in MH63
413 (R =0.01, P = 0.99) and ZS97 (R = 0.17, P = 0.34) (Fig. 7c¢). In addition, eGWAS also
414  demonstrated that this SNP affects GNP1 expression (Fig. 7d). When we evaluated the
415  effects of this SNP with the deep learning model, we found that mutation of this SNP from “G”

416  to “A” in Panicle2 significantly reduced chromatin accessibility (Fig. 7e). We also found that
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417  this variant overlaps with the footprint of OsSPL10 identified in Panicle2, and its binding site
418  shows the typical "GTAC" motif of the SBP TF family. These results suggest that mutations
419  control gene expression by affecting TF binding to alter chromatin accessibility.

420

421 Besides point mutations, small genomic alterations (including short insertions/deletions,
422  inversions, and duplications) may abolish OCRs and thus confer an important avenue of
423  regulatory divergence. We quantified all OCRs based on the NIP reference genome and
424  investigated whether their regulatory activity dynamics were associated with short genomic
425  alterations, which were determined by whole genome comparison across different cultivars
426  (see Methods). In total, we found that nearly one third (26.6%) of the OCRs harbored small
427  alterations (Fig. 7f). The regulatory activity of these mutation-associated OCRs is positively
428  correlated with their surrounding gene expression patterns in a cultivar-specific manner (Fig.
429  7g,h), as exemplified at the loci of Oshsp18.0-Cil and MAG2 (Fig. 7i,j and Supplementary Fig.
430  19a). Notably, GO analysis showed that these genes were highly enriched for various
431 ‘response’ related functions (Supplementary Fig. 19b and Supplementary Data 14). Further
432  investigation revealed that the identified mutation-embedded OCRs were significantly
433  overlapped with transposable elements (TEs) (Supplementary Fig. 19¢c). The above results
434  indicate that TEs may contribute to modification of regulatory sequences, fine-tuning gene
435  expression networks and driving new functions’?.

436

437 Discussion

438 Despite substantial progress, a complete catalog of regulatory sequences within the rice
439  genome remains elusive, limiting the understanding of tissue-specific regulatory dynamics
440  and GRNs. Our study presents a comprehensive exploration of rice genome regulation using
441 the UMI-ATAC-seq technique', providing insights into tissue-specific regulatory elements
442 and their influence on complex agronomic traits. Of note, the identified OCRs in rice
443  encompass approximately 15% of the genome, a notably higher proportion compared to
444  previous reports in plants such as Arabidopsis (¥4%)’® and maize (~4%)’*. This expanded
445  coverage underscores the importance of sampling depth in characterizing the regulatory
446  complexity in plants and highlights the need for further comparative analyses to elucidate
447  species-specific regulatory features.

448

449  Predicting OCR-to-gene links presents a significant challenge due to the intricate regulatory

450  mechanisms governing gene expression. By integrating RNA-seq data from matched tissues,
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451 we predicted 59,075 OCR-to-gene links, including many reported enhancer-to-gene links.
452  This analysis offers a holistic view of how changes in chromatin accessibility directly impact
453  gene expression patterns, underscoring the significance of regulatory elements in shaping
454  the rice transcriptome. The identified associations between enhancers and target genes
455  provide guidelines for dissecting complex regulatory mechanisms and gene editing in
456  non-coding regions. The approach for predicting OCR-to-gene links based on multi-omics
457  data is versatile and transferable to other plant species. Despite our efforts to predict
458  OCR-to-gene links, less than half of the protein-coding genes exhibit a relatively strong
459  correlation (Pearson correlation coefficient |R| =2 0.4 and P < 0.05) with OCRs. The
460  complexities of dynamic and context-dependent regulation, coupled with long-range and
461 indirect regulatory mechanisms, introduce additional layers of complexity to OCR-to-gene
462 link prediction beyond the capabilities of linear models aimed at directly mapping OCRs to
463  their target genes. These factors likely contribute to the weaker correlations observed for
464  certain genes. Moreover, tissue-specific and housekeeping genes are difficult to correlate
465  through linear models due to the small variation in expression levels between tissues
466  (Supplementary Fig.20).

467

468  Deep learning has emerged as a potent tool for interpreting the genomic and epigenomic
469  data®*®, but its application in rice is hindered by the scarcity of high-quality epigenomic
470  datasets. Our study addressed this gap and successfully modelled the chromatin accessibility
471 of three rice varieties. The highly accurate models enable the prediction of chromatin
472  accessibility variation across varieties using sequences, providing a reference for scientists to
473  explore the functional effects of rare variants or new variants across different tissues.

474

475  Moreover, our comparative analysis across varieties revealed cis-regulatory divergence that
476  could largely be predicted using deep learning models based on sequences, highlighting the
477  genetic diversity of rice varieties and its impact on regulatory architecture. By integrating
478 GWAS data, we localized significant variants within noncoding regulatory regions,
479  demonstrating that these variants are preferentially located in tissue-specific OCRs, thus
480  providing insights into the influence of regulatory variations on phenotypic outcomes. A
481 notable achievement of our study is the identification of OsbZIP06's role in seed germination,
482  demonstrating the potential of integrating GWAS data with chromatin accessibility to
483  uncover the genetic basis of complex traits.

484
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485  In summary, our extensive chromatin accessibility atlas and the deep learning models we
486  have constructed not only enhance our understanding of regulatory elements in rice but also
487  serves as a versatile resource for gene editing and breeding strategies targeting non-coding
488  regions. Nevertheless, there are several limitations associated with our study. Firstly, our
489  map solely encompasses data from normal conditions, omitting insights into responses to
490 biotic or abiotic stresses, mutants, and diverse environmental circumstances. Secondly, the
491 inferred associations between OCRs and genes require experimental validation to confirm
492  their regulatory relationships. Thirdly, our study primarily employed the NIP reference
493  genome, thereby excluding sequences that were not available in the NIP genome.
494  Furthermore, the advent of single-cell technologies has opened avenues for studying

74,75

495  cis-elements at a single-cell resolution”™". In the future, incorporating single-cell data will be

496  crucial for further characterizing the heterogeneity among different cell types. These
497  advancements will collectively contribute to a more comprehensive understanding of the
498  regulatory landscape in rice and beyond.

499

500 Methods

501 Plant materials, ATAC-seq, and RNA-seq experiments

502  Three rice varieties, Nipponbare, Zhenshan 97 and Minghui 63, were planted in a field in
503  Wuhan, Chinain the summer of 2020 and were used to obtain most of the tissues or organs
504  used in this study. Details of the sampling are listed in Supplementary Data 1. We followed
505  our previously established method to perform UMI-ATAC-seq experiments’>. RNA was
506 isolated using TRIzol reagent (Invitrogen Life Technologies), and sequencing libraries were
507  prepared using the MGIEasy RNA Library Preparation Kit. The libraries were subsequently
508  sequenced on the MGISEQ-2000.

509

510  ATAC-seq data analysis

511 For the pre-processing of ATAC-seq data, we follow the workflow of ChIP-Hub™ and
512  cisDynet’®. The raw reads were first trimmed by Trimmomatic (v.0.36)”” to remove
513  sequencing adapters. The trimmed reads were aligned to the Oryza sativa L.ssp.japonica (cv.
514  Nipponbare) reference genome (v.7.0)*° using Bowtie2”® with the following
515  parameters ”-q—no-unal—threads 8—sensitive”. All reads mapped to mitochondrial and

516  chloroplast DNA were removed. After sorting mapped reads with SAMtools’ (version 0.1.19),
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517  we only used properly paired reads with high mapping quality (MAPQ score > 30) for the
518  subsequent analysis. The PCR duplicates were removed using the MarkDuplicates function

519  from Picard tools (version 2.60; http://broadinstitute.github.io/picard/). The “callpeak”

520  function in MACS2% (version 2.1.0) was used to call peaks with the following parameters: “-g
521 3.0e8 --nomodel --keep-dup 1 -B --SPMR --call-summits”. The “-shift” used in the model was
522  determined by the analysis of cross-correlation scores using the phantompeakqualtools

523 package (https://code.google.com/archive/p/phantompeakqualtools/).

524

525 RNA-seq data analysis

526  RNA-seq reads were aligned to the Nipponbare reference genome™ using STAR® (version
527  2.7.1a). The expression of annotated genes was measured by RSEM® (version 1.2.22) and
528  normalized with transcripts per million (TPM).

529

530 Linking OCRs to target genes

531 To assign OCRs to genes, we used an approach similar to the previous study®>®

. First, we
532  prepared the ATAC-seq quantification matrix, with each row representing a merged OCR and
533  each column representing a sample. After merging replicates, 66 tissues with both ATAC-seq
534  data and RNA-seq data were taken as independent samples for the analysis. For the gene
535  expression quantification matrix, we removed possible noise by considering only those genes
536  whose TPM of each row added up to > 1.5. For each of the remaining 29,571 genes, we
537  screened the OCRs that might regulate the gene within 20 kb upstream and downstream of
538 the TSS of that gene separately. Then we calculated the Pearson correlation coefficients
539  between the chromatin accessibility of these OCRs and the expression of that gene. Then we
540 randomly generated pseudo-peak sets of the same length and number as these OCRs on
541 other chromosomes, repeated the process 10,000 times, and used Z-test (z.test function
542  from the R package ‘TeachDemos’) to calculate P values. Finally, we considered that absolute
543  Pearson correlation coefficients (|R|) >= 0.4, and P < 0.05 were significant OCR-to-gene links.
544 For the identification of OCR-to-gene links of NIP, MH63, and Z597, we used the same

545  strategy except that we used ATAC-seq and RNA-seq samples of the corresponding varieties.

546
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547  Tissue-specific OCRs analysis
548  We merged the peaks with NIP tissues, counted the number of Tn5 cuts of these peaks in
549  different tissues, normalized them and then used the Jensen-Shannon Divergence (JSD) from

550 the philentropy R package (https://github.com/drostlab/philentropy) to screen

551 tissue-specific OCRs. Here we considered OCRs with JSD score > 0.08 (except > 0.1 for young
552  panicle) as tissue-specific OCRs. For tissue-specific OCR, we performed Z-score
553  transformation by row for visualization. To identify the top tissue-specific OCRs in each tissue,
554  we employed a scoring metric known as Specificity Measurement (SPM), as detailed in the
555  method provided at https://github.com/apcamargo/tspex. Subsequently, we sorted the
556  OCRs within each tissue based on their SPM scores to select the top 2500 tissue-specific
557  OCRsin each tissue.

558

559  Motif enrichment analysis

560  For motif enrichment analysis of tissue-specific OCRs, we first calculated the Tau index score
561 using SPM metric for each tissue's OCRs and selected the top 2,500 OCRs of each tissue for
562  motif enrichment analysis according to the ranking of Tau index scores. Then we used
563  GimmeMotifs>’ with maelstrom function to determine the tissue-specific motifs enrichment.
564  We set the “~-filter-cutoff” to 0.4. The input Position weight matrix (PWM) was downloaded

565  from the JASPAR® database (https://jaspar.genereg.net/). We combined the enrichment

566  result of three methods (Lasso, Bayesian ridge regression, and boosted trees regression) to
567  get the final motif enrichment lists.

568

569  ChIP-seq enrichment analysis

570  The public ChIP-seq data used in this study are provided in Supplementary Data 3. We
571 downloaded the narrow Peak files of these TFs from the ChIP-Hub database

572  (https://biobigdata.nju.edu.cn/ChIPHub/), and then used BEDTools® (version 2.29.1) fisher

573  function to calculate the enrichment level with OCRs.
574
575  TF motif and footprinting analysis

576  For the TF motif enrichment analysis, we used the SEA program from the MEME suite and
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577  used constitutive OCRs as background. We considered motifs with P-value < 1le-5 to be
578  significantly enriched. For genome-wide TF potential binding sites, we used the FIMO
579  program in MEME to identify them and also used P-value < 1le-5 as the cutoff.

580

581  TF footprints were calculated by TOBIAS (version 0.13.1)*. We first used TOBIAS ATACCorrect
582  function to correct the Tn5 inherent insertion bias. Then we calculated the footprint score in
583  OCRs using FootprintScores function with default parameters. Finally, we used BINDetect
584  function to predict transcription factor binding footprint for each sample, which were

585 matched to curated list of JASPAR®* motifs (https://jaspar.genereg.net/).

586

587  Cross-variety comparisons of OCRs

588  We first aligned the whole genome sequences of NIP, MH63, and ZS97 to each other. The
589  strategy used for the whole-genome alignment was similar to the previously described
590  method . The results were further filtered to obtain more reliable conserved sequences
591 following the default process of “Reciprocal Best”

592 (http://genomewiki.ucsc.edu/index.php/HowTo: Syntenic Net or Reciprocal Best). We

593  obtained three superset OCRs by merging OCRs of tissues shared by three varieties s (n = 22).

594 Then we used the bnMapper.py script in bx-python (https://github.com/bxlab/bx-python) to

595  convert the OCRs coordinates of MH63, ZS97 to the corresponding coordinates of the NIP.
596  We then considered the OCRs of MH63, ZS97 with at least a 50% overlap with the OCRs of
597 NIP to be conserved OCRs for the three varieties. To obtain a quantitative matrix of
598  conserved OCRs, we first quantified all OCRs for each variety and divided the length of the
599  corresponding OCRs by the CPM strategy, and then extracted the conserved OCRs for each
600  variety for subsequent analysis. We then refer to it to classify conservative OCRs into seven
601 categories (NIP dominant, MH63 dominant, 7597 dominant, NIP suppressed, MH63
602  suppressed, ZS97 suppressed, and balanced).

603

604 Deep learning model analysis

605 We used the Basenji®® deep learning framework with modifications to accommodate the

606 relatively small rice genome for deep learning model training. We first use the bam_cov.py
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607  script to convert the bam files into bigwig files. We then used the basenji_data.py script to

608  prepare the input files for the deep learning model according to the following parameters:
609 “-d 1.0 -s 0.1 -ocal -t 1 -v 4”. The “-, -l, -w” of these parameters are shown in the

610  Supplementary Data 15. Data from chromosome 1 was used as the test sets and data from
611 chromosome 2 was used as the validation sets. Next we used the basenji_train.py script to
612  train the model on a NVIDIA GTX 3090. The basenji_test.py script (default parameters) was
613  used to perform the model performance test. We found differences in the training
614  performance for different parameter settings for rice, with “-I 32768 -c 2048 -w 128” being
615  the best, and subsequent analyses were based on models trained with this parameter. To
616  measure the effect of variation in OCRs, we used the basenji_sat_bed.py script to perform
617  base mutations at this locus and calculated the difference in signals between the reference
618 and the mutation as the variation effect value. To predict the chromatin accessibility of
619  orthologous OCRs, we extended the centre of the OCR by 16,384 bp left and right to make a
620 total length of 32,768 bp. Sequences exceeding the length of the corresponding
621 chromosome were removed, and then sequences of the corresponding varieties were
622  extracted using BEDTools getfasta function, and then basenji-predict_bed.py was modified to
623  enableit to use fasta as input.

624

625  Analysis of structural variants and transposable elements

626  We downloaded deletions, duplications and inversions for MH63 (CX145), ZS97 (B156) in

627  Rice SNP-Seek Database (https://snp-seek.irri.org/). Since this database provides large

628  structural variants with a minimum length of 10 bp, we also integrated a series of variants
629  with reference to this workflow’. Briefly, we selected Leaf ATAC-seq data from NIP, MH63 and
630  ZS97 varieties, then aligned them to the Nipponbare reference genome using BWA-MEM”
631 (version 0.7.12-r1039) and identified INDELs using GATK®’ (version 3.3-0-g37228af). The
632  annotation files of transposable elements (TEs) were downloaded from Phytozome database.
633  We use the default parameters of the BEDtools®® (version 2.29.1) intersect function to
634  identify OCRs that overlap with structural variants and TEs.

635
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636 GO enrichment analysis
637 All GO enrichment analysis was done in the Rice Gene Index database

638  (https://riccome.hzau.edu.cn/)®® using default parameters. We considered FDR < 0.05 as a

639  significantly enriched pathway.

640

641 GWAS data processing

642  The genotype and phenotype data used in this study were downloaded from four published
643  cohorts. We refer to this reference® to name them as 529 rice accessions?, 1,275 Chinese rice
644  accessions™, 176 Japanese rice accessions>> and 3K rice accessions™ , respectively. GWAS
645  was performed separately for each cohort by GCTA* (version 7.93.2) with mixed linear
646  model. To determine the significant SNPs cutoff, we first used Genetic type 1 error calculator
647  (GEC™, version 0.2) to evaluate the effective numbers of independent SNPs (N) and
648  approximated by 0.05/N to estimate the cutoff. The threshold for significant SNPs varied by
649  cohorts, we set the thresholds to 10x2107°, 12xP10™, 12x#107°, and 12x2107° for 3K rice
650 accessions, 176 Japanese rice accessions, 529 rice accessions, and 1,275 Chinese rice
651 accessions, respectively. Variants with a minor allele frequency (MAF) that was < 5% were
652  excluded. For the lead SNP identification, we used PLINK®* (version 1.9) and set the
653  parameter “--clump-p1” to the threshold we defined above, “--clump-p2 0.05 --clump-r2 0.6
654  --clump-kb 1000” for the first round of parameters. Then we set the second round of
655  “--clump-r2” to 0.1, other parameters are unchanged. We used PLINK with the following
656  parameters “--ld-window-kb 1000 --Id-window 99999 --ld-window-r2 0.8” to calculate the
657  SNPs with strong linkage disequilibrium (r* >0.8) with lead SNPs.

658

659  Enrichment analysis of GWAS-associated SNPs of different P-values with OCRs

660 The enrichment in the OCRs of a tissue at a given threshold of different P-values was
661 calculated as the fraction of SNPs with P-values below this threshold that overlap with the
662  OCRs (merged all NIP tissues' OCRs), divided by the fraction of all noncoding SNPs that
663  overlap with the OCRs in the study. Enrichment was performed at P-value thresholds ranging
664  from le-1 to le-7. The smallest threshold had at least 50 SNPs in their study to ensure the

665  sufficient sample size.
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666

667  GWAS SNPs enrichments

668  We first merged the peaks from all tissues in Nipponbare and used this peak superset to
669  quantify each tissue. To make sure that our analysis was not interfered by low confident
670  peaks, we dropped the peaks in the tenth percentile of the lowest Tn5 cuts coverage,
671 yielding 86,011 ATAC-seq peaks finally. Then we performed the normalization with
672  CHEERS_normalize.py from CHEERS® (Chromatin Element Enrichment Ranking by Specificity)

673  software (https://github.com/TrynkaLab/CHEERS/tree/python3). The normalized

674  quantification matrix was next transformed to tissue-specificity score with range 0-1. To do
675  the enrichment analysis, we used the set of lead SNPs and SNPs with strong linkage
676  disequilibrium (* > 0.8) with the lead SNPs computed separately for the corresponding
677  cohort from the 209 GWAS above as the input to CHEERS computeEnrichment.py. The
678  enrichment P-values were transformed by -log10 and normalized by row with Z-score for
679  visualization. For the proximal and distal GWAS SNPs enrichment analysis, we first divided
680  OCRs into proximal and distal according to its summit distance from the nearest TSS. All
681 other steps are the same as described above.

682

683  Generation of transgenic rice plants

684  To obtain overexpression lines of OsbZIP06, the cDNA of OsbZIP06 was cloned using primers
685  OsbzIP06-OE-F and OsbZIP0O6-OE-R and inserted into the Kpnl-BamH1 site of the
686  pCAMBIA1301 vector and fused with the maize Ubiquitin promoter and three FLAG tags at
687  its C-terminus using the ClonExpress Il One Step Cloning Kit (Vazyme). The construct was
688  then transformed into ZhongHuall (ZH11) by Biogle GeneTech. Primers used to clone
689  OsbZIP0O6 are listed in Supplementary Data 16.

690  For the OsbZIPO6 mutant strain, T1 generation seeds produced using the CRISPR-Cas9 system
691 were purchased from Biogle GeneTech. The sgRNA sequence OsbZIP06-CR-gRNA is listed in
692  Supplementary Data 16.

693

694  Seed germination experiments

695 Seed germination experiments were performed as previously described®. Seeds of
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696  Zhonghua 11, OsbZIP06 mutant in the Zhonghua 11 background were used for germination
697  experiments.

698

699  Statistics and reproducibility

700  If not specified, all statistical analyses and data visualization were done in R (version 4.0.0) or
701 Python (version 3.8.9). R packages (e.g. ggplot2 and plotly) and Python packages (e.g.
702  Seaborn) are heavily used for graphics. All the sources data for each figure can be found in
703  the Supplementary Information. Specific tests used to determine statistical analyses are

704  noted in each figure legend.

705  Data Availability
706  The sequencing data from ATAC-seq and RNA-seq generated in this study have been
707  deposited in the NCBI BioProject database under accession code PRINA940508

708  [https://www.ncbi.nlm.nih.gov/bioproject/PRINA940508]. All public ChIP-seq used in this
709  study are download from ChIP-Hub database (https://biobigdata.nju.edu.cn/ChIPHub/). The

710  accession number are provided in the Supplementary Data 3. Some critical analysis results

711 about this study can be accessed in the CART database (https://biobigdata.nju.edu.cn/cart/).

712 Source data are provided with this paper.
713

714  Code Availability
715  The code related to figures is available at https://github.com/compbioNJU/CART.
716
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975  Figure Legends
976  Fig. 1 | Characterization of an open chromatin landscape in rice.
o77 a. ATAC-seq and RNA-seq experiments were conducted in three varieties (Nipponbare, Minghui 63,
978  and zhenshan 97) of rice in various tissues across the entire life. See Supplementary Data 1 for
979 detailed descriptions of sample collection. Consistent tissue color code is used throughout the figure.
980 b. Bar plot showing the number of reproducible OCRs identified from each tissue in the three rice
981 varieties. The OCRs are classified into three categories based on the distance of the OCR summit to its
982 closest transcription start site (TSS): distal (>1 kb), proximal (<= 1kb), and intragenic. No data from the
083 tissues of SAM3 (NIP), Seed1 (ZS97) and Stem (ZS97).
984 ¢. The proportion of the rice genome annotated as open chromatin regions (OCRs) in our study.
985 d. The accumulative number of unique OCRs in each tissue, calculated by excluding OCRs that overlap
986  with the OCR superset.
087 e. Density plot showing the enrichment of TF binding sites (TFBSs) around the OCRs in Nipponbare
988  (NIP). TFBSs were predicted either by ChIP-seq datasets for 56 distinct TFs (left) or DNA motifs for 458
989 TFs (right), which were obtained from the ChIP-Hub database™. The flanking area on both sides is 1kb.
990 f. The distribution of the distance of OCR summit to its closest TSS in the three rice varieties. Publised
991 open chromatin data™ in rice (NIP) were included for comparison. Based on the distribution, a cutoff
992  of 1 kb (dashed line) was used to distinguish the proximal and distal regulatory OCRs.
993  g. The distribution of the conservation PhastCons score™ around the NIP OCRs.
994 h. The t-SNE plot showing an unsupervised clustering analysis of chromatin accessibility across
995 different samples. Each dot represents one replicate. Color code as in (a).
996 i. Boxplot showing the distribution of tissue specificity score of intragenic (n= 14239), proximal
997  (n=29524) and distal (n= 57153) OCRs (left) or the median score in each tissue. P1 = 4.01e-39, p2 =
998  2.13e-96, p3 = 1.23e-95. All p-values were calculated by two-sided Mann—Whitney U test between
999 proximal and distal OCRs in terms of specificity. Tissue color code as in (a). Boxplot shows the median
1000 (horizontal line), second to third quartiles (box), and Tukey-style whiskers (beyond the box).
1001  Source data are provided as a Source Data file.
1002  Fig. 2 | Tissue-specific OCRs.
1003  a. Schematic diagram illustrating the correlation-based approach to link ATAC-seq OCRs to target
1004 genes based on correlation analysis between chromatin accessibility and gene expression.
1005 b. Heatmap showing the tissue-specific OCR-to-gene links (R >= 0.4, P < 0.05, two-tailed Z-test). Each
1006 row in the left panel is a unique OCR. Each row in the middle panel is a gene, corresponding to target
1007 genes for OCRs in the left panel. Representative genes are shown on the right.
1008 c. Examples of tissue-specific OCRs (in the dashed box) regulating dynamic expression of the
1009 corresponding target genes. The orange lines indicate the OCR-to-gene links, and the deeper the line
1010 the higher the correlation between the chromatin accessibility and gene expression.
1011 d. Enrichment of biological processes gene ontology (GO) terms for target genes in each OCR cluster in

1012 (b). The asterisk (*) denotes P < 0.05 (P-values were calculated by Hypergeometric test after
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1013  Bonferroni correction).

1014 e. Bar plot showing the percentage of OCRs from different categories based on the genomic location.
1015  Source data are provided as a Source Data file.

1016  Fig. 3 | Tissues-specific and stage-specific regulatory elements.

1017 a. Enrichment of TF motifs in tissue-specific OCRs. Only top 5 enriched TFs in each tissue are shown.
1018 See Supplementary Data 8 for the full list. The thickness of edges is proportion to the corresponding
1019  enrichment score.

1020 b. The relative preference of regulators within TF families in each tissue type. Only the top 100 TF
1021 motifs in each tissue were used for analysis.

1022 c. The scatter plot showing the distribution of the Pearson correlation coefficient between TF footprint
1023 score and its expression. Only absolute values of correlation coefficients greater than 0.5 are marked.
1024 d. The scatter plot showing the distribution of TF footprint score and its gene expression in NIP, MH63,
1025 and Z597(left). The error bands indicate 95% confidence intervals. Distribution of Tn5 cuts around the
1026  footprint of DL and OsSPL9 at different stages of young panicle (right).

1027  Source data are provided as a Source Data file.

1028

1029  Fig. 4 | GWAS-associated variants localize in tissue-specific OCRs.

1030 a. Categorical proportions of lead SNP in each GWAS. The inner circle indicates the proportions of the
1031 seven major categories, and the outer circle indicates the subcategories contained in each major
1032  category. Only high proportions are marked in the outer circle.

1033  b. Distribution of curated lead SNPs by genomic context. All lead SNPs are the same as in (a).

1034 ¢. Overlap proportions of lead SNPs and sets of SNPs with strong linkage disequilibrium (LD > 0.8) with
1035 lead SNPs with ATAC-seq OCRs, ChlIP-seq peaks and footprints identified by NIP ATAC-seq ,
1036  respectively.

1037 d. The barplot showing the SNP density of OCR and CDS regions at different GWAS P-value thresholds.
1038 The error bars are the standard deviations of the SNP densities in the six GWAS catalogs from the (a).
1039 Data represents the meanzASD of 6 independent GWAS catalogs. The P values were calculated by
1040  two-tailed Student's t-test.

1041 e. Boxplots showing the tissue-specificity score distribution of OCRs that overlap with grain width™
1042  and leaf blade width®® GWAS SNPs. For grain width, the sample sizes for the "with" and "without"
1043  groups are 896 and 4480, respectively. For leaf blade width, the sample sizes for the "with" and
1044 "without" groups are 2864 and 5728, respectively. Boxplot shows the median (horizontal line), second
1045 to third quartiles (box), and Tukey-style whiskers (beyond the box). The P-values were calculated by
1046  two-tailed Student's t-test.

1047  f. The enrichment of GWAS SNPs’ in OCRs with different GWAS P-value threshold.

1048 g Manhattan plot showing the GWAS signal distribution of vg0724670482 and the LD distribution of
1049 its surrounding SNPs. The track plot demonstrates that the OCR where this SNP is located has a higher

1050 accessibility in palea tissue. “02G” represents OCR-to-gene links.
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1051 h Same meaning as (g), except that vg0431203743 has a higher accessibility in SAM and young

1052 panicle.
1053 Source data are provided as a Source Data file.
1054

1055  Fig. 5 | Association of tissue type with complex traits.

1056  a. GWAS SNPs enrichments for ATAC-seq OCRs of different tissues. The heatmap showing the
1057 significant tissue-specific enrichment results. The values are transformed by -logl0(P) and then
1058 normalized by row. Those marked with an asterisk represent P < 0.05 for this result. The P values were
1059 calculated by Kolmogorov-Smirnov test. Only tissue data for the NIP variety were used for this analysis.
1060  The full list for GWAS enrichment result could access by Supplementary Data 11.

1061 b. One representative examples of genomic tracks at loci OsbZIPO6 showing that GWAS lead SNP is
1062 located in tissue-specific OCRs. The GWAS study name and SNP location (denoted by red dashed line)
1063  are shown at the top of panel.

1064 ¢. Haplotype distribution of vg0131729028 in the population. This result was obtained from the
1065  RiceVarMap 2.0 database’.

1066 d. Identification of mutation information of two OsbZIPO6 mutants based on sanger sequencing.

1067 e. The images show seed germination rates of wild type and mutants of OsbZIP06.

1068 f. The line graph showing the germination rates of different mutants osbzip06 at different days of
1069  imbibition. “OE” represents overexpression.

1070  g. Boxplot showing the enrichment results of proximal and distal OCRs with 209 GWAS results
1071 respectively. Only results where GWAS was significantly enriched with at least one of proximal and
1072 distal OCRs are shown. The sample size of each group is 764. The P value was calculated by Student's
1073 t-test. Boxplot shows the median (horizontal line), second to third quartiles (box), and Tukey-style
1074  whiskers (beyond the box).

1075 h. Venn plot showing the number of results significantly enriched (P < 0.05, Kolmogorov-Smirnov test)
1076 by proximal and distal OCRs.

1077  i. Enrichment of GWAS SNPs in TSS proximal and distal OCRs. The names of the GWAS are marked at
1078 the top of the panel. The grey dashed line indicates the P-value threshold of 0.05. The P values were
1079  calculated by Kolmogorov-Smirnov test.

1080  Source data are provided as a Source Data file.

1081

1082  Fig. 6 | Using deep learning model to predict chromatin accessibility across tissues and varieties.
1083 a. Receiver operating characteristic curves for different tissues in the NIP cultivar. The average AUORC
1084  value was 0.931.

1085 b. Distribution of Pearson correlation coefficients between predicted and true signal values for
1086 different genomic regions using NIP model. Each point represents one tissue (n = 24). Data are
1087  displayed as mean * SD.

1088 ¢. Comparison of clustering results based on predicted and true signal values using NIP model.
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1089 d. The genomic tracks show the signal values predicted by NIP model versus the true signal values for
1090  Paniclel, PNN and Root, respectively. The shaded area is labelled with the gene region of RCc3. The
1091 heatmap below the tracks show the expression of the RCc3 in NIP varieties.

1092 e. The boxplot showing the distribution of Pearson's correlation coefficients for the models of NIPF,
1093 MH63 and ZS97 tested separately using sequences from the other two varieties. The red dashed line
1094 represents a correlation coefficient at 0.80. Each sample consists of 24 observations. Boxplot shows
1095 the median (horizontal line), second to third quartiles (box), and Tukey-style whiskers (beyond the
1096  box).

1097 f. The genomic tracks showing the signal values predicted with the ZS97 model for NIP, MH63 and
1098 2597 sequences versus the true signal values in Stamen and Stem tissues, respectively. The shaded
1099  area represents the orthologous region of GSE9 in NIP, MH63 and ZS97 varieties. The heatmap below
1100 the tracks show the expression of the GSE9 in NIP, MH63, and ZS97 varieties.

1101 g. Comparison of OCRs in the three rice cultivars (NIP, MH63 and ZS97). For each cultivar, OCRs from
1102 all tissues were merged and then compared based on whole genome sequence alignments.

1103 h. Ternary plot showing the chromatin accessibility of orthologous OCRs among the three rice
1104  cultivars with Paniclel tissue.

1105 i. Comparison of the SNP density within the balanced (n=19793) and unbalanced (n=8385)
1106 orthologous OCRs. The P value was calculated by two-tailed Student's t test. Boxplot shows the
1107 median (horizontal line), second to third quartiles (box), and Tukey-style whiskers (beyond the box).
1108 j- Sankey diagram showing the true chromatin accessibility difference and the chromatin accessibility
1109  difference predicted by the deep learning model for orthologous OCRs in NIP, MH63 and ZS97. The
1110  color representation is categorized in the same way as in (h).

1111 Source data are provided as a Source Data file.

1112

1113 Fig. 7 | Genomic mutations contribute to cis-regulatory divergence

1114 a. Density plot showing the difference in Pearson correlation coefficients (R) between the
1115  OCR-to-gene of NIP, MH6E3 and ZS97, respectively. The R of OCR-to-gene are not less than 0.4 we
1116 consider large differences while R located between -0.05 and 0.05 we consider no difference.

1117  b. Boxplots showing the density of SNP differences between big and small difference groups.
1118 Comparisons are made by two-tailed Student’s t test. Sample sizes for each group are labeled above
1119 their respective boxes. Boxplot shows the median (horizontal line), second to third quartiles (box), and
1120  Tukey-style whiskers (beyond the box).

1121 ¢. The dot plot demonstrates that the GNPI gene associates to an OCR (chr3:36150374-36152039) in
1122 NIP, but not in MH63 and ZS97 due to the presence of a variant (vg0336150781, G/A). Pearson’s
1123 correlation coefficient is used for the test. The error bands indicate 95% confidence intervals. The
1124 P-values were calculated by two-tailed Z-test.

1125 d. Manhattan plot showing local eGWAS results for GNP1. The eGWAS results were obtained from
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1126 Mingetal.®.

1127 e. Changes in chromatin accessibility using deep learning models for mutations of 100 bp each on the
1128 left and right of vg0336150781. “Loss” represents reduced chromatin accessibility after the mutation
1129 compared to before the mutation, and “gain” represents increased. The figure shows the change in
1130 chromatin accessibility before and after the mutation in Panicle2.

1131 f. The treemap showing the proportion and composition of OCRs without structural variants (SV) and
1132 OCRs with SV. Here we only consider deletions (DEL), inversions (INV) and duplications (DUP) for SV.
1133 OCRs were considered SV-related when it overlaps with DEL, DUP and INV by at least 1bp.

1134  g. The heatmap showing the 12,313 OCR-to-gene links (R >= 0.4, P < 0.05, two-tailed Z-test) associated
1135 with SV. They were grouped into 6 clusters based on their chromatin accessibility. The number of OCRs
1136  in each cluster and the number of target genes are labeled on the right side of the heatmap.

1137  h. The doughnut showing the proportion of DEL, DUP and INV in each cluster.

1138 . Scatter plot demonstrate Pearson correlation coefficients (R = 0.83, P < 6.94e-09) between tissues
1139 for the accessibility of OCR associated with deletion and the expression of target genes
1140 (Oshsp18.0-Cll). The error bands indicate 95% confidence intervals. The P-values were calculated by
1141 two-tailed Z-test.

1142 j. Genome Browser showing ATAC-seq signal distribution in the vicinity of gene Oshsp18.0-Cil. The gray
1143 dashed bracket represents the absence of this OCR in MH63 and ZS97 due to the deletion of this
1144  sequence. The barplot on the right shows the expression of the gene in each tissue.

1145  Source data are provided as a Source Data file.
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