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Abstract 23 

Unraveling the regulatory mechanisms that govern complex traits is pivotal for advancing 24 

crop improvement. Here we present a comprehensive regulome atlas for rice (Oryza sativa), 25 

charting the chromatin accessibility across 23 distinct tissues from three representative 26 

varieties. Our study uncovers 117,176 unique open chromatin regions (OCRs), accounting for 27 

~15% of the rice genome, a notably higher proportion compared to previous reports in 28 

plants. Integrating RNA-seq data from matched tissues, we confidently predict 59,075 29 

OCR-to-gene links, with enhancers constituting 69.54% of these associations, including many 30 

known enhancer-to-gene links. Leveraging this resource, we re-evaluate genome-wide 31 

association study results and discover a previously unknown function of OsbZIP06 in seed 32 

germination, which we subsequently confirm through experimental validation. We optimize 33 

deep learning models to decode regulatory grammar, achieving robust modeling of 34 

tissue-specific chromatin accessibility. This approach allows to predict cross-variety 35 

regulatory dynamics from genomic sequences, shedding light on the genetic underpinnings 36 

of cis-regulatory divergence and morphological disparities between varieties. Overall, our 37 

study establishes a foundational resource for rice functional genomics and precision 38 

molecular breeding, providing valuable insights into regulatory mechanisms governing 39 

complex traits.  40 

 41 
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Introduction 43 

Rice (Oryza sativa) is not only one of the most important crops in the world but also an 44 

outstanding model species for studying plant growth and development. Over the past two 45 

decades, tremendous efforts have been made to understand the genetic basis of important 46 

agronomic traits in rice
1
. Genome-wide association studies (GWAS) have played a pivotal role 47 

in this pursuit, helping to link genetic variations to phenotypic diversity. These studies have 48 

identified a large number of candidate genes that hold promise for trait improvement2-5. 49 

However, despite these advances, our understanding of the regulatory mechanisms 50 

governing complex traits in rice remains incomplete.  51 

 52 

Gene regulatory networks (GRNs) are largely dictated by cis-regulatory DNA sequences, such 53 

as promoters and enhancers, which are bound by specific transcription factors (TFs)6. 54 

Deciphering the regulatory code within these regulatory sequences and linking the 55 

regulatory sequences to target genes are crucial for rewiring GRNs for crop improvement and 56 

trait optimization
6
. Nonetheless, efforts to profile the regulome, encompassing the entirety 57 

of regulatory elements in the genome, remain constrained in rice. These efforts often 58 

concentrate on specific tissues, neglecting the comprehensive landscape across 59 

developmental stages and tissues
7,8

. Similarly, endeavors to establish links between 60 

regulatory regions and their target genes in rice are also limited
8
.  61 

 62 

Meanwhile, many functional genetic variants associated with agronomic traits in rice reside 63 

within noncoding regulatory regions (e.g., qSH1
9
, DROT1

10
, and FZP

11
), which makes their 64 

interpretation challenging and underscores the necessity for a systematic dissection of 65 

regulatory sequences. Given that diverse traits manifest across distinct developmental stages 66 

and tissues, systematic annotation of noncoding regulatory variants in rice is currently 67 

hindered by the lack of a comprehensive epigenome map across various tissues and growth 68 

stages.  69 

 70 

To bridge these gaps, we systematically mapped chromatin accessibility profiles in various 71 

tissues across the life cycle of three representative rice cultivars using the UMI-ATAC-seq 72 

method12, a modified ATAC-seq (assay for transposase accessible chromatin-sequencing) 73 

protocol developed in our lab. Through analysis of 145 ATAC-seq datasets, we obtained a 74 

total of 117,176 unique open chromatin regions (OCRs), accounting for ~15% of the rice 75 

genome. By integration of RNA-seq data from matched tissues, we predicted potential target 76 
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genes for OCRs based on the correlation of gene expression and adjacent chromatin 77 

accessibility across tissues. Through TF footprinting analysis, we inferred tissue- or 78 

stage-specific regulatory networks and identified cultivar-polymorphic/trait-associated OCRs 79 

by comparing the regulatory landscapes between indica and japonica rice subspecies. 80 

Notably, our analysis unveiled a preference for GWAS-associated variants within 81 

tissue-specific OCRs, enabling the identification of causal associations between 209 complex 82 

agronomic traits and noncoding regulatory variants using this OCR landscape. Utilizing 83 

optimized deep learning models, we decoded the regulatory grammar through modeling of 84 

tissue-specific chromatin accessibility and across-variety predictions from sequences. The 85 

modeling approach sheds light on the key genetic alterations contributing to cis-regulatory 86 

divergence. Overall, these data not only serve as a cornerstone resource for the plant 87 

research community but also provide valuable regulatory variants for precision molecular 88 

breeding.  89 

 90 

Results  91 

Charting a reference atlas of chromatin accessibility in rice  92 

To generate a comprehensive landscape of accessible chromatin in rice (Oryza sativa), we 93 

took advantage of an improved ATAC-seq protocol (UMI-ATAC-seq12, which incorporates 94 

unique molecular identifiers to the regular ATAC-seq technique for accurate quantification 95 

and footprinting) to perform chromatin accessibility profiling in 23 tissues/organs spanning 96 

the entire life cycle of rice. The representative tissues include callus, radicle, plumule, leaf, 97 

leaf sheath, root, apical meristem (AM1/AM2), dormant buds (DBuds), shoot apical 98 

meristem (SAM1/SAM2/SAM3), panicle neck node (PNN), stem, young panicle 99 

(Panicle1/Panicle2/Panicle3/Panicle4), lemma, palea, pistil, stamen and seed coat 100 

(Seed1/Seed2/Seed3). The experiments were conducted in three representative rice 101 

varieties, namely Nipponbare (NIP; japonica subspecies), Minghui 63 (MH63; indica 102 

subspecies type II), and Zhenshan 97 (ZS97; indica subspecies type I), with each experiment 103 

consisting of at least two biological replicates (Fig. 1a and Supplementary Data 1). In total, 104 

145 genome-wide chromatin accessibility datasets with high sequencing depth (~30.7M 105 

reads on average) were generated. We applied the ENCODE standards13,14 to establish the 106 

analysis pipeline (see Methods). Compared to published ATAC-seq datasets in the plants as 107 

deposited in the ChIP-Hub database14, our data exhibited a significantly higher 108 

signal-to-noise ratio (Supplementary Fig. 1). Through data analysis using the corresponding 109 

reference genomes of the three cultivars15,16, we identified on average of 40,676 (ranging 110 
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from 28,991 to 49,737) reproducible OCRs (with an Irreproducible Discovery Rate [IDR]17 < 111 

0.05) per experiment (Fig. 1b). As expected, the identified OCRs from all experiments 112 

predominantly located either in the proximal upstream regions of the transcription start site 113 

(TSS) or the distal intergenic regions (Fig. 1b,f, Supplementary Fig. 2 and Supplementary Data 114 

2), resembling promoters or enhancers, respectively
18

. Of note, OCRs from intragenic regions 115 

accounted for a relatively small proportion (about 15.7%), while most of these OCRs 116 

originated from intronic regions (Supplementary Fig. 2b). These observations indicate that 117 

the vast majority of OCRs originate from noncoding regions of the rice genome.  118 

 119 

We estimated that approximate 15% of the rice genome could be annotated as OCRs, with a 120 

consistent pattern observed across each variety (Fig. 1c), and the estimation appeared to 121 

have reached saturation in rice (Fig. 1d). OCRs contain multiple TF binding sites and are 122 

responsible for regulating the expression of target genes6,18. We collected publicly available 123 

ChIP-seq data for 56 distinct TFs (Supplementary Data 3) and predicted DNA motifs for 458 124 

TFs in rice from the ChIP-Hub database14, and showed that OCRs were significantly enriched 125 

for TF binding sites (Fig. 1e). Furthermore, we found that OCRs are highly evolutionarily 126 

constrained compared to flanking genomic regions (Fig. 1g), supporting previous findings 127 

that conserved noncoding sequences (CNSs) are predictive of OCRs in plants19,20.  128 

 129 

We next assessed the overall similarities and differences of chromatin accessibility across 130 

varieties and tissues. We quantified all datasets based on the merged OCRs (n = 117,176) 131 

called from the same reference genome (i.e., Nipponbare) and visualized their global 132 

patterns using t-distributed stochastic neighbor embedding (t-SNE)
21

. While dimension 1 and 133 

2 of t-SNE results generally reflected differences between the indica (MH63 and ZS97) and 134 

japonica (NIP) subspecies, dimension 2 and 3 primarily delineated distinct clusters among 135 

tissue types (Fig. 1h). For instance, the chromatin accessibility patterns of vegetative and 136 

productive tissues of NIP were separated into distinct clusters, whereas young panicles and 137 

callus tissues exhibited similar patterns regardless of their variety origin. We further 138 

calculated the tissue specificity of each OCR based on the Jensen-Shannon divergence (JSD) 139 

index. Obviously, distal OCRs showed significantly higher specificity scores than proximal 140 

OCRs (Fig. 1i and Supplementary Fig. 3a,b), consistent with previous findings14,18,22.  141 

 142 

In short, the comprehensive accessible chromatin landscape in rice represents a value 143 

resource for crop functional genomic studies.  144 
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 145 

Linking open chromatin regions to target genes 146 

To decipher which genes these OCRs may regulate, we generated matched RNA-seq datasets 147 

for the investigated tissues in each rice variety (Supplementary Fig. 3c and Supplementary 148 

Data 4). We adopted a strategy23 to predict OCR-to-gene links based on correlation analysis 149 

between the OCR accessibility and gene expression across all samples (Fig. 2a; see Methods). 150 

Genes can be regulated by multiple OCRs (including promoters and enhancers) through 151 

chromatin interactions, which are supposed to occur within topologically associated domains 152 

(TADs). Since the size of TADs in the rice genome was estimated to be ranging from 35 153 

kilobase pair (kb) to 45 kb based on Hi-C data24,25, we restricted our analysis to 40 kb (i.e., 154 

from 20 kb upstream to 20 kb downstream of the TSS) to predict target genes of OCRs. Using 155 

a cutoff of absolute Pearson correlation coefficient |R| >= 0.4 and P < 0.05, we obtained a 156 

total of 59,075 unique links between OCRs (n = 38,437, 32.8% of all OCRs) and genes (n = 157 

18,781, 48.1% of annotated genes; Supplementary Fig. 4a, b and Supplementary Data 5). As 158 

expected, the OCR-to-gene links tended to occur more frequently in the proximal OCRs, and 159 

consequently the correlation between the gene expression and chromatin accessibility is 160 

higher for proximal links (Supplementary Fig. 4c-f).  161 

 162 

Genetic variants within OCRs can contribute to changes in gene expression levels through 163 

expression quantitative trait loci (eQTL). We colocalized the identified OCR-to-gene links 164 

from our study with published eQTL data in rice
26

, and we found a significant overlap 165 

(Chi-squared test, P < 1.55e−06) between OCR-to-gene links and eQTL-gene pairs 166 

(Supplementary Fig. 4g). As expected, the correlation coefficients of colocalized OCR-to-gene 167 

links with eQTLs are significantly higher than those without colocalization (Wilcoxon test, P = 168 

4.11e-38; Supplementary Fig. 4h). We identified numerous known regulatory variants that 169 

influence the expression of genes associated with agronomic traits. To name a few, a variant 170 

within a distal regulatory region (~12 kb upstream) of qSH1 modulates its expression 171 

dynamics, leading to change the seed shattering in rice
27

. Accordingly, there is a positive 172 

correlation (R = 0.47, P < 0.013) between the accessibility of this enhancer and the 173 

expression of qSH1 in various tissues, particularly in SAM where gene expression increases 174 

(Supplementary Fig. 4i,l). Similarly, OsLG1 is tightly linked to upstream regulatory regions 175 

that colocalize with a strong QTL associated with the panicle shape trait
28

 (Supplementary Fig. 176 

4j,l). IPA1 showed significantly positive correlation (R = 0.84, P < 2.95e-8) between its 177 

enhancer activity and gene expression, with increased expression in yield-related tissues 178 
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(Supplementary Fig. 4k,l), confirming an important role of IPA1 to shape rice ideal plant 179 

architecture (IPA) and thus to enhance grain yield
29

.  180 

 181 

Taken together, the predicted OCR-to-gene links provide regulatory insights into agronomic 182 

trait development in rice and highlight targetable OCRs of important genes for genome 183 

editing.  184 

 185 

Dissecting tissue-specific and stage-specific regulatory grammar  186 

The comprehensive chromatin accessibility landscape of representative tissues gave us an 187 

opportunity to uncover tissue-specific regulatory grammar. We quantified the 188 

tissue-specificity of OCRs by utilizing the JSD score, which enables the discrimination of 189 

target genes from housekeeping (e.g., GAPDH
30 and OsGOGAT1

31) to tissue-specific (e.g., 190 

OsYABBY5
32 and OsWRKY47

33) according to the above predicted OCR-to-gene links 191 

(Supplementary Fig. 5 and Supplementary Data 6). We have specifically focused on analyzing 192 

highly tissue-specific OCRs (n = 6,686 with a cutoff of JSD > 0.08, ~ 7% of all OCRs) as they 193 

may encode the tissue-specific regulatory grammar. These OCRs were further annotated as 194 

promoters (n = 2,322) or enhancers (n = 4,364) according to the genomic distance to the TSS. 195 

By performing joint clustering analysis of chromatin accessibility and target gene expression 196 

using OCR-to-gene links, we identified 20 distinct clusters of OCRs (Fig. 2b and 197 

Supplementary Data 7). Each cluster had 200~500 OCR-to-gene links that were highly 198 

activated in specific tissues, and showed a high degree of consistency with the known 199 

biological characteristics of the corresponding tissues (Fig. 2b-d). For instance, the palea- and 200 

lemma-specific links in cluster 5 (C5) contained promoter-enhancer interactions at the locus 201 

of GW8, which is a known gene controlling grain weight in rice34 (Fig. 2c). Accordingly, GW8 202 

was highly expressed in pistil, lemma, and palea. Gene ontology (GO) enrichment analysis 203 

using genes from C5 revealed that biological processes such as ‘pollen−pistil interaction’ and 204 

‘pollination’ were overrepresented (Fig. 2d). Similarly, we identified a number of OCRs in C19 205 

that were highly and specifically accessible in meristem-like tissues (including young panicle 206 

and shoot apical meristem), and the associated target genes showed significant enrichment 207 

for functions related to ‘reproductive system development’, ‘flower development’, and 208 

‘shoot system development’ (Fig. 2b, d). Notably, RFL, a crucial regulator for plant 209 

architecture and flowering time
35,36

, was among these target genes (Fig. 2c). Interestingly, we 210 

observed that a higher proportion (28.9%) of tissue-specific OCRs originated from distal 211 

intergenic regions compared to constitutive OCRs (12.3%). In contrast, approximately 85% of 212 
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constitutive OCRs were derived from the proximal-promoter regions. (Fig. 2e).  213 

  214 

To delineate the TFs that may bind to these tissue-specific OCRs, we used GimmeMotifs37, a 215 

versatile tool can detect tissue-specific TF binding motifs by comparing TF binding activity 216 

across multiple experiments. We restricted our analysis to the top 2,500 OCRs in each tissue, 217 

as determined by their specificity measurement (SPM) score38. The predicted regulatory 218 

motifs showed significant enrichments in a tissue-specific manner in matching tissue types 219 

(Supplementary Fig 6 and Supplementary Data 8). We narrowed our focus to the top 220 

enriched regulators in each tissue type, and found many of the inferred links correspond to 221 

known regulatory relationships (Fig. 3a). For example, OsIDS1, a gene that plays a vital role in 222 

shaping inflorescence structure and establishing floral meristems39,40, exhibited relatively 223 

high activity in the panicle. OsbZIP72, enriched in plumule tissue, has been found to regulate 224 

plumule length by modulating abscisic acid (ABA) signaling and promote seed 225 

germination41,42. Notably, the tissues of seed and pistil demonstrated a co-enrichment 226 

pattern of crucial regulators involved in flower and seed development, including MFO1 and 227 

MADS63
43-45

 from the MADS gene family (Fig. 3a). For each tissue type, we performed a 228 

systematic analysis to calculate the relative preference of regulators within TF families. Our 229 

analysis revealed distinct tissue-specific TF binding patterns, indicating clear preferences for 230 

specific regulators in different tissues (Fig. 3b). For instance, the TCP TF family showed a 231 

preference for enrichment in stem, stamen, and panicle neck node (PNN) tissues. This 232 

observation aligns with the known biological function of TCP genes, specifically their role in 233 

regulating cell proliferation in developing tissues46.  234 

 235 

Analyzing temporal ATAC-seq data through footprinting could assist in identifying key 236 

regulators, such as pioneer factors, that control developmental progression and transition47. 237 

We generated temporal open chromatin data from the young panicle, which is a crucial 238 

organ determining the yield of rice48,49, across four successive developmental stages (<1 mm, 239 

1-2 mm, 3-5 mm, and 5-10 mm; Fig. 1a). We endeavored to identify regulatory motifs that 240 

exhibited either positive or negative correlation with the young panicle developmental stage 241 

in terms of enrichment, using dynamically changing OCRs (n = 9,244; Fig. 3c, Supplementary 242 

Fig. 7a and Supplementary Data 9). The regulators that were most enriched displayed 243 

predominantly positive correlations, indicating their function as transcriptional activators. 244 

Conversely, a subset of factors exhibited negative correlations, suggesting a repressive role. 245 

In this regard, DL (encoding OsYABBY50), OsSPL951 and OsSPL1452 were identified as 246 
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representative positive regulators, during the development of young panicles in rice (Fig. 3d 247 

and Supplementary Fig. 7b). However, further experimental data is necessary to validate the 248 

potential involvement of these TFs in young panicle development. 249 

 250 

Overall, the above results provide a valuable resource that can help guide studies of 251 

candidate key regulators for tissue-specific gene regulation.  252 

 253 

Systemic localization of GWAS variants in tissue-specific regulatory DNA 254 

Genome-wide association studies (GWAS) have identified numerous natural variations linked 255 

to various agronomic traits in rice3. To systematically colocalize GWAS-associated variants 256 

with the above annotated regulatory elements, especially those from noncoding regulatory 257 

regions, we compiled a comprehensive rice GWAS catalog from recent genome-wide 258 

association meta-analysis studies2,53-55 as well as the NGDC GWAS Atlas database56. In total, 259 

we collected 4,831 significant (P < 1e-5) and representative (only considering lead SNP) 260 

associations for 209 distinct quantitative traits which can be classified into seven major 261 

categories57: morphological characteristics, physiological features, yield components, grain 262 

quality, resistance, coloration, and others (Fig. 4a and Supplementary Data 10). In a nutshell, 263 

these GWAS SNPs dominantly located in intergenic noncoding regions (Fig. 4b and 264 

Supplementary Fig. 8a) and 24.5% of them were either situated within a noncoding OCR 265 

(21.1%) or located in linkage disequilibrium (LD) with SNPs in a neighboring OCR (3.4%) (Fig. 266 

4c). Moreover, OCRs revealed significantly higher enrichment of GWAS SNPs than 267 

protein-coding sequences (Fig. 4d), highlighting the crucial function of regulatory variants in 268 

determining phenotypic characteristics.  269 

 270 

Furthermore, our findings demonstrated that OCRs containing GWAS SNPs exhibited greater 271 

tissue specificity (Fig. 4e,f and Supplementary Fig. 8b-d). For instance, one of the OCRs 272 

containing a GWAS lead variant vg072467105554 (C/T, GWAS P < 9.27e-8) significantly 273 

associated to panicle number. This OCR was found to be highly accessible specifically to 274 

young panicle tissues and its accessibility showed a positive OCR-to-gene link with the 275 

expression of GW7 (R = 0.59, P < 9.14e-5; Fig. 4g). In another example, the GWAS lead 276 

variant vg0431427332 is significantly associated to leaf blade width53 (P < 1.58e-8), which 277 

was located in a SAM/Panicle-specific OCR to positively regulate the expression of NAL1 (R = 278 

0.72, P < 1.16e-6) (Fig. 4h). The previous studies have shown that NAL1 is not only associated 279 

with leaf width but also with yield53 and has natural variations in expression levels26. More 280 
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examples of validated OCR-related associations are presented in Supplementary Fig. 8e.  281 

 282 

Tissue-specific regulatory variants explain agronomic trait associations  283 

The variation in DNA sequences within OCRs plays a significant role in driving phenotypic 284 

innovation through altering chromatin state and gene expression patterns, which usually 285 

occurs in a tissue-specific manner. To investigate the relationship between genetic variations 286 

associated with agronomic traits and tissue-specific OCRs, we calculated the enrichment of 287 

genetic variations within OCRs in a tissue-specific manner. It turned out that significant 288 

GWAS SNPs were frequently enriched in OCRs of trait-relevant tissues (Fig. 4f and 289 

Supplementary Fig. 8d). For example, GWAS variants associated with spikelet traits were 290 

highly enriched in OCRs specific to the tissues of SAM1, pistil and panicle. Motivated by this 291 

observation, we performed an enrichment analysis of GWAS-identified SNPs in OCRs from 292 

various tissues, using a SNP enrichment method termed CHEERS58 (Supplementary Fig. 9). Of 293 

the 209 curated GWAS-related traits, ~78% (163 of 209) phenotypic traits showed GWAS SNP 294 

enrichment in at least one tissue (Supplementary Fig. 10 and Supplementary Data 11). The 295 

observed enrichment of agronomic trait-associated variants in regulatory elements was 296 

highly specific to tissue types, and the association is largely compatible with our current 297 

understanding of the tissue function (Fig. 5a). For example, in various GWAS studies, 298 

regulatory variants associated with plant height was enriched in stem-related tissues; while 299 

genetic associations for grain-related traits (such as grain thickness, grain width, grain length, 300 

blighted grains per plant, and filled grains per plant) were highly enriched in OCRs specific to 301 

the tissues of seed, lemma, pistil, and stamen (Fig. 5a). Meanwhile, we found that variants 302 

associated with root length were predominantly enriched in the root tissue. Specifically, a 303 

significant SNP (vg080620195759, P < 3.98e-8) located in a root-specific enhancer of OsHAK12, 304 

which has been shown to be involved in K
+
 uptake in roots

60
 (Supplementary Fig. 11a).  305 

 306 

In the case of seed germination percentage, GWAS SNPs were most significantly enriched in 307 

plumule-specific OCRs (Fig. 5a). We noted a lead SNP (vg0131729028
61

, A/G, P < 8.4e-8) 308 

localized within an intronic OCR of OsbZIP06, where the intronic OCR and OsbZIP06 formed a 309 

positive OCR-to-gene link (R = 0.82, P < 2.55e-7) with high tissue specificity in plumule and 310 

radicle (Fig. 5b). The minor allele (G) of vg0131729028 was present in a very small proportion 311 

(0.3%) in the XI population, but in 65.80% of the Aus population (Fig. 5c). We mutated the 312 

coding region (mainly 1st exon) of OsbZIP06 with CRISPR/Cas9 and found that the 313 

germination rate was higher in two frameshift mutations (osbzip06-1 and osbzip06-2) than in 314 
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the wild type (Fig. 5d-f and Supplementary Data 12). In contrast, overexpression of the 315 

OsbZIP06 resulted in lower germination rate (Fig.5e,f). Therefore, integration of publish 316 

GWAS data and our chromatin landscape can greatly facilitate the identification of candidate 317 

genes and the functional annotation of noncoding variants.  318 

 319 

Furthermore, when we divided the OCRs into proximal (< 3kb from the TSS, 60,006 OCRs) 320 

and distal OCRs (> 3kb from TSS, 35,691 OCRs) before using CHEERS to do enrichment 321 

analysis. We observed that the proximal OCRs are more enriched in GWAS SNPs (Fig. 5g-i and 322 

Supplementary Fig. 11b). This implies that the enrichment above is mainly driven by the OCR 323 

close to the TSS and this result is consistent with previous studies58,62.  324 

 325 

Deep learning models accurately predict differences in chromatin accessibility 326 

between tissues and unveil common regulatory grammar among varieties 327 

We further investigated whether the tissue- and stage-specific regulatory grammar can be 328 

modelled. Deep learning has been successfully utilized to learn and identify essential 329 

features in genomic sequences, such as the identification of cis-elements
63,64

. Our previous 330 

study demonstrated that the Basenji deep learning framework65 is powerful for modelling 331 

epigenomic data in rice, such as the ability to accurately predict chromatin accessibility and 332 

to assess the impacts of variants7. Therefore, we optimized the Basenji framework to 333 

effectively model our ATAC-seq datasets from multiple tissues (Supplementary Fig. 12a,b). 334 

Three distinct models were trained for the varieties of NIP, MH63 and ZS97, demonstrating 335 

high accuracy with the mean AUROC values of 0.931, 0.921, and 0.928, respectively (Fig. 6a 336 

and Supplementary Fig. 12c). We observed that the Pearson's correlation coefficient 337 

between the predicted and observed values of chromatin accessibility at different locations 338 

on the genome reached approximately 0.81, with the best prediction at the location of < 1kb 339 

upstream regions (Fig.6b and Supplementary Fig. 12d). This implies that the regulatory 340 

syntax patterns within promoter regions could carry more significant information encoded in 341 

sequences, which can be effectively captured by deep learning models. Furthermore, the 342 

predicted signals from the test sets exhibit the ability to discern between distinct tissues and 343 

closely align with the clustering results of the actual values (Fig. 6c). For example, the 344 

root-specific expressed gene RCc3, responsible for regulating lateral root growth66, exhibits 345 

distinct chromatin accessibility patterns specifically in root (Fig. 6d and Supplementary Fig. 346 

13).  347 

 348 
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Subsequently, for each variety-specific model, we used test sets from the remaining two 349 

varieties to evaluate the model's capacity for making predictions across different varieties. 350 

Our analysis revealed high Pearson correlation coefficients (about 0.8) between the 351 

predicted and observed signals (Fig. 6e). Notably, in the GSE9 promoter region, there is 352 

divergence between indica and japonica rice, marked by a 9 bp deletion and several SNPs in 353 

MH63 when compared to the sequences of NIP and ZS9767. The ZS97 model predicted the 354 

chromatin accessibility of this region in MH63 with weak signals. Contrarily, the ZS97 model 355 

accurately predicted the chromatin accessibility in NIP and ZS97, showing strong signals 356 

(Fig.6f and Supplementary Fig. 14). These results suggest that the deep learning model can 357 

effectively make accurate predictions across varieties, implying that shared regulatory 358 

grammar across rice varieties. 359 

 360 

We next performed comparative analyses on ATAC-seq data of 22 matched tissues/organs in 361 

both japonica rice (NIP) and indica rice (MH63 and ZS97), utilizing their respective reference 362 

genomes (Fig. 1a,b). We found that roughly 60% (60,764 out of 95,697) of OCRs were shared 363 

across all three cultivars (Fig. 6g and Supplementary Data 13). The indica varieties MH63 and 364 

ZS97 exhibited a higher proportion of shared OCRs compared to NIP which from different 365 

subspecies (Fig. 6g). We next sought to compare chromatin accessibility dynamics of the 366 

1:1:1 orthologous OCRs across the three varieties (referred to as triads; see Methods). To 367 

investigate the accessible bias of orthologous OCRs, we compared the chromatin accessibility 368 

of orthologous OCRs in each individual tissue (Fig. 6h). Orthologous OCRs were assigned into 369 

seven categories on the ternary plot based on their relative accessibility, including a 370 

balanced category and six dominated or suppressed categories in specific cultivars 371 

(Supplementary Fig. 15). The proportion of OCR triads assigned to unbalanced categories 372 

varied among different tissues, ranging from 3.2% in plumule to 24.8% in AM1 (Fig. 6h and 373 

Supplementary Fig. 16a). While promoters generally display balanced OCRs, indicating 374 

consistent accessibility across different cultivars, enhancers frequently exhibit unbalanced 375 

OCRs, reflecting cultivar-specific regulation (Supplementary Fig. 16b). Interestingly, 376 

unbalanced OCRs harbored more genotypic variations in terms of SNPs (Fig. 6i). This 377 

observation led us to suppose whether sequence variation among different varieties caused 378 

the differences in chromatin accessibility of these OCR orthologs. Therefore, we used 379 

NIP-based deep learning model to predict the chromatin accessibility signals of sequences 380 

from orthologous OCRs in NIP, MH63 and ZS97, respectively, and then compare these 381 

predictions. The results showed that about 50% of the differences in orthologous OCRs could 382 
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be successfully resolved in terms of sequence variation (Fig. 6j and Supplementary Fig. 17).  383 

 384 

In summary, the above results illustrate that deep learning models could accurately predict 385 

chromatin accessibility across tissues and varieties. The high accuracy of the models also 386 

indicates the high quality of our data.  387 

 388 

Elucidate key genetic changes underlying cis-regulatory divergence by deep 389 

learning models 390 

Genetic variants and de novo mutations in regulatory regions may lead to cis-regulatory 391 

divergence and thus changes in gene expression and organismal phenotypes68. We 392 

systematically dissected the cis-regulatory divergence due to genomic sequence changes 393 

(e.g., SNPs) in regulatory regions, which could be inferred from ATAC-seq data. To measure 394 

the effect of the variant on chromatin accessibility, we extracted variants that differed in the 395 

three varieties. The effect of different alleles of each variant on chromatin accessibility was 396 

evaluated using the deep learning models. We found that unbalanced OCRs had a higher 397 

absolute effect score than the balanced OCRs (Supplementary Fig. 18a) and these 398 

large-effect loci were significantly enriched for eQTLs26,69 (Supplementary Fig. 18b). This 399 

observation suggests that these putative large effect variants are associated with changes in 400 

chromatin accessibility and gene expression. Meanwhile, we performed separate 401 

OCR-to-gene correlation analysis for each of the three varieties. We then identified 402 

conserved OCR-to-gene links and compared the correlation coefficients between them (Fig. 403 

7a). Notably, OCRs with significant differences in correlation coefficients exhibited higher 404 

SNP density (Fig. 7b), and the OCR-to-gene links with large differences in correlation 405 

coefficients between MH63 and ZS97 were significantly enriched for differential cis-eQTL 406 

between MH63 and ZS97 (Fisher’s exact test, odds ratio = 1.81 and P < 1.83e-28)70. These 407 

suggesting that regulatory sequence variations among different varieties could influence 408 

gene expression. For instance, we observed that a SNP (vg0336150781, G/A) located in the 409 

GNP1 promoter region control grain number and plant height71. Among the OCR-to-gene 410 

links we inferred, the allele in NIP (‘G’ at this SNP) correlated with GNP1 (R = 0.59, P < 411 

6.48e-04), whereas the allele (‘A’ at this SNP) did not show OCR-to-gene correlation in MH63 412 

(R = 0.01, P = 0.99) and ZS97 (R = 0.17, P = 0.34) (Fig. 7c). In addition, eGWAS also 413 

demonstrated that this SNP affects GNP1 expression (Fig. 7d). When we evaluated the 414 

effects of this SNP with the deep learning model, we found that mutation of this SNP from “G” 415 

to “A” in Panicle2 significantly reduced chromatin accessibility (Fig. 7e). We also found that 416 
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this variant overlaps with the footprint of OsSPL10 identified in Panicle2, and its binding site 417 

shows the typical "GTAC" motif of the SBP TF family. These results suggest that mutations 418 

control gene expression by affecting TF binding to alter chromatin accessibility. 419 

 420 

Besides point mutations, small genomic alterations (including short insertions/deletions, 421 

inversions, and duplications) may abolish OCRs and thus confer an important avenue of 422 

regulatory divergence. We quantified all OCRs based on the NIP reference genome and 423 

investigated whether their regulatory activity dynamics were associated with short genomic 424 

alterations, which were determined by whole genome comparison across different cultivars 425 

(see Methods). In total, we found that nearly one third (26.6%) of the OCRs harbored small 426 

alterations (Fig. 7f). The regulatory activity of these mutation-associated OCRs is positively 427 

correlated with their surrounding gene expression patterns in a cultivar-specific manner (Fig. 428 

7g,h), as exemplified at the loci of Oshsp18.0-CII and MAG2 (Fig. 7i,j and Supplementary Fig. 429 

19a). Notably, GO analysis showed that these genes were highly enriched for various 430 

‘response’ related functions (Supplementary Fig. 19b and Supplementary Data 14). Further 431 

investigation revealed that the identified mutation-embedded OCRs were significantly 432 

overlapped with transposable elements (TEs) (Supplementary Fig. 19c). The above results 433 

indicate that TEs may contribute to modification of regulatory sequences, fine-tuning gene 434 

expression networks and driving new functions
72

.  435 

 436 

Discussion  437 

Despite substantial progress, a complete catalog of regulatory sequences within the rice 438 

genome remains elusive, limiting the understanding of tissue-specific regulatory dynamics 439 

and GRNs. Our study presents a comprehensive exploration of rice genome regulation using 440 

the UMI-ATAC-seq technique
12

, providing insights into tissue-specific regulatory elements 441 

and their influence on complex agronomic traits. Of note, the identified OCRs in rice 442 

encompass approximately 15% of the genome, a notably higher proportion compared to 443 

previous reports in plants such as Arabidopsis (~4%)73 and maize (~4%)74. This expanded 444 

coverage underscores the importance of sampling depth in characterizing the regulatory 445 

complexity in plants and highlights the need for further comparative analyses to elucidate 446 

species-specific regulatory features.  447 

 448 

Predicting OCR-to-gene links presents a significant challenge due to the intricate regulatory 449 

mechanisms governing gene expression. By integrating RNA-seq data from matched tissues, 450 
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we predicted 59,075 OCR-to-gene links, including many reported enhancer-to-gene links. 451 

This analysis offers a holistic view of how changes in chromatin accessibility directly impact 452 

gene expression patterns, underscoring the significance of regulatory elements in shaping 453 

the rice transcriptome. The identified associations between enhancers and target genes 454 

provide guidelines for dissecting complex regulatory mechanisms and gene editing in 455 

non-coding regions. The approach for predicting OCR-to-gene links based on multi-omics 456 

data is versatile and transferable to other plant species. Despite our efforts to predict 457 

OCR-to-gene links, less than half of the protein-coding genes exhibit a relatively strong 458 

correlation (Pearson correlation coefficient |R| ≥ 0.4 and P < 0.05) with OCRs. The 459 

complexities of dynamic and context-dependent regulation, coupled with long-range and 460 

indirect regulatory mechanisms, introduce additional layers of complexity to OCR-to-gene 461 

link prediction beyond the capabilities of linear models aimed at directly mapping OCRs to 462 

their target genes. These factors likely contribute to the weaker correlations observed for 463 

certain genes. Moreover, tissue-specific and housekeeping genes are difficult to correlate 464 

through linear models due to the small variation in expression levels between tissues 465 

(Supplementary Fig.20). 466 

 467 

Deep learning has emerged as a potent tool for interpreting the genomic and epigenomic 468 

data
63,64

, but its application in rice is hindered by the scarcity of high-quality epigenomic 469 

datasets. Our study addressed this gap and successfully modelled the chromatin accessibility 470 

of three rice varieties. The highly accurate models enable the prediction of chromatin 471 

accessibility variation across varieties using sequences, providing a reference for scientists to 472 

explore the functional effects of rare variants or new variants across different tissues. 473 

 474 

Moreover, our comparative analysis across varieties revealed cis-regulatory divergence that 475 

could largely be predicted using deep learning models based on sequences, highlighting the 476 

genetic diversity of rice varieties and its impact on regulatory architecture. By integrating 477 

GWAS data, we localized significant variants within noncoding regulatory regions, 478 

demonstrating that these variants are preferentially located in tissue-specific OCRs, thus 479 

providing insights into the influence of regulatory variations on phenotypic outcomes. A 480 

notable achievement of our study is the identification of OsbZIP06's role in seed germination, 481 

demonstrating the potential of integrating GWAS data with chromatin accessibility to 482 

uncover the genetic basis of complex traits.  483 

 484 
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In summary, our extensive chromatin accessibility atlas and the deep learning models we 485 

have constructed not only enhance our understanding of regulatory elements in rice but also 486 

serves as a versatile resource for gene editing and breeding strategies targeting non-coding 487 

regions. Nevertheless, there are several limitations associated with our study. Firstly, our 488 

map solely encompasses data from normal conditions, omitting insights into responses to 489 

biotic or abiotic stresses, mutants, and diverse environmental circumstances. Secondly, the 490 

inferred associations between OCRs and genes require experimental validation to confirm 491 

their regulatory relationships. Thirdly, our study primarily employed the NIP reference 492 

genome, thereby excluding sequences that were not available in the NIP genome. 493 

Furthermore, the advent of single-cell technologies has opened avenues for studying 494 

cis-elements at a single-cell resolution74,75. In the future, incorporating single-cell data will be 495 

crucial for further characterizing the heterogeneity among different cell types. These 496 

advancements will collectively contribute to a more comprehensive understanding of the 497 

regulatory landscape in rice and beyond.  498 

 499 

Methods  500 

Plant materials, ATAC-seq, and RNA-seq experiments 501 

Three rice varieties, Nipponbare, Zhenshan 97 and Minghui 63, were planted in a field in 502 

Wuhan, China in the summer of 2020 and were used to obtain most of the tissues or organs 503 

used in this study. Details of the sampling are listed in Supplementary Data 1. We followed 504 

our previously established method to perform UMI-ATAC-seq experiments12. RNA was 505 

isolated using TRIzol reagent (Invitrogen Life Technologies), and sequencing libraries were 506 

prepared using the MGIEasy RNA Library Preparation Kit. The libraries were subsequently 507 

sequenced on the MGISEQ-2000. 508 

 509 

ATAC-seq data analysis 510 

For the pre-processing of ATAC-seq data, we follow the workflow of ChIP-Hub14 and 511 

cisDynet76. The raw reads were first trimmed by Trimmomatic (v.0.36)77 to remove 512 

sequencing adapters. The trimmed reads were aligned to the Oryza sativa L.ssp.japonica (cv. 513 

Nipponbare) reference genome (v.7.0)
16

 using Bowtie2
78

 with the following 514 

parameters ”-q—no-unal—threads 8—sensitive”. All reads mapped to mitochondrial and 515 

chloroplast DNA were removed. After sorting mapped reads with SAMtools79 (version 0.1.19), 516 
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we only used properly paired reads with high mapping quality (MAPQ score > 30) for the 517 

subsequent analysis. The PCR duplicates were removed using the MarkDuplicates function 518 

from Picard tools (version 2.60; http://broadinstitute.github.io/picard/). The “callpeak” 519 

function in MACS280 (version 2.1.0) was used to call peaks with the following parameters: “-g 520 

3.0e8 --nomodel --keep-dup 1 -B --SPMR --call-summits”. The “-shift” used in the model was 521 

determined by the analysis of cross-correlation scores using the phantompeakqualtools 522 

package (https://code.google.com/archive/p/phantompeakqualtools/). 523 

 524 

RNA-seq data analysis 525 

RNA-seq reads were aligned to the Nipponbare reference genome
16

 using STAR
81

 (version 526 

2.7.1a). The expression of annotated genes was measured by RSEM
82

 (version 1.2.22) and 527 

normalized with transcripts per million (TPM).  528 

 529 

Linking OCRs to target genes 530 

To assign OCRs to genes, we used an approach similar to the previous study
23,83

. First, we 531 

prepared the ATAC-seq quantification matrix, with each row representing a merged OCR and 532 

each column representing a sample. After merging replicates, 66 tissues with both ATAC-seq 533 

data and RNA-seq data were taken as independent samples for the analysis. For the gene 534 

expression quantification matrix, we removed possible noise by considering only those genes 535 

whose TPM of each row added up to > 1.5. For each of the remaining 29,571 genes, we 536 

screened the OCRs that might regulate the gene within 20 kb upstream and downstream of 537 

the TSS of that gene separately. Then we calculated the Pearson correlation coefficients 538 

between the chromatin accessibility of these OCRs and the expression of that gene. Then we 539 

randomly generated pseudo-peak sets of the same length and number as these OCRs on 540 

other chromosomes, repeated the process 10,000 times, and used Z-test (z.test function 541 

from the R package ‘TeachDemos’) to calculate P values. Finally, we considered that absolute 542 

Pearson correlation coefficients (|R|) >= 0.4, and P < 0.05 were significant OCR-to-gene links. 543 

For the identification of OCR-to-gene links of NIP, MH63, and ZS97, we used the same 544 

strategy except that we used ATAC-seq and RNA-seq samples of the corresponding varieties. 545 

 546 
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Tissue-specific OCRs analysis 547 

We merged the peaks with NIP tissues, counted the number of Tn5 cuts of these peaks in 548 

different tissues, normalized them and then used the Jensen-Shannon Divergence (JSD) from 549 

the philentropy R package (https://github.com/drostlab/philentropy) to screen 550 

tissue-specific OCRs. Here we considered OCRs with JSD score > 0.08 (except > 0.1 for young 551 

panicle) as tissue-specific OCRs. For tissue-specific OCR, we performed Z-score 552 

transformation by row for visualization. To identify the top tissue-specific OCRs in each tissue, 553 

we employed a scoring metric known as Specificity Measurement (SPM), as detailed in the 554 

method provided at https://github.com/apcamargo/tspex. Subsequently, we sorted the 555 

OCRs within each tissue based on their SPM scores to select the top 2500 tissue-specific 556 

OCRs in each tissue. 557 

 558 

Motif enrichment analysis 559 

For motif enrichment analysis of tissue-specific OCRs, we first calculated the Tau index score 560 

using SPM metric for each tissue's OCRs and selected the top 2,500 OCRs of each tissue for 561 

motif enrichment analysis according to the ranking of Tau index scores. Then we used 562 

GimmeMotifs37 with maelstrom function to determine the tissue-specific motifs enrichment. 563 

We set the “--filter-cutoff” to 0.4. The input Position weight matrix (PWM) was downloaded 564 

from the JASPAR84 database (https://jaspar.genereg.net/). We combined the enrichment 565 

result of three methods (Lasso, Bayesian ridge regression, and boosted trees regression) to 566 

get the final motif enrichment lists. 567 

 568 

ChIP-seq enrichment analysis 569 

The public ChIP-seq data used in this study are provided in Supplementary Data 3. We 570 

downloaded the narrow Peak files of these TFs from the ChIP-Hub database 571 

(https://biobigdata.nju.edu.cn/ChIPHub/), and then used BEDTools
85

 (version 2.29.1) fisher 572 

function to calculate the enrichment level with OCRs. 573 

 574 

TF motif and footprinting analysis 575 

For the TF motif enrichment analysis, we used the SEA program from the MEME suite and 576 
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used constitutive OCRs as background. We considered motifs with P-value < 1e-5 to be 577 

significantly enriched. For genome-wide TF potential binding sites, we used the FIMO 578 

program in MEME to identify them and also used P-value < 1e-5 as the cutoff. 579 

 580 

TF footprints were calculated by TOBIAS (version 0.13.1)
86

. We first used TOBIAS ATACCorrect 581 

function to correct the Tn5 inherent insertion bias. Then we calculated the footprint score in 582 

OCRs using FootprintScores function with default parameters. Finally, we used BINDetect 583 

function to predict transcription factor binding footprint for each sample, which were 584 

matched to curated list of JASPAR84 motifs (https://jaspar.genereg.net/).  585 

 586 

Cross-variety comparisons of OCRs 587 

We first aligned the whole genome sequences of NIP, MH63, and ZS97 to each other. The 588 

strategy used for the whole-genome alignment was similar to the previously described 589 

method 23. The results were further filtered to obtain more reliable conserved sequences 590 

following the default process of “Reciprocal Best” 591 

(http://genomewiki.ucsc.edu/index.php/HowTo:_Syntenic_Net_or_Reciprocal_Best). We 592 

obtained three superset OCRs by merging OCRs of tissues shared by three varieties s (n = 22). 593 

Then we used the bnMapper.py script in bx-python (https://github.com/bxlab/bx-python) to 594 

convert the OCRs coordinates of MH63, ZS97 to the corresponding coordinates of the NIP. 595 

We then considered the OCRs of MH63, ZS97 with at least a 50% overlap with the OCRs of 596 

NIP to be conserved OCRs for the three varieties. To obtain a quantitative matrix of 597 

conserved OCRs, we first quantified all OCRs for each variety and divided the length of the 598 

corresponding OCRs by the CPM strategy, and then extracted the conserved OCRs for each 599 

variety for subsequent analysis. We then refer to it to classify conservative OCRs into seven 600 

categories (NIP dominant, MH63 dominant, ZS97 dominant, NIP suppressed, MH63 601 

suppressed, ZS97 suppressed, and balanced). 602 

 603 

Deep learning model analysis 604 

We used the Basenji65 deep learning framework with modifications to accommodate the 605 

relatively small rice genome for deep learning model training. We first use the bam_cov.py 606 
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script to convert the bam files into bigwig files. We then used the basenji_data.py script to 607 

prepare the input files for the deep learning model according to the following parameters: 608 

“-d 1.0 -s 0.1 –local -t 1 -v 4”. The “-c, -l, -w” of these parameters are shown in the 609 

Supplementary Data 15. Data from chromosome 1 was used as the test sets and data from 610 

chromosome 2 was used as the validation sets. Next we used the basenji_train.py script to 611 

train the model on a NVIDIA GTX 3090. The basenji_test.py script (default parameters) was 612 

used to perform the model performance test. We found differences in the training 613 

performance for different parameter settings for rice, with “-l 32768 -c 2048 -w 128” being 614 

the best, and subsequent analyses were based on models trained with this parameter. To 615 

measure the effect of variation in OCRs, we used the basenji_sat_bed.py script to perform 616 

base mutations at this locus and calculated the difference in signals between the reference 617 

and the mutation as the variation effect value. To predict the chromatin accessibility of 618 

orthologous OCRs, we extended the centre of the OCR by 16,384 bp left and right to make a 619 

total length of 32,768 bp. Sequences exceeding the length of the corresponding 620 

chromosome were removed, and then sequences of the corresponding varieties were 621 

extracted using BEDTools getfasta function, and then basenji-predict_bed.py was modified to 622 

enable it to use fasta as input. 623 

 624 

Analysis of structural variants and transposable elements 625 

We downloaded deletions, duplications and inversions for MH63 (CX145), ZS97 (B156) in 626 

Rice SNP-Seek Database (https://snp-seek.irri.org/). Since this database provides large 627 

structural variants with a minimum length of 10 bp, we also integrated a series of variants 628 

with reference to this workflow
7
. Briefly, we selected Leaf ATAC-seq data from NIP, MH63 and 629 

ZS97 varieties, then aligned them to the Nipponbare reference genome using BWA-MEM79 630 

(version 0.7.12-r1039) and identified INDELs using GATK87 (version 3.3-0-g37228af). The 631 

annotation files of transposable elements (TEs) were downloaded from Phytozome database. 632 

We use the default parameters of the BEDtools85 (version 2.29.1) intersect function to 633 

identify OCRs that overlap with structural variants and TEs. 634 

 635 
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GO enrichment analysis 636 

All GO enrichment analysis was done in the Rice Gene Index database 637 

(https://riceome.hzau.edu.cn/)88 using default parameters. We considered FDR < 0.05 as a 638 

significantly enriched pathway.  639 

 640 

GWAS data processing 641 

The genotype and phenotype data used in this study were downloaded from four published 642 

cohorts. We refer to this reference3 to name them as 529 rice accessions2, 1,275 Chinese rice 643 

accessions54, 176 Japanese rice accessions53 and 3K rice accessions55 , respectively. GWAS 644 

was performed separately for each cohort by GCTA
89

 (version 7.93.2) with mixed linear 645 

model. To determine the significant SNPs cutoff, we first used Genetic type 1 error calculator 646 

(GEC90, version 0.2) to evaluate the effective numbers of independent SNPs (N) and 647 

approximated by 0.05/N to estimate the cutoff. The threshold for significant SNPs varied by 648 

cohorts, we set the thresholds to 1]×]10−6, 1]×]10−4, 1]×]10−5, and 1]×]10−6 for 3K rice 649 

accessions, 176 Japanese rice accessions, 529 rice accessions, and 1,275 Chinese rice 650 

accessions, respectively. Variants with a minor allele frequency (MAF) that was < 5% were 651 

excluded. For the lead SNP identification, we used PLINK91 (version 1.9) and set the 652 

parameter “--clump-p1” to the threshold we defined above, “--clump-p2 0.05 --clump-r2 0.6 653 

--clump-kb 1000” for the first round of parameters. Then we set the second round of 654 

“--clump-r2” to 0.1, other parameters are unchanged. We used PLINK with the following 655 

parameters “--ld-window-kb 1000 --ld-window 99999 --ld-window-r2 0.8” to calculate the 656 

SNPs with strong linkage disequilibrium (r2 >0.8) with lead SNPs. 657 

 658 

Enrichment analysis of GWAS-associated SNPs of different P-values with OCRs 659 

The enrichment in the OCRs of a tissue at a given threshold of different P-values was 660 

calculated as the fraction of SNPs with P-values below this threshold that overlap with the 661 

OCRs (merged all NIP tissues' OCRs), divided by the fraction of all noncoding SNPs that 662 

overlap with the OCRs in the study. Enrichment was performed at P-value thresholds ranging 663 

from 1e-1 to 1e-7. The smallest threshold had at least 50 SNPs in their study to ensure the 664 

sufficient sample size. 665 
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 666 

GWAS SNPs enrichments 667 

We first merged the peaks from all tissues in Nipponbare and used this peak superset to 668 

quantify each tissue. To make sure that our analysis was not interfered by low confident 669 

peaks, we dropped the peaks in the tenth percentile of the lowest Tn5 cuts coverage, 670 

yielding 86,011 ATAC-seq peaks finally. Then we performed the normalization with 671 

CHEERS_normalize.py from CHEERS58 (Chromatin Element Enrichment Ranking by Specificity) 672 

software (https://github.com/TrynkaLab/CHEERS/tree/python3). The normalized 673 

quantification matrix was next transformed to tissue-specificity score with range 0-1. To do 674 

the enrichment analysis, we used the set of lead SNPs and SNPs with strong linkage 675 

disequilibrium (r
2
 > 0.8) with the lead SNPs computed separately for the corresponding 676 

cohort from the 209 GWAS above as the input to CHEERS_computeEnrichment.py. The 677 

enrichment P-values were transformed by -log10 and normalized by row with Z-score for 678 

visualization. For the proximal and distal GWAS SNPs enrichment analysis, we first divided 679 

OCRs into proximal and distal according to its summit distance from the nearest TSS. All 680 

other steps are the same as described above. 681 

 682 

Generation of transgenic rice plants 683 

To obtain overexpression lines of OsbZIP06, the cDNA of OsbZIP06 was cloned using primers 684 

OsbZIP06-OE-F and OsbZIP06-OE-R and inserted into the Kpn1-BamH1 site of the 685 

pCAMBIA1301 vector and fused with the maize Ubiquitin promoter and three FLAG tags at 686 

its C-terminus using the ClonExpress II One Step Cloning Kit (Vazyme). The construct was 687 

then transformed into ZhongHua11 (ZH11) by Biogle GeneTech. Primers used to clone 688 

OsbZIP06 are listed in Supplementary Data 16. 689 

For the OsbZIP06 mutant strain, T1 generation seeds produced using the CRISPR-Cas9 system 690 

were purchased from Biogle GeneTech. The sgRNA sequence OsbZIP06-CR-gRNA is listed in 691 

Supplementary Data 16. 692 

 693 

Seed germination experiments 694 

Seed germination experiments were performed as previously described
61

. Seeds of 695 
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Zhonghua 11, OsbZIP06 mutant in the Zhonghua 11 background were used for germination 696 

experiments. 697 

 698 

Statistics and reproducibility 699 

If not specified, all statistical analyses and data visualization were done in R (version 4.0.0) or 700 

Python (version 3.8.9). R packages (e.g. ggplot2 and plotly) and Python packages (e.g. 701 

Seaborn) are heavily used for graphics. All the sources data for each figure can be found in 702 

the Supplementary Information. Specific tests used to determine statistical analyses are 703 

noted in each figure legend. 704 

Data Availability  705 

The sequencing data from ATAC-seq and RNA-seq generated in this study have been 706 

deposited in the NCBI BioProject database under accession code PRJNA940508 707 

[https://www.ncbi.nlm.nih.gov/bioproject/PRJNA940508]. All public ChIP-seq used in this 708 

study are download from ChIP-Hub database (https://biobigdata.nju.edu.cn/ChIPHub/). The 709 

accession number are provided in the Supplementary Data 3. Some critical analysis results 710 

about this study can be accessed in the CART database (https://biobigdata.nju.edu.cn/cart/). 711 

Source data are provided with this paper. 712 

 713 

Code Availability  714 

The code related to figures is available at https://github.com/compbioNJU/CART.  715 
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Figure Legends 975 

Fig. 1 | Characterization of an open chromatin landscape in rice. 976 

a. ATAC-seq and RNA-seq experiments were conducted in three varieties (Nipponbare, Minghui 63, 977 

and Zhenshan 97) of rice in various tissues across the entire life. See Supplementary Data 1 for 978 

detailed descriptions of sample collection. Consistent tissue color code is used throughout the figure. 979 

b. Bar plot showing the number of reproducible OCRs identified from each tissue in the three rice 980 

varieties. The OCRs are classified into three categories based on the distance of the OCR summit to its 981 

closest transcription start site (TSS): distal (>1 kb), proximal (<= 1kb), and intragenic. No data from the 982 

tissues of SAM3 (NIP), Seed1 (ZS97) and Stem (ZS97). 983 

c. The proportion of the rice genome annotated as open chromatin regions (OCRs) in our study. 984 

d. The accumulative number of unique OCRs in each tissue, calculated by excluding OCRs that overlap 985 

with the OCR superset.  986 

e. Density plot showing the enrichment of TF binding sites (TFBSs) around the OCRs in Nipponbare 987 

(NIP). TFBSs were predicted either by ChIP-seq datasets for 56 distinct TFs (left) or DNA motifs for 458 988 

TFs (right), which were obtained from the ChIP-Hub database
14

. The flanking area on both sides is 1kb.  989 

f. The distribution of the distance of OCR summit to its closest TSS in the three rice varieties. Publised 990 

open chromatin data
14

 in rice (NIP) were included for comparison. Based on the distribution, a cutoff 991 

of 1 kb (dashed line) was used to distinguish the proximal and distal regulatory OCRs. 992 

g. The distribution of the conservation PhastCons score
19

 around the NIP OCRs.  993 

h. The t-SNE plot showing an unsupervised clustering analysis of chromatin accessibility across 994 

different samples. Each dot represents one replicate. Color code as in (a). 995 

i. Boxplot showing the distribution of tissue specificity score of intragenic (n= 14239), proximal 996 

(n=29524) and distal (n= 57153) OCRs (left) or the median score in each tissue. P1 = 4.01e-39, p2 = 997 

2.13e-96, p3 = 1.23e-95. All p-values were calculated by two-sided Mann–Whitney U test between 998 

proximal and distal OCRs in terms of specificity. Tissue color code as in (a). Boxplot shows the median 999 

(horizontal line), second to third quartiles (box), and Tukey-style whiskers (beyond the box). 1000 

Source data are provided as a Source Data file. 1001 

Fig. 2 | Tissue-specific OCRs. 1002 

a. Schematic diagram illustrating the correlation-based approach to link ATAC-seq OCRs to target 1003 

genes based on correlation analysis between chromatin accessibility and gene expression.  1004 

b. Heatmap showing the tissue-specific OCR-to-gene links (R >= 0.4, P < 0.05, two-tailed Z-test). Each 1005 

row in the left panel is a unique OCR. Each row in the middle panel is a gene, corresponding to target 1006 

genes for OCRs in the left panel. Representative genes are shown on the right. 1007 

c. Examples of tissue-specific OCRs (in the dashed box) regulating dynamic expression of the 1008 

corresponding target genes. The orange lines indicate the OCR-to-gene links, and the deeper the line 1009 

the higher the correlation between the chromatin accessibility and gene expression. 1010 

d. Enrichment of biological processes gene ontology (GO) terms for target genes in each OCR cluster in 1011 

(b). The asterisk (*) denotes P < 0.05 (P-values were calculated by Hypergeometric test after 1012 
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Bonferroni correction). 1013 

e. Bar plot showing the percentage of OCRs from different categories based on the genomic location. 1014 

Source data are provided as a Source Data file. 1015 

Fig. 3 | Tissues-specific and stage-specific regulatory elements.  1016 

a. Enrichment of TF motifs in tissue-specific OCRs. Only top 5 enriched TFs in each tissue are shown. 1017 

See Supplementary Data 8 for the full list. The thickness of edges is proportion to the corresponding 1018 

enrichment score.  1019 

b. The relative preference of regulators within TF families in each tissue type. Only the top 100 TF 1020 

motifs in each tissue were used for analysis. 1021 

c. The scatter plot showing the distribution of the Pearson correlation coefficient between TF footprint 1022 

score and its expression. Only absolute values of correlation coefficients greater than 0.5 are marked. 1023 

d. The scatter plot showing the distribution of TF footprint score and its gene expression in NIP, MH63, 1024 

and ZS97(left). The error bands indicate 95% confidence intervals. Distribution of Tn5 cuts around the 1025 

footprint of DL and OsSPL9 at different stages of young panicle (right).  1026 

Source data are provided as a Source Data file. 1027 

 1028 

Fig. 4 | GWAS-associated variants localize in tissue-specific OCRs. 1029 

a. Categorical proportions of lead SNP in each GWAS. The inner circle indicates the proportions of the 1030 

seven major categories, and the outer circle indicates the subcategories contained in each major 1031 

category. Only high proportions are marked in the outer circle. 1032 

b. Distribution of curated lead SNPs by genomic context. All lead SNPs are the same as in (a). 1033 

c. Overlap proportions of lead SNPs and sets of SNPs with strong linkage disequilibrium (LD > 0.8) with 1034 

lead SNPs with ATAC-seq OCRs, ChIP-seq peaks and footprints identified by NIP ATAC-seq , 1035 

respectively. 1036 

d. The barplot showing the SNP density of OCR and CDS regions at different GWAS P-value thresholds. 1037 

The error bars are the standard deviations of the SNP densities in the six GWAS catalogs from the (a). 1038 

Data represents the meanU±USD of 6 independent GWAS catalogs. The P values were calculated by 1039 

two-tailed Student's t-test. 1040 

e. Boxplots showing the tissue-specificity score distribution of OCRs that overlap with grain width
54

  1041 

and leaf blade width
53

 GWAS SNPs. For grain width, the sample sizes for the "with" and "without" 1042 

groups are 896 and 4480, respectively. For leaf blade width, the sample sizes for the "with" and 1043 

"without" groups are 2864 and 5728, respectively. Boxplot shows the median (horizontal line), second 1044 

to third quartiles (box), and Tukey-style whiskers (beyond the box). The P-values were calculated by 1045 

two-tailed Student's t-test. 1046 

f. The enrichment of GWAS SNPs
2
 in OCRs with different GWAS P-value threshold.  1047 

g Manhattan plot showing the GWAS signal distribution of vg0724670482 and the LD distribution of 1048 

its surrounding SNPs. The track plot demonstrates that the OCR where this SNP is located has a higher 1049 

accessibility in palea tissue. “O2G” represents OCR-to-gene links. 1050 
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h Same meaning as (g), except that vg0431203743 has a higher accessibility in SAM and young 1051 

panicle. 1052 

Source data are provided as a Source Data file. 1053 

 1054 

Fig. 5 | Association of tissue type with complex traits. 1055 

a. GWAS SNPs enrichments for ATAC-seq OCRs of different tissues. The heatmap showing the 1056 

significant tissue-specific enrichment results. The values are transformed by -log10(P) and then 1057 

normalized by row. Those marked with an asterisk represent P < 0.05 for this result. The P values were 1058 

calculated by Kolmogorov-Smirnov test. Only tissue data for the NIP variety were used for this analysis. 1059 

The full list for GWAS enrichment result could access by Supplementary Data 11.  1060 

b. One representative examples of genomic tracks at loci OsbZIP06 showing that GWAS lead SNP is 1061 

located in tissue-specific OCRs. The GWAS study name and SNP location (denoted by red dashed line) 1062 

are shown at the top of panel. 1063 

c. Haplotype distribution of vg0131729028 in the population. This result was obtained from the 1064 

RiceVarMap 2.0 database
7
. 1065 

d. Identification of mutation information of two OsbZIP06 mutants based on sanger sequencing. 1066 

e. The images show seed germination rates of wild type and mutants of OsbZIP06. 1067 

f. The line graph showing the germination rates of different mutants osbzip06 at different days of 1068 

imbibition. “OE” represents overexpression. 1069 

g. Boxplot showing the enrichment results of proximal and distal OCRs with 209 GWAS results 1070 

respectively. Only results where GWAS was significantly enriched with at least one of proximal and 1071 

distal OCRs are shown. The sample size of each group is 764. The P value was calculated by Student's 1072 

t-test. Boxplot shows the median (horizontal line), second to third quartiles (box), and Tukey-style 1073 

whiskers (beyond the box). 1074 

h. Venn plot showing the number of results significantly enriched (P < 0.05, Kolmogorov-Smirnov test) 1075 

by proximal and distal OCRs. 1076 

i. Enrichment of GWAS SNPs in TSS proximal and distal OCRs. The names of the GWAS are marked at 1077 

the top of the panel. The grey dashed line indicates the P-value threshold of 0.05. The P values were 1078 

calculated by Kolmogorov-Smirnov test. 1079 

Source data are provided as a Source Data file. 1080 

 1081 

Fig. 6 | Using deep learning model to predict chromatin accessibility across tissues and varieties.  1082 

a. Receiver operating characteristic curves for different tissues in the NIP cultivar. The average AUORC 1083 

value was 0.931. 1084 

b. Distribution of Pearson correlation coefficients between predicted and true signal values for 1085 

different genomic regions using NIP model. Each point represents one tissue (n = 24). Data are 1086 

displayed as mean ± SD. 1087 

c. Comparison of clustering results based on predicted and true signal values using NIP model. 1088 
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d. The genomic tracks show the signal values predicted by NIP model versus the true signal values for 1089 

Panicle1, PNN and Root, respectively. The shaded area is labelled with the gene region of RCc3. The 1090 

heatmap below the tracks show the expression of the RCc3 in NIP varieties. 1091 

e. The boxplot showing the distribution of Pearson's correlation coefficients for the models of NIP, 1092 

MH63 and ZS97 tested separately using sequences from the other two varieties. The red dashed line 1093 

represents a correlation coefficient at 0.80. Each sample consists of 24 observations. Boxplot shows 1094 

the median (horizontal line), second to third quartiles (box), and Tukey-style whiskers (beyond the 1095 

box). 1096 

f. The genomic tracks showing the signal values predicted with the ZS97 model for NIP, MH63 and 1097 

ZS97 sequences versus the true signal values in Stamen and Stem tissues, respectively. The shaded 1098 

area represents the orthologous region of GSE9 in NIP, MH63 and ZS97 varieties. The heatmap below 1099 

the tracks show the expression of the GSE9 in NIP, MH63, and ZS97 varieties. 1100 

g. Comparison of OCRs in the three rice cultivars (NIP, MH63 and ZS97). For each cultivar, OCRs from 1101 

all tissues were merged and then compared based on whole genome sequence alignments. 1102 

h. Ternary plot showing the chromatin accessibility of orthologous OCRs among the three rice 1103 

cultivars with Panicle1 tissue. 1104 

i. Comparison of the SNP density within the balanced (n=19793) and unbalanced (n=8385) 1105 

orthologous OCRs. The P value was calculated by two-tailed Student's t test. Boxplot shows the 1106 

median (horizontal line), second to third quartiles (box), and Tukey-style whiskers (beyond the box). 1107 

j. Sankey diagram showing the true chromatin accessibility difference and the chromatin accessibility 1108 

difference predicted by the deep learning model for orthologous OCRs in NIP, MH63 and ZS97. The 1109 

color representation is categorized in the same way as in (h). 1110 

Source data are provided as a Source Data file. 1111 

 1112 

Fig. 7 | Genomic mutations contribute to cis-regulatory divergence  1113 

a. Density plot showing the difference in Pearson correlation coefficients (R) between the 1114 

OCR-to-gene of NIP, MH63 and ZS97, respectively. The R of OCR-to-gene are not less than 0.4 we 1115 

consider large differences while R located between -0.05 and 0.05 we consider no difference. 1116 

b. Boxplots showing the density of SNP differences between big and small difference groups. 1117 

Comparisons are made by two-tailed Student’s t test. Sample sizes for each group are labeled above 1118 

their respective boxes. Boxplot shows the median (horizontal line), second to third quartiles (box), and 1119 

Tukey-style whiskers (beyond the box). 1120 

c. The dot plot demonstrates that the GNP1 gene associates to an OCR (chr3:36150374-36152039) in 1121 

NIP, but not in MH63 and ZS97 due to the presence of a variant (vg0336150781, G/A). Pearson’s 1122 

correlation coefficient is used for the test. The error bands indicate 95% confidence intervals. The 1123 

P-values were calculated by two-tailed Z-test. 1124 

d. Manhattan plot showing local eGWAS results for GNP1. The eGWAS results were obtained from 1125 
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Ming et al. 
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. 1126 

e. Changes in chromatin accessibility using deep learning models for mutations of 100 bp each on the 1127 

left and right of vg0336150781. “Loss” represents reduced chromatin accessibility after the mutation 1128 

compared to before the mutation, and “gain” represents increased. The figure shows the change in 1129 

chromatin accessibility before and after the mutation in Panicle2. 1130 

f. The treemap showing the proportion and composition of OCRs without structural variants (SV) and 1131 

OCRs with SV. Here we only consider deletions (DEL), inversions (INV) and duplications (DUP) for SV. 1132 

OCRs were considered SV-related when it overlaps with DEL, DUP and INV by at least 1bp. 1133 

g. The heatmap showing the 12,313 OCR-to-gene links (R >= 0.4, P < 0.05, two-tailed Z-test) associated 1134 

with SV. They were grouped into 6 clusters based on their chromatin accessibility. The number of OCRs 1135 

in each cluster and the number of target genes are labeled on the right side of the heatmap. 1136 

h. The doughnut showing the proportion of DEL, DUP and INV in each cluster. 1137 

i. Scatter plot demonstrate Pearson correlation coefficients (R = 0.83, P < 6.94e-09) between tissues 1138 

for the accessibility of OCR associated with deletion and the expression of target genes 1139 

(Oshsp18.0-CII). The error bands indicate 95% confidence intervals. The P-values were calculated by 1140 

two-tailed Z-test. 1141 

j. Genome Browser showing ATAC-seq signal distribution in the vicinity of gene Oshsp18.0-CII. The gray 1142 

dashed bracket represents the absence of this OCR in MH63 and ZS97 due to the deletion of this 1143 

sequence. The barplot on the right shows the expression of the gene in each tissue. 1144 

Source data are provided as a Source Data file. 1145 
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