

1 **Positionally distinct interferon stimulated dermal immune acting fibroblasts promote**
2 **neutrophil recruitment in Sweet's syndrome**

3
4
5

6 **Authors:** Kellen J. Cavagnero¹, Julie Albright¹, Fengwu Li¹, Tatsuya Dokoshi¹, Rachael Bogle², Joseph Kirma², J.
7 Michelle Kahlenberg^{2,3,4}, Allison C. Billi^{2,4}, Jennifer Fox², Anthony Coon², Craig J. Dobry², Brian Hinds¹, Lam C. Tsoi²,
8 Paul W. Harms^{2,5}, Johann E. Gudjonsson^{2,3,4}, Richard L. Gallo^{1*}

9

10 **Affiliation:** ¹University of California, San Diego, Department of Dermatology

11 ²University of Michigan, Department of Dermatology

12 ³University of Michigan, Department of Internal Medicine, Division of Rheumatology

13 ⁴Taubman Medical Research Institute

14 ⁵University of Michigan, Department of Pathology

15

16 * Correspondence:

17 Dr. Richard L. Gallo,

18 Department of Dermatology, MC0869

19 University of California, San Diego

20 9500 Gilman Dr, La Jolla, CA 92093-0869

21 Telephone: 858-822-4608

22 Fax: 858-822-6985

23 E-mail: rgallo@health.ucsd.edu

24

25 Conflict-of-interest statement: RLG is a consultant for and has equity interest in MatriSys bioscience and Sente Inc.

26 **Abstract:**

27 Sweet's syndrome is a poorly understood inflammatory skin disease characterized by neutrophil infiltration to the
28 dermis. Single-nucleus and bulk transcriptomics of archival clinical samples of Sweet's syndrome revealed a prominent
29 interferon signature in Sweet's syndrome skin that was reduced in tissue from other neutrophilic dermatoses. This
30 signature was observed in different subsets of cells, including fibroblasts that expressed interferon-induced genes.
31 Functionally, this response was supported by analysis of cultured primary human dermal fibroblasts that were observed to
32 highly express neutrophil chemokines in response to activation by type I interferon. Furthermore, single-molecule
33 resolution spatial transcriptomics of skin in Sweet's syndrome identified positionally distinct immune acting fibroblasts
34 that included a CXCL1+ subset proximal to neutrophils and a CXCL12+ subset distal to the neutrophilic infiltrate. This
35 study defines the cellular landscape of neutrophilic dermatoses and suggests dermal immune acting fibroblasts play a role
36 in the pathogenesis of Sweet's syndrome through recognition of type I interferons.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52 **Introduction:**

53 Sweet's syndrome (SS) is an uncommon inflammatory skin disease characterized by painful red nodules or
54 plaques with dense neutrophil infiltrate on the face, neck, or arms (Joshi et al., 2022). Therefore, SS belongs to the class of
55 neutrophilic dermatoses, which also includes pyoderma gangrenosum (PG), pustular psoriasis (PP), and Behcet disease.
56 Although SS is often idiopathic, it can be drug-induced and has been associated with various immune-related conditions
57 such as cancer, infection, inflammatory diseases, vaccination, and pregnancy. The etiology of SS remains largely
58 unknown but is thought to involve aberrant neutrophils (Bhattacharya et al., 2023), genetic factors (Bhattacharya et al.,
59 2023), and proinflammatory cytokines such as IL-1, TNF α , and IL-6 (Joshi et al., 2022, Heath and Ortega-Loayza, 2019,
60 Bhattacharya et al., 2023). While systemic steroids effectively treat many SS patients, there is a pressing need for novel
61 therapeutic approaches to address steroid resistance and minimize side effects.

62 Recent technological advancements have enabled detailed transcriptomic analysis of fresh and formalin-fixed
63 paraffin-embedded (FFPE) tissue samples, providing an opportunity to comprehensively characterize gene expression
64 during disease (Guo et al., 2023). Such analysis has advanced understanding of the pathophysiology of many diseases
65 ranging from atopic dermatitis (He et al., 2020) to inflammatory bowel disease (Smillie et al., 2019) to Alzheimer's
66 disease (Mathys et al., 2019). Due to the difficulty of obtaining fresh SS tissue, a detailed characterization of gene
67 expression in SS has not been reported.

68 Here, we define the skin cellular and molecular landscape of a large cohort of patients with SS, PG, and PP using
69 cutting-edge single-nucleus RNA sequencing (snRNA-Seq), bulk RNA sequencing (bulk RNA-Seq), and subcellular
70 resolution spatial transcriptomics approaches. Integrated analysis identified a prominent and unique type I interferon
71 (IFN) signature in SS in various subsets of cells including fibroblasts. Functional experiments with primary human dermal
72 fibroblasts demonstrated that type I IFN activated these cells to highly express inflammatory mediators relevant to SS
73 including neutrophil chemokines. Overall, this study reveals a hitherto unknown role for type I IFN, through activation of
74 immune acting fibroblasts, to drive neutrophil inflammation in SS.

75

76

77

78 **Results:**

79 **Activation by interferon is a prominent feature of several Sweet's syndrome skin cell subsets including fibroblasts**

80 To understand the cellular landscape of SS and other neutrophilic dermatoses, we employed single-nucleus
81 transcriptomics using the 10X Genomics Flex platform of archived clinical formalin-fixed paraffin-embedded (FFPE)
82 lesional skin biopsies from patients with SS (n=6). A similar analysis was also performed on other neutrophilic disorders,
83 (pyoderma gangrenosum (PG, early-stage disease, n=6), and pustular psoriasis (PP, n=1), as well as healthy controls (HC,
84 n=5), to identify potentially unique gene signatures within SS using the 10X Genomics Flex platform (Figure 1A). In
85 total, we recovered 74,563 nuclei, with an average of 1036 genes and 1621 unique transcripts detected per nucleus (Figure
86 S1A). Quality control pseudo-bulk principal component analysis confirmed that neutrophilic dermatosis samples were
87 transcriptionally distinct from HC (Figure S1B).

88 Recovered nuclei were annotated using known marker genes following dimensionality reduction and
89 unsupervised clustering (Figure 1B), revealing 15 major cell types (Figure 1C): fibroblasts (*COL1A1*, *COL1A2*, *DCN*),
90 lymphoid cells (*TRAC*, *TRBC2*, *ZAP70*), keratinocytes (*KRT14*, *KRT16*, *KRT1*), myeloid cells (*ITGAX*, *CD163*, *LYZ*),
91 vascular endothelial cells (*EGFL7*, *VWF*, *CDH5*), plasma cells (*IGKC*, *IGHG1*, *IGLC2*), proliferating cells (*HIST1H1B*,
92 *HJURP*, *HELLS*), mural cells (*ITGA7*, *MYH11*, *ACTA2*), dendritic cells (DCs) (*CCL22*, *CD83*, *LAMP3*), eccrine cells
93 (*DCD*, *SCGB2A2*, *SLC12A2*), mast cells (*TPSAB1*, *HDC*, *GATA2*), lymphatic endothelial cells (*CCL21*, *FLT4*, *PROX1*),
94 melanocytes (*DCT*, *TYRP1*, *PMEL*), plasmacytoid dendritic cells (pDCs) (*NIBAN3*, *PLD4*, *IRF8*), and adipocytes (*PLIN1*,
95 *FABP4*, *PLIN4*). Proliferating cells, lymphoid cells, DCs, pDCs, and myeloid cells—a lineage that includes neutrophils—
96 were enriched in neutrophilic dermatoses lesions compared to HC skin (Figure 1D).

97 To understand which cell types may drive skin inflammation in SS, we determined the extent of transcriptional
98 response of each cell type by performing differential expression analysis between HC and SS skin (Figure 2A). This
99 analysis revealed that the most transcriptionally activated cell type in SS was fibroblasts, followed by myeloid cells then
100 keratinocytes.

101 Dimensionality reduction and unsupervised clustering of fibroblasts identified 8 transcriptionally distinct
102 fibroblast subsets (Figure 2B). FB3 was enriched in neutrophilic dermatoses relative to HC and was marked by expression
103 of neutrophil chemokines and proinflammatory cytokines (*CXCL5*, *IL6*) (Figure 2D). FB4 highly expressed markers of

104 extracellular matrix production and myofibroblasts (*COL1A1*, *COL1A1L*) and was uniquely expanded in PG. FB6, marked
105 by interferon (IFN)-induced genes (*IFI44*, *IFI6*, *IFI44L*, *IFIT1*), was found almost exclusively in SS. FB1 highly
106 expressed the universal fibroblast gene *PI16* (Buechler et al., 2021) and was decreased across disease conditions, hinting
107 that this subset may serve as a progenitor for neutrophilic dermatoses-associated fibroblast subsets. Pathway analysis
108 suggested that FB3 and FB6 were regulated by signaling intermediates IFN response factor 1 (IRF1) and STAT1;
109 therefore, these subsets may both be induced by IFN (Figure 2E).

110 Compared to other cell lineages, fibroblasts in SS and PG were a dominant source of neutrophil chemokine
111 ligands that bind CXCR2 (*CXCL1*, *CXCL2*, *CXCL3*, *CXCL5*, *CXCL6*, *CXCL8*) and CXCR4 (*CXCL12*) (Figure 2F). While
112 neutrophil chemokine expressing FB3 was increased in PP, the neutrophil chemoattracts that bind CXCR2 were not well
113 detected in this condition. Taken together, these results demonstrate that SS is associated with a prominent IFN and
114 suggest that fibroblast recognition of IFN may drive neutrophil recruitment in SS.

115 We next interrogated the lymphoid, myeloid, and keratinocyte subsets in our data to understand whether other cell
116 types respond to IFN in SS (Figure S2A-C). 9 transcriptionally distinct lymphocyte subpopulations were identified by
117 dimensionality reduction and unsupervised clustering of the initial lymphoid and plasma cell clusters (Figure S2A).
118 Decreased in frequency across neutrophilic dermatoses compared to HC were stem-like CD4 T cells LYM1 (*IL7R*,
119 *TCF7*), CD8+ T cells LYM4 (*CD8A*), and NK cells LYM7 (*KLRD1*) (Figure S2D). B cells and plasma cells, LYM2
120 (*IGLC3*, *IGHG2*, *IGKC*) and LYM9 (*IGHM*, *IGLC1*), were enriched in PG and PP. Activated CD4 T cells LYM5 (*CD69*)
121 were increased in frequency in PG but not PP or SS. IFN-activated lymphocytes LYM8 (*MX1*, *OAS3*, *IFI44L*) were found
122 predominantly in SS.

123 We next investigated keratinocyte subsets and found by dimensionality reduction and unsupervised clustering 9
124 transcriptionally discrete clusters (Figure S2B). Basal keratinocytes KC1 (*KRT15*) and suprabasal keratinocytes KC3
125 (*KRT1*, *KRT10*) were decreased in frequency across neutrophilic dermatoses, whereas stratum granulosum keratinocytes
126 KC2 (*KLK13*) and IFN-activated keratinocytes KC8 (*IRF1*, *WARS*, *CXCL10*) were increased (Figure S2F). IFN-activated
127 KC8 was observed at 3-fold higher frequency in SS compared with other neutrophilic dermatoses.

128 Dimensionality reduction and unsupervised clustering of the initial myeloid, pDC, DC, and mast cell clusters
129 resolved 10 transcriptionally distinct myeloid cell clusters (Figure S2C). MY4 mast cells (*GATA2*, *HDC*, *TPSAB1*) and

130 MY3 macrophages (*SELENOP*, *APOE*, *RNASE1*) were enriched in HC skin, whereas MY6 DCs (*CCR7*, *CCL22*), and
131 MY7 pDCs (*GZMB*) were increased across neutrophilic dermatoses (Figure S2F). TREM2 macrophages MY5 (*SPP1*)
132 were found in SS and PG but not PP nor HC skin. IFN-activated MY1 (*CXCL10*, *GBP5*, *CD300E*) were enriched in SS
133 and PG but not PP.

134 Pathway analysis indicated that LYM8, KC8, and MY1 may be regulated by IFN response factor 1 (IRF1) and
135 STAT1, confirming the identity of these subsets as IFN-activated (Figure S2G-I). Thus, IFN-activated subsets were
136 expanded in all major skin cell lineages in SS skin.

137 We next determined the IFN signature in individual SS patients (Figure S3A-E). Each SS patient sample
138 possessed a unique composition of IFN-activated cell types. IFN-activated myeloid cells were observed in all SS patients
139 to a varying degree, whereas IFN-activated myeloid, lymphocyte, and keratinocyte were observed in a subset of patients.
140 These results demonstrate that the prominent IFN signature is a conserved feature of SS but that the cell type on which
141 IFN acts is patient dependent.

142 To validate our snRNA-Seq findings, we next performed bulk RNA-Seq on a large independent cohort of SS
143 (n=45), PG (n=58), and HC skin (n=4) (Figure 3A). Cell type deconvolution confirmed snRNA-Seq findings of increased
144 frequency of DCs, lymphoid cells, myeloid cells, pDCs, plasma cells, and proliferating cells in neutrophilic dermatoses
145 (Figure 3B). Differential expression analysis identified genes upregulated in both SS and PG including proinflammatory
146 cytokines (*IL1A*, *IL1B*, *TNF*, *IL6*, *OSM*), neutrophil growth factor (*CSF3*), antimicrobials (*LCN2*, *CAMP*), neutrophil
147 chemokine receptors CXCR2 and CXCR4, neutrophil chemokines that bind CXCR2 (*CXCL1*, *CXCL2*, *CXCL3*, *CXCL5*,
148 *CXCL6*, *CXCL8*) (Figure S4A-B). Overall, the differentially expressed genes shared between SS and PG were related to
149 inflammatory pathways including ‘innate immune response’ and ‘neutrophil degranulation’ (Figure S4C).

150 Comparative analysis identified 651 and 1521 genes uniquely regulated in SS and PG, respectively, and 5105
151 similarly regulated genes (Figure 3C). Proinflammatory cytokines *IL1A*, *IL1B*, *TNF*, and *IL-6* and neutrophil chemokines
152 *CXCL1*, *CXCL2*, *CXCL3*, *CXCL5*, *CXCL6*, and *CXCL8* were significantly upregulated in both SS and PG. The genes
153 upregulated in both conditions were consistent with ‘innate immune response’ and ‘neutrophil degranulation’ (Figure
154 S4C). *IL17A* was not significantly upregulated in PG or SS (Figure S4-B). Pathway analysis suggested PG-specific
155 genes—including *COL11A1*—were consistent with developmental processes and extracellular matrix production,

156 validating our snRNA-Seq findings (Figure S4D). SS-specific genes were consistent with ‘Human papilloma virus
157 infection’—a type I IFN response pathway (Figure 3D). Expression of the 11 IFN stimulated genes defining IFN-activated
158 subsets of fibroblasts, myeloid cells, lymphoid cells, and keratinocytes was significantly increased in SS compared to HC
159 (Figure 3E). 10 of these genes—particularly those marking IFN-activated fibroblasts and lymphocytes—were increased in
160 SS over PG. This result supports our snRNA-Seq observation of IFN-activated fibroblast and lymphocyte subsets
161 uniquely present in SS lesions. Genes marking IFN-activated fibroblasts *IFI44*, *IFI6*, *IFI44L*, and *IFIT1* were highly
162 expressed in many SS patients (Figure 3F). Taken together, this unbiased analysis of a large independent patient cohort
163 validates the prominent IFN signature identified in SS by snRNA-Seq.

164

165 **Type I interferon activates primary human dermal fibroblasts to highly express neutrophil chemokines**

166 To test the significance of the IFN signature in fibroblasts for neutrophil recruitment, we cultured primary human
167 dermal fibroblasts from 50 different donors with type I IFN (IFNa2) and type 2 IFN (IFN γ) and examined gene expression
168 by bulk RNA-Seq (Figure 4A). The effect of these signals was compared with TNF α , which has been shown to induce
169 fibroblast expression of neutrophil chemokines (Cavagnero et al., 2024, Cavagnero and Gallo, 2022). Comparative
170 differential expression analysis identified 76 genes highly upregulated by IFN γ and IFNa2 but not TNF α (Figure 4B).
171 Among these genes were the IFN stimulated genes that marked IFN-activated snRNA-Seq FB6 (Figure 4C). Highly
172 upregulated by all 3 stimuli were chemoattractants for monocytes/macrophages (*CCL2*, *CCL7*, *CCL8*, *CX3CL1*) and
173 lymphocytes (*CXCL9*, *CXCL10*, *CXCL11*) (Figure S5A). Few inflammatory genes were highly upregulated by IFN γ alone
174 (*CCL13*) or by TNF α alone (*IL34*, *TSLP*) (Figure S5A). Remarkably, the 85 genes highly upregulated by TNF α and
175 IFNa2 but not IFN γ included neutrophil chemokines (*CXCL1*, *CXCL5*, *CXCL8*, *C3*), myeloid cell growth factors (*CSF2*,
176 *CSF3*), and proinflammatory cytokines associated with SS (*IL1A*, *IL1B*, *IL6*, *TNF*) (Figure 4D). Neutrophil chemokine
177 upregulation by type I IFN was validated by qPCR (Figure 4E, S5B).

178 To infer whether type I or type II IFN drove the IFN signature in FB6, *in vitro* activation gene modules were
179 generated and projected onto snRNA-Seq data. IFN-activated FB6 demonstrated a transcriptomic signature most

180 consistent with activation by type I IFN (Figure 4F). Together, these findings support a model wherein type I IFN
181 activates subsets of fibroblasts in SS to recruit neutrophils.

182

183 **Spatially distinct fibroblast subsets promote neutrophil recruitment in Sweet's syndrome**

184 We next sought to understand the cellular and molecular landscape of neutrophilic dermatoses biogeographically
185 and performed subcellular resolution spatial transcriptomics of archival FFPE skin biopsies from SS (n=5), PP (n=2), and
186 HC (n=2) using Nanostring's 1000 gene imaging-based CosMx platform (Figure 5A). At the single-cell level, our dataset
187 included 39992 cells, with an average of 54 genes and 136 transcripts detected per cell. Dimensionality reduction and
188 unsupervised clustering revealed 10 transcriptionally distinct clusters (Figure 5B-C): neutrophils (*CCL3L3*, *CXCL8*,
189 *IL1B*), keratinocyte cluster 1 (*KRT6C*, *KRT6B*, *KRT16*), keratinocyte cluster 2 (*KRT5*, *KRT14*, *S100A2*), fibroblasts
190 (*COL6A2*, *COL3A1*, *COL1A1*), myeloid cells (*HLA-DPA1*, *HLA-DRB1*, *CD74*), lymphoid cells (*MALAT1*, *CCL19*, *IL32*),
191 mural cells (*VIM*, *COL4A2*, *IGFBP7*), keratinocyte cluster 3 (*TNFSF15*, *KRT1*, *KRT10*), and keratinocyte cluster 4
192 (*IL36G*, *S100A8*, *S100A9*). The frequencies of neutrophils, myeloid cells, and lymphoid cells were increased in
193 neutrophilic dermatoses compared to HC (Figure 5D), confirming snRNA-Seq and bulk RNA-Seq findings.

194 Cell clusters were then projected onto tissue sections to elucidate spatial localization (Figure 5E). Strikingly, all
195 unsupervised clusters mapped to unique histological regions. SS and PG shared with HC basal epidermis keratinocyte
196 cluster 2 but had distinct spinous and supraspinous epidermal clusters. The supra-basal epidermal clusters in SS and PP
197 highly expressed proinflammatory genes (*IL36*, *S100A8*, *S100A9*) whereas those in HC did not. Unlike single-cell and
198 single-nucleus transcriptomics, which often fail to recover neutrophils, spatial transcriptomics identified a cluster of
199 neutrophils that was validated by H&E staining (Figure 5F). Neutrophils in SS were observed densely packed in the mid-
200 to-upper dermis, whereas neutrophils in PP were more evenly dispersed throughout the upper dermis. Differential
201 expression analysis of neutrophils across conditions identified upregulation of *IL1B*, *CXCL8*, and *IL1RN* in SS
202 neutrophils, supporting previous work demonstrating overexuberant neutrophil activation in SS (Figure S6) (Bhattacharya
203 et al., 2023).

204 We next performed unsupervised niche analysis by clustering cells into 7 regions based on the cellular
205 composition within a 50um radius of each cell using MClust (Scrucca et al). This analysis resolved an SS associated upper

206 dermal niche (niche1) and an SS associated lower dermal niche (niche2) (Figure 6A-B, S7A-B). Niche1 included
207 fibroblasts and neutrophils, whereas niche2 included fibroblasts but not neutrophils (Figure 6C). Differential expression
208 analysis between fibroblasts in niche1 and niche2 indicated that fibroblasts in the upper dermal, neutrophil proximal niche
209 were marked by IFN inducible neutrophil chemokine *CXCL5*, whereas fibroblasts in the lower dermal, neutrophil distal
210 niche were marked by IFN inducible gene *IFITM3*, neutrophil chemokines *CXCL12* and *MIF*, and extracellular matrix
211 genes (*COL3A1*, *COL1A1*, *COL1A2*) (Figure 6D). Similar results were obtained both by performing differential
212 expression analysis between neutrophil proximal (<10um) and distal (>50um) fibroblasts and by correlating fibroblast
213 gene expression with neutrophil distance (Figure 6E-G). Projection of *IFITM3*, *CXCL1*, and *CXCL12* expression onto
214 tissue sections indicated that these genes were not expressed in HC skin and highly expressed in neutrophilic dermatoses
215 lesions (Figure 6H-J, S6C-H). *IFITM3* demonstrated striking regional expression in the epidermis with high expression in
216 basal but not suprabasal keratinocytes. Protein immunostaining confirmed that CXCL1 was expressed by a greater
217 frequency of fibroblastic cells in the upper dermis, whereas CXCL12 was expressed by a greater frequency of fibroblastic
218 cells in the lower dermis (Figure 6K). Thus, unbiased subcellular resolution spatial transcriptomics identified positionally
219 distinct dermal immune acting fibroblast subsets in SS lesions.

220

221 **Discussion:**

222 In this study, we aimed to develop a comprehensive cellular and molecular atlas of the human neutrophilic
223 dermatosis Sweet's syndrome (SS)—a rare disease not previously profiled at scale using unbiased transcriptomics.
224 Comparative analysis of single-nucleus transcriptomics from archival clinical skin biopsies of patients with SS, early
225 pyoderma gangrenosum (PG), pustular psoriasis (PP), and healthy controls (HC) revealed new cellular contributors to
226 neutrophilic dermatoses, including pDCs. This analysis also led to the identification of an IFN-activated fibroblast subset
227 in SS lesions that was absent in other conditions. Bulk RNA-Seq of a large, independent patient cohort confirmed the
228 snRNA-Seq findings, including a unique and prominent IFN signature in SS. Subsequent unbiased functional experiments
229 demonstrated that cultured primary human dermal fibroblasts—cells mainly appreciated for supporting tissue
230 architecture—highly expressed neutrophil chemokines that bind CXCR2 following recognition of type I IFN. These

231 results are consistent with a 2024 report showing that type I IFN induced CXCL8 secretion in hepatocellular carcinoma
232 cells (Ma et al., 2024).

233 Fibroblasts have historically been regarded as a homogenous cell type that supports tissue architecture but are
234 becoming appreciated as a diverse and multifunctional class of cells (Cavagnero and Gallo, 2022). Subsets of immune
235 acting fibroblasts (IAFs) play a critical role in IL-17-mediated neutrophil recruitment during *S. aureus* infection and
236 psoriasis vulgaris through secretion of chemokines that bind CXCR2 and CXCR4 (Cavagnero et al., 2024). Unlike
237 psoriasis vulgaris, biologics targeting the IL-17 pathway have not demonstrated efficacy in treating SS (de Risi-Pugliese
238 et al., 2019). Therefore, we hypothesized that IAFs drive neutrophil recruitment in SS through an IL-17 independent
239 mechanism. We now present evidence that human dermal IAFs play a role in neutrophil recruitment in SS through
240 recognition of type I IFN.

241 A 2022 study identified type I IFN-activated dermal fibroblasts in the autoimmune skin disease cutaneous lupus
242 erythematosus using scRNA-Seq (Billi et al., 2022). While type I IFN and neutrophils are well known to drive lupus
243 pathogenesis (Bruera et al., 2022), the connection between type I IFN and neutrophil recruitment has not been previously
244 established. In light of our study—the first to present data supporting a role for type I IFN-activated dermal fibroblast
245 subsets in neutrophil inflammation—these findings suggest that IAF recognition of type I IFN may contribute to
246 neutrophil inflammation in other autoimmune diseases and interferonopathies.

247 Psoriasis vulgaris skin cell atlas studies have resolved IAF subsets that express neutrophil chemokines that bind
248 CXCR2 and CXCR4 (Ma et al., 2023, Cavagnero et al., 2024). Here, using a combination of subcellular resolution spatial
249 transcriptomics and immunostaining, we identified two distinct neutrophil chemokine-expressing fibroblast populations: a
250 neutrophil-proximal subset expressing CXCR2 ligands in the upper dermis, and a neutrophil-distal subset expressing the
251 CXCR4 ligand CXCL12 in the lower dermis. These findings suggest that upper and lower dermal fibroblasts are capable
252 of adopting a neutrophil recruiting IAF state depending on the disease context.

253 This current study also identified subsets of IFN-activated keratinocytes, myeloid cells, and lymphocytes enriched
254 in SS. Similar subpopulations have been reported in cutaneous lupus erythematosus (Billi et al., 2022), hidradenitis
255 suppurativa (van Straalen et al., 2024, Gudjonsson et al., 2020), and psoriasis (Ma et al., 2023). Future research should
256 focus on understanding how IFN action on these cell types contributes to SS pathogenesis.

257 Given the diversity of conditions associated with SS, some speculate that it may lack a common underlying
258 molecular mechanism (Joshi et al., 2022). However, type I IFN has been implicated in these associated conditions,
259 including inflammatory disease, infection, vaccination, pregnancy, and cancer. Furthermore, numerous case studies have
260 documented SS induced by IFN therapy (Rodriguez-Lojo et al., 2014, Gheorghe et al., 2008, Kim et al., 2015). Thus, type
261 I IFN may serve as a unifying factor in SS, suggesting that FDA approved JAK/STAT inhibitors, which block type I IFN
262 signaling, could offer a new therapeutic strategy for SS. Indeed, a 2020 case study reported significant improvement of SS
263 with baricitinib treatment (Nousari et al., 2021).

264 Current models of SS pathogenesis—developed from limited laboratory studies of serum and skin inflammatory
265 mediators and case reports of targeted therapeutic trials—are incomplete but suggest that infection, cancer, and drug
266 reactions drive heightened levels of TNF α , IL-1, and G-CSF that promote leukocytosis (Heath and Ortega-Loayza, 2019).
267 In the context of hematological cancer, aberrant malignant neutrophils further contribute to leukocytosis following
268 treatment with G-CSF, all-trans retinoic acid, or FL3 inhibitor. Th1, Th2, and/or Th17 cells are thought to then promote
269 IL-17, TNF α , and/or IL-1 dependent neutrophil recruitment, activation, and neutrophil extracellular trap (NET) formation
270 (Joshi et al., 2022). Genetic variants may increase the risk of developing SS independent of malignancy. For example, a
271 2023 case study of a patient with non-cancer associated SS identified a gain-of-function *PIK3R1* mutation—specifically in
272 neutrophils—that increased neutrophil migration and respiratory burst capacity (Bhattacharya et al., 2023).

273 Consistent with current models, we observed increased expression of proinflammatory cytokines, neutrophil
274 growth factors, and neutrophil chemokines in SS compared to healthy skin including IL-1, TNF α , G-CSF (encoded by
275 *CSF3*), and CXCR2 ligands. Further, spatial transcriptomics enabled *in situ* characterization of SS neutrophils, revealing
276 that these cells expressed more IL-1 β and CXCL8 than neutrophils in both healthy and PG skin. Contrary to the current
277 model, but consistent with a recent case report (de Risi-Pugliese et al., 2019), our data do not support a role for IL-17 in
278 SS pathogenesis.

279 Based on our findings of increased pDCs in SS, a prominent and unique IFN signature, type I IFN activation of
280 dermal fibroblasts to express neutrophil chemokines, and upper dermal localization of fibroblast subsets expressing
281 CXCR2 binding neutrophil chemokines, we speculate that inciting factors drive the production of type I IFN, IL-1, and

282 TNF α . These proinflammatory cytokines then promote subsets of dermal fibroblasts to recruit neutrophils to infiltrate the
283 skin and release extracellular traps, which in turn activate pDCs to secrete type I IFN, creating a self-sustaining
284 inflammatory positive feedback loop.

285 Our study is limited in that our snRNA-Seq cohort included a single PP sample. Because our aim was to define SS
286 pathogenesis, not necessarily PP and PG, it is important that this PP sample be included as it adds value as a comparator.
287 Importantly, however, conclusions about the PP landscape should not be made based off this single patient biopsy.
288 Nevertheless, our spatial transcriptomics data included 2 additional PP patient samples that aligned well with the PP
289 snRNA-Seq data.

290 In summary, we have used cutting-edge single nucleus, bulk, and spatial transcriptomics on archival clinical
291 samples to illuminate the pathogenesis of rare human neutrophilic dermatoses. These approaches led to the identification
292 of a unique IFN signature in SS, which was seen prominently in a subset of upper dermal fibroblasts that highly express
293 neutrophil chemokines following recognition of type I IFN. This work provides insight into the mechanisms underlying
294 the clinical observation of recombinant type I IFN-induced SS and identifies type I IFN and IFN-activated fibroblasts as a
295 novel therapeutic target for the treatment of SS. The comprehensive cell atlas generated here is anticipated to be a
296 valuable resource for the research community to facilitate future discoveries.

297

298 **Methods:**

299 Single-nucleus RNA sequencing: FFPE samples of skin biopsies were obtained from patients with SS (n=6), PP (n=1), PG
300 (n=6), and HC (n=5). Libraries were generated using 10X Genomics Flex FFPE protocol and were subjected to 28x91bp
301 of sequencing according to the manufacturer's protocol (Illumina NovaSeq). Library prep and next-generation sequencing
302 was carried out in the Advanced Genomics Core at the University of Michigan. CellRanger with default parameters was
303 used to perform alignment to the hg38 reference genome and gene counting. Data were filtered, processed, and analyzed
304 using Seurat (Butler et al., 2018; Stuart et al., 2019). All functions described below are Seurat functions unless stated
305 otherwise. Filtering data involved removing low quality cells, removing ambient RNA with SoupX with
306 setContaminationFraction = 0.2 (Young and Behjati, 2020), and removing doublets using DoubletFinder with the default
307 settings (McGinnis et al., 2019). Data were normalized and integrated using NormalizeData and IntegrateData with

308 default parameters. Clusters were identified using FindNeighbors with 50 principal components and FindClusters with a
309 range of resolutions. For each resolution, nonlinear dimensionality reduction and visualization was performed with 50
310 principal components, and marker genes for each cluster were determined using FindAllMarkers with min.pct = 0.25. The
311 resolution yielding clusters with the most distinct marker genes was chosen for further analysis. For cell subpopulation
312 analysis, data were subset based on cell type annotation, contaminating cells were removed, and the above analysis was
313 repeated. Pathway analysis was performed with Metascape (Zhou et al., 2019). Signature scores were generated using
314 AddModuleScore with all significantly upregulated genes ($P_{adj} < 0.05$) from *in vitro* bulk RNA-Seq.

315
316 Spatial transcriptomics: FFPE skin biopsies were obtained from patients with SS (5), PP (2), and HC (2). Subcellular
317 resolution spatial transcriptomics was performed using the NanoString CosMx SMI platform with the predefined human
318 1000 gene panel as previously described (He et al., 2022). DAPI staining and immunofluorescent staining of PanCK,
319 CD298/B2M, CD45, and SMA facilitated cell segmentation with machine learning algorithm Cellpose (Stringer et al.,
320 2021). Counts were assigned to individual cells based on cell segmentation borders. Cells with fewer than 20 counts or
321 with area more than 5 times the average cell area were removed. Data were normalized to total counts per cell and square
322 root transformed. UMAP dimensionality reduction was then performed using all genes. Unsupervised Leiden clustering
323 was run with 50 principal components and a resolution of 0.4. The following analysis was performed using Seurat (Butler
324 et al., 2018; Stuart et al., 2019) unless otherwise noted. Differential expression using FindAllMarkers with min.pct = 0.25
325 was used to identify cluster markers genes. Clusters were annotated manually based on known marker genes. For niche
326 analysis, the cellular composition within a 50um radius of each cell was determined and clustered into 7 niches using
327 MClust (Scrucca et al., 2016). Differential expression between fibroblasts based on niche or distance to neutrophils was
328 performed using FindMarkers with min.pct = 0.25.

329
330 Cell culture: Healthy human dermal fibroblasts were isolated from 2x 4mm skin punches by mechanical digestion with
331 scissors and enzymatic digestion with 0.2% collagenase for 30' at 37C. Cells were grown in a humidified incubator at 5%
332 CO2 and 37°C under sterile conditions and used at passage 3. Cells were grown in RPMI supplemented with L-glutamine,
333 10% FBS, and antibiotic-antimycotic (ThermoFisher Scientific, #15240062). Cells at 80% confluence were stimulated

334 with recombinant cytokines including rhIFNa2 (R&D, #11100-1, 5ng/ml), rhTNF α (R&D, #210-TA-005, 10ng/ml), or
335 rhIFN γ (R&D, #285-IF-100, 5ng/ml). After 6 hours of stimulation, cells were lysed with RNA lysis buffer (Qiagen,
336 74104).

337

338 RNA isolation protocol: For bulk RNA-Seq and qPCR of FFPE tissue, RNA was isolated from FFPE tissue using the
339 RNeasy DSP FFPE Kit (Qiagen, #73604). For bulk RNA-Seq and qPCR of cultured fibroblasts, RNA was isolated from
340 cell lysates using the RNeasy kit (Qiagen, #74104).

341

342 Bulk RNA-Seq: Libraries were generated using a QuantSeq 3' mRNA-Seq Library Prep Kit (Lexogen) and sequenced
343 using a NovaSeq (Illumina). After adaptor trimming, reads were mapped to the hg38 reference genome using STAR,
344 count matrices were generated using HTSeq, and differential expression analysis was performed using DESeq2. Volcano
345 plots and heatmaps were generated using EnhancedVolcano and pheatmap. Pathway analysis was performed with
346 Metascape (Zhou et al., 2019).

347

348 RT-qPCR: RNA was converted to cDNA using a High-Capacity cDNA Reverse Transcription Kit (ThermoFisher, #
349 4368814). qPCR was performed using a QuantStudio Real-Time PCR system (ThermoFisher) with TaqMan Universal
350 PCR Master Mix (ThermoFisher, #4304437). Housekeeping gene *RPLP0* was used to normalize expression. TaqMan
351 primers included *RPLP0* (ThermoFisher, #Hs004200895_gh), *CXCL1* (ThermoFisher, #Hs00236937_m1), *CXCL2*
352 (ThermoFisher, #Hs00234140_m1), *CXCL3* (ThermoFisher, # Hs00171061_m1), *CXCL5* (ThermoFisher,
353 #Hs00982282_m1), *CXCL6* (ThermoFisher, #Hs00237017_m1), *CXCL8* (ThermoFisher, #Hs00174103_m1).

354

355 Immunofluorescence: Antigen retrieval of FFPE sections was performed using Target Retrieval Solution (Dako, #S2369)
356 as per manufacturer recommendations. Sections were blocked with serum from secondary antibody host, stained with
357 primary antibodies overnight at 4°C, secondary antibodies for 1hr at RT, and nuclei were counterstained with DAPI.
358 Epifluorescence images were taken using an EVOS5000. Brightness and contrast were adjusted slightly using ImageJ or

359 Nikon elements software and applied equally across samples. Primary antibodies: CXCL1 (ThermoFisher, #PA586508,
360 1:100), CXCL12 (ThermoFisher, #14-7992-81, 1:1000). Secondary antibody: Cy3 Donkey anti-Rabbit IgG (BioLegend,
361 #406402, 1:500).

362

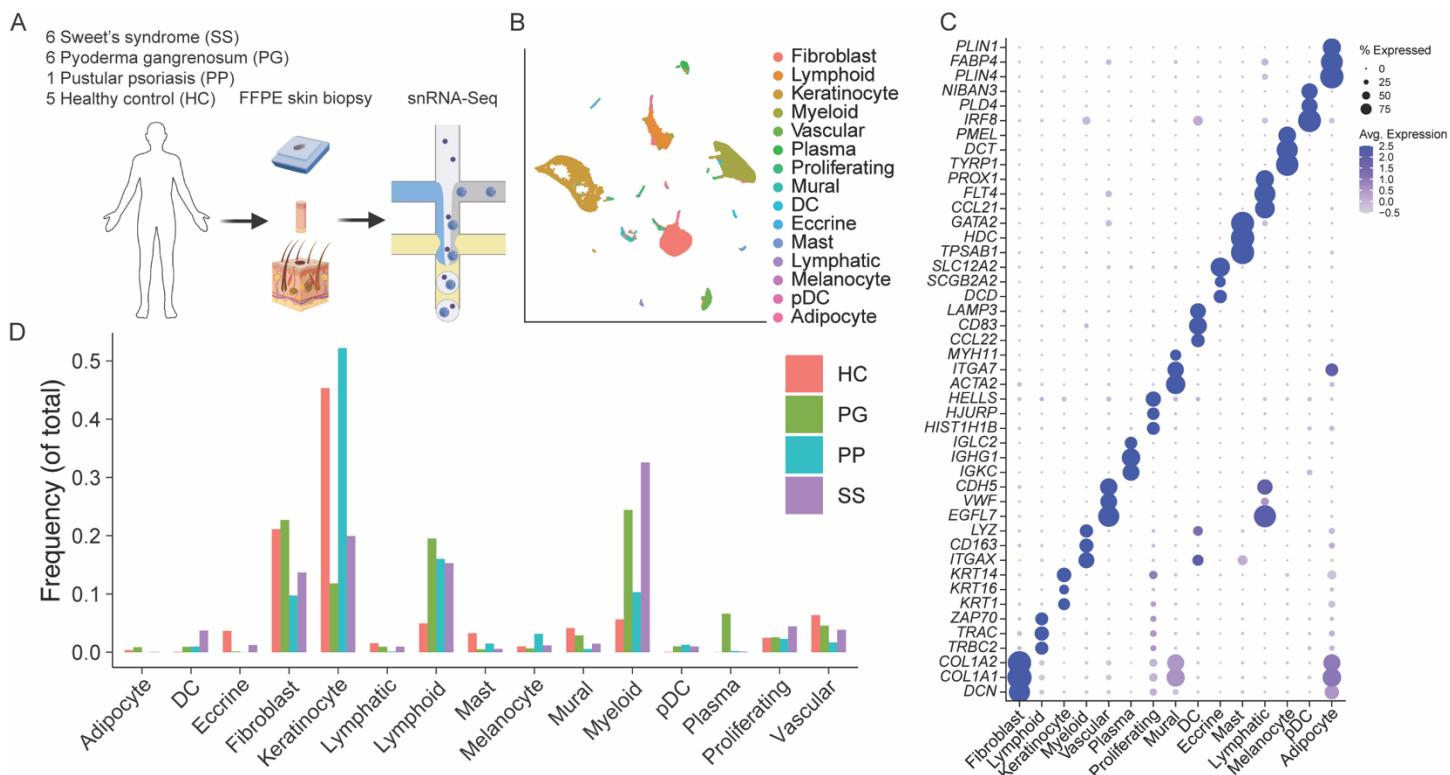
363 Statistical analysis: snRNA-Seq and spatial transcriptomics differential expression analysis was performed using Seurat.
364 Bulk RNA-Seq differential expression analysis was performed using DESeq2. Transcriptomics P values were adjusted
365 (adj) for multiple hypothesis testing, and $P_{adj} < 0.05$ was considered statistically significant. qPCR statistical significance
366 was calculated using GraphPad Prism with * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, and **** $P < 0.0001$.

367

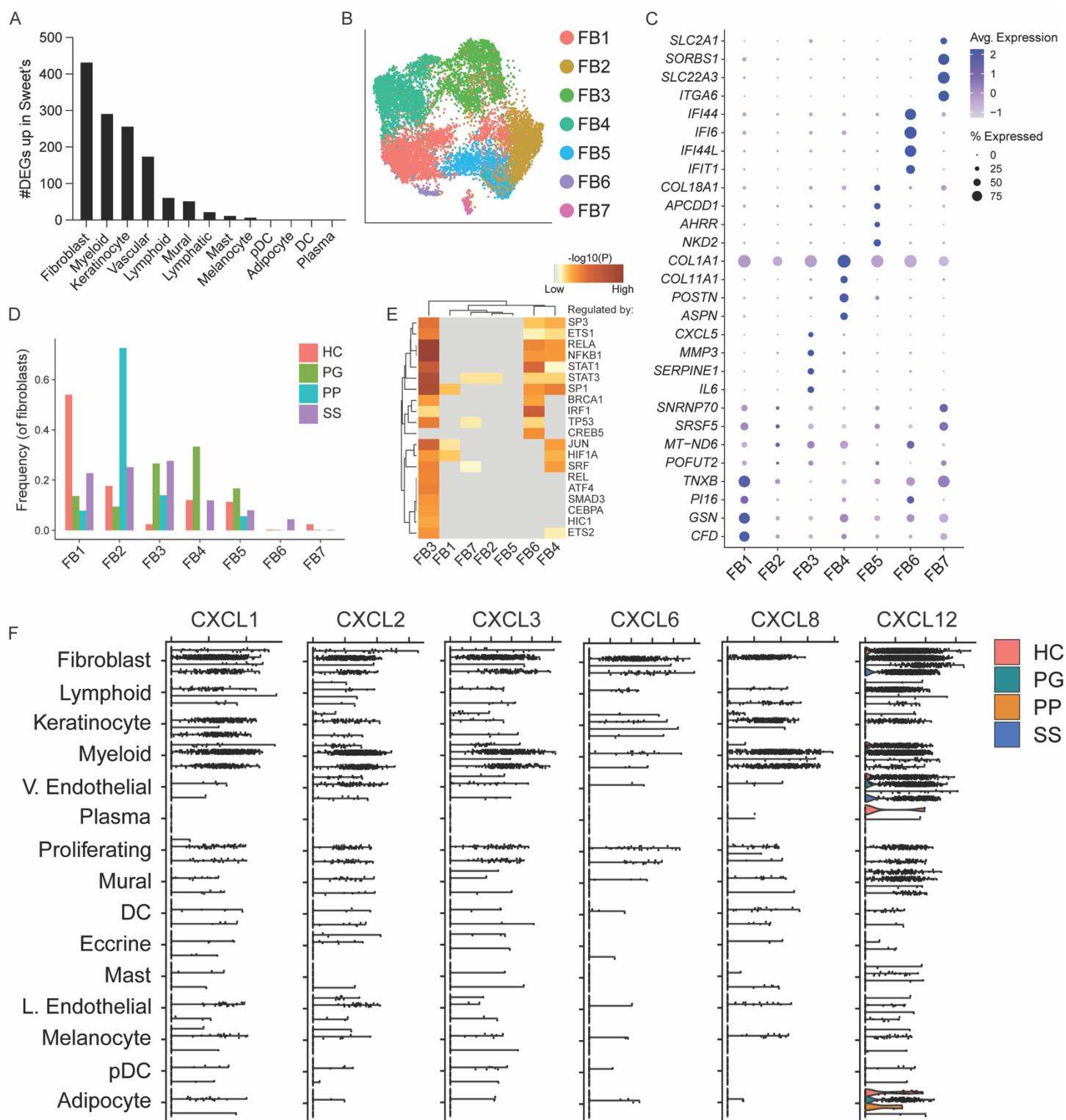
368 Study approval: Human skin biopsies for spatial transcriptomics, H&E, and immunofluorescence were collected from the
369 UCSD Dermatology Clinic. Sample acquisitions were approved and regulated by the UCSD Institutional Review Board
370 (#140144). Acquisition of human skin samples for snRNA-Seq, bulk RNA-Seq, and *in vitro* fibroblast studies was
371 approved by University of Michigan IRB. Written informed consent was obtained from all subjects.

372

373 Data availability: Genomic data presented here will be made publicly available following publication.


374

375 **Author contributions:** K. Cavagnero—conceptualization, investigation, supervision, resources, formal
376 analysis, visualization, writing (original draft), writing (review & editing); C. Dobry, F. Li, R. Bogle, J. Kirma, J. Fox, A.
377 Coon, J. Albright, A. Billi, P. Harms, L. Tsoi—resources, formal analysis, investigation; J. Kahlenberg, B. Hinds, J.
378 Gudjonsson—resources, supervision; R. Gallo—supervision, conceptualization, writing (review & editing).


379

380 **Acknowledgements:** Research reported in this publication was supported by the University of Michigan Advanced
381 Genomics Core, the UM Single Cell Spatial Analysis Program and the National Cancer Institutes of Health under Award
382 Number P30CA046592 using the following Cancer Center Shared Resource: Single Cell and Spatial Analysis Shared
383 Resource. Figure models were created using BioRender.com. KJC is supported by NSF GRFP2038238 and NIH
384 T32DK007202, and RG is supported by NIH R01DK121760, NIH R01AR076082, NIHR01AI153185, U01AI152038,

385 P50AR080594, and NIH R37AI052453. RLG is a consultant for and has equity interest in MatriSys bioscience and Sente
386 Inc.
387
388
389
390
391
392
393
394
395
396
397
398
399

Figure 1: Single-nucleus RNA sequencing of neutrophilic dermatoses. (A) Experimental schematic. (B) Dimensionality reduction and unsupervised clustering, colored by cell type. (C) Expression of top 3 marker genes per cell type. (D) Proportion of each cell type across conditions. SS, Sweet's syndrome; PG, pyoderma gangrenosum; PP, pustular psoriasis; HC, healthy control.

415

416 **Figure 2:** IFN-activated fibroblasts are enriched in Sweet's syndrome. (A) Number of significantly upregulated genes
 417 ($P_{adj} < 0.05$) in SS compared to HC for each cell type. Differential expression analysis was performed using DESeq2 with
 418 pseudobulked data to control for patient heterogeneity. (B) Dimensionality reduction and unsupervised clustering of

419 fibroblasts (FB), colored by subset. (C) Expression of top 4 marker genes per fibroblast subset. (D) Proportion of
420 fibroblast subsets across conditions. (E) Pathway analysis inferring upstream transcription factors regulating gene
421 expression for each cluster. (F) Expression of neutrophil chemokine CXCR2 ligands (*CXCL1*, *CXCL2*, *CXCL3*, *CXCL5*,
422 *CXCL6*, *CXCL8*) and CXCR4 ligand (*CXCL12*) across cell types for each condition. SS, Sweet's syndrome; PG,
423 pyoderma gangrenosum; PP, pustular psoriasis; HC, healthy control; IFN, interferon.

424

425

426

427

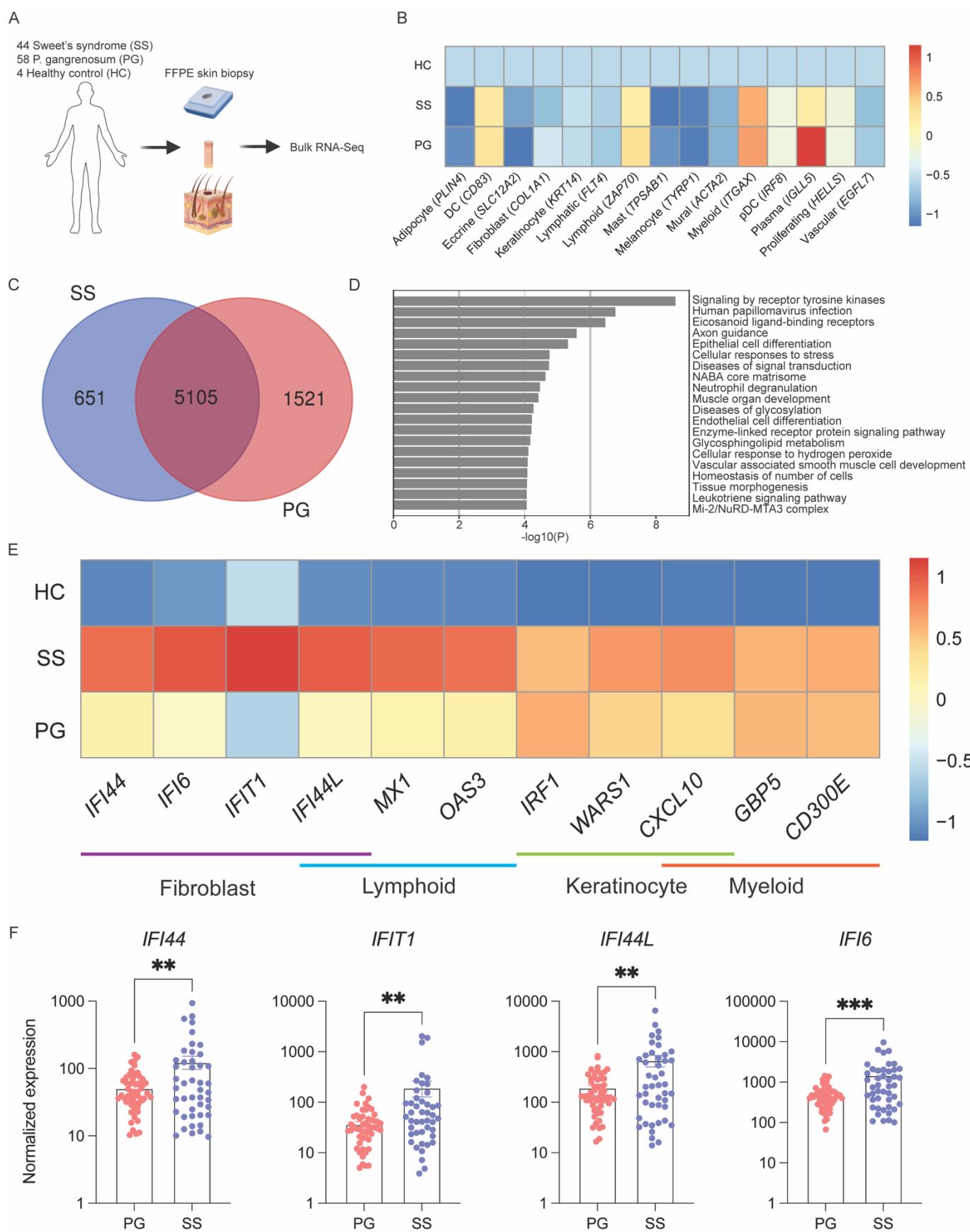
428

429

430

431

432


433

434

435

436

437

439 **Figure 3:** Bulk RNA-Seq of neutrophilic dermatoses validates prominent IFN signature in SS. (A) Experimental
440 schematic. (B) Cell type deconvolution of bulk RNA-Seq using marker genes from snRNA-Seq. (C) Identification of
441 differentially expressed genes (up and down, $P_{adj} < 0.05$) unique to SS compared to HC and PP. (D) Pathway analysis with
442 the 651 differentially expressed genes unique to SS. (E) Bulk RNA-Seq normalized gene expression of IFN-induced genes
443 marking each cellular compartment in snRNA-Seq data, scaled by column. (F) Bulk RNA-Seq normalized gene
444 expression of IFN-induced genes marking IFN-activated FB6. Each dot represents one patient. ** $P < 0.01$ and *** $P <$
445 0.001 using unpaired t test. SS, Sweet's syndrome; PG, pyoderma gangrenosum; HC, healthy control; IFN, interferon; FB,
446 fibroblast.

447

448

449

450

451

452

453

454

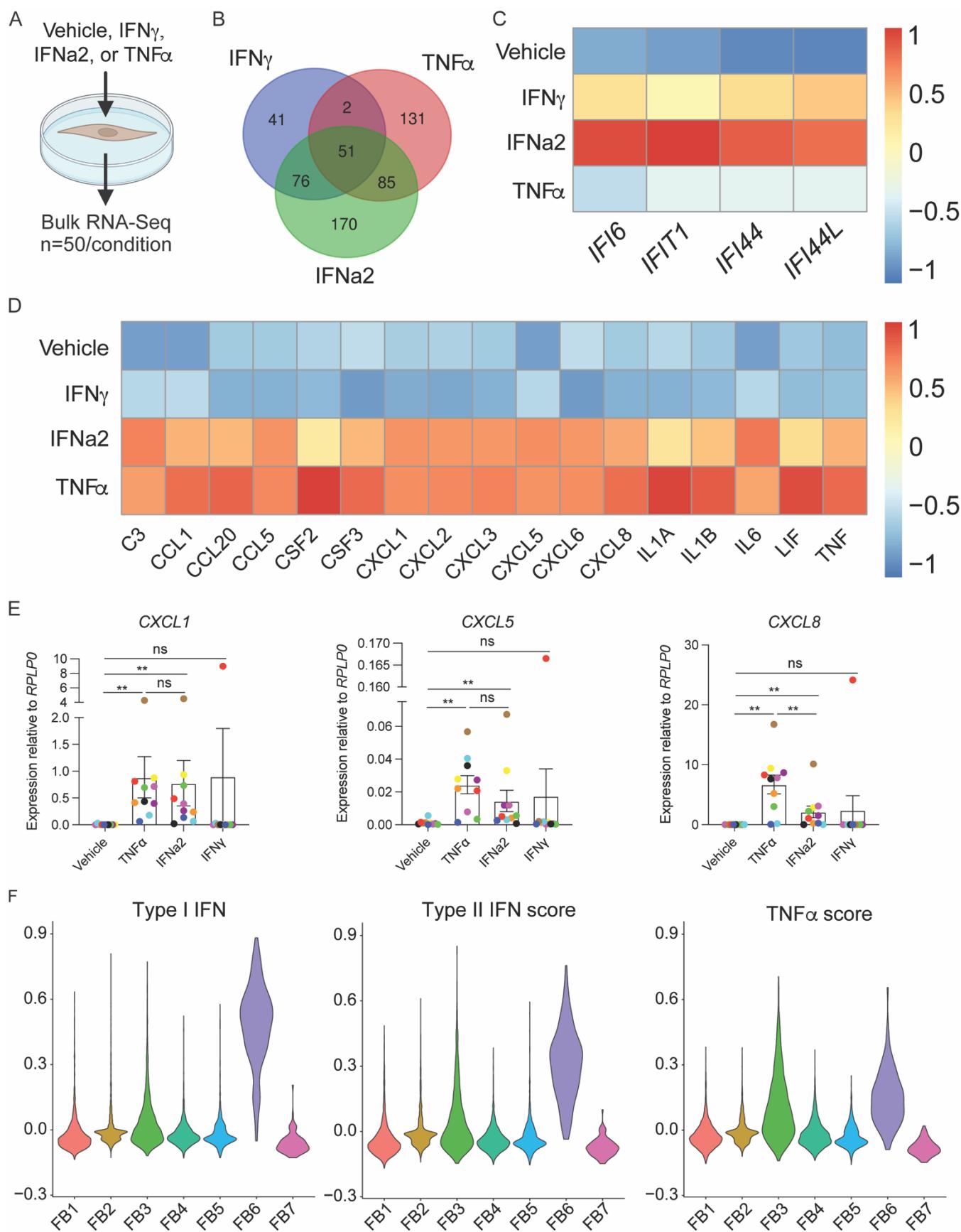
455

456

457

458

459


460

461

462

463

464

466 **Figure 4:** Cultured primary human dermal fibroblasts are activated by type 1 IFN to express neutrophil chemokines. (A)
467 Schematic of *in vitro* assay to test significance of IFN signature in primary human dermal fibroblasts. (B) Venn diagram
468 comparing the number of genes highly upregulated ($P_{adj} < 0.05$, Log_2 fold change > 3) per stimuli. (C) Bulk RNA-Seq
469 normalized gene expression of IFN-induced genes marking FB6 in stimulated fibroblasts that were highly upregulated by
470 IFN γ and IFN α 2 but not TNF α . (D) Bulk RNA-Seq normalized gene expression of select neutrophil chemokines, myeloid
471 growth factors, and proinflammatory cytokines that were highly upregulated by TNF α and IFN α 2 but not IFN γ . (E) qPCR
472 normalized gene expression of neutrophil chemokines in stimulated dermal fibroblasts. Each color represents a single
473 donor's fibroblasts. ns (not significant), * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, and **** $P < 0.0001$ using Wilcoxon
474 matched-pairs signed rank test. (F) IFN γ , IFN α 2, and TNF α signature scores in snRNA-Seq fibroblast subsets using all
475 significantly upregulated genes ($P_{adj} < 0.05$) by each cytokine *in vitro*. SS, Sweet's syndrome; PG, pyoderma
476 gangrenosum; PP, pustular psoriasis; HC, healthy control; IFN, interferon.

477

478

479

480

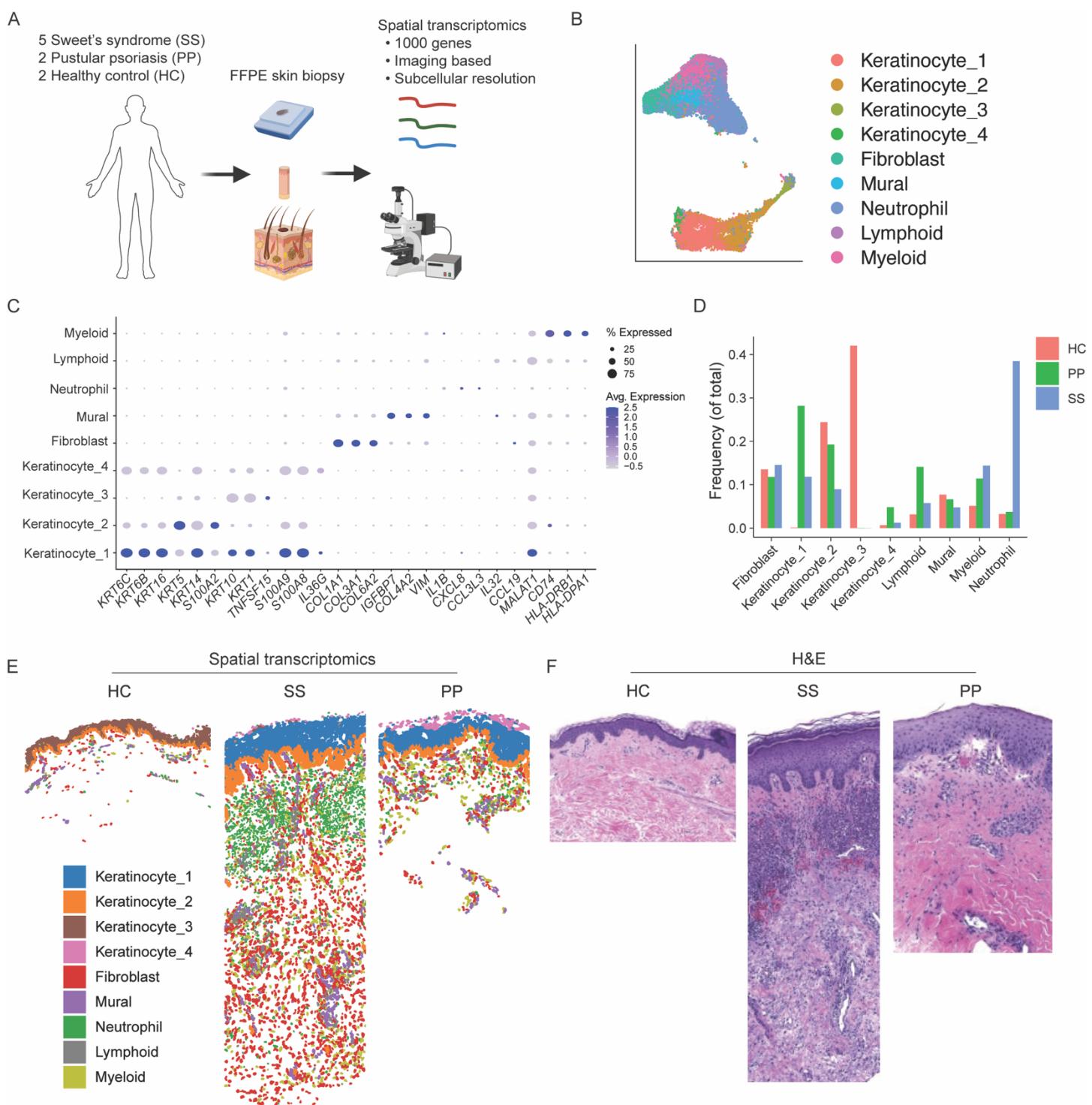
481

482

483

484

485


486

487

488

489

490

496 tissue sections from HC, SS, and PP. SS, Sweet's syndrome; PP, pustular psoriasis; HC, healthy control; H&E,
497 hematoxylin and eosin.

498

499

500

501

502

503

504

505

506

507

508

509

510

511

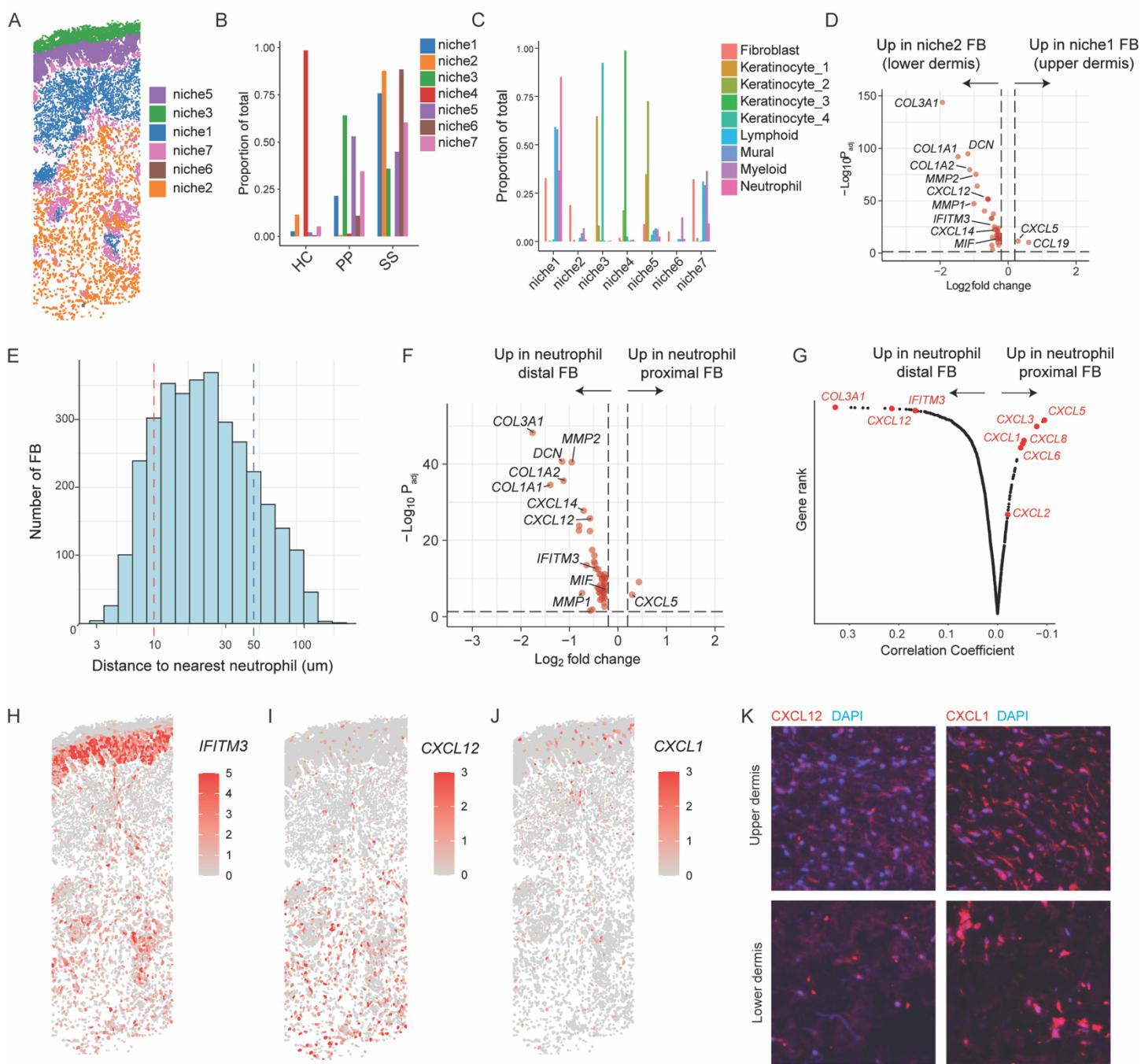
512

513

514

515

516


517

518

519

520

521

522

523 **Figure 6:** Niche analysis reveals positionally distinct immune acting fibroblasts in SS. (A) Niche analysis projected onto
 524 SS tissue. (B) Frequency of each niche per condition. (C) Frequency of each cell type per niche (includes all conditions).
 525 (D) Differential expression analysis between fibroblasts in upper dermal niche1 and fibroblasts in lower dermal niche2.
 526 Adjusted (adj) P value threshold = 0.05. Log₂ fold-change (FC) threshold = 0.2. (E) Distribution of fibroblast distance to
 527 nearest neutrophil. (F) Differential expression between neutrophil proximal fibroblasts (<30μm) and neutrophil distal

528 fibroblasts (>300 μ m). Adjusted (adj) P value threshold = 0.05. Log₂ fold-change (FC) threshold = 0.2. (G) Rank order of
529 genes based on correlation with fibroblast distance to nearest neutrophil. SS expression of interferon-induced gene
530 *IFITM3* (H) and neutrophil chemokines *CXCL12* (I) and *CXCL1* (J). (K) SS upper dermal and lower dermal
531 immunostaining of CXCL1 (left) and CXCL12 (right). SS, Sweet's syndrome.
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553

554

References:

555 BHATTACHARYA, S., BASU, S., SHENG, E., MURPHY, C., WEI, J., KERSH, A. E., NELSON, C. A., BRYER, J. S.,
556 ASHCHYAN, H. A., STEELE, K., FORRESTEL, A., SEYKORA, J. T., MICHELETTI, R. G., JAMES, W. D.,
557 ROSENBACH, M. & LEUNG, T. H. 2023. Identification of a neutrophil-specific PIK3R1 mutation facilitates
558 targeted treatment in a patient with Sweet syndrome. *J Clin Invest*, 133.

559 BILLI, A. C., MA, F., PLAZYO, O., GHARAEK-KERMANI, M., WASIKOWSKI, R., HILE, G. A., XING, X., YEE, C.
560 M., RIZVI, S. M., MAZ, M. P., BERTHIER, C. C., WEN, F., TSOI, L. C., PELLEGRINI, M., MODLIN, R. L.,
561 GUDJONSSON, J. E. & KAHLENBERG, J. M. 2022. Nonlesional lupus skin contributes to inflammatory
562 education of myeloid cells and primes for cutaneous inflammation. *Sci Transl Med*, 14, eabn2263.

563 BRUERA, S., CHAVULA, T., MADAN, R. & AGARWAL, S. K. 2022. Targeting type I interferons in systemic lupus
564 erythematosus. *Front Pharmacol*, 13, 1046687.

565 BUECHLER, M. B., PRADHAN, R. N., KRISHNAMURTY, A. T., COX, C., CALVIELLO, A. K., WANG, A. W.,
566 YANG, Y. A., TAM, L., CAOTHIEN, R., ROOSE-GIRMA, M., MODRUSAN, Z., ARRON, J. R., BOURGON,
567 R., MÜLLER, S. & TURLEY, S. J. 2021. Cross-tissue organization of the fibroblast lineage. *Nature*, 593, 575-
568 579.

569 CAVAGNERO, K. J. & GALLO, R. L. 2022. Essential immune functions of fibroblasts in innate host defense. *Front
570 Immunol*, 13, 1058862.

571 CAVAGNERO, K. J., LI, F., DOKOSHI, T., NAKATSUJI, T., O'NEILL, A. M., AGUILERA, C., LIU, E., SHIA, M.,
572 OSUOJI, O., HATA, T. & GALLO, R. L. 2024. CXCL12+ dermal fibroblasts promote neutrophil recruitment and
573 host defense by recognition of IL-17. *J Exp Med*, 221.

574 DE RISI-PUGLIESE, T., SEKSIK, P., BOUAZIZ, J. D., CHASSET, F., MOGUELET, P., GORNET, J. M., BOURRIER,
575 A., AMIOT, A., BEAUGERIE, L., FRANCÈS, C. & GUÉGAN, S. 2019. Ustekinumab treatment for neutrophilic
576 dermatoses associated with Crohn's disease: A multicenter retrospective study. *J Am Acad Dermatol*, 80, 781-784.

577 GHEORGHE, L., COTRUTA, B., TRIFU, V., COTRUTA, C., BECHEANU, G. & GHEORGHE, C. 2008. Drug-induced
578 Sweet's syndrome secondary to hepatitis C antiviral therapy. *Int J Dermatol*, 47, 957-9.

579 GUDJONSSON, J. E., TSOI, L. C., MA, F., BILLI, A. C., VAN STRAALEN, K. R., VOSSEN, A., VAN DER ZEE, H.
580 H., HARMS, P. W., WASIKOWSKI, R., YEE, C. M., RIZVI, S. M., XING, X., XING, E., PLAZYO, O., ZENG,
581 C., PATRICK, M. T., LOWE, M. M., BURNEY, R. E., KOZLOW, J. H., CHERRY-BUKOWIEC, J. R., JIANG,
582 Y., KIRMA, J., WEIDINGER, S., CUSHING, K. C., ROSENBLUM, M. D., BERTHIER, C., MACLEOD, A. S.,
583 VOORHEES, J. J., WEN, F., KAHLENBERG, J. M., MAVERAKIS, E., MODLIN, R. L. & PRENS, E. P. 2020.
584 Contribution of plasma cells and B cells to hidradenitis suppurativa pathogenesis. *JCI Insight*, 5.

585 GUO, Y., WANG, W., YE, K., HE, L., GE, Q., HUANG, Y. & ZHAO, X. 2023. Single-Nucleus RNA-Seq: Open the Era
586 of Great Navigation for FFPE Tissue. *Int J Mol Sci*, 24.

587 HE, H., SURYAWANSHI, H., MOROZOV, P., GAY-MIMBRERA, J., DEL DUCA, E., KIM, H. J., KAMEYAMA, N.,
588 ESTRADA, Y., DER, E., KRUEGER, J. G., RUANO, J., TUSCHL, T. & GUTTMAN-YASSKY, E. 2020.
589 Single-cell transcriptome analysis of human skin identifies novel fibroblast subpopulation and enrichment of
590 immune subsets in atopic dermatitis. *J Allergy Clin Immunol*, 145, 1615-1628.

591 HE, S., BHATT, R., BROWN, C., BROWN, E. A., BUHR, D. L., CHANTRANUVATANA, K., DANAHER, P.,
592 DUNAWAY, D., GARRISON, R. G., GEISS, G., GREGORY, M. T., HOANG, M. L., KHAFIZOV, R.,
593 KILLINGBECK, E. E., KIM, D., KIM, T. K., KIM, Y., KLOCK, A., KORUKONDA, M., KUTCHMA, A.,
594 LEWIS, Z. R., LIANG, Y., NELSON, J. S., ONG, G. T., PERILLO, E. P., PHAN, J. C., PHAN-EVERSON, T.,
595 PIAZZA, E., RANE, T., REITZ, Z., RHODES, M., ROSENBLUM, A., ROSS, D., SATO, H., WARDHANI, A.
596 W., WILLIAMS-WIETZIKOSKI, C. A., WU, L. & BEECHEM, J. M. 2022. High-plex imaging of RNA and
597 proteins at subcellular resolution in fixed tissue by spatial molecular imaging. *Nat Biotechnol*, 40, 1794-1806.

598 HEATH, M. S. & ORTEGA-LOAYZA, A. G. 2019. Insights Into the Pathogenesis of Sweet's Syndrome. *Front Immunol*,
599 10, 414.

600 JOSHI, T. P., FRISKE, S. K., HSIOU, D. A. & DUVIC, M. 2022. New Practical Aspects of Sweet Syndrome. *Am J Clin
601 Dermatol*, 23, 301-318.

602 KIM, Y. J., LEE, H. Y., LEE, J. Y. & YOON, T. Y. 2015. Interferon beta-1b-induced Sweet's syndrome in a patient with
603 multiple sclerosis. *Int J Dermatol*, 54, 456-8.

604 MA, F., PLAZYO, O., BILLI, A. C., TSOI, L. C., XING, X., WASIKOWSKI, R., GHARAEKERMANI, M., HILE,
605 G., JIANG, Y., HARMS, P. W., XING, E., KIRMA, J., XI, J., HSU, J. E., SARKAR, M. K., CHUNG, Y., DI
606 DOMIZIO, J., GILLIET, M., WARD, N. L., MAVERAKIS, E., KLECHEVSKY, E., VOORHEES, J. J., ELDER,
607 J. T., LEE, J. H., KAHLENBERG, J. M., PELLEGRINI, M., MODLIN, R. L. & GUDJONSSON, J. E. 2023.
608 Single cell and spatial sequencing define processes by which keratinocytes and fibroblasts amplify inflammatory
609 responses in psoriasis. *Nat Commun*, 14, 3455.

610 MA, Y. T., ZHENG, L., ZHAO, C. W., ZHANG, Y., XU, X. W., WANG, X. Y., NIU, G. P., MAN, Z. S., GU, F. &
611 CHEN, Y. Q. 2024. Interferon- α induces differentiation of cancer stem cells and immunosuppression in
612 hepatocellular carcinoma by upregulating CXCL8 secretion. *Cytokine*, 177, 156555.

613 MATHYS, H., DAVILA-VELDERRAIN, J., PENG, Z., GAO, F., MOHAMMADI, S., YOUNG, J. Z., MENON, M., HE,
614 L., ABDURROB, F., JIANG, X., MARTORELL, A. J., RANSOHOFF, R. M., HAFLER, B. P., BENNETT, D.
615 A., KELLIS, M. & TSAI, L. H. 2019. Single-cell transcriptomic analysis of Alzheimer's disease. *Nature*, 570,
616 332-337.

617 NOUSARI, Y., WU, B. C. & VALENZUELA, G. 2021. Successful use of baricitinib in the treatment of refractory
618 rheumatoid arthritis-associated Sweet syndrome. *Clin Exp Dermatol*, 46, 1330-1332.

619 RODRIGUEZ-LOJO, R., CASTIÑEIRAS, I., JUAREZ, Y., LUEIRO, M., ARMESTO, A. & FERNANDEZ-DIAZ, M. L.
620 2014. Sweet syndrome associated with interferon. *Dermatol Online J*, 21.

621 SCRUCCA, L., FOP, M., MURPHY, T. B. & RAFTERY, A. E. 2016. mclust 5: Clustering, Classification and Density
622 Estimation Using Gaussian Finite Mixture Models. *R J*, 8, 289-317.

623 SMILLIE, C. S., BITON, M., ORDOVAS-MONTANES, J., SULLIVAN, K. M., BURGIN, G., GRAHAM, D. B.,
624 HERBST, R. H., ROGEL, N., SLYPER, M., WALDMAN, J., SUD, M., ANDREWS, E., VELONIAS, G.,
625 HABER, A. L., JAGADEESH, K., VICKOVIC, S., YAO, J., STEVENS, C., DIONNE, D., NGUYEN, L. T.,
626 VILLANI, A. C., HOFREE, M., CREASEY, E. A., HUANG, H., ROZENBLATT-ROSEN, O., GARBER, J. J.,
627 KHALILI, H., DESCH, A. N., DALY, M. J., ANANTHAKRISHNAN, A. N., SHALEK, A. K., XAVIER, R. J.
628 & REGEV, A. 2019. Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis. *Cell*, 178,
629 714-730.e22.

630 STRINGER, C., WANG, T., MICHAELOS, M. & PACHITARIU, M. 2021. Cellpose: a generalist algorithm for cellular
631 segmentation. *Nat Methods*, 18, 100-106.

632 VAN STRAALEN, K. R., MA, F., TSOU, P. S., PLAZYO, O., GHARAEKERMANI, M., CALBET, M., XING, X.,
633 SARKAR, M. K., UPPALA, R., HARMS, P. W., WASIKOWSKI, R., NAHLAWI, L., NAKAMURA, M.,
634 ESHAQ, M., WANG, C., DOBRY, C., KOZLOW, J. H., CHERRY-BUKOWIEC, J., BRODIE, W. D., WOLK,
635 K., ULUÇKAN, Ö., MATTICHAK, M. N., PELLEGRINI, M., MODLIN, R. L., MAVERAKIS, E., SABAT, R.,
636 KAHLENBERG, J. M., BILLI, A. C., TSOI, L. C. & GUDJONSSON, J. E. 2024. Single-cell sequencing reveals
637 Hippo signaling as a driver of fibrosis in hidradenitis suppurativa. *J Clin Invest*, 134.

638 ZHOU, Y., ZHOU, B., PACHE, L., CHANG, M., KHODABAKHSHI, A. H., TANASEICHUK, O., BENNER, C. &
639 CHANDA, S. K. 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level
640 datasets. *Nat Commun*, 10, 1523.

641