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Abstract 35 

Complex behavior entails a balance between taking in sensory information from the environment 36 

and utilizing previously learned internal information. Experiments in behaving mice have 37 

demonstrated that the brain continually alternates between outward and inward modes of 38 

cognition, switching its mode of operation every few seconds. Further, each state transition is 39 

marked by a stereotyped cascade of neuronal spiking that pervades most forebrain structures. 40 

Here we analyzed large fMRI datasets to demonstrate that a similar switching mechanism 41 

governs the operation of the human brain. We found that human brain activity was punctuated 42 

every several seconds by coherent, propagating waves emerging in the exteroceptive 43 

sensorimotor regions and terminating in the interoceptive default mode network.  As in the 44 

mouse, the issuance of such events coincided with fluctuations in pupil size, indicating a tight 45 

relationship with arousal fluctuations, and this phenomenon occurred across behavioral states. 46 

Strikingly, concurrent measurement of human performance in a visual memory task indicated 47 

that each cycle of propagating fMRI waves sequentially promoted the encoding of semantic 48 

information and self-directed retrieval of memories. Together, these findings indicate that human 49 

cognitive performance is governed by autonomous switching between exteroceptive and 50 

interoceptive states. This apparently conserved feature of mammalian brain physiology bears 51 

directly on the integration of sensory and mnemonic information during everyday behavior.  52 

  53 
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Introduction 54 

The human brain undergoes slow, spontaneous fMRI fluctuations during rest, in the absence of 55 

external stimulation and task engagement (1, 2). While this activity has been used widely to 56 

characterize the functional connectivity between brain regions (2–5), its contribution to the 57 

normal operation of the brain has remained elusive. Two curious features of this activity that 58 

have drawn attention in recent years are its manifestation as discrete, quasi-periodic events and 59 

its spatiotemporal propagation across the brain (6–9). Recent work describes such propagation as 60 

moving from low-order sensory-motor (SM) regions to high-order default mode network (DMN) 61 

(7, 10). This traversing of the cortical hierarchy has been compared to cross-layer error back-62 

propagation required for optimizing artificial neural networks (11, 12), raising the prospect that 63 

these waves may play a physiological role in learning and memory consolidation.  64 

 65 

Analogous global brain dynamics have been observed at the single neuron level in the mouse. 66 

These dynamics are associated with arousal fluctuations and manifest as massive spiking 67 

cascades involving ~70% of recorded neurons across the forebrain and playing out over several 68 

seconds (13). During both spontaneous activity and periods of visual stimulation, spiking 69 

cascades were coordinated in time with hippocampal sharp-wave ripples (SPW-Rs), a 70 

neurophysiological event known to be involved in memory functions (14). In the case of visual 71 

stimulation, each cascade cycle involved transitioning from a phase of high-efficiency sensory 72 

encoding to a phase of heightened SPW-Rs (15). Together, these observations suggest a 73 

mechanism by which the mouse brain routinely switches between exteroceptive and 74 

interoceptive modes. 75 

 76 

One attractive possibility is that the fMRI waves in the human brain and spiking cascades in the 77 

mouse brain reflect the same or homologous underlying neurophysiological processes. Indeed, 78 

they share common features. For example, both phenomena are manifest as quasi-period events 79 

that transpire over seconds time scales, affect global forebrain activity, and are demonstrably 80 

coupled to arousal fluctuations (13, 16). In the absence of external stimulation, fMRI waves in 81 

humans propagate between two sets of brain networks showing opposite responses to cognitive 82 

tasks (17–19), and the spiking cascade sequence in mice involves the interplay between two 83 

groups of neurons with opposite activity modulations during locomotion (13). When 84 

hippocampal SPW-Rs were measured together with concurrent fMRI in the monkey, they were 85 

synchronized with fMRI changes across the brain (20, 21). Interestingly, this mapping revealed 86 

that sensory/motor areas exhibited distinct delays from higher-order regions, suggestive cross-87 

hierarchy propagation (20, 21). Nevertheless, it remains unknown whether propagating fMRI 88 

events are the macroscopic counterpart of neural firing cascades. More importantly, it is also 89 

unclear whether fMRI waves, like neural firing cascades, persist during stimulation or play a role 90 

in coordinating sensory and memory cycles during wakefulness. 91 

 92 

In the present study, we analyzed multiple human fMRI and mouse neuronal recording datasets 93 

to address this topic. Similar to the spiking cascades in the mouse, the propagating fMRI waves 94 

in the human brain persisted during the performance of a visual memory task. The fMRI wave 95 

cycle alternately increased the encoding of sensory information and the efficiency of memory 96 

retrieval function across each cycle. The cascades and fMRI waves were similarly synchronized 97 

to pupil dilations in humans and mice, suggesting a shared neuromodulatory basis. These 98 
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findings thus demonstrate similar, internally generated physiological cycles coordinating 99 

exteroceptive and interoceptive cognitive activity in the human and mouse brain, suggesting an 100 

evolutionarily conserved mechanism governing mammalian forebrain function.   101 

 102 

 103 
Figure 1. Association of spontaneous pupil dilations and brain-wide sequential activity in the mouse 104 
and human brain. (A) Locations of neuropixel probes from all mice in the Allen Mouse Brain Common 105 

Coordinate Framework with major recording sites are color-coded: visual cortex (blue), hippocampus 106 

(green), and thalamus (pink). Top: Three-dimensional illustration of the probe insertion in mouse brain. 107 

Bottom: Two-dimensional projection of the probes onto a middle brain slice. (B) Close coordination of 108 

spontaneous pupil dilation and spiking cascade occurrence in the mouse brain during 100 s of stationary 109 

visual stimulation. Top: spontaneous fluctuation of pupil diameter with alternating dilation (red) and 110 

constriction (blue) phases, with the onset of dilation marked by red dashed lines and triangular symbols. 111 

Bottom: normalized spiking activity of all recorded neurons that are sorted according to the principal 112 

delay profile, revealing the correspondence between single pupil dilations and spiking cascades of 113 

sequential activations from negative-delay neurons (blue symbolic neurons) to positive-delay neurons (red 114 

symbolic neurons). (C) The representative mouse's normalized pupil diameter (top) and neuronal spiking 115 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2024. ; https://doi.org/10.1101/2024.06.24.600438doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.24.600438
http://creativecommons.org/licenses/by-nd/4.0/


 5

activities (bottom) averaged around the onset of pupil dilation over an 8 s window. (D) Schematic of a 116 

resting-state fMRI scan from the Human Connectome Project 7-Tesla (HCP-7T) dataset. (E) Close 117 

coordination of spontaneous pupil dilation and propagating fMRI waves in the human brain during 310 s 118 

period of rest, similar in layout to (B). Pupil diameter fluctuation (top) and concurrent fMRI signals of 119 

various brain regions are sorted by their principal gradient value (22) (bottom). (F) The averaged pupil 120 

diameter (top) and fMRI signals (bottom) at the onset of pupil dilation over an 18-sec time window, 121 

summarized from all 184 subjects. (G) The pupil-dilation-associated fMRI changes mapped onto the 122 

brain’s surface. The maps were shown for 7 evenly spaced time lags, from 0 to 12 seconds following the 123 

onset of pupil dilation. The first and second rows display maps of the brain's cortical surface, and the 124 

third row presents the thalamic volume map. Directional arrows denote dorsal (D), anterior (A), and 125 

anatomical left (L) directions. 126 

Results 127 

Fluctuating arousal entrains brain-wide events across the mouse and human forebrain  128 

Pupil diameter is a surrogate signal for fluctuating arousal that is readily measured in both 129 

human and mouse subjects during rest (23, 24). We observed that the dynamic changes in pupil 130 

diameter were matched to the occurrence of brain-wide events in both species, thus providing a 131 

means to compare spiking cascades and fMRI waves. 132 

 133 

In the mouse, pupil size fluctuations, indicative of changes in arousal state, were prominent 134 

during periods of immobility, with or without visual stimulation, as evident in data from the 135 

Allen Institute Visual Coding project (25) (Fig. 1A and 1B). Across the brain, we found that 136 

pupil dilations coincide with moments of widespread spiking events, in which neurons fire 137 

sequentially in reproducible patterns (Fig. 1B, C, red arrows). The same dynamics were derived 138 

previously without reference to pupil data and described as brain-wide spiking cascades (13). We 139 

repeated the same analysis on a two-photon calcium imaging dataset (26) and another large-scale 140 

Neuropixel dataset with broader coverage of mouse brain (27), revealing that these pupil-141 

associated cascades span across widespread brain regions and involve multiple neuron subtypes 142 

(Fig. S1 and S2).  143 

 144 

In the Human Connectome Project (HCP) 7T dataset (28), we similarly found that pupil size 145 

changes correlated with spontaneous resting fMRI fluctuations across the brain (Fig. 1D and 146 

1E). Alignment to pupil dilation onset revealed a temporal sequence of fMRI changes 147 

progressing along a principal gradient (PG) direction (Fig. 1F and S3), which approximates the 148 

cortical hierarchy gradient (22). These events were manifest as infra-slow (multi-second) waves 149 

moving gradually from SM to DMN regions. The cortical changes were accompanied by 150 

corresponding thalamic changes (Fig. 1G and S3F). Such SM-to-DMN propagating waves have 151 

been identified previously without pupil data (7, 10, 22). Thus, spontaneous pupil dilations 152 

during immobile rest are associated with sequential brain dynamics of global involvement, 153 

observed as spiking cascades in mice and propagating fMRI waves in humans. The 154 

correspondence between the mouse cascade and human fMRI waves is further supported by 155 

similar changes in delta-band (1-4 Hz) activity across their cycles (Fig. S4). 156 

 157 

While the function of these brain-wide events is poorly understood, evidence in the mouse ties 158 

spiking cascades to alternating periods of stimulus coding and memory operation (15).  Might 159 
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the fMRI waves in humans similarly regulate this switch between exteroceptive and 160 

interoceptive modes of brain function? To address this question, we investigated the occurrence 161 

of spontaneous propagating fMRI waves as human subjects performed a cognitive task involving 162 

memory.  Specifically, we asked whether the sensory encoding of stimuli and successful memory 163 

retrieval performance varied as a function of these spontaneous events.  164 

  165 

 166 
 167 

Figure2. Stimulus information encoding was assessed through fMRI responses using a deep learning-168 
based model. (A) Framework for training and evaluating the CLIP-based semantic decoder. In the 169 

training phase, an fMRI encoder is trained to map stimulus-evoked fMRI response to CLIP embedding 170 

space by maximizing the similarity between actual pairings of fMRI embedding and CLIP text embedding, 171 

while minimizing the similarity of embeddings of incorrect pairings via contrastive learning. For 172 
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evaluation, through the trained fMRI encoder, image-evoked fMRI responses are first encoded to fMRI 173 

embeddings in CLIP space and decoded by a pre-trained caption decoder (29) to generate text 174 

descriptions. The similarity between the generated text and ground truth text serves as an approximate 175 

but objective measure of the amount of semantic information being successfully encoded in fMRI 176 

responses, and thus of the brain’s semantic encoding accuracy. (B) The representational similarity 177 

analysis (RSA) confirms a successful training of the semantic decoder. Representational dissimilarity 178 

matrices based on cosine similarity for the semantic CLIP embeddings (left) and fMRI embeddings (right) 179 

showed highly similar structures. (C) Visualization of fMRI embeddings using t-SNE (t-distributed 180 

Stochastic Neighbor Embedding) reveals categorical distinctions within the embeddings, with each 181 

category distinctly color-coded. (D) Examples of significantly and insignificantly decoded samples, from 182 

top to bottom showing the image stimuli, the corresponding ground truth captions, and the caption 183 

decoded with evoked fMRI response. (E) Schematic of task design in the NSD dataset. Each of the 8 184 

participants viewed 10,000 distinct images with each image randomly displayed three times across 30-40 185 

scan sessions over a year. The stimuli presentation followed an event-related design comprising 4-second 186 

trials with 3 seconds of presentation and 1 second of baseline. (F) A box plot comparing the encoding 187 

accuracy, i.e. the proportion of significantly decoded samples based on CSS scores, between the fMRI 188 

encoder pre- and post-training. Each dot represents an individual participant, with the dotted line 189 

indicating a 5% chance level. Statistical significance is assessed using a two-sided pair-wise t-test (N=8). 190 

(G) The influence of initial image presentation encoding accuracy on subsequent memory task 191 

performance. Stimuli are binned based on the percentile of their first encoding accuracy, incremented by 192 

20%, and the memory task accuracy of their second presentation is averaged within the bins. The results 193 

are obtained by pooling the data from all subjects. 194 

 195 

Visual stimulus encoding predicts subsequent memory function. 196 

In order to systematically investigate the role of propagating SM-to-DMN waves on human 197 

cognition, we first needed to establish a reliable means to evaluate the encoding of visual stimuli 198 

from fMRI responses across the brain.  We developed a method to do this using the Natural 199 

Scenes Dataset (NSD) (30), in which a series of 10,000 captioned natural images were shown, in 200 

the form of 4-s trials, to each of 8 subjects with each image being presented three times over 40 201 

scan sessions on different days. For each trial, the subjects needed to indicate whether they had 202 

seen the stimulus before (Fig. 2E).  203 

 204 

To quantify the level of sensory stimulus encoding, we developed a novel deep learning model to 205 

decode semantic information of each image stimulus based on fMRI responses it evoked (Fig. 206 

2A and S5A). The model comprised an fMRI encoder, which extracted latent representation 207 

from the fMRI responses, i.e., the fMRI embeddings, and a caption decoder (29), which 208 

translated the fMRI embeddings into descriptive text captions. The fMRI encoder was trained to 209 

align the fMRI embeddings with the contrastive language-image pre-training (CLIP) embedding 210 

space (31) through contrastive learning (32). We then quantified the semantic similarity between 211 

the fMRI-decoded caption and the original caption by a composite semantic similarity (CSS) 212 

score to measure the accuracy of semantic information encoding (see Methods for more detail). 213 

 214 

Our deep learning model successfully decoded the semantic information associated with the 215 

visual stimuli based on the fMRI responses they evoked. The representation similarity analysis 216 

confirmed the alignment between fMRI and caption embeddings (Figs. 2B, S5B, and S5C), and 217 

the fMRI embeddings after training are organized as distinct categories in a low-dimensional 218 

space (Fig. 2C) (33). The trained model generated captions significantly similar to the ground 219 

truth captions for 33.0 ± 4.2% (mean ± SD) trials (see Fig. 2D and Fig. S6A for examples) as 220 
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compared with the 5% chance-level performance of the untrained model (Fig. 2F, p = 2.8×10-7; 221 

and Fig. S6B). In the context of the cognitive task, the semantic encoding accuracy faithfully 222 

predicted subsequent memory performance: a higher CSS score at the first appearance of an 223 

image stimulus led to a higher rate of correctly recalling it at its second repeat (Fig. 2G and S7).  224 

Given this tool, it was next possible to evaluate whether the occurrence of spontaneous 225 

propagating fMRI waves might bear on the quality of stimulus encoding, subsequent memory 226 

recall, or both. 227 

 228 

 229 
 230 

Figure 3. Semantic encoding and memory retrieval are oppositely modulated over the fMRI SM-to-231 
DMN wave cycle. (A) Detection of SM-to-DMN propagating waves during the memory task. The waves 232 

were detected using template-matching methods (7). The principal gradient (PG) map was used as the 233 

template, and six examples of detected propagations are shown, with similarity values indicating the 234 

correlation between the PG template and the delay profile of fMRI segments. (B) Schematics of two 235 

distinct memory metrics. Each image has three repeats. The fMRI wave phase at the first repeat was 236 

linked to the accuracy of correctly recognizing it at the second appearance to quantify the effect of this 237 

wave dynamic on memory encoding. Then, the fMRI wave phase at the second and third repeats were 238 

linked to the accuracy of recognition tasks at the same time to quantify the effect of the wave dynamic 239 

memory recall. (C) Opposite modulations of semantic/memory encoding and memory retrieval over the 240 

cycle of the SM-to-DMN waves. The first row shows the averaged pattern of the detected SM-to-DMN 241 

waves, which was shifted backward in time by 6 seconds to account for the known hemodynamic response 242 

delay. The time zero was marked at the onset of the global mean signal increase (dashed line), which 243 

appears to correspond to the cascade center (D) as judged from the timings of the upswing in semantic 244 

and visual encoding accuracies for human and mouse data respectively. Both pupil size (second row) and 245 
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memory retrieval (green in the bottom row) change significantly across the wave cycle and peak at the 246 

DMN-activated phase, whereas the semantic encoding accuracy (third row) and memory encoding 247 

accuracy (purple in the bottom row) are modulated in an opposite manner. Time series data are provided 248 

as the mean ± SEM for eight participants (N=8). (D) Opposite modulations of the visual encoding 249 

accuracy (second row) and hippocampal SPW-R rate (bottom row) across the spiking cascade cycle (first 250 

row) during stationary periods with continuous natural image stimulation in mice, adapted from (15). 251 

Time zero is marked by a dashed line indicating the onset of positive-delay neuron firing. The time series 252 

data is shown as mean ± SEM for 20 mice (N=20). 253 

 254 

Alternating stimulus encoding versus memory recall during propagating fMRI waves 255 

To address the role of the propagating fMRI waves on encoding and memory performance, we 256 

first established their presence during the cognitive task. These waves were identified directly 257 

from task fMRI data without using pupil data (7) (Fig. 3A). Similar to the resting state, pupil 258 

diameter fluctuations remained closely tied to the occurrence of propagating waves, despite also 259 

being affected by other task events to a lesser extent (Fig. S8A). The duration of the SM-to-260 

DMN waves (~10-15 seconds) is much longer than the task trials (4 seconds), and their 261 

occurrence, propagation, and relationship to pupil fluctuations are dissociated from the structure 262 

of the concurrent cognitive task (Fig. S8B).  263 

 264 

To evaluate whether encoding efficiency was influenced by propagating fMRI waves, we first 265 

used the fMRI deep learning-based decoding method described above to characterize the quality 266 

of encoding with each stimulus presentation. We found that the accuracy of such encoding varied 267 

systematically across the SM-to-DMN propagation cycle (Fig. 3C, red trace). Accounting for 268 

hemodynamic delays (see Methods), the stimulus encoding was strongest at the SM-activated 269 

phase of the propagating wave.  270 

 271 

We also used memory performance as a means to assess how fMRI waves affected both stimulus 272 

encoding and memory recall.  For encoding, accurate memory of individual stimuli during their 273 

second appearance was taken to indicate strong encoding at the initial presentation, whereas 274 

failure to remember a stimulus was taken to indicate weak encoding. This measure also realized 275 

the important role of the spontaneous propagating SM-to-DMN waves.  Namely, the strongest 276 

memory encoding occurred when the initial stimulus (Repeat #1 in Fig. 3B) was presented at the 277 

SM-activated phase (Fig. 3C, purple trace), thus matching the fMRI deep learning-based 278 

measure of stimulus encoding described just above (Fig. 3C, red trace). By contrast, evaluation 279 

of recall performance, which was done at the 2nd and 3rd presentations of a stimulus, revealed a 280 

peak performance later in the wave cycle, when the subject recall coincided with the DMN-281 

activated phase (Fig 3C, green trace). These results were similar for both short-term and long-282 

term memory types (Fig. S9B and S9C). 283 

 284 

These cyclic modulations of stimulus encoding and memory recall in humans resembled 285 

analogous observations in mice during different phases of the spiking cascades (15) (Fig. 3D). 286 

Specifically, the SM-activated phase of the fMRI wave matched a period within the cascade 287 

cycle (0–0.5 sec) of improved stimulus encoding, whereas the DMN-activated phase aligned 288 

with a different period within the cascade cycle (0.5–2 seconds) of increasing hippocampal 289 

SWP-R rate, which was also associated with pupil dilation (Fig. 3C and 3D). While the 290 

hippocampal SWP-R rate and memory performance are clearly different measures, they may 291 
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point to similar processes that transpire during more introspective modes of brain activity, 292 

commonly associated with activity of the DMN (34, 35). 293 

 294 
 295 

Figure 4. Stimulus encoding and its modulation across the SM-to-DMN wave cycle in different brain 296 
regions. (A) Cortical surface map showing the regional significance (paired t-tests: trained vs. untrained) 297 

of semantic encoding accuracy. (B) A box plot showing the semantic encoding accuracy estimated for 298 

different brain regions defined in the Yeo-17 networks atlas (36, 37). Asterisks denote the levels of 299 

statistical significance (paired t-test): *, 0.01 <p <0.05; **, 0.001 <p <0.01; ***, p <0.001.  Each dot 300 

represents an individual participant. (C) Semantic decoding accuracy (solid line) is consistently 301 

modulated over the SM-to-DMN wave cycle in six brain regions exhibiting the most significant decoding 302 

accuracy. For comparison, the average activation for each region is marked with a dotted line, which is 303 

shifted ahead of time by 6 seconds to account for the hemodynamic response delay. These regions are 304 

distinctly color-coded and their locations are indicated on a flattened cortical surface. Time series data 305 

are provided as the mean + SEM for eight participants (N=8). 306 

 307 
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Visual semantic information coding in multiple brain regions is similarly modulated by the 308 

SM-to-DMN wave cycle  309 

Repeating the semantic decoding using only regional fMRI data suggested that the semantic 310 

information was encoded across a wide range of brain regions, with the highest encoding 311 

accuracy observed in the visual cortex (Fig. 4A and 4B). Importantly, the encoding accuracy was 312 

modulated in all these regions over the SM-to-DMN wave cycle (Fig. 4C and Fig. S10) in a 313 

similar way as the whole-brain finding (Fig. 3C). Interestingly, the DMN, particularly its C 314 

division that encompasses the hippocampal complex and adjacent to visual association areas, 315 

exhibited the peak encoding accuracy at the SM-activated phase of the wave when its activity is 316 

not peaked, suggesting a dissociation between sensory encoding and regional activation level. 317 

These region-specific results on visual semantic encoding are consistent with those on cascade-318 

dependent visual encoding (15), further suggesting that the spiking cascades and cross-hierarchy 319 

waves represent the same neurophysiological process conserved across mice and humans.  320 

Discussion 321 

Here we showed that slow activity waves propagating over the cortical surface are associated 322 

with a counter-acting modulation of encoding and retrieval of information conferred by visual 323 

stimuli.  By analyzing electrophysiological and fMRI measures of brain activity, we first 324 

demonstrated that spontaneous pupil dilations are similarly accompanied by spiking cascade 325 

dynamics in mice and SM-to-DMN propagating waves in humans, thereby unifying these two 326 

types of infra-slow (<0.1Hz) global brain activity across different spatial scales and species. 327 

Assessing the semantic encoding of visual stimuli using a CLIP-based deep learning model, we 328 

found that the SM-to-DMN propagating waves persisted during task performance and were 329 

associated with counter-valent modulation in both encoding and retrieval of the stimulus content. 330 

The encoding of semantic information and memory peaked at the early phase of SM-activation, 331 

whereas memory retrieval accuracy reached the maximum at the DMN-activated phase. Together 332 

with previous findings from mice, these results suggested that the highly structured infra-slow 333 

global brain activity serves as an evolutionarily conserved mechanism by which the brain 334 

orchestrates the execution of exteroceptive sensory sampling and internal mnemonic processes 335 

on the timescale of seconds.  336 

 337 

The brain’s response to identical sensory stimuli is known to vary over time even on the 338 

timescale of seconds. Previous studies have shown how pre-stimulus ongoing activity and 339 

arousal state may contribute to this variability (24, 38–45). Our findings align with and extend 340 

these previous reports. Leveraging recent advances in deep learning techniques, our study goes 341 

beyond a simple quantification of response amplitude (2, 42, 43) and assesses the accuracy of the 342 

brain’s encoding of semantic information. Importantly, most previous studies have presumed that 343 

ongoing brain activity and changes in arousal occur spontaneously and randomly. As a result, 344 

much focus has been on the response modulation of ongoing activity that is temporally locked 345 

(prior to the stimulus) and spatially restricted (confined to the same local brain region). In 346 

contrast, we consider the effects of internal fluctuation in the context of highly structured brain 347 

dynamics (i.e., the spiking cascade or propagating wave) involving the large-scale coordination 348 

of activity. The initiation of these recurring global brain events is independent of visual 349 
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stimulation and memory tasks, and it modulates sensory processing quasi-periodically in a 350 

continuous and persistent way.  351 

 352 

We further found that memory retrieval was modulated over the SM-to-DMN wave cycle in a 353 

manner opposite to that of stimulus encoding, matching our previously observed counter-354 

modulation of hippocampal SPW-R rate and visual encoding (15). This previous study did not, 355 

however, identify specific memory functions or other cognitive operations associated with SPW-356 

Rs during the task, since SPW-Rs are usually observed during rest and sleep and often linked to 357 

offline memory consolidation (21, 46, 47). By comparing our human study results with these 358 

prior findings in mice, we found a correspondence between the cascade phase of high SPW-R 359 

rate to the wave phase of fMRI DMN activation, which is associated with a better performance 360 

in memory retrieval. This observation largely agrees with a series of recent studies on different 361 

species that linked SPW-Rs during tasks to memory retrieval (48–50), as well as the marked 362 

fMRI DMN activations (34, 35, 51, 52). 363 

 364 

The observed modulation of sensory and memory functions over the cascade/wave cycle may be 365 

associated with a change in the direction of information flow, particularly between the cortex and 366 

hippocampus. Memory retrieval during tasks and memory consolidation during rest and sleep 367 

likely require information flow from the hippocampus to the cortex, whereas the encoding of 368 

sensory information and memory would be facilitated by a reversed flow (21, 53, 54). Thus, the 369 

cascade/wave phases optimized for sensory encoding and memory retrieval may be dominated 370 

by opposite directions of information transmission, which may rely on distinct spatial gradients 371 

in activation level. In fMRI, such activation gradients are obvious for SM-to-DMN waves with 372 

dominant SM or DMN activation at different phases. This is less clear for cascades, since the 373 

negative- and positive-delay neurons were found in all recorded brain regions (13). However, the 374 

hippocampal regions, especially CA1 and the dentate gyrus (DG), contain a much higher number 375 

of negative-delay neurons compared to any other areas, including all visual areas, whereas the 376 

thalamus has the least. Thus, the activation gradient between these two neuronal groups can be 377 

translated into spatial gradients among the hippocampus, cortex, and thalamus. We hypothesize 378 

that these gradients, alternating on the multi-second scale, determine the dominant direction of 379 

information flow, which itself occurs on much faster (millisecond) timescales. This hypothesis 380 

remains to be tested by future studies. It is worth noting that artificial neural networks also 381 

feature alternating forward/backward information flows across hierarchical layers during training 382 

(11, 12), which may thus represent a mechanism essential to the learning of all connection-based 383 

intelligence systems. 384 

 385 

The cascade and wave dynamics reported here may represent a fundamental mechanism by 386 

which the brain coordinates the opposing operations of exteroceptive sensory sampling and 387 

internal mnemonic processes. A balance between these processes is essential for optimized 388 

cognitive performance and is likely reached under states of intermediate arousal (55, 56). Highly 389 

aroused states could break this balance by terminating this infra-slow global dynamic. 390 

Locomotion, presumably associated with heightened arousal, has been found to replace cascade 391 

dynamics with sustained firing of the positive-delay neurons (15) that are expected to promote 392 

sensory and memory encoding but impede memory retrieval (57, 58). Toward the other end of 393 

this spectrum, during drowsiness, the infra-slow global dynamic may prolong the memory 394 

consolidation phase whereas hinder encodings. The SM-to-DMN waves have been found to 395 
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occur more frequently during various sleep stages and be associated with learning-related 396 

features (i.e., the rapid eye movements and possibly Ponto-Geniculo-Occipital (PGO) waves) 397 

during rapid eye movement (REM) sleep (59). Though not directly focused on the cascade and 398 

waves, recent studies convergingly point out an essential role of infra-slow neural dynamics in 399 

learning and memory. In addition to hippocampal SPW-Rs, infra-slow dynamics have been found 400 

to simultaneously coordinate the density of sleep spindles, an electrophysiological feature that 401 

has relevance for learning and memory (60, 61). Importantly, the amplitude of infra-slow 402 

dynamics during sleep, defined through spindle density and cardiac rate, is not only correlated 403 

with memory performance on the subsequent day (62), but optogenetically enhancing it also 404 

leads to improved memory (63). Similar to the modulation of brain activity during cascades and 405 

waves described here, such spindle-based infra-slow dynamic alternates between an offline 406 

phase, characterized by higher spindle and hippocampal SPW-Rs rates with low arousal, and an 407 

online phase, marked by lower spindle and ripple rates with higher arousal and susceptibility to 408 

external stimulation (62).  409 

 410 

The SM-to-DMN propagating wave and its effect on sensory and memory functions may offer 411 

explanations for some previous task fMRI observations. Graph-theory metrics based on fMRI 412 

connectivity/correlations, such as cartography and network flexibility, have been used to quantify 413 

brain dynamics and found associations with various cognitive components, particularly learning 414 

(64–66). Most of these metrics focused on assessing the integration and segregation of the large-415 

scale networks, which are expected to be profoundly affected by the presence of the global SM-416 

to-DMN waves. Thus, the waves could be an important contributor to these metrics of network 417 

dynamics. Another related phenomenon is the so-called encoding/retrieval flip, in which the de-418 

activation and activation of the posteromedial cortex, a key component of DMN, are 419 

preferentially associated with successful memory encoding and retrieval respectively (67–69). 420 

This phenomenon can be explained by our finding that memory encoding and recall were 421 

oppositely modulated over the wave cycle with distinct DMN activations. Importantly, the 422 

present study expands this early research by incorporating the previous findings into the 423 

framework of highly structured cross-hierarchy propagating waves, which persist under various 424 

brain conditions beyond tasks.  425 

 426 

Finally, the SM-to-DMN waves may also relate to memory dysfunction in Alzheimer's disease 427 

(AD). The global mean BOLD (gBOLD) signal, whose peaks the SM-to-DMN waves are 428 

manifested as, has been repeatedly linked to various AD pathologies (70–72). The gBOLD peaks 429 

(also SM-to-DMN waves (16)) have been found to be coupled by strong cerebrospinal fluid 430 

(CSF) movements, known to be essential for peri-vascular waste clearance (73–75). The strength 431 

of this gBOLD-CSF coupling is indeed associated with the accumulation of amyloid-beta and tau 432 

(71, 72). Particularly, the failure of the SM-to-DMN waves to reach the DMN appeared to 433 

account for preferential amyloid-beta accumulation at these higher-order regions at the early 434 

stage of AD (71). Besides the toxic protein accumulation, AD also features dysfunctions in 435 

memory and subcortical neuromodulatory systems (76–79), which are both linked to the 436 

cascades and global waves (10, 13). Thus, it is possible that changes in this infra-slow global 437 

dynamic may also related to the dysfunction of the memory and arousal systems in AD.  438 
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