

1 Propagating cortical waves coordinate sensory encoding and 2 memory retrieval in the human brain

3 Yifan Yang¹, David A. Leopold^{2,3}, Jeff H. Duyn⁴, Xiao Liu^{1,5*}
4

5 **Affiliations:**

6 ¹Department of Biomedical Engineering, The Pennsylvania State University, University Park,
7 PA, 16802, USA.

8 ²Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of
9 Neurological Disorders and Stroke, and National Eye Institute, National Institutes of Health,
10 Bethesda, MD, 20892, USA.

11 ³Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National
12 Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.

13 ⁴Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of
14 Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA

15 ⁵Institute for Computational and Data Sciences, The Pennsylvania State University, University
16 Park, PA, 16802, USA.

17
18 * Corresponding Author: Xiao Liu, PhD
19 431 Chemical and Biomedical Engineering Building
20 The Pennsylvania State University
21 University Park, PA 16802-4400
22 Tel: +1 814 863 4419
23 Fax: +1 814 863 0490
24 E-mail: xl213@psu.edu

25
26
27 **Keywords:** infra-slow brain waves; semantic coding; memory encoding; memory recall; global
28 signal; brain states; hippocampal ripples.

29 **This file includes:**

30 Main Text
31 Figures 1 to 4

35 **Abstract**

36 Complex behavior entails a balance between taking in sensory information from the environment
37 and utilizing previously learned internal information. Experiments in behaving mice have
38 demonstrated that the brain continually alternates between outward and inward modes of
39 cognition, switching its mode of operation every few seconds. Further, each state transition is
40 marked by a stereotyped cascade of neuronal spiking that pervades most forebrain structures.
41 Here we analyzed large fMRI datasets to demonstrate that a similar switching mechanism
42 governs the operation of the human brain. We found that human brain activity was punctuated
43 every several seconds by coherent, propagating waves emerging in the exteroceptive
44 sensorimotor regions and terminating in the interoceptive default mode network. As in the
45 mouse, the issuance of such events coincided with fluctuations in pupil size, indicating a tight
46 relationship with arousal fluctuations, and this phenomenon occurred across behavioral states.
47 Strikingly, concurrent measurement of human performance in a visual memory task indicated
48 that each cycle of propagating fMRI waves sequentially promoted the encoding of semantic
49 information and self-directed retrieval of memories. Together, these findings indicate that human
50 cognitive performance is governed by autonomous switching between exteroceptive and
51 interoceptive states. This apparently conserved feature of mammalian brain physiology bears
52 directly on the integration of sensory and mnemonic information during everyday behavior.

53

54 **Introduction**

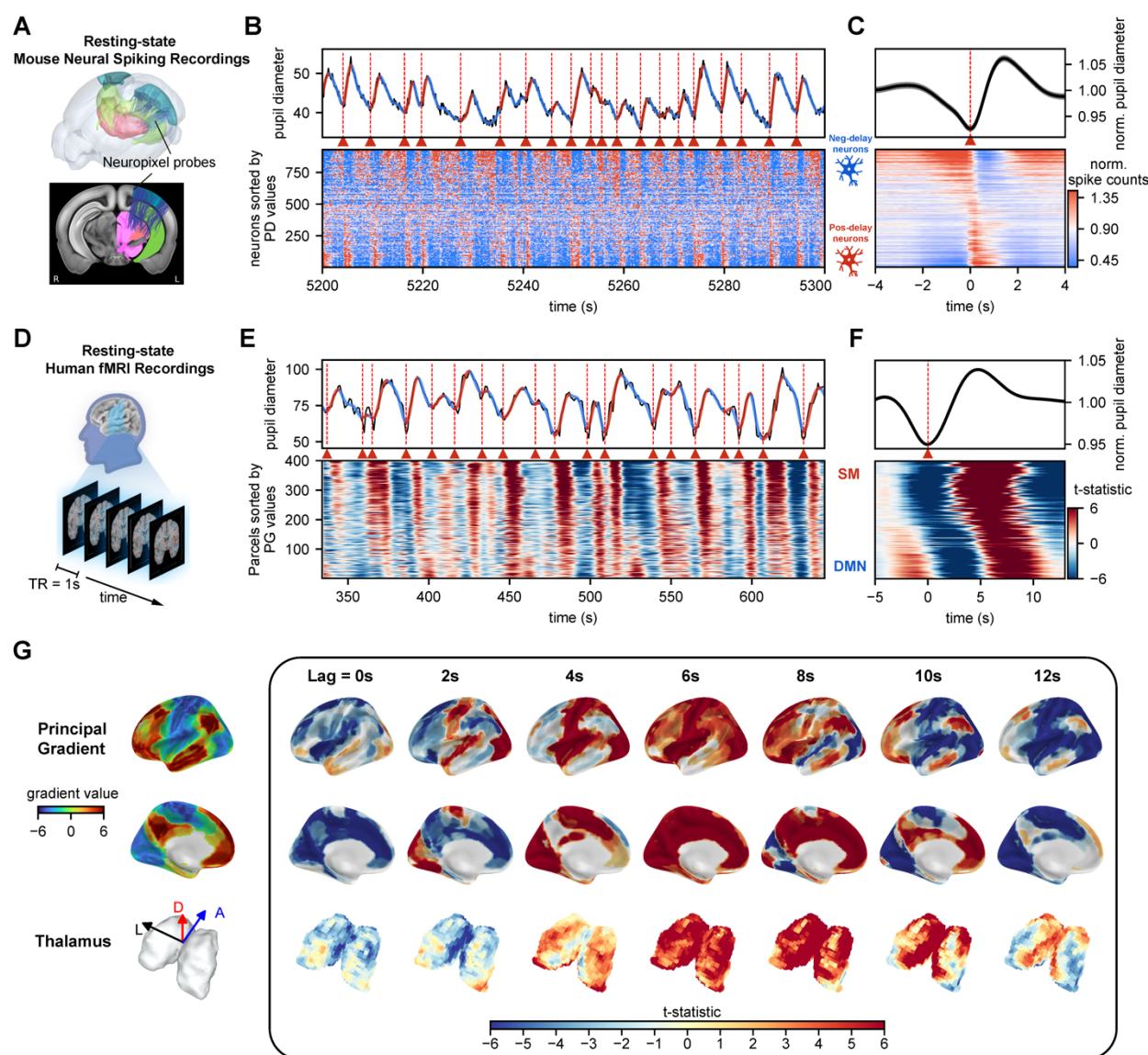
55 The human brain undergoes slow, spontaneous fMRI fluctuations during rest, in the absence of
56 external stimulation and task engagement (1, 2). While this activity has been used widely to
57 characterize the functional connectivity between brain regions (2–5), its contribution to the
58 normal operation of the brain has remained elusive. Two curious features of this activity that
59 have drawn attention in recent years are its manifestation as discrete, quasi-periodic events and
60 its spatiotemporal propagation across the brain (6–9). Recent work describes such propagation as
61 moving from low-order sensory-motor (SM) regions to high-order default mode network (DMN)
62 (7, 10). This traversing of the cortical hierarchy has been compared to cross-layer error back-
63 propagation required for optimizing artificial neural networks (11, 12), raising the prospect that
64 these waves may play a physiological role in learning and memory consolidation.

65
66 Analogous global brain dynamics have been observed at the single neuron level in the mouse.
67 These dynamics are associated with arousal fluctuations and manifest as massive spiking
68 cascades involving ~70% of recorded neurons across the forebrain and playing out over several
69 seconds (13). During both spontaneous activity and periods of visual stimulation, spiking
70 cascades were coordinated in time with hippocampal sharp-wave ripples (SPW-Rs), a
71 neurophysiological event known to be involved in memory functions (14). In the case of visual
72 stimulation, each cascade cycle involved transitioning from a phase of high-efficiency sensory
73 encoding to a phase of heightened SPW-Rs (15). Together, these observations suggest a
74 mechanism by which the mouse brain routinely switches between exteroceptive and
75 interoceptive modes.

76
77 One attractive possibility is that the fMRI waves in the human brain and spiking cascades in the
78 mouse brain reflect the same or homologous underlying neurophysiological processes. Indeed,
79 they share common features. For example, both phenomena are manifest as quasi-period events
80 that transpire over seconds time scales, affect global forebrain activity, and are demonstrably
81 coupled to arousal fluctuations (13, 16). In the absence of external stimulation, fMRI waves in
82 humans propagate between two sets of brain networks showing opposite responses to cognitive
83 tasks (17–19), and the spiking cascade sequence in mice involves the interplay between two
84 groups of neurons with opposite activity modulations during locomotion (13). When
85 hippocampal SPW-Rs were measured together with concurrent fMRI in the monkey, they were
86 synchronized with fMRI changes across the brain (20, 21). Interestingly, this mapping revealed
87 that sensory/motor areas exhibited distinct delays from higher-order regions, suggestive cross-
88 hierarchy propagation (20, 21). Nevertheless, it remains unknown whether propagating fMRI
89 events are the macroscopic counterpart of neural firing cascades. More importantly, it is also
90 unclear whether fMRI waves, like neural firing cascades, persist during stimulation or play a role
91 in coordinating sensory and memory cycles during wakefulness.

92
93 In the present study, we analyzed multiple human fMRI and mouse neuronal recording datasets
94 to address this topic. Similar to the spiking cascades in the mouse, the propagating fMRI waves
95 in the human brain persisted during the performance of a visual memory task. The fMRI wave
96 cycle alternately increased the encoding of sensory information and the efficiency of memory
97 retrieval function across each cycle. The cascades and fMRI waves were similarly synchronized
98 to pupil dilations in humans and mice, suggesting a shared neuromodulatory basis. These

99 findings thus demonstrate similar, internally generated physiological cycles coordinating
100 exteroceptive and interoceptive cognitive activity in the human and mouse brain, suggesting an
101 evolutionarily conserved mechanism governing mammalian forebrain function.
102



103
104 **Figure 1. Association of spontaneous pupil dilations and brain-wide sequential activity in the mouse**
105 **and human brain.** (A) Locations of neuropixel probes from all mice in the Allen Mouse Brain Common
106 Coordinate Framework with major recording sites are color-coded: visual cortex (blue), hippocampus
107 (green), and thalamus (pink). Top: Three-dimensional illustration of the probe insertion in mouse brain.
108 Bottom: Two-dimensional projection of the probes onto a middle brain slice. (B) Close coordination of
109 spontaneous pupil dilation and spiking cascade occurrence in the mouse brain during 100 s of stationary
110 visual stimulation. Top: spontaneous fluctuation of pupil diameter with alternating dilation (red) and
111 constriction (blue) phases, with the onset of dilation marked by red dashed lines and triangular symbols.
112 Bottom: normalized spiking activity of all recorded neurons that are sorted according to the principal
113 delay profile, revealing the correspondence between single pupil dilations and spiking cascades of
114 sequential activations from negative-delay neurons (blue symbolic neurons) to positive-delay neurons (red
115 symbolic neurons). (C) The representative mouse's normalized pupil diameter (top) and neuronal spiking

116 activities (bottom) averaged around the onset of pupil dilation over an 8 s window. (D) Schematic of a
117 resting-state fMRI scan from the Human Connectome Project 7-Tesla (HCP-7T) dataset. (E) Close
118 coordination of spontaneous pupil dilation and propagating fMRI waves in the human brain during 310 s
119 period of rest, similar in layout to (B). Pupil diameter fluctuation (top) and concurrent fMRI signals of
120 various brain regions are sorted by their principal gradient value (22) (bottom). (F) The averaged pupil
121 diameter (top) and fMRI signals (bottom) at the onset of pupil dilation over an 18-sec time window,
122 summarized from all 184 subjects. (G) The pupil-dilation-associated fMRI changes mapped onto the
123 brain's surface. The maps were shown for 7 evenly spaced time lags, from 0 to 12 seconds following the
124 onset of pupil dilation. The first and second rows display maps of the brain's cortical surface, and the
125 third row presents the thalamic volume map. Directional arrows denote dorsal (D), anterior (A), and
126 anatomical left (L) directions.

127 Results

128 **Fluctuating arousal entrains brain-wide events across the mouse and human forebrain**

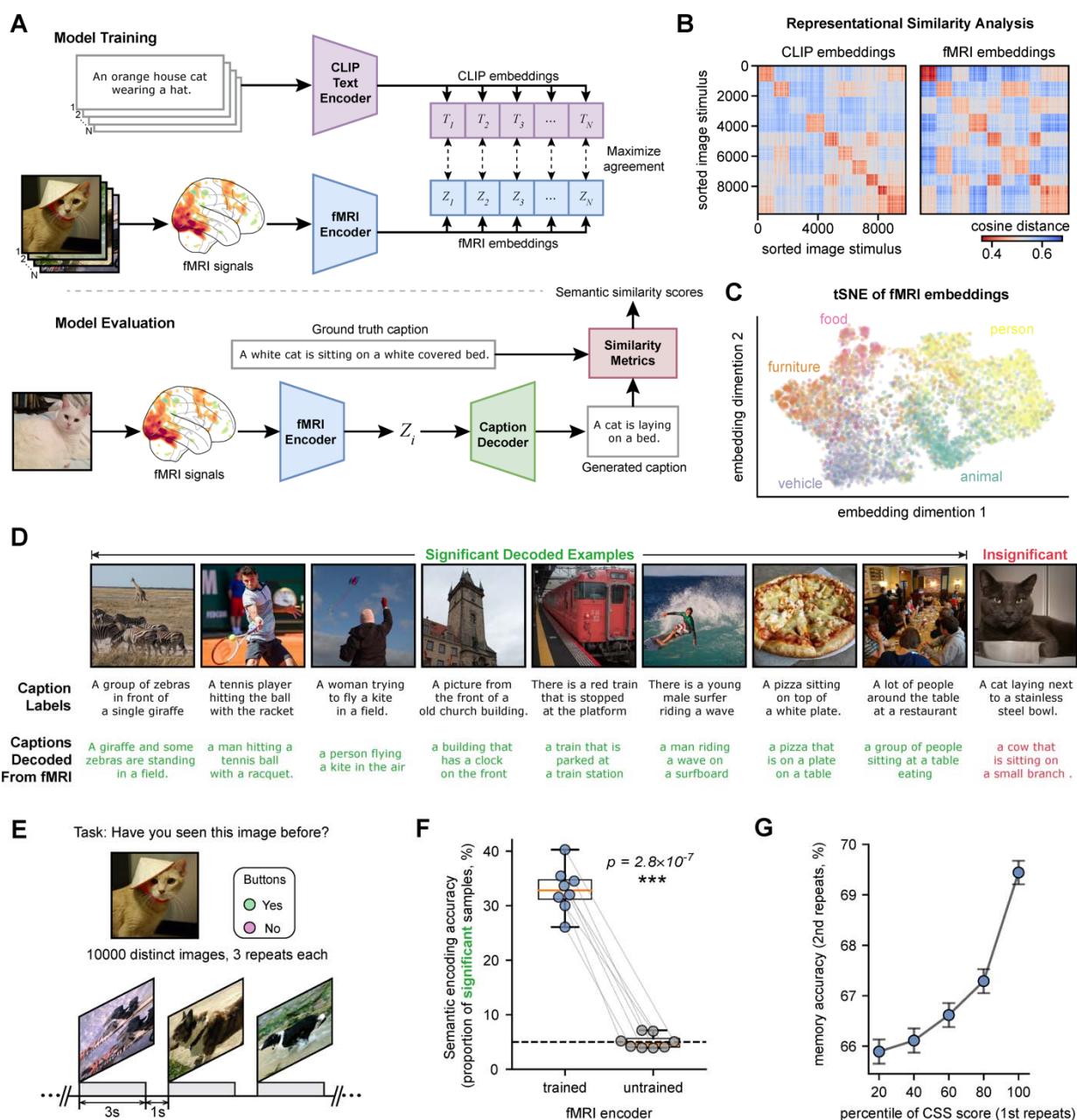
129 Pupil diameter is a surrogate signal for fluctuating arousal that is readily measured in both
130 human and mouse subjects during rest (23, 24). We observed that the dynamic changes in pupil
131 diameter were matched to the occurrence of brain-wide events in both species, thus providing a
132 means to compare spiking cascades and fMRI waves.

133 In the mouse, pupil size fluctuations, indicative of changes in arousal state, were prominent
134 during periods of immobility, with or without visual stimulation, as evident in data from the
135 Allen Institute Visual Coding project (25) (**Fig. 1A** and **1B**). Across the brain, we found that
136 pupil dilations coincide with moments of widespread spiking events, in which neurons fire
137 sequentially in reproducible patterns (**Fig. 1B, C**, red arrows). The same dynamics were derived
138 previously without reference to pupil data and described as brain-wide spiking cascades (13). We
139 repeated the same analysis on a two-photon calcium imaging dataset (26) and another large-scale
140 Neuropixel dataset with broader coverage of mouse brain (27), revealing that these pupil-
141 associated cascades span across widespread brain regions and involve multiple neuron subtypes
142 (**Fig. S1** and **S2**).

143 In the Human Connectome Project (HCP) 7T dataset (28), we similarly found that pupil size
144 changes correlated with spontaneous resting fMRI fluctuations across the brain (**Fig. 1D** and
145 **1E**). Alignment to pupil dilation onset revealed a temporal sequence of fMRI changes
146 progressing along a principal gradient (PG) direction (**Fig. 1F** and **S3**), which approximates the
147 cortical hierarchy gradient (22). These events were manifest as infra-slow (multi-second) waves
148 moving gradually from SM to DMN regions. The cortical changes were accompanied by
149 corresponding thalamic changes (**Fig. 1G and S3F**). Such SM-to-DMN propagating waves have
150 been identified previously without pupil data (7, 10, 22). Thus, spontaneous pupil dilations
151 during immobile rest are associated with sequential brain dynamics of global involvement,
152 observed as spiking cascades in mice and propagating fMRI waves in humans. The
153 correspondence between the mouse cascade and human fMRI waves is further supported by
154 similar changes in delta-band (1-4 Hz) activity across their cycles (**Fig. S4**).

155 While the function of these brain-wide events is poorly understood, evidence in the mouse ties
156 spiking cascades to alternating periods of stimulus coding and memory operation (15). Might
157

160 the fMRI waves in humans similarly regulate this switch between exteroceptive and
 161 interoceptive modes of brain function? To address this question, we investigated the occurrence
 162 of spontaneous propagating fMRI waves as human subjects performed a cognitive task involving
 163 memory. Specifically, we asked whether the sensory encoding of stimuli and successful memory
 164 retrieval performance varied as a function of these spontaneous events.
 165



166
 167
 168 **Figure 2. Stimulus information encoding was assessed through fMRI responses using a deep learning-
 169 based model.** (A) Framework for training and evaluating the CLIP-based semantic decoder. In the
 170 training phase, an fMRI encoder is trained to map stimulus-evoked fMRI response to CLIP embedding
 171 space by maximizing the similarity between actual pairings of fMRI embedding and CLIP text embedding,
 172 while minimizing the similarity of embeddings of incorrect pairings via contrastive learning. For

173 *evaluation, through the trained fMRI encoder, image-evoked fMRI responses are first encoded to fMRI*
174 *embeddings in CLIP space and decoded by a pre-trained caption decoder (29) to generate text*
175 *descriptions. The similarity between the generated text and ground truth text serves as an approximate*
176 *but objective measure of the amount of semantic information being successfully encoded in fMRI*
177 *responses, and thus of the brain's semantic encoding accuracy. (B) The representational similarity*
178 *analysis (RSA) confirms a successful training of the semantic decoder. Representational dissimilarity*
179 *matrices based on cosine similarity for the semantic CLIP embeddings (left) and fMRI embeddings (right)*
180 *showed highly similar structures. (C) Visualization of fMRI embeddings using t-SNE (t-distributed*
181 *Stochastic Neighbor Embedding) reveals categorical distinctions within the embeddings, with each*
182 *category distinctly color-coded. (D) Examples of significantly and insignificantly decoded samples, from*
183 *top to bottom showing the image stimuli, the corresponding ground truth captions, and the caption*
184 *decoded with evoked fMRI response. (E) Schematic of task design in the NSD dataset. Each of the 8*
185 *participants viewed 10,000 distinct images with each image randomly displayed three times across 30-40*
186 *scan sessions over a year. The stimuli presentation followed an event-related design comprising 4-second*
187 *trials with 3 seconds of presentation and 1 second of baseline. (F) A box plot comparing the encoding*
188 *accuracy, i.e. the proportion of significantly decoded samples based on CSS scores, between the fMRI*
189 *encoder pre- and post-training. Each dot represents an individual participant, with the dotted line*
190 *indicating a 5% chance level. Statistical significance is assessed using a two-sided pair-wise t-test (N=8).*
191 *(G) The influence of initial image presentation encoding accuracy on subsequent memory task*
192 *performance. Stimuli are binned based on the percentile of their first encoding accuracy, incremented by*
193 *20%, and the memory task accuracy of their second presentation is averaged within the bins. The results*
194 *are obtained by pooling the data from all subjects.*

195

196 **Visual stimulus encoding predicts subsequent memory function.**

197 In order to systematically investigate the role of propagating SM-to-DMN waves on human
198 cognition, we first needed to establish a reliable means to evaluate the encoding of visual stimuli
199 from fMRI responses across the brain. We developed a method to do this using the Natural
200 Scenes Dataset (NSD) (30), in which a series of 10,000 captioned natural images were shown, in
201 the form of 4-s trials, to each of 8 subjects with each image being presented three times over 40
202 scan sessions on different days. For each trial, the subjects needed to indicate whether they had
203 seen the stimulus before (**Fig. 2E**).

204

205 To quantify the level of sensory stimulus encoding, we developed a novel deep learning model to
206 decode semantic information of each image stimulus based on fMRI responses it evoked (**Fig.**
207 **2A and S5A**). The model comprised an fMRI encoder, which extracted latent representation
208 from the fMRI responses, i.e., the fMRI embeddings, and a caption decoder (29), which
209 translated the fMRI embeddings into descriptive text captions. The fMRI encoder was trained to
210 align the fMRI embeddings with the contrastive language-image pre-training (CLIP) embedding
211 space (31) through contrastive learning (32). We then quantified the semantic similarity between
212 the fMRI-decoded caption and the original caption by a composite semantic similarity (CSS)
213 score to measure the accuracy of semantic information encoding (see **Methods** for more detail).

214

215 Our deep learning model successfully decoded the semantic information associated with the
216 visual stimuli based on the fMRI responses they evoked. The representation similarity analysis
217 confirmed the alignment between fMRI and caption embeddings (**Figs. 2B, S5B, and S5C**), and
218 the fMRI embeddings after training are organized as distinct categories in a low-dimensional
219 space (**Fig. 2C**) (33). The trained model generated captions significantly similar to the ground
220 truth captions for $33.0 \pm 4.2\%$ (mean \pm SD) trials (see **Fig. 2D** and **Fig. S6A** for examples) as

221 compared with the 5% chance-level performance of the untrained model (**Fig. 2F**, $p = 2.8 \times 10^{-7}$;
 222 and **Fig. S6B**). In the context of the cognitive task, the semantic encoding accuracy faithfully
 223 predicted subsequent memory performance: a higher CSS score at the first appearance of an
 224 image stimulus led to a higher rate of correctly recalling it at its second repeat (**Fig. 2G** and **S7**).
 225 Given this tool, it was next possible to evaluate whether the occurrence of spontaneous
 226 propagating fMRI waves might bear on the quality of stimulus encoding, subsequent memory
 227 recall, or both.

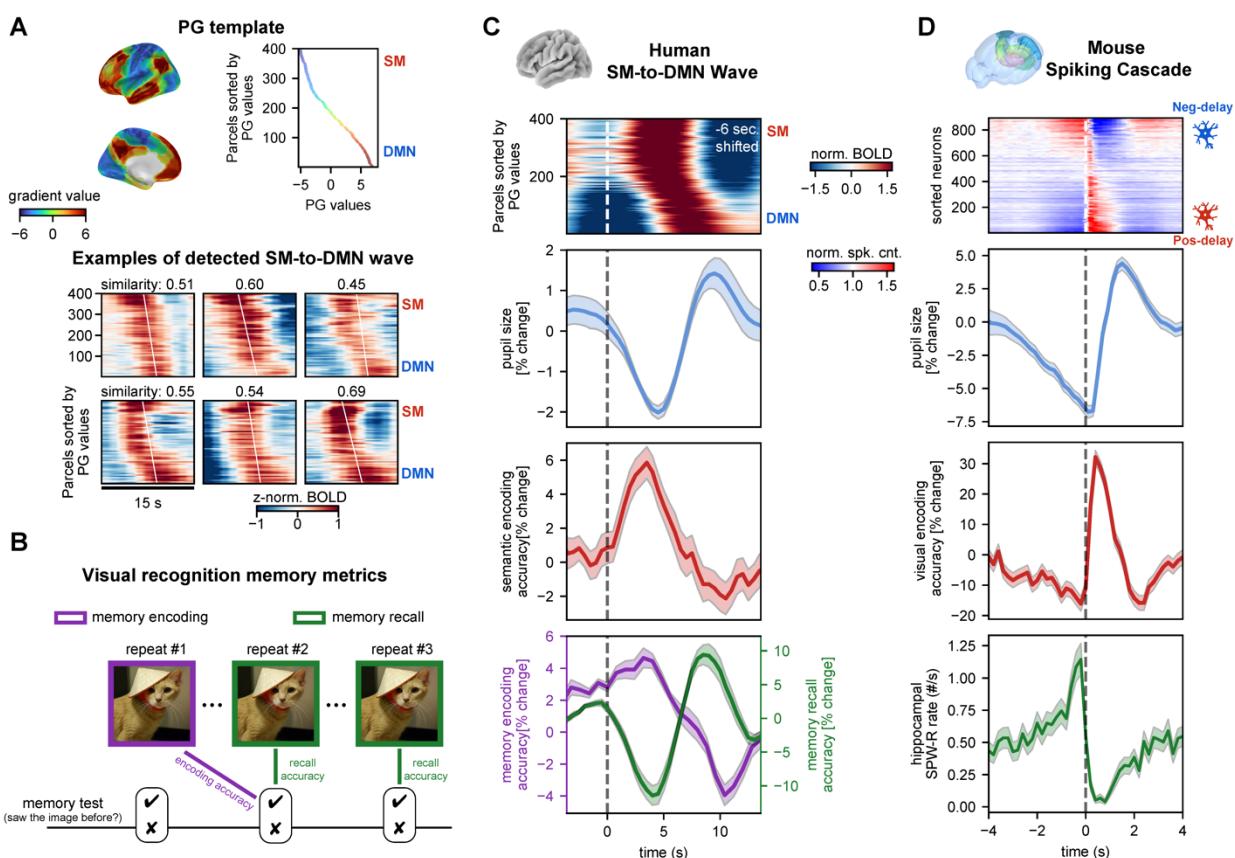


Figure 3. Semantic encoding and memory retrieval are oppositely modulated over the fMRI SM-to-DMN wave cycle. (A) Detection of SM-to-DMN propagating waves during the memory task. The waves were detected using template-matching methods (7). The principal gradient (PG) map was used as the template, and six examples of detected propagations are shown, with similarity values indicating the correlation between the PG template and the delay profile of fMRI segments. (B) Schematics of two distinct memory metrics. Each image has three repeats. The fMRI wave phase at the first repeat was linked to the accuracy of correctly recognizing it at the second appearance to quantify the effect of this wave dynamic on memory encoding. Then, the fMRI wave phase at the second and third repeats were linked to the accuracy of recognition tasks at the same time to quantify the effect of the wave dynamic memory recall. (C) Opposite modulations of semantic/memory encoding and memory retrieval over the cycle of the SM-to-DMN waves. The first row shows the averaged pattern of the detected SM-to-DMN waves, which was shifted backward in time by 6 seconds to account for the known hemodynamic response delay. The time zero was marked at the onset of the global mean signal increase (dashed line), which appears to correspond to the cascade center (D) as judged from the timings of the upswing in semantic and visual encoding accuracies for human and mouse data respectively. Both pupil size (second row) and

246 *memory retrieval (green in the bottom row) change significantly across the wave cycle and peak at the*
247 *DMN-activated phase, whereas the semantic encoding accuracy (third row) and memory encoding*
248 *accuracy (purple in the bottom row) are modulated in an opposite manner. Time series data are provided*
249 *as the mean \pm SEM for eight participants (N=8). (D) Opposite modulations of the visual encoding*
250 *accuracy (second row) and hippocampal SPW-R rate (bottom row) across the spiking cascade cycle (first*
251 *row) during stationary periods with continuous natural image stimulation in mice, adapted from (15).*
252 *Time zero is marked by a dashed line indicating the onset of positive-delay neuron firing. The time series*
253 *data is shown as mean \pm SEM for 20 mice (N=20).*

254

255 ***Alternating stimulus encoding versus memory recall during propagating fMRI waves***

256 To address the role of the propagating fMRI waves on encoding and memory performance, we
257 first established their presence during the cognitive task. These waves were identified directly
258 from task fMRI data without using pupil data (7) (**Fig. 3A**). Similar to the resting state, pupil
259 diameter fluctuations remained closely tied to the occurrence of propagating waves, despite also
260 being affected by other task events to a lesser extent (**Fig. S8A**). The duration of the SM-to-
261 DMN waves (~10-15 seconds) is much longer than the task trials (4 seconds), and their
262 occurrence, propagation, and relationship to pupil fluctuations are dissociated from the structure
263 of the concurrent cognitive task (**Fig. S8B**).

264

265 To evaluate whether encoding efficiency was influenced by propagating fMRI waves, we first
266 used the fMRI deep learning-based decoding method described above to characterize the quality
267 of encoding with each stimulus presentation. We found that the accuracy of such encoding varied
268 systematically across the SM-to-DMN propagation cycle (**Fig. 3C**, red trace). Accounting for
269 hemodynamic delays (see Methods), the stimulus encoding was strongest at the SM-activated
270 phase of the propagating wave.

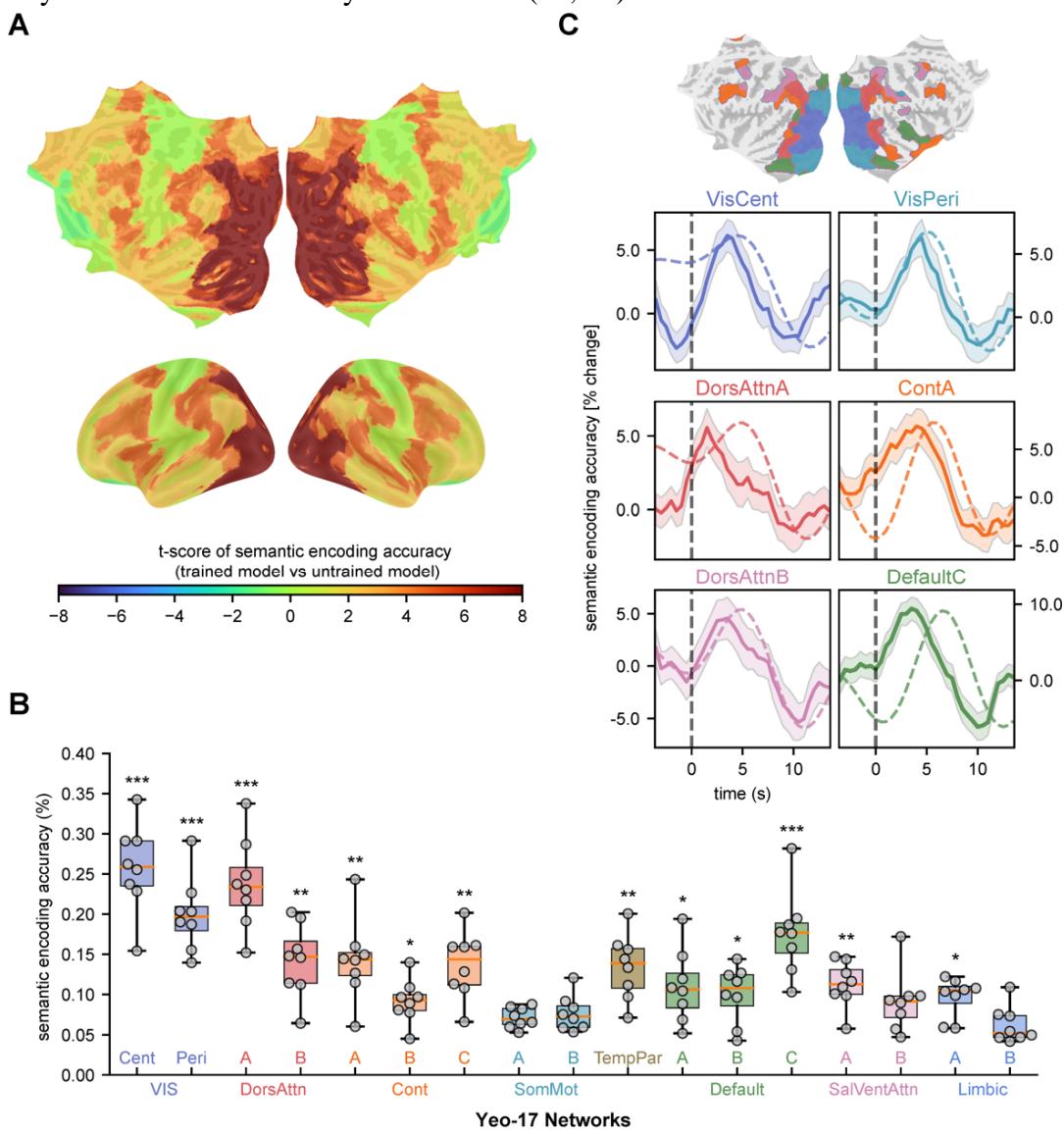
271

272 We also used memory performance as a means to assess how fMRI waves affected both stimulus
273 encoding and memory recall. For encoding, accurate memory of individual stimuli during their
274 second appearance was taken to indicate strong encoding at the initial presentation, whereas
275 failure to remember a stimulus was taken to indicate weak encoding. This measure also realized
276 the important role of the spontaneous propagating SM-to-DMN waves. Namely, the strongest
277 memory encoding occurred when the initial stimulus (Repeat #1 in **Fig. 3B**) was presented at the
278 SM-activated phase (**Fig. 3C**, purple trace), thus matching the fMRI deep learning-based
279 measure of stimulus encoding described just above (**Fig. 3C**, red trace). By contrast, evaluation
280 of recall performance, which was done at the 2nd and 3rd presentations of a stimulus, revealed a
281 peak performance later in the wave cycle, when the subject recall coincided with the DMN-
282 activated phase (**Fig. 3C**, green trace). These results were similar for both short-term and long-
283 term memory types (**Fig. S9B and S9C**).

284

285 These cyclic modulations of stimulus encoding and memory recall in humans resembled
286 analogous observations in mice during different phases of the spiking cascades (15) (**Fig. 3D**).
287 Specifically, the SM-activated phase of the fMRI wave matched a period within the cascade
288 cycle (0–0.5 sec) of improved stimulus encoding, whereas the DMN-activated phase aligned
289 with a different period within the cascade cycle (0.5–2 seconds) of increasing hippocampal
290 SWP-R rate, which was also associated with pupil dilation (**Fig. 3C and 3D**). While the
291 hippocampal SWP-R rate and memory performance are clearly different measures, they may

292 point to similar processes that transpire during more introspective modes of brain activity,
 293 commonly associated with activity of the DMN (34, 35).



294
295

296 **Figure 4. Stimulus encoding and its modulation across the SM-to-DMN wave cycle in different brain**
 297 **regions.** (A) Cortical surface map showing the regional significance (paired t-tests: trained vs. untrained)
 298 of semantic encoding accuracy. (B) A box plot showing the semantic encoding accuracy estimated for
 299 different brain regions defined in the Yeo-17 networks atlas (36, 37). Asterisks denote the levels of
 300 statistical significance (paired t-test): *, $0.01 < p < 0.05$; **, $0.001 < p < 0.01$; ***, $p < 0.001$. Each dot
 301 represents an individual participant. (C) Semantic decoding accuracy (solid line) is consistently
 302 modulated over the SM-to-DMN wave cycle in six brain regions exhibiting the most significant decoding
 303 accuracy. For comparison, the average activation for each region is marked with a dotted line, which is
 304 shifted ahead of time by 6 seconds to account for the hemodynamic response delay. These regions are
 305 distinctly color-coded and their locations are indicated on a flattened cortical surface. Time series data
 306 are provided as the mean + SEM for eight participants ($N=8$).

307

308 **Visual semantic information coding in multiple brain regions is similarly modulated by the**
309 **SM-to-DMN wave cycle**

310 Repeating the semantic decoding using only regional fMRI data suggested that the semantic
311 information was encoded across a wide range of brain regions, with the highest encoding
312 accuracy observed in the visual cortex (**Fig. 4A and 4B**). Importantly, the encoding accuracy was
313 modulated in all these regions over the SM-to-DMN wave cycle (**Fig. 4C** and **Fig. S10**) in a
314 similar way as the whole-brain finding (**Fig. 3C**). Interestingly, the DMN, particularly its C
315 division that encompasses the hippocampal complex and adjacent to visual association areas,
316 exhibited the peak encoding accuracy at the SM-activated phase of the wave when its activity is
317 not peaked, suggesting a dissociation between sensory encoding and regional activation level.
318 These region-specific results on visual semantic encoding are consistent with those on cascade-
319 dependent visual encoding (15), further suggesting that the spiking cascades and cross-hierarchy
320 waves represent the same neurophysiological process conserved across mice and humans.

321 **Discussion**

322 Here we showed that slow activity waves propagating over the cortical surface are associated
323 with a counter-acting modulation of encoding and retrieval of information conferred by visual
324 stimuli. By analyzing electrophysiological and fMRI measures of brain activity, we first
325 demonstrated that spontaneous pupil dilations are similarly accompanied by spiking cascade
326 dynamics in mice and SM-to-DMN propagating waves in humans, thereby unifying these two
327 types of infra-slow (<0.1Hz) global brain activity across different spatial scales and species.
328 Assessing the semantic encoding of visual stimuli using a CLIP-based deep learning model, we
329 found that the SM-to-DMN propagating waves persisted during task performance and were
330 associated with counter-valent modulation in both encoding and retrieval of the stimulus content.
331 The encoding of semantic information and memory peaked at the early phase of SM-activation,
332 whereas memory retrieval accuracy reached the maximum at the DMN-activated phase. Together
333 with previous findings from mice, these results suggested that the highly structured infra-slow
334 global brain activity serves as an evolutionarily conserved mechanism by which the brain
335 orchestrates the execution of exteroceptive sensory sampling and internal mnemonic processes
336 on the timescale of seconds.

337
338 The brain's response to identical sensory stimuli is known to vary over time even on the
339 timescale of seconds. Previous studies have shown how pre-stimulus ongoing activity and
340 arousal state may contribute to this variability (24, 38–45). Our findings align with and extend
341 these previous reports. Leveraging recent advances in deep learning techniques, our study goes
342 beyond a simple quantification of response amplitude (2, 42, 43) and assesses the accuracy of the
343 brain's encoding of semantic information. Importantly, most previous studies have presumed that
344 ongoing brain activity and changes in arousal occur spontaneously and randomly. As a result,
345 much focus has been on the response modulation of ongoing activity that is temporally locked
346 (prior to the stimulus) and spatially restricted (confined to the same local brain region). In
347 contrast, we consider the effects of internal fluctuation in the context of highly structured brain
348 dynamics (i.e., the spiking cascade or propagating wave) involving the large-scale coordination
349 of activity. The initiation of these recurring global brain events is independent of visual

350 stimulation and memory tasks, and it modulates sensory processing quasi-periodically in a
351 continuous and persistent way.

352
353 We further found that memory retrieval was modulated over the SM-to-DMN wave cycle in a
354 manner opposite to that of stimulus encoding, matching our previously observed counter-
355 modulation of hippocampal SPW-R rate and visual encoding (15). This previous study did not,
356 however, identify specific memory functions or other cognitive operations associated with SPW-
357 Rs during the task, since SPW-Rs are usually observed during rest and sleep and often linked to
358 offline memory consolidation (21, 46, 47). By comparing our human study results with these
359 prior findings in mice, we found a correspondence between the cascade phase of high SPW-R
360 rate to the wave phase of fMRI DMN activation, which is associated with a better performance
361 in memory retrieval. This observation largely agrees with a series of recent studies on different
362 species that linked SPW-Rs during tasks to memory retrieval (48–50), as well as the marked
363 fMRI DMN activations (34, 35, 51, 52).

364
365 The observed modulation of sensory and memory functions over the cascade/wave cycle may be
366 associated with a change in the direction of information flow, particularly between the cortex and
367 hippocampus. Memory retrieval during tasks and memory consolidation during rest and sleep
368 likely require information flow from the hippocampus to the cortex, whereas the encoding of
369 sensory information and memory would be facilitated by a reversed flow (21, 53, 54). Thus, the
370 cascade/wave phases optimized for sensory encoding and memory retrieval may be dominated
371 by opposite directions of information transmission, which may rely on distinct spatial gradients
372 in activation level. In fMRI, such activation gradients are obvious for SM-to-DMN waves with
373 dominant SM or DMN activation at different phases. This is less clear for cascades, since the
374 negative- and positive-delay neurons were found in all recorded brain regions (13). However, the
375 hippocampal regions, especially CA1 and the dentate gyrus (DG), contain a much higher number
376 of negative-delay neurons compared to any other areas, including all visual areas, whereas the
377 thalamus has the least. Thus, the activation gradient between these two neuronal groups can be
378 translated into spatial gradients among the hippocampus, cortex, and thalamus. We hypothesize
379 that these gradients, alternating on the multi-second scale, determine the dominant direction of
380 information flow, which itself occurs on much faster (millisecond) timescales. This hypothesis
381 remains to be tested by future studies. It is worth noting that artificial neural networks also
382 feature alternating forward/backward information flows across hierarchical layers during training
383 (11, 12), which may thus represent a mechanism essential to the learning of all connection-based
384 intelligence systems.

385
386 The cascade and wave dynamics reported here may represent a fundamental mechanism by
387 which the brain coordinates the opposing operations of exteroceptive sensory sampling and
388 internal mnemonic processes. A balance between these processes is essential for optimized
389 cognitive performance and is likely reached under states of intermediate arousal (55, 56). Highly
390 aroused states could break this balance by terminating this infra-slow global dynamic.
391 Locomotion, presumably associated with heightened arousal, has been found to replace cascade
392 dynamics with sustained firing of the positive-delay neurons (15) that are expected to promote
393 sensory and memory encoding but impede memory retrieval (57, 58). Toward the other end of
394 this spectrum, during drowsiness, the infra-slow global dynamic may prolong the memory
395 consolidation phase whereas hinder encodings. The SM-to-DMN waves have been found to

396 occur more frequently during various sleep stages and be associated with learning-related
397 features (i.e., the rapid eye movements and possibly Ponto-Genicul-Occipital (PGO) waves)
398 during rapid eye movement (REM) sleep (59). Though not directly focused on the cascade and
399 waves, recent studies convergently point out an essential role of infra-slow neural dynamics in
400 learning and memory. In addition to hippocampal SPW-Rs, infra-slow dynamics have been found
401 to simultaneously coordinate the density of sleep spindles, an electrophysiological feature that
402 has relevance for learning and memory (60, 61). Importantly, the amplitude of infra-slow
403 dynamics during sleep, defined through spindle density and cardiac rate, is not only correlated
404 with memory performance on the subsequent day (62), but optogenetically enhancing it also
405 leads to improved memory (63). Similar to the modulation of brain activity during cascades and
406 waves described here, such spindle-based infra-slow dynamic alternates between an offline
407 phase, characterized by higher spindle and hippocampal SPW-Rs rates with low arousal, and an
408 online phase, marked by lower spindle and ripple rates with higher arousal and susceptibility to
409 external stimulation (62).

410
411 The SM-to-DMN propagating wave and its effect on sensory and memory functions may offer
412 explanations for some previous task fMRI observations. Graph-theory metrics based on fMRI
413 connectivity/correlations, such as cartography and network flexibility, have been used to quantify
414 brain dynamics and found associations with various cognitive components, particularly learning
415 (64–66). Most of these metrics focused on assessing the integration and segregation of the large-
416 scale networks, which are expected to be profoundly affected by the presence of the global SM-
417 to-DMN waves. Thus, the waves could be an important contributor to these metrics of network
418 dynamics. Another related phenomenon is the so-called encoding/retrieval flip, in which the de-
419 activation and activation of the posteromedial cortex, a key component of DMN, are
420 preferentially associated with successful memory encoding and retrieval respectively (67–69).
421 This phenomenon can be explained by our finding that memory encoding and recall were
422 oppositely modulated over the wave cycle with distinct DMN activations. Importantly, the
423 present study expands this early research by incorporating the previous findings into the
424 framework of highly structured cross-hierarchy propagating waves, which persist under various
425 brain conditions beyond tasks.

426
427 Finally, the SM-to-DMN waves may also relate to memory dysfunction in Alzheimer's disease
428 (AD). The global mean BOLD (gBOLD) signal, whose peaks the SM-to-DMN waves are
429 manifested as, has been repeatedly linked to various AD pathologies (70–72). The gBOLD peaks
430 (also SM-to-DMN waves (16)) have been found to be coupled by strong cerebrospinal fluid
431 (CSF) movements, known to be essential for peri-vascular waste clearance (73–75). The strength
432 of this gBOLD-CSF coupling is indeed associated with the accumulation of amyloid-beta and tau
433 (71, 72). Particularly, the failure of the SM-to-DMN waves to reach the DMN appeared to
434 account for preferential amyloid-beta accumulation at these higher-order regions at the early
435 stage of AD (71). Besides the toxic protein accumulation, AD also features dysfunctions in
436 memory and subcortical neuromodulatory systems (76–79), which are both linked to the
437 cascades and global waves (10, 13). Thus, it is possible that changes in this infra-slow global
438 dynamic may also relate to the dysfunction of the memory and arousal systems in AD.

439 **Acknowledgements**

440 This work was supported by the Brain Initiative award (1RF1MH123247-01), the NIH R01
441 award (1R01NS113889-01A1), and the Intramural Research Program of the National Institute of
442 Mental Health (ZIA-MH002838).

443

444 **Data and materials availability**

445 For mice single neuron analysis, we used the Neuropixels Visual Coding Neuropixels and two-
446 photon calcium imaging datasets from the Allen Institute (25, 26), accessible at
447 <https://portal.brain-map.org/overview>. For resting-state human fMRI analysis, we used HCP-7T
448 dataset from <https://www.humanconnectome.org>. We shared our EEG-fMRI dataset at
449 <https://openneuro.org/datasets/ds003768>. For task human fMRI analysis, we used NSD dataset
450 available at <https://naturalscenesdataset.org>. The Python code that produced the major results of
451 this paper will be available at <https://github.com/psu-mcnl/fMRI-Arousal>.

452

453 **Reference**

454

1. B. Biswal, F. Zerrin Yetkin, V. M. Haughton, J. S. Hyde, Functional connectivity in the
455 motor cortex of resting human brain using echo-planar mri. *Magn Reson Med* **34**, 537–541
456 (1995).
2. M. D. Fox, M. E. Raichle, Spontaneous fluctuations in brain activity observed with
457 functional magnetic resonance imaging. *Nat Rev Neurosci* **8**, 700–711 (2007).
3. M. Yu, O. Sporns, A. J. Saykin, The human connectome in Alzheimer disease —
458 relationship to biomarkers and genetics. *Nat Rev Neurol* **17**, 545–563 (2021).
4. S. M. Smith, *et al.*, A positive-negative mode of population covariation links brain
459 connectivity, demographics and behavior. *Nat Neurosci* **18**, 1565–1567 (2015).
5. D. Zhang, M. E. Raichle, Disease and the brain’s dark energy. *Nat Rev Neurol* **6**, 15–28
460 (2010).
6. T. Matsui, T. Murakami, K. Ohki, Transient neuronal coactivations embedded in globally
461 propagating waves underlie resting-state functional connectivity. *Proceedings of the
462 National Academy of Sciences* **113**, 6556–6561 (2016).
7. Y. Gu, *et al.*, Brain Activity Fluctuations Propagate as Waves Traversing the Cortical
463 Hierarchy. *Cerebral Cortex* **31**, 3986–4005 (2021).
8. B. Yousefi, J. Shin, E. H. Schumacher, S. D. Keilholz, Quasi-periodic patterns of intrinsic
464 brain activity in individuals and their relationship to global signal. *Neuroimage* **167**, 297–
465 308 (2018).
9. B. Yousefi, S. Keilholz, Propagating patterns of intrinsic activity along macroscale
466 gradients coordinate functional connections across the whole brain. *Neuroimage* **231**,
467 117827 (2021).
10. R. V Raut, *et al.*, Global waves synchronize the brain’s functional systems with fluctuating
468 arousal. *Sci Adv* **7**, eabf2709 (2021).

479 11. T. P. Lillicrap, A. Santoro, L. Marris, C. J. Akerman, G. Hinton, Backpropagation and the
480 brain. *Nat Rev Neurosci* **21**, 335–346 (2020).

481 12. D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-
482 propagating errors. *Nature* **323**, 533–536 (1986).

483 13. X. Liu, D. A. Leopold, Y. Yang, Single-neuron firing cascades underlie global spontaneous
484 brain events. *Proceedings of the National Academy of Sciences* **118**, e2105395118 (2021).

485 14. Y. Yang, D. A. Leopold, J. H. Duyn, X. Liu, Hippocampal replay sequence governed by
486 spontaneous brain-wide dynamics. *PNAS Nexus* pgabe078 (2024).
487 <https://doi.org/10.1093/pnasnexus/pgae078>.

488 15. Y. Yang, D. A. Leopold, J. H. Duyn, G. O. Sipe, X. Liu, Intrinsic forebrain arousal
489 dynamics governs sensory stimulus encoding. *bioRxiv* (2023).
490 <https://doi.org/10.1101/2023.10.04.560900>.

491 16. Y. Gu, *et al.*, An orderly sequence of autonomic and neural events at transient arousal
492 changes. *Neuroimage* **264**, 119720 (2022).

493 17. M. D. Fox, *et al.*, The human brain is intrinsically organized into dynamic, anticorrelated
494 functional networks. *Proceedings of the National Academy of Sciences* **102**, 9673–9678
495 (2005).

496 18. A. Mitra, A. Z. Snyder, T. Blazey, M. E. Raichle, Lag threads organize the brain’s intrinsic
497 activity. *Proceedings of the National Academy of Sciences* **112**, E2235–E2244 (2015).

498 19. T. Bolt, *et al.*, A parsimonious description of global functional brain organization in three
499 spatiotemporal patterns. *Nat Neurosci* **25**, 1093–1103 (2022).

500 20. N. K. Logothetis, *et al.*, Hippocampal–cortical interaction during periods of subcortical
501 silence. *Nature* **491**, 547–553 (2012).

502 21. G. Buzsáki, Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory
503 and planning. *Hippocampus* **25**, 1073–1188 (2015).

504 22. D. S. Margulies, *et al.*, Situating the default-mode network along a principal gradient of
505 macroscale cortical organization. *Proceedings of the National Academy of Sciences* **113**,
506 12574–12579 (2016).

507 23. R. E. Yoss, N. J. Moyer, R. W. Hollenhorst, Pupil size and spontaneous pupillary waves
508 associated with alertness, drowsiness, and sleep. *Neurology* **20**, 545 (1970).

509 24. J. Reimer, *et al.*, Pupil Fluctuations Track Fast Switching of Cortical States during Quiet
510 Wakefulness. *Neuron* **84**, 355–362 (2014).

511 25. J. H. Siegle, *et al.*, Survey of spiking in the mouse visual system reveals functional
512 hierarchy. *Nature* **592**, 86–92 (2021).

513 26. S. E. J. de Vries, *et al.*, A large-scale standardized physiological survey reveals functional
514 organization of the mouse visual cortex. *Nat Neurosci* **23**, 138–151 (2020).

515 27. N. A. Steinmetz, P. Zatka-Haas, M. Carandini, K. D. Harris, Distributed coding of choice,
516 action and engagement across the mouse brain. *Nature* **576**, 266–273 (2019).

517 28. D. C. Van Essen, *et al.*, The Human Connectome Project: A data acquisition perspective.
518 *Neuroimage* **62**, 2222–2231 (2012).

519 29. W. Li, L. Zhu, L. Wen, Y. Yang, DeCap: Decoding CLIP Latents for Zero-Shot Captioning
520 via Text-Only Training in *The Eleventh International Conference on Learning
521 Representations*, (2023).

522 30. E. J. Allen, *et al.*, A massive 7T fMRI dataset to bridge cognitive neuroscience and
523 artificial intelligence. *Nat Neurosci* **25**, 116–126 (2022).

524 31. A. Radford, *et al.*, Learning Transferable Visual Models From Natural Language
525 Supervision in *Proceedings of the 38th International Conference on Machine Learning*,
526 Proceedings of Machine Learning Research., M. Meila, T. Zhang, Eds. (PMLR, 2021), pp.
527 8748–8763.

528 32. T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A Simple Framework for Contrastive
529 Learning of Visual Representations in *Proceedings of the 37th International Conference*
530 *on Machine Learning*, Proceedings of Machine Learning Research., H. D. III, A. Singh,
531 Eds. (PMLR, 2020), pp. 1597–1607.

532 33. L. van der Maaten, G. Hinton, Visualizing Data using t-SNE. *Journal of Machine*
533 *Learning Research* **9**, 2579–2605 (2008).

534 34. C. Higgins, *et al.*, Replay bursts in humans coincide with activation of the default mode
535 and parietal alpha networks. *Neuron* **109**, 882-893.e7 (2021).

536 35. Y. Norman, O. Raccah, S. Liu, J. Parvizi, R. Malach, Hippocampal ripples and their
537 coordinated dialogue with the default mode network during recent and remote
538 recollection. *Neuron* **109**, 2767-2780.e5 (2021).

539 36. A. Schaefer, *et al.*, Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic
540 Functional Connectivity MRI. *Cerebral Cortex* **28**, 3095–3114 (2018).

541 37. B. T. Thomas Yeo, *et al.*, The organization of the human cerebral cortex estimated by
542 intrinsic functional connectivity. *J Neurophysiol* **106**, 1125–1165 (2011).

543 38. A. Arieli, A. Sterkin, A. Grinvald, A. Aertsen, Dynamics of Ongoing Activity: Explanation
544 of the Large Variability in Evoked Cortical Responses. *Science (1979)* **273**, 1868–1871
545 (1996).

546 39. M. S. Livingstone, D. H. Hubel, Effects of sleep and arousal on the processing of visual
547 information in the cat. *Nature* **291**, 554–561 (1981).

548 40. A. Hasenstaub, R. N. S. Sachdev, D. A. McCormick, State Changes Rapidly Modulate
549 Cortical Neuronal Responsiveness. *Journal of Neuroscience* **27**, 9607–9622 (2007).

550 41. C. Stringer, *et al.*, Spontaneous behaviors drive multidimensional, brainwide activity.
551 *Science (1979)* **364**, eaav7893 (2019).

552 42. M. D. Fox, A. Z. Snyder, J. M. Zacks, M. E. Raichle, Coherent spontaneous activity
553 accounts for trial-to-trial variability in human evoked brain responses. *Nat Neurosci* **9**, 23–
554 25 (2006).

555 43. B. J. He, Spontaneous and Task-Evoked Brain Activity Negatively Interact. *Journal of*
556 *Neuroscience* **33**, 4672–4682 (2013).

557 44. M. J. McGinley, *et al.*, Waking State: Rapid Variations Modulate Neural and Behavioral
558 Responses. *Neuron* **87**, 1143–1161 (2015).

559 45. W. Chen, K. Park, Y. Pan, A. P. Koretsky, C. Du, Interactions between stimuli-evoked
560 cortical activity and spontaneous low frequency oscillations measured with neuronal
561 calcium. *Neuroimage* **210**, 116554 (2020).

562 46. M. A. Wilson, B. L. McNaughton, Reactivation of Hippocampal Ensemble Memories
563 During Sleep. *Science (1979)* **265**, 676–679 (1994).

564 47. D. R. Euston, M. Tatsuno, B. L. McNaughton, Fast-Forward Playback of Recent Memory
565 Sequences in Prefrontal Cortex During Sleep. *Science (1979)* **318**, 1147–1150 (2007).

566 48. Y. Norman, *et al.*, Hippocampal sharp-wave ripples linked to visual episodic recollection
567 in humans. *Science (1979)* **365**, eaax1030 (2019).

568 49. A. P. Vaz, S. K. Inati, N. Brunel, K. A. Zaghloul, Coupled ripple oscillations between the
569 medial temporal lobe and neocortex retrieve human memory. *Science* (1979) **363**, 975–
570 978 (2019).

571 50. J. J. Sakon, M. J. Kahana, Hippocampal ripples signal contextually mediated episodic
572 recall. *Proceedings of the National Academy of Sciences* **119**, e2201657119 (2022).

573 51. J. Karimi Abadchi, *et al.*, Spatiotemporal patterns of neocortical activity around
574 hippocampal sharp-wave ripples. *Elife* **9**, e51972 (2020).

575 52. R. Kaplan, *et al.*, Hippocampal Sharp-Wave Ripples Influence Selective Activation of the
576 Default Mode Network. *Current Biology* **26**, 686–691 (2016).

577 53. J. G. Klinzing, N. Niethard, J. Born, Mechanisms of systems memory consolidation
578 during sleep. *Nat Neurosci* **22**, 1598–1610 (2019).

579 54. Y. Dudai, A. Karni, J. Born, The Consolidation and Transformation of Memory. *Neuron*
580 **88**, 20–32 (2015).

581 55. J. Bayer, J. Gläscher, J. Finsterbusch, L. H. Schulte, T. Sommer, Linear and inverted U-
582 shaped dose-response functions describe estrogen effects on hippocampal activity in
583 young women. *Nat Commun* **9**, 1220 (2018).

584 56. E. Baldi, C. Bucherelli, The Inverted “U-Shaped” Dose-Effect Relationships in Learning
585 and Memory: Modulation of Arousal and Consolidation. *Nonlinearity Biol Toxicol Med* **3**,
586 nonlin.003.01.002 (2005).

587 57. G. Zerbes, F. M. Kausche, J. C. Müller, K. Wiedemann, L. Schwabe, Glucocorticoids,
588 Noradrenergic Arousal, and the Control of Memory Retrieval. *J Cogn Neurosci* **31**, 288–
589 298 (2019).

590 58. D. J.-F. de Quervain, B. Roozendaal, J. L. McGaugh, Stress and glucocorticoids impair
591 retrieval of long-term spatial memory. *Nature* **394**, 787–790 (1998).

592 59. X. Liu, *et al.*, Modulation of cross-hierarchy propagating waves across sleep stages in
593 *ISMRM & ISMRT Annual Meeting*, (2024), p. 8360.

594 60. A. G. Siapas, M. A. Wilson, Coordinated Interactions between Hippocampal Ripples and
595 Cortical Spindles during Slow-Wave Sleep. *Neuron* **21**, 1123–1128 (1998).

596 61. S. Diekelmann, J. Born, The memory function of sleep. *Nat Rev Neurosci* **11**, 114–126
597 (2010).

598 62. S. Lecci, *et al.*, Coordinated infraslow neural and cardiac oscillations mark fragility and
599 offline periods in mammalian sleep. *Sci Adv* **3**, e1602026 (2017).

600 63. C. Kjaerby, *et al.*, Memory-enhancing properties of sleep depend on the oscillatory
601 amplitude of norepinephrine. *Nat Neurosci* **25**, 1059–1070 (2022).

602 64. J. M. Shine, *et al.*, The Dynamics of Functional Brain Networks: Integrated Network
603 States during Cognitive Task Performance. *Neuron* **92**, 544–554 (2016).

604 65. D. S. Bassett, *et al.*, Dynamic reconfiguration of human brain networks during learning.
605 *Proceedings of the National Academy of Sciences* **108**, 7641–7646 (2011).

606 66. U. Braun, *et al.*, Dynamic reconfiguration of frontal brain networks during executive
607 cognition in humans. *Proceedings of the National Academy of Sciences* **112**, 11678–11683
608 (2015).

609 67. W. Huijbers, *et al.*, Explaining the encoding/retrieval flip: Memory-related deactivations
610 and activations in the posteromedial cortex. *Neuropsychologia* **50**, 3764–3774 (2012).

611 68. S. Daselaar, *et al.*, Posterior midline and ventral parietal activity is associated with
612 retrieval success and encoding failure. *Front Hum Neurosci* **3** (2009).

613 69. P. Vannini, *et al.*, What Goes Down Must Come Up: Role of the Posteromedial Cortices in
614 Encoding and Retrieval. *Cerebral Cortex* **21**, 22–34 (2011).

615 70. F. Han, *et al.*, Reduced coupling between cerebrospinal fluid flow and global brain activity
616 is linked to Alzheimer disease–related pathology. *PLoS Biol* **19**, e3001233- (2021).

617 71. F. Han, X. Liu, R. B. Mailman, X. Huang, X. Liu, Resting-state global brain activity
618 affects early β -amyloid accumulation in default mode network. *Nat Commun* **14**, 7788
619 (2023).

620 72. F. Han, *et al.*, Reduced coupling between cerebrospinal fluid flow and global brain activity
621 is linked to tau pathology. *Alzheimer's & Dementia* **19**, e075860 (2023).

622 73. J. J. Iliff, *et al.*, Cerebral Arterial Pulsation Drives Paravascular CSFInterstitial Fluid
623 Exchange in the Murine Brain. *Journal of Neuroscience* **33**, 18190–18199 (2013).

624 74. S. J. van Veluw, *et al.*, Vasomotion as a Driving Force for Paravascular Clearance in the
625 Awake Mouse Brain. *Neuron* **105**, 549-561.e5 (2020).

626 75. L. Xie, *et al.*, Sleep Drives Metabolite Clearance from the Adult Brain. *Science* (1979)
627 **342**, 373–377 (2013).

628 76. P. J. Whitehouse, *et al.*, Alzheimer's Disease and Senile Dementia: Loss of Neurons in the
629 Basal Forebrain. *Science* (1979) **215**, 1237–1239 (1982).

630 77. R. T. Bartus, On Neurodegenerative Diseases, Models, and Treatment Strategies: Lessons
631 Learned and Lessons Forgotten a Generation Following the Cholinergic Hypothesis. *Exp
632 Neurol* **163**, 495–529 (2000).

633 78. D. A. Drachman, J. Leavitt, Human Memory and the Cholinergic System: A Relationship
634 to Aging? *Arch Neurol* **30**, 113–121 (1974).

635 79. M. E. Hasselmo, The role of acetylcholine in learning and memory. *Curr Opin Neurobiol*
636 **16**, 710–715 (2006).

637