[EY

10

11
12

13
14

15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600438; this version posted June 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Propagating cortical waves coor dinate sensory encoding and
memory retrieval in the human brain

Yifan Yang', David A. Leopold®?, Jeff H. Duyn®, Xiao Liu™>*

Affiliations;

!Department of Biomedical Engineering, The Pennsylvania State University, University Park,
PA, 16802, USA.

Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of
Neurological. Disorders and Stroke, and National Eye Institute, National Institutes of Health,
Bethesda, MD, 20892, USA.

3Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National
Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892, USA.

“*Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of
Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA

®|nstitute for Computational and Data Sciences, The Pennsylvania State University, University
Park, PA, 16802, USA.

* Corresponding Author: Xiao Liu, PhD

431 Chemical and Biomedical Engineering Building
The Pennsylvania State University

University Park, PA 16802-4400

Tel: +1 814 863 4419

Fax: +1 814 863 0490

E-mail: xx1213@psu.edu

Keywords: infra-slow brain waves; semantic coding; memory encoding; memory recall; global
signal; brain states; hippocampal ripples.

Thisfileincludes:
Main Text
Figures1to4


https://doi.org/10.1101/2024.06.24.600438
http://creativecommons.org/licenses/by-nd/4.0/

35

36
37
38
39
40
41
42
43

45
46
47
48
49
50
51
52

53

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600438; this version posted June 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-ND 4.0 International license.

Abstract

Complex behavior entails a balance between taking in sensory information from the environment
and utilizing previously learned internal information. Experiments in behaving mice have
demonstrated that the brain continually alternates between outward and inward modes of
cognition, switching its mode of operation every few seconds. Further, each state transition is
marked by a stereotyped cascade of neuronal spiking that pervades most forebrain structures.
Here we analyzed large fMRI datasets to demonstrate that a smilar switching mechanism
governs the operation of the human brain. We found that human brain activity was punctuated
every several seconds by coherent, propagating waves emerging in the exteroceptive
sensorimotor regions and terminating in the interoceptive default mode network. As in the
mouse, the issuance of such events coincided with fluctuations in pupil size, indicating a tight
relationship with arousal fluctuations, and this phenomenon occurred across behavioral states.
Strikingly, concurrent measurement of human performance in a visual memory task indicated
that each cycle of propagating fMRI waves sequentially promoted the encoding of semantic
information and self-directed retrieval of memories. Together, these findings indicate that human
cognitive performance is governed by autonomous switching between exteroceptive and
interoceptive states. This apparently conserved feature of mammalian brain physiology bears
directly on the integration of sensory and mnemonic information during everyday behavior.
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I ntroduction

The human brain undergoes slow, spontaneous fMRI fluctuations during rest, in the absence of
external stimulation and task engagement (1, 2). While this activity has been used widely to
characterize the functional connectivity between brain regions (2-5), its contribution to the
normal operation of the brain has remained elusive. Two curious features of this activity that
have drawn attention in recent years are its manifestation as discrete, quasi-periodic events and
its spatiotemporal propagation across the brain (6-9). Recent work describes such propagation as
moving from low-order sensory-motor (SM) regions to high-order default mode network (DM N)
(7, 10). This traversing of the cortical hierarchy has been compared to cross-layer error back-
propagation required for optimizing artificial neural networks (11, 12), raising the prospect that
these waves may play a physiological role in learning and memory consolidation.

Analogous global brain dynamics have been observed at the single neuron level in the mouse.
These dynamics are associated with arousal fluctuations and manifest as massive spiking
cascades involving ~70% of recorded neurons across the forebrain and playing out over severa
seconds (13). During both spontaneous activity and periods of visual stimulation, spiking
cascades were coordinated in time with hippocampal sharp-wave ripples (SPW-Rs), a
neurophysiological event known to be involved in memory functions (14). In the case of visual
stimulation, each cascade cycle involved transitioning from a phase of high-efficiency sensory
encoding to a phase of heightened SPW-Rs (15). Together, these observations suggest a
mechanism by which the mouse brain routinely switches between exteroceptive and
interoceptive modes.

One attractive possibility is that the fMRI waves in the human brain and spiking cascades in the
mouse brain reflect the same or homologous underlying neurophysiological processes. Indeed,
they share common features. For example, both phenomena are manifest as quasi-period events
that transpire over seconds time scales, affect global forebrain activity, and are demonstrably
coupled to arousal fluctuations (13, 16). In the absence of external stimulation, fMRI waves in
humans propagate between two sets of brain networks showing opposite responses to cognitive
tasks (17-19), and the spiking cascade sequence in mice involves the interplay between two
groups of neurons with opposite activity modulations during locomotion (13). When
hippocampal SPW-Rs were measured together with concurrent fMRI in the monkey, they were
synchronized with fMRI changes across the brain (20, 21). Interestingly, this mapping revealed
that sensory/motor areas exhibited distinct delays from higher-order regions, suggestive cross-
hierarchy propagation (20, 21). Nevertheless, it remains unknown whether propagating fMRI
events are the macroscopic counterpart of neural firing cascades. More importantly, it is also
unclear whether fMRI waves, like neural firing cascades, persist during stimulation or play arole
in coordinating sensory and memory cycles during wakefulness.

In the present study, we analyzed multiple human fMRI and mouse neuronal recording datasets
to address this topic. Similar to the spiking cascades in the mouse, the propagating fMRI waves
in the human brain persisted during the performance of a visual memory task. The fMRI wave
cycle alternately increased the encoding of sensory information and the efficiency of memory
retrieval function across each cycle. The cascades and fMRI waves were similarly synchronized
to pupil dilations in humans and mice, suggesting a shared neuromodulatory basis. These
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99  findings thus demonstrate similar, internally generated physiological cycles coordinating
100  exteroceptive and interoceptive cognitive activity in the human and mouse brain, suggesting an
101 evolutionarily conserved mechanism governing mammalian forebrain function.
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104  Figure 1. Association of spontaneous pupil dilations and brain-wide sequential activity in the mouse
105 and human brain. (A) Locations of neuropixel probes from all mice in the Allen Mouse Brain Common
106  Coordinate Framework with major recording sites are color-coded: visual cortex (blue), hippocampus
107 (green), and thalamus (pink). Top: Three-dimensional illustration of the probe insertion in mouse brain.
108  Bottom: Two-dimensional projection of the probes onto a middle brain slice. (B) Close coordination of
109  spontaneous pupil dilation and spiking cascade occurrence in the mouse brain during 100 s of stationary
110 visual stimulation. Top: spontaneous fluctuation of pupil diameter with alternating dilation (red) and
111 constriction (blue) phases, with the onset of dilation marked by red dashed lines and triangular symbols.
112 Bottom: normalized spiking activity of all recorded neurons that are sorted according to the principal
113 delay profile, revealing the correspondence between single pupil dilations and spiking cascades of
114  sequential activations from negative-delay neurons (blue symbolic neurons) to positive-delay neurons (red
115 symbolic neurons). (C) The representative mouse's normalized pupil diameter (top) and neuronal spiking


https://doi.org/10.1101/2024.06.24.600438
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600438; this version posted June 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

116  activities (bottom) averaged around the onset of pupil dilation over an 8 s window. (D) Schematic of a
117  resting-state fMRI scan from the Human Connectome Project 7-Tesla (HCP-7T) dataset. (E) Close
118 coordination of spontaneous pupil dilation and propagating fMRI waves in the human brain during 310 s
119  period of rest, similar in layout to (B). Pupil diameter fluctuation (top) and concurrent fMRI signals of
120  various brain regions are sorted by their principal gradient value (22) (bottom). (F) The averaged pupil
121 diameter (top) and fMRI signals (bottom) at the onset of pupil dilation over an 18-sec time window,
122 summarized from all 184 subjects. (G) The pupil-dilation-associated fMRI changes mapped onto the
123 brain’s surface. The maps were shown for 7 evenly spaced time lags, from 0 to 12 seconds following the
124 onset of pupil dilation. The first and second rows display maps of the brain's cortical surface, and the
125  third row presents the thalamic volume map. Directional arrows denote dorsal (D), anterior (A), and
126  anatomical left (L) directions.

127 Results

128 Fluctuating arousal entrains brain-wide events across the mouse and human forebrain

129  Pupil diameter is a surrogate signal for fluctuating arousal that is readily measured in both
130  human and mouse subjects during rest (23, 24). We observed that the dynamic changes in pupil
131  diameter were matched to the occurrence of brain-wide events in both species, thus providing a
132 meansto compare spiking cascades and fMRI waves.

133

134 In the mouse, pupil size fluctuations, indicative of changes in arousal state, were prominent
135 during periods of immobility, with or without visual stimulation, as evident in data from the
136 Allen Institute Visual Coding project (25) (Fig. 1A and 1B). Across the brain, we found that
137 pupil dilations coincide with moments of widespread spiking events, in which neurons fire
138 sequentially in reproducible patterns (Fig. 1B, C, red arrows). The same dynamics were derived
139 previously without reference to pupil data and described as brain-wide spiking cascades (13). We
140  repeated the same analysis on a two-photon calcium imaging dataset (26) and another large-scale
141 Neuropixel dataset with broader coverage of mouse brain (27), reveding that these pupil-
142 associated cascades span across widespread brain regions and involve multiple neuron subtypes
143 (Fig. S1 and S2).

144

145 In the Human Connectome Project (HCP) 7T dataset (28), we similarly found that pupil size
146 changes correlated with spontaneous resting fMRI fluctuations across the brain (Fig. 1D and
147 1E). Alignment to pupil dilation onset revealed a tempora sequence of fMRI changes
148 progressing along a principal gradient (PG) direction (Fig. 1F and S3), which approximates the
149  cortical hierarchy gradient (22). These events were manifest as infraslow (multi-second) waves
150 moving gradually from SM to DMN regions. The cortica changes were accompanied by
151 corresponding thalamic changes (Fig. 1G and S3F). Such SM-to-DMN propagating waves have
152 been identified previously without pupil data (7, 10, 22). Thus, spontaneous pupil dilations
153  during immobile rest are associated with sequential brain dynamics of global involvement,
154 Observed as spiking cascades in mice and propagating fMRI waves in humans. The
155  correspondence between the mouse cascade and human fMRI waves is further supported by
156  Similar changes in delta-band (1-4 Hz) activity across their cycles (Fig. $4).

157

158  While the function of these brain-wide events is poorly understood, evidence in the mouse ties
159  spiking cascades to alternating periods of stimulus coding and memory operation (15). Might
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160 the fMRI waves in humans similarly regulate this switch between exteroceptive and
161 interoceptive modes of brain function? To address this question, we investigated the occurrence
162  of spontaneous propagating fMRI waves as human subjects performed a cognitive task involving
163  memory. Specifically, we asked whether the sensory encoding of stimuli and successful memory
164  retrieval performance varied as a function of these spontaneous events.
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168  Figure2. Stimulusinformation encoding was assessed through fMRI responses using a deep learning-
169  based model. (A) Framework for training and evaluating the CLIP-based semantic decoder. In the
170 training phase, an fMRI encoder is trained to map stimulus-evoked fMRI response to CLIP embedding
171 space by maximizing the similarity between actual pairings of fMRI embedding and CLIP text embedding,
172 while minimizing the similarity of embeddings of incorrect pairings via contrastive learning. For
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173 evaluation, through the trained fMRI encoder, image-evoked fMRI responses are first encoded to fMRI
174  embeddings in CLIP space and decoded by a pre-trained caption decoder (29) to generate text
175  descriptions. The similarity between the generated text and ground truth text serves as an approximate
176  but objective measure of the amount of semantic information being successfully encoded in fMRI
177 responses, and thus of the brain’s semantic encoding accuracy. (B) The representational similarity
178 analysis (RSA) confirms a successful training of the semantic decoder. Representational dissimilarity
179  matrices based on cosine similarity for the semantic CLIP embeddings (left) and fMRI embeddings (right)
180  showed highly similar structures. (C) Misualization of fMRI embeddings using t-SNE (t-distributed
181  Stochastic Neighbor Embedding) reveals categorical distinctions within the embeddings, with each
182  category distinctly color-coded. (D) Examples of significantly and insignificantly decoded samples, from
183  top to bottom showing the image stimuli, the corresponding ground truth captions, and the caption
184  decoded with evoked fMRI response. (E) Schematic of task design in the NSD dataset. Each of the 8
185  participants viewed 10,000 distinct images with each image randomly displayed three times across 30-40
186  scan sessions over a year. The stimuli presentation followed an event-related design comprising 4-second
187  trials with 3 seconds of presentation and 1 second of baseline. (F) A box plot comparing the encoding
188  accuracy, i.e. the proportion of significantly decoded samples based on CSS scores, between the fMRI
189  encoder pre- and post-training. Each dot represents an individual participant, with the dotted line
190 indicating a 5% chance level. Satistical significance is assessed using a two-sided pair-wise t-test (N=8).
191 (G) The influence of initial image presentation encoding accuracy on subsequent memory task
192  performance. Stimuli are binned based on the percentile of their first encoding accuracy, incremented by
193  20%, and the memory task accuracy of their second presentation is averaged within the bins. The results
194  are obtained by pooling the data from all subjects.

195

196  Visual stimulus encoding predicts subsequent memory function.

197  In order to systematically investigate the role of propagating SM-to-DMN waves on human
198  cognition, we first needed to establish areliable means to evaluate the encoding of visual stimuli
199  from fMRI responses across the brain. We developed a method to do this using the Natural
200  Scenes Dataset (NSD) (30), in which a series of 10,000 captioned natural images were shown, in
201 theform of 4-strials, to each of 8 subjects with each image being presented three times over 40
202 scan sessions on different days. For each trial, the subjects needed to indicate whether they had
203  seen the stimulus before (Fig. 2E).

204

205  To quantify the level of sensory stimulus encoding, we developed a novel deep learning model to
206  decode semantic information of each image stimulus based on fMRI responses it evoked (Fig.
207 2A and SHA). The mode comprised an fMRI encoder, which extracted latent representation
208 from the fMRI responses, i.e, the fMRI embeddings, and a caption decoder (29), which
209 trandated the fMRI embeddings into descriptive text captions. The fMRI encoder was trained to
210  align the fMRI embeddings with the contrastive language-image pre-training (CLI1P) embedding
211 space (31) through contrastive learning (32). We then quantified the semantic similarity between
212 the fMRI-decoded caption and the original caption by a composite semantic similarity (CSS)
213 score to measure the accuracy of semantic information encoding (see M ethods for more detail).
214

215 Our deep learning model successfully decoded the semantic information associated with the
216  visua stimuli based on the fMRI responses they evoked. The representation similarity analysis
217 confirmed the alignment between fMRI and caption embeddings (Figs. 2B, S5B, and S5C), and
218 the fMRI embeddings after training are organized as distinct categories in a low-dimensional
219  space (Fig. 2C) (33). The trained model generated captions significantly similar to the ground
220  truth captions for 33.0 =+ 4.2% (mean + SD) trials (see Fig. 2D and Fig. S6A for examples) as
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221 compared with the 5% chance-level performance of the untrained model (Fig. 2F, p = 2.8x10°";
222 and Fig. S6B). In the context of the cognitive task, the semantic encoding accuracy faithfully
223 predicted subsequent memory performance: a higher CSS score at the first appearance of an
224 image stimulus led to a higher rate of correctly recalling it at its second repeat (Fig. 2G and S7).
225 Given this tool, it was next possible to evaluate whether the occurrence of spontaneous
226 propagating fMRI waves might bear on the quality of stimulus encoding, subsequent memory
227 recall, or both.
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231 Figure 3. Semantic encoding and memory retrieval are oppositely modulated over the fMRI SM-to-
232 DMN wave cycle. (A) Detection of SM-to-DMN propagating waves during the memory task. The waves
233 were detected using template-matching methods (7). The principal gradient (PG) map was used as the
234  template, and six examples of detected propagations are shown, with similarity values indicating the
235  correlation between the PG template and the delay profile of fMRI segments. (B) Schematics of two
236 distinct memory metrics. Each image has three repeats. The fMRI wave phase at the first repeat was
237 linked to the accuracy of correctly recognizing it at the second appearance to quantify the effect of this
238 wave dynamic on memory encoding. Then, the fMRI wave phase at the second and third repeats were
239  linked to the accuracy of recognition tasks at the same time to quantify the effect of the wave dynamic
240  memory recall. (C) Opposite modulations of semantic/memory encoding and memory retrieval over the
241  cycle of the SM-to-DMN waves. The first row shows the averaged pattern of the detected SM-to-DMN
242 waves, which was shifted backward in time by 6 seconds to account for the known hemodynamic response
243 delay. The time zero was marked at the onset of the global mean signal increase (dashed line), which
244 appears to correspond to the cascade center (D) as judged from the timings of the upswing in semantic
245  and visual encoding accuracies for human and mouse data respectively. Both pupil size (second row) and
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246 memory retrieval (green in the bottom row) change significantly across the wave cycle and peak at the
247  DMN-activated phase, whereas the semantic encoding accuracy (third row) and memory encoding
248 accuracy (purple in the bottom row) are modulated in an opposite manner. Time series data are provided
249  as the mean £ SEM for eight participants (N=8). (D) Opposite modulations of the visual encoding
250  accuracy (second row) and hippocampal SPW-R rate (bottom row) across the spiking cascade cycle (first
251 row) during stationary periods with continuous natural image stimulation in mice, adapted from (15).
252 Time zero is marked by a dashed line indicating the onset of positive-delay neuron firing. The time series
253 dataisshown as mean + SEM for 20 mice (N=20).

254

255 Alternating stimulus encoding versus memory recall during propagating fMRI waves

256  To address the role of the propagating fMRI waves on encoding and memory performance, we
257 first established their presence during the cognitive task. These waves were identified directly
258 from task fMRI data without using pupil data (7) (Fig. 3A). Similar to the resting state, pupil
259  diameter fluctuations remained closely tied to the occurrence of propagating waves, despite also
260 being affected by other task events to a lesser extent (Fig. SBA). The duration of the SM-to-
261  DMN waves (~10-15 seconds) is much longer than the task trials (4 seconds), and their
262  occurrence, propagation, and relationship to pupil fluctuations are dissociated from the structure
263 of the concurrent cognitive task (Fig. S8B).

264

265  To evaluate whether encoding efficiency was influenced by propagating fMRI waves, we first
266  used the fMRI deep learning-based decoding method described above to characterize the quality
267 of encoding with each stimulus presentation. We found that the accuracy of such encoding varied
268  systematically across the SM-to-DMN propagation cycle (Fig. 3C, red trace). Accounting for
269  hemodynamic delays (see Methods), the stimulus encoding was strongest at the SM-activated
270 phase of the propagating wave.

271

272 We aso used memory performance as a means to assess how fMRI waves affected both stimulus
273 encoding and memory recall. For encoding, accurate memory of individual stimuli during their
274 second appearance was taken to indicate strong encoding at the initial presentation, whereas
275 failure to remember a stimulus was taken to indicate weak encoding. This measure also realized
276 the important role of the spontaneous propagating SM-to-DMN waves. Namely, the strongest
277 memory encoding occurred when theinitial stimulus (Repeat #1 in Fig. 3B) was presented at the
278 SM-activated phase (Fig. 3C, purple trace), thus matching the fMRI deep learning-based
279  measure of stimulus encoding described just above (Fig. 3C, red trace). By contrast, evaluation
280  of recall performance, which was done at the 2™ and 3™ presentations of a stimulus, revealed a
281  peak performance later in the wave cycle, when the subject recall coincided with the DMN-
282 activated phase (Fig 3C, green trace). These results were similar for both short-term and long-
283  term memory types (Fig. SOB and S9C).

284

285  These cyclic modulations of stimulus encoding and memory recall in humans resembled
286 analogous observations in mice during different phases of the spiking cascades (15) (Fig. 3D).
287 Specifically, the SM-activated phase of the fMRI wave matched a period within the cascade
288  cycle (00.5 sec) of improved stimulus encoding, whereas the DMN-activated phase aligned
289  with a different period within the cascade cycle (0.5-2 seconds) of increasing hippocampal
200 SWP-R rate, which was also associated with pupil dilation (Fig. 3C and 3D). While the
201 hippocampal SWP-R rate and memory performance are clearly different measures, they may


https://doi.org/10.1101/2024.06.24.600438
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.06.24.600438; this version posted June 28, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

292 point to smilar processes that transpire during more introspective modes of brain activity,
203 commonly associated with activity of the DMN (34, 35).
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295

296  Figure 4. Stimulus encoding and its modulation across the SM-to-DMN wave cycle in different brain
297  regions. (A) Cortical surface map showing the regional significance (paired t-tests: trained vs. untrained)
298  of semantic encoding accuracy. (B) A box plot showing the semantic encoding accuracy estimated for
299  different brain regions defined in the Yeo-17 networks atlas (36, 37). Asterisks denote the levels of
300 statistical significance (paired t-test): *, 0.01 <p <0.05; **, 0.001 <p <0.01; ***, p <0.001. Each dot
301  represents an individual participant. (C) Semantic decoding accuracy (solid ling) is consistently
302  modulated over the SM-to-DMN wave cycle in six brain regions exhibiting the most significant decoding
303 accuracy. For comparison, the average activation for each region is marked with a dotted line, which is
304 shifted ahead of time by 6 seconds to account for the hemodynamic response delay. These regions are
305  distinctly color-coded and their locations are indicated on a flattened cortical surface. Time series data
306 areprovided asthe mean + SEM for eight participants (N=38).
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308 Visual semantic information coding in multiple brain regions is similarly modulated by the
309 SM-to-DMN wave cycle

310 Repeating the semantic decoding using only regional fMRI data suggested that the semantic
311 information was encoded across a wide range of brain regions, with the highest encoding
312 accuracy observed in the visual cortex (Fig. 4A and 4B). Importantly, the encoding accuracy was
313 modulated in all these regions over the SM-to-DMN wave cycle (Fig. 4C and Fig. S10) in a
314 sSimilar way as the whole-brain finding (Fig. 3C). Interestingly, the DMN, particularly its C
315 divison that encompasses the hippocampal complex and adjacent to visual association aress,
316 exhibited the peak encoding accuracy at the SM-activated phase of the wave when its activity is
317 not peaked, suggesting a dissociation between sensory encoding and regional activation level.
318  These region-specific results on visual semantic encoding are consistent with those on cascade-
319  dependent visual encoding (15), further suggesting that the spiking cascades and cross-hierarchy
320  waves represent the same neurophysiological process conserved across mice and humans,

321 Discussion

322  Here we showed that slow activity waves propagating over the cortical surface are associated
323 with a counter-acting modulation of encoding and retrieval of information conferred by visual
324 stimuli. By analyzing electrophysiological and fMRI measures of brain activity, we first
325  demonstrated that spontaneous pupil dilations are similarly accompanied by spiking cascade
326  dynamics in mice and SM-to-DMN propagating waves in humans, thereby unifying these two
327  types of infra-slow (<0.1Hz) global brain activity across different spatial scales and species.
328  Assessing the semantic encoding of visual stimuli using a CLIP-based deep learning model, we
329  found that the SM-to-DMN propagating waves persisted during task performance and were
330  associated with counter-valent modulation in both encoding and retrieval of the stimulus content.
331 The encoding of semantic information and memory peaked at the early phase of SM-activation,
332 whereas memory retrieval accuracy reached the maximum at the DM N-activated phase. Together
333  with previous findings from mice, these results suggested that the highly structured infra-slow
334 global brain activity serves as an evolutionarily conserved mechanism by which the brain
335  orchestrates the execution of exteroceptive sensory sampling and internal mnemonic processes
33  onthetimescale of seconds.

337

338 The brain’s response to identical sensory stimuli is known to vary over time even on the
339 timescale of seconds. Previous studies have shown how pre-stimulus ongoing activity and
340 arousa state may contribute to this variability (24, 38-45). Our findings align with and extend
341 these previous reports. Leveraging recent advances in deep learning techniques, our study goes
342 beyond a smple quantification of response amplitude (2, 42, 43) and assesses the accuracy of the
343 brain’s encoding of semantic information. Importantly, most previous studies have presumed that
344 ongoing brain activity and changes in arousal occur spontaneously and randomly. As a result,
345 much focus has been on the response modulation of ongoing activity that is temporally locked
346 (prior to the stimulus) and spatially restricted (confined to the same local brain region). In
347  contrast, we consider the effects of internal fluctuation in the context of highly structured brain
348 dynamics (i.e., the spiking cascade or propagating wave) involving the large-scale coordination
349 of activity. The initiation of these recurring global brain events is independent of visual
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350 stimulation and memory tasks, and it modulates sensory processing quasi-periodically in a
351 continuous and persistent way.

352

353  We further found that memory retrieval was modulated over the SM-to-DMN wave cycle in a
354 manner opposite to that of stimulus encoding, matching our previously observed counter-
355 modulation of hippocampa SPW-R rate and visual encoding (15). This previous study did not,
356  however, identify specific memory functions or other cognitive operations associated with SPW-
357 Rsduring the task, since SPW-Rs are usually observed during rest and sleep and often linked to
358 offline memory consolidation (21, 46, 47). By comparing our human study results with these
359 prior findings in mice, we found a correspondence between the cascade phase of high SPW-R
360 rate to the wave phase of fMRI DMN activation, which is associated with a better performance
361 in memory retrieval. This observation largely agrees with a series of recent studies on different
362  species that linked SPW-Rs during tasks to memory retrieval (48-50), as well as the marked
363 fMRI DMN activations (34, 35, 51, 52).

364

365  The observed modulation of sensory and memory functions over the cascade/wave cycle may be
366  associated with a change in the direction of information flow, particularly between the cortex and
367  hippocampus. Memory retrieval during tasks and memory consolidation during rest and sleep
368 likely regquire information flow from the hippocampus to the cortex, whereas the encoding of
369  sensory information and memory would be facilitated by a reversed flow (21, 53, 54). Thus, the
370  cascade/wave phases optimized for sensory encoding and memory retrieval may be dominated
371 by opposite directions of information transmission, which may rely on distinct spatial gradients
372 in activation level. In fMRI, such activation gradients are obvious for SM-to-DMN waves with
373 dominant SM or DMN activation at different phases. This is less clear for cascades, since the
374  negative- and positive-delay neurons were found in all recorded brain regions (13). However, the
375 hippocampal regions, especially CA1 and the dentate gyrus (DG), contain a much higher number
376 of negative-delay neurons compared to any other areas, including all visual areas, whereas the
377 thalamus has the least. Thus, the activation gradient between these two neuronal groups can be
378 trandated into spatial gradients among the hippocampus, cortex, and thalamus. We hypothesize
379 that these gradients, alternating on the multi-second scale, determine the dominant direction of
380 information flow, which itself occurs on much faster (millisecond) timescales. This hypothesis
381 remains to be tested by future studies. It is worth noting that artificial neural networks also
382 feature alternating forward/backward information flows across hierarchical layers during training
383 (11, 12), which may thus represent a mechanism essential to the learning of all connection-based
384 intelligence systems.

385

386 The cascade and wave dynamics reported here may represent a fundamental mechanism by
387  which the brain coordinates the opposing operations of exteroceptive sensory sampling and
388 internal mnemonic processes. A balance between these processes is essential for optimized
389 cognitive performance and is likely reached under states of intermediate arousal (55, 56). Highly
390 aroused states could bresk this balance by terminating this infra-slow global dynamic.
391 Locomotion, presumably associated with heightened arousal, has been found to replace cascade
392  dynamics with sustained firing of the positive-delay neurons (15) that are expected to promote
393  sensory and memory encoding but impede memory retrieval (57, 58). Toward the other end of
394 this spectrum, during drowsiness, the infrasslow global dynamic may prolong the memory
395  consolidation phase whereas hinder encodings. The SM-to-DMN waves have been found to
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396 occur more frequently during various sleep stages and be associated with learning-related
397 features (i.e., the rapid eye movements and possibly Ponto-Geniculo-Occipital (PGO) waves)
398  during rapid eye movement (REM) deep (59). Though not directly focused on the cascade and
399  waves, recent studies convergingly point out an essentia role of infra-slow neural dynamicsin
400 learning and memory. In addition to hippocampal SPW-Rs, infra-slow dynamics have been found
401 to simultaneously coordinate the density of sleep spindles, an electrophysiological feature that
402 has relevance for learning and memory (60, 61). Importantly, the amplitude of infra-slow
403  dynamics during sleep, defined through spindle density and cardiac rate, is not only correlated
404  with memory performance on the subsequent day (62), but optogenetically enhancing it also
405 leadsto improved memory (63). Similar to the modulation of brain activity during cascades and
406  waves described here, such spindle-based infra-slow dynamic alternates between an offline
407  phase, characterized by higher spindle and hippocampal SPW-Rs rates with low arousal, and an
408  online phase, marked by lower spindle and ripple rates with higher arousal and susceptibility to
409  external stimulation (62).

410

411 The SM-to-DMN propagating wave and its effect on sensory and memory functions may offer
412 explanations for some previous task fMRI observations. Graph-theory metrics based on fMRI
413 connectivity/correlations, such as cartography and network flexibility, have been used to quantify
414 brain dynamics and found associations with various cognitive components, particularly learning
415 (64-66). Most of these metrics focused on assessing the integration and segregation of the large-
s6  scale networks, which are expected to be profoundly affected by the presence of the global SM-
417  to-DMN waves. Thus, the waves could be an important contributor to these metrics of network
418  dynamics. Another related phenomenon is the so-called encoding/retrieval flip, in which the de-
419 activation and activation of the posteromedial cortex, a key component of DMN, are
420 preferentially associated with successful memory encoding and retrieval respectively (67-69).
421 This phenomenon can be explained by our finding that memory encoding and recall were
422 oppositely modulated over the wave cycle with distinct DMN activations. Importantly, the
423  present study expands this early research by incorporating the previous findings into the
424 framework of highly structured cross-hierarchy propagating waves, which persist under various
425 brain conditions beyond tasks.

426

427 Finaly, the SM-to-DMN waves may also relate to memory dysfunction in Alzheimer's disease
428  (AD). The global mean BOLD (gBOLD) signal, whose peaks the SM-to-DMN waves are
429  manifested as, has been repeatedly linked to various AD pathologies (70—-72). The gBOLD peaks
430 (also SM-to-DMN waves (16)) have been found to be coupled by strong cerebrospinal fluid
431 (CSF) movements, known to be essential for peri-vascular waste clearance (73—-75). The strength
432 of thisgBOLD-CSF coupling isindeed associated with the accumulation of amyloid-beta and tau
433 (71, 72). Particularly, the failure of the SM-to-DMN waves to reach the DMN appeared to
434 account for preferential amyloid-beta accumulation at these higher-order regions at the early
435  stage of AD (71). Besides the toxic protein accumulation, AD also features dysfunctions in
436 memory and subcortical neuromodulatory systems (76-79), which are both linked to the
437 cascades and global waves (10, 13). Thus, it is possible that changes in this infra-slow global
438 dynamic may also related to the dysfunction of the memory and arousal systemsin AD.
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